




Praise for Just Enough Software Architecture: A Risk-Driven Approach

If you’re going to read only one book on software architecture, start with this one. Just
Enough Software Architecture covers the essential concepts of software architecture
that everyone — programmers, developers, testers, architects, and managers — needs
to know, and it provides pragmatic advice that can be put into practice within hours
of reading.

—Michael Keeling, professional software engineer

This book reflects the author’s rare mix of deep knowledge of software architecture
concepts and extensive industry experience as a developer. If you’re an architect, you
will want the developers in your organization to read this book. If you’re a developer,
do read it. The book is about architecture in real (not ideal) software projects. It
describes a context that you’ll recognize and then it shows you how to improve your
design practice in that context.

—Paulo Merson, practicing software architect and
Visiting Scientist at the Software Engineering Institute

Fairbanks’ focus on “just enough” architecture should appeal to any developers try-
ing to work out how to make the architecting process tractable. This focus is made
accessible through detailed examples and advice that illustrate how an understand-
ing of risk can be used to manage architecture development and scope. At the same
time, Fairbanks provides detail on the more academic aspects of software architec-
ture, which should help developers who are interested in understanding the broader
theory and practice to apply these concepts to their projects.

—Dr. Bradley Schmerl, Senior Systems Scientist, School of
Computer Science, Carnegie Mellon University

The Risk-Driven Model approach described in George Fairbanks’ Just Enough Software
Architecture has been applied to the eXtensible Information Modeler (XIM) project
here at the NASA Johnson Space Center (JSC) with much success. It is a must for
all members of the project, from project management to individual developers. In
fact, it is a must for every developer’s tool belt. The Code Model section and the
anti-patterns alone are worth the cost of the book!

—Christopher Dean, Chief Architect, XIM,
Engineering Science Contract Group – NASA Johnson Space Center



Just Enough Software Architecture will coach you in the strategic and tactical appli-
cation of the tools and strategies of software architecture to your software projects.
Whether you are a developer or an architect, this book is a solid foundation and
reference for your architectural endeavors.

—Nicholas Sherman, Program Manager, Microsoft

Fairbanks synthesizes the latest thinking on process, lifecycle, architecture, modeling,
and quality of service into a coherent framework that is of immediate applicability to
IT applications. Fairbanks’ writing is exceptionally clear and precise while remaining
engaging and highly readable. Just Enough Software Architecture is an important con-
tribution to the IT application architecture literature and may well become a standard
reference work for enterprise application architects.

—Dr. Ian Maung, Senior VP of Enterprise Architecture at Citigroup
and former Director of Enterprise Architecture at Covance

This book directly tackles some key needs of software practitioners who seek
that blend of tools to help them create more effective systems, more effectively.
George reaches frequently into his own experience, combining important ideas from
academia to provide a conceptual model, selected best practices from industry to
broaden coverage, and pragmatic guidance to make software architectures that are
ultimately more useful and realistic. His simple risk-based approach frames much of
the book and helps calibrate what “just-enough” should be. This book is an important
addition to any software architecture bookshelf.

—Desmond D’Souza, Author of MAp and Catalysis, Kinetium, Inc.

This book shows how software architecture helps you build software instead of dis-
tracting from the job; the book lets you identify and address only those critical archi-
tectural concerns that would otherwise prevent you from writing code.

—Dr. Kevin Bierhoff, professional software engineer

System and software developers questioning why and where about software archi-
tecture will appreciate the clear arguments and enlightening analogies this book
presents; developers struggling with when and how to do architecture will discover
just-enough guidance, along with concepts and ideas that clarify, empower, and lib-
erate. All in all, this book is easy to read, concise, yet rich with references — a
well-architected and finely-designed book!

—Dr. Shang-Wen Cheng, flight software engineer
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Foreword

In the 1990s software architecture emerged as an explicit subfield of software engi-
neering when it became widely recognized that getting the architecture right was a
key enabler for creating a software-based system that met its requirements. What
followed was a dizzying array of proposals for notations, tools, techniques, and pro-
cesses to support architectural design and to integrate it into existing software devel-
opment practices.

And yet, despite the existence of this body of material, principled attention to
software architecture has in many cases not found its way into common practice.
Part of the reason for this has been something of a polarization of opinions about
the role that architecture should play. On one side is a school of thought that advo-
cates architecture-focused design, in which architecture plays a pivotal and essential
role throughout the software development process. People in this camp have tended
to focus on detailed and complete architectural designs, well-defined architecture
milestones, and explicit standards for architecture documentation. On the other side
is a school of thought that deemphasizes architecture, arguing that it will emerge
naturally as a by-product of good design, or that it is not needed at all since the archi-
tecture is obvious for that class of system. People in this camp have tended to focus
on minimizing architectural design as an activity separate from implementation, and
on reducing or eliminating architectural documentation.

Clearly, neither of these camps has it right for all systems. Indeed, the central
question that must be asked is “How much explicit architectural design should one
carry out for a given system?”

In this book, George Fairbanks proposes an answer: “Just Enough Architecture.”
One’s first reaction to this might be “Well, duh!” because who would want too much
or too little. But of course there is more to it than that, and it is precisely the detail-
ing of principles for figuring out what “just enough” means that is the thrust of this
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book. As such, it provides a refreshing and non-dogmatic way to approach software
architecture — one with enormous practical value.

Fairbanks argues that the core criterion for determining how much architecture
is enough is risk reduction. Where there is little risk in a design, little architecture
is needed. But when hard system design issues arise, architecture is a tool with
tremendous potential. In this way the book adopts a true engineering perspective on
architecture, in the sense that it directly promotes the consideration of the costs and
benefits in selecting a technique. Specifically, focusing on risk reduction aligns engi-
neering benefits with costs by ensuring that architectural design is used in situations
where it is likely to have the most payoff.

Naturally, there are a lot of secondary questions to answer. Which risks are best
addressed with software architecture? How do you apply architectural design princi-
ples to resolve a design problem? What do you write down about your architectural
commitments so that others know what they are? How can you help ensure that
architectural commitments are respected by downstream implementers?

This book answers all of these questions, and many more — making it a uniquely
practical and approachable contribution to the field of software architecture. For
anyone who must create innovative software systems, for anyone who is faced with
tough decisions about design tradeoffs, for anyone who must find an appropriate
balance between agility and discipline — in short, for almost any software engineer
— this is essential reading.

David Garlan
Professor, School of Computer Science
Director of Professional Software Engineering Programs
Carnegie Mellon University
May 2010



Preface

This is the book I wish I’d had when I started developing software. At the time, there
were books on languages and books on object-oriented programming, but few books
on design. Knowing the features of the C++ language does not mean you can design
a good object-oriented system, nor does knowing the Unified Modeling Language
(UML) imply you can design a good system architecture.

This book is different from other books about software architecture. Here is what
sets it apart:

It teaches risk-driven architecting. There is no need for meticulous designs when
risks are small, nor any excuse for sloppy designs when risks threaten your success.
Many high-profile agile software proponents suggest that some up-front design can
be helpful, and this book describes a way to do just enough architecture. It avoids
the “one size fits all” process tar pit with advice on how to tune your architecture
and design efforts based on the risks you face. The rigor of most techniques can be
adjusted, from quick-and-dirty to meticulous.

It democratizes architecture. You may have software architects at your organiza-
tion — indeed, you may be one of them. Every architect I have met wishes that all
developers understood architecture. They complain that developers do not under-
stand why constraints exist and how seemingly small changes can affect a system’s
properties. This book seeks to make architecture relevant to all software developers,
not just architects.

It cultivates declarative knowledge. There is a difference between being able to hit
a tennis ball and knowing why you are able to hit it, what psychologists refer to as
procedural knowledge versus declarative knowledge. If you are already an expert at
designing and building systems then you will have employed many of the techniques
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found here, but this book will make you more aware of what you have been doing
and provide names for the concepts. That declarative knowledge will improve your
ability to mentor other developers.

It emphasizes the engineering. People who design and build software systems have
to do many things, including dealing with schedules, resource commitments, and
stakeholder needs. Many books on software architecture already cover software de-
velopment processes and organizational structures. This book, in contrast, focuses
on the technical parts of software development and deals with what developers do to
ensure a system works — the engineering. It shows you how to build models and an-
alyze architectures so that you can make principled design tradeoffs. It describes the
techniques software designers use to reason about medium- to large-sized problems
and points out where you can learn specialized techniques in more detail. Conse-
quently, throughout this book, software engineers are referred to as developers, not
differentiating architects from programmers.

It provides practical advice. This book offers a practical treatment of architecture.
Software architecture is a kind of software design, but design decisions influence the
architecture and vice versa. What the best developers do is drill down into obstacles
in detail, understand them, then pop back up to relate the nature of those obsta-
cles to the architecture as a whole. The approach in this book embraces this drill-
down/pop-up behavior by describing models that have various levels of abstraction,
from architecture to data structure design.

About me

My career has been a quest to learn how to build software systems. That quest has
led me to interleave academics with industrial software development. I have the
complete collector’s set of computer science degrees: a BS, an MS, and a PhD (the PhD
is from Carnegie Mellon University, in software engineering). For my thesis, I worked
on software frameworks because they are a problem that many developers face. I
developed a new kind of specification, called a design fragment, to describe how to
use frameworks, and I built an Eclipse-based tool that can validate their correct usage.
I was enormously fortunate to be advised by David Garlan and Bill Scherlis, and to
have Jonathan Aldrich and Ralph Johnson on my committee.

I appreciate academic rigor, but my roots are in industry. I have been a software
developer on projects including the Nortel DMS-100 central office telephone switch,
statistical analysis for a driving simulator, an IT application at Time Warner Telecom-
munications, plug-ins for the Eclipse IDE, and every last stitch of code for my own
web startup company. I tinker with Linux boxes as an amateur system administrator
and have a closet lit by blinking lights and warmed by power supplies. I have sup-
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ported agile techniques since their early days — in 1996 I successfully encouraged
my department to switch from a six-month to a two-week development cycle, and in
1998 I started doing test-first development.

Who is this book for?

The primary audience for this book is practicing software developers. Readers should
already know basic software development ideas — things like object-oriented soft-
ware development, the UML, use cases, and design patterns. Some experience with
how real software development proceeds will be exceedingly helpful, because many
of this book’s basic arguments are predicated on common experiences. If you have
seen developers build too much documentation or do too little thinking before cod-
ing, you will know how software development can go wrong and therefore be looking
for remedies like those offered in this book. This book is also suitable as a textbook
in an advanced undergraduate or graduate level course.

Here is what to expect depending on what kind of reader you are:

Greenhorn developers or students. If you already have learned the basic me-
chanics of software development, such as programming languages and data structure
design, and, ideally, have taken a general software engineering class, this book will
introduce you to specific models of software that will help you form a conceptual
model of software architecture. This model will help you make sense of the chaos
of large systems without drawing a lot of diagrams and documentation. It may give
you your first taste of ideas such as quality attributes and architectural styles. You will
learn how to take your understanding of small programs and ramp it up to full indus-
trial scale and quality. It can accelerate your progress toward becoming an effective,
experienced developer.

Experienced developers. If you are good at developing systems then you will in-
variably be asked to mentor others. However, you may find that you have a somewhat
idiosyncratic perspective on architecture, perhaps using unique diagram notations or
terminology. This book will help you improve your ability to mentor others, un-
derstand why you are able to succeed where others struggle, and teach you about
standard models, notations, and names.

Software architects. The role of software architect can be a difficult one when
others in your organization do not understand what you do and why you do it. Not
only will this book teach you techniques for building systems, it will also give you
ways to explain what you are doing and how you are doing it. Perhaps you will even
hand this book to co-workers so that you can better work as teammates.
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Academics. This book makes several contributions to the field of software architec-
ture. It introduces the risk-driven model of software architecture, which is a way of
deciding how much architecture and design work to do on a project. It describes three
approaches to architecture: architecture-indifferent design, architecture-focused design,
and architecture hoisting. It integrates two perspectives on software architecture: the
functional perspective and the quality-attribute perspective, yielding a single concep-
tual model. And it introduces the idea of an architecturally-evident coding style that
makes your architecture evident from reading the source code.
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Chapter 1

Introduction

Decade after decade, software systems have seen orders-of-magnitude increases in
their size and complexity. This is remarkable — and more than a little scary for those
of us who build software. In contrast, imagine how hard basketball would be if it
scaled up the same way, with 5 people on the floor one decade, then 50, then 500.
Because of this growth, today’s software systems are arguably the largest and most
complex things ever built.

Software developers are always battling the ever-stronger foes of complexity and
scale, but even though their opponent grows in strength, developers have staved off
defeat and even reveled in victory. How have they done this?

One answer is that the increases in software size and complexity have been
matched by advances in software engineering. Assembly language programming
gave way to higher-level languages and structured programming. Procedures have,
in many domains, given way to objects. And software reuse, which used to mean just
subroutines, is now also done with extensive libraries and frameworks.

It is no coincidence that the battle between developers and software complexity
always seems to be at a stalemate. Since developers cannot grow bigger brains, they
have instead improved their weapons. An improved weapon gives developers two
options: to more easily conquer yesterday’s problems, or to combat tomorrow’s. We
are no smarter than developers of the previous generation, but our improved weapons
allow us to build software of greater size and complexity.

Software developers wield some tangible weapons, such as Integrated Develop-
ment Environments (IDEs) and programming languages, but intangible weapons ar-
guably make a bigger impact. Returning to our basketball metaphor, consider a coach
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and a rookie (a novice sports player) watching the same game. The coach sees more
than the rookie — not because the coach’s eyes are more acute, but because he has
an intangible weapon. He has built up a set of mental abstractions that allow him to
convert his perceptions of raw phenomena, such as a ball being passed, into a con-
densed and integrated understanding of what is happening, such as the success of an
offensive strategy. The coach watches the same game that the rookie does, but he
understands it better. Alan Kay has observed that your “point of view is worth 80 IQ
points” (Kay, 1989).

Software is similar in that there are lots of low-level details. If developers have
built up a set of mental abstractions (i.e., a conceptual model), they can convert those
details into a condensed understanding: where before they saw just code, perhaps
they now see a thread-safe locking policy or an event-driven system.

1.1 Partitioning, knowledge, and abstractions

To be successful at combating the scale and complexity of software in the next decade,
developers will need improved weapons. Those weapons can be categorized, perhaps
with a bit of shoehorning, into three categories: partitioning, knowledge, and abstrac-
tion. Developers partition a problem so that its parts are smaller and more tractable,
they apply knowledge of similar problems, and they use abstractions to help them rea-
son. Partitioning, knowledge, and abstraction are effective because they enable our
fixed-sized minds to comprehend an ever-growing problem.

• Partitioning. Partitioning is effective as a strategy to combat complexity and
scale when two conditions are true: first, the divided parts must be sufficiently
small that a person can now solve them; second, it must be possible to reason
about how the parts assemble1 into a whole. Parts that are encapsulated are
easier to reason about, because you need to track fewer details when composing
the parts into a solution. You can forget, at least temporarily, about the details
inside the other parts. This allows the developer to more easily reason about
how the parts will interact with each other.

• Knowledge. Software developers use knowledge of prior problems to help them
solve current ones. This knowledge can be implicit know-how or explicitly writ-
ten down. It can be specific, as in which components work well with others,
or general, as in techniques for optimizing a database table layout. It comes in
many forms, including books, lectures, pattern descriptions, source code, design
documents, or sketches on a whiteboard.

1Mary Shaw has remarked that when dividing and conquering, the dividing is the easy part.
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• Abstraction. Abstraction can effectively combat complexity and scale because
it shrinks problems, and smaller problems are easier to reason about. If you are
driving from New York to Los Angeles, you can simplify the navigation problem
by considering only highways. By hiding details (excluding the option of driv-
ing across fields or parking lots), you have shrunken the number of options to
consider, making the problem easier to reason about.

You should not expect any silver bullets, as Fred Brooks called them, that will sud-
denly eliminate the difficulties of software development (Brooks, 1995). Instead, you
should look for weapons that help you partition systems better, provide knowledge,
and enable abstraction to reveal the essence of the problem.

Software architecture is one such weapon and it can help you address the com-
plexity and scale of software systems. It helps you partition software, it provides
knowledge that helps you design better software, and it provides abstractions that
help you reason about software. It is a tool in the hands of a skilled developer. It
helps software developers to routinely build systems that previously required virtu-
osos (Shaw and Garlan, 1996), but it does not eliminate the need for skilled software
developers. Instead of removing the need for ingenuity, it allows developers to apply
their ingenuity to build bigger and more complex systems.

1.2 Three examples of software architecture

That is what software architecture does for you, but what is it? Roughly speaking,
architecture is the macroscopic design of a software system. Chapter 2 of this book
discusses a more careful definition, but perhaps it is best to understand software
architecture using some concrete examples first.

It can be hard to “see the forest for the trees,” which in this case means finding
the architecture amidst the design details. But by comparing multiple similar sys-
tems with different architectures you should be able to notice what is different and
therefore identify their architectures. What follows is a description of three systems
with the same functionality, yet different architectures, based on the experiences at
Rackspace.

Rackspace is a real company that manages hosted email servers. Customers call up
for help when they experience problems. To help a customer, Rackspace must search
the log files that record what has happened during the customer’s email processing.
Because the volume of emails they handle kept increasing, Rackspace built three
generations of systems to handle the customer queries (Hoff, 2008b; Hood, 2008).

Version 1: Local log files. The first version of the program was simple. There were
already dozens of email servers generating log files. Rackspace wrote a script that
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would use ssh to connect to each machine and execute a grep query on the mail log
file. Engineers could control the search results by adjusting the grep query.

This version initially worked well, but over time the number of searches increased
and the overhead of running those searches on the email servers became noticeable.
Also, it required an engineer, rather than a support tech, to perform the search.

Version 2: Central database. The second version addressed the drawbacks of the
first one by moving the log data off of the email servers and by making it searchable
by support techs. Every few minutes, each email server would send its recent log data
to a central machine where it was loaded into a relational database. Support techs
had access to the database data via a web-based interface.

Rackspace was now handling hundreds of email servers, so the volume of log data
had increased correspondingly. Rackspace’s challenge became how to get the log data
into the database as quickly and efficiently as possible. The company settled on bulk
record insertion into merge tables, which enabled loading of the data in two or three
minutes. Only three days worth of logs were kept so that the database size would not
hinder performance.

Over time, this system also encountered problems. The database server was a
single machine and, because of the constant loading of data and the query volume,
it was pushed to its limit with heavy CPU and disk loads. Wildcard searches were
prohibited because of the extra load they put on the server. As the amount of log data
grew, searches became slower. The server experienced seemingly random failures
that became increasingly frequent. Any log data that was dropped was gone forever
because it was not backed up. These problems led to a loss of confidence in the
system.

Version 3: Indexing cluster. The third version addressed the drawbacks of the sec-
ond by saving log data into a distributed file system and by parallelizing the indexing
of log data. Instead of running on a single powerful machine, it used ten commodity
machines. Log data from the email servers streamed into the Hadoop Distributed
File System, which kept three copies of everything on different disks. In 2008, when
Rackspace wrote a report on its experiences, it had over six terabytes of data spanning
thirty disk drives, which represented six months of search indexes.

Indexing was performed using Hadoop, which divides the input data, indexes (or
“maps”) in jobs, then combines (or “reduces”) the partial results into a complete in-
dex. Jobs ran every ten minutes and took about five minutes to complete, so index
results were about fifteen minutes stale. Rackspace was able to index over 140 gi-
gabytes of log data per day and had executed over 150,000 jobs since starting the
system.

As in the second system, support techs had access via a web interface that was
much like a web search-engine interface. Query results were provided within seconds.
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When engineers thought up new questions about the data, they could write a new
kind of job and have their answer within a few hours.

1.3 Reflections

The first thing to notice from looking at these three systems is that they all have
roughly the same functionality (querying email logs to diagnose problems) yet they
have different architectures. Their architecture was a separate choice from their func-
tionality. This means that when you build a system, you can choose an architecture
that best suits your needs, then build the functionality on that architectural skeleton.
What else can these systems reveal about software architecture?

Quality attributes. Despite having the same functionality, the three systems differ
in their modifiability, scalability, and latency. For example, in the first and second
version, ad hoc queries could be created in a matter of seconds, either by changing
the grep expression used for the search or by changing the SQL query. The third
system requires a new program to be written and scheduled before query results can
be obtained. All three support creating new queries, but they differ in how easy it is
to do (modifiability).

Notice also that there was no free lunch: promoting one quality inhibited another.
The third system was much more scalable than the other two, but its scalability came
at the price of reduced ability to make ad hoc queries and a longer wait before results
were available. The data in the first system was queryable online (and the second
could perhaps be made nearly so), but the third system had to collect data then run
a batch process to index the results, which means that query results were a bit stale.

If you are ever in a situation in which you can get great scalability, latency, mod-
ifiability, etc., then you should count yourself lucky, because such quality attributes
usually trade off against each other. Maximizing one quality attribute means settling
for less of the others. For example, choosing a more modifiable design may entail
worse latency.

Conceptual model. Even without being a software architecture expert, you could
read about these three systems and reason about their design from first principles.
What advantage would come from being a software architecture expert (i.e., being a
coach instead of a rookie)? Both coaches and rookies have an innate ability to reason,
but the coach has a head start because of the conceptual model he carries in his head
that helps him make sense of what he sees.

As an architecture expert, you would be primed to notice the partitioning differ-
ences in each system. You would distinguish between chunks of code (modules),
runtime chunks (components), and hardware chunks (nodes, or environmental ele-
ments). You would notice and already know the names of the architectural patterns
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each system employs. You would know which pattern is suited for achieving which
quality attributes, so you would have predicted that the client-server system would
have lower latency than the map-reduce system. You would sort out and relate do-
main facts, design choices, and implementation details — and notice when someone
else has jumbled them together. Being an expert in software architecture helps you
to use your innate reasoning abilities more effectively.

Abstractions and constraints. In software, bigger things are usually built out of
smaller things. You can always reason about the smaller things in a system (like
individual lines of code) but usually you will find it more efficient to reason about the
larger things (like clients and servers). For example, the third system in the Rackspace
example scheduled jobs and stored data in a distributed file system. If you needed
to solve a problem about how jobs flow through that system, then it would be most
efficient to reason about the problem at that level. You could begin your reasoning
process by considering the small bits, like objects and procedure calls, but that would
be inefficient and likely to swamp you with details.

Furthermore, a “job” is an abstraction that obeys more constraints than an ar-
bitrary “chunk of code” does. The developers imposed those constraints to make
reasoning about the system easier. For example, if they constrain jobs to have no side
effects, they can run the same job twice, in parallel, just in case one becomes bogged
down. It is hard to reason about an arbitrary chunk of code specifically because you
cannot tell what it does not do. Developers voluntarily impose constraints on the
system in order to amplify their reasoning abilities.

1.4 Perspective shift

In 1968 Edsger Dijkstra wrote a now famous letter titled “GOTO Considered Harmful”
advocating the use of structured programming. His argument is roughly as follows:
Developers build programs containing static statements that execute to produce out-
put. Developers, being human, have a hard time envisioning how the static state-
ments of a program will execute at runtime. GOTO statements complicate the rea-
soning about runtime execution, so it is best to avoid GOTO statements and embrace
structured programming.

Looking back at this debate today, it is hard to imagine disagreeing strongly, but
at the time the resistance was substantial. Developers were accustomed to working
within the old set of abstractions. They focused on the constraints of the new ab-
stractions rather than the benefits and objected based on corner cases that were hard
to express using structured programming. Each similar increase in abstraction is op-
posed by some who are familiar with the old abstractions. During my programming
career, I have seen developers resist abstract data types and object-oriented program-
ming, only to later embrace them.
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New architecture abstractions rarely replace old abstractions, but instead coexist
with them. Using abstractions such as components and connectors does not mean
that objects, methods, and data structures disappear. Similarly, forest fire fighters
switch between thinking about individual trees or entire forests depending on what
part of their job they are doing at the moment.

Effectively applying software architecture ideas requires a conscious and explicit
shift to embrace its abstractions, such as components and connectors, rather than only
using the abstractions found in mainstream programming language (often just classes
or objects). If you do not consciously choose the architecture of your systems, then
it may end up being what Brian Foote and Joseph Yoder call a big ball of mud (Foote
and Yoder, 2000), which they estimate is the most common software architecture. It
is easy to understand this architecture: Imagine what a system with 10 classes would
look like, then scale it up to 100, 1000, ..., without any new abstractions or partitions,
and let the objects in the system communicate with each other as is expedient.

1.5 Architects architecting architectures

I have sometimes seen software developers design systems with beautiful architec-
tures, then voice their resistance to software architecture. This resistance may stem
from resistance to bureaucracy-intensive up-front design processes, to pompous ar-
chitects, or to having been forced to waste time making diagrams instead of systems.
Fortunately, none of these problems need to be a part of creating software architec-
ture.

Job titles, development processes, and engineering artifacts are separable, so it
is important to avoid conflating the job title “architect,” the process of architecting a
system, and the engineering artifact that is the software architecture.

• The job role: architect. One possible job title (or role) in an organization
is that of a software architect. Some architects sit in corner offices and make
pronouncements that are disconnected from the engineering reality, while other
architects are intimately involved in the ongoing construction of the software.
Either way, the title and the office are not intrinsic to the work of designing or
building software. All software developers, not just architects, should under-
stand their software’s architecture.

• The process: architecting. There is no software at the beginning of a project,
but by the end of the project there is a running system. In between, the team
performs activities (i.e., they follow a process) to construct the system. Some
teams design up-front and other teams design as they build. The process that
the team follows is separable from the design that emerges. A team could follow
any number of different processes and produce, for example, a 3-tier system. Or
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put another way, it is nearly impossible to tell what architecting process a team
followed by looking only at the finished software.

• The engineering artifact: the architecture. If you look at an automobile, you
can tell what type of car it is, perhaps an all-electric car, a hybrid car, or an
internal combustion car. That characteristic of the car is distinct from the pro-
cess followed to design it, and distinct from the job titles used by its designers.
The car’s design is an engineering artifact. Different choices about process and
job titles could still result in their creating, for example, a hybrid car. Software
is similar. If you look at a finished software system, you can distinguish var-
ious designs; for example: collaborating peer-to-peer nodes in a voice-over-IP
network, multiple tiers in information technology (IT) systems, or parallelized
map-reduce compute nodes in internet systems. Every software system has an
architecture just as every car has a design. Some software is cobbled together
without a regular process, yet its architecture is still visible.

This book discusses process in Chapter 2 and Chapter 3. The rest of the book treats
architecture as an engineering artifact: something to be analyzed, understood, and
designed so that you can build better systems.

1.6 Risk-driven software architecture

Different developers have had success with different processes. Some succeeded with
agile processes that have little or no up-front work. Others succeeded with detailed
up-front design work. Which should you choose? Ideally, you would have a guiding
principle that would help you choose appropriately.

This book suggests using risk to decide how much architecture work to do. One
way to understand how risk can guide you to good choices about architecture it is to
consider the story of my father installing a mailbox.

My father has two degrees in mechanical engineering, but when he put up a mail-
box he did it like anyone else would: he dug a hole, put in the post, and filled
the hole with some cement. Just because he could calculate moments, stresses, and
strains does not mean he must or should. In other situations it would be foolish for
him to skip these analyses. How did he know when to use them?

Software architecture is a relatively new technology, and it includes many tech-
niques for modeling and analyzing systems. Yet each of these techniques takes time
that could otherwise be spent building the system. This book introduces the risk-
driven model for software architecture, which guides you to do just enough archi-
tecture by selecting appropriate architecture techniques and knowing when you can
stop.
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Your effort should be commensurate with your risk of failure. Perhaps your system
has demanding scalability requirements because you run a popular web service. It
would be best to ensure that your system will handle the expected number of users2

before you invest too much energy in its design (or the site goes live). If modifiability
is less of a concern for your system (or usability, etc.), you would spend little time
worrying about that risk.

Each project faces different risks, so there is no single correct way to do software
architecture: you must evaluate the risks on each project. Sometimes the answer is to
do no architecture work, because some projects are so highly precedented that there
is almost no risk as long as you reuse a proven architecture. However, when you work
in novel domains or push an existing system into uncharted territory you will want to
be more careful.

The idea of consistently working to reduce engineering risks echoes Barry Boehm’s
spiral model of software development (Boehm, 1988). The spiral model is a full soft-
ware development process that guides projects to work on the highest risk items first.
Projects face both management and engineering risks, so managers must prioritize
both management risks (like the risk of customer rejection) and engineering risks
(like the risk that the system is insecure or inefficient).

Compared to the spiral model, the risk-driven model helps you answer narrower
questions: How much architecture work should you do, and what kind of architecture
techniques should you use? Because the risk-driven model only applies to design
work, it means that it can be applied to agile processes, waterfall processes, spiral
processes, etc. Regardless of process, you must design the software — the difference
is when design happens and which techniques are applied.

1.7 Architecture for agile developers

Agile software development is a reaction to heavyweight development processes and
it emphasizes efficiently building products that customers want (Beck et al., 2001).
It is increasingly popular, with one study showing 69% of companies trying it on at
least some of their projects (Ambler, 2008).

In their desire to cut out unnecessary steps in software development, some agile
developers believe they should avoid software architecture techniques. This reluc-
tance is not universal, as many important voices in agile community support some
planned design work, including Martin Fowler, Robert Martin, Scott Ambler, and
Granville Miller (Fowler, 2004; Martin, 2009; Ambler, 2002; Miller, 2006). Refactor-
ing a poor architecture choice can be prohibitively expensive on large systems. This

2Recall that before the popular Facebook and MySpace social networking sites there was Friendster, but it
could not handle the rush of users and became too slow to use.
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book can help agile developers to use software architecture in a way that is consistent
with agile principles for two primary reasons:

• Just enough architecture. The risk-driven model of architecture guides devel-
opers to do just enough architecture then resume coding. If you only foresee
risks on your project that can be handled by refactoring then you would not do
any architecture design. But if you are an agilist who is also concerned that
refactoring may not be enough to get the security or scalability you need, now
you have a way to mitigate those risks — even in your Nth iteration — then get
back to coding.

• Conceptual model. Agile’s primary contribution is to software development
process, not design abstractions, and offers a limited number of techniques
(such as refactoring and spikes) to produce good designs. The contents of this
book augment agile processes by providing a conceptual model to reason about
a system’s architecture and design, a set of software design and modeling tech-
niques, and expert software architecture knowledge.

This is not a book specifically about agile software architecture, but you will find that
its risk-driven approach is well suited to agile projects. In particular, Section 3.11
provides a sketch of how to integrate risks into an iterative, feature-centric process.

1.8 About this book

This book focuses on software architecture as it relates to the construction of software,
and describes the techniques used to ensure that software satisfies its engineering
demands. This book is largely process agnostic because the engineering techniques
themselves are largely process agnostic. You will not find advice on management
activities like the political responsibilities of architects, when to hold specific kinds of
meetings, or how to gather requirements from stakeholders.

This book is divided into two parts. This first part introduces software architec-
ture and the risk-driven approach. The second part helps you build up a mental
conceptual model of software architecture and describes in detail the abstractions
like components and connectors. What follows is short summaries of each part.

Part I: Risk-driven software architecture

A definition of software architecture is difficult to pin down precisely, but several
things about it are quite clear. Software developers, like engineers in other special-
ties, use abstraction and models to solve large and complex problems. Software ar-
chitecture acts as the skeleton of a system, influences quality attributes, is orthogonal
to functionality, and uses constraints to influence a system’s properties. Architecture
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is most important when the solution space is small, the failure risks are high, or you
face difficult quality attribute demands. You can choose from architecture-indifferent
design, architecture-focused design, or even architecture hoisting.

Risks can be used to guide you regarding which design and architecture techniques
you should use and regarding how much design and architecture you should do. At
its core, the risk-driven model is simple: (1) identify and prioritize risks, (2) select
and apply a set of techniques, and (3) evaluate risk reduction.

To reveal the risk-driven model in practice, Chapter 4 provides an example of ap-
plying the risk-driven model to a Home Media Player system. The developers on that
system have the challenges of team communication, integration of COTS components,
and ensuring metadata consistency.

The first part of the book concludes with advice on using models and software
architecture, including: use models to solve problems, add constraints judiciously,
focus on risks, and distribute architecture skills throughout your team.

Part II: Architecture modeling

The second part of the book helps you build a mental conceptual model of software
architecture. It starts with the canonical model structure: the domain model, the
design model, and the code model. The domain model corresponds to things in the
real world, the design model is the design of the software you are building, and the
code model corresponds to your source code. You can build additional models that
show selected details, called views, and these views can be grouped into viewtypes.

Building encapsulation boundaries is a crucial skill in software architecture. Users
of a component or module can often ignore how it works internally, freeing their
minds to solve other hard problems. And the builders of an encapsulated component
or module have the freedom to change its implementation without perturbing its
users. Builders will only have that freedom if the encapsulation is effective, so this
book will teach you techniques for ensuring that it is effective.

A great number of architectural abstractions and modeling techniques have been
built up over the years. This book consolidates software architecture techniques found
in a variety of other sources, integrating techniques emphasizing quality attributes as
well as techniques emphasizing functionality. It also discusses pragmatic ways to
build effective models and debug them.

The second part of the book concludes with advice on how to use the models
effectively. Any book that covered the advantages but not the pitfalls of a technology
should not be trusted, so it also covers problems that you are likely to encounter.
By the end of the second part, you should have built up a rich conceptual model of
abstractions and relationships that will help you see software systems the way a coach
sees a game.





Part I

Risk-Driven Software Architecture





Chapter 2

Software Architecture

Before understanding how you can use risk to decide how much software architecture
work to do, you need to understand what software architecture is. This chapter digs
into what software architecture is and why it is important. It provides a foundation
so that you can understand how risk relates to software architecture.

Software architecture is about the design of your system and the impact it has on
the system’s qualities, qualities like performance, security, and modifiability. Rather
than provide yet another definition of software architecture that is subtly different,
this chapter uses a popular definition from the Carnegie Mellon Software Engineering
Institute (SEI). It discusses how architecture differs from detailed design and how
some of your biggest design decisions can have implications deep into the code.

Your software architecture choices are important because your architecture acts
as the skeleton of your system, influences its quality attributes, and constrains the
system. It is mostly orthogonal to the system’s functionality, so to some extent you
can mix-and-match architecture and functionality, though some combinations will
work better than others.

Sometimes any architecture you choose will work out fine; other times it is not
obvious that a solution is even possible. The harder the problem is, the more you
will need to pay attention to your architecture choices. Your architecture choices are
most important when the solution space is small, the risk of failure is high, you have
difficult quality attribute requirements, or when you are working in a new domain.

This chapter discusses three levels of engagement with architecture. In
architecture-indifferent design, you pay little attention to the architecture, perhaps
using a highly precedented presumptive architecture, such as a 3-tier system on an
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information technology (IT) project. In architecture-focused design, you deliberately
choose an architecture that is compatible with your system’s goals. And with archi-
tecture hoisting, you design the architecture such that it can ensure a goal or property
of the system.

2.1 What is software architecture?

In this book, you will learn how to use models and abstractions to reason about
your software systems, specifically about their software architecture. Your design will
impact how well your system succeeds, for example if it is fast, secure, or modifiable.
Your design will have that impact whether you write it down in carefully labeled
binders, or if you simply keep it in your head.

Architecture and detailed design. A software system’s design consists of the deci-
sions and intentions that are in the heads of the developers. Design can be partitioned
into software architecture (often shortened to just architecture) and detailed design.

In practice, you will often find it difficult to differentiate architecture from detailed
design. You will not be alone, since experts generally agree about the broad strokes of
architecture but disagree about the fine details, such as where architecture stops and
detailed design begins. Perhaps the best description of how architecture differs from
detailed design comes from two leaders in the field, Mary Shaw and David Garlan
(Shaw and Garlan, 1996):

As the size and complexity of software systems increase, the design and
specification of overall system structure become more significant issues
than the choice of algorithms and data structures of computation. Struc-
tural issues include the organization of a system as a composition of com-
ponents; global control structures; the protocols for communication, syn-
chronization, and data access; the assignment of functionality to design el-
ements; the composition of design elements; physical distribution; scaling
and performance; dimensions of evolution; and selection among design
alternatives. This is the software architecture level of design.

Definition. A great variety of definitions of software architecture have been proposed
and there is general agreement that architecture deals with macroscopic, sweeping
issues in software design. One of the most popular definitions is from the Software
Engineering Institute (Clements et al., 2010):

The software architecture of a computing system is the set of structures
needed to reason about the system, which comprise software elements,
relations among them, and properties of both.
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This definition lists topics that are important to software architecture: elements, re-
lations, and properties. Yet it does not simply say these structures comprise the archi-
tecture, it says that the architecture is the set of structures you need to reason about
the system.

As an analogy, consider the architecture of the United States. Schoolchildren learn
that the country is composed of fifty states and have lessons in which they memorize
the states’ locations. However, this structural information is insufficient to reason
about the country. So they later learn that the size of the states is related to when
they were settled, that states differ in their resources, and that the size and population
of the states influenced the structure of the national legislature. With this improved
understanding, they can reason about why the most and least populous states both
have just two senators each, despite differing by more than 60 times in population.

The value of this analogy is that it shows that if you want to reason about the
architecture of a system (the United States), you must usually go beyond a mechanical
recitation of its structure. It also gives us a chance to preview a theme of this book:
you can often reason about a system without having a complete model of it. The
question, “Which U.S. cities can you travel to by boat?” does not require a complete
model of the country.

What counts as architectural? Defining architecture as the set of structures needed
to reason about a system is useful in that it focuses attention on the purpose of the
architecture (reasoning), but problematic in that it blurs the line between architec-
ture and detailed design. It is simpler and more clear to say that architecture is the
macroscopic parts of the design, such as modules and how they are connected, leav-
ing detailed design to cover everything else.

But there are plenty of examples of architectural details that are not limited to
the biggest parts in a system. The original Java Beans spec required a naming pat-
tern for exposed Bean properties because, behind the scenes, it would use reflection
to convert methods like getTargetVelocity into an exposed property called TargetVe-
locity. The naming pattern for methods is about as low-level a decision as possible,
yet it is architecturally significant for Java Beans. Similarly, an architecture may pro-
hibit threads, require a method to complete within 100ms, require computation to be
divided into jobs, or other details that are down deep in the code.

It is unsatisfactory to conclude that architecture concerns the macroscopic parts of
design, except sometimes when it does not. In such a definition, who would decide
what counts as architecture? Perhaps the designers of houses and skyscrapers can ex-
plain the difference between architecture and design. Like software, house designers
have architectural designs and detailed designs, but while software is only about a
half century old, houses have been built for millennia.

My brother builds skyscrapers and he tells me that, in his field, the architect will
usually specify some low-level details, but leave others to be decided by the construc-
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tion company. The architect includes details in the architecture if they contribute
to an overall quality of the building, such as its watertightness, aesthetic appeal, or
constructability. Otherwise a detail is considered non-architectural. On a recent job
of my brother’s, the architect insisted that the gap between windows be quite small
because this detail was important for the architect’s intention about the building’s
appearance.

Intentionality. To distinguish architectural details from other details, it would appear
that intentionality is the key: there is a chain of intentionality from a few high-level
intentions or decisions of the architect that reaches down to some low-level details.
Most of the details are left open to any reasonable implementation, but some are con-
strained, via a chain back to the top-level intentions of the designer. An architectural
description could be a mixture of macroscopic and microscopic details. It could even
be incomplete, perhaps not describing every top-level module, but (like Java Beans)
constraining the naming pattern of methods.

The idea of architectural chains of intentionality is imperfect, since it is difficult
to be precise about what a “high-level intention or decision” is, and some systems
have details that are architectural yet unintentional. However, the idea is helpful in
that it does not divide architecture from design at an arbitrary place, or based on
the whim of an architect. It also seems to match the kinds of architectural decisions
made on real systems, which are a mixture of high- and low-level decisions. As with
skyscrapers, if a detail is important to achieve an overall quality of the system, it is
probably architectural.

2.2 Why is software architecture important?

It is important to pay attention to software architecture because of its impact on your
systems. When you choose it deliberately, you reduce your risks and chance of failure.

• Architecture acts as the skeleton of a system. Every system has an architec-
ture, whether its developers consciously chose it or not. There is no single right
architecture, but there are more or less suitable skeletons for the job.

• Architecture influences quality attributes. Quality attributes are externally
visible properties, such as security, usability, latency, or modifiability. Metaphor-
ically speaking, different skeletons are better or worse at handling different
burdens, so choosing the right architecture can make achieving desired quali-
ties easier.

• Architecture is (mostly) orthogonal to functionality. It is possible to build
the same system as a 3-tier architecture or as a peer-to-peer system. When
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the architecture is poorly matched to the functionality, however, developers will
struggle against it.

• Architecture constrains systems. Architecture is the art of imposing just
enough constraints so that the system has the quality attributes you want. For
example, a design that ensures scalability may require some components to be
stateless in order to achieve that scalability.

The following sections look at each of these ideas in turn.

Architecture as skeleton. It is useful to consider the imperfect metaphor of archi-
tecture as a skeleton. A skeleton provides the overall structure for an animal and
influences what it can do. Birds are good at flying and kangaroos are good at jump-
ing largely because of their skeletons. Most fast animals have four legs, but while the
two-legged ones are slower, they might be able to use tools more easily.

You cannot say that one skeleton is better than another unless you can say that
jumping is better than flying. You can, however, say whether a skeleton is well suited
to its function or not, since it would take a lot of work to make a kangaroo skeleton
fly.

Software is similar. A 3-tier architecture enables IT systems to localize changes
and handle transactional loads. A cooperating-processes architecture is well suited to
operating systems because it isolates faults. It is hard to imagine a distributed VOIP
network like Skype using anything other than a peer-to-peer architecture. (Architec-
tural styles are discussed in Chapter 14).

The skeleton metaphor is imperfect, however, because an architecture is more than
the big visible parts (i.e., the bones), and the invisible parts (such as constraints)
are often more important. For example, your locking policy, memory management
strategy, or technique for integrating third-party components can all be part of the
architecture, yet each of these is invisible in a running system or in its source code.

Architecture influences qualities. Developers must pay attention to what their soft-
ware does, that is, its functionality. Accounting software that fails to account, or ani-
mation software that fails to animate, is not useful. Systems have additional require-
ments that are not related to their function, referred to as quality attribute require-
ments. Developers must pay attention to quality attribute requirements too, since
accounting software that lets bad guys read secret accounts or animation software
that runs too slowly is not particularly useful either. Quality attributes are discussed
in depth in Chapter 7.

Beyond supporting required functionality, a system’s architecture enables or in-
hibits qualities such as security or performance. The skeletons of a person and a
horse both support the function of taking apples to market, but consider how each
differs in throughput or accommodates varying tasks. It is usually possible to make
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any architecture choice work, but some choices make the qualities easy to achieve,
while other choices make them hard.

Functional requirements that evolve over time are a challenge to any system, but
evolving quality attributes can force drastic changes. A system that was designed
to support a hundred users may be impossible to scale up to a hundred thousand
without an architectural change. You often see successive generations or waves of an
application as it outgrows its old architecture, somewhat like a crab outgrowing its
shell.

Architecture is (mostly) orthogonal to functionality. There is no single best archi-
tecture, but architectures, like skeletons, are more suited to some tasks than others.
A kangaroo with hollow bones might be too fragile and a bird with strong legs would
fly like an ostrich. On the other hand, you can take a skeleton and force it to work in
an inappropriate context. For example, while fish can breathe underwater and mam-
mals cannot, whales manage to get the job done despite their mammal skeletons,
with some difficulty.

It is important to recognize that you can mix-and-match architecture and func-
tionality. That is, you could change a system’s architecture yet keep its functionality,
or reuse the same architecture on a system with different functionality. But some
combinations work better than others.

Although a system’s architecture is a separate choice from its functionality, a poor
architecture choice can make functionality and quality attributes difficult to achieve.
Here is an analogy: what your factory produces and where it is located are two
distinct dimensions, and you can choose them independently. Putting a ship factory in
the desert1 is possible, but harder than putting it on the coast. With enough effort you
probably could build any system using any architecture, but developers will struggle
when the architecture is unsuitable.

Architecture constrains programs. All systems are constrained. Some must inter-
operate with older systems, some must use subcomponents from preferred vendors,
and others must stay within memory or time budgets. Constraints like these are often
thought of as an obstacle that makes the developer’s job more difficult, but there is
another way of thinking about constraints.

When designing a system, your choices constrain it to be one way and not another.
Sometimes these choices are arbitrary. But some choices constrain the system with
the intention of guiding it to a destination of your choosing. Constraints like these act
as guide rails and are essential in the construction of a system, in its ability to perform
its job, and in the ability to maintain it over time.

1The ancient Egyptians appear to have done this, building ships along the Nile in Koptos, disassembling
them, carrying the parts a hundred miles across the desert to Saww on the Red Sea, then reassembling them.
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What a system does not do is as important as what it does. To ensure that a system
possesses certain qualities, you must constrain it so that you know what it will not
do. For example, a secure system will not exchange data with untrusted parties, and
a usable system will not start long-running computations without providing a cancel
option.

You can voluntarily choose to constrain your design in order to achieve qualities
such as performance or security. For example, a train is severely constrained by its
tracks, and consequently lacks flexibility in its destinations. But this constraint specifi-
cally enables other qualities, such as low rolling friction leading to efficiency. Security
is another benefit, as it is impractical to hijack a train. An unconstrained design can,
by definition, do anything, so if you are to have any hope of analyzing it, you must
constrain it. The use of constraints is a theme that runs throughout this book and we
will return to it, providing detailed examples.

Engineers use constraints to ensure that the systems they design do what they
intend. Appropriately applied, you can gain many benefits through constraints:

• Embody judgment. Constraints are a means to transfer wisdom or understand-
ing from one developer to another. Senior engineers have a detailed and nu-
anced understanding of the domain they work in, and it takes time to convey
this knowledge to others. Through constraints on the design, they can guide
other engineers to acceptable solutions without fully transferring their knowl-
edge.

• Promote conceptual integrity. Fred Brooks argues that conceptual integrity
of a system is an important goal of system design, and that a single good idea
consistently applied is better than several brilliant ideas scattered across a sys-
tem (Brooks, 1995). Desmond D’Souza taps into the same idea when he ar-
gues that architectural constraints “reduce needless creativity” of developers,
enabling them to use that creativity in places where it is needed (D’Souza and
Wills, 1998).

• Reduce complexity. As a corollary to conceptual integrity, constraints can fac-
tor out complexity, yielding a system with evident underlying principles. In con-
trast, an unconstrained system can do similar things in arbitrarily different ways
in different places, hindering its comprehensibility until you master its fussy de-
tails. A constraint can cut through2 that complexity, giving you something that

2Several years ago, I was making changes to an unfamiliar codebase and was making good progress on the
problem until I discovered that some setter methods were not only failing to set variables, they were performing
unprincipled complex logic, including sending event notifications to other parts of the code. At that point I
realized that my assumptions about the code’s constraints were false, and that the task would take much longer,
since a method called launchSpaceShuttle() might be doing no such thing. Understanding a codebase is easier
with constraints, for example the constraints that setter methods do indeed set the variable and only have local
effects.
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you can count on. For example, if data can be saved only to a database, then
you know where to look for it.

• Understand runtime behavior. Source code can be inspected directly, yet it
can be difficult to predict how it behaves at runtime. You can write tricky code
whose runtime behavior is nearly impossible to understand, or you can constrain
it so that its runtime behavior is evident.

At some point you will have chafed at constraints placed by others on your sys-
tem. Though constraints are sometimes used poorly, you cannot design without them
because constraints impose organization on chaos, the engineer’s mortal enemy. You
must use them responsibly, like a sharp tool that can just as easily remove a finger
as cut a board, rather than reject them outright. Designing a system’s architecture
requires reasoned choices about what is allowed and what is not. Any hesitation
about imposing constraints originates not from the enlightened way that you would
use them, but from the coarse and ignorant way that others use them.

2.3 When is architecture important?

Getting your software architecture right can be crucial to your project’s success, but
other times it can be a minor factor. When you are building the software equivalent of
a doghouse, say a website to collect registrations for a family picnic, you are unlikely
to spend much time thinking about your architecture. Conversely, you would hope
that the developers of hospital software are paying attention to their architecture.
How do you decide when architecture is important?

Architecture is likely to require more attention in systems with large scale or high
complexity. Here are five specific cases with high architecture risk.

• Small solution space. Architecture is important when the solution space is
small or it is hard to design any acceptable solution. Consider the difficulty
of creating a human powered airplane compared to creating a faster car. The
airplane will require that everything is just right, including low weight and high
efficiency. Conversely, up to a point, making a faster car is often no harder than
adding a bigger engine.

• High failure risk. Any time your failure risks are high, it is probably important
to get your architecture right. People might die if your hospital system fails, and
your company might never recover its reputation after a serious security failure.

• Difficult quality attributes. Architecture influences your ability to satisfy qual-
ity attributes, so while making another email system seems easy, making one
with quick performance that supports millions of users is hard.
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• New domain. You will need to pay more attention when the domain is new, or
at least new to you. If you are building your tenth interactive desktop applica-
tion, you will instinctively avoid poor designs, but if you are building your first
then the architecture deserves your attention.

• Product lines. Some sets of products share a common architecture. Their
product-line architecture will make some kinds of product variations easy and
others hard to build.

The overarching answer is to look at how bad it would be to get the architecture
wrong. When your system is small or simple, its architecture is unlikely to sink your
project, so you will pay little attention to it. Amdahl’s law says that speeding up one
part of a system has an impact proportional to that part’s contribution. Similarly, the
benefit to getting the architecture right is proportional to its contribution to overall
system risk.

2.4 Presumptive architectures

People used to say that nobody ever got fired for buying IBM. IBM mainframe systems
dominated the market and the assumption was that choosing an IBM system was
reasonable. Today, many domains have a software architecture that dominates the
same way that IBM mainframes once did. These are presumptive architectures.

A presumptive architecture is a family of architectures that is dominant in a partic-
ular domain. Rather than justifying their choice to use it, developers in that domain
may have to justify a choice that differs from the presumptive architecture. Incuri-
ous developers may not even seriously consider other architectures or may have the
misapprehension that all software should conform to the presumptive architecture.

Presumptive architectures are similar to reference architectures. A reference archi-
tecture is a family of architectures that describes an architectural solution to a problem
and it is usually written down as a specification. You can find reference architectures
for high-reliability embedded systems or for using a particular vendor’s technology
to build web-based systems. A publisher of a reference architecture may hope that it
becomes a presumptive architecture, but that may never happen. That is, a reference
architecture is often an aspirational standard, while a presumptive architecture is a
de facto standard.

Presumptive architectures succeed because the architecture is a good match for
the common risks in the domain. For example, IT systems often face concurrent
access to shared data, shifting business rules, and long-lived data. A tiered system
is a good match for those problems. One tier handles the user interface, another
handles the business processing logic, and another stores data to a transactional (and
often relational) database.
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Another example of a presumptive architecture is the use of cooperating processes
in an operating system, which is a long-running system that must gracefully recover
from faults occurring in its software. Operating systems differ in many ways, but
almost all of them are constructed with a kernel and a set of cooperating systems
processes. By running tasks in separate processes, faults in an individual task can be
isolated and the task can be restarted, preserving overall system functionality.

The term presumptive architecture is introduced in this book because it would be
a mistake to ignore these 800-pound gorillas and instead believe that all developers
will start with first principles in their software architecture. IT developers who use
the presumptive N-tier architecture will almost always do fine. In fact, their real
architectural decisions may only be which COTS (Commercial Off-The-Shelf) software
will be used on each tier, for example, which brand of relational database or web
application server to use.

2.5 How should software architecture be used?

Software architects may be loath to admit it, but many systems can succeed even
when their developers ignore software architecture. On the other hand, there have
also been plenty of failures that could have been avoided by paying attention to soft-
ware architecture. By reading this book, you should be prepared enough to under-
stand which situation you are in.

Roughly speaking, developers can take one of three approaches to software archi-
tecture: They can ignore it, embrace it, or hoist it. Let’s give these approaches names
so that it is easier to talk about them.

• Architecture-indifferent design. With this approach, you pay little attention to
architecture. Your system may become a big ball of mud, a distinct architecture
may emerge without your conscious choice, or you may be guided by norms in
your domain to a presumptive architecture.

• Architecture-focused design. With this approach, you deliberately choose your
software architecture. You design an architecture that is suitable to achieve your
goals, which include functionality and quality attributes.

• Architecture hoisting. This is a kind of architecture-focused design where de-
velopers design the architecture with the intent of guaranteeing a goal or prop-
erty of the system. Once a goal or property has been hoisted into the architec-
ture, developers will not need to write any additional code to achieve it.

A developer could apply the first approach, architecture-indifferent design, either
through ignorance or because the system she is developing is unchallenging. By
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learning about software architecture, you ensure that you will not choose this op-
tion through ignorance and take on risks unwittingly.

The second and third approaches are similar and we will discuss their differences
in detail below. For now, consider architecture-focused design to be choosing an
architecture that is compatible with your goals, though that choice does not provide
assurances, only opportunities. Architecture hoisting requires your architecture to
play an active role, one that you can rely on to achieve your goals.

Perhaps a car analogy will help illuminate the differences in these approaches.
When I was in college, a housemate of mine had a beautiful step-side Ford pickup
truck. The only problem, however, was that its designers were architecturally indif-
ferent to safety, in that the truck had no seatbelts. Apparently they were just hoping
we did not crash (and we did not). When I graduated, I bought a Volkswagen GTI. Its
designers had followed architecture-focused design and included seatbelts, but I had
to remember to buckle them each time. Its architecture was compatible with safety,
but did not guarantee it. Today, it is impossible to buy a car that has not hoisted
safety into its architecture, because every car is required to have airbags that deploy
automatically. The following sections discuss each approach in more detail.

2.6 Architecture-indifferent design

In architecture-indifferent design, developers are oblivious to their system’s architec-
ture and do not consciously choose an architecture to help them reduce risks, achieve
features, or ensure qualities. The developers may simply ignore their architecture,
copy the architecture from their previous project, use the presumptive architecture in
their domain, or follow a corporate standard.

Notice that in discussing a developer’s approach to architecture we are discussing
a person, not a discernable characteristic of their software. Every system has an
architecture, whether it is deliberately chosen or not. Following an architecture-
indifferent approach will yield an architecture, just not one that has been chosen
deliberately, and not one that the developers are consciously aware of.

Indifference to the architecture does not mean that the architecture is unsuitable,
only that an opportunity to choose a suitable architecture was passed up. If the
architecture is suitable, it is only by accident. If the architecture is unsuitable, the
developers must struggle against it, but they may succeed if they are diligent and
resourceful.

Architecture-indifferent design is most suited to low-risk projects. Stand-alone sys-
tems with few challenging requirements are relatively low risk, surprisingly common,
and easy to build without focusing on architecture. Systems that follow presumptive
architectures usually succeed.
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Architecture-indifferent design has several drawbacks. A system with a suitable
architecture can degrade over time into an unsuitable one when the team of develop-
ers lacks a shared architectural vision. For example, developers may try to speed up
the system through various local and unprincipled changes. Over time, the complex-
ity of the system will rise, perhaps beyond the ability of the developers to effectively
maintain it.

The architecture-indifferent approach opens the door to complexity and, once
complexity has joined the party, it can be difficult to send it home. At first, developers
may experience no harm from lacking a clear vision of their system’s architecture.
However, if they later need to analyze a design that lacks consistency, they will find
the task much more difficult. Analysis works best when a model is simple, and an
architecture-indifferent approach may yield a complex system with lots of local ex-
ceptions to rules. An architecture that was not chosen deliberately may not lend itself
to any particular analysis.

The drawbacks of architecture-indifferent design are partly mitigated by mature
and powerful off-the-shelf connectors and components, such as service buses and re-
lational databases. They handle difficult problems, such as concurrency or scaling,
that would otherwise require architectural attention from developers. These same
factors also contribute to the ability of developers to evolve a system without antici-
pating their architectural needs.

2.7 Architecture-focused design

When developers follow the architecture-focused design approach, they are aware of
their system’s software architecture and they have chosen it deliberately so that their
system can achieve its goals. At a minimum, that means that the architecture is
suitable and does not impede the goals. All software architecture books (including
this one) assume that you should be following this approach.

Most problems have interesting challenges that you must overcome when design-
ing a solution. Some of the challenges will be functional, such as how to compute
bond interest, and others will relate to quality attributes, such as how to scale to
thousands of users. Architecture-focused design recognizes that the architecture you
choose can make these challenges easier or harder. So it makes sense to choose an
architecture that helps you to overcome your challenges.

Many developers already follow architecture-focused design even if they do not
realize it. For example, if your system needs to acquire locks, you may follow an
ordering convention to avoid deadlocks. If your system has no garbage collection,
you may have a standard for how memory is freed to prevent leaks, such as freeing
memory based on module scope. If your system uses a cache, you may restrict access
to ensure that the cache coherency is maintained. If your system processes orders, you
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may use a message queue with durability guarantees so that order messages cannot
be lost. These are all design choices, arguably architectural ones, that are intended
to achieve architectural qualities.

Notice that in these examples the solution was global (i.e., universally applied)
rather than local. Another way to avoid memory leaks, for example, is to simply
fix them once you discover the leak. Architecture-focused design seeks architectural
solutions, rather than local fixes, to problems you face.

Architecture-focused design often entails reasoning about your problems using
architectural abstractions (e.g., components and connectors) and architectural views
(e.g., module, runtime, and allocation views). For example, it is almost tautological
that components running in their own threads require thread-safe connectors, and
that distributed components cannot assume references will be in the same memory
space. But these observations are easily obscured if you are instead reasoning from
individual lines of code.

Architecture-focused design means you must be on the lookout for requirements
that will influence your architecture choices, but these requirements are rarely stated
clearly. They may be hidden in a cryptic statement from a stakeholder or be common
to other systems in your domain. When you recognize one of these, you should
be asking yourself how your system will do that, and if it is something that your
architecture will help or hinder.

Your system will always have an architecture, and when you choose architecture-
focused design, you are choosing to pay attention to it. Paying attention to the archi-
tecture does not necessarily mean documenting it. In big projects, documenting the
architecture can be a big help. In a startup company where all three developers live
in the same garage, documenting the architecture is less important.

Architecture-focused design is compatible with any software development process.
When thinking about architecture, there is a temptation to assume a waterfall process,
with up-front architecture design, but the design of your architecture is just another
engineering task like designing modules, objects, or data structures. Some things will
be easier if you choose the architecture early, but this is also true of your choice of
programming languages, interfaces, and frameworks.

2.8 Architecture hoisting

In architecture-focused design, developers deliberately choose an architecture that
is compatible with what they need their system to do. Architecture hoisting is a
stricter kind of architecture-focused design. When following an architecture hoisting
approach, developers design the architecture with the intent of guaranteeing a goal
or property of the system. Guarantees are difficult to come by in any kind of software
design, but architecture hoisting strives to guarantee a goal or property through ar-
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Approach Description

Architecture-
indifferent
design

You pay little attention to architecture. Your system may become a big ball
of mud, a distinct architecture may emerge without your conscious choice,
or you may be guided by norms in your domain to a presumptive
architecture.

Architecture-
focused
design

You deliberately choose your software architecture. You design an
architecture that is suitable to achieve your goals, which include
functionality and quality attributes.

Architecture
hoisting

A kind of architecture-focused design in which developers design the
architecture with the intent of guaranteeing a goal or property of the
system. Once a goal or property has been hoisted into the architecture,
developers should not need to write any additional code to achieve it.

Figure 2.1: A summary of the three approaches to software architecture.

chitecture choices. The idea is that once a goal or property has been hoisted into the
architecture, developers should not need to write any additional code to achieve it.

For developers, the shift from architecture-indifferent design to architecture-
focused design was obvious — it was evident in that they consciously choose an
architecture that was compatible with their needs. The shift to architecture hoisting
can be more subtle. They will notice the difference in that instead of simply choosing
an architecture that lets them to do their work, they are asking the architecture to do
work for them or make their work easier.

Let’s look at an example to make this idea more concrete. Imagine that your per-
formance requirements say that your system must respond to requests within 50ms.
Here are some possible ways that you could approach the system’s architecture, given
the three design approaches:

• Architecture-indifferent design. If you followed architecture-indifferent de-
sign, you could copy the distributed processing architecture from your last sys-
tem and discover, hopefully not too late, that its inter-machine messaging over-
head eats up most of that 50ms, leaving little time to do the real processing. To
succeed, you either change the architecture or write very efficient code that can
complete in 10ms.

• Architecture-focused design. If you followed architecture-focused design, you
would deliberately choose an architecture that is compatible with that require-
ment, such as a client-server architecture. The single remote call to the server
might take 10ms, which leaves you a reasonable 40ms to do the real processing.
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• Architecture hoisting. If you hoist the performance goal into the architecture,
you would ask yourself how the architecture could ensure that a 50ms response
was always achievable. Perhaps your investigation reveals that there are peak
demand times that could overload your servers, so you build software to recruit
additional processing, perhaps from a cloud of servers.

When developers are writing the code to process messages, they must be aware of the
performance requirement. In the architecture-indifferent and architecture-focused
designs, developers are entirely responsible for satisfying the requirement. In the
architecture hoisting case, sloppy code could still result in failure (i.e., there are no
guarantees), but the architecture is shouldering part of the burden through active
recruitment of additional servers.

Notice that in the architecture-indifferent or architecture-focused designs there
was no code that you could point to and say, “This is the code that ensures our 50ms
response time.” In contrast, with architecture hoisting you could point to the code
that regulated the number of servers. When you hoist a goal or a property into the ar-
chitecture, you will either find (1) code that manages it, or (2) a deliberate structural
constraint (often with reasoning or calculations) that ensures it. Examples of struc-
tural constraints would be putting sensitive data behind a firewall, or communicating
via an event bus that has durability and performance guarantees.

Some mainstream examples of architecture hoisting exist. An application server,
such as one used for web applications, is a program that handles several runtime
qualities of another program. An application server may handle running many copies
of an application on a single machine (hoisting concurrency) or even spreading out
the copies across multiple machines (hoisting scaling). An Enterprise Java Bean (EJB)
application server hoists concurrency, scalability, and persistence, providing an archi-
tectural solution to these common problems. The Eclipse framework hoists many
features, properties, and qualities, such as resource management, concurrency, and
platform independence.

When properties or quality attributes are hoisted, the application must adhere to
some constraints in order to work within the architecture. For example, EJB disallows
applications from starting their own threads or writing to local disk. These restrictions
make sense, since it would be difficult for the EJB server to handle concurrency if
applications could create their own threads, and difficult for it to move applications
between servers when they have data on a local disk.

Architecture hoisting usually involves tradeoffs. Automatic garbage collection can
be seen as hoisting memory management, making that task easier for developers
to handle, but it can make achieving performance targets more difficult. Domain-
specific concurrency patterns may be more efficient than a hoisted general-purpose
mechanism.
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Architecture hoisting can be seen as a kind of tyranny over developers, burdening
them with additional constraints and bureaucracy. Or it can be seen as liberation
for developers, freeing them to focus on functionality instead of quality attributes.
Hoisting is just a mechanism and can be used appropriately or not. It is effective
when the system design requires quality attributes but achieving them would be a
burden to developers. Often developers may be experts in a domain but not on how
to ensure a quality like security or performance, so hoisting can enable experts to
work within their specialty.

2.9 Architecture in large organizations

This book is not about which software development process to follow, how to be an
architect, or how to structure the software development roles inside your organiza-
tion. Consequently, it refers to software engineers as developers, not differentiating
architects from programmers.

However, software development within large organizations brings its own chal-
lenges as a result of scale. Large companies and organizations divide themselves into
divisions, departments, and teams. They introduce roles and assign responsibilities.
While there are better and worse ways to organize a company, none is perfect. You
should be aware that any way of dividing a company will solve some problems while
creating others.

A common organization pattern in large companies is to create an enterprise ar-
chitecture group and give it, among other responsibilities, the job of cultivating the
architecture that spans applications. This organization gives rise to two job roles:
enterprise architects and application architects.

Enterprise architects. Enterprise architects are developers who are responsible for
many applications. Enterprise architects do not control the functionality of any one
application. Instead, they design an ecosystem inside which individual applications
contribute to the overall enterprise. How well the enterprise architects cultivate the
ecosystem will help or hinder the enterprise in achieving its goals, usually things like
integrating applications, enabling variability across regions or markets, and standard-
izing deployment environments. Enterprise architects are like movie producers in that
they influence the outcome only indirectly. Since they cannot directly influence qual-
ities in the software, i.e., they cannot write code or design individual applications,
enterprise architects exert influence by applying architecture-focused design or archi-
tecture hoisting. Enterprise architects constrain the application architects by choosing
architectures and constraints with the intent of achieving their desired qualities and
goals.
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Application architects. Application architects are developers who are responsible
for a single application. It is possible for them to understand and manage thousands
of objects that comprise their application. Application architects are like movie di-
rectors whose daily actions create the shape of the product. Application architects
can be successful in using an architecture-indifferent approach because they design
an application’s functionality in addition to its architecture. They can also apply
architecture-focused design for their application, or architecture hoisting.

Pros and cons. The separation of enterprise architecture from application architec-
ture helps a company avoid the heterogeneity and resulting chaos that would happen
without a deliberate effort to standardize. This benefit comes with some challenges.
The first is the multiple-bosses problem. Developers, application architects, and en-
terprise architects rarely report to the same boss, which means their priorities may
be different. Conflicts may arise, often regarding schedules, integration, architectural
constraints, and platforms. The second problem is choosing suitable architectural
constraints. Enterprise architects may over-constrain the architecture because they
do not fully understand the needs of individual applications. Programmers may un-
dervalue the benefit of standardizing across applications, believing their application
should be exempted from onerous enterprise architecture constraints.

Since no organization structure is without flaws, the best you can hope for is to
understand the tradeoffs and anticipate the problems. Knowing why enterprise archi-
tecture groups exist separately from development and knowing the kinds of trouble
that can arise means that everyone can watch out for early warning signs and work
to mitigate them.

Ideally, all developers would have software architecture skills, as will be discussed
more in Section 5.3. Having a separate enterprise architect group is not a bad idea,
but its chance of success is higher if all developers understand core architecture prin-
ciples, understand that architectural constraints exist in order to achieve goals and
qualities, and understand how the chosen architecture suits their project.

2.10 Conclusion

Software architecture is a kind of design that deals with the large-scale decisions
and macroscopic elements (e.g., modules, components, and connections). It can be
difficult to draw the line between architecture and detailed design because some of
your architectural decisions will have impact deep into the code.

Your software architecture choices are important because your architecture acts as
the skeleton of your system, influences its quality attributes, and constrains the sys-
tem. It is mostly orthogonal to your system’s functionality, so to some extent you can
mix-and-match architecture and functionality. If your architecture is suitable for your
desired features and quality attributes, you will have an easier time building the sys-
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tem. If your architecture is unsuitable, you will struggle to meet your requirements,
and may have to make compromises.

Software architecture imposes constraints on the system you build, so by choosing
an architecture you are limiting your options. Your instinct might be to minimize
constraints, but they are essential and beneficial, enabling you to embody your judg-
ments, promote conceptual integrity, reduce complexity, and understand the runtime
behavior of your system.

Architecture is just one of the many tasks competing for your scarce attention, so
it is helpful to know how much attention it deserves. When your systems are small
or low-risk, architecture is less important because the chance or impact of failure is
low. Conversely, making good architecture choices is important when your solution
space is small, the risk of failure is high, the desired quality attributes are difficult
to achieve, you are working in a new domain, or you are building a product-line
architecture. Generally speaking, you should pay as much attention to architecture
as it contributes risk to the overall project, since if there is little architecture risk then
optimizing it only helps a little.

If you are not paying much attention to architecture, you are probably following
architecture-indifferent design, meaning that you focus on local changes to achieve the
goals of your system. You are not asking the architecture to shoulder any burdens
and may use a presumptive architecture by default. Many projects will succeed despite
their developers following an architecture-indifferent design approach, but they are
taking an unnecessary risk of failure.

This book, like every other book on software architecture, suggests that archi-
tecture is important enough to understand and choose deliberately. In architecture-
focused design, you deliberately choose an architecture that is suited to the demands
of your project, perhaps an architecture that makes scalability or modifiability easier
to achieve. You can follow a stricter version of architecture-focused design by hoist-
ing problems into the architecture, for example, letting an application server handle
concurrency problems, or a garbage collector handle memory management.

You may well find yourself in a large organization that has divided architectural
responsibilities between various teams, often with a separate enterprise architecture
group. Every organizational choice has pros and cons, so your best strategy is to be
aware of the possible problems so you can work to overcome them. The enterprise
architects cultivate a garden where individual applications can flourish, which means
imposing architectural constraints and applying architecture-focused design.

2.11 Further reading

The term architecture hoisting originated with NASA/JPL Mission Data System (MDS)
developers, including Daniel Dvorak, Kirk Reinholtz, Nicholas Rouquette, and Kenny
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Meyer (Meyer, 2009). Their use of the term was meant to emphasize how existing
space-systems code could obscure details about, for example, the spacecraft position
or velocity. In their usage, architecture hoisting was making important things visible
in the architecture, including essential state variables and previously emergent be-
havior such as scheduling. Over time, I have come to adopt the definition presented
in this chapter, which is consistent with their original intent.

This chapter refers to one of computer science’s famous laws, Amdahl’s law (Am-
dahl, 1967). Other famous laws include Brooks’ law, “adding manpower to a late
software project makes it later” (Brooks, 1995) and Conway’s law, “any organization
that designs a system ... will inevitably produce a design whose structure is a copy of
the organization’s communication structure.” (Conway, 1968).

The term software architecture has been defined in many ways. There are sev-
eral flavors of definitions, but you should know about the two most popular ones.
An example of the first flavor is the one presented in this chapter from the Software
Engineering Institute (SEI), which says architecture is about the structure of the ele-
ments and their relationships (Clements et al., 2010). The second flavor is discussed
by Martin Fowler and Ralph Johnson, who say “Architecture is the set of design de-
cisions that must be made early in a project” (Fowler, 2003b). This is also known
informally as the “stuff that’s hard to change later” definition. Notice that this def-
inition does not constrain what the decisions or stuff is, so it could include things
like your choice of programming language. This book uses the SEI definition partly
because it emphasizes the architecture-as-artifact point of view, rather than roles or
process.

The distinction between the job title called architect, the process of architecting a
system, and the engineering artifact called the software architecture has been high-
lighted for years by Bredemeyer Consulting (Bredemeyer and Malan, 2010), even
appearing in their logo.

Academic results on software architecture are generally reported in conferences
and workshops. Ones to watch include:

• WICSA: Joint Working IEEE/IFIP Conference on Software Architecture
• ECSA: European Conference on Software Architecture
• QoSA: Quality of Software Architectures
• SHARK: SHAring and Reusing Architectural Knowledge
• ICSE: International Conference on Software Engineering
• SPLASH: Systems, Programming, Languages, and Applications: Software for

Humanity (formerly OOPSLA)
Additionally, the SEI website frequently publishes technical reports (SEI Library).

This book avoids discussing how architects must work within organizations be-
cause other books already do a good job at this, including Bass, Clements and Kazman
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(2003) and Lattanze (2008). For a business management view on what software ar-
chitecture provides to the bottom line, Ross, Weill and Robertson (2006) discusses a
conceptual framework for how architecture strategy should be aligned with business
strategy. The financial benefits of architecture are discussed in Maranzano (2005)
and Boehm and Turner (2003).

Enterprise architecture is a large field unto itself, and this chapter offers just a
cursory glimpse of it from the perspective of software design. Jeanne Ross, Peter
Weill, and David Robertson do a good job of showing how business strategy should
coordinate with software architecture (Ross, Weill and Robertson, 2006). Martin
Fowler’s book is a good place to look for the standard patterns of enterprise archi-
tecture (Fowler, 2002). Several conceptual models exist for enterprise architecture,
often called enterprise architecture frameworks, including The Open Group Architec-
ture Framework (TOGAF) (The Open Group, 2008), Department of Defense Architec-
ture Framework (DoDAF) (Wisnosky, 2004), and the Zachman Framework (Zachman,
1987).



Chapter 3

Risk-Driven Model

As they build successful software, software developers are choosing from alternate
designs, discarding those that are doomed to fail, and preferring options with low
risk of failure. When risks are low, it is easy to plow ahead without much thought,
but, invariably, challenging design problems emerge and developers must grapple
with high-risk designs, ones they are not sure will work.

Building successful software means anticipating possible failures and avoiding de-
signs that could fail. Henry Petroski, a leading historian of engineering, says this
about engineering as a whole:

The concept of failure is central to the design process, and it is by think-
ing in terms of obviating failure that successful designs are achieved. ...
Although often an implicit and tacit part of the methodology of design, fail-
ure considerations and proactive failure analysis are essential for achieving
success. And it is precisely when such considerations and analyses are in-
correct or incomplete that design errors are introduced and actual failures
occur. (Petroski, 1994)

To address failure risks, the earliest software developers invented design techniques,
such as domain modeling, security analyses, and encapsulation, that helped them
build successful software. Today, developers can choose from a huge number of de-
sign techniques. From this abundance, a hard question arises: Which design and
architecture techniques should developers use?

If there were no deadlines then the answer would be easy: use all the techniques.
But that is impractical because a hallmark of engineering is the efficient use of re-
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sources, including time. One of the risks developers face is that they waste too much
time designing. So a related question arises: How much design and architecture should
developers do?

There is much active debate about this question and several kinds of answers have
been suggested:

• No up-front design. Developers should just write code. Design happens, but is
coincident with coding, and happens at the keyboard rather than in advance.

• Use a yardstick. For example, developers should spend 10% of their time on
architecture and design, 40% on coding, 20% on integrating, and 30% on test-
ing.

• Build a documentation package. Developers should employ a comprehensive
set of design and documentation techniques sufficient to produce a complete
written design document.

• Ad hoc. Developers should react to the project needs and decide on the spot
how much design to do.

The ad hoc approach is perhaps the most common, but it is also subjective and pro-
vides no enduring lessons. Avoiding design altogether is impractical when failure
risks are high, but so is building a complete documentation package when risks are
low. Using a yardstick can help you plan how much effort designing the architecture
will take, but it does not help you choose techniques.

This chapter introduces the risk-driven model of architectural design. Its essential
idea is that the effort you spend on designing your software architecture should be
commensurate with the risks faced by your project. When my father installed a new
mailbox, he did not apply every mechanical engineering analysis and design tech-
nique he knew. Instead, he dug a hole, put in a post, and filled the hole with concrete.
The risk-driven model can help you decide when to apply architecture techniques and
when you can skip them.

Where a software development process orchestrates every activity from require-
ments to deployment, the risk-driven model guides only architectural design, and can
therefore be used inside any software development process.

The risk-driven model is a reaction to a world where developers are under pressure
to build high quality software quickly and at reasonable cost, yet those developers
have more architecture techniques than they can afford to apply. The risk-driven
model helps them answer the two questions above: how much software architecture
work should they do, and which techniques should they use? It is an approach that
helps developers follow a middle path, one that avoids wasting time on techniques
that help their projects only a little but ensures that project-threatening risks are
addressed by appropriate techniques.
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In this chapter, we will examine how risk reduction is central to all engineering
disciplines, learn how to choose techniques to reduce risks, understand how engi-
neering risks interact with management risks, and learn how we can balance planned
design with evolutionary design. This chapter walks through the ideas that underpin
the risk-driven model, but if you are the kind of person who would prefer to first see
an example of it in use, you can flip ahead to Chapter 4.

3.1 What is the risk-driven model?

The risk-driven model guides developers to apply a minimal set of architecture tech-
niques to reduce their most pressing risks. It suggests a relentless questioning process:
“What are my risks? What are the best techniques to reduce them? Is the risk miti-
gated and can I start (or resume) coding?” The risk-driven model can be summarized
in three steps:

1. Identify and prioritize risks

2. Select and apply a set of techniques

3. Evaluate risk reduction

You do not want to waste time on low-impact techniques, nor do you want to ignore
project-threatening risks. You want to build successful systems by taking a path that
spends your time most effectively. That means addressing risks by applying architec-
ture and design techniques but only when they are motivated by risks.

Risk or feature focus. The key element of the risk-driven model is the promotion
of risk to prominence. What you choose to promote has an impact. Most devel-
opers already think about risks, but they think about lots of other things too, and
consequently risks can be overlooked. A recent paper described how a team that
had previously done up-front architecture work switched to a purely feature-driven
process. The team was so focused on delivering features that they deferred quality
attribute concerns until after active development ceased and the system was in main-
tenance (Babar, 2009). The conclusion to draw is that teams that focus on features
will pay less attention to other areas, including risks. Earlier studies have shown that
even architects are less focused on risks and tradeoffs than one would expect (Clerc,
Lago and van Vliet, 2007).

Logical rationale. But what if your perception of risks differs from others’ percep-
tions? Risk identification, risk prioritization, choice of techniques, and evaluation of
risk mitigation will all vary depending on who does them. Is the risk-driven model is
merely improvisation?
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No. Though different developers will perceive risks differently and consequently
choose different techniques, the risk-driven model has the useful property that it
yields arguments that can be evaluated. An example argument would take this form:

We identified A, B, and C as risks, with B being primary. We spent time ap-
plying techniques X and Y because we believed they would help us reduce
the risk of B. We evaluated the resulting design and decided that we had
sufficiently mitigated the risk of B, so we proceeded on to coding.

This allows you to answer the broad question, “How much software architecture
should you do?” by providing a plan (i.e., the techniques to apply) based on the
relevant context (i.e., the perceived risks).

Other developers might disagree with your assessment, so they could provide a
differing argument with the same form, perhaps suggesting that risk D be included.
A productive, engineering-based discussion of the risks and techniques can ensue
because the rationale behind your opinion has been articulated and can be evaluated.

3.2 Are you risk-driven now?

Many developers believe that they already follow a risk-driven model, or something
close to it. Yet there are telltale signs that many do not. One is an inability to list the
risks they confront and the corresponding techniques they are applying.

Any developer can answer the question, “Which features are you working on?”
but many have trouble with the question, “What are your primary failure risks and
corresponding engineering techniques?” If risks were indeed primary then they would
find it an easy question to answer.

Technique choices should vary. Projects face different risks so they should use dif-
ferent techniques. Some projects will have tricky quality attribute requirements that
need up-front planned design, while other projects are tweaks to existing systems
and entail little risk of failure. Some development teams are distributed and so they
document their designs for others to read, while other teams are co-located and can
reduce this formality.

When developers fail to align their architecture activities with their risks, they will
over-use or under-use architectural techniques, or both. Examining the overall con-
text of software development suggests why this can occur. Most organizations guide
developers to follow a process that includes some kind of documentation template
or a list of design activities. These can be beneficial and effective, but they can also
inadvertently steer developers astray.

Here are some examples of well-intentioned rules that guide developers to activi-
ties that may be mismatched with their project’s risks.
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• The team must always (or never) build full documentation for each system.
• The team must always (or never) build a class diagram, a layer diagram, etc.
• The team must spend 10% (or 0%) of the project time on architecture.

Such guidelines can be better than no guidance, but each project will face a different
set of risks. It would be a great coincidence if the same set of diagrams or techniques
were always the best way to mitigate a changing set of risks.

Example mismatch. Imagine a company that builds a 3-tier system. The first tier has
the user interface and is exposed to the internet. Its biggest risks might be usability
and security. The second and third tiers implement business rules and persistence;
they are behind a firewall. The biggest risks might be throughput and scalability.

If this company followed the risk-driven model, the front-end and back-end de-
velopers would apply different architecture and design techniques to address their
different risks. Instead, what often happens is that both teams follow the same
company-standard process or template and produce, say, a module dependency di-
agram. The problem is that there is no connection between the techniques they use
and the risks they face.

Standard processes or templates are not necessarily bad, but they are often used
poorly. Over time, you may be able to generalize the risks on the projects at your
company and devise a list of appropriate techniques. The important part is that the
techniques match the risks.

The three steps to risk-driven software architecture are deceptively simple but the
devil is in the details. What exactly are risks and techniques? How do you choose an
appropriate set of techniques? And when do you stop architecting and start/resume
building? The following sections dig into these questions in more detail.

3.3 Risks

In the context of engineering, risk is commonly defined as the chance of failure times
the impact of that failure. Both the probability of failure and the impact are uncer-
tain because they are difficult to measure precisely. You can sidestep the distinction
between perceived risks and actual risks by bundling the concept of uncertainty into
the definition of risk. The definition of risk then becomes:

risk = perceived probability of failure × perceived impact

A result of this definition is that a risk can exist (i.e., you can perceive it) even if it
does not exist. Imagine a hypothetical program that has no bugs. If you have never
run the program or tested it, should you worry about it failing? That is, should you
perceive a failure risk? Of course you should, but after you analyze and test the
program, you gain confidence in it, and your perception of risk goes down. So by



40 CHAPTER 3. RISK-DRIVEN MODEL

Project management risks Software engineering risks

“Lead developer hit by bus” “The server may not scale to 1000 users”

“Customer needs not understood” “Parsing of the response messages may be buggy”

“Senior VP hates our manager” “The system is working now but if we touch
anything it may fall apart”

Figure 3.1: Examples of project management and engineering risks. You should distinguish them
because engineering techniques rarely solve management risks, and vice versa.

applying techniques, you can reduce the amount of uncertainty, and therefore the
amount of (perceived) risk. You can also under-appreciate or fail to perceive a risk,
which we will discuss shortly.

Describing risks. You can state a risk categorically, often as the lack of a needed
quality attribute like modifiability or reliability. But often this is too vague to be
actionable: if you do something, are you sure that it actually reduces the categorical
risk?

It is better to describe risks such that you can later test to see if they have been
mitigated. Instead of just listing a quality attribute like reliability, describe each risk of
failure as a testable failure scenario, such as “During peak loads, customers experience
user interface latencies greater than five seconds.”

Engineering and project management risks. Projects face many different kinds of
risks, so people working on a project tend to pay attention to the risks related to their
specialty. For example, the sales team worries about a good sales strategy and soft-
ware developers worry about a system’s scalability. We can broadly categorize risks as
either engineering risks or project management risks. Engineering risks are those risks
related to the analysis, design, and implementation of the product. These engineering
risks are in the domain of the engineering of the system. Project management risks
relate to schedules, sequencing of work, delivery, team size, geography, etc. Figure
3.1 shows examples of both.

If you are a software developer, you are asked to mitigate engineering risks and
you will be applying engineering techniques. The technique type must match the risk
type, so only engineering techniques will mitigate engineering risks. For example,
you cannot use a PERT chart (a project management technique) to reduce the chance
of buffer overruns (an engineering risk), and using Java will not resolve stakeholder
disagreements.
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Project domain Prototypical risks

Information Complex, poorly understood problem
Technology (IT) Unsure we’re solving the real problem

May choose wrong COTS software
Integration with existing, poorly understood software
Domain knowledge scattered across people
Modifiability

Systems Performance, reliability, size, security
Concurrency
Composition

Web Security
Application scalability
Developer productivity / expressability

Figure 3.2: While each project can have a unique set of risks, it is possible to generalize by
domain. Prototypical risks are ones that are common in a domain and are a reason that software
development practices vary by domain. For example, developers on Systems projects tend to use
the highest performance languages.

Identifying risks. Experienced developers have an easy time identifying risks, but
what can be done if the developer is less experienced or working in an unfamiliar
domain? The easiest place to start is with the requirements, in whatever form they
take, and looking for things that seem difficult to achieve. Misunderstood or incom-
plete quality attribute requirements are a common risk. You can use Quality Attribute
Workshops (see Section 15.6.2), a Taxonomy-Based Questionnaire (Carr et al., 1993),
or something similar, to elicit risks and produce a prioritized list of failure scenarios.

Even with diligence, you will not be able to identify every risk. When I was a
child, my parents taught me to look both ways before crossing the street because they
identified cars as a risk. It would have been equally bad if I had been hit by a car
or by a falling meteor, but they put their attention on the foreseen and high priority
risk. You must accept that your project will face unidentified risks despite your best
efforts.

Prototypical risks. After you have worked in a domain for a while, you will notice
prototypical risks that are common to most projects in that domain. For example,
Systems projects usually worry more about performance than IT projects do, and
Web projects almost always worry about security. Prototypical risks may have been
encoded as checklists describing historical problem areas, perhaps generated from
architecture reviews. These checklists (see Section 15.6.2) are valuable knowledge
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for less experienced developers and a helpful reminder for experienced ones.
Knowing the prototypical risks in your domain is a big advantage, but even more

important is realizing when your project differs from the norm so that you avoid blind
spots. For example, software that runs a hospital might most closely resemble an IT
project, with its integration concerns and complex domain types. However, a system
that takes 10 minutes to reboot after a power failure is usually a minor risk for an IT
project, but a major risk at a hospital.

Prioritizing risks. Not all risks are equally large, so they can be prioritized. Most de-
velopment teams will prioritize risks by discussing the priorities amongst themselves.
This can be adequate, but the team’s perception of risks may not be the same as the
stakeholders’ perception. If your team is spending enough time on software architec-
ture for it to be noticeable in your budget, it is best to validate that time and money
are being spent in accordance with stakeholder priorities.

Risks can be categorized1 on two dimensions: their priority to stakeholders and
their perceived difficulty by developers. Be aware that some technical risks, such as
platform choices, cannot be easily assessed by stakeholders.

Formal procedures exist for cataloging and prioritizing risks using risk matrices,
including a US military standard MIL-STD-882D. Formal prioritization of risks is ap-
propriate if your system, for example, handles radioactive material, but most com-
puter systems can be less formal.

3.4 Techniques

Once you know what risks you are facing, you can apply techniques that you expect
to reduce the risk. The term technique is quite broad, so we will focus specifically
on software engineering risk reduction techniques, but for convenience continue to use
the simple name technique. Figure 3.3 shows a short list of software engineering
techniques and techniques from other engineering branches.

Spectrum from analyses to solutions. Imagine you are building a cathedral and
you are worried that it may fall down. You could build models of various design
alternatives and calculate their stresses and strains. Alternately, you could apply a
known solution, such as using a flying buttress. Both work, but the former approach
has an analytical character while the latter has a known-good solution character.

Techniques exist on a spectrum from pure analyses, like calculating stresses, to
pure solutions, like using a flying buttress on a cathedral. Other software architec-
ture and design books have inventoried techniques on the solution-end of the spec-
trum, and call these techniques tactics (Bass, Clements and Kazman, 2003) or patterns

1This is the same categorization technique used in ATAM to prioritize architecture drivers and quality at-
tribute scenarios, as discussed in Section 12.11.
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Software engineering Other engineering

Applying design or architecture pattern Stress calculations

Domain modeling Breaking point test

Throughput modeling Thermal analysis

Security analysis Reliability testing

Prototyping Prototyping

Figure 3.3: A few examples of engineering risk reduction techniques in software engineering and
other fields. Modeling is commonplace in all engineering fields.

(Schmidt et al., 2000; Gamma et al., 1995), and include such solutions as using a pro-
cess monitor, a forwarder-receiver, or a model-view-controller.

The risk-driven model focuses on techniques that are on the analysis-end of the
spectrum, ones that are procedural and independent of the problem domain. These
techniques include using models such as layer diagrams, component assembly mod-
els, and deployment models; applying analytic techniques for performance, security,
and reliability; and leveraging architectural styles such as client-server and pipe-and-
filter to achieve an emergent quality.

Techniques mitigate risks. Design is a mysterious process, where virtuosos can make
leaps of reasoning between problems and solutions (Shaw and Garlan, 1996). For
your process to be repeatable, however, you need to make explicit what the virtuosos
are doing tacitly. In this case, you need to be able to explicitly state how to choose
techniques in response to risks. Today, this knowledge is mostly informal, but we can
aspire to creating a handbook that would help us make informed decisions. It would
be filled with entries that look like this:

If you have <a risk>, consider <a technique> to reduce it.

Such a handbook would improve the repeatability of designing software architectures
by encoding the knowledge of virtuoso architects as mappings between risks and
techniques.

Any particular technique is good at reducing some risks but not others. In a neat
and orderly world, there would be a single technique to address every known risk.
In practice, some risks can be mitigated by multiple techniques, while others risks
require you to invent techniques on the fly.

This frame of mind, where you choose techniques based on risks, helps you to
work efficiently. You do not want to waste time (or other resources) on low-impact
techniques, nor do you want to ignore project-threatening risks. You want to build
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successful systems by taking a path that spends your time most effectively. That means
only applying techniques when they are motivated by risks.

Optimal basket of techniques. To avoid wasting your time and money, you should
choose techniques that best reduce your prioritized list of risks. You should seek
out opportunities to kill two birds with one stone by applying a single technique to
mitigate two or more risks. You might like to think of it as an optimization problem to
choose a set of techniques that optimally mitigates your risks.

It is harder to decide which techniques should be applied than it appears at first
glance. Every technique does something valuable, just not the valuable thing your
project needs most. For example, there are techniques for improving the usability
of your user interfaces. Imagine you successfully used such techniques on your last
project, so you choose it again on your current project. You find three usability flaws
in your design, and fix them. Does this mean that employing the usability technique
was a good idea?

Not necessarily, because such reasoning ignores the opportunity cost. The fair
comparison is against the other techniques you could have used. If your biggest risk
is that your chosen framework is inappropriate, you should spend your time analyzing
or prototyping your framework choice instead of on usability. Your time is scarce, so
you should choose techniques that are maximally effective at reducing your failure
risks, not just somewhat effective.

Cannot eliminate engineering risk. Perhaps you are wondering why we should try
to create an optimal basket of techniques when we should go all the way and elim-
inate engineering risk. It is tempting, since engineers hate ignoring risks, especially
those they know how to address.

The downside of trying to eliminate engineering risk is time. As aviation pioneers,
the Wright brothers spent time on mathematical and empirical investigations into
aeronautical principles and thus reduced their engineering risk. But, if they had
continued these investigations until risks were eliminated, their first test flight might
have been in 1953 instead of 1903.

The reason you cannot afford to eliminate engineering risk is because you must
balance it with non-engineering risk, which is predominantly project management
risk. Consequently, a software developer does not have the option to apply every
useful technique because risk reductions must be balanced against time and cost.

3.5 Guidance on choosing techniques

So far, you have been introduced to the risk-driven model and have been advised to
choose techniques based on your risks. You should be wondering how to make good
choices. In the future, perhaps a developer choosing techniques will act much like a
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mechanical engineer who chooses materials by referencing tables of properties and
making quantitative decisions. For now, such tables do not exist. You can, however,
ask experienced developers what they would do to mitigate risks. That is, you would
choose techniques based on their experience and your own.

However, if you are curious, you would be dissatisfied either with a table or a
collection of advice from software veterans. Surely there must be principles that
underlie any table or any veteran’s experience, principles that explain why technique
X works to mitigate risk Y.

Such principles do exist and we will now take a look at some important ones. Here
is a brief preview. First, sometimes you have a problem to find while other times you
have a problem to prove, and your technique choice should match that need. Second,
some problems can be solved with an analogic model while others require an analytic
model, so you will need to differentiate these kinds of models. Third, it may only
be efficient to analyze a problem using a particular type of model. And finally, some
techniques have affinities, like pounding is suitable for nails and twisting is suitable
for screws.

Problems to find and prove. In his book How to Solve It, George Polya identifies
two distinct kinds of math problems: problems to find and problems to prove (Polya,
2004). The problem, “Is there a number that when squared equals 4?” is a problem
to find, and you can test your proposed answer easily. On the other hand, “Is the set
of prime numbers infinite?” is a problem to prove. Finding things tends to be easier
than proving things because for proofs you need to demonstrate something is true in
all possible cases.

When searching for a technique to address a risk, you can often eliminate many
possible techniques because they answer the wrong kind of Polya question. Some
risks are specific, so they can be tested with straightforward test cases. It is easy to
imagine writing a test case for “Can the database hold names up to 100 characters?”
since it is a problem to find. Similarly, you may need to design a scalable website.
This is also a problem to find because you only need to design (i.e., find) one solution,
not demonstrate that your design is optimal.

Conversely, it is hard to imagine a small set of test cases providing persuasive
evidence when you have a problem to prove. Consider, “Does the system always con-
form to the framework Application Programming Interface (API)?” Your tests could
succeed, but there could be a case you have not yet seen, perhaps when a framework
call unexpectedly passes a null reference. Another example of a problem to prove is
deadlock: Any number of tests can run successfully without revealing a problem in a
locking protocol.

Analytic and analogic models. Michael Jackson, crediting Russell Ackoff, distin-
guishes between analogic models and analytic models (Jackson, 1995; Jackson, 2000).
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In an analogic model, each model element has an analogue in the domain of inter-
est. A radar screen is an analogic model of some terrain, where blips on the screen
correspond to airplanes — the blip and the airplane are analogues.

Analogic models support analysis only indirectly, and usually domain knowledge
or human reasoning are required. A radar screen can help you answer the question,
“Are these planes on a collision course?” but to do so you are using your special
purpose brainpower in the same way that an outfielder can tell if he is in position to
catch a fly ball (see Section 15.6.1).

An analytic (what Ackoff would call symbolic) model, by contrast, directly supports
computational analysis. Mathematical equations are examples of analytic models, as
are state machines. You could imagine an analytic model of the airplanes where each
is represented by a vector. Mathematics provides an analytic capability to relate the
vectors, so you could quantitatively answer questions about collision courses.

When you model software, you invariably use symbols, whether they are Unified
Modeling Language (UML) elements or some other notation. You must be careful
because some of those symbolic models support analytic reasoning while others sup-
port analogic reasoning, even when they use the same notation. For example, two
different UML models could represent airplanes as classes, one with and one without
an attribute for the airplane’s vector. The UML model with the vector enables you to
compute a collision course, so it is an analytic model. The UML model without the
vector does not, so it is an analogic model. So simply using a defined notation, like
UML, does not guarantee that your models will be analytic. Architecture description
languages (ADLs) are more constrained than UML, with the intention of nudging your
architecture models to be analytic ones.

Whether a given model is analytic or analogic depends on the question you want
it to answer. Either of the UML models could be used to count airplanes, for example,
and so could be considered analytic models.

When you know what risks you want to mitigate, you can appropriately choose
an analytic or analogic model. For example, if you are concerned that your engineers
may not understand the relationships between domain entities, you may build an
analogic model in UML and confirm it with domain experts. Conversely, if you need
to calculate response time distributions, then you will want an analytic model.

Viewtype matching. The effectiveness of some risk-technique pairings depends on
the type of model or view used. Viewtypes are not fully discussed until Section 9.6.
For now, it is sufficient to know about the three primary viewtypes. The module view-
type includes tangible artifacts such as source code and classes; the runtime viewtype
includes runtime structures like objects; and the allocation viewtype includes alloca-
tion elements like server rooms and hardware. It is easiest to reason about modifiabil-
ity from the module viewtype, performance from the runtime viewtype, and security
from the deployment and module viewtypes.
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Each view reveals selected details of a system. Reasoning about a risk works best
when the view being used reveals details relevant to that risk. For example, reasoning
about a runtime protocol is easier with a runtime view, perhaps a state machine, than
with source code. Similarly, it is easier to reason about single points of failure using
an allocation view than a module view.

Despite this, developers are adaptable and will work with the resources they have,
and will mentally simulate the other viewtypes. For example, developers usually have
access to the source code, so they have become quite adept at imagining the runtime
behavior of the code and where it will be deployed. While a developer can make do
with source code, reasoning will be easier when the risk and viewtype are matched,
and the view reveals details related to the risk.

Techniques with affinities. In the physical world, tools are designed for a purpose:
hammers are for pounding nails, screwdrivers are for turning screws, saws are for
cutting. You may sometimes hammer a screw, or use a screwdriver as a pry bar, but
the results are better when you use the tool that matches the job.

In software architecture, some techniques only go with particular risks because
they were designed that way and it is difficult to use them for another purpose. For
example, Rate Monotonic Analysis primarily helps with reliability risks, threat mod-
eling primarily helps with security risks, and queuing theory primarily helps with
performance risks (these techniques are discussed in Section 15.6).

3.6 When to stop

The beginning of this chapter posed two questions. So far, this chapter has explored
the first: Which design and architecture techniques should you use? The answer is
to identify risks and choose techniques to combat them. The techniques best suited
to one project will not be the ones best suited to another project. But the mindset of
aligning your architecture techniques, your experience, and the guidance you have
learned will steer you to appropriate techniques.

We now turn our attention to the second question: How much design and archi-
tecture should you do? Time spent designing or analyzing is time that could have
been spent building, testing, etc., so you want to get the balance right, neither doing
too much design, nor ignoring risks that could swamp your project.

Effort should be commensurate with risk. The risk-driven model strives to effi-
ciently apply techniques to reduce risks, which means not over- or under-applying
techniques. To achieve efficiency, the risk-driven model uses this guiding principle:

Architecture efforts should be commensurate with the risk of failure.
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If you recall the story of my father and the mailbox, he was not terribly worried about
the mailbox falling over, so he did not spend much time designing the solution or
applying mechanical engineering analyses. He thought about the design a little bit,
perhaps considering how deep the hole should be, but most of his time was spent on
implementation.

When you are unconcerned about security risks, spend no time on security design.
However, when performance is a project-threatening risk, work on it until you are
reasonably sure that performance will be OK.

Incomplete architecture designs. When you apply the risk-driven model, you only
design the areas where you perceive failure risks. Most of the time, applying a de-
sign technique means building a model of some kind, either on paper or a white-
board. Consequently, your architecture model will likely be detailed in some areas
and sketchy, or even non-existent, in others.

For example, if you have identified some performance risks and no security risks,
you would build models to address the performance risks, but those models would
have no security details in them. Still, not every detail about performance would be
modeled and decided. Remember that models are an intermediate product and you
can stop working on them once you have become convinced that your architecture is
suitable for addressing your risks.

Subjective evaluation. The risk-driven model says to prioritize your risks, apply cho-
sen techniques, then evaluate any remaining risk, which means that you must decide
if the risk has been sufficiently mitigated. But what does sufficiently mitigated mean?
You have prioritized your risks, but which risks make the cut and which do not?

The risk-driven model is a framework to facilitate your decision making, but it
cannot make judgment calls for you. It identifies salient ideas (prioritized risks and
corresponding techniques) and guides you to ask the right questions about your de-
sign work. By using the risk-driven model, you are ahead because you have identified
risks, enacted corresponding techniques, and kept your effort commensurate with
your risks. But eventually you must make a subjective evaluation: will the architec-
ture you designed enable you to overcome your failure risks?

3.7 Planned and evolutionary design

You should now be prepared, at a conceptual level at least, to go out and apply
software architecture on your projects. You may still have some questions about
how to proceed, however, since we have not yet discussed how the risk-driven model
interacts with other kinds of guidance you already know, things like planned and
evolutionary design, software processes, and specifically agile software development.
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The remainder of the chapter shows how the risk-centric model is compatible with
each of these and can be used to augment their advice.

We start by discussing three styles of design: planned, evolutionary, and minimal
planned design. Planned and evolutionary are the two basic styles of design and
minimal planned design is a combination of them.

Evolutionary design. Evolutionary design “means that the design of the system
grows as the system is implemented” (Fowler, 2004). Historically, evolutionary design
has been frowned upon because local and uncoordinated design decisions yield chaos,
creating a hodgepodge system that is hard to maintain and evolve any further.

However, recent trends in software processes have re-invigorated evolutionary
design by addressing most of its shortcomings. The agile practices of refactoring,
test-driven design, and continuous integration work against the chaos. Refactoring (a
behavior-preserving transformation of code) cleans up the uncoordinated local de-
signs (Fowler, 1999), test-driven design ensures that changes to the system do not
cause it to lose or break existing functionality, and continuous integration provides
the entire team with the same codebase. Some argue that these practices are suf-
ficiently powerful that planned design can be avoided entirely (Beck and Andres,
2004).

Of the three practices, refactoring is the workhorse that reduces the hodgepodge
in evolutionary design. Refactoring replaces designs that solved older, local problems
with designs that solve current, global problems. Refactoring, however, has limits.
Current refactoring techniques provide little guidance for architecture scale trans-
formations. For example, Amazon’s sweeping change from a tiered, single-database
architecture to a service-oriented architecture (Hoff, 2008a) is difficult to imagine
resulting from small refactoring steps at the level of individual classes and methods.
In addition, legacy code usually lacks sufficient test cases to confidently engage in
refactoring, yet most systems have some legacy code.

Though some projects use evolutionary design recklessly, its advocates say that
evolutionary design must be paired with supporting practices like refactoring, test-
driven design, and continuous integration.

Planned design. At the opposite end of the spectrum from evolutionary design is
planned design. The general idea behind planned design is that plans are worked
out in great detail before construction begins. Analogies with bridge design and
construction are often brought up, since bridge construction rarely begins before its
design is complete.

Few people advocate2 doing planned design for an entire software system, an
approach sometimes called Big Design Up Front (BDUF). However, complete planning

2Model Driven Engineering (MDE) is an exception since it needs a detailed model to generate code.
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of just the architecture is suggested by some authors (Lattanze, 2008; Bass, Clements
and Kazman, 2003), since it is often hard to know on a large or complex project that
any system can satisfy the requirements. When you are not sure that any system can
be built, it is best to find this out early.

Planned architecture design is also practical when an architecture is shared by
many teams working in parallel, and therefore useful to know before the sub-teams
start working. In this case, a planned architecture that defines the top-level compo-
nents and connectors can be paired with local designs, where sub-teams design the
internal models of the components and connectors. The architecture usually insists
on some overall invariants and design decisions, such as setting up a concurrency
policy, a standard set of connectors, allocating high-level responsibilities, or defining
some localized quality attribute scenarios. Note that architectural modeling elements
like components and connectors will be fully described in the second part of this book.

Even when following planned design, an architecture or design should rarely, if
ever, be 100% complete before proceeding to prototyping or coding. With current
design techniques, it is nearly impossible to perfect the design without feedback from
running code.

Minimal planned design. In between evolutionary design and planned design is
minimal planned design, or Little Design Up Front (Martin, 2009). Advocates of mini-
mal planned design worry that they might design themselves into a corner if they did
all evolutionary design, but they also worry that all planned design is difficult and
likely to get things wrong. Martin Fowler puts estimated numbers on this, saying he
does roughly 20% planned design and 80% evolutionary design (Venners, 2002).

Balancing planned and evolutionary design is possible. One way is to do some
initial planned design to ensure that the architecture will handle the biggest risks.
After this initial planned design, future changes to requirements can often be handled
through local design, or with evolutionary design if the project also has refactoring,
test-driven-design, and continuous integration practices working smoothly.

If you are concerned primarily with how well the architecture will support global
or emergent qualities, you can do planned design to ensure these qualities and re-
serve any remaining design as evolutionary or local design. For example, if you have
identified throughput as your biggest risk, you could engage in planned design to set
up throughput budgets (e.g., message deliveries happen in 25ms 90% of the time).
The remainder of the design, which ensured that individual components and connec-
tors met those performance budgets, could be done as evolutionary or local design.
The general idea is to perform architecture-focused design (see Section 2.7) to set up
an architecture known to handle your biggest risks, allowing you more freedom in
other design decisions.
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Which is best? Regardless of which design style you prefer, you must design software
before you write the code, whether it is ten minutes before or ten months before. Both
design styles have devoted proponents and their debate relies on anecdotes rather
than solid data, so for now opinions will vary. If you have high confidence in your
ability to do evolutionary design, you will do less planned design.

Realize that different systems will lend themselves to different styles of design.
Consider the slow changes to the Apache web server over the past decade. It is
suitable for planned design because its design resembles an optimization problem
for a stable set of requirements (e.g., high reliability, extensibility, and performance).
On the other hand, many projects have rapidly changing requirements that favor
evolutionary design.

The essential tension between planned and evolutionary design is this: A long
head start on architectural design yields opportunities to ensure global properties,
avoid design dead ends, and coordinate sub-teams — but it comes at the expense of
possibly making mistakes that would be avoided if decisions were made later. Teams
with strong refactoring, test-driven development, and continuous integration prac-
tices will be able to do more evolutionary design than other teams.

The risk-driven model is compatible with evolutionary, planned, and minimal
planned design. All of these design styles agree that design should happen at some
point and they all allocate time for it. In planned design, that time is up-front, so
applying the risk-driven model means doing up-front design until architecture risks
have subsided. In evolutionary design, it means doing architecture design during de-
velopment, whenever a risk looms sufficiently large. Applying it to minimal planned
design is a combination of the others.

3.8 Software development process

Few developers build systems using only a design style, say evolutionary design, and
a compiler. Instead, their activities are structured using a software development pro-
cess that has been designed to increase their chances of successfully delivering a
good system. A good software development process does more than just minimize
engineering risks, since it must also factor in other business needs and risks, such as
time-to-market pressures.

When you broaden your attention from pure engineering risks to the overall
project risks, you find many more risks to worry about. Will the customer accept
your system? Will the market have changed by the time you deliver? Will you deliver
on time? Did your requirements reflect the customer’s desires? Do you have the right
people, are they doing the right jobs, and are they communicating effectively? Will
there be lawsuits?
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Software development process. A software development process orchestrates a
team’s activities with the goal of balancing both engineering and project manage-
ment risks. It is tempting, but impossible, to cleanly separate engineering process
from project management process. A software development process helps you prior-
itize risks across both engineering and project management, and perhaps to decide
that even though engineering risks still exist, other risks outweigh them.

Risk as shared vocabulary. Risks are the shared vocabulary between engineers and
project managers. A manager’s job is to understand tradeoffs and make decisions
across the risks on a project. A manager may not be technical enough to understand
why a module does not work as desired, but he will understand the risk of its failure,
and the engineer can help him assess the risk’s probability and severity.

The concept of a risk is positioned in the common ground between the world
of engineering and the world of project management. Engineers may choose to ig-
nore office politics and marketing meetings, and managers may choose to ignore the
database schema and performance estimates, but in the idea of risks they find com-
mon ground to make decisions about the system.

Baked-in risks. If you had never seen a software development process before, you
might imagine it was like a control loop in a program, where during each iteration it
prioritizes the risks and plans out the next step accordingly, looping until the system
is delivered. In practice, some risk mitigation steps are deliberately baked-in to the
software development process.

At a large company worried about team coordination, the process might insist
on various forms of documentation at project milestones. Agile processes bake-in
worries about time-to-market and customer rejecting the product, and consequently
insist that the software be built and delivered in short iterations. IT-specific processes
often face risks associated with unknown and complex domains, so their processes
may bake-in constructing domain models. Whenever I leave the house, I pat my
pockets to ensure that I have my wallet and keys because it is enough of a risk to
bake-in to my habits.

Baking risk mitigation techniques into the software development process can be
a blessing. It is a blessing when the process bakes-in risks that you would prioritize
anyway, so it saves you the time of every day deciding that, for example, you should
stick to two-week iterations rather than slipping the schedule. It is an efficient means
of conveying expertise from experienced software developers, because they can point
to successful results of following a process, rather than explaining their philosophy
on software development that was baked-in. In an agile method such as XP, a team
following the process can succeed even if they do not understand why XP chose its
particular set of techniques.

Baking risks into the software development process can be a curse when you get
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it wrong. Many years ago, I interviewed with a tiny startup company. The project
manager, formerly with $BIGCOMPANY, asked me what I thought about process and
I told him that it needed to be appropriate for the project, the domain, and the team.
Above all else, I said, applying a process from a book, unaltered, was unlikely to
work. Like a scene from a comedy, he swiveled in his chair and picked up a book
describing $BIGCOMPANY’s development process and said, “This is the process we
will be following.” Needless to say, I did not end up working there, but I wish I could
have seen the five co-located engineers producing detailed design documents and
other bureaucracy that are baked-in to processes for large, distributed teams.

If you decide to tailor your software development process to bake-in risks, some
important features to consider include project complexity (big, small), team size (big,
small), location (distributed, co-located), domain (IT, finance, systems, embedded,
safety-critical, etc.), and kind of customer (internal, external, shrink-wrapped).

3.9 Understanding process variations

Before you can see how to apply the risk-driven model to a software development
process, you will need to know about the broad categories of processes and some
details about them. This section offers an overview that omits details of each process,
but it provides adequate background so that you can think about how to apply the
risk-driven model.

This overview fits each process into a simple two-part template: An optional up-
front design part with one or more iterations that follow. Not every development
process here has up-front design, but all of them have at least one iteration. The
template varies on four points:

1. Is there up-front design?

2. What is the nature of the design (planned/evolutionary; redesign allowed)?

3. How is work prioritized across iterations?

4. How long is an iteration?

Figure 3.4 summarizes the processes and highlights some of their differences.
Two other important variation points that arise when talking about development

process are: how detailed should your design models be, and how long you should
hold on to your design models? None of the above processes commits to an answer
for these, except for XP, which allows modeling but discourages keeping the models
around past an iteration. Applying this simple template to software development
processes yields the following descriptions:
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Process Up-front design Nature of design Prioritization
of work

Iteration
length

Waterfall In analysis & design
phases

Planned design; no
redesign

Open Open

Iterative Optional Planned or
evolutionary;
redesign allowed

Open, often
feature-centric

Open,
usually 1-8
weeks

Spiral None Planned or
evolutionary

Riskiest work
first

Open

UP /
RUP

Optional; design
activities front-loaded

Planned or
evolutionary

Riskiest work
first, then
highest value

Usually 2-6
weeks

XP None, but some do in
iteration zero

Evolutionary design Highest custo-
mer value first

Usually 2-6
weeks

Figure 3.4: Examples of software development processes and how they treat design issues. For
comparison purposes, a waterfall process is treated as having a single long iteration.

Waterfall. The waterfall process proceeds from beginning to end as a single long
block of work that delivers the entire project (Royce, 1970). It assumes planned de-
sign work that is done in its analysis and design phases. These precede the construc-
tion phase, which can be considered a single iteration. With just one iteration, work
cannot be prioritized across iterations, but it may be built incrementally within the
construction phase. Applying the risk-driven model would mean doing architecture
work primarily during the analysis and design phases.

Iterative. An iterative development process builds the system in multiple work
blocks, called iterations (Larman and Basili, 2003). With each iteration, developers
are allowed to rework existing parts of the system, so it is not just built incrementally.
Iterative development optionally has up-front design work but it does not impose a
prioritization across the iterations, nor does it give guidance on the nature of design
work. Applying the risk-driven model would mean doing architecture work within
each iteration and during the optional up-front design.

Spiral. The spiral process is a kind of iterative development, so it has many iter-
ations, yet it is often described as having no up-front design work (Boehm, 1988).
Iterations are prioritized by risk, with the first iteration handling the riskiest parts of
a project. The spiral model handles both management and engineering risks. For
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Figure 3.5: An example of how the amount of design could vary across iterations based on your
perception of the risks. Based on the amount of time spent, you can infer that the most risk was
perceived in iteration 0 and iteration 2.

example, it may address “personnel shortfalls” as a risk. The spiral process gives no
guidance about how much architecture/design work to do, or about which architec-
ture and design techniques to use.

[Rational] Unified Process (RUP). The Unified Process and its specialization, the
Rational Unified Process, are iterative, spiral processes (Jacobson, Booch and Rum-
baugh, 1999; Kruchten, 2003). They highlight the importance of addressing risks
early and the use of architecture to address risks. The (R)UP advocates working on
architecturally-relevant requirements first, in early iterations. It can accommodate
either planned or evolutionary design.

Extreme Programming (XP). Extreme Programming is a specialization of an itera-
tive and agile software development process, so it contains multiple iterations (Beck
and Andres, 2004). It suggests avoiding up-front design work, though some projects
add an iteration zero (Schuh, 2004), in which no customer-visible functionality is de-
livered. It guides developers to apply evolutionary design exclusively, though some
projects modify it to incorporate a small amount of up-front design. Each iteration is
prioritized by the customer’s valuation of features, not risks.

3.10 The risk-driven model and software processes

It is possible to apply the risk-driven model to any of these software development
processes while still keeping within the spirit of each. The waterfall process prescribes
planned design in its analysis and design phases, but does not tell you what kind of
architecture and design work to do, or how much of it. You can apply the risk-driven
model during the analysis and design phases to answer those questions.

The iterative process does not have a designated place for design work, but it
could be done at the beginning of each iteration. The amount of time spent on design
would vary based on the risks. Figure 3.5 provides a notional example of how the
amount of design could vary across iterations based on your perception of the risks.

The spiral process and the risk-driven model are cousins in that risk is primary
in both. The difference is that the spiral process, being a full software development
process, prioritizes both management and engineering risks and guides what hap-
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pens across iterations. The risk-driven model only guides design work to mitigate
engineering risks, and only within an iteration. Applying the risk-driven model to the
spiral model or the (R)UP works the same as with an iterative process.

You will have noticed that, of the processes listed in Figure 3.4, XP (an agile
process) has the most specific advice. Consequently, it is trickiest to apply the risk-
driven model into the XP process (or other feature-centric agile processes), so we will
look at that process in more depth.

3.11 Application to an agile processes

The following description of using the risk-driven model on an agile project highlights
some core issues, such as when to design, and how to mix risks into a feature-driven
development process. Since agile projects vary in their process, this description as-
sumes one with a two-week iteration that plays a planning game to manage a fea-
ture backlog. On the engineering side, there are software architecture risks that you
should fold into this process, which includes identification, prioritization, mitigation,
and evaluation of those risks. The big challenges are: first, how to address initial
engineering risks, and second, how to incorporate engineering risks that you later
discover into the stack of work to do.

Risks. You will have identified some risks at the beginning of the project, such as
the initial choices for architectural style, choice of frameworks, and choice of other
COTS (Commercial Off-The-Shelf) components. Some agile projects use an iteration
zero to get their development environment set up, including source code control
and automated build tools. You can piggyback here to start mitigating the identified
risks. Developers could have a simple whiteboard meeting to ensure everyone agrees
on an architectural style, or come up with a short list of styles to investigate. If
performance characteristics of COTS components are unknown but important, some
quick prototyping can be done to provide approximate speed or throughput numbers.

Risk backlog. At the end of an iteration, you need to evaluate how well your activities
mitigated your risks. Most of the time you will have reduced a risk sufficiently that it
drops off your radar, but sometimes not. Imagine that at the end of the iteration you
have learned that prototyping shows that your preferred database will run too slowly.
This risk can be written up as a testable feature for the system. This is the beginning
of a risk backlog. Whenever possible, risks should be written up as testable items.

Some risks are small enough that they can be handled as they arise during an
iteration, and never show up on the backlog. But larger risks will need to be scheduled
just like features are.

Note that this is not an excuse to turn a nominal iteration zero into a de facto Big
Design Up-Front exercise. Instead of extending the time of iteration zero, risks are
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Figure 3.6: One way to incorporate risk into an agile process is to convert the feature backlog into
a feature & risk backlog. The product owner adds features and the software team adds technical
risks. The software team must help the product owner to understand the technical risks and suitably
prioritize the backlog.

pushed onto the backlog. This raises a question: how can we handle both backlogged
features and risks?

Prioritizing risks and features. Many agile projects divide the world into product
owners, who create a prioritized list of features called the backlog, and developers,
who take features from the top of the backlog and build them.

It is tempting to put both features and risks on the same backlog, but managing
the backlog becomes more complex once you introduce risks, because both features
and risks must be prioritized together. Who is qualified to prioritize both?

If you give the product owner the additional responsibility to prioritize architec-
tural risks alongside features, you can simply change the feature backlog into a fea-
ture & risk backlog, as seen in Figure 3.6. Software developers may see a feature low
in the backlog asking for security. It is their job to educate the product owners that
if they ever want to have a secure application, they need to address that risk early,
since it will be difficult or impossible to add later. As part of the reflection at the
end of each iteration, you should evaluate architectural risks and feed them into the
backlog.

Summary. An agile process can handle architectural risks by doing three things. Ar-
chitectural risks that you know in advance can be (at least partially) handled in a
time-boxed iteration zero, where no features are planned to be delivered. Small archi-
tectural risks can be handled as they arise during iterations. And large architectural
risks should be promoted to be on par with features, and inserted into a combined
feature & risk backlog.
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3.12 Risk and architecture refactoring

Over time, system developers understand increasingly well how a system should be
designed. This is true regardless of which kind of process they follow (e.g., waterfall
or iterative processes). In the beginning, they know and understand less. After some
work (design, prototyping, iterations, etc.) they have better grounded opinions on
suitable designs.

Once they recognize that their code does not represent the best design (e.g., by
detecting code smells), they have two choices. One is to ignore the divergence, which
yields technical debt. If allowed to accumulate, the system will become a big ball of
mud (see Section 14.7). The other is to refactor the code, which keeps it maintain-
able. This second option is well described by Brian Foote and William Opdyke in their
patterns on software lifecycle (Coplien and Schmidt, 1995).

Refactoring, by definition, means re-design and the scale of that redesign can
vary. Sometimes a refactoring involves just a handful of objects or some localized
code. But other times it involves more sweeping architectural changes and is called
architecture refactoring. Since little published guidance exists for refactoring at large
scale, architecture refactoring is generally performed ad hoc.

The example from the introduction where Rackspace implemented their query
system three different ways (see Section 1.2) is best thought of as architecture refac-
toring. There, each refactoring of the architecture was precipitated by a pressing
failure risk. Object-level refactorings take a negligible amount of time and therefore
need little justification, so you should just go ahead and, for example, rename a vari-
able to be more expressive of its intent. An architecture refactoring is expensive, so it
requires a significant risk to justify it.

Two important lessons are apparent. First, design does not exclusively happen up-
front. It is often reasonable to spend time up-front making the best choices you can,
but it is optimistic to think you know enough to get all those design decisions right.
You should anticipate spending time designing after your project’s inception.

Second, failure risk can guide architecture refactoring. By the time it is imple-
mented, nearly every system is out of date compared to the best thinking of its devel-
opers. That is, some technical debt exists. Perhaps, in hindsight, you wish you had
chosen a different architecture. Risks can help you decide how bad it will be if you
keep your current architecture.

3.13 Alternatives to the risk-driven model

The risk-driven model does two things: it helps you decide when you can stop doing
architecture, and it guides you to appropriate architecture activities. It is not good at
predicting how long you will spend designing, but it helps you recognize when you
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have done enough. There are several alternatives to the risk-driven model, with their
own advantages and disadvantages.

No design. The option of not designing is a bit of a misnomer, especially if you believe
that every system has an architecture, because the developers must have thought
about it at some point. Perhaps they were thinking about the design (i.e., what they
will code) immediately before they start typing, but they do think about the design.
Such projects likely borrow heavily from presumptive architectures (see Section 2.4),
where the developers pattern their system off of similar successful systems, explicitly
or implicitly.

Documentation package. Some people suggest, or at least imply, that you should
build a full documentation package that describes your architecture. If you follow this
guidance, you will build a set of models and diagrams and write them down in such
a way that someone else could read and understand the architecture, which can be
quite desirable. If you need documentation, the Documenting Software Architectures
book (Clements et al., 2010) will guide you to an effective set of models and diagrams
to record.

However, few projects will need to create a full documentation package, and the
“3 guys in a garage” startup probably cannot afford to write anything down.

Yardsticks. Empirical data can help you decide how much time should be spent on
architecture and design. Barry Boehm has calculated the optimal amount of time to
spend on the architecture for small, medium, and large projects based on a variant
of his COCOMO model (Boehm and Turner, 2003). For various project sizes, he has
plotted curves of architecture effort vs. total project duration. His data indicates that
most projects should spend 33-37% of their total time doing architecture, with small
projects spending as little as 5% and very large projects spending 40%.

A yardstick like “spend 33% of your time on architecture” can be used by project
managers for planning project activities and staffing requirements, yielding a time
budget to spend in design.

Yardsticks, however, are little help to developers once the architecture work has
started. No reasonable developer should continue design activities for additional
days after the risks have been worked out, even if the yardstick provides that budget.
Nor should a reasonable developer switch to coding when a major failure risk is
outstanding.

It is best to view such yardsticks as heuristics derived from experience combating
risks, where projects of a certain size historically needed about that much time to
mitigate their risks. That yardstick does not help you decide whether one more (or
one less) day of architecture work is appropriate. Also, yardsticks only suggest broad
categorical activities rather than guide you to particular techniques.
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Ad hoc. When choosing how much architecture to do, most developers probably do
not follow any of the alternatives above. Instead, they make a decision in the moment,
based on their experience and their best understanding of the project’s needs.

This may indeed be the most effective way to proceed, but it is dependent upon
the skill and experience of the developer. It is not teachable, since its lessons are not
explicit, nor is it particularly helpful in creating project planning estimates. It may be
that, in practice, the ad hoc approach is a kind of informal risk-driven model, where
developers tacitly weigh the risks and choose appropriate techniques.

3.14 Conclusion

This chapter set out to investigate two questions. First, which design and architec-
ture techniques should developers use? And second, how much design and architecture
should developers do? It reviewed existing answers, including doing no design, using
yardsticks, building documentation packages, and proceeding ad hoc. It introduced
the risk-driven model that encourages developers to: (1) prioritize the risks they face,
(2) choose appropriate architecture techniques to mitigate those risks, and (3) re-
evaluate remaining risks. It encourages just enough design and architecture by guid-
ing developers to a prioritized subset of architecture activities. Design can happen
up-front but it also happens during a project.

The risk-driven model is inspired by my father’s work on his mailbox. He did
not perform complex calculations — he just stuck the post in the hole then filled it
with concrete. Low-risk projects can succeed without any planned architecture work,
while many high-risk ones would fail without it.

The risk-driven model walks a middle path that avoids the extremes of complete
architecture documentation packages and architecture avoidance. It follows the prin-
ciple that your architecture efforts should be commensurate with the risk of failure.
Avoiding failure is central to all engineering and you can use architecture techniques
to mitigate the risks. The key element of the risk-driven model is the promotion of
risk to prominence. Each project will have a different set of risks, so it likely needs a
different set of techniques. To avoid wasting your time and money, you should choose
techniques that best reduce your prioritized list of risks.

The question of how much software architecture work you should do has been a
thorny one for a long time. The risk-driven model transforms that broad question into
a narrow one: “Have your chosen techniques sufficiently reduced your failure risks?”
Evaluation of risk mitigation is still subjective, but it is one that developers can have
a focused conversation about.

Engineering techniques address engineering risks, but projects face a wide vari-
ety of risks. Software development processes must prioritize both management risks
and engineering risks. You cannot reduce engineering risks to zero because there
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are also project management risks to consider, including time-to-market pressure. By
applying the risk-driven model, you ensure that whatever time you devote to soft-
ware architecture reduces your highest priority engineering risks and applies relevant
techniques.

Agile software development approaches often emphasize evolutionary design over
planned design. A middle path, minimal planned design, can be used to avoid the
extremes. The essential tension is this: A long head start on architectural design yields
opportunities to ensure global properties, avoid design dead ends, and coordinate
sub-teams — but it comes at the expense of possibly making mistakes that would
be avoided if decisions were made later. Agile processes focusing on features can be
adapted slightly to add risk to the feature backlog, with developers educating product
owners on how to prioritize the feature & risk backlog.

Some readers may be frustrated that this chapter does not prescribe a list of tech-
niques to use and a single process to follow. These are missing because the techniques
that work great on one project would be inappropriate on another. And there is not
yet enough data to overcome opinions about the best process to recommend. Indeed,
you may not have a choice about which process you follow, but within that process
you likely have the ability to use the risk-driven model. This chapter has tried to
provide relevant information about how to make your own choices so that you can
do just enough architecture for your projects.

3.15 Further reading

The invention of risk as a concept likely occurred quite early, with references to it
in Greek antiquity, but it took on its modern, more general, idea as late as the 17th
century, where it increasingly displaced the concept of fortunes as what drove life’s
outcomes (Luhmann, 1996). A few minutes after that, project managers started using
risk to drive their projects. This longstanding tradition in project management has
carried over into software process design, with many authors emphasizing the role
of risk in software development, including Philippe Kruchten (Kruchten, 2003), Ivar
Jacobson, Grady Booch, and James Rumbaugh (Jacobson, Booch and Rumbaugh,
1999), and specifically noting the connection between architecture and risk.

Barry Boehm wrote about risk in the context of software development with his pa-
per on the spiral model of software development (Boehm, 1988), which is an interest-
ing read even if you already understand the model. The risk-driven model would, on
first glance, appear to be quite similar to the spiral model of software development,
but the spiral model applies to the entire development process, not just the design
activity. A single turn through the spiral has a team analyzing, designing, developing,
and testing software. The full spiral covers the project from inception to deployment.
The risk-driven model, however, applies just to design, and can be incorporated into
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nearly any software development process. Furthermore, the spiral model guides a
team to build the riskiest parts first, but does not guide them to specific design activi-
ties. Both the spiral model and the risk-driven model are in strong agreement in their
promotion of risk to a position of prominence.

Barry Boehm and Richard Turner followed this up with a book on risk and ag-
ile processes (Boehm and Turner, 2003). The summary of their judgment is, “The
essence of using risk to balance agility and discipline is to apply one simple question
to nearly every facet of process within a project: Is it riskier for me to apply (more of)
this process component or to refrain from applying it?”

Mark Denne and Jane Cleland-Huang discuss both architecture and risk in the
context of software project management (Denne and Cleland-Huang, 2003). They
advocate managing projects by chunking development into Minimum Marketable Fea-
tures, which has the consequence of incrementally constructing your architecture.

The risk-driven model is similar to global analysis as described by Christine
Hofmeister, Robert Nord, and Dilip Soni (Hofmeister, Nord and Soni, 2000). Global
analysis consists of two steps: (1) analyzing organizational, technical, and product
factors; and (2) developing strategies. Factors and strategies in global analysis map
to risks and activities in the risk-driven model. Factors are broader than the technical
risks in the risk-driven model, and could include, for example, headcount concerns.
Both global analysis and the risk-driven model are similar in that they externalize a
structured thought process of the form: I am doing X because Y might cause prob-
lems. In the published descriptions, the intention of global analysis is not to optimize
the amount of effort spent on architecture, but rather to ensure that all factors have
been investigated.

Two publications from the SEI can help you become more consistent and thor-
ough in your identification and explanation of risks. Carr et al. (1993) describe
a taxonomy-based method for identifying risks and Gluch (1994) introduces the
condition-transition-consequence format for describing risks.

The risk-driven model advocates building limited architecture models that have
detail only where you perceive risks. Similarly, authors have been advocating build-
ing minimally sufficient models for years, including Desmond D’Souza, Alan Wills,
and Scott Ambler (D’Souza and Wills, 1998; Ambler, 2002). Tailoring the models
built on a project to the nature of the project (greenfield, brownfield, coordination,
enhancement) is discussed in Fairbanks, Bierhoff and D’Souza (2006).

The idea of cataloging techniques, or tactics, is described in the context of At-
tribute Driven Design in Bass, Clements and Kazman (2003). Attribute Driven Design
(ADD) relies on a mapping from quality attributes to tactics (discussed in Section
11.3.4), much like global analysis. The concept in this book of mapping development
techniques is similar in nature. ADD guides developers to an appropriate design (a
pattern), while the risk-driven model guides developers to an activity, such as perfor-
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mance modeling or domain analysis. The risk-driven model can be seen as taking the
promotion of risk from the spiral model and adapting the tabular mapping of ADD to
map risks to techniques.

Knowing what tactics or techniques to apply would be valuable knowledge to
include in a software architecture handbook, and would accelerate the learning of
novice developers. Such knowledge is already in the heads of virtuosos, as described
by Mary Shaw and David Garlan (Shaw and Garlan, 1996). The better our field en-
codes this knowledge, the more compact it becomes and the faster the next generation
of developers absorbs it and sees farther.

Though tactics and techniques were described in this chapter as tables, they could
be expressed as a pattern language, as originally described by Christopher Alexander
for the domain of buildings (Alexander, 1979; Alexander, 1977), and later adapted
to software in the Design Patterns book (Gamma et al., 1995) by Erich Gamma and
others.

Martin Fowler’s essay, “Is Design Dead?” (Fowler, 2004) provides a very readable
introduction to evolutionary design and the agile practices that are required to make
it work.

Merging risk-based software development and agile processes is an open research
area. Jaana Nyfjord’s thesis (Nyfjord, 2008) proposes the creation of a Risk Manage-
ment Forum to prioritize risk across products and projects in an organization. Since
the goal here is to handle architecture risks that are only a subset of all project risks,
a smaller change to the process may work.

This book uses risk to help you decide which techniques to use and how many of
them to apply, assuming the requirements are not negotiable. Another way to use
it is to help determine the scope of the projects, assuming the requirements can be
changed. Such a quantitative technique is described in Feather and Hicks (2006),
with the result being a bag of requirements that gives you the most benefit for the
risk that you take on.

With many developers seeking lighter weight processes, agile development is pop-
ular. Ambler (2009) provides an overview of how architecture can be woven into
agile processes, and Fowler (2004) discusses how evolutionary design can comple-
ment planned design. Boehm and Turner (2003) discuss the tension between moving
fast and getting it right. A thorough treatment of a practical process for software
architecture is found in (Eeles and Cripps, 2009).





Chapter 4

Example: Home Media Player

This book advocates a risk-driven approach to software architecture, where develop-
ers identify engineering risks and choose a set of architecture and design techniques
to mitigate them. This sounds simple and obvious, because what kind of developer
would choose techniques unrelated to the risks? But most developers are not follow-
ing a risk-driven approach. This chapter aims to show how risk can drive design work
rather than merely being yet another thing that developers think about.

Here is an exaggerated way of highlighting what is different about the risk-driven
approach. Developers who follow a risk-driven approach may feel that there is a
record in their heads repeating endlessly: “What are my risks? What are the best
techniques to reduce them? Is the risk mitigated and can I start (or resume) coding?”
Avoiding failure by reducing risks is the primary driver of a developer’s actions. Like
every recursive algorithm, it has a termination condition, so developers break out of
the design cycle and start coding as soon as possible.

Chapter 3 described the risk-driven model of software architecture. This chapter
shows examples of applying the risk-driven model so that you can get a feel for how
it works. This chapter has other goals too, including showing how to minimize your
architecture modeling so that it can fit into an agile or spiral development process,
how to apply software architecture techniques, and when to stop designing and start
prototyping or coding. The example that runs through the chapter is for a home
theater media player, described as follows.

The Home Media Player is a computer that plays media (like music, videos,
and pictures) on a television and stereo. It is a normal computer like a lap-
top with a single audio and video output that is hooked up to a television
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and optionally to a stereo. This Home Media Player is able to play media
in multiple formats from its local hard disk or streamed from the internet.
It can simultaneously play music and display a slideshow of pictures, or
show a video and browse information about that video. Third parties can
build extensions to enable the system to play steaming media or collect
metadata (e.g., song lyrics or actor biographies) from internet sites.

The example is motivated by a code-level inspection of a real system. This system is
interesting as an example because in some ways it is similar to a prototypical Systems
problem with performance and reliability concerns, and in other ways it is like an IT
problem with concerns about handling the complex metadata for music and videos.
Consequently you can see different types of risks and techniques in a single example.

This chapter is organized chronologically. It assumes that we are members of a
team that has built a prototype Home Media Player and, as the chapter progresses,
we are asked to address three issues that arise:

1. Team communication: Since the system has been successful, new developers
at a remote location have been added to the growing project. We worry that the
new developers may fail to understand the design and architecture, and will be
ineffective contributors or even accidentally break the architecture.

2. Integration of COTS components: The prototype system only ran on a single
platform. We are asked to integrate third-party COTS (Commercial Off-The-
Shelf) components into the system with the intent of enabling the system to run
on different platforms. We worry that the new components will not integrate
successfully.

3. Metadata consistency: There are many ways to represent music and video
metadata. We worry that the internal metadata representation will be incom-
patible with ones found on the internet, meaning that third parties would fail to
build extensions.

Since the focus of this chapter is on showing an example of a risk-driven approach,
it does not cover many aspects of software development. This chapter treats the
requirements as perfectly understood, so it does not cover how we learn about the
requirements or how they are expressed. It does not distinguish different roles inside
the development team. It is process agnostic. And it assumes that the team and the
project sponsors are in perfect agreement about the quality attribute priorities. These
and other ideas are omitted not because they are unimportant, but so that we can
focus on the design.

This chapter applies architectural concepts and uses architecture models that are
described in the second part of this book, but this should not present much difficulty
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since you have probably seen similar things before and they are explained as the
chapter progresses.

4.1 Team communication

We are part of a team that has built a successful prototype of the Home Media Player
system, and while we are not literally building it in a garage, it has been built in
startup fashion, with the developers co-located and working long hours together. All
of the developers have participated in the design decisions and know the architecture
and detailed design, but it is only in our heads. We have been told that because of
our success, the company is planning to launch the product later this year. They have
decided to add additional developers to the project. The new developers will not be
co-located with our team, nor do they know anything about the domain or system.

We are worried that during the rapid push to turn this prototype into a launch-
ready product, the new developers will inadvertently write code that goes against
the design. This is sometimes called architectural erosion or architectural drift (Perry
and Wolf, 1992). Even if we catch errors they introduce, we remember Fred Brooks’
advice about adding developers to projects (Brooks, 1995), so we worry about how
quickly we can make the new developers into productive members of the team who
can make independent contributions and help us meet the launch deadline.

We decide to address the risk by communicating the design to the new developers.
In doing so, we keep in mind the three primary models — the domain, the design,
and the code models — and also the three primary architectural viewtypes — the
module, runtime, and allocation views. As we apply techniques to address the risk,
we consider how well the new developers will understand these aspects of the system.
We start with the least expensive techniques and select more expensive ones until we
think the risk has subsided.

4.1.1 Reading source code

Our prototype system is not yet very big, so it is tempting to simply ask the new
developers to read the source code. This can work pretty well and does not cost
our current team any time or effort since the code already exists, while additional
diagrams or documents will require effort to create. We are tempted by mantras like
“Use the source, Luke,” and “The code is the truth,” which advocate learning systems
by reading source code.

Our code is organized into directories in the filesystem, as seen in Figure 4.1,
which yields clues to someone examining it. They can see that we are using external
libraries and that the code is organized into some rough chunks, including the appli-
cation, GUI, and media player, but it is unclear if these rough chunks are modules,
and the directory structure cannot express module dependencies.
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Figure 4.1: The directory structure for Home Media Player source code. The organization of
directories yields clues, but it would be a mistake to assume that each directory corresponds to a
module of source code.

There are limits to using the code as the only communication. Our particular
system is a prototype with the concerns about code quality that go along with that,
plus we are aware of the inherent model-code gap (discussed in Section 10.1). That
means that design intent will always be lost between the design and the code, even
if the design only ever existed in our heads. As a team, we debated design decisions,
discovered tradeoffs, and deliberately imposed design constraints, yet none of these
is expressed in the code.

Beyond that, asking all the new developers to go read code for many days is likely
an inefficient use of time. Even with the preparation time, it is probably more efficient
for someone to communicate with them directly or write some design documents than
to have so many people scouring the code.

The source code does an OK job of communicating the module viewtype and a
good job of communicating the code model, but it does a poor job of communicating
the other viewtypes (runtime and allocation) and the other primary models (domain
and design). Perhaps we can skip the allocation viewtype since it is pretty clear:
there is just one machine we deploy onto. We decide to keep looking for more ways to
reduce the communication risk. Our decision as to whether or not the risk is mitigated
is not objective, but it has the advantage that the goal is clear (risk reduction by
communicating the design) and some metrics are available (coverage of the viewtypes
and primary models).

4.1.2 Module model

Having decided to communicate our design to the new developers, we start by build-
ing a view that is easy to build: the module model. We would have chosen a variant
such as a layer diagram, but our system is not built using a layered architecture style.
In contrast to the directories on disk we saw earlier, a module model clearly iden-
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Figure 4.2: The module structure for Home Media Player system. Notice that these modules do
not line up with the directories shown in Figure 4.1 and the module dependencies could not have
been inferred either.

tifies the modules and the dependencies between them. It may include additional
constraints, such as there should be no dependencies on vendor-specific API’s, or no
dependency cycles. If we had been more careful, our modules would have more
closely aligned with our directory structure (see Section 10.3 for why this is a good
idea).

Figure 4.2 shows the modules and dependencies for our system. The new devel-
opers who read the model can infer major functional areas from the module names,
and the dependencies between modules allow them to infer how some standard sce-
narios might work. For example, a play command comes in from the Remote Control
module to the User Interface, which tells the Application Logic to play the currently
selected song, which tells the Audio Player to load the song file and decode it using
an appropriate codec, which streams it to the ALSA API for playback. Figuring out
this scenario involves quite a bit of guessing, but we have chosen our module names
well so perhaps they will guess correctly.

We realize that there are domain terms (like codecs) and technical details (like
VDPAU and ALSA API’s) implicit in our module model that we would expect new
developers to learn. Luckily, we are not working in a proprietary domain, so we can
point the new developers to existing reference material. We collect a set of links to
web pages that describe the Audio/Video domain and related technologies.

Re-evaluating our risk, we see that the code model and the module viewtype have
been clarified for new developers and that perhaps the domain is now sufficiently
clear. However, the runtime viewtype is still unclear — new developers would have
to make guesses based on the modules or mentally animate the source code. Also,
they are in the dark on many design issues, notably how our Home Media Player
differs from other media players. We decide to discuss the quality attribute priorities,
tradeoffs, scenarios, and architecture drivers. These should provide background on
design issues, including why we made the design choices we did.
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4.1.3 Quality attributes and design decisions

Our team was not given much guidance on prioritizing quality attributes, but we had
seen how other media players worked and failed to satisfy. We identified several
relevant quality attributes, and prioritized them this way:

UI responsiveness (latency) > Audio/Video playback smoothness (consis-
tent, on-time frame playback) > reliability > modifiability > playback
efficiency (framerate) > portability

Our thinking was that most media players do their basic job, playing back audio and
video, but many fail to provide a satisfactory solution because their user interfaces are
sluggish. We also found that media players differed in their ability to provide smooth
and reliable playback, and that this was important in our perception of a good system.
Since we envisioned this system as being bundled with hardware, portability was not
a major concern.

We identified two tradeoffs that forced us to make decisions.

• Tradeoff: Portability and smooth playback. Portability usually entails adding an
extra software layer that provides a uniform interface to different hardware or
software platforms. Unfortunately, this new layer increases latency and some-
times hurts the audio fidelity. Since we prioritized playback smoothness, we
coded directly to the platform-specific API’s, knowing that this will make porta-
bility more difficult.

• Tradeoff: Playback efficiency and modifiability. Often there are tweaks that can
improve video playback, especially framerates, that are dependent on the video
source or codec. But since most video playback was happening sufficiently well
on the hardware we had chosen, we decided to build a system that allowed easy
plug-ability of new codecs and video sources.

While we had never written down a quality attribute scenario, we often talked about
two scenarios and used them as architecture drivers in our design and testing. We
considered these to be drivers since they dealt with our two highest priority quality
attributes and were technically challenging to achieve:

• Architecture Driver: When a user gives a command, such as pressing pause on
the remote control, the system should comply with the command within 50ms.
When the 50ms command deadline cannot be met, such as when starting play-
back of a video stream from the internet, the system should provide feedback
such as a progress bar showing the expected wait time.

• Architecture Driver: Our reference H.264/MPEG-4 AVC video from local disk
should play smoothly on our reference hardware.
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We made several other design decisions that are consistent with our prioritization of
quality attributes. We included these in the descriptions for the new developers since
our team did spend considerable time discussing alternatives and because it would
be hard to infer them from reading the source code.

• Design Decision: To promote reliability, each top-level component will run in
its own process to isolate faults, like services in an operating system.

• Design Decision: The Media Rendering/Playback component communicates
using shared memory with the Media Buffer component to minimize latency,
considering the high rate of data movement.

• Design Decision: To help ensure smoothness of playback, disk and internet
data sources are buffered in RAM since their streams are potentially unreliable.

• Design Decision: All media metadata is stored in the Metadata Repository, even
if it is redundant with metadata embedded in the source file (e.g., ID3 tags).

• Design Decision: Only the Media Player Core component is allowed to write to
the Metadata Repository.

At this point the only thing that we are categorically missing is a description of the
runtime behavior of the system, including components, connectors, and scenarios.
We have been hinting at runtime elements, for example mentioning communica-
tion paths, names of components (Metadata Repository, Rendering/Playback, Media
Buffer) and connectors (shared memory, message passing, database writing). We
decide to clearly describe these to the new developers.

4.1.4 Runtime models

The most valuable and least effort way to describe the runtime components and con-
nectors is to simply list them and their responsibilities, as shown in Figure 4.3. As-
signing responsibilities explains what each one does and reduces the chance of archi-
tectural drift because the new developers are less likely to expediently force-fit new
behavior someplace it should not go. Note that the table is a view of the system
design, even though it is an easy-to-create list. Not every view must be graphical.

The table will not answer every question regarding how things work, but the new
developers now know the kinds of components and connectors that exist at runtime.
They can make informed guesses about how everything fits together. We can go
one step further and make that explicit by drawing a component assembly diagram.
Figure 4.4 shows a steady-state configuration of component and connector instances
in our Home Media Player system. If the system had interesting startup or shutdown
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Component or
Connector

Responsibilities

Media Rendering
/ Playback

Plays media files to the audio and video outputs. Renders elements of
the user interface such as menus.

Media Player
Core

Essential logic of the media player application, including the user
interface and logic to coordinate activities.

Command Input Collects raw user gestures (e.g., button presses, mouse movement)
issued from remote controls, keyboards, etc., and translates them into a
common vocabulary of events.

Media Buffer Caches media files to memory to reduce jitter in data stream. Makes
data available in shared memory.

Metadata
Repository

A database containing metadata on all media files, for example, song
names and movie directors.

Media Files Media files stored on the normal filesystem. Could be local storage, or
mounted remote drives.

Messaging
Connector

An asynchronous connector enabling bi-directional message passing.

Shared Memory
Connector

A synchronous connector implemented with shared memory to minimize
latency, and locking to prevent corruption. Both components using this
connector must be deployed on the same machine.

Pipe Connector An asynchronous connector that delivers messages in-order, and only in
one direction.

DB Connector A synchronous connector that uses SQL to extract data from a database.

Internet
Connector

A synchronous connector that uses internet protocols such as HTTP to
retrieve data from the internet.

Filesystem
Connector

A synchronous connector to read data from a filesystem. Uses memory
mapped I/O for greater performance.

Figure 4.3: A listing of component and connector responsibilities.

configurations we might draw component assemblies for those too, but our system
does not, so we will stick with this one diagram.

Note that the User, Television, and Stereo are not software components. This
diagram bends the rules a bit to include them as components on this diagram, where
a strict component assembly diagram would omit them. The benefit is that including
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Figure 4.4: A component assembly of Home Media Player system. Notice how many design details
are revealed through the legend.

them makes clear which component generates the audio and video streams and which
component receives commands from the user, which otherwise might require cross-
referencing to the table of responsibilities, or might just confuse the reader. Also note
that a connector between two components means that they communicate at runtime.
That is different than a dependency in the earlier module diagram, which means
only that changes to one module could impact the other. In this system, there is just
one instance of each component type, but you could imagine having a keyboard and
remote control as two instances of Command Input components.

This component assembly view is effective partly because it focuses attention on
issues that are important. We could have annotated the connectors to indicate if the
datatypes were Big Endian or Little Endian, but that would have been a distraction
since that is not one of our risks. Instead, the model contains details on issues we are
concerned about getting right. By showing one kind of detail instead of another, we
telegraph our concerns to the new developers.

As with the module view, we could let the new developers guess how the compo-
nents behave, but this time we decide to provide a functionality scenario, one that
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Name: Pause a playing video
Initial state: A video is playing.
Participants: User, Command Input, Media Player Core, Media Rendering / Playback
Steps:

1. The User presses the pause button on the remote control.
2. The Command Input component receives the button press and interprets it as the

pause button. It sends a PAUSE BUTTON PRESSED message to the Media Player Core
component over the event bus.

3. The Media Player Core, knowing the current state of playback is PLAYING, interprets the
message as a desire to pause playback of the currently playing video. It sends a PAUSE

VIDEO PLAYBACK message to the Media Rendering / Playback component.
4. The Media Rendering / Playback component freezes the current video frame and

suspends audio playback. It ceases pulling data from the Media Buffer. It sends a
message to the Media Player Core indicating that the video is paused.

5. The Media Player Core updates its current state of playback to PAUSED.

Figure 4.5: A functionality scenario that describes how the components collaborate to interpret
commands and play video. It applies to the component assembly in Figure 4.4.

shows a representative trace of behavior through many of the components. Figure 4.5
shows how a command from the user flows through the components. While a single
scenario like this does not show all behavior, it is quick to produce and easy to under-
stand. We could also create a list of actions our system supports to complement the
specific scenario, but since the new developers can play with the running prototype
we have little worry about them misunderstanding that.

4.1.5 Reflection

It is difficult to ensure that a team of developers understands a design and avoids ar-
chitectural drift. We were confronted with the problem of communicating our project
design to new developers who were not co-located with us. One option was to simply
let them figure out the system from reading the code, something that was possible
given the size of this prototype. However, we were aware of the model-code gap so
we knew that considerable design intent is not present in the code, so it seemed less
risky and more efficient for our team to put together some documentation about the
system.

As we created the documentation, we were aware of providing coverage of the
three primary models — the domain, the design, and the code models — and also the
three primary architectural viewtypes — the module, runtime, and allocation views.
We started with the easiest documentation to produce and gradually added in more
expensive parts. After each one, we asked ourselves if the risk had substantially re-
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duced and we calibrated that evaluation based on our coverage of the viewtypes and
models. When possible, we built representative and textual models rather than fully
general and graphical ones. We decided to create a graphical model of our modules
and component assembly since they were relatively easy to produce and conveyed
more information than our textual models. We stopped when we had covered the
primary models and viewtypes, trusting that the new developers would be able to use
what we provided as a skeleton of understanding and would hang detailed knowledge
from it.

4.2 Integration of COTS components

Now that we have a working prototype on a single platform and a newly expanded
team that understands the system, we are asked to make the Home Media Player
work across multiple platforms. This entails using a new component called Cross
Platform AV that works on every major platform. We are also asked to use a new video
rendering component called NextGenVideo, which is provided by partner company.
These are often referred to as COTS (Commercial Off-The-Shelf) components, even
if they are open source components or a non-commercial group. The good news
is that the NextGenVideo component is higher performance than our current video
component and it plays back more kinds of video files. The bad news is that it has a
reputation for crashing when the source video file is imperfect.

Based on what we have been asked to do, we create a list of failure risks. Some of
our risks involve quality attributes while others involve functionality.

1. Integration. Can we fit these new components into our architecture? Will
we face architecture mismatch problems (see Section 15.7)? We know little
about NextGenVideo and Cross Platform AV and are not even sure the two new
components are compatible.

2. Reliability. Given that the NextGenVideo component has a reputation for crash-
ing, we will need to insulate the whole Home Media Player system from what
happens to NextGenVideo. While we wish it did not crash and perhaps could fix
it if we had the source code, we have to live with it and work around its warts.

3. On-Screen Display. Our old video component handled both the on-screen dis-
play (OSD) and video playback, but the NextGenVideo only does playback. The
new component might prevent us from drawing an OSD by hogging the display
resource.

4. Latency. Our two architecture drivers concern latency in the user interface and
consistent smooth playback. Considering that both are changing with the new
components, we are worried about slowdowns.
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Figure 4.6: A boundary model of NextGenVideo component and its ports. Potential architectural
mismatch areas are highlighted using UML notes.

These risks are interrelated: for example, how we solve the integration problem will
affect the reliability and latency. We decide to investigate the integration first because
if we cannot integrate the new components then we cannot start to analyze latency
or reliability.

4.2.1 Integrating the new components

Since we know very little about the new components, we start doing some research
on them. We are relieved to learn that the NextGenVideo component works out-of-
the-box with the Cross Platform AV component. We continue directed research on the
NextGenVideo component with the intent of understanding its boundary model and
uncovering, as soon as possible, any facts that might indicate areas of architectural
mismatch.

We start to take notes on the NextGenVideo component. The documentation de-
scribes four interfaces, which we model as ports1: Media In, Media Out, Commands,
and Status. We will need to attach each of these ports to components in our system.
We also collect some possibly troubling facts that we categorize as possible archi-
tectural mismatch: The NextGenVideo component does not initialize the display (it
assumes that the display is already initialized), it assumes it is the only component
using the display, and it polls for commands.

We also learn that its Media In interface comes with several example implementa-
tions including file and stream inputs, so we become less worried that we can connect
it to our existing Media Buffer component using a shared memory connector. Al-
though not strictly necessary, we decide to sketch out a graphical boundary model for
the NextGenVideo component, shown in Figure 4.6, that uses UML notes to highlight

1In architecture models, components are required to use ports when they interact with things outside them-
selves. Ports on components are not the same as operating system ports, such as port 80 for web serving.
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the possible architectural mismatch items. A similarly annotated module diagram
would also work.

Armed with some knowledge about the COTS components, we decide to start
designing a possible solution that integrates them into our system. We strongly prefer
to work within the overall architecture previously shown in Figure 4.4. The Cross
Platform AV and NextGenVideo components will be subcomponents within the Media
Rendering / Playback component shown in that figure.

While hooking the NextGenVideo component up to the Cross Platform AV com-
ponent should be easy, there are three additional ports to hook up, and our design
must be able to detect and recover from a crash of the NextGenVideo component.
We decide to build adapter components for each of the existing ports: a Command
Adapter that reads from our message queue connector, a Status Adapter that writes to
our message queue connector, and a Media Buffer Adapter that enables us to connect
to the Media Buffer component. We sketch out our component assembly as shown in
Figure 4.7.

This is just a proposed design and we need to validate it. The display must be
set up before the NextGenVideo: the design can handle this by initializing the dis-
play when the Media Rendering / Playback component is created. It can pass this
initialized display to the NextGenVideo component. The NextGenVideo component
polls for commands: when the Command Adapter is polled, it can in turn ask the
event queue for messages. The NextGenVideo has exclusive display access: this is
still a potential problem, but we are not hitting it yet since our design does not yet
handle the user interface overlay. So our design seems to accommodate the potential
architecture mismatch concerns, at least from this high level.

Note the interesting binding on the Event Queue port. Normally a binding exists
between just two ports, but here there are three. In the source code, there is an
event queue connector that is written to by the Status Adapter and read from by the
Command Adapter. Sometimes, as here, our architectural abstractions do not align
neatly with the source code abstractions, as described in Section 16.1.

The problem of detecting crashes and restarting remains. We decide to watch the
status updates coming from the NextGenVideo component and treat it as crashed or
hung if the messages stop coming. This is a kind of heartbeat notification that the
component is still running. Before starting a new instance, we will terminate the old
process to be sure.

There are a lot of new components here, so we decide to write out a functionality
scenario describing how they all work together. The scenario shown in Figure 4.8
traces a command coming into the Media Rendering / Playback component and the
eventual detection of the NextGenVideo component crashing. This scenario helps us
to understand how our design will work and can help us catch errors, but it is not time
to start celebrating yet. Our design is plausible, but there are many issues that can
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Figure 4.7: A component assembly that shows a refinement of the Media Rendering / Playback
component instance, the same component instance previously shown in Figure 4.4. Also note the
NextGenVideo component instance previously shown in Figure 4.6.

come up during the implementation that could derail it, so our next step to reduce
risks is to prototype the design.

Our prototype shows that, indeed, playback works, we can detect when the
NextGenVideo component crashes (for the prototype, we kill its process to simulate a
crash), and we can cleanup and restart the component without affecting the overall
Home Media Player system. Even better, we discover that we can detect the crash
and restart playback in the same place within a second.

We have an easy time isolating the crash and restarting the video player because
of our design decision to run each of the top-level components in its own process,
a common architectural pattern in systems where reliability is important. This is an
example of architecture-focused design in that our architecture choices are making
something easy to accomplish.

Looking back on our risks, we decide that the integration and reliability risks
are satisfactorily mitigated based on our modeling and prototyping. With a partial
design and a prototype that demonstrates the integration of the NextGenVideo and
the Cross Platform AV components, we have addressed two of the four risks. The
two that remain are getting the on-screen display working and ensuring acceptable
latency in the overall system.
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Name: Detect that NextGenVideo component has crashed
Initial state: NextGenVideo is idle. The Media Buffer is initialized.
Participants: NextGenVideo, Command Adapter, Media Player Core
Steps:

1. The Media Player Core component sends a PLAY command to the Media Rendering /
Playback component.

2. The NextGenVideo asks the Command Adapter for new commands.
3. The Command Adapter reads a PLAY message from the Event Queue port. It interprets

the PLAY message, extracting the INPUT and POSITION parameters, performs necessary
translations, and gives the new command to NextGenVideo.

4. The NextGenVideo (a) creates a new Media Buffer Adapter component connected to the
Media In port based on the INPUT parameter, (b) opens the Media In port, and (c) begins
playing the specified INPUT starting at the specified POSITION.

5. The NextGenVideo alternates between reading a frame of input data from the Media In
port, writing a frame of output data to the Media Out port, reporting status on the Status
port, and checking for new commands on the Commands port.

6. Some time later, the NextGenVideo crashes, and consequently stops reading commands
and writing status.

7. Media Player Core component, failing to receive status updates, decides that the Media
Rendering / Playback component has crashed.

Figure 4.8: A functionality scenario for video playback, which applies to the component assembly in
Figure 4.7. The scenario is written out for your benefit, because a co-located team would probably
just talk through this scenario while pointing at the component assembly that is sketched on a
whiteboard.

4.2.2 On-screen display and latency

For video playback it was not a problem that the NextGenVideo component required
exclusive access to the display, but now that we are hoping to show an on-screen
display it is more troublesome. We go back to researching the Cross Platform AV
component and find out that it supports virtual layers and transparency. We decide
that we might be able to set up a layer, partially transparent, on top of the video layer
and paint the on-screen display on that layer. This requires us to modify the design by
adding an Overlay Renderer component, as shown in Figure 4.9. The new component
gets its commands from the Command Adapter and paints the on-screen display.

For playback, we performed an initial validation of the design by writing out a
functionality scenario. For the revised design we will just talk through the new be-
havior briefly. Since the NextGenVideo component has the main control loop, it occa-
sionally polls the Command Adapter to find out if there are new commands. We must
modify the Command Adapter to understand commands both for the NextGenVideo
component as well as our new Overlay Renderer component and route the commands
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Figure 4.9: A revised component assembly (compare with Figure 4.4) showing a refinement of
the Media Rendering / Playback component. Note the newly added Overlay Renderer component
instance.

appropriately. We feel like we are bending the intended architecture here a bit, since
the NextGenVideo is asking for its own commands, not asking the Command Adapter
to look for on-screen display commands. We need to be careful about bending the
architecture like this, as it is an example of technical debt which tends to accumulate.
As before, validating the model helps us catch design errors but will not convince us
that the risk is gone, so we build a prototype to ensure it works.

The one remaining risk is latency. Both of our architecture drivers (i.e., those re-
quirements that are both high priority and difficult to implement) require low latency.
It is possible to build latency models by assigning latencies to individual components
and connectors and then analyzing various paths through the system. Since we do
not yet know, for example, how fast our event queue connector dispatches messages
or how long it takes our NextGenVideo component to decode a frame of video, we
would be annotating our model with latency guesses and then analyzing those. In-
stead, since we already have a fairly complete prototype, it is easier to instrument it
to record timings and measure the latency rather than estimating latency in a model.
We are matching risks to techniques, and in this case the technique of measuring
latency in the prototype is both more effective and less expensive than modeling.
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4.2.3 Reflection

We were asked to integrate two new components into our system, NextGenVideo
and Cross Platform AV, and we identified four risks: integration, reliability, on-screen
display, and latency. As we designed a solution, we chose techniques that mitigated
the risks and validated that the risks were indeed reduced, either by analyzing our
model or by prototyping. We wanted to do just enough architecture and design work.

To address the risks of integration and reliability, we looked for architecture mis-
match possibilities, created a boundary model of the NextGenVideo highlighting its
ports and possible integration problems, and put it and the Cross Platform AV com-
ponent into a component assembly. We validated the design using a functionality
scenario followed by a prototype.

For the on-screen display, we returned to research and revised our component as-
sembly with a plausible design, which we subsequently validated with a functionality
scenario and prototyping. For the latency risk, however, we omitted all models and
went directly to prototyping since that technique seemed most effective and efficient
at reducing the risk.

In this chapter, the models were written out rather formally using neat diagrams.
If this were an actual project, we could have simply sketched these on paper, or on a
whiteboard. Often scenarios are not even written down, but instead discussed aloud
while pointing at a sketched component assembly.

It is likely that skilled developers could have done all of this work without drawing
any models. They appear to jump directly from problem to solution. This raises the
question of how the developers decide what source code to write. Developers working
on a problem must conceive of solutions in their heads before beginning to type,
though perhaps they are not aware of how they arrive at solutions. This is similar to
how experienced mathematicians skip over simple algebraic steps when transforming
equations — they have internalized the process of manipulating the model.

4.3 Metadata consistency

We hope that third parties will be able to write plug-ins to extend the features of our
Home Media Player, such as looking up lyrics for the currently playing song, browsing
artist biographies, and finding related music. Plug-ins would relate the songs in our
Home Media Player to websites that had the extra information. In readying our
product to be shipped, our team is asked to investigate if third parties could indeed
create plug-ins. We have designed an API for plug-in writers, but we are worried that
our internal model for songs is much too primitive.

Each song in our system has what is known as metadata, that is, data that describes
other data. So if a song file is the data, the metadata would include the song title and
artist. We know that during our prototype we created the simplest model that would
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Figure 4.10: The information model based on ID3 tags that we had used up to now. It identifies
three types (Artists, Song Titles, and Albums), how they relate to each other, and two attributes of
the song title (Year and Genre).

work, but we also know that the websites that plug-in writers would connect to have
richer and more expressive models. The risk we perceive is that although we have
provided a song model API for plug-in writers, they will be unable to relate it to the
complex models they find on the internet.

4.3.1 Prototyping and domain modeling

An easy and straightforward way to reduce this risk is to build prototype plug-ins for
the examples we think up. However, ensuring all plug-ins will work is impossible
since plug-in writers will want to do things we do not anticipate. There is another
problem with prototyping, which is that writing web scrapers requires a lot of fussy
effort. Conceptually, one just needs to read our song model and a corresponding web
page. In practice, looking up the relevant web page, extracting the data, and stripping
web markup is tedious. For our first product release we are hoping to simply know if
plug-ins will be possible, rather than build several of them.

In this case, a cheaper alternative to prototyping is domain modeling. Prototyping
a few scrapers will take a few days but domain modeling will take a few hours.
Domain modeling enables us to look at the essential concepts and compare our song
model with ones we find on the internet. On the other hand, domain modeling will
not help us debug our API nor will we have any example plug-ins to entice third-party
developers. Domain modeling includes modeling the concepts and the behavior of the
domain, and omits references to particular technologies and data representations.

We are facing a domain risk and, by its nature, we cannot yet put our finger on
a specific problem. Instead, we are worried that a problem might exist. This is an
open-ended worry and we consequently might be tempted to engage in open-ended
domain modeling, a variety of analysis paralysis. To guard against that, we choose to
analyze three representative plug-ins that developers might want to build:

• A plug-in that shows lyrics for the current song.
• A plug-in that shows a biography of the current singer or songwriter.
• A plug-in that shows music that is related to the current song.
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Figure 4.11: A snapshot that conforms to the information model shown in Figure 4.10. Where that
diagram showed types (like Album), this one shows instances (Purple Rain, 1999, and Musicology).

We will collect some reasonable examples of songs, artists, etc. from the domain and
represent them in our current domain model. Then we will do the same using domain
models we find on the internet and look for differences and problems.

4.3.2 Our model and internet models

When we built our Home Media Player we used a simple model for songs. It was
based on ID3 tags, which are metadata embedded in the song file itself, and includes
the artist, song title, year, genre, and album. Figure 4.10 shows a graphical version
of that information model.

Looking at the model, nothing jumps out as obviously wrong. Artists write songs
that they collect into albums. Since we are unlikely to detect problems looking at this
general model, we choose a concrete example from the domain to test the model. We
choose to look at the artist Prince because he is a well-known artist, yet his music
should challenge our model and reveal some complexity in the domain. We draw a
snapshot showing a few of our favorite Prince songs, as shown in Figure 4.11. This
is a legal snapshot based on our domain model and shows the album Purple Rain by
Prince and the Revolution, and the albums 1999 and Musicology by Prince.

Looking at the snapshot, it is easy to see that we have a potential problem: the
artist Prince was a member of the band Prince and the Revolution, but this fact cannot
be expressed in the model. A human reading this model might guess that the two are
related, but a computer interpreting the model would not.

Recalling the three plug-ins that we want to support, it seems like our model would
support a plug-in that retrieved the lyrics of the song Little Red Corvette by Prince,
since the model encodes the song title and artist. However, a plug-in might have some
trouble retrieving a good biography unless the Prince and the Revolution biography
were linked to Prince’s biography. And our third plug-in that finds related music will
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Figure 4.12: A snapshot using MusicBrainz information model, which adds a new type (ArtistRe-
lationship) and adds an attribute to the Artist (named Type) compared to our original snapshot.

have trouble too. It could go to the internet, discover that Prince is related to Prince
and the Revolution, but our Home Media Player would have no way to remember this
since it cannot be represented in its simple model.

4.3.3 Researching other models

Discovering that our model for music is not expressive enough for the plug-ins we are
investigating, we decide to learn about other models for music. Our research quickly
shows there are two kinds of models, ones that focus on the song itself and ones that
focus on a collection of songs. Examples of the song-based models include ID3 tags
version 1 and 2, OGG tags, and FLAC tags, which are all designed to be embedded
into the song file itself. Examples of database-based models include FreeDB, Mu-
sicBrainz, and Amazon. The database-based models are more expressive and include
relationships between artists.

We want to know how MusicBrainz represents the situation in our snapshot. We
learn more by reading what is available, including their database schema and their
website. Their database schema reveals that in addition to the types (concepts) that
we already have, there is an additional type called an ArtistRelationship that can exist
between one Artist type and another. Furthermore, each Artist type can be either a
group or a person. Consequently, MusicBrainz represents the same types differently,
as shown in Figure 4.12.

Looking at the MusicBrainz website, we learn that Prince has used a number of
pseudonyms. For a time, he used an unpronounceable symbol as his name and he
is credited under a number of aliases. This is yet another challenge for our current
domain model, since it cannot express the idea of pseudonyms or aliases.
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Figure 4.13: A revised information model for the music domain. Compared to the model in Figure
4.10, this one is more expressive because it adds a new attribute to Artist (isGroup) and two new
associations (pseudonym and memberOf).

4.3.4 Design a new model

We have used domain modeling to identify some expressiveness limits that will hin-
der plug-in development, but we have not yet decided how to fix the problem. We
could keep our current model, but that is limited. A better alternative is to adopt
the full MusicBrainz model, or a similar one, but its complexity might deter third-
parties from writing plug-ins. We decide to adopt some features of the MusicBrainz
model into ours, specifically the ability to express relationships between artists such
as pseudonyms and group membership, and to express group versus individual artists.
Our revised domain model is shown in Figure 4.13.

We know that this model cannot express every wrinkle from the domain, but no
model can. This model can express the snapshots we want it to and should support
the development of plug-ins to retrieve lyrics, artist biographies, and related music.
Since we only investigated three plug-ins, and did not build any, we cannot say that
risk has been eliminated, but we were able to apply relatively little effort and improve
our chances of success. We could continue on to build example plug-ins, reducing risk
even further.

4.3.5 Reflection

A common risk when integrating IT systems is that one system views the world dif-
ferently than the other, so they have difficulty communicating. To mitigate this risk,
we build domain models representing how each system views the world and examine
some concrete examples, which we represent as snapshots. We look for differences
like a type existing in one model but not being expressible in the other.

For our Home Media Player, we identified the risk that third-parties would be
unable to build plug-ins. We specifically worried that our model of music metadata
was insufficiently rich to express the complex relationships that the plug-ins would
discover on internet websites. Prototyping some plug-ins was an option but we chose
to do some lightweight domain modeling to keep the effort down, since actually
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building working web scrapers can be quite time-consuming. However, we did want
to avoid analysis paralysis and modeling the entire music domain, so we identified
three plug-ins as representative examples and minimally modeled the domain to show
their viability and, hence reduced our risks.

4.4 Conclusion

The primary goal of this chapter was to show the use of a risk-driven approach to
software architecture. That approach consists of identifying risks, deciding the best
set of techniques to mitigate the risks, and then evaluating the remaining risk. The
chapter emphasized both “good enough” risk reduction (rather than striving for a
complete risk elimination) and cost-effective techniques.

It is easy to read about a risk-driven approach and perceive it as banal platitudes
— of course developers will work on the high risk areas and of course they will
apply appropriate techniques. This chapter should demonstrate that the risk-driven
approach goes beyond simply paying attention to risks and instead promotes risk to
drive your use of architecture techniques.

The use of the risk-driven approach enabled an explicit choice about which tech-
niques to apply in response to risks. As the chapter progressed, we investigated added
developers, integration of components, and plug-in compatibility. We identified the
risks of failure and chose appropriate mitigation techniques. The situations in this
chapter were deliberately picked to highlight architecture techniques. In other cases,
with different risks, we might just start coding.

At times during the chapter you may have disagreed with the choice of techniques,
which indirectly points out a benefit to the risk-driven approach: it makes reasoning
explicit. For example, while you may agree about the risks of plug-in incompatibility,
you disagree about which techniques would best mitigate the risk, perhaps prefer-
ring to build prototypes instead of modeling the domain. Reasonable engineers will
disagree on decisions like this, but now the disagreement resembles an engineering
discussion rather than a methodology war. You could even create heuristics by at-
tempting both approaches and collecting data over time.

Instead of applying architecture techniques until we ran out of them, until the
documentation binder was complete, or until the project was canceled, we regularly
re-evaluated the remaining risks and stopped when they had subsided. We had more
modeling abilities up our sleeve but stopped short of building the most complete
models possible. Notice that the amount of architecture work was not dependent on
the guidance of a corporate design template or based on a percentage of the total
project time. Instead, the stopping criteria was: is the risk substantially eliminated?

Besides the primary goal of demonstrating a risk-driven approach to architecture,
the example has other benefits. Through the first section you saw how to generally
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document an architecture, including what others are likely to want to know. Archi-
tecture models, and the abstractions like components and connectors that underlie
them, are crucial to understanding large, complex systems. You saw how a system
could be understood increasingly well as we revealed views of it from the primary
models and viewtypes. And you saw that architecture models showed some details
while hiding others, which is an effective way of focusing attention on what you
believe is important.

Another benefit was seeing that architecture modeling can be compatible with pro-
cesses with short iterations, such as agile processes. None of the examples required
weeks or even days of modeling effort to mitigate the risks. Architecture modeling
by itself is insufficient — you must deliver systems, not models — but you can use
architecture modeling to reduce risks before you start coding. A risk-driven approach
to architecture is not a process in itself, but it is compatible with high ceremony or
agile processes.





Chapter 5

Modeling Advice

This is the last chapter of first part of the book. This first part is about how you should
approach architecture, what it is good for, and what you should expect from it. In the
second part, we will shift to talking about the standard mechanics of modeling and
abstraction, including ways of organizing models and techniques for solving prob-
lems. This chapter provides advice that augments your understanding of software
architecture and the risk-driven approach. It encourages you to focus on risks, under-
stand your architecture, and distribute that architecture knowledge to all developers.
It identifies the dangers of making irrational architecture decisions, Big Design Up
Front, and top-down design.

Software architecture will be helpful on your projects, but you deserve to be fore-
warned of the challenges that you will encounter. Using risk to drive your architecture
decisions is a good idea, yet estimating risks is difficult. Evaluating alternative archi-
tectures is harder than you might expect, and you probably will be unable to reuse the
models you build. Also, watch out for issues spanning engineering and management.

5.1 Focus on risks

Few books on software architecture explicitly advocate a process with lots of up-
front design, so-called Big Design Up Front (BDUF), but it is difficult to read some
of them and not infer that message. Broadly speaking, they lay out a large number
of modeling and analysis techniques, many of which are expensive, and suggest that
your project is risking its success if these techniques are not done.
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This book has presented a risk-driven approach to software architecture that is
related to the Spiral model of software development. It highlights that time spent
addressing architecture risks must be traded off against other risks, such as time to
market and customer acceptance. The key to making it work is the mapping between
risks and techniques: if you can identify a set of risks, then you can choose a set of
techniques to mitigate them. This is more efficient than prior approaches because
you do not apply techniques that address non-risks for your project. You can do just
enough architecture.

One benefit of this approach is that it explains why rational expert developers do
different things in different situations. Agile software development, for example, has
its origins on IT projects that often fail by moving too slowly to market or building
systems customers did not want. The techniques employed in agile development
are matched to these risks. Device driver developers write in C because they value
performance and have relatively simple domains, while IT developers write in Java or
C# because their domains are tricky and performance is comparatively less important
than modifiability.

The risk-driven model of software architecture is process agnostic and therefore
compatible with both BDUF and agile. Large, complex projects with many stakehold-
ers will need to do more up-front architecture work, both for the team to agree on the
risks, and to coordinate large numbers of developers. Agile projects may find their
activities mostly unchanged, but now incorporate architecture risks into their work
backlog.

In hindsight, the risk-driven model of software architecture may seem obvious,
but one of the jobs of researchers is to mine the common sense of experts and extract
the gold nuggets. More work still needs to be done to improve the mappings between
risks and techniques, as the currently known mappings are just a start towards a
complete body of knowledge on the subject.

5.2 Understand your architecture

At first glance, a sports game is just a bunch of players moving around, but coaches
see and understand the action better than rookies can. They can categorize various
offensive1 and defensive strategies. They can see not just that a play succeeded, but
understand if it was caused by a skillful offense or a mistake by the defense. They
can predict the impact of a particular player missing the game and can compare and
contrast the playing styles of different teams. The coaches, as experts, are taking
in the same raw phenomena as others do, but they categorize and relate it better
because they have built up a rich understanding about the game.

1Notice that an offensive strategy is an abstraction, and that its definition is much fuzzier than anything used
in software architecture, yet that abstraction is consistently useful to coaches.
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Experts in software architecture have similarly built up a rich understanding about
software systems. They see how architectural choices resulted in a system that, for
example, prioritized latency over modifiability. They can evaluate these choices and
decide if they were rational. They use abstractions to partition the system and fit
its complexity into their heads. They have studied architectural styles and know if a
system’s style aids in achieving its quality attributes. But understanding the architec-
ture in no way prevents them from drilling down into the source code and choosing
appropriate algorithms when that is the right way to solve a problem.

The core of architectural understanding is to be able to get at the “why” ques-
tions. Having the understanding does not mean you must follow a certain process, or
program in a certain language, or write diagrams on paper. Understanding software
architecture means that you have internalized the (admittedly incomplete and imper-
fect) knowledge and abstractions that have been built up, and that you can apply that
understanding when building new systems or analyzing existing ones.

5.3 Distribute architecture skills

This book consciously uses the term developer instead of architect to emphasize that
software architecture knowledge is important for more than one or two people on a
team. Your software architecture is an engineering concern that is separable from the
process your team follows and the job titles that are assigned. Many organizational
structures work fine when the developers understand software architecture.

Imagine that you are the architect, or chief architect, responsible for a system.
Would you prefer to be the only person on that team who appreciates the importance
of the system’s architecture? Each day would be a struggle to obtain information
about the system so that you could build appropriate models, coupled with hassles
in communicating your ideas to developers who would not understand what you
are saying and could even resent your presence. Or would you instead prefer every
developer to understand the architecture as well as you do?

Consider what happens when all developers have architecture skills. Your commu-
nication with developers is more efficient. They can answer your questions and relate
them to the architecture models. They can take direction in the form of goals and,
since they understand the desired quality attributes and tradeoffs, be trusted to make
appropriate decisions. Since they are in the code every day, they can provide you
with the essential information you need to build accurate models. Even small details
in the code can be architecturally significant. There will always be local pressures to
do something expedient, so the developers should understand when they should stick
to the architecture, and when to raise a flag that it needs to change.

A skilled architect can exert great influence, but she is no antidote for unskilled
and architecturally unaware developers who feed poor data into her models and are



92 CHAPTER 5. MODELING ADVICE

oblivious about when they are breaking architectural principles. Great engineering
leaders invariably have a command of both the big picture and the details, so an
architect who floats above the design and code is handicapped from the start.

You might be concerned that without an architect there would be chaos, and the
system would grow incoherent without a single guiding voice. It is true that decisions
must be made, and the team must act coherently, but these issues are separable from
the job title of architect. A job title unrelated to architecture, such as head engineer
or technical lead, would work equally well. Put another way, though it is important
that the system use appropriate algorithms, there need not be a chief algorithmist to
prevent chaos.

That said, having a job role for architects can be quite effective. Especially on
larger systems, there are too many details for any one person to master them all, so
some amount of specialization is appropriate. Some people on the team will empha-
size architecture and know less about the day-to-day coding details, and others the
reverse. But remember that centralizing or hoarding architecture knowledge is not
the intention and would be counterproductive. The ideal is to have developers who
are architecture-aware.

Here is a prediction: in a decade, it will seem equally foolhardy for a developer
to ignore architecture as it is for a developer to ignore data structures today. There
are good arguments for teaching software architecture to undergraduate students
immediately after data structures, before compilers or operating systems, because
they would be able to understand the architectural patterns seen in those systems
and understand why each makes different design decisions and quality attributes
tradeoffs. Few undergraduates go on to build compilers or operating systems, but
almost all of them will use software architecture to build systems.

5.4 Make rational architecture choices

Design involves tradeoffs, so you cannot get every good quality imaginable. You
should make rational architecture choices, meaning that your tradeoffs align with your
quality attribute priorities. Performance is always nice to have, but if you value mod-
ifiability higher, then you should reject designs that yield performance at the expense
of modifiability.

So, what does a rational architecture choice looks like? Decisions about how your
system is designed should follow this pattern:

<x> is a priority, so we chose design <y>, and accepted downside <z>.

An example is: Since avoiding vendor lock-in is a high priority, you choose to use
a standard industry framework with multiple vendor implementations, even though
using vendor-specific extensions would give you greater performance.
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Spelled out clearly like this, it seems hard to imagine anyone making an irra-
tional decision. Yet developers are human beings, not machines, and will behave
imperfectly. Systems are large and complicated, and inconsistent choices may not be
immediately apparent. In practice, quality attribute priorities are fuzzy and design
rationales are rarely declared explicitly, which obscures irrational choices.

Here is an example of how good intentions can go awry. Imagine that a developer
understands that this system’s requirements prioritize maintainability over perfor-
mance. But the developer has a background in high performance systems, so when
designing the database schema he denormalizes some tables in order to make queries
faster, with the tradeoff that maintenance is now harder. In a way, this design deci-
sion was more instinctive than reasoned, and there may never have been a moment
when he consciously realized that the design contradicted the system’s priorities. In
another context, the higher-performance design would be laudable because perfor-
mance is desirable. This is an example of an irrational architecture choice, however,
performing a local optimization at the expense of overall priorities.

Developers on the same project will often disagree about design options. The dis-
agreements can often be resolved, or at least reduced from a boil to a simmer, by
exposing the decision making process. If the disagreement is simply that one de-
veloper thinks option A is better, and another thinks option B is better, it is hard to
choose. When the rationale for each is expressed using the template, it may be clear
that A helps usability, while B helps testability. This does not immediately resolve the
disagreement, since both usability and testability are desirable, but now the question
is which quality is a higher priority for the project. It casts the problem as an engi-
neering or requirements decision, not as a judgment about who is the better designer,
and can help take egos out of the dispute.

Designing software is a big optimization problem. Constraints, desires, known-
working patterns, designers’ prejudices, and comfort areas are all jumbled together.
Uncertainty fogs truth. Developers try to create designs that best satisfy this jumble.
Since this design optimization is messy, two developers are unlikely to produce the
same design. However, despite subjective evaluations, any acceptable design should
follow from rational architectural choices2, where you accept that you cannot have
everything, so you insist that design decisions follow your prioritized desires.

5.5 Avoid Big Design Up Front

In Big Design Up Front (BDUF), the early weeks or months of a project are primarily
spent designing instead of prototyping or building. It is a pejorative term coined by

2David Garlan’s software architecture class emphasizes that developers should prioritize the desired quality
attributes and make consistent architecture choices. I call these rational architecture choices, but credit for the
idea goes to him.
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people, like agile advocates, who are concerned about analysis paralysis, a situation
where a project spends too much time designing and not enough time building. BDUF
is associated more with waterfall processes than spiral processes (both discussed in
Section 3.9).

The waterfall process model is a linear series of steps that lead to delivery of the
system (Royce, 1970). Common steps include requirements, design, implementa-
tion, and testing. Teams try to finish the current step before proceeding to the next.
Going back to the previous step is allowed in order to fix mistakes, but otherwise
discouraged. While waterfall processes are commonly seen in practice, few experts
recommend them.

In contrast, the spiral process model of software development instructs engineers
to build the system incrementally, starting from the highest risk items (Boehm, 1988).
Each turn of the spiral takes the team through all steps of software development, such
as requirements, design, implementation, and testing. The spiral model is the basis
of most modern processes, include agile processes and the Rational Unified Process.

So, what could go wrong with doing all the design in advance? The dangers
with BDUF include that you work on non-problems, you work inefficiently on paper
compared to writing code, you fully work out designs that end up abandoned, and
you take so long that the project is canceled. Your judgment at the moment can be
faulty, since you can work on intricate designs, convinced that they are relevant and
your effort is well-placed, but when you look back you realize that it would have been
more efficient to interleave prototyping with design.

BDUF has a few variants, including Design Until Perfect. Although the original de-
scription of the waterfall process allowed backtracking to previous stages, in practice
teams often resist backtracking and try to perfect the current stage before proceed-
ing. Organizational processes may require sign-offs after each waterfall stage, which
further discourages re-work.

Another variant is Modeling For Modeling’s Sake, where a team creates lots of mod-
els, in great detail, because they know how to build the models, not because the mod-
els are helping. It may feel like progress since they see improvements in the models,
but what they need is improvements in the system.

Despite the dangers of BDUF, it is sometimes the best option, especially on larger
projects or ones with demanding quality needs. For example, space systems have
high technical risks, and radiation machines have high safety demands, so time spent
on careful design may pay off. Still, it is best to be wary of BDUF and move on to
prototyping or implementation once the critical risks have been addressed.
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5.6 Avoid top-down design

Top-down design is the process of refining a high-level specification of an element
(component, module, etc.) into a detailed design by decomposing the element into
smaller pieces and specifying those pieces by allocating responsibilities. Alternatives
to top-down design include bottom-up design and hybrids. Section 11.3 discusses
how the smaller pieces relate to the higher-level element, and suggest additional
design strategies, such as following an architectural style.

The temptation to start with a high level design and refine it is strong, but there
are good reasons to avoid it. Lower levels may have strong patterns that you may
violate through ignorance. If you persist with your top-down design, small problems
may recur because your design is ill suited to the lower level patterns. Similarly, it
is difficult to exploit existing COTS components and modules for reuse since you will
not uncover them until later.

Top-down designs can ossify via Conway’s Law into organizational structures. Ini-
tial decompositions can become permanent decompositions because it is difficult to
change the team structures.

The systematic top-down approach denies the reality that developers have flashes
of insight that enable them to design elegant solutions. These insights are not limited
to top-level entities, and instead span from the very detailed to the very abstract.
Developers may notice an opportunity to use a low-level framework feature, like a
command queue, to enable a top-level quality attribute. It is difficult to plan for
flashes of insight but important to be ready to take advantage of them.

5.7 Remaining challenges

So far this book has been a rah-rah supporter of software architecture. However, any
honest advocate has the responsibility to disclose not only what works well, but also
the known limitations and problems.

Not everything about software architecture is easy and straightforward, and it is
better to know about problems in advance so that you can be on the lookout for them.
The following sections describe a number of difficulties that you may encounter when
applying the techniques and advice from this book. A similar list of challenges, except
relating to the standard architecture abstractions, is described in the second half of
the book in Section 16.1.

Estimating risks. Risk can be used to steer you to appropriate architecture activities
and can help you decide when to stop modeling and begin coding. While this is
better than simply guessing how much architecture work is enough, it is not a paint-
by-numbers solution, as you have two hard jobs:
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• Risk identification. It is difficult to identify risks, so you may be blindsided by
an unforeseen risk. Checklists can help by sharing and preserving previously
identified risks.

• Risk prioritization. After you have identified a risk, you must weigh its impor-
tance. If you guess too high, you will be swamped with a long list of risks and
will have a hard time deciding which to address first. If you guess too low, you
may plow ahead into implementation too early, and your architecture may be
unsuited to handling the omitted risks.

Engineers will have different opinions of risks and priorities, so you may find yourself
trusting one engineer’s estimates over another’s, which is a return to subjective deci-
sion making. And even if you are accurate in identifying and prioritizing risks, it is
no guarantee that you will be able to successfully mitigate them. You should look at
the risk-driven model as an improvement over other alternatives, but not without its
own difficulties.

Evaluating alternative architectures. The architecture of your system has a big im-
pact on its ability to satisfy quality attribute requirements, so you will likely want to
consider several different alternative architectures. Seen from a distance, evaluating
alternative architectures is as simple as building and evaluating a few models. You
build a model of each alternative, then you evaluate how each helps or hurts the
architecture drivers and quality attributes that you identified.

In practice, evaluating alternatives is more difficult than this because the devil
lives in the details, and your model may not include those details. Of course you
could build detailed architectural models for each design, but that is expensive, so
you (rightly) hesitate to do that.

This is the inherent tension: you are hesitant to spend much time adding details
to models you have not committed to, but you may not discover problems with those
designs until you investigate their details. Perhaps the specifics of external API’s will
invalidate your assumptions, or perhaps a prototype will reveal that the performance
model needs more attention.

Evaluating alternative architectures requires more crystal ball gazing than you
should be comfortable with. You must make decisions based on sketchy data and
incomplete models. Undoubtedly you knew this lesson already, but you should not
think that choosing between design alternatives will be easy after you learn notations
and techniques for architecture modeling.

Reusing models. Software developers have been reusing code since the invention of
the subroutine in the 1950s. Perhaps the pinnacle of code reuse today is the object-
oriented framework, but there is the perpetual hope that developers can reuse ideas
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beyond code, such as designs and other models. This is practical today only in small
doses, such as named design patterns and architectural styles.

The reason models are not more reusable is inherent in their nature: Models
omit details. A model built to answer one question can safely omit many details,
often the details that are essential to answer a different question. In other contexts
this is obvious: a scheduling model for trains cannot be reused as their financial
depreciation model, since the scheduling model would omit details like the purchase
price of the train.

One of my favorite jokes to tell kids goes like this:

Tell a kid, “You are the bus driver,” then proceed to describe how many
people get on and off at various stops, then end with, “... and at the last
stop everyone gets off. What is the bus driver’s name?”

The joke works because the kids start building a model of passengers on the bus and
forget about who the bus driver is. They build a model to solve one problem, the
passenger count, and are stymied when I ask a question they did not expect.

If you build a model of a component one day, then later decide to use the compo-
nent in a different setting, for example a concurrent one, your model will probably
not answer the questions you now want to ask, such as if the code is thread-safe.
Generally, a model built for one purpose will not work for another purpose.

Issues spanning engineering and management. It is unlikely that your organiza-
tion’s management will pay much attention to lower-level design decisions like the
indentation style in your code, but they are likely to be interested in the functionality
and qualities of your system. Sometimes, when deciding the architecture for your
system, you will face a choice that can either be solved by engineering or by manage-
ment. For example, a distributed system might be cheaper to build if you can assume
that each site will support the software that runs there, or you could design it for cen-
tral administration at a greater cost. The decision regarding system administrators is
likely to be made by management, not engineers, and other similar situations occur
at the architectural level of design.

5.8 Features and risk: a story

At the close of the first part of this book, it is appropriate to take stock of the risk-
driven model of architecture and compare it to pure feature-driven development. This
book’s message is not that risk is the only thing you should focus on, but rather that
risk is important, and it can help you decide how much design work you should do.

The following story discusses my (true) efforts to make relatively small architec-
tural changes to an application, one that had been built with a priority on features. As
you read the story, notice how architecture influences my redesign of the application.
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Remote control phone application. I have a smartphone, so I went looking for an
application that would let me control my home media player (like the one in Chapter
4) from my mobile phone. On the internet, I found an open-source application with
many features. Looking at earlier versions of the application revealed that adding
new features had been a priority. When I ran the application, however, I found two
problems.

• Diagnostics. At first the application would not talk to my media center, yet
it was hard for me to diagnose why. A code investigation revealed that the
library used to communicate with the server failed to report many connectivity
problems, instead lumping them into a single error code.

• Slow user interface. Navigating through the screens of the application was
slow. Even backing up a page caused a noticeable lag. I discovered that neither
the application nor the communication library was caching the server responses,
yet these responses changed slowly or not at all (such as album art or the list of
songs on an album).

After looking at the code, I realized that both problems could be fixed by revising or
replacing the communication library. In a minor way, the application had an unsuit-
able architecture, at least according to my quality attribute priorities.

Design options. Users of this application might, like me, have connection problems,
and it was easy to make these easier to diagnose. It just required the communication
library to detect and report distinct error conditions. However, because of the existing
interface choices, this required changes to existing API’s.

The slow user interface could be improved by reducing the number of server re-
quests, since each request took tens of milliseconds. The current application was
doing no caching and re-querying the server whenever it needed data. A design op-
tion on the other extreme would be to cache everything. However, the phone has
limited storage space, so I would have to trade off storage space with latency reduc-
tions. Like with the diagnostics, adding caching was difficult to accomplish without
changing the API’s.

Even if the developers had consciously decided to defer caching and error han-
dling, it would have been better if they had built API’s to accommodate such changes.
In an ideal world, I would have been able to revise the communications library and
hand it back to the original developers, who could drop it in place to resolve the
problems.

The original application used a traditional client-server architecture, where the
phone was the client and the media center was the server. However, it is worth
considering other architectural styles and their implications. In my house, there are
often music files on various computers. A peer-to-peer architecture might have been
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more appropriate, one where any peer could play music from any other. In fact, we
could imagine streaming the music from the “cloud” to any device, including back to
the phone.

Approach. Looking back, how was it possible to approach the problem from an ar-
chitectural standpoint? First, I explicitly considered failures — specifically failures
related to quality attributes like debug-ability, usability (latency), and modifiability.
Second, I generated design options and evaluated them with respect to the failures.
For the usability failure, it was even possible to start understanding the solution space
and its general tradeoffs. Finally, I looked at the overall architectural style (client-
server) and considered if it was matched to the problem at hand.

The order of these activities is less important than the thinking that accompanies
them. Notice the attention paid to risks, quality attributes, failures, design options,
and architectural styles, and compare that with a purely feature-focused approach.

Conclusion. Many people will advise you to focus entirely on features. They base
their advice on having seen too many projects waste time on features and infrastruc-
ture that, in the end, were unnecessary. But if Aristotle were still alive, he would
remind us that virtues are not absolute, and instead exist between excess and defi-
ciency. You can have too much of a good thing and focusing exclusively on features is
too much.

The architecture of a system can mitigate engineering risks, primarily quality at-
tribute risks. Software architecture researchers were not the first to suggest that
quality attributes (or quality attribute requirements, or the “-ities”) are worthy of
your attention, but they have reinforced that message and have connected quality
attributes with architecture choices. When thinking about a system’s architecture and
design, you should consider the failure risks that the system faces.

The risk-driven model helps you do just enough architecture. Your primary fo-
cus could still be on features, but appropriate attention is placed on risks, quality
attributes, and architecture. Architecture should not be equated with Big Design Up
Front and, as seen in this story, some time spent thinking about the architecture can
help you choose designs that mitigate failure risks.





Part II

Architecture Modeling





Chapter 6

Engineers Use Models

The first part of this book was about software architecture and risk. It advised you
to build models of your architecture, models that were just good enough to mitigate
your risks. But it did not say how to build those models or what was in them, so this
part of the book describes the software architecture concepts and notations you will
need. Do not be afraid of the detailed architecture models you will find in this part of
the book. The intent is not to turn you into an ivory tower architect or a generator of
shelfware. We start with a chapter that describes how models are used in engineering.

When I was in high school, I asked my father for help with my calculus homework.
I was surprised to learn that, despite his working as an engineer since college, his
calculus knowledge was rusty and he rarely used it. He also told me that his company
only hired engineers who knew calculus — not because they needed to apply calculus
on the job, but because their engineering training that included calculus gave them
the ability to solve problems using abstraction and models.

Some simple problems can be solved directly, without abstraction. When con-
fronted with a complex problem, engineers map that problem into an abstract model
(such as a calculus equation), solve the problem within the model, then translate
that solution back into a real world solution. For engineers, it is this ability to solve
problems using abstract models is that is essential.

When an engineer solves a problem using a model, the overall process is the same
regardless of the type of model. As shown in Figure 6.1, an engineer’s goal is to
move from a real world problem to a real world solution. Simple problems can be
solved directly, without abstraction, and an engineer can move directly across the
gray arrow. The problems that engineers get paid to solve, however, are harder and
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Figure 6.1: A commuting diagram, popularized in software engineering by Mary Shaw. Simple
problems can be solved directly (gray arrow). Complex problems are solved by using abstractions,
the long way around the diagram.

require the longer path via abstractions. The real world problem is represented in the
abstract model, solved in that modeling domain, then that solution is mapped into a
real-world solution. This overall process is the same whether your model is a calculus
equation, an accounting ledger, or an architecture model.

6.1 Scale and complexity require abstraction

Software developers, as engineers, instinctively reach for abstractions when their
problems are large or complex. When developers are reasoning about a small num-
ber of classes in a program, they can inspect and reason about those classes directly.
When that number rises, they can calm the rising chaos by using design patterns to
explain clumps of collaborating classes. But at some point the number of classes is
sufficiently large that developers reach for even larger abstractions to make sense of
the program. It is not a question of their being forced into new abstractions; it is a
matter of using the ones suited for the scale or complexity of the problem.

Abstractions can also be a more efficient way to learn about a system than direct
inspection of source code. Imagine that one developer wants to explain a system he
already understands to another developer. If they had a long time, they could both
read and discuss lots of source code, perhaps hundreds of thousands of lines. But if
they only had a few hours, then sketching out a model of the system would be more
effective.

It is one thing to say that developers sketch a model on a whiteboard, and quite
another to describe exactly what they should sketch. What do those diagrams look
like, and what are the abstractions that they represent? This second part of the
book describes a set of abstractions that are suitable for modeling the architecture of
software systems.
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6.2 Abstractions provide insight and leverage

You will surely recall from your math classes a story problem such as the following:

Two trains are 3000m apart and headed towards each other on the same
track. One is traveling 10m/s, the other 20m/s. When will they meet?

When your teacher introduced such problems, you already knew some algebra, so you
could have solved a problem if it were stated as 10x + 20x = 3000. The teacher’s
intent with the story problem was for you to learn how to map the story into an
algebraic model and back again, just like in Figure 6.1. To solve the problem, you
had to learn to build a model that included the details that were relevant to the
question being asked. The model provided insight into the essential problem and
algebra provided leverage to solve it. The domain of trains gave you no particular
insight or leverage, but an algebraic model did.

Ideally, software architecture would be solvable and universal just like algebra. Ar-
chitecture modeling is rarely as simple as the train problem, but architecture models
can provide insight and leverage. With an appropriate model, you can do things like
find possible intrusion vectors, identify bottlenecks, and estimate latency. This is im-
portant because developers need to reason about more than just a system’s features;
they need to reason about its qualities too.

6.3 Reasoning about system qualities

I recently attended a lecture about building scalable websites. The presenter dis-
cussed technology X, his inability to make technology X run quickly, and his suc-
cessful switch to technology Y. He described the compactness of the new language
used in technology Y, the improvement in the interfaces, its extensibility, and finally
presented the much improved throughput numbers for his website.

Under all these details, however, there was a nugget of insight to be found, which
was that technology X stored data in a hierarchy and technology Y stored it flat.
Both used relational databases, but a web page request in technology X required, on
average, twenty database queries to retrieve the hierarchical data, while technology Y
required just one. Substantially all of the throughput differences between technology
X and Y could be traced to that single difference. When evaluating throughput, you
could ignore technology Y’s qualities except for the data representation choice. But
how can you arrive at that conclusion?

To reason about system properties, you must have a model in your head that helps
you organize and make sense of the details, something like the sketch (i.e., cartoon) in
Figure 6.2. That model it so simplified that it works for both technologies X and Y, but
it is sufficient to analyze the details that are known. Every web request that comes in
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Figure 6.2: An informal sketch (a cartoon) of the web system. Sometimes you will keep models
like this in your head, other times you will sketch them on paper or a whiteboard. The second part
of this book discusses standard models and notations for describing your software architecture.

will require some message transport time, some processing on the server, and some
number of queries to the database. If you assign some plausible numbers to these
variables, such as 10ms for message transport time, 10ms for the server processing
time, and 25ms for the time to query the database once, it is clear that the twenty
database queries are going to slow the system down. This model ignores factors like
caching and queueing, but even this simple model turns a pile of facts into problem
that can be analyzed.

Architecture models are a good way to understand and address thorny issues be-
cause they can cut through the extraneous detail and help you focus on the essential
parts and relationships, make predictions, and evaluate alternatives. If you were run-
ning a website on technology X, code tweaking would not fix the throughput problem.
Your success would depend on sifting through the clutter of details to discover how
the data representation in technology X hindered throughput.

6.4 Models elide details

When you reasoned about when two trains will meet, you safely elided the color of
the trains and many other details. When you reasoned about the performance of a
website, you elided details like the programming language. Models, by their nature,
elide details. “Essentially, all models are wrong, but some are useful.” (Box and
Draper, 1987)

To create a useful model, you must choose to include the right details while sweep-
ing others under the rug. Including irrelevant details adds clutter, making the model
harder for you to reason about. The introduction to this book discussed modeling a
driving route from New York to Los Angeles using highways. Which details should
you include in a model to solve that problem? Some roads have signposts made of
wood, others concrete, and others metal. That choice can be safely omitted from
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Figure 6.3: Everyone who works with models must be able to read them. Some people will be
able to write models, but the goal of designers should be to use models to amplify their reasoning
abilities.

your model when you search for the shortest route. However, the shortest route may
include a road smaller than a highway, so your model should include those smaller
roads, or else your model may lead you to a wrong answer.

You should be aware of the tension between complete models and usable mod-
els. Sometimes a complete model of a problem is too difficult to reason about, yet
simplifying that model can lead you to wrong (or suboptimal) answers. For example,
if your model only includes highways, you may not find the shortest route. On the
other hand, if your model includes every vaguely flat and drivable surface (parking
lots, front yards, fire roads) then your model will be huge and therefore harder to
solve. Building a useful model usually involves making tradeoffs like this.

6.5 Models can amplify reasoning

The same model can be used by different people for different purposes. There are
three basic levels of modeling skill: reading models, writing models, and amplifying
reasoning with models. As shown graphically in Figure 6.3, the ability to accurately
read a model is the most common, and it is a prerequisite for the others. For example,
the buyers of a custom-designed house need to be able to read the house blueprints
so that they can speak up when the designs do not match their desires. An analogous
situation occurs with custom software development between the stakeholders and the
software developers.

Fewer people must be able to write a model, which involves making sure its docu-
mented form, or syntax, is correct. A house design originates in a designer’s head and
it is written down as blueprints so that it can be shared with the house’s stakeholders
(the various people who need to agree to the design). Note that the roles of model
designer and model writer may be distinct. For example, draftsmen are model-writing
specialists who are usually not the designer.



108 CHAPTER 6. ENGINEERS USE MODELS

During the design of a house, a house designer employs a model as a tool that
amplifies his reasoning, enabling him to design more complex houses than he would
with just his mind and memory. He must coordinate many details and it is easy to
make mistakes. During design, he has questions that must be answered, such as,
“Does opening a door block a cabinet?” and, “How much drywall is needed in the
bedroom?” Errors are likely if he keeps all the details in his head. When he instead
creates a model, he has less of a memory burden, can use standard representations
that make errors easier to detect, and can predict how the house will perform. His
use of a model to amplify his reasoning abilities is different than simply being able to
read a model that others have presented; he uses the model to help him design better.
In software design, experienced designers know how to build models to enable anal-
ysis, to make errors easier to detect, and to discover truths that are not immediately
obvious.

6.6 Question first and model second

Different models are good for different things. A model that helps you predict re-
sponse time will probably not help you find security holes. So it is best to follow
this simple rule: question first and model second. That is, know what questions you
want the model to answer before you build it. That way you will have an easier time
choosing its abstraction level and what details it includes.

This is one of those rules that looks straightforward but it is easy to violate. If
you have ever done any work around your house, you may have heard a similar rule:
measure twice and cut once. I have broken that rule many times, and each time I find
myself muttering the rule under my breath. I am also a fan of its corollary, told to me
by an old friend, “No matter how many times I cut it, it doesn’t get any longer!”

You may get lucky and cut it the right length, but why not just measure it again?
Similarly, you may get lucky and build a model that does what you want, but why not
decide what questions it should answer first? That way the model will be sure to help
you.

6.7 Conclusion

Engineers use models to solve large or complex problems. To do so, they take the
long path around the commuting diagram, creating an abstract model of a problem,
solving it using the model, then mapping back into the real world. An abstract model
provides insight into the essential problem, allowing your human problem solving
abilities to work better. Additionally, a model may provide particular leverage on
solving the problem, just as you saw algebra providing leverage to solve the train
problem.
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A model helps you to organize the facts and details about your system. You saw an
example of a website built from two different technologies with a variety of differing
details. A simple model enabled you to organize those details and see that a single
detail, the hierarchical vs. flat data storage, accounted for the performance difference
between the two technologies.

An essential ingredient in modeling is choosing which details it will include and
exclude. A model with too many details can obscure the essential problem and in-
hibit your reasoning. Be aware, however, that you may have to accept the imperfect
reasoning that comes with a smaller model, since a more complete model may be too
big or complex to reason about.

Some people, such as stakeholders, only need to read a model. For example, a
house buyer needs to be able to read blueprints well enough to make an informed
purchasing decision. Draftsmen can write a syntactically correct model. But, as a
software developer, your goal is to use models to amplify your reasoning abilities. If
you had never been taught math formally, you could likely still reason about simple
problems. That education instilled a model of mathematics that enables you to solve
much harder problems.

Whenever you build a model, you are in effect deciding not to build other models,
such as models that have more performance details or ones that ignore security. The
only way you can choose a suitable model is to know, in advance, which questions
you need that model to answer. Otherwise you may build an insufficient or bloated
model. A corollary is that whenever you build a model, you should carefully choose
its level of abstraction.

6.8 Further reading

The idea of using models to solve problems is central to all engineering. This book’s
use of the commuting diagram to emphasize models comes from Mary Shaw (Shaw
and Garlan, 1996).

Some people asked to build an architecture model will have an easier time of it
than others, perhaps in the same way that some people have a particular facility for
art or mathematics. My experience with architectural skills transfer shows a wide
range of aptitude across software developers (Fairbanks, 2003). If you find yourself
overseeing training or skills transfer involving models, keep these three levels in mind
(reading models, writing models, amplifying reasoning) when choosing a curriculum.





Chapter 7

Conceptual Model of Software
Architecture

In this book’s introduction, you read a story about a coach and a rookie watching
the same game. They both saw the same things happening on the field, but despite
the rookie’s eyes being younger and sharper, the coach was better at understanding
and evaluating the action. As a software developer, you would like to understand
and evaluate software as effectively as the coach understands the game. This and
subsequent chapters will help you build up a mental representation of how software
architecture works so that when you see software you will understand it better and
will design it better.

The idea of using models, however, is often wrongly conflated with the choice of
software process (i.e., waterfall) and has been associated with analysis paralysis. This
book is not advocating building lots of written models (i.e., documentation) up front,
so it is best to knock down a few strawmen arguments or misunderstandings:

• Every project should document its architecture: False. You should make
plans before going on a road trip, but do you plan your commute to work in the
morning? Models help you solve problems and mitigate risks, but while some
problems are best solved with models, others can be solved directly.

• Architecture documents should be comprehensive: False. You may decide
to build a broad architecture document, or even a comprehensive one, but only
in some circumstances — perhaps to communicate a design with others. Most
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often you can model just the parts that relate to your risks, so a project with
scalability risks would build a narrow model focusing on scalability.

• Design should always precede coding: False. In one sense this is true, because
code does not flow from your fingers until you have thought about what you will
build. But it is false to believe that a design phase (in the software process sense)
must precede coding. In fact, early coding may help you discover the hardest
problems.

So you should set these strawmen ideas aside. The real reason to use software ar-
chitecture models is because they help you perform like the coach, not the rookie. If
you are not already at the coach level, you want to get there as soon as possible. The
standard architecture models represent a condensed body of knowledge that enables
you to efficiently learn about software architecture and design. Afterwards, you will
find that having a standard model frees your mind to focus on the problem at hand
rather than on inventing an new kind of model for each problem.

Conceptual models accelerate learning. If you want to become as effective as a
coach, you could simply work on software and wait until you are old. Eventually,
all software developers learn something about architecture, even if they sneak up on
that knowledge indirectly. It just takes practice, practice, practice at building systems.
There are several problems with that approach, however. First, not all old software
developers are the most effective ones. Second, the approach takes decades. And
third, your understanding of architecture will be idiosyncratic, so you will have a
hard time communicating with others, and vice versa.

Consider another path, one where you see farther by standing on the shoulders of
others. Perhaps we are still waiting for the Isaac Newton of software engineering, but
there is plenty to learn from those who have built software before us. Not only have
they given us tangible things like compilers and databases, they have given us a set of
abstractions for thinking about programs. Some of these abstractions have been built
into our programming languages — functions, classes, modules, etc. Others likely
will be, such as components, ports, and connectors1.

Some people are born brilliant, but for those of us who are not, how effective
is standing on the shoulders of those who came before us? Consider this: you are
probably a better mathematician than all but a handful of the people in the 17th
century. Then, as now, math virtuosos had talent and practiced hard, but today you
have the benefit of centuries of compacted understanding. By the time you leave high
school, you solve math problems that required a virtuoso a few hundred years ago.
And before that, the virtuosos of the 17th century had the benefit of someone else
inventing the positional number system and the concept of zero. As you consider

1Research languages like ArchJava have already added these concepts to Java.
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the two paths, remember that you can and should do both: learn the condensed
understanding of architecture and then practice, practice, practice.

Conceptual models free the mind. A condensed understanding can take the form
of a conceptual model. The coach’s conceptual model includes things like offense and
defense strategies, positions, and plays. When he watches the movement of players
on the field, he is categorizing what he sees according to his conceptual model. He
sees the motion of a player as more than that — it is an element of a play, which is
part of a strategy. The rookie, with his limited conceptual model, sees less of this.

Conceptual models accelerate progress in many fields. If you ever took physics,
you may have forgotten most of the equations you learned, but you will still conceive
of forces acting on bodies. Your physics teacher’s lessons were designed to instill that
conceptual model. Similarly, if you have ever studied design patterns, you cannot
help but recognize those patterns in programs you encounter.

A conceptual model can save you time through faster recognition and consistency,
and amplify your reasoning. Alfred Whitehead, said “By relieving the brain of all un-
necessary work, a good notation sets it free to concentrate on more advanced prob-
lems, and in effect increases the mental power of the race.” (Whitehead, 1911) This
applies equally to conceptual models. As mentioned in the introduction, Alan Kay has
observed that a “point of view is worth 80 IQ points,” continuing to say that the pri-
mary reason we are better engineers than in Roman times is because we have better
problem representations (Kay, 1989).

There is a general consensus on the essential elements and techniques for architec-
ture modeling, though different authors emphasize different parts. For example, the
Software Engineering Institute (SEI) emphasizes techniques for quality attribute mod-
eling (Bass, Clements and Kazman, 2003; Clements et al., 2010). The Unified Model-
ing Language (UML) camp emphasizes techniques for functional modeling (D’Souza
and Wills, 1998; Cheesman and Daniels, 2000). The conceptual model in this book
integrates both quality attribute and functional models.

Chapter goals and organization. The goal of this part of the book is to provide you
with a conceptual model of software architecture, one that enables you to quickly
make sense of the software you see and reason about the software you design. The
conceptual model includes a set of abstractions, standard ways of organizing models,
and know-how. You will never become good at anything without talent and practice,
but you can accelerate your progress by building up a mental conceptual model.

This chapter shows you how to partition your architecture into three primary mod-
els: the domain, design, and code. It relates these models using designation and re-
finement relationships. Within each model, details are shown using views. The three
chapters that follow this one examine the domain, design, and code models in more
detail. An example system for a website called Yinzer runs throughout. A Yinzer is a
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slang term for someone from Pittsburgh, home of Carnegie Mellon University, and is
derived from yinz, which is Pittsburgh dialect equivalent to y’all.

Yinzer offers its members online business social networking and job adver-
tisement services in the Pittsburgh area. Members can add other members
as business contacts, post advertisements for jobs, recommend a contact
for a job, and receive email notifications about matching jobs.

Subsequent chapters cover other details on modeling and give advice about how to
use models effectively.

7.1 Canonical model structure

Once you start building models, there are lots of bits and pieces to keep track of. If
you see a UML class diagram for the Yinzer system that shows a Job Advertisement
associated with a Company, you want to know what it represents: is it things from
the real world, your design, or perhaps even your database schema? You need an
organization that helps you sort those bits into the right places and to make sense of
the whole thing.

The canonical model structure presented here provides you with a standard way to
organize and relate the facts you encounter and the models you build. You will not al-
ways build models that cover the whole canonical model structure, but most projects
over time will have bits and pieces of models that follow the canonical structure.

7.1.1 Overview

The essence of the canonical model structure is simple: Its models range from abstract
to concrete, and it uses views to drill down into the details of each model.

There are three primary models: the domain model, the design model, and the
code model, as seen in Figure 7.1. The canonical model structure has the most ab-
stract model (the domain) at the top and the most concrete (the code) at the bottom.
The designation and refinement relationships ensure that the models correspond, yet
enable them to differ in their level of abstraction.

Each of the three primary models (the domain, design, and code models) are like
databases in that they are comprehensive, but are usually too large and detailed to
work on directly. (More on this shortly, in Section 7.4). Views allow you to select
just a subset of the details from a model. For example, you can select just the details
about a single component or just the dependencies between modules. You have no
doubt worked with views before, such as a data dictionary or a system context dia-
gram. Views allow you to relate these lists and diagrams back to the canonical model
structure. Organizing the models in the canonical structure aids categorization and
simplification.
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The canonical model structure categorizes different kinds of facts into different
models. Facts about the domain, design, and code go into their own models. When
you encounter a domain fact like “billing cycles are 30 days,” a design fact like “font
resources must always be explicitly de-allocated,” or an implementation fact like “the
customer address is stored in a varchar(80) field,” it is easy to sort these details into
an existing mental model.

The canonical model structure shrinks the size of each problem. When you want
to reason about a domain problem you are undistracted by code details, and vice
versa, which makes each easier to reason about.

Let’s first take a look at the domain, design, and code models before turning our
attention to the relationships between them.

7.2 Domain, design, and code models

The domain model describes enduring truths about the domain; the design model de-
scribes the system you will build; and the code model describes the system source
code. If something is “just true” then it probably goes in the domain model; if some-
thing is a design decision or a mechanism you design then it probably goes in the
design model; and if something is written in a programming language, or is a model
at that same level of abstraction, then it goes in the code model. Figure 7.1 shows the
three models graphically and summarizes the contents of each.

Domain model. The domain model expresses enduring truths about the world that
are relevant to your system. For the Yinzer system, some relevant truths would in-
clude definitions of important types like Ads and Contacts, relationships between
those types, and behaviors that describe how the types and relationships change over
time. In general, the domain is not under your control, so you cannot decide that
weeks have six days or that you have a birthday party every week.

Design model. In contrast, the design is largely under your control. The system to be
built does not appear in the domain model, but it makes its appearance in the design
model. The design model is a partial set of design commitments. That is, you leave
undecided some (usually low-level) details about how the design will work, deferring
them until the code model.

The design model is composed of recursively nested boundary models and internals
models. A boundary model and an internals model describe the same thing (like a
component or a module), but the boundary model only mentions the publicly visible
interface, while the internals model also describes the internal design.

Code model. The code model is either the source code implementation of the sys-
tem or a model that is equivalent. It could be the actual Java code or the result of
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Figure 7.1: The canonical model structure that organizes the domain, design, and code models.
The design model contains a top-level boundary model and recursively nested internals models.

running a code-to-UML tool, but its important feature is that has a full set of design
commitments.

Design models often omit descriptions of low-risk parts knowing that the design
is sufficient so long as the developer understands the overall design and architecture.
But where the design model has an incomplete set of design commitments, the code
model has a complete set, or at least a sufficiently complete set to execute on a
machine.

7.3 Designation and refinement relationships

You no doubt have an intuitive sense of how the domain relates to the design and
how the design relates to the code. Because this chapter seeks to divide up models
and relate them, it is a good idea to examine these relationships carefully so that you
can fully understand them.

Designation. The designation relationship enables you to say that similar things in
different models should correspond. Using the Yinzer example, the domain model
describes domain truths, such as people building a network of contacts and compa-
nies posting ads. Using the designation relationship, these truths carry over into the
design, as seen in Figure 7.2.



7.3. DESIGNATION AND REFINEMENT RELATIONSHIPS 117

à����

��������	
��

���������	
�


��
��

������
�����

���	��������

������������������������

������


����	�
�����

����	���������������	���������	���

�����	��������	���	�������	����

���������������������

Figure 7.2: The designation relationship ensures that types you choose from the domain corre-
spond to types or data structures in your design.

You have leeway in your design but it should not violate domain truths. You can
designate that selected types from the domain must correspond to types and data
structures from the design. Things that you do not designate are unconstrained.

While in practice the designation relationship is rarely written down precisely, it
would be a mapping that defined the correspondence between the domain elements
(e.g., Advertisement and Job types) and the design elements (e.g., Advertisement and
Job types and data structures).

Perhaps surprisingly, the design is rarely 100% consistent with the domain because
systems often use a simplified or constrained version the domain types. For example,
the system may not realize that the same person reads email at two different email
addresses, and so might consider them two different people. Or the system may
restrict domain types, such as limiting the number of contacts a person can have in
the system. But when correspondence with the domain is broken, bugs often follow.
The designation relationship is covered in more detail in Section 13.6.

Refinement. Refinement is a relationship between a low-detail and a high-detail
model of the same thing. It is used to relate a boundary model with an internals
model, since they are both models of the same thing, but vary in the details that they
expose. Refinement is useful because it lets you decompose your design into smaller
pieces. Perhaps the Yinzer system is made up of a client and a server piece, and the
server is made up of several smaller pieces. Refinement can be used to assemble
these parts into a whole, and vice versa. The mechanics of refinement are discussed
in depth in Section 13.7.

Refinement is also used to relate the design model with the code model, but there
it is not so straightforward. The structural elements in the design model map neatly
to the structural elements in the code model. For example, a module in the design
maps to packages in the code, and a component in the design maps to a set of classes
in the code.
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Figure 7.3: The refinement relationship ensures that types you choose from the domain corre-
spond to types or data structures in your design. Be aware that there are elements in the design
(invariants, constraints, styles) that cannot be expressed in programming languages.

However, as shown in Figure 7.3, other parts of the design model are absent in
the code model: invariants, constraints, and architectural styles. Essentially no main-
stream programming languages can directly express the constraints from the design
model. It is true that constraints such as “all web requests must complete within 1
second,” or “adhere to the pipe-and-filter style” can be respected by the code but they
cannot be directly expressed. This gap between design and code models is discussed
in more depth in Section 10.1.

7.4 Views of a master model

In your head, you understand how any number of systems work and carry around
models that describe them, such as models of your neighborhood or how you manage
your household. From time to time, you sketch out excerpts of those models, such as
a map for a friend showing him how to get to that great restaurant, or you write down
a list of groceries. These excerpts are consistent with that comprehensive model from
your head. For example, you could have written out a full map for your friend, but
presumably the one you drew is accurate so far as it goes, and is sufficient to get him
there. And your grocery list represents the difference between your eating plans and
the contents of your refrigerator.

The domain, design, and code models are comprehensive models like these. They
are jam-packed full of details since, conceptually at least, they contain everything
that you know about those topics. It would be difficult or impossible to write down
all those details, and even keeping them straight in your head is difficult. So, if you
want to use a model to reason about security, scalability, or any other reason, you
need to winnow down the details so that you can see the relevant factors clearly. This
is done with views.
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Figure 7.4: The domain model acts as a master model containing all details. Views show selected
details from the master model. Because they are all views of the same master model, all of the
views are consistent with each other.

Definition. A view, also called a projection, shows a defined subset of a model’s de-
tails, possibly with a transformation. The domain, design, and code models each have
many standard views. Views of the domain model include lists of types, lists of re-
lationships between them, and scenarios that show how the types and relationships
change over time (see Figure 7.4). Design views include the system context diagram
and the deployment diagram. You can invent new views as appropriate.

Philippe Kruchten, in his paper on 4+1 views of architecture, showed that it is
impractical to use a single diagram to express everything about your architecture and
design (?, ). He explained that you need distinct architectural views because each
has its own abstractions, notation, concerns, stakeholders, and patterns. Each view
can use an appropriate notation and focus on a single concern, which makes it easy
to understand. Together, the views comprise a full architecture model, and each view
presents a subset of the details from that full model.

View consistency. Each view (or diagram) you create of a domain, design, or code
model shows a single perspective on that model, exposing some details and hiding
others. The diagrams are not isolated parts of the model, like drawers in a cabinet.
Instead, they are live projections of the model and the views are consistent with each
other. So if the model changes, the views do too. House blueprints are views of a
house (or its design) so you expect them to be consistent with each other.

For example, imagine that you have two views of the domain model: a list of types
in the networking and job advertisement domain (such as Ads, Jobs, and Contacts),
and a scenario (a story) describing them. We will describe scenarios in more detail
soon, but for now consider it a story told about how the domain types interact over
time. If you were to revise the scenario to reference a new domain type, like a de-
clined invitation to join a contact network, you would expect to see that type in the
list of defined types. If it is not there, it is a bug in your domain model.
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Master models. The domain, design, and code models are each conceptually a sin-
gle master model. Every view you draw must be consistent with that master model.
Think of it this way: when you revised the scenario to refer to a new type, your un-
derstanding of the master model was revised. Since any other view is derived from
the master model, it should reflect your new understanding. Disregarding pragmatics
for a moment, all of the diagrams you build should be consistent at all times with
each other because that is the way that you, in your mind, understand the domain
to work. Pragmatically, however, while you are building models there will be times
when they are inconsistent with each other, but you strive to eliminate those bugs.

To reinforce the idea of unified and consistent models, it may be helpful to imag-
ine a programming environment where all of these elements fit together and are
typechecked. In that programming environment, a scenario that tried to refer to a
type that was not defined in the master model would yield a type checking error.

Discussing views formally makes them sound difficult, but in reality people can
use them with almost no effort. For example, you can imagine your bookcase as it is
now, or imagine it with only the red books, or imagine it with the red books rotated so
that you can see the cover instead of the spine. Each of these is a view of your master
model of the bookcase. Notice that while you have never written down a model of
your bookcase, you nonetheless have one in your head that you can manipulate. One
of the challenges in software development is ensuring that developers, subject matter
experts, and others all have the same master model in their heads.

Examples of master models. Master models are a helpful concept because they ex-
plain what your views refer to, but you have options regarding what the master model
represents. The most straightforward example of a master model is an already exist-
ing system. You can create many views of an existing system. Consider your neigh-
borhood as an example of an existing system. You do not have a complete model of
your neighborhood written down anywhere, but you do have the neighborhood itself.
Views of the neighborhood can be tested against the neighborhood to see if they are
consistent with that master model.

Another example of a master model is a system that will be built. Unlike your
neighborhood, this system does not yet exist, so it is a bit trickier to build views of
it and ensure the views are consistent. Yet somehow things tend to work out OK.
You might embark on a project to renovate a room in your house without writing
down any explicit models, but you must have a master model in your head in some
form. That model includes details about what should happen when (for example,
demolition happens before painting) and cost estimates. That model in your head is
likely incomplete, so views of it will necessarily be incomplete too.

Here are some concrete examples of master models of software systems. The
master model may be the system you previously built or a system you plan to build. It
can be a combination of the two, such as an existing system with planned additions.
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Or it could be even more complex, such as a model of the system as you expect it to
look at three-month intervals over the next few years.

Limiting size and focusing attention. You use views in modeling to limit the size of
the diagrams and to focus attention. Imagine how confusing a medium-sized domain
model would be if you tried to show all the types, definitions, behaviors, etc., on the
same diagram. You may have seen the giant printouts of corporate database schemas
taped to a wall somewhere and seen people trying to use them by putting a finger in
one place and tracing the lines to other parts of the diagram. Views avoid that.

7.5 Other ways to organize models

The canonical model structure from this chapter consists of a domain model, a design
model, and a code model. This basic organization of models has a long history, visible
in the Syntropy software development process (Cook and Daniels, 1994), though it
probably traces back even further.

Other authors have proposed similar model structures, and while there are some
differences in their organizations and nomenclature, there is a core similarity shared
by all. With only a little bit of squinting, one can identify the domain, design (bound-
ary and internals), and code models. Figure 7.5 is a summary that maps this book’s
model names to some of those found elsewhere.

Despite the broad strokes of similarity between authors, there are differences.
The one concept that does not align well across authors is requirements, because it
can mean different things to different people. Requirements models could overlap
with business models, domain models, boundary models, or internals models.

7.6 Business modeling

There is a kind of model not found in this book’s canonical model structure: business
models. Business models describe what a business or organization does and why it
does it. Different businesses in the same domain will have different strategies, capa-
bilities, organizations, processes, and goals and therefore different business models.

Domain modeling is related to business modeling, which includes not only facts
but also decisions and goals that organizations must make. Someone at some point
decides what the organization does and the processes it follows. Some of the pro-
cesses are partly or fully automated with software. The goals and decisions of an
organization can be influenced by the software that you build and buy.

So why include domain models but not business models in this book? This book
includes domain modeling because misunderstanding the domain is a common cause
of failure in IT projects. Misunderstanding business processes can also cause failures,
but those are rarely engineering failures.
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Business
Model

Domain
Model

Design Model Code
Model

Boundary
Model

Internals
Model

Bosch System
context

Component
design

Code

Cheesman &
Daniels

Business
concept

Type specs Component
architecture

Code

D’Souza
(MAp)

Business
architec-

ture

Domain Blackbox Whitebox Code

Software
Engineering
Institute (SEI)

Requirements Architecture Code

Jackson Domain Domain +
machine

Machine

RUP Business
modeling

Business
modeling

Requirements Analysis &
design

Code

Syntropy Essential Specification Implementation Code

Figure 7.5: A table summarizing the models proposed by various authors and how they map to the
business, domain, design (boundary, internals), and code models found in this book.

7.7 Use of UML

This book uses Unified Modeling Language (UML) notation because it is ubiquitous
and its addition of architectural notation in UML 2.0 has brought it visually closer to
special purpose architecture languages. This book deviates from strict UML in a few
places. Any remaining deviations from UML are inadvertent.

• In UML, connectors can be solid lines or ball-and-socket style. They are distin-
guished using stereotypes to indicate their types. In this book, connectors are
shown using a variety of line styles, which is a more compact way to convey
their types and can be less cluttered.

• In UML, a port’s type is shown with a text label near it. This book uses that
style, but it sometimes clutters the diagram, in which case ports are shaded and
defined in a legend. Not all UML tools allow shading or coloring of ports.
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7.8 Conclusion

Once you begin to build models of your system, you realize that understanding and
tracking lots of little models is hard, but building a single gigantic model is imprac-
tical. The strategy proposed in this chapter is to build small models that fit into a
canonical model structure. If you understand the canonical structure then you will
understand where each model fits in.

The first big idea was to use designation and refinement to create models that
differ in their abstraction. The primary models are the domain model, design model,
and code model, and they range from abstract to concrete. The second big idea was
to use views to zoom in on the details of a model. Since the views are all projections
of a single master model, their details are consistent (or are intended to be). In
order to hierarchically nest design models, you use refinement to relate boundary
and internals models.

Coaches see and understand more than rookies not because they have sharper
eyes, but because they have a conceptual model that helps them categorize what
they are seeing. This chapter describes the entire canonical model structure in detail,
but do not let this alarm you. In practice you would rarely, if ever, create every
possible model and view. Once you have internalized these ideas, they will help you
to understand where a given detail, diagram, and model fits. As shown in the case
study (Chapter 4) and the chapter on the risk-driven model (Chapter 3), following
a risk-driven approach to architecture encourages you to build a subset of models,
ones that help you reduce risks you have identified. This chapter, and subsequent
ones, provides detailed descriptions to help you can internalize the models and thus
be better at building software, not to encourage you towards analysis paralysis.

7.9 Further reading

This book is a synthesis of the architectural modeling approaches invented by other
authors. It has three primary influences. The first is the work on modeling com-
ponents in UML from D’Souza and Wills (1998) and Cheesman and Daniels (2000),
which focus primarily on modeling functionality. The second is the quality attribute
centric approach from the Software Engineering Institute (Bass, Clements and Kaz-
man, 2003; Clements et al., 2010) and Carnegie Mellon University (Shaw and Garlan,
1996). The third is the agile software development community (Boehm and Turner,
2003; Ambler, 2002) which encourages efficient software development practices.

There are several good books that describe the general concepts of software ar-
chitecture. Bass, Clements and Kazman (2003), describes a quality-attribute centric
view of software architecture and provides case studies of applying their techniques.
Taylor, Medvidović and Dashofy (2009) is a more modern treatment and is logically
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organized like a textbook. Shaw and Garlan (1996) is becoming dated but is the best
book for understanding the promise of software architecture. Clements et al. (2010)
is an excellent reference book for architecture concepts and notations (and also has
a useful appendix on using UML as an architecture description language). These
books rarely venture down into objects and design, but D’Souza and Wills (1998) and
Cheesman and Daniels (2000) do, showing how architecture fits into object-oriented
design.

Probably more than any other book, Bass, Clements and Kazman (2003) has
shaped the way the field thinks about software architecture, shifting the focus away
from functionality and towards quality attributes. It describes not only the theory but
also processes for analyzing architectures and discovering quality attribute require-
ments. The book also contains a great discussion of the orthogonality of functionality
and quality attributes.

Rozanski and Woods (2005) offer perhaps the most complete treatment of how to
understand and use multiple views in software architecture. It also contains valuable
checklists relating to several standard concerns.

The simplest pragmatic approach to component-based development is found in
Cheesman and Daniels (2000). They lay out an organizational structure for models
using UML and treat components as abstract data types with strict encapsulation
boundaries. A similar approach, but with greater detail, is found in D’Souza and Wills
(1998). Both emphasize detailed specifications, such as pre- and post-conditions, as a
way to catch errors during design. This book de-emphasizes pre- and post-conditions
because on most projects they are too expensive, but the mindset they encourage is
excellent.

The best book at articulating a vision of software engineering that includes soft-
ware architecture is probably Shaw and Garlan (1996). While reading it, it is difficult
not to share their enthusiasm for how architecture can help our field.

The nuts and bolts of architectural modeling, including pitfalls, are well described
by Clements et al. (2010). One of the book’s goals is to teach readers how to doc-
ument the models in a documentation package, which can be important on large
projects.

To date, the most comprehensive treatment of software architecture is by Taylor,
Medvidović and Dashofy (2009) in their textbook on software architecture. It covers
real-world examples of software architecture as well as research developments on
formalisms and analysis.

Developers working in the field of Information Technology (IT) will be well served
by Ian Gorton’s treatment of software architecture, as his book covers not only the
basics of software architecture, but also the common technologies in IT, such as Enter-
prise Java Beans (EJB), Message-Oriented Middleware (MOM), and Service Oriented
Architecture (SOA) (Gorton, 2006).
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Using abstraction to organize a stack of models is an old technique. It is used in
the Syntropy object oriented design method (Cook and Daniels, 1994) and is central
to Cheesman and Daniels (2000), Fowler (2003a), and D’Souza and Wills (1998).

Many authors have suggested ways of organizing and relating architecture mod-
els. Jan Bosch models the system context, the archetypes, and the main components
(Bosch, 2000). John Cheesman and John Daniels propose building a model of the re-
quirements (a business information model and a scenario model) and a model of the
system specification (a business type model, interface specifications, component spec-
ifications, and the component architecture) (Cheesman and Daniels, 2000). Desmond
D’Souza, in MAp, suggests modeling the business architecture, the domain, and the
design as a blackbox and a whitebox (D’Souza, 2006). David Garlan conceives as ar-
chitecture being a bridge between the requirements and the implementation (Garlan,
2003). Michael Jackson suggests modeling the domain, the domain with the machine,
and the machine (Jackson, 1995). Jackson’s primary focus is on system requirements
engineering, not design, but his specifications overlap well with design. The Rational
Unified Process (RUP) does not advocate specific models, but suggests activities for
business modeling, requirements, and analysis & design (Kruchten, 2003).

Every developer should be familiar with the 4+1 architecture views paper (?, ),
but also be aware that it is just one of many different sets of views that have been
proposed for architecture, such as the Siemens Four Views (Hofmeister, Nord and
Soni, 2000).

You should also be aware of the IEEE standard description of software architec-
ture, IEEE 1471-2000 (Society, 2000). In it, you will find most of the same concepts as
in this book. It has a few additions and differences worth noting. While it uses views,
it treats them as requirements from the viewpoint of a stakeholder focused on a partic-
ular concern, rather than as projections of a consistent master model, what it would
call an architecture description. It also describes the environment the system inhabits,
its mission, and library viewpoints (which are reusable viewpoint definitions).

Authors are increasingly paying attention to business process modeling in addi-
tion to domain modeling. Martin Ould provides a practical process for modeling
business processes (Ould, 1995). Desmond D’Souza describes how to connect busi-
ness processes to software architecture by connecting business goals to system goals
(D’Souza, 2006).

The relationship between software architecture (specifically enterprise architec-
ture) and business strategy is covered in Ross, Weill and Robertson (2006). As soft-
ware developers, we perhaps assume that the natural future state should be that all
systems can inter-operate. The surprising thesis of the book is that the level of inte-
gration should relate to the chosen business strategy.





Chapter 8

The Domain Model

A domain model expresses enduring truths about a domain, for example, that cus-
tomers have contact phone numbers. Domain models are also called concept models,
conceptual models, or abstract models, but the idea is the same: to express the details
of the domain that are not related to the system’s implementation. For the domain of
the Yinzer system, the enduring concepts include advertisements, jobs, contacts, and
employment.

The purest kind of knowledge to express in a domain model concerns truth from
nature rather than a construction of mankind, but even the concept of advertisements
would fail to clear that hurdle. Domain models also include knowledge that, so far
as your project is concerned, will always be so. This could include the idea that com-
panies have jobs that they advertise. If there was a standard format for job postings
then a domain model might include it, but you should be wary of the slippery slope
because, as you begin to introduce technical details, it becomes harder to decide what
is an enduring truth and what is a design choice.

You may be wary of domain modeling, so this chapter starts out by providing some
anecdotes about real situations where such models have been helpful. It covers the
mechanics of building domain models that cover state and behavior. And it briefly
covers the difference between domain modeling and the more expansive topic of
business modeling.

Domain modeling provides a way to gain insights that are essential to the design
process. In particular, domain models help you to answer questions that are unrelated
to your design, such as what comprises a person’s network of contacts. Domain mod-
els, because they are free of design details and can be drawn with simple notation,
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are an effective way to interact with subject matter experts, whose eyes would glaze
over at the sight of your technical designs. A domain model can form the basis of a
ubiquitous language that is shared by developers and subject matter experts.

Domain models will be more or less useful to you depending on what kind of
system you build. Systems in IT domains tend to have complex domains that their
developers have not yet mastered. Web developers or device driver writers might have
relatively simple domains but have complex performance or scalability requirements,
so domain models are often less useful to them. However, regardless of what kind of
system you build, you will sooner or later run across a problem that domain models
can help you with.

8.1 How the domain relates to architecture

It may not be immediately obvious that domain modeling is relevant to software ar-
chitecture, or even if it is relevant, that you should spend any time doing it. Common
objections include:

• You already know your domain.

• The domain is too simple to bother modeling it.

• The domain is irrelevant to your architecture choices.

• It is someone else’s job to do requirements.

• The best way to learn the domain is incrementally, as you write code.

• Domain modeling is an open-ended analysis paralysis activity.

These are reasonable concerns and, at times, they are good reasons to avoid domain
modeling. But before you flip forward to the next chapter, consider these two true
stories and how they relate to the objections.

Cell phone contact list. I recently started using a so-called smart phone that not
only places calls but also connects to the internet, sends and receives emails, and
runs programs. It has a single contact list that contains all of the people I have phone
numbers or email addresses for. Furthermore, this contact list is synchronized with a
web server, so the phone’s contact list is always updated. So far, so good.

The phone is not the only thing using my contact list — it is shared with my email
program on my computer. Every time I send an email to a new person, that person is
added to the shared contact list. Can you guess what happens next?

The first time I went to make a call, I discovered that I had to scroll through 1400
contacts to find my friend’s phone number. Many of those on the list had no phone
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numbers, but since this is a smart phone, I could click on their entry and send them
an email (or call them, or send a text message).

There are many ways you can categorize this problem, including as a user inter-
face problem or an integration problem. But leave yourself open to the idea that the
developers, in their efforts to solve the problem of missing phone numbers, had mis-
understood the domain. Is my list of email contacts really the same list as my phone
contacts? And how do people decide what numbers go onto their phone’s contact
list?

Consider this: do you have every phone number for everyone you know in your
mobile phone? Or do you follow a different scheme and keep a subset on the phone,
such as personal contacts plus a few important work contacts? That was my old
scheme. Keeping a full list of work contacts could be convenient but it could also be
trouble. Imagine my embarrassment if I were to sync my contact list with a complete
work address book, then were to accidentally call Ken Smith (someone from work
who I hardly know) instead of Ken Creel (my good friend) and say “Whassup?” — or
worse.

User entitlements. The second story is more pedestrian and takes us away from
judging the size of my circle of friends and phone etiquette. I was working to integrate
several applications at a financial company and one option was to purchase a vendor
product that handled user entitlements. An entitlement is simply permission for a user
(or login) to perform an action, such as the ability to create new database tables or
access the third floor of the building. As computer users, we would like to think that
we understand this domain rather well, since we bump into it every time we log on
or find a folder that is write-protected.

There were various profiles of users inside the company, such as clerks, and stan-
dard sets of entitlements for those profiles. Looking across the company, it became
clear that there were two kinds of systems: ones that supported active profiles and
others that supported template profiles. With active profiles, if you were to add a new
entitlement to the clerk profile, all clerks in the company would then have that enti-
tlement. With template profiles, that new entitlement would only be applied to newly
hired clerks, leaving existing clerks who had been stamped with the old template un-
changed.

It should be clear that I needed to know which vendor products supported ei-
ther active or template profiles so that a suitable architecture could be designed.
Furthermore, depending on the answer, the vendor product could be incompatible.
The vendors could answer detailed questions regarding messaging formats and server
hardware requirements, but it was an enormous challenge to discover their domain
assumptions, including their handling of these profiles and whether the entitlements
could be organized hierarchically.
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Concerns revisited. Let’s return to the list of concerns about domain modeling and
examine them in light of these two stories.

• You already know your domain. Undoubtedly this is often true, though it is
less often true in “boring” business domains than in “sexy” internet and systems
domains, where developers enjoy learning about the domain.

• The domain is too simple to bother modeling it. Domains are rarely much
simpler than a list of names with phone numbers and email addresses. But, at
least for the way I use a mobile phone, the software caused trouble by being
inconsistent with the domain. Admittedly, it may not have been obvious that
trouble was imminent until after the email and phone contact lists were merged.

• The domain is irrelevant to your architecture choices. The domain differ-
ences between the vendor entitlement management products show that systems
can be incompatible because of domain differences. While the domain influ-
ences your architecture, it is a mistake to believe that your architecture is latent
in the domain, waiting for you to discover it.

• It is someone else’s job to do requirements. Maybe, but that person may not
have your vantage point on how the domain can cause architecture problems,
or you may need to assist them with the domain models.

• The best way to learn the domain is incrementally, as you write code. Learn-
ing the domain by writing code is indeed a good way to learn it, but there are
cases when this is impossible or impractical. In the example of the entitlement
product selection, a team of developers and (paid) consultants from the vendor
performed a proof of concept integration, but even that took weeks. In that case
it was overwhelmingly cost-effective to model on paper first, and the questions
generated during domain modeling helped inform the integration test.

• Domain modeling is an open-ended analysis paralysis activity. This is a real
danger. You could start modeling the domain of contact lists for phones and
end up building a model of why people become friends. You want to model just
enough of the domain.

If analysis paralysis is a real danger, how can you avoid it?

Avoiding analysis paralysis. To avoid analysis paralysis, you must limit how much
domain modeling you will do. One technique is to decide what questions you want
the model to answer before you build the model. That way, once the model can
answer the questions, you can stop modeling. But what questions should you ask?

In general, the list of interesting questions to ask about the domain is quite large.
But the domain influences the architecture in limited ways, which cuts down on the



8.2. INFORMATION MODEL 131

possible questions. You want to avoid domain misunderstandings that would translate
into an architectural failure, which means asking questions about failure risks. Two
common risks are usability and interoperability.

In the mobile phone story, the developers combined two contact lists that were
previously separate. They allowed the email program and my phone to inter-operate
via the shared contact list, but people with lots of contacts have reduced usability.
The problem of interoperability arose in the entitlement story also, since we tried to
buy an entitlement system that would connect to existing systems.

Another technique to avoid analysis paralysis is to decide how deep and how broad
your domain model will be. Consider the entitlement system example. Regarding
depth, we could have selected a single system and looked at every kind of entitlement
it handled. Regarding breadth, we could have surveyed every kind of system in the
company that handles entitlements, or we could survey a sample. Again, you would
choose to go deep or wide (or both) depending on where you perceive the risk.

In the end, to avoid analysis paralysis, you must recognize when additional do-
main modeling is providing no additional value. Indeed, the choice is more difficult
than that, because you want to stop domain modeling when it provides less value
than another activity, such as prototyping.

The following sections discuss how to create domain models so that, when appro-
priate, you can dig into the domain and discover problems. Domain models cover
both state and behavior, so these sections describe how to use information models,
snapshots, navigation, invariants, and scenarios. The example that runs throughout
is the Yinzer system that provides social networking and job advertisement services.

8.2 Information model

The easiest and most valuable part of a domain model is a list of types and their
definitions, as seen in Figure 8.1. It describes the things that exist in the domain of
job advertisements and business networking and, if you are careful about writing the
definitions, it also describes the relationships between those types. Even if you are a
domain expert, writing definitions like these may be hard — what exactly is a Job?
— but the fact that it is hard means that you are working to clarify the concepts. If
you are not a domain expert, nailing down such definitions is a great way to start
learning the domain.

An information model can also be drawn graphically, as seen in Figure 8.2. Com-
pared to the textual version, it has the immediate benefit that the relationships be-
tween the types are explicitly expressed as associations. As seen in the diagram, a
Person is associated with many Contacts, the set of which is called a Network, and
a Contact exists between two People. These graphical models use Unified Modeling
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Type Definition

Advertisement (Ad) An Ad is a solicitation to find a Person to employ in a Job at a
Company.

Company A Company is an employer that offers Jobs to People.

Contact A Contact is a relationship between two People that indicates that they
know each other.

Employment Employment is a relationship indicating that the Person is or was
employed at a Job at the Company.

Job A Job is a role at a Company where a Person works.

Job Match A Job Match is a relationship between a Job and a Person indicating
that the Person may be suitable for the Job.

Person Someone who can be employed.

Figure 8.1: A textual information model for the job ad and business networking domain. The Yinzer
system’s design and implementation will need to be consistent with this model of the domain.

Language (UML) class diagram syntax, with UML classes representing types. You can
stereotype the UML classes with «type» if it is not clear from the context or the legend.

The system to be built does not appear in the information model, or anywhere
else in your domain model. The information model does not imply a design: an
Advertisement is not a data structure and so it makes no sense to ask if a Person or a
Contact can navigate a pointer to the other. The intent of the information model is to
describe a part of the world, not the design. Subject matter experts can analyze your
information model and find mistakes.

Advice on UML use. UML is a rich language but it is in your best interests to restrict
your use of its notations, especially in domain models that are often shared with non-
developers. In domain modeling, you should limit your models to use a simple subset
of UML model elements: classes (stereotyped as types), objects (type instances), as-
sociations, links, multiplicities, and role names. This discourages you from obsessing
about modeling domain wrinkles and ensures that the model can be read by subject
matter experts. If you need to express important domain subtleties it is better to write
them textually in a note on the diagram instead of assuming the reader knows the
difference between a filled or empty diamond in your model.

Although they do not appear in Figure 8.2, attributes on the classes (types) are
fine in moderation and with the understanding that they do not represent stored data.
For example, the Employment type could have begin and end dates or a Job Match



8.3. NAVIGATION AND INVARIANTS 133

à����������	


�	�

¢������������
������

��

	
���
���

�

�

��
���
� �

��
� �

���

�

�

���������
� �� �

Figure 8.2: An information model for the job advertisement and business networking domain,
shown graphically using a UML class diagram.

type could have a suitability rating. Use the UML generalization relationship (which
shows that one type is the supertype of another) sparingly because it causes trouble
for non-programmers like subject matter experts (SME’s).

8.3 Navigation and invariants

Information models provide the vocabulary to be used in other parts of the domain
model. Invariants, or constraints, express predicates that must always be true. Some
invariants are already expressed through the multiplicities in the graphical model. For
example, based on the multiplicities in the model above, a Contact happens between
exactly two People. You might additionally decide that, in the domain, a Person’s Net-
work cannot have duplicates. You could write this invariant using plain text (i.e., “A
Person cannot have a Contact to the same Person multiple times”) on the information
model in a UML note or in a separate document. Notice that the invariant refers to
types in the model: Person, Network, and Contacts.

The idea that you can traverse across associations in the model is called navigation
(D’Souza and Wills, 1998). If you put your finger on the Person type, you can follow
an association down to the Contact type. Since there is a “*” at the end of that
association, it means that the Person has zero to many Contacts. The word Network
on that association is called a role, which provides a convenient way for you to refer
to the collection of Contacts. A Contact has two People and the invariant says those
should always be two different people.

If the invariant had been written more carefully, it could even have referred di-
rectly to the associations between types and you could use navigation to check it.
Object Constraint Language (OCL) can be used to precisely express the navigation
(Warmer and Kleppe, 2003). It could have been written as the OCL invariant:

context Person
inv: network.person->asSet()->size() = network->size() + 1

This OCL expresses that the number of People connected in your Network is equal to
the number of Contacts in your Network, plus one (the one represents you).
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Figure 8.3: A snapshot (i.e., instance diagram) of the information model for the job advertisement
and business networking domain. Notice that some instances are named (Bradley and Widgetron)
and the rest are anonymous.

Unless you are hoping to have a computer read and check this OCL, it is unlikely
to be cost-effective to write it. However, it is a great aid to thinking clearly and
precisely. As you write a natural language invariant, you can think whether it could
be formalized; if it is a bit imprecise then you tighten up the natural language. This
is an example of a broader theme throughout architecture modeling: knowing how
to formalize something yields higher quality models, even when you do not actually
apply the formalism.

8.4 Snapshots

It is easy to make mistakes when thinking about information models because they
refer to general types, not concrete instances. For example the information model
talks about a Person, not Bradley, and a Company, not Widgetron. You can draw a
snapshot, or instance diagram, which shows instances, not types, as seen in Figure
8.3.

Notice that each instance in the snapshot corresponds to a type in the information
model, just as each link corresponds to an association. The anonymous Contact in-
stance is linked to the Person instance named Bradley and the Person instance named
Owen, which is consistent with the information model where a Contact exists between
exactly two People. Notice also the notation for snapshots: the text is underlined and
a colon separates the instance name from the type name. An instance can be anony-
mous, like the Contact instance is in the diagram. This relationship between types
and instances, a classification relationship, is the same one that exists between classes
and objects in object-oriented programming.

You can avoid making mistakes in your information models by thinking about the
snapshots you want to allow or disallow. You might draw a snapshot where Bradley is
linked to a Contact, and then back to him. Looking at the snapshot, you would decide
you want to disallow that, and would write the invariant mentioned above about
not being in your own Network. The information model here is rather simple, but
remember the trick of sketching out a snapshot as your information model becomes
complex.
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Name: Owen becomes employed at Widgetron
Initial state: Bradley is employed at the Widgetron Company
Actors: Owen, Bradley
Steps:

1. Owen and Bradley meet at a professional conference, exchange business cards, and
become part of each other’s Network of Contacts.

2. Bradley’s company, Widgetron, posts an Ad for a software developer Job.
3. Bradley matches Owen to the Job.
4. Owen is hired by Widgetron for the software developer Job.

Figure 8.4: A functionality scenario for the job advertisement and business networking domain. It
starts in the initial state, involves the list of actors (Owen and Bradley), and describes four steps
that correspond to changes in the information model. Other things may happen, but if they do not
cause a change to the model, then you should generally not include them in the scenario.

8.5 Functionality scenarios

A snapshot expresses how the instances in the model might be linked at an instant
in time and the information model expresses all the possible snapshots. What you
cannot yet express is how the domain might change from one snapshot to another.
Functionality scenarios, also called simply scenarios, like the one in Figure 8.4 express
a series of events that cause changes to the information model.

A functionality scenario uses the vocabulary defined in the information model, like
Ads and Contacts. Each scenario starts in an initial state that is written out textually
in the scenario. That initial state could equivalently be drawn out as a snapshot. Each
step in the scenario changes the model. If you were to draw out a snapshot of the
state of the model, it would be different after each step. For example, after the first
step in the scenario from Figure 8.4, the snapshot will contain a new Contact instance
linking Owen and Bradley.

It is important to focus on changes to your model that happen with each step in
the scenario. This focus encourages tight scenarios: It may be the case that after
step 2, Bradley telephones Owen to tell him about the Job opportunity or that Owen
sends his fancy suit to the cleaners, but the model does not talk about these types so
you leave them out of the scenario. However, if you decide that these are important,
you should add them to the information model. Thinking about before and after
snapshots for each step in the scenario ensures a tight correspondence between types
and behavior.

Since this is a domain model, Owen and Bradley represent real people, not com-
puter records. Their Network of Contacts is real and could be either a stack of business
cards or just memories. This is the essential difference between domain models and
design models: elements in the domain model represent the real things and happen-
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ings, while elements in the design model represent computer records or computer
hardware.

A scenario describes a single possible path rather than generalizing many paths.
In practice, writing just a couple scenarios can be effective in describing a domain,
but sometimes you will want a general model. UML activity diagrams and UML state
diagrams can be used to describe generalized behaviors, but they require more effort
to build than scenarios.

Scenarios, like snapshots, are easy to make because they deal with concrete in-
stances rather than general types. This is doubly good news because you will have
better luck engaging subject matter experts with scenarios than you will with gener-
alized domain models.

8.6 Conclusion

Separating the domain from the design has several benefits. Many questions arise that
are unrelated to the design, for example, whether current employees of a company
should receive a company’s job ads. That is an interesting question, but its answer will
not pop out when you model your database schema or design your class hierarchy.
Domain models are effective at investigating such questions because they are free of
extrinsic design details. Another good reason to keep domain models separate from
code models is that SME’s can teach you about the domain but are uninterested in
your programming language and data structures. Sometimes different experts will
use different terms for the same types, and you can use a domain model to drive the
team to use a single vocabulary, sometimes called ubiquitous language (Evans, 2003).

By building a domain model, you will come to understand your domain better.
For example, a domain model encourages you to ask questions like: if I am in your
network of contacts, must you be in my network? People on your team may initially
have different answers to these questions, but the team needs to develop a shared
understanding of how things work in the domain, or else bugs in the design and code
are inevitable.

A real domain has essentially unlimited richness. A model of that domain is a
simplification and must make choices about what it includes and excludes. You must
accept that a domain model will describe some things and not others. For example,
perhaps an Ad in the real world can describe more than one Job but the model limits
it to describing a single Job. When building a domain model you must decide how
wide and deep it is, roughly corresponding to the number of types and how many
wrinkles and special cases it handles.

Even though the information model is a simplification, it is precise, and you can
use it to answer questions. For example, you could answer which Contacts are in
Bradley’s Network, or what Companies Owen has worked for. However, you need
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decide in advance what questions you need the model to answer and stop modeling
once it can answer them. The questions you want it to answer are related to the risks
you are worried about, particularly interoperability and usability. For example, two
sub-teams on your project may need a shared understanding of the contact network
so that their software will inter-operate. If you find yourself modeling a part of the
domain, stop and ask if not understanding it is likely to lead to failure.

8.7 Further reading

The domain modeling in this book is based on the domain models from Catalysis
(D’Souza and Wills, 1998). Catalysis domain models have the ability to be substan-
tially more detailed and complex than what is shown here.

Functionality scenarios are similar to use cases (more about that is found in Sec-
tion 12.6). Cockburn (2000) is my favorite book on use cases because it is succinct,
provides guidance on how to structure use cases, and advises you when to stop writ-
ing them.





Chapter 9

The Design Model

You have begun the transformation of yourself from rookie to coach by learning about
the canonical model structure consisting of domain, design, and code models. In the
previous chapter you saw the first of the three primary models, the domain model,
which models facts about the world that your system lives in. This chapter covers the
second primary model, the design model, which models the design of your system.
Where the domain model contained advertisements, jobs, and contact networks, the
design model will show how your system is designed such that it can manipulate
computer representations of those types. You have little control over the facts in the
domain, but you have great control over your system’s design. Using your knowl-
edge about the domain and your design skills, you design a system that will exist in
harmony with domain facts. This chapter enriches your mental conceptual model of
architecture, showing you how to organize a system design using views, encapsula-
tion, and nesting.

When you reason about software architecture, you will spend most of your time
thinking about the design model, so it should be no surprise that it is expressive and
deep. To avoid drowning you in details, this chapter provides a readable overview of
the design model, showing an example of the Yinzer system design and correspond-
ing models. As you read this chapter, your attention should be on how the different
models fit together to describe the system. Subsequent chapters dig into additional
details on the model elements and relationships and how to use them. This chap-
ter concludes with a discussion of viewtypes, dynamic architecture, and architecture
description languages.
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9.1 Design model

As we discussed in Section 7.4, the domain, design, and code models are all compre-
hensive models with every possible detail in them, something called master models.
So the design model is a master model containing every last detail about the design.
The idea of a master model is a convenient abstraction because it explains how all
the diagrams you draw are related to each other.

In practice, however, almost no one builds a complete and comprehensive design
model. But if you did, you would find that its comprehensiveness would make it
impractical to use directly. Models amplify your reasoning by focusing your attention
on salient details, so a master model with all details would not be very effective.

What you want is to keep that comprehensive design model in your head, but
still have the ability to sketch out diagrams that show a limited number of details,
ones that you can reason about effectively. You must insist that those diagrams be
consistent with your master model. To reconcile these competing demands, you can
use a combination of views, encapsulation, and nesting.

• Views. A view is a projection of a model that reveals selected details. We will
use views to selectively narrow our focus of the comprehensive design model.

• Encapsulation. Encapsulation separates the interface of an element from its im-
plementation. We will use the term boundary model to refer to a model element’s
interface since the term interface is commonly used to refer to a programming
language construct (e.g., Java interfaces). The implementation is called the in-
ternals model. Both the boundary model and the internals model describe the
same thing, but the boundary model omits any details of what the element looks
like on the inside.

• Nesting. Most elements in your models have sub-structure. An internals model
of an element consists of smaller elements. Each of these elements can be de-
scribed by a boundary model, and the implementation of those elements can be
described by an internals model. Consequently, a single element can be decom-
posed into a tree of nested boundary and internals models.

Through the use of views, encapsulation, and nesting, you can build models that show
only the details you need to reason about a problem. And since you understand the
relationships involved, you can relate these models back to your design model, which
acts as a master model with full details.

The design model is related to the domain model by a designation relationship (see
Figure 9.1). That is, selected facts about the domain are designated to be also true in
the design. So for the Yinzer domain, you would designate the existence of Ads, Jobs,
and Contact Networks to also exist in the design of the Yinzer system. The design



9.2. BOUNDARY MODEL 141

Model

Relationship

Networking & 

Job Ad

Domain Model

«desgination»

Yinzer 

Design Model

Yinzer Top-

Level Boundary 

Model

«view»

«refinement»

Yinzer 

Top-Level 

Internals Model

«view»

Figure 9.1: The Yinzer top-level internals model and its relationships with the design model and
boundary model. Both the boundary and internals models are views of the design model, since
they show selected details from it. An internals model refines a boundary model (in this case the
entire Yinzer system), showing the same thing in more detail.

model is also related to the code model, but as you will see later, the relationship is a
bit more complex, mostly resembling refinement.

9.2 Boundary model

The boundary model is what outsiders can see of the system (or an element in the
system), which includes its behavior, interchange data, and quality attributes. The
boundary is a commitment to an interface but not to implementation details. The
boundary model describes what a user needs to know to understand how a system
works. It is an encapsulated view of the system that hides internal details, so when
developers change the internal design, users are undisturbed.

The design model has a single top-level boundary model that describes the system
and how it interacts with the domain. Figure 9.1 shows the top-level boundary model
for the Yinzer system. The Yinzer design model contains all design details, so you can
build a view of it that shows the Yinzer system interface (i.e., the Yinzer top-level
boundary model) or a view that shows that interface plus implementation details
(i.e., the Yinzer top-level internals model). You know those views must be consistent
with each other because they are views of the same Yinzer design model.

9.3 Internals model

The internals model is another view of the design model, one that reveals the details
that are omitted from the boundary model. Figure 9.1 shows both the boundary and
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internals models as views of the design model. While both the boundary and internals
models are views of the design model, they are also related to each other by a refine-
ment relationship. The internals model describes the same thing as the boundary
model and adds more details, which is the definition of a refinement relationship.

Crucially, anything that is true in the boundary model must be true in the internals
model. So, any commitments made in the boundary model must be upheld in the
internals model. If the boundary model says that the Yinzer system will be online
99.5% of the time and will be deployable on Linux systems, then that must be true of
the internals model also.

Both the boundary and internals models are described using the same elements,
such as scenarios, components, connectors, ports, responsibilities, modules, classes,
interfaces, environmental elements, and tradeoffs. Some things in the internals model
are elaborated, such as the component assembly and scenarios.

9.4 Quality attributes

Like most teenage boys, during high school I assembled looms that my mother sold
in her weaving store. She sold looms made from wood and cotton, so when you
wove fabric with them you heard organic noises like thumping and whooshing. Other
brands of looms used metal in places, which is much more durable but makes clanging
noises. Both kinds of looms were equally good at making fabric, but they differed in
durability and the noise they made.

Software systems have the same distinction between their functionality and other
qualities. Some systems are faster, others are more modifiable, and others are highly
secure. Before proceeding to the next section, which provides an example of the
Yinzer system, let’s pause to consider those other qualities, called quality attributes,
sometimes called just QA’s, which describe observable properties of a system.

Software architecture experts tend to focus more on quality attributes than func-
tionality. This is not because functionality is unimportant, but because many designs
could achieve the same functionality with differing qualities. Quality attributes are
mostly orthogonal1 to functionality but there is some interaction between the two.
Quality attributes tend to be emergent in that there is no one place in the code with
the responsibility for security, modifiability, latency, or deployability (for example).
These qualities instead emerge from the architecture and design.

In an ideal world, all of your systems would maximize every quality attribute,
but in practice you have to prioritize some qualities over others. Telephone switches
are required to provide dial tone within 40ms and to have 99.999% uptime or else
the operator may face fines. In order to meet those quality attribute requirements,

1For example, in sports, most of the time the choice of ball color is independent of the game, but green golf
balls are probably a bad idea.
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the software developers might have to prioritize latency and availability over code
maintainability and another qualities. Banking software might prioritize security over
latency.

The next section walks you through a description of the Yinzer system’s design.
The walkthrough does not contain full details on each element, relationship, and
diagram, but these can be found in Chapters 12 and 13.

9.5 Walkthrough of Yinzer design

To give you an overview of how the design model can be organized, this section
walks through various views of the Yinzer system. For the most part, the diagrams
and elements are the same in both the boundary and internals model, but you will
see that they are used slightly differently. It begins with views of the boundary model
and moves on to the internals model.

Two views are particularly effective at giving an overview of the system: the use
case diagram and the system context diagram. The use case diagram is good at
showing functionality (the use cases) while the system context diagram is good for
showing other systems that interact with Yinzer.

Next, several abstractions are introduced, including components, ports, connec-
tors, responsibilities, design decisions, modules, quality attribute scenarios, architec-
ture drivers, and tradeoffs.

Finally, the walkthrough covers the internals model. It shows a component as-
sembly of the internal design of the Yinzer system, and augments the functionality
scenario from the boundary to show how each step is accomplished. The importance
of constraints and architectural styles are also shown.

9.5.1 Use cases and functionality scenarios

The UML use case diagram provides a compact, graphical overview of the functionality
of a system and the actors and systems that it interacts with. Figure 9.2 shows the
Yinzer system, several use cases, and the Yinzer Member, Non-Member, and Timer
actors that use the system. The Timer actor is special and indicates that those use
cases run at particular times each day as batch jobs.

Each use case describes a general capability of the system, not a specific example
of that capability in use. The Invite Contact use case, for instance, describes how
a Yinzer Member, generally, could invite someone to become part of his Network of
Contacts. Contrast this with a step in a functionality scenario, where you would see
a specific Yinzer Member, such as Alan, enacting a use case.

Use case diagrams show what the system can do, but they do not impose sequenc-
ing constraints on the use cases. You might guess that the Invite Contact use case
would occur before the Accept Invitation use case, but that is just a guess. The easiest
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Figure 9.2: A use case diagram for the Yinzer system. It is effective at presenting a broad overview
of the Yinzer system’s functionality.

way to describe a sequence of events is to use a functionality scenario, just like you
did in the domain model. Figure 9.3 shows a functionality scenario of how Kevin
takes a Job at Widgetron.

You may want to flip back to Figure 8.4 to compare this scenario with the scenario
in the domain model. When you were modeling the domain, there was no Yinzer
system, so it was impossible to talk about a Member using it as a web application, or
the system generating an email, but now you can. You have made some commitments,
like using links in emails (step 2), but have left other design options open. Note also
that in the domain you talked about People, while here in the design you talk about
Yinzer Members. This is because the Yinzer system does not exist in the domain, so
you could not differentiate Yinzer Members from everyone else.

Notice that each step in the scenario corresponds to an invocation of a use case.
Step 1 corresponds to the Invite Contact use case and step 2 corresponds to the Ac-
cept Invitation use case. Where the use case model expresses the possible use cases,
a functionality scenario expresses a specific trace or path of use case invocations. Be-
tween a use case model and some functionality scenarios you can describe both what
behavior is generally available and concrete examples of it.

What you have not described is the set of all legal paths that exercise the use cases.
In the scenario, Invite Contact occurs before Accept Invitation, but is this always true?
You cannot tell from just the use case diagram and scenarios. If it is important to you,
you can create a UML activity diagram that shows all legal paths that exercise the use
cases.

Unless the scenario is intended to describe the user interface, it is best to write
it so that several possible user interfaces are possible. For example, in step 1 of the
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Name: Kevin takes a job at Widgetron
Initial state: Alan and Own are Members of Yinzer; Kevin is not. Alan works at Widgetron.
Actors: Alan, Kevin, Owen
Steps:

1. Alan invites Kevin to be a Contact in his Network. / The system sends Kevin an email.
2. Kevin clicks a link in his email, joins Yinzer, and accepts Alan’s invitation to be a Contact.
3. Widgetron posts an Ad for a Job for a software developer. / The system auto-matches

Owen to the Job, sending him an email.
4. Alan sees the Ad and matches Kevin to the Job. / The system sends Kevin an email.
5. Kevin takes the job and changes his Yinzer profile to add his employment at Widgetron.

Figure 9.3: A functionality scenario for the Yinzer system. Its steps refer to the boundary model
(e.g., the Yinzer System component in Figure 9.4), so you only see the actors using the system,
not the internal components collaborating.

scenario, Alan invites Kevin to be a Contact, but it is not specified how exactly this
is done: how many steps does that take, is there a list of Members to choose from,
or does he begin typing their names and the system auto-completes? This keeps the
scenario sufficiently general to allow changes to the user interface and makes the
scenario easier to understand. You will need to commit to the user interface because
it has architectural impacts, but adding those details to this use case would add clutter
and reduce its clarity.

9.5.2 System context

The system context diagram, as seen in Figure 9.4, is similar to the use case diagram
in that it provides an overview of the system and the actors / systems it interacts
with. The biggest difference is that functionality is much more visible in the use case
diagram, while the system context diagram more clearly shows the connectors, which
represent channels of communication to external systems. Both the system to be built
and external systems are shown with ports, which segment the interface of a system
into smaller chunks of related functions. As seen in the example, the system context
diagram can reveal details about the technology used, such as Web, SMTP, and IMAP
connections. A system context diagram is a special case of a component assembly
diagram.

Notice that the Yinzer Member’s browser is connected to two different port in-
stances on the Yinzer system: the Contacts and the Job/Advertisement port instances.
Rather than provide a single port with every web operation, this design divides the
Yinzer functions across the ports.

Because of this increase in precision, the system context diagram encourages a
more literal depiction of interactions. Notice that in the use case diagram, the Yinzer
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Figure 9.4: A system context diagram for the Yinzer system that shows the Yinzer System compo-
nent instance and all the external systems it connects to.

Member is shown interacting with the system, but here the interaction is intermedi-
ated by a Web Browser and an Email Client. The system must communicate via ports,
so once you decide that a port serves web requests, it is more likely that you will put
a Web Browser at the other end of that connection instead of directly connecting it to
the Yinzer Member.

9.5.3 Components

Each of the boxes in the system context diagram is a component instance (an in-
stantiated component type). This book uses the definition of a component from
Clements et al. (2010), which states that “Components [are] the principal compu-
tation elements and data stores that execute in a system.” Components may only
communicate, directly or indirectly, using ports and connectors.

When you draw diagrams that show component instances, you should show all of
the ports and connectors. This practice is strongly encouraged as you can imagine the
frustration of analyzing a diagram and making conclusions, only to later learn that
there were other interactions that were omitted from the diagram. By constraining
how the components communicate and insisting that your diagrams show all the
communication paths, you stand a fighting chance of understanding a system from
its diagrams. This idea is discussed further in Section 13.7.1. If you need to draw a
simplified diagram that omits connections or components, put a note on the diagram
so that this is clear to readers.

The system context diagram shows the system as it would exist at runtime, con-
nected to other systems that you represent as component instances. In this example,
there are six component instances: a single instance of the Yinzer System, two dif-
ferent Web Browser instances, two different Email Client instances, and an instance
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of an Email Server. Notice that even if the two Web Browser component instances
were running exactly the same code you could still differentiate their instances. In-
deed, the Yinzer System must distinguish the instances because one browser is being
served web pages for a Yinzer Member, while the other is being served web pages for
a Non-Member, even though both web browsers have the same component type.

The relationship between a component type and a component instance is the same
as the relationship between a class and an object. You can read the declaration of
a class or a component type in the source code, and you find class instances (i.e.,
objects) and component instances at runtime.

You already saw the use of invariants in the domain model and you can use them
to constrain how the component instances are arranged. You could, for example,
write an invariant that required the Member’s Web Browser to support HTML 4.01 or
higher.

9.5.4 Ports and connectors

As seen in Figure 9.4, The Yinzer System communicates via four ports: one that
answers web requests for Yinzer Non-Members, one that answers web requests about
the job network, one that answers web requests about advertisements, and one that
sends out emails. Three ports provide services (the web ports) and one requires a
service (the email port). Essentially all programming languages let you express that
some code provides a service but notice that the Yinzer System requires a compatible
SMTP server for email. Not every port can be categorized as either a provides-port
or a requires-port, but many can be, so your diagrams should include that distinction
when reasonable.

In contrast to a use case diagram, a system context diagram localizes each use
case to a port on the Yinzer System component. The Contacts port supports the Invite
Contact, Accept Invitation, and Add Employment use cases. The Job/Advertisements
port supports the Post Advertisement and Match User use cases. The Non-Member
port supports parts of the Invite Contact use case.

Ports interact via connectors, which are pathways of runtime interaction between
two or more components. The system is shown using web connectors, SMTP connec-
tors, and IMAP / POP connectors. Other, more general, connectors include procedure
calls, events, pipes, shared memory, and batch transfers.

Like a scenario shows just one of many possible behavior paths of the system,
the system context diagram2 shows just one of many possible configurations of the
system. Over time, the number and identity of Yinzer Members and Non-Members
connecting to the system changes, and the system context diagram would change
correspondingly.

2Chapter 12 will describe how to draw a component assembly using component types instead of instances.
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You can assign properties to any element in your models, but they are most com-
monly seen on connectors. You might want to use a property to declare the through-
put of the connector, or its reliability. For example, the SMTP connector might have
the following properties: 1000 emails / second, encrypted, synchronous.

9.5.5 Design decisions

When you look at the design for a system, it can be hard to tell which parts are there
because of important, reasoned decisions. Other parts are just acceptable designs that
fill space between the important decisions that the developers agonized over.

Consider, for example, Figure 9.4 that shows the context diagram for the Yinzer
system with the Yinzer member using a web browser to use the system, which appears
to be a client-server system with a thin client. Perhaps the big decision was to build a
client-server system, and the choice of using a thin client instead of a thick one was
just one of several acceptable alternatives.

There is some debate among architecture experts about the best way to describe
a system. Some believe it is best expressed as a set of views. Others believe it is
best expressed as a set of design decisions. For the most part, this book follows the
views approach but encourages you to document your important design decisions too.
What is undisputed is that highlighting the most important design decisions provides
insight into what you spent time designing, and is an effective way to describe your
architecture.

9.5.6 Modules

The Yinzer system is constructed with source code that you can organize into modules,
or packages. You can use the UML package element, which graphically looks like a
folder, to represent a module in your diagrams. Figure 9.5 shows the modules for the
Yinzer system boundary. This set of modules aligns well with the architecture abstrac-
tions, which makes it easy for someone reading the code to infer the architecture. The
idea of architecturally-evident code is elaborated in Section 10.3.

There is a module for each of the ports because users of the system need to know
how that port works in order to use the system. Each port will interact with external
systems so the datatypes that are exchanged must be revealed. Both of the Web Ports
will be exchanging HTML and HTTP data. The SMTP Client Port will be exchang-
ing SMTP data in emails. If the datatypes you exchange with other systems were
proprietary, revealing their structure would be essential, but since HTML, HTTP, and
SMTP are defined standards, you could omit their definition here. The Yinzer System
module is also shown, but is marked as private because in the system boundary you
do not want to reveal the implementation details of the system, only the necessary
interface elements.
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Figure 9.5: A view of the Yinzer boundary model that shows the externally-visible modules and
dependencies. The organization of the modules foreshadows the architecturally-evident coding
style described in Section 10.3.

Inside of each module you would expect to see the source code artifacts, like
classes, interfaces, and headers. The details would vary by the chosen programming
language, so for example in C you would expect .h header files, and in Java you would
expect to see interfaces and classes.

The modules are related to each other by the dependency relationship. A depen-
dency between two modules means that one module may need to change when the
other module does.

9.5.7 Deployment

The Yinzer system will be deployed onto hardware and the hardware’s configuration
will impact how the system performs. Figure 9.6 shows the component instances for
the system deployed both at a primary and backup data center, which are examples
of environmental elements, or sometimes simply called nodes. The figure also shows
that the user’s PC is connected to the data center by the internet, and that the pri-
mary data center is connected to the backup via an intranet, which are examples of
communication channels (sometimes called links, but note that the term “link” means
something else in snapshots).

This diagram shows how running component instances are allocated to hardware,
for example that the User PC hardware is running an instance of the Web Browser
software. It could also show how source code is allocated. If, for example, you had
an AJAX style web application that required code to run on the user’s PC, you could
have showed a module deployed onto that environmental element.
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Figure 9.6: A view from the allocation viewtype showing environmental elements (User PC’s,
Routers, and Data Centers) and communication channels (the internet and intranet links) of the
Yinzer system. It also shows component instances that are hosted on the hardware.

Functionality scenarios can be used in understanding behavior related to deployed
hardware and software. For example, a scenario could describe the sequence of ac-
tions taken to migrate software to a new server, or what happens during backups.
Oftentimes getting software running from scratch can be difficult, as can upgrading
existing software. You can express how the installation or upgrade of software should
proceed through a scenario that describes the steps.

9.5.8 Quality attribute scenarios and architecture drivers

The easiest way you can communicate your thoughts about quality attributes is to
prioritize several of them for your system. For the Yinzer system, you might prioritize
them this way:

scalability > modifiability > security > usability

Such a ranking is trivially easy to write down and distribute throughout your team.
It may simply inform everyone, or it might stimulate discussion about the priorities,
but either way it will guide design and coding choices the team makes every day.

A more explicit yet still lightweight technique of describing quality attribute re-
quirements is to write them as quality attribute scenarios. A QA scenario can be
described using a six-part template consisting of the source, stimulus, environment,
response, and response measure (Bass, Clements and Kazman, 2003). Using this
template helps the requirement to be clear and testable. Figure 9.7 shows a single
QA scenario for the Yinzer system. Most systems are likely to have a handful of QA
scenarios.
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Source Yinzer Member

Stimulus Request web page from Yinzer server

Environment Normal operations

Artifact Entire system

Response Server replies with web page

Response Measure Web page sent out by Yinzer system within 1 second

Full QA scenario A Yinzer Member clicks on a link in his Web Browser; it sends a
request to the Yinzer system, which sends out a web page as a reply
within 1 second

Figure 9.7: An example of a full quality attribute scenario for the Yinzer System. You may omit
some sections, but you should strive to write falsifiable scenarios.

QA scenarios3 work great for obviously measurable qualities like latency, and less
well for qualities like maintainability and usability. For example, you could write a
quality attribute scenario saying that a developer must be able to switch the database
vendor within one week. This would presumably inspire decisions like using vanilla
SQL rather than vendor extensions, but it is hard to know how long a hypothetical
modification will take. This modifiability scenario is easy to describe, but others can
be much more difficult.

You can investigate the suitability of your architecture by introducing prioritization
to your quality attribute scenarios. To do so, you require that each quality attribute
scenario is rated both by stakeholders and by developers. Both rate the quality at-
tribute scenario on a { High, Medium, Low } scale, with stakeholders rating its im-
portance and developers rating how hard it will be to achieve. This yields a tuple
such as (High importance, Medium difficulty), usually shortened to just (H, M).

Some quality attribute scenarios will be easy: the ones rated (H, L). And others
are likely to be deferred or watered down: the ones rated (L, H). But others, usually
the ones rated (H, H), are both important and hard to achieve, so developers will
need to pay considerable attention to them as the system is designed. Such quality
attribute scenarios are known as architecture drivers (Bass, Clements and Kazman,
2003) because developers will use them as test cases when creating and evaluating
architecture options. Architectural decisions, such as the use of a 3-tier style, will
make achieving the architectural drivers easier or harder. The list of architectural

3The term scenario has been used by different software architecture authors to mean different things. Rather
than invent new terminology, this book refers to functionality scenarios and quality attribute scenarios to distin-
guish the two ideas. You may shorten the terms to scenario and QA scenario because they otherwise can be
rather long.
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drivers is usually small, and may include particularly difficult scenarios as well. Note
that the idea of architecture drivers and the rating system come from the ATAM tech-
nique, described in Section 15.6.

9.5.9 Tradeoffs

You would like your system to be ideal in every quality attribute dimension: perfectly
secure, perfectly usable, and unbelievably fast. But getting more of one quality at-
tribute generally means getting less of another one, meaning that there is a tradeoff
between them. Achieving more security in your system may hinder usability. The
Yinzer system sends Non-Members an email with a link back to the Yinzer website.
Anyone who clicks on this link can see the event details, but the link has a large ran-
dom number in it so it would be hard to guess. You can imagine designs that are
more secure, but they would likely be harder to use.

Some tradeoffs apply to all systems, such as the tradeoff between usability and
security. Other tradeoffs originate in the domain of the system. Consider the Yinzer
domain where companies must describe the required job skills in an advertisement,
but those requirements could be structured (e.g., a taxonomy of skills) or freeform
(e.g., a block of text). If they are structured, the job of matching seekers to jobs is
easier algorithmically but harder on users. If they are freeform, then users are relieved
of work, but the mechanism to match jobs with seekers will entail more guesswork.
Finding domain tradeoffs is like finding a nugget of gold in a stream: it is a valuable
insight that can be quickly conveyed to others not yet expert in the domain. Tradeoffs
influence what will be easy or hard for your system to achieve.

That concludes the walkthrough of the boundary model. We now shift to describ-
ing the internals model, which still describes the Yinzer system, but now you will see
how it is implemented behind its interface.

9.5.10 Component assembly

A component assembly shows a specific configuration of component instances. You
have already seen one special case of a component assembly: the system context
diagram from Figure 9.4. In general, a component assembly can show any collection
of components, ports, and connectors, but the system context diagram is constrained
to show the system and its connections to other systems. In the internals model, you
use component assemblies to show the internal designs of components.

In the Yinzer system context diagram, you already saw that a component called
the Yinzer System exists and it has four ports: Non-Member, Contacts, Job/Ads, and
SMTP Client. The Yinzer System internals model is required to have the same four
ports, but it reveals details about the inside of the Yinzer System component. Figure
9.8 shows four internal components: Contacts, Advertisements, Users, and Emails.
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Figure 9.8: A component assembly of Yinzer System from the internals model. It shows the same
Yinzer System component instance shown in Figure 9.4, but also reveals its refinement into four
internal component instances and shows the bindings between external and internal ports.

This component assembly is logically nested inside of the Yinzer System component
instance from the system context diagram. The outer box on the component assembly
is labeled in the top left corner indicating that it is an instance of the Yinzer System.

The component assembly shows bindings between the external ports on the Yinzer
System and the internal ports, those on Contacts, Advertisements, and Emails. A
binding between an external and internal port means that any interactions with the
external port are handled by the internal port. A binding is not a connector and
no work is done in a binding. Bindings exist to maintain encapsulation, since you
want to tell external systems about the Job/Ads port but hide the existence of the
Advertisements component. When binding ports, the easiest case is if the two ports
are identical, but the internal port must at least be compatible with the external port
(e.g., be a subtype), so it could for example provide additional operations that are
not visible on the external port.

In a Java program, users of a class often depend on an interface that the class
supports, rather than depending on the class directly. You are seeing a similar situa-
tion here with components. Users of a component depend on ports rather than the
component itself. This gives the developer flexibility because it enables substitution
and evolution by hiding the internals of the component.

You may have noticed some differences in the style of Figure 9.8 compared to
earlier figures. Here, UML notes are used to describe the responsibilities of the ports,
which is an alternative to detailed legends like those in Figure 9.4. This style has the
advantage that you can see exactly what operations are on each port, but it would be
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impractical if there were long lists of operations.
Boundary models and internals models follow a recursive pattern. In the system

context diagram, you saw that the Yinzer System component existed, but you only
knew about its boundary, not its insides. Here, in the internals model, you see the
insides of the Yinzer System and discover that you can only see the boundary of the
Contacts, Advertisements, Users, and Emails components, but not their insides. You
could continue refining and show internals models for each of those components. At
a point of your choosing, you stop refining and show or build the actual implementa-
tion, which might be classes, procedures, functions, etc.

9.5.11 Two-level functionality scenarios

Functionality scenarios were used previously in the domain model and in the bound-
ary models and they work similarly here, in the internals model. The important
difference is that you can now show how the internal components collaborate. One
way to do this is to start with a boundary model scenario and elaborate it with inter-
component interactions that can only be seen in the internals model. Figure 9.9 shows
how the steps from the boundary model scenario in Figure 9.3, labeled with numbers,
are elaborated across the internals model components, labeled with letters.

9.5.12 Responsibilities

Models, especially graphical ones, use short names to refer to complex parts. For
example, the three words in “Guest Web Port” provide a minimal explanation about
what that port does. It is easy for two developers to think that they agree on a design
but discover later that they had different assumptions about what the responsibilities
of the Guest Web Port.

Fortunately, listing the responsibilities of a port or other architectural element is in-
expensive and effective. It follows the concept of responsibility-driven design (Wirfs-
Brock, Wilkerson and Wiener, 1990) and mirrors the use of Class Responsibility and
Collaborator (CRC) cards in object-oriented design (Beck and Cunningham, 1989).
Responsibilities are easily written down in a table or can be put on diagrams as UML
notes.

9.5.13 Constraints as guide rails

Software developers are constrained by the requirements from the domain and may
have technical solution constraints too, but they also voluntarily impose additional
constraints on their designs. This seems counter-intuitive since it is already hard to
create a system, and adding restrictions would seem to make it harder, but developers
voluntarily constrain their designs so they can control a risk or enable a quality of the
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Name: Kevin takes a job at Widgetron
Initial state: Alan and Owen are Members of Yinzer; Kevin is not. Alan works at Widgetron.
Actors: Alan, Kevin, Owen
Steps:

1. Alan invites Kevin to be a Contact in his Network. / The system sends Kevin an email.
a) Contacts component looks up Kevin’s email address with Users component. Kevin is

not found as a Yinzer user.
b) Contacts component composes an email to Kevin inviting him to join Yinzer and

Alan’s network and asks Email component to send it.
2. Kevin clicks a link in his email, joins Yinzer, and accepts Alan’s invitation to be a

Contact.
a) Kevin, by clicking link in the email, uses his browser to go to the Yinzer website (via

its Non-Member port) and replies to the invite.
b) Contacts component adds Kevin as a user of the Yinzer system with no contacts.
c) Contacts component registers Kevin and Alan as contacts of each other.

3. Widgetron posts an Ad for a Job for a software developer. / The system auto-matches
Owen to the Job, sending him an email.
a) Advertisements component extracts relevant features of the Ad.
b) Advertisements component searches the Users for matches, yielding Owen.
c) Advertisements component composes an email to Owen informing him of the Ad and

asks Email component to send it.
4. Alan sees the Ad and matches Kevin to the Job. / The system sends Kevin an email.

a) Alan uses the Advertisements component to match Kevin with the Ad.
b) Advertisements component composes an email to Kevin informing him of the Ad and

Alan’s recommendation.
5. Kevin takes the job and changes his Yinzer profile to add his employment at Widgetron.

a) Kevin uses the Contacts component to update his profile.

Figure 9.9: Yinzer System internal functionality scenario that starts with the numbered steps of
the boundary functionality scenario from Figure 9.3 and elaborates how the components of the
internals model accomplish them (the lettered sub-steps).

system. Such constraints act as guide rails, channeling the system in the desired
direction.

Imagine a system that must run on a small computer. A developer might assign
RAM budgets to various components to ensure that the system will fit in memory. Or
consider a system that will be ported to run on other operating systems. A developer
might insulate the system from operating system (OS) details that will vary, restricting
what calls the system can make. Consider: if developers did not constrain their system
by assigning RAM budgets or limiting OS calls, how would they know that the system
could fit on a small machine or could be ported to another OS?
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Constraints are necessary in order to analyze a system: No constraints means no
analysis. Without constraints you have a pile of code that could do anything: it could
exceed RAM budgets, depend on a particular OS, circumvent the cache coherency pol-
icy, neglect to release locks, or violate access restrictions. During design, developers
reason about how an assembled collection of parts acts as a system. They constrain
what the parts of the system must do and must not do. The constraints enable them
to know that the sum of the parts will behave as intended.

The design of the Yinzer system uses constraints to ensure that its quality attribute
scenarios can be fulfilled. Sending an email can easily take several seconds as remote
servers are contacted and the message is delivered, yet the quality attribute scenario
requires the web pages to keep one-second response time. The design uses asyn-
chronous connectors between the web facing components and the Email component
to queue outgoing emails so that the web facing components are not waiting while
the email is delivered.

9.5.14 Architectural styles

Sometimes a set of constraints occurs regularly enough that it is useful to name it as
a pattern. These patterns are called architectural styles and are defined as “a special-
ization of element and relation types, together with a set of constraints on how they
can be used.” (Clements et al., 2010). Architectural styles restrict the design in order
to give the developer control over a risk or to enable a quality attribute.

Consider the Apache web server, a system that is intended to be open for plug-in
extensions. Apache is designed so that new code can be inserted into a chain of filters
that process web requests or responses, what is called a pipe-and-filter architectural
style. One of the characteristics of the pipe-and-filter style is that each filter does an
isolated job, and so it is easy to add filters to the pipeline. Apache chose an archi-
tectural style that made it easier to achieve its goal of modification by third party
developers. Notice that the architectural style not only constrained the design, it pro-
vided a vocabulary to talk about these particular kinds of components and connectors,
naming them filters and pipes.

Most architectural styles apply to the component and connector types and the
topologies of the component assemblies. This provides control over the runtime be-
havior and qualities of the system. Styles can also apply to modules (e.g., in the
layered style) and environmental elements.

This completes the walkthrough of the design model for the Yinzer system. It pro-
vided an overview of the common models used in the design. Most of the elements
and diagrams that were used to describe the boundary model, such as design deci-
sions, tradeoffs, and use case diagrams, can also be used on internals models. The
remaining chapters in the book will provide additional information on how to use the
ideas covered here.
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9.6 Viewtypes

Looking back on all the views, you can see patterns in how they are organized. Some
views are easy to reconcile with each other, while others are not. For example, it is
easy to reconcile the Yinzer functionality scenario with its component assembly, and
you could imagine merging these views together into a single view without much
difficulty.

But other views are hard to reconcile with the source code view, such as a view of
the instantiated objects or components. You would have to scour the source code and
mentally animate it to imagine which component instances will appear at runtime,
and in which configurations. Put another way, if you have the source code in one
hand and a component assembly in the other, it will take you a while to determine if
that code could possibly create that configuration of component instances at runtime.
While it was easy to reconcile the functionality scenario and component assembly
views, there is no obvious way to reconcile module and runtime views. What you
would like to do is group together the views that are easy to reconcile.

9.6.1 Viewtype definition

This grouping is accomplished through the idea of viewtypes. A viewtype is a set,
or category, of views that can be easily reconciled with each other (Clements et al.,
2010). The views that cannot be reconciled belong to different viewtypes. In software
architecture, viewtypes4 apply to any design or code model, including the top-level
boundary model and any nested internals or boundary models.

It is an unfortunate fact that you cannot easily reconcile every view of a software
system. Clearly, in some sense all of the views must be reconcilable, if only in your
head, because you build systems that conform to all of the views. A good way of
thinking about reconciling views it is to consider someone else’s design, not your
own, and how hard it is to find flaws and inconsistencies between their views.

9.6.2 Standard architectural viewtypes

The three standard viewtypes in software architecture are the module viewtype, the
runtime viewtype, and the allocation viewtype. The module viewtype contains views
of the elements you can see at compile-time. It includes artifacts like source code and
configuration files. Definitions of component types, connector types, and port types
are also in the module viewtype, along with definitions of classes and interfaces.

4The term viewtype should not be confused with the term viewpoint, which is the view of a system from a
single perspective, such as the view of a single stakeholder. A viewtype contains a group of similar views and
categorizes views so you can answer the question “what type (i.e., category) of view is this?”
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Figure 9.10: The Yinzer design model acts as a master model that (conceptually) contains all
design details, so it is too big to use directly. Views show a selected subset of its details, possibly
transforming them. Views are categorized into the three standard viewtypes (module, runtime, and
allocation viewtypes) plus spanning views.

The runtime viewtype, also called the component and connector (C&C) viewtype,
contains views of elements that you can see at runtime. It includes artifacts like
functionality scenarios, responsibility lists, and the component assemblies. Instances
of components, connectors, and ports are in the runtime viewtype, as are objects
(class instances).

The allocation viewtype contains views of elements related to the deployment of
the software onto hardware. It includes deployment diagrams, descriptions of en-
vironmental elements like servers, and descriptions of communication channels like
ethernet links. It may also include geographical elements, so that you can describe
two servers in different cities.

Figure 9.10 shows a graphical summary of the three viewtypes with a non-
exhaustive list of the contents of each viewtype. It shows one additional viewtype,
the spanning viewtype, which contains views that cross over between two or more
viewtypes, because not everything will fit neatly into the categories. Here is an exam-
ple of a tradeoff that spans viewtypes. You decide to denormalize a database schema
(described in the module viewtype) in order to achieve greater transaction through-
put (described in the runtime viewtype) so you describe that tradeoff in the spanning
viewtype. Four viewtypes, and some example contents often found in the viewtypes,
are summarized in Figure 9.11.
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Viewtype Example viewtype contents

Module Viewtype Modules, layers, dependencies, responsibilities (like CRC),
database schemas, interfaces, classes, component types,
connector types

Runtime Viewtype Object instances, component instances, connector instances,
behavior models (state machines, scenarios), responsibilities
(instance-based)

Allocation Viewtype Deployed software, geography, computation nodes

Spanning Tradeoffs (quality attribute, business, other), functionality
scenarios, quality attribute scenarios

Figure 9.11: The three standard viewtypes (module, runtime, and allocation viewtypes) plus span-
ning views. Views within a viewtype are easy to reconcile with each other, but hard to reconcile
with views from other viewtypes.

9.6.3 Types and instances in different viewtypes

A viewtype contains views that are easy to reconcile with each other, while the views
in different viewtypes are difficult to reconcile. Source code directly expresses classes,
interfaces, modules, and (if you squint) component types, so they are easy to reconcile
and are all part of the module viewtype. On the other hand, when you look at a view
of component types, it is not obvious what component instances will appear, so types
and instances are different viewtypes.

As a result, component types exist in the module viewtype and component in-
stances exist in the runtime viewtype. It may be surprising to hear this, so to under-
stand it better, it is helpful to consider the parallel with classes and objects. When
you look at source code, you can trivially see what classes exist because you define
them directly in a programming language. Conversely, you cannot directly see class
instances (i.e., objects) because they are not created until the program runs.

9.6.4 Reasoning across viewtypes

The divide between the module and runtime viewtype has been noted for quite some
time. In 1968, Edsger Dijkstra, using slightly different terminology, expressed clearly
how hard it is to understand how code will behave at runtime by looking at its source
code, and gives advice on how to minimize the problem (Dijkstra, 1968):

[O]ur intellectual powers are rather geared to master static relations and
... our powers to visualize processes evolving in time are relatively poorly
developed. For that reason we should do (as wise programmers aware of
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our limitations) our utmost best to shorten the conceptual gap between
the static program and the dynamic process, to make the correspondence
between the program (spread out in text space) and the process (spread
out in time) as trivial as possible.

The generalized point is that reasoning across viewtypes is difficult, whether it is
module to runtime, or runtime to allocation. As a consequence, you should do two
things. First, you should take Dijkstra’s advice and build in a style that makes the
runtime viewtype easier to imagine when you examine things in the module view-
type. Section 10.3 describes an architecturally-evident coding style, which is a way
of structuring your programs so that other people can see the architectural elements
and envision what they look like at runtime.

Second, you should reason from an appropriate viewtype. Each viewtype has an
affinity for certain kinds of questions, as discussed in Section 3.5. Asking questions
about how many instances exist and how they are communicating to each other are
best answered by looking at a runtime view. With some difficulty and inaccuracy, you
can look at source code, mentally animate it, and answer those questions, but they
are straightforward to answer in the runtime viewtype.

9.6.5 Stitching together viewtypes

While providing separate views for various concerns is helpful in understanding each
concern in isolation, it leaves open the problem of understanding the architecture as
a whole. The “+1” in Philippe Kruchten’s 4+1 architectural views is for functionality
scenarios that weave through the other four views.

Scenarios cut across viewtype boundaries so that they can stitch together the oth-
erwise disjoint views. Most scenarios describe a sequence of events within a single
viewtype, such as a sequence of actions that the system performs at runtime. But some
scenarios span viewtypes, such as how a system responds at runtime to a change in
its physical deployment, or how a web server like Apache can initialize its (runtime)
component instances based on a (module viewtype) configuration file.

Tradeoffs can span viewtypes also. Modifiability is primarily concerned with the
module viewtype and performance with the runtime viewtype, but a tradeoff between
them would span the two viewtypes. By separating out distinct views of your architec-
ture, you have divided the problem, and by using scenarios and tradeoffs you conquer
it by showing how the views relate to describe the whole architecture.

9.6.6 Advice on completeness

If you are trying to explain your system to someone, it is a good idea to include a
representative view from each viewtype. Otherwise, what is obvious to you as the



9.7. DYNAMIC ARCHITECTURE MODELS 161

developer (e.g., that the system is deployed on one computer) may not be clear to
others. Thinking about each viewtype also helps avoid tunnel vision during design,
ensuring that you have at least considered where the software will be deployed, for
example.

So far you have seen diagrams representing the system at runtime but they showed
just one instant in time. However, many systems change their runtime configuration
as they execute. The next section discusses dynamic architecture models.

9.7 Dynamic architecture models

Developers are comfortable building systems where the configuration of objects (class
instances) changes at runtime. However, because components are larger than objects,
their runtime configurations tend to change less, if they change at all. Developers try
to minimize runtime architectural changes because it is easier to analyze a single
static configuration than all of the possibilities that come with runtime reconfigura-
tions. Some designs require changes at runtime, however, such as peer-to-peer voice
chat systems that reconfigure themselves continually as computers join or leave the
network.

Many systems change their configuration of components only during startup and
shutdown and have a stable configuration of components for the rest of their lifetime.
When you show a component assembly, you are usually showing this steady state
configuration of the system. You must be aware that this is a simplification of the
truth because errors can easily occur when you do not think about the dynamics of
startup and shutdown.

There are a few ways to make it easier to envision the runtime configuration from
the source code. One is to follow an architecturally-evident coding style, discussed in
Section 10.3. Another is to move the configuration out of the source code, which must
be executed, and instead put it into a declarative configuration file. Many frameworks
require this, such as Apache Struts (Holmes, 2006), Enterprise Java Beans (Monson-
Haefel, 2001), and NASA/JPL’s MDS (Ingham et al., 2005). While it is possible to
statically analyze source code, it is a difficult task, but analyzing a declarative config-
uration file is easy.

Dynamic architecture models, which describe how an architecture changes at run-
time, are an open research area. When possible, you should avoid designs where the
architecture changes at runtime for two reasons. First, static architectures are easier
for developers to understand, which should lead to better modifiability and fewer
bugs introduced. And second, static architectures are easier to analyze for quality
attributes. Sometimes the nature of the problem or quality attribute requirements
will force you to use a dynamic architecture. When that happens, you will find your-
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self out on the leading edge of software engineering with less support from empirical
data, modeling concepts, and engineering techniques.

9.8 Architecture description languages

When you draw a diagram, you are actually using a modeling language, such as UML,
the Unified Modeling Language. Architecture description languages generally have
poor support for dynamic architectures, but they do have adequate support for static
architectures.

When you draw a diagram, you probably do not think of it as a language, or imag-
ine representing the same information in a textual language, but they are equivalent.
A simple language might say that you can have any number of alternating a’s and b’s,
and express it like this: (ab)*. Similarly, your architecture diagram might say that
you can have any number of clients and servers, so long as a server has no more than
10 clients.

When you choose a tool to draw architecture diagrams, you are embracing a set
of constraints imposed by an architecture language. If you use a general purpose
drawing tool then you have almost no constraints, though readers may wonder about
the semantics (meaning) of the purple triangle on your diagram. Choosing a tool that
draws UML diagrams, or one that supports another architecture description language
(ADL), constrains you to use the elements in that language, such as rectangles that
represent components (but no purple triangles).

The formality of the language constrains your expressions, for better or for worse.
After using an architecture description language for a while, you will think about sys-
tem design in terms of component types, connector instances, source code modules,
etc., because these are the concepts in the formalism and perhaps enforced by your
drawing tool. This is good because these concepts are endorsed by the software en-
gineering community as being helpful, but it can be frustrating when your language
cannot express your ideas.

Using a tool that constrains your syntax is no guarantee that your designs make
sense. Noam Chomsky famously illustrated this principle with a syntactically correct
sentence that makes no sense: “Colorless green ideas sleep furiously.” (Chomsky,
2002). A tool will guarantee that your diagrams conform to the language constraints
(syntax), but not that they have meaning (semantics).

Another option is to use a general purpose drawing tool and use self-discipline
to draw diagrams that conform to a language, say UML. When you are starting out,
however, it is best to use a tool that supports the language directly, since its constraints
act like training wheels on a bicycle until you are ready to ride on your own. You
may dismiss this idea, thinking that you do not need such help. But I have taught
architecture to plenty of bright people (such as you) and I see, over and over, those
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bright folks creating gibberish diagrams with both syntactic and semantic mistakes
until they “learn to ride the bike” and solidify their conceptual model of architecture.

This book’s pragmatic advice is to use UML for architecture models unless there
are strong arguments against it. Unlike other ADLs, UML has modern tool support
from many vendors and the biggest base of developers who know how to read it. It is
not without problems, but it works well enough and there is plenty of advice on how
to use it effectively. While there is likely an ADL out there that better suits your needs,
it will have tool support from a single vendor at most, and few developers will know
how to read your models. UML has the additional benefit that it works for domain,
design, and code models, so you will not have to switch languages.

9.9 Conclusion

The software architecture canonical model structure is based on three primary mod-
els: the domain, design, and code models. Each of these is treated as a master model
with a full set of details. You avoid becoming lost in the details because views allow
you to reveal or hide selected details.

This conceptual model is helpful because software projects require you to process
and organize many bits of information. One bit might be the legal protocol for inter-
acting with a credit card processing system. Another bit might be the dependencies
in the module build system. And yet another bit might be quirks on how a legacy
system represents international addresses. Working on a system means integrating
details like these into a model that relates them and enables you to design a solution.

This chapter provided more detail about the conceptual model of software archi-
tecture. It provided information to help you partition your design into manageable
pieces, knowledge about how to solve problems, and a set of architectural abstrac-
tions, such as components, that you can use to reason about your software. You
will probably never build a complete design model. Instead, you chop up the design
model into smaller pieces using views, encapsulation, and nesting.

An internals model is a refinement of a boundary model. Both are views of the
design model but they differ in the details they reveal. Anything that is true in the
boundary model must be true in the internals model. Any commitments made in
the boundary model (such as the number and type of ports, QA scenarios) must be
upheld in the internals model. Because the design model is related to the domain
model by designation, selected facts about the domain are designated to be also true
in the design.

Both the boundary and internals models are described using the same elements,
such as scenarios, components, connectors, ports, responsibilities, modules, classes,
interfaces, environmental elements, and tradeoffs. Some of these are elaborated in
the internals model, such as the component assembly and functionality scenarios.
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A viewtype is a set, or category, of views that can be easily reconciled with each
other. The three standard viewtypes, or categories of views, are the module view-
type, the runtime viewtype, and the allocation viewtype. The module view contains
tangible artifacts and definitions that developers can manipulate, such as classes, in-
terfaces, and component types. The runtime viewtype contains instances like objects,
component instances, and connector instances. The arrangement of the instances
can change at runtime and there may be multiple instances of a class or component
type. The allocation viewtype describes how elements from the module and runtime
viewtypes are deployed to hardware and locations.

You should pay attention to both what your software does (its functionality) as
well as how it does it (its quality attributes). The two are mostly independent, so
two different systems can do the same thing, but one might be fast while the other is
secure. Architecture experts tend to focus attention on quality attributes because the
architecture has a big impact on them.

Most of your models will show a static configuration of elements, but some archi-
tectures are dynamic and change at runtime. It is difficult to reason about dynamic
architectures and there is limited tool and analysis support. Most architecture descrip-
tion languages, such as UML, support static architectures but have limited support for
dynamicism.

9.10 Further reading

The suggested design views in this chapter show you how to bridge functionality and
quality attributes in architecture models. Bosch (2000) covers some of this ground by
making the point that you can initially partition a system based on functionality then
tweak it to achieve the desired quality attributes. (More details on decomposition
strategies are found in Section 11.3).

The functional modeling approach in this chapter is inspired by Catalysis (D’Souza
and Wills, 1998). The Catalysis software process uses refinement extensively to en-
able zooming in on details and zooming out to see the essential problems. In so doing,
it cleans up the distinction between use cases, scenarios, and operations, showing
them all to be actions at different levels of refinement. This chapter’s approach to
quality attribute modeling is inspired by work at the SEI, including Bass, Clements
and Kazman (2003) and Clements et al. (2010).

Architectural styles can be looked at as simply architectural patterns, but their po-
tential to be much more is evident when they are formalized as they are in the Acme
language (Garlan, Monroe and Wile, 2000) and the Acme Studio tool (Garlan and
Schmerl, 2009). The insight has probably occurred in other contexts, but David Gar-
lan’s course on software architecture (Garlan, 2003) describes how constraints and
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styles are necessary tools of an architect and without them there can be no analysis.
Chapter 14 of this book provides a detailed look at architectural styles.

If you do decide to use a modeling language besides UML, the thorough compari-
son found in the Taylor, Medvidović, and Dashofy software architecture book will be
helpful (Taylor, Medvidović and Dashofy, 2009).





Chapter 10

The Code Model

Source code is both the end deliverable and the medium in which solutions are ex-
pressed. Architecture models are not the end deliverable, so they are useful only
when they can be related to the code. Consequently, it is important to understand the
relationship between architecture models and code.

At first glance, that relationship may seem straightforward. For example, a model
that talks about modules or components is easy to relate to the corresponding code
elements. But models can also include ideas that are hard to relate, such as, “A lock
must be held before every access to this data.” You can relate that architectural idea
to code, but it is not a straightforward structural correspondence. There is a gap
between architecture models and code.

You will learn about three topics in this chapter. The first is the differences be-
tween architecture models and code. The second is ways to handle their inevitable
divergence. And the third is a style of programming, an architecturally-evident coding
style, that embeds hints about your architecture into your code to reduce the amount
of design intent that is lost.

10.1 Model-code gap

To begin understanding the differences between architecture models and code, it is
helpful to start with an inventory of what each of them contains. Figure 10.1 summa-
rizes the kinds of elements you commonly find in architecture models and in source
code. As you scrutinize the lists of elements, you can notice differences in their vocab-
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Location Examples of elements

Architecture
model

Modules, components, connectors, ports, component assemblies, styles,
invariants, responsibility allocations, design decisions, rationales, protocols,
quality attributes, and models (e.g., security policies, concurrency models)

Source code Packages, classes, methods, variables, functions, procedures, statements

Figure 10.1: A summary of the kinds of elements commonly found in architecture models and in
source code. There are differences in vocabulary, abstraction, design commitments, and presence
of intensional/extensional elements.

ulary, abstraction, design commitments, and presence of general/enumerated (i.e.,
intensional/extensional) statements. Let’s take a look at each of those differences.

Vocabulary. A simple comparison of the lists of elements in architecture models
and source code reveals that they use different vocabulary to talk about the same
things. For example, architecture models contain modules while source code contains
packages, which is a nomenclature difference, but in essence the same thing.

Other vocabulary differences exist because architecture models and code express
distinct ideas. Consider a thought experiment where you express your architecture
model in UML and you also automatically generate a UML model of your source code.
When you compare these two UML models, you will find differences. For example,
your source code model does not express the component types or instances found
in your architecture model. While method call connectors and event bus connectors
both show up in your architecture model, only method calls are seen in your source
code model. The architecture model and source code have different vocabulary be-
cause each expresses ideas the other does not.

Abstraction. Architecture models tend to be more abstract than source code in
two ways. First, a single element in an architecture model often aggregates multiple
elements in source code. For example, a component type in an architecture model
may map to a dozen classes in the source code. Similarly, an architecture model may
show a client or a server, each corresponding to many classes or procedures.

Second, when they describe the same element, architecture models generally de-
scribe that element with fewer details than source code does. An architecture model
may stop its descriptions once it reaches the level of modules and components, but
source code continues the detail through classes, methods, and instance variables. If
you imagine a gradient on which you place different kinds of elements, architecture
models contain the more abstract elements, source code contains the less abstract
elements, and the two overlap by both including some of the elements in the middle
of the gradient.
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Intensional /
Extensional

Architecture model element Mapping into source code

Extensional
(defined by
enumerated
instances)

Modules, components,
connectors, ports, component
assemblies

These correspond neatly to elements in
the source code, though often at a higher
level of abstraction (e.g., one component
corresponds to multiple classes)

Intensional
(quantified
across all
instances)

Styles, invariants, responsibility
allocations, design decisions,
rationales, protocols, quality
attributes, and models

Source code will conform to these, but
they are not directly expressed in the
code. Architecture model has general
rules, code has examples.

Figure 10.2: Tabulation of various architectural elements and how they map into code. Extensional
elements in the architecture map fairly cleanly to code elements, but intensional elements do not.

Design commitments. Another difference is that architecture models and source
code do not both contain the same design commitments. An architecture model may
commit to the use of some technologies (e.g., AJAX and REST) but source code goes
much farther and commits to how those technologies are implemented. Architecture
and design models can make a partial commitment, but source code must make a full
commitment, or at least enough of a commitment to be executable. For example, it
may be sufficient in an architecture model to state a quality attribute scenario that
account lookups happen with 0.25s, but source code will describe the data structures
and algorithms necessary to make that happen.

Intensional-extensional. Perhaps the biggest difference between architecture mod-
els and source code is that architecture models contain a mixture of intensional and
extensional elements, while code has only extensional elements. Intensional elements
are those that are universally quantified, such as “All filters communicate via pipes,”
while extensional elements are enumerated, such as “The system is composed of a
client, an order processor, and an order storage components.” Figure 10.2 lists which
architecture elements are intensional and extensional.

The distinction between intensional and extensional elements in architecture and
code, identified by Amnon Eden and Rick Kazman (Eden and Kazman, 2003), is
important because it explains which parts of the architecture model will be harder to
map into the source code. Since source code is extensional, extensional elements of
the architecture model, like components and component assemblies, are easy to map
into the source code. Recall the component type from the Yinzer system design model
that was called Contacts. That component would correspond to several classes in the
source code. You can even imagine minor changes to the programming language
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Figure 10.3: Extensional elements in the design model have a refinement relationship to the source
code. Intensional elements do not, since they are rarely expressible in the source code, and
contribute to the model-code gap.

to let you express components directly. For example, ArchJava adds architectural
elements like components and ports to Java (Aldrich, Chambers and Notkin, 2002).

Conversely, it is hard to relate intensional elements, like design decisions, styles,
and invariants to the (extensional) source code. Intensional elements establish gen-
eral rules that apply to all elements, but standard programming languages cannot
directly express these rules. Though source code cannot express the rules, it should
respect the rules. So, for example, if your architecture model has a design decision
(an intensional element) that says to avoid using vendor-specific API’s, you cannot
express that rule in your C++ source code, but none of your code should use those
API’s. When you look at source code, you cannot see the design intent of the inten-
sional elements, but the code should respect that design intent.

Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture
models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-
ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is
complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This
is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But
reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they
are abstract and intensional; source code executes on machines because it is concrete
and extensional.
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Attempts to avoid the gap. People react differently when they hear about the model-
code gap. Some see the difficulty as an opportunity to retreat to known ground by
avoiding architectural abstractions entirely. However, this would be just one step
away from the big ball of mud architecture (Section 14.7). Your ability to handle
complexity and scale would be greatly diminished because architecture abstractions
exist to give you a handle complexity and scale. While there are difficulties in using
the abstractions, managing a sea of classes is probably more difficult.

If you cannot avoid the abstraction gap then you must manage it. There are
two primary ways to manage the gap: mechanically and by hand. Mechanically, it
may be possible to write in a higher-level, N-th generation language and generate
the source code. This is the technique of application builder/generators and Model
Driven Engineering (MDE) (Selic, 2003b). By generating code, the gap between
the architecture models and the higher-level language is reduced or even eliminated
compared to writing normal source code. In a few domains this approach is practical,
but the grand vision of MDE is not yet ready for mainstream use.

The other way to manage the abstraction gap is by hand, which means that devel-
opers must understand both the architecture models and the code, then ensure they
are consistent. The model-code gap contains some accidental complexity that can be
helped by aligning architectural elements with programming language elements and
representing architectural concepts in the code. Section 10.3 will discuss how to do
this using an architecturally-evident coding style. But even after removing the acci-
dental complexity of misalignment, you will need to periodically synchronize your
models with your code, as discussed in the next section.

10.2 Managing consistency

Whether you start with source code and build a model, or do the reverse, you must
manage two representations of your solution. Initially, the code and models might
correspond perfectly, but over time they tend to diverge. Code evolves as features are
added and bugs are fixed. Models evolve in response to challenges or planning needs.
Divergence happens when the evolution of one or the other yields inconsistencies.

Some inconsistencies between code and models are tolerable, but it depends on
the nature of the inconsistency. Perhaps your model describes online performance.
Some code you add will not disrupt that model, such as code for an offline statistical
analysis feature. In contrast, a seemingly trivial change to multithreaded code can
break your concurrency model. Generally, though, you will want to avoid inconsis-
tencies between model and code and there are several ways to do this, summarized
in Figure 10.4.

Ignore divergence. One of the most common ways to handle model - code inconsis-
tencies is to simply ignore them. Oftentimes developers can use an outdated model
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Strategy Description

Ignore divergence Perhaps use an outdated model and remember what has changed.

Ad hoc modeling Keep the model in your head and re-create it as necessary.

Only high-level
models

The most fundamental parts of your architecture change slowly, so
you can keep models of only them.

Sync at lifecycle
milestone

Reconcile code and models at end of iteration, deployment, or other
milestone.

Sync at crisis Reconcile code and models when something goes wrong, or design
review. Surprisingly common.

Constant sync Expensive and uncommon.

Figure 10.4: Architecture models and source code tend to diverge over time as each evolves. This
table summarizes of the strategies for handling the divergence.

but simply remember the ways in which the code has diverged from the model. Dur-
ing presentations, a diagram might be presented with the caveat that it is out of date
and the audience is told about the changes.

A variant of this is to plan to use the models only during initial design phases
when there is no source code and then to focus attention on the code once it exists.
Ignoring the divergence is surprisingly common in practice, and often describes what
actually happens despite intentions stated to the contrary.

Ad hoc modeling. Models are created on-the-fly as needed by developers, possibly
only on whiteboards. Developers must keep the architecture in their heads and be
ready to recreate it for communication or collaboration purposes. They might sketch
out the current architecture and their proposed changes, or draw a zoomed in view of
a selected part. Teams following agile development are more likely to be doing this,
especially if their background includes architectural or UML modeling experience.

Only high-level models. Generally speaking, the more general or abstract the mod-
els are, the greater their ability to accommodate changes in the code. For example,
an architecture model that only describes a client and server is quite resilient to code
changes. A project may choose to keep high-level diagrams updated and use ad hoc
modeling for details, which minimizes the documentation burden yet keeps around
some diagrams for new developers or to communicate with other teams. This tech-
nique is common in practice.
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Tools The use of a tool or higher-level programming language can reduce gaps
and divergence, and can lower the synchronizing effort.

Detail level Higher detail models will incur divergence faster and require more
synchronizing effort.

Tolerance You should understand your project’s tolerance for deviations — when do the
models need to accurately reflect the code and who will be using them?

Figure 10.5: How can you choose an appropriate model-code synchronization strategy? These
three ideas distilled from the list of model-code synchronization strategies can help.

Sync at lifecycle milestone. Developers may evolve the code for some amount
of time but wait until the end of an iteration, stage, or release before updating the
models. In practice, teams may have good intentions of synchronizing at a milestone,
yet defer it endlessly.

Sync at crisis. While the name is amusing, it is common to see teams ignore models
until they are in dire need, at which point they furiously update or recreate them.
This dire need could be a design problem, a collaboration problem, or perhaps a de-
sign review. They may look for tools to recover or reverse-engineer the design and
architecture of a system, but their effectiveness is limited because mainstream pro-
gramming languages cannot express the high-level design intent found in architecture
models, as discussed in the previous section.

Constant synchronization. Some teams choose to keep their models and code syn-
chronized at all times, but it requires a lot of effort. It can be appropriate if the project
is following a process where coding and design strictly alternate, or if the project is
the focus of great external attention. Because of the effort involved, it is relatively
uncommon in practice unless only high-level architecture models are maintained, or
a tool is used to render UML diagrams of the source code.

How to choose. Which of these strategies is right for your project? Recall why you
are using models: to solve problems. The models themselves are not what your
customer is asking you to build, so you should focus on how they help you build
software even when they become out of date. A security model may be useless if it
does not closely match the code, but a model listing your architecture drivers probably
retains value even when a bit stale. Figure 10.5 lists three ideas about the use of
tools, model detail level, and tolerance for divergence that can help you choose an
appropriate strategy.
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10.3 Architecturally-evident coding style

The remainder of this chapter discusses the idea of embedding hints about your ar-
chitecture in the source code, what is called an architecturally-evident coding style.
Before explaining how that is done, it is important to discuss why it is a good idea.

The minimum requirements for a program are that it runs and does something
useful. The code might be a tangle, but if it runs and does something useful then
someone will find it acceptable. In general, this is much too low of a standard, pri-
marily because tangled code is hard to maintain. If you write code that works, but
you can barely understand it, then it will take a lot of effort to evolve that code.

Consequently, almost all developers use standard control flow constructs and give
variables descriptive names, such as “totalExpenses” instead of just “t”. These are
clues and hints you leave in the code so that someone who reads it later (which
includes you) will make the right inferences about your design intent. The computer
and compiler do not care what the variable is called, or if control flow is a maze
of GOTO statements, but developers do. We take it for granted today, but a few
generations ago programmers argued about using standard control flow in programs,
though you do still hear some developers complain about descriptive variable names.

A similar but more current elaboration of this idea concerns object-oriented coding
style. In a language like C# or Java, you could write programs using a single class
and a single intricate method. Doing so would deviate from standard object-oriented
practice, however, which is to mirror the types from the program’s domain in the
source code classes. A program that manipulates addresses and accounts would be
expected to have corresponding Address and Account classes. The key idea is that the
program’s author has a mental model of how the domain works, and so maintenance
becomes easier because the code respects and reveals that model.

Developers can go further by embedding clues about other models, such as their
architecture model. They can embed hints about the system’s architectural style,
constraints, components, properties, and so on. Developers maintaining the code
would have an easier time if this model were easily inferred from the code, just like
the domain model.

When programming in an architecturally-evident coding style, developers embed
hints about the system’s architectural model, a kind of design intent, into the source
code. They go beyond what is minimally necessary for the program to work and fol-
low the model-in-code principle. This preservation of architectural design intent has
several benefits: It can prevent future code evolution problems, aid project efficiency
by reducing the time developers spend inferring intent from code, lower the docu-
mentation burden by keeping intent in the code instead of documents or diagrams,
and improve ramp-up time for new developers.

The sections that follow dig into the details you will want to know about the
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architecturally-evident coding style, such as how you can embed design intent in
code, what exactly the model-in-code principle is, and what kind of architectural
design intent is helpful to express. An informal catalog of patterns for expressing
architectural design intent is presented, and the chapter wraps up with an example
of using the architecturally-evident coding style on a system to process emails.

10.4 Expressing design intent in code

You can think of a program as a solution to a problem. Like any solution, it is certainly
better to have a solution than not, but even better than the solution alone is to add
the knowledge that led to its creation. The solution alone, whether it is a car, a proof,
a toothbrush, or a computer program does not contain all of the knowledge held by
its creator.

A solution is like a path through a maze: it will successfully guide you from start
to finish but it does not tell you why other paths were not chosen. The solution must
express the what but not necessarily the why. From the solution, you can infer some
of that knowledge, but not all of it.

Consequently, when you read source code, you do not understand the problem
as completely as the original developer did. That gap in understanding is the design
intent that is lost, the understanding and intentions of the original developer that are
not present in the solution.

There is hope, however, because when you read source code you infer some
amount of the design intent. You have flashes of insight and say, “Aha, I see now
why this is so.” Most of the time, source code is written merely to express the so-
lution, but it can be written such that it helps a reader infer the design intent by
inspiring those flashes of insight.

Deliberately dropping hints. An effective way to convey design intent is found in
Kent Beck’s book on Smalltalk best practices (Beck, 1996). His Intention Revealing
Message (i.e., method name) pattern says to give methods names that not only reveal
what they do, but also why they are doing it.

For example, a program’s design intent might be to highlight double-clicked text
by displaying it with reversed colors. The most straightforward way to do this would
be to put code that reverses the text colors into the double-click event handler, but
the pattern recommends going beyond this. The event handler should invoke a new
method called highlightText that would reverse the text colors. By doing so, the de-
veloper expresses that the intent of reversing the video is to achieve the highlighting.
The bureaucratic overhead of maintaining an additional method is negligible and it
avoids writing comments that may grow stale over time.
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Design by contract. Other examples of expressing intent are more explicit. Bertrand
Meyer popularized the concept of design by contract where method pre- and post-
conditions as well as object invariants are inserted into the source code and checked
by automated tools (Meyer, 2000). By relying on a method’s contract, clients can
safely ignore any internal implementation and treat the method, or the entire object,
as a black box.

Most developers follow a lightweight version of design by contract where meth-
ods are short, have a succinct purpose, and have a name that conveys their purpose.
You have surely seen code that rejects this practice, such as methods with ambiguous
names like “doSomeStuff” or method implementations that contain surprises unan-
ticipated from the implicit contract implied by their names. When design by contract
is rejected, readers have to “open the box” and deal with more complexity.

Soft mechanisms. You can categorize the hints and clues in source code as either soft
or hard mechanisms. Soft mechanisms rely on human interpretation for them to be
effective, as in the class naming examples above. If you do not speak Greek, reading
Java code with Greek class, method, and variable names in it might be just as hard
as reading disassembled Java code. Code comments are another example of a soft
mechanism.

Hard mechanisms. The second category is hard mechanisms, which are machine-
checkable. Usually some amount of correctness or self-consistency can be analyzed.
Most times there is no objective or global idea of correctness, but rather correctness
of source code with respect to some stated design intent. For example, there is no
objectively right or wrong answer about whether X and Y can communicate, but if
you declare the design intent that they should not, then that intent could be checked.

Code organization, such as the inheritance hierarchy or co-locating related func-
tionality in the same module, class, or method, might seem like a hard mechanism.
But the compiler would be just as happy if that same code were reorganized, so it is
a soft mechanism that relies on the reader to draw the right inferences.

Pre- and post-conditions, invariants, and assertions are all hard mechanisms. The
type system in most languages enforces information hiding and compatibility. Mod-
ules and packages usually have visibility constraints. Virtual methods, class hierar-
chies, and interfaces can all be used to enforce design intent. Some design patterns
can enforce intent too, such as using the Facade pattern to limit access. Going beyond
mainstream programming languages, you can create more expressive languages, use
pre-compilers, or combine annotations with analysis to express and enforce design
intent.
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10.5 Model-in-code principle

One kind of design intent that you would like to communicate to readers is the models
that you use, including domain models and architecture models. If you provide hints
and embed parts of the model into the source code, design intent will be easier to
recover, or may not be lost at all. This idea can be expressed as the model-in-code
principle:

Expressing a model in source code helps comprehension and evolution.

A corollary of this principle is that expressing a model in code necessarily involves
doing more work than is strictly necessary for the solution to work. Every solution
provides some hints about the domain and the knowledge necessary to create the
solution, but the big idea is to express more than is necessary for the solution to work.
Objects in the source code do not care what they represent, if they are encapsulated,
if they are used as simple data structures, etc., so you can use them in stylized ways
to reduce the amount of design intent that is lost.

Domain models in code. The standard way of conveying design intent in object-
oriented programming is to mirror your understanding of domain types and relation-
ships in the class structure of your program (Booch et al., 2007). The domain model,
whether it is written down or exists in the heads of its developers, may include ac-
counts and addresses as types, so the source code would similarly have Accounts and
Addresses as classes. Since developers who read the program often already have an
understanding of the domain, they will have some intuition about how the classes
in the program work. They will have an easier time choosing where to add new
code because they can allocate responsibilities to classes that correspond to domain
types. They can also predict how the original developer allocated responsibilities. A
new developer could learn about the domain simply by reading about Accounts and
Addresses in the source code.

A stricter version of embedding the domain model in the source code is found in
domain driven design (Evans, 2003). It is compatible with the model-in-code princi-
ple but goes further by encouraging an agile development process and discouraging
expressing domain models on paper.

Since there are not controlled experiments to test the model-in-code principle, per-
haps the most compelling supporting evidence is its continued popularity with devel-
opers. Starting with the Simula language in the late 1960’s (Holmevik, 1994), object-
oriented languages have been designed to facilitate mirroring the domain model in
the source code. Software developers are continually reflecting on the state of their
craft and the idea has not been thrown out yet.

There are some logical arguments why it is helpful to embed your domain model
in your code. One is that the nouns in the domain change more slowly than the verbs.



178 CHAPTER 10. THE CODE MODEL

Mirroring the nouns in the domain will lead to less churn than mirroring the verbs
in the domain, as functional or procedural programs do, but it is hard to demon-
strate that the verbs change more quickly. Another argument is straightforward, that
developers reading the code can infer the domain types, which directly helps compre-
hension and should help evolvability.

Technical debt and divergence. One consequence of expressing models in code
is a curse with a hidden blessing. The curse is divergence: the developers’ current
best understanding of the model can diverge from the model expressed in the source
code. The less accurate the model in the source code is, the less useful it is, so de-
velopers toil to minimize the divergence. Ward Cunningham refers to this divergence
as technical debt and defines it as the accumulated misalignment of code with respect
to the current understanding of the problem (Cunningham, 1992; Fowler, 2009).
Most examples of technical debt that have been offered relate to domain model mis-
alignment, but other examples, like failing to upgrading to a new database version,
broaden the idea to other kinds of design, including architecture.

Divergence and technical debt are inevitable with or without models expressed in
the code, so the hidden blessing is that divergence is easier to identify and fix when
models are expressed in the code. Rather than a gut feeling that the code is becoming
uglier, you can compare the model with the code and identify exactly which parts are
in need of repair.

Although this discussion has focused on domain models in the code, the model-
in-code principle is not specific to domain models. Developers who can see the ar-
chitecture in the code are more likely to comprehend it and less likely to accidentally
break its styles or constraints. Most architectural elements change relatively slowly,
including the large-grained components, the connectors, and the styles in use. And
expressing the architecture elements can greatly simplify the mapping between mod-
ule and runtime views of the system.

10.6 What to express

Now that you have seen that code can fail to express your design intent and you have
heard about the model-in-code principle that suggests embedding your model in your
code, what is the architectural design intent that you want to see in the code? What
do your architecture models reveal that is normally difficult to discover from code?
We will look at these questions from the perspective of the module, runtime, and
allocation viewtypes.

Module viewtype. Source code is itself in the module viewtype, so code expresses
most elements from the module viewtype rather well. One exception is that most
languages lack a full-featured module system. Most languages cannot express the
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dependencies between modules that are important parts of the architecture model.
Programming languages often have relatively simple module visibility restrictions that
can force you to break encapsulation. Some languages, such as C, express modules
only via the directory structure where source files are saved, assuming that one direc-
tory means one module.

Programming languages let you declare data structures and classes but not the
larger architectural elements like component, connector, and port types. It is diffi-
cult to see what set of classes makes up a component or connector type. Classes
and interfaces can express what services are provided, but not what services are re-
quired. While you can talk about the dependencies code has, it is usually awkward
or impossible to express those dependencies in the code itself.

Protocols for interaction are an obvious concern that is visible in architecture mod-
els but that has no first-class representation in source code. Code comments are often
used to discuss legal calling sequences. Protocols can be expressed using annotations,
which are increasingly common in object-oriented languages. Annotations are also
being used to express other architectural properties.

Runtime viewtype. The entire runtime viewtype is hard to envision from looking
at source code because you must read through the code and mentally animate the
runtime instances. This mental animation is made harder with branching, looping,
and input parameters. When relevant code is not co-located, it is easy to overlook
places where new components are instantiated or where connections are made.

A runtime view of a system can look like a sea of objects. Boundaries between
components are hard to discern because the code does not let you declare anything
larger than a class. Connectors are hard to see too because identical communication
mechanisms, such as method calls or the Observer design pattern, are used both
within and between components. Connectors may have no runtime representation
at all. Communication between components does not happen just at ports, but often
from any number of objects inside the components.

Architecture constraints and styles, as intensional elements, are exceptionally dif-
ficult to see in the source code. Architectural constraints and styles often refer to
components and connectors rather than objects, so inferring them is doubly hard.
First, components and connectors must be identified from the sea of objects, and
second, the rules governing their runtime arrangement must be inferred.

While protocols are a common source of trouble, they have no representation in
the module or runtime views. Even when legal protocol transitions are written as
comments, the protocol itself has no representation either in the module view or in
the runtime view. That means that when a reader mentally animates the code, he
must envision both the protocol and its current state, even though neither has an
explicit representation.
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Allocation viewtype. The runtime viewtype is merely difficult to infer from source
code, but it is usually impossible to infer the allocation viewtype. Natural language
is used to describe how code should be deployed, if it is written down at all. Often
code is deployed in one large chunk on a single machine, but not always. The kind
of machine and the network properties will impact the system’s performance, and in
cases it may be possible to express these properties in the code.

10.7 Patterns for expressing design intent in code

Now that you have seen some opportunities for expressing architectural design intent
in the source code, we turn to specific patterns for doing so. This section provides
a set of patterns that can be used to express architecture models in code. These
patterns assume the use of a mainstream statically-typed object-oriented language
such as Java, C++, or C#. Other categories of languages can use similar patterns,
but may also have other opportunities to express design intent.

This set of patterns describes how you can include code that, while unnecessary
for the program to function correctly, provides hints about the architecture to readers
and maintainers of the code. While these patterns have a bureaucratic overhead in
that they add more lines of code, none of them has a significant runtime performance
or space overhead.

To understand the patterns, it is useful to understand the reification pattern. The
general object-oriented pattern called reification says that you create an object to
represent a concept. For example, the concept of an event could be implemented as a
method call, but using reification you would create an event object. As you will see,
a common strategy in this set of patterns is to make your architecture abstractions
evident in the source code by reifying them as objects, superclasses, or annotations.

Component types. Component types are bigger than classes but programming lan-
guage provides nothing bigger, so you can reify a component as a class. There are a
number of things you can do to make these component classes visible. You can do it
simply with a naming convention, such as naming a class FooComponent. You can
additionally provide an empty abstract superclass or interface called Component that
serves to tag your intended component classes. This pattern is similar to the Java
Serializable interface, which also has no methods but serves as a marker.

In a normal object-oriented system, it is difficult to identify the components be-
cause there are so many classes. Since most integrated development environments
(IDEs) will let you search or browse subclasses, it will be easy to identify the set of
components in the system by looking for subclasses of Component.

The component class can have instance variables that refer to the component’s
ports and/or connectors. Objects inside the component could have an instance vari-
able referencing the component object. When these objects need to communicate
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Design Intent Patterns

Component
types

Create class to represent the component, possibly with abstract
superclass or interface as tag, possibly with naming convention: class
FooComponent, possibly with instance variables to identify ports,
possibly with component invariants as methods
Align module and component names, possibly with sub-modules

Connector
types

Create class to represent the connector, possibly with abstract
superclass or interface as tag, possibly with naming convention: class
FooConnector

Port types Create interface to represent provided port
Create class to represent provided or required ports, possibly with
abstract superclass or interface as tag, possibly with naming convention:
RequiredFooPort

Protocols Use port class and State design pattern
Use external tool, annotations, and static analysis

Properties Use annotations and static analysis
Use naming pattern: AsynchronousSend

Styles and Use naming pattern: FeatureExtractFilter
patterns Place style superclasses in named package

Invariants Bake invariant into API
& constraints Use assert statements or modeling language (e.g., JML)

Use comments

Module Use existing language support or comments
dependencies Use external tool, annotations, and static analysis

Module access Use naming pattern: InternalFoo
restrictions Hoist using component framework (e.g., OSGi)

Runtime Co-locate component creation, attachment, initiation
structure Hoist setup phase, possibly into declarative form

Figure 10.6: A summary of the patterns to express design intent in source code.

with other components, they could ask the component object for the appropriate port
or connector, such as myComponent.getOutputPort(). Communication between ob-
jects inside the component would be as usual.

Having an explicit component class provides a place to put checks that span the
component, such as initialization checks. The component class also provides a place
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to put comments, possibly including comments about invariants that span the com-
ponent, or methods that check that the invariants hold.

Connector types. The concept of a connector is quite general. Examples include
method calls, event dispatches, and shared variables. In the source code, you might
use these mechanisms to communicate between components or simply between ob-
jects inside a single component. To highlight that communication is between com-
ponents, you can reify the connector type as an class. As with components, you can
simply name the connector EventBroadcastConnector, or you can use an abstract class
or interface named Component.

When two components want to communicate, they would create an instance of the
connector class then invoke methods on it. What happens inside the connector de-
pends on what kind of connector it is, but it might send messages across the network,
write to a shared variable, enqueue a message, or simply invoke another method.

One advantage to having an explicit connector is that you can move some responsi-
bilities out of the components and their constituent classes. For example, using shared
memory without an explicit connector means that the component is responsible for
safe concurrent access to the memory. With an explicit connector, this responsibility
can be moved to the connector, leaving the component a bit simpler. It also opens up
the possibility of later changing the type of connector, for example swapping a local
connector for a distributed one.

Having an explicit connector means that arbitrary classes inside of a component
should not be communicating outside of the component, and should instead route
their communication through the connector. This restriction should make the code
easier to read later on and should make debugging protocol errors easier because all
messages flow through one place.

Port types. Object-oriented languages can describe the methods a class provides,
so you can use object-oriented mechanisms like abstract superclasses in C++ or in-
terfaces in Java to express a component’s provided behavior. Your component class
could implement these interfaces to express its provided interface.

But you may also want to describe what the component requires from its envi-
ronment. Since there is no corresponding object-oriented mechanism to do that, you
can create an object that represents a port and name it something like InventoryPort.
As with component and connector types, you may also use a superclass or interface
called a Port. Your component class will have an instance variable that refers to this
port, such as requiredInventoryPort, and outgoing communication can be sent out the
port and then on to a connector.

You can also make port objects that represent the provided behavior. These will
behave similarly to the Facade design pattern (Gamma et al., 1995).
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Protocols. Having an explicit port or connector gives you a place to express pro-
tocols. The port object or connector object could be written to check or enforce the
protocol at runtime, logging protocol violations or even rejecting messages that would
break the protocol. One possible choice is to use the State design pattern to imple-
ment the protocol (Gamma et al., 1995). Another option is to use an instance variable
to track the protocol state. The state of the protocol could then be queried at runtime
by objects in the component.

Another choice would be to use annotations to express the protocol and use static
analysis to check that the source code will always conform to the protocol.

A lightweight option is to just document the protocol for human readers, perhaps
as JavaDoc comments, on a port class. This option at least centralizes communication
to flow through a single place and provides a natural place to document the protocol
in comments.

Properties. In architecture models, you may place properties on many kinds of
elements. For example, a connector may be synchronous or asynchronous, A module
may depend on the language features introduced in Java 5, and a component may
require 50MB of memory when running.

One way of expressing these properties is to use annotations in the source code,
which works with languages like Java and C#. Annotations can be placed on elements
that are first class in a programming language, which would include objects and
methods. The more architectural elements that you reify, the more places you have
available to place annotations.

Another option, and one that works with all languages, is to encode the properties
into the names, such as a method named asynchronousSendMessage. This option is
unwieldy with multiple properties encoded into a single method name and may not
work if the method names are previously constrained by an interface definition.

Styles and patterns. The design patterns book (Gamma et al., 1995) makes the
point that standardizing the vocabulary of patterns enables developers to communi-
cate more efficiently. Code that includes the name “visitor” is a strong hint that the
Visitor design pattern is being used.

Since styles are kinds of patterns, you can use the same kinds of hints to make
them visible. A developer reading code that mentions a pipes and filters or clients and
servers has been given a strong hint as to the architectural style being used. Styles
have constraints on how the pieces can be put together, and if you use annotations
you may be able to write tests or analysis that checks that the constraints are satisfied.

You can strengthen the hint by providing superclasses or interfaces to represent
the elements of the style, such as pipes and filters. By placing these superclasses in a
package with an appropriate name, like infrastructure.pipeAndFilterStyle, you make
the connection to the style quite apparent.
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Invariants and constraints. When source code breaks an invariant, the effects may
not show up locally and debugging becomes difficult. One way to avoid problems is
to bake the invariant into the API. For example, in a hash table data structure, the
API may require that a key and a value are added at the same time, preserving the
invariant that there are no keys without values and vice versa. Enforcement using an
API often ensures the invariant, but does not make the invariant visible.

There are ways make the invariant visible. Code comments are an option, but
unsatisfactory because they may not be read, may become out of date, and are local
while invariants may span many objects. Developers can embed the invariants into
the code with assert() statements or use a constraint modeling language like JML or
Spec#. Unfortunately, these methods often have difficulty expressing invariants that
span objects, which are the norm with architectural invariants.

Programming languages require precision, but some invariants are difficult to ex-
press precisely. One example is the constraint that filters in a pipe-and-filter system
should process incrementally rather than in batch. What we want to avoid is one call
to open the output port, one call to write all the data, and one call to close the port.
But is it incremental enough if it writes just twice? Should it write once for every
read from the input port? The problem here is the definition of “incrementally” is a
bit fuzzy, but presumably you would know it when you see it.

Module dependencies. While module dependencies are one of the most common
constraints that teams think about, programming languages can make expressing
them quite difficult. Most mainstream languages have no good mechanism to ex-
press dependencies like “module A should not depend on module B.” Comments can
be used, but even then there is often no obvious place to put them. Java 7 is sched-
uled to include support for modules, which includes expressing module dependencies.
Today, external tools exist to express and check dependencies (Sutherland, 2008).

Support for modules may be present outside of the language, however. In .NET
(Fay, 2003), code can be bundled together into assemblies that express dependen-
cies on other assemblies. Enterprise Java Beans (Monson-Haefel, 2001) in Java are
similarly bundled into web archive files.

Module access restrictions. Modules are used both to group code together and to
enforce encapsulation boundaries. Almost all module systems (like Java packages) al-
low you to mark contents as public or private, but they have limits so developers may
be forced to reveal details they would prefer to keep private. It is possible to use soft
mechanisms to hint at the private parts, for example the way the Eclipse framework
names packages like InternalFoo. Smalltalk did not originally have any enforcement
of public or private methods, but private methods were placed in a category named
Private.

Soft mechanisms like these work well when the developers realize what the hints
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mean but they cannot catch accidental encapsulation violations. Hard mechanisms
for enforcing visibility include hoisting the problem into a framework like OSGi (see
Section 2.8) that will enforce visibility, or using the improved module systems defined
in upcoming JSRs.

Module-component alignment. In the source code there is no requirement that
you align modules (i.e., groups of code) with components (i.e., a group of code you
intend to instantiate at runtime). You could define a component to consist of code
from scattered modules, a little bit of code from this module and a little bit from
that one. It is clearer, however, if you align the modules and components so that
components are made up of whole modules, rather than fractions of them.

Since you have control over the module hierarchy, you can usually package the
modules so that their boundaries line up with component boundaries. You can go
further by creating one module (or package, or folder) that contains sub-modules for
each component, and another module that contains the data interchange types that
will flow between components. This pattern is frustrated by reused modules because
you cannot place them into the module hierarchy as you choose.

Module to runtime mapping. Figuring out which component instances will exist
at runtime and how they will be connected is difficult to do by reading source code.
If your architecture is static (i.e., it goes through a setup phase and then does not
change), then you can make the task of understanding easier by co-locating the code
that does the setup. The setup usually consists of three parts: creating instances of
components and connectors, attaching the components via connectors, and initiating
processing. While some systems can simply start, other systems will have a complex
initiation sequence, and scattering it makes the code hard to understand.

The setup phase is often hoisted (Section 2.8) because it can be standardized.
In non-hoisted setup, procedural code executes and results in a configured set of
component and connector instances. In hoisted setup, however, bootstrap code reads
a declarative file that describes the configuration; it then performs the creation, hook-
up, and initiation, accordingly. This can greatly simplify the job of understanding the
system’s runtime configuration, since a developer no longer has to mentally animate
procedural code, and can instead read a declarative file. Examples of frameworks
that hoist the setup include Struts, Enterprise Java Beans, and OSGi / Eclipse.

Not all architectures are static, however. A voice-over-IP application may rely on a
network of nodes that is constantly shifting as computers join and depart. In dynamic
architectures like this, understanding the architectural style helps you understand the
system’s runtime configuration. The style may limit the number of nodes that your
computer may connect to, or it may preferentially connect to supernodes. Instead of
thinking that “anything can happen,” you know how the style constrains the possible
runtime configurations.
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To understand dynamic architectures better, you can make the language of dy-
namism as simple as possible. For example, you can limit the architecture changes to
adding / removing nodes and connecting / disconnecting nodes, rather than fancier
operations. Constraint checking should be as clear as possible. By simplifying, you
stand a chance of understanding how the architecture can change, and therefore what
kinds of configurations may arise.

Anti-pattern: Buried treasure. While most of the other advice is on what you
should do, this is advice on what to avoid. It is easy to subvert the other good practices
by burying treasure in inappropriate places. Responsibility-driven design asks you to
allocate responsibilities to parts of your design, but you should avoid hinting at one
thing while doing another (Wirfs-Brock, Wilkerson and Wiener, 1990). For example,
most developers reading source code will assume that a getX() method will have no
side effects and a method named launchSpaceShuttle() will do the obvious thing. If
you signal to the reader that you have allocated a responsibility, you should follow
through in the details.

A corollary of this is that if you suspect a reader might be surprised by what
will happen, then avoid that surprise by hinting at the effects. Sometimes simply
renaming methods will yield clarity, other times you may need to refactor the design.

Notes on component frameworks. The patterns above can be applied directly in the
programming language, but another way to express architecture elements is to use
a organizing framework that structures the code. Where the patterns above embed
architecture elements into the source code, these frameworks group classes and pack-
age them into modules using a separate language, usually described in a manifest file.
The frameworks often have a runtime presence so that they may manage the modules
while the system is running.

The OSGi framework, for example, defines bundles (i.e., modules), services, a reg-
istry, a bundle life-cycle, security, and a standardized execution environment (OSGi
Alliance, 2009). Its bundles are simply JAR files (Java ARchives) with a manifest
file that describes the purpose of each file. The manifest describes the bundle name,
version, and its required and provided dependencies. The manifest file is written in a
simple proprietary language, so it requires no changes to the Java source code.

Microsoft .NET provides similar features with assemblies. The manifest file in an
assembly describes the assembly name, version, the set of source code files, and the
assembly’s required and provided dependencies.

If you use a component framework like OSGi, .NET, Java Enterprise Edition (Java
EE), or similar, it will likely conflict with using many of the architecturally-evident
coding patterns from this chapter. In some ways, the declarative nature of the mani-
fest files is an improvement over the more subtle hints provided via the patterns, and
the frameworks generally provide other benefits related to runtime management of
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Figure 10.7: A component assembly for the Email Answering System. It accepts an email on the
Email In port, categorizes it, then emits it either from the For Humans port or the Auto Answer port.

code, often allowing a system to load new modules at runtime. On the other hand,
these frameworks may constrain the kinds of systems that can be built. For exam-
ple, Java EE supports N-tier systems well, but not the pipe-and-filter or peer-to-peer
styles.

Limits. Even if you follow all the advice here, your code will be missing design in-
tent. You have already seen that invariants are difficult to express, especially when
they span many objects or components. Architectural decisions are also hard to make
evident: the source code has every detail necessary for the program to run, but your
architecture may have made commitments to only a few decisions. When evolving
your code, it is difficult to disentangle those commitments from the parts that are
meant to be open to changes. Signaling responsibilities is also difficult. Code evolu-
tion usually involves adding new features and developers must make choices about
where best to put the new code.

10.8 Walkthrough of an email processing system

It is useful to have a concrete example so that you can see how to make architecture
models visible in code, so this section will apply the patterns to a system designed to
process emails. The system will read the emails and, if it is sufficiently confident that
it understands the request, it will answer the email itself. If it does not understand the
email then it will leave it for a human to handle. A system like this might be helpful
in a company that receives many repetitive emails, such as requests for shipment
tracking numbers.
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The processing of incoming emails flows through several stages of processing, as
shown in Figure 10.7. The first stage is to clean up the original text, for example
removing HTML and other markup, yielding a purely textual message. From that,
the text is marked up to indicate the subject, sender, paragraphs, sentences, words,
account numbers, names, and tracking numbers. Then several feature analyzers are
given a chance to recognize salient features in the message. These analyzers can
be quite computationally intensive. Finally, the combined results from the feature
analyzers are fed into a classifier that decides if it understands the message and either
provides a response email or admits defeat. The system has been implemented using
a pipe-and-filter architectural style (see Section 14.8) because of the overall flow and
to enable parallel processing of the feature analyzers.

This system could be implemented as one big procedure with the structure of
a flowchart, or it could be implemented in an object-oriented style. Instead, it is
implemented using an architecturally-evident coding style. The example shows how
you can reveal your module structure by organizing your packages, make component
and connector types visible, and even help readers anticipate the runtime structure
of the system.

Package structure. Source code is itself in the module viewtype. It is not a challenge
to discover what code exists because you can simply look at it. As a codebase grows
larger, however, its organization becomes increasingly important. You can structure
the set of packages and modules to provide hints about the architecture. Figure 10.8
shows the package structure for the email system. Its top-level organization makes
clear what is shared infrastructure relating to the pipe-and-filter style, and what is
the specific system. Inside the system, the package organization makes it easy to find
individual components and the datatypes that flow between them. Although it is not
shown, you would expect to find the components package subdivided to reveal each
component in the system.

The package organization is helpful in revealing the architecture, but it has limits.
You might hope to co-locate all the code for a component in a single package, but this
is usually impractical. The Pipe class, for example, uses a LinkedBlockingQueue from
the java.util.concurrent package in the standard Java libraries, so you must refer to
that package instead of including it in the infrastructure package directly. The more
code sharing there is, the harder it will be to use the package structure to reveal what
code makes up a component.

Furthermore, the package hierarchy cannot reveal dependencies, so to discover
the dependency on the java.util.concurrent package you would have to read the
source files in the package. Additionally, there is no way to express desired constraints
across packages. For example, you cannot express that the system.components pack-
age may depend on the system.interchange package, but not the reverse, so a devel-
oper evolving the code could accidentally add such a dependency.
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Figure 10.8: The package structure for the Email Answering System. It is organized so that the
module structure is apparent from the directory structure, but module dependencies cannot be
inferred.

Visible component types. Some of the source code in the email processing system
will have a runtime presence as one or more component instances, such as the tagging
or classifying component instances from the system. Other code exists as functions
to be used (such as a statistical analysis package), and has no runtime instances.
The source code should reveal not only the modules (e.g., that statistical analysis
package), but also the component types (e.g., the tagging component).

Figure 10.9 shows the source code for a Filter class. The Filter class exists so
that someone reading the code is aware that you are using the pipe-and-filter style.
Another option would have been to simply add “filter” to the names of other classes,
such as TaggingFilter, but having an explicit class has other advantages. Most modern
development environments (IDEs) have the ability to display a class hierarchy, so you
could display a view of all subclasses of the Filter class, showing at a glance all of the
filters you have defined.

Note that the Filter class is a subclass of the Component class. This is another
hint to readers of the code that you are defining a component. You are embedding
your understanding of the architecture, specifically that some of the code is there to
implement components, and that a filter is a kind of component. The Component
class has an empty implementation, so it is just a hint to developers, and does not
provide any reusable code.

The Filter class, in contrast, does provide code. It takes advantage of using Filter
as a superclass to do some architecture hoisting (Section 2.8), standardizing and sim-
plifying the handling of concurrency in the system. Each filter runs in its own thread,
incrementally processing its inputs. The Filter class sets up a Template pattern, re-
quiring subclasses to implement the virtual work() method to do their processing.

Ideally, this implementation would enforce the constraint that filters process incre-
mentally, not in a single batch, but it is difficult to see how to enforce this constraint.
It would also be helpful to ensure that filters communicate only through pipes, but
again it is difficult to express this constraint in the code. You can write comments
describing the constraints, and the Filter class provides a good place to put the com-
ments. Finally, Java allows a class to have only a single superclass. In this system,
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1 package infrastructure.pipeAndFilterStyle;
2 import infrastructure.Component;
3 /**
4 * This class defines a skeletal filter that reads data from
5 * one or more input ports and writes data to one or more output
6 * ports. Subclasses should override the work() method to
7 * implement the functionality of their filter.
8 */
9 abstract public class Filter extends Component implements Runnable {

10 /**
11 * This run() method is invoked when the thread starts.
12 * It runs until the abstract work() method terminates,
13 * or the thread is interrupted.
14 */
15 public void run() {
16 try {
17 this.work();
18 } catch (Exception e) {
19 System.exit(1);
20 }
21 }
22 /**
23 * Template method --- subclasses must implement
24 * Read available data from input ports and incrementally
25 * write processed data to output ports.
26 */
27 abstract protected void work() throws InterruptedException;
28 }

Figure 10.9: Source code for the Filter class. Every filter in the system is a subclass of this one,
which establishes a Template method pattern for subclasses to complete.

it was possible to use Filter as a superclass, but in other systems that may not be
possible. Another option is to use Java interfaces since a class can implement many
interfaces, but this would not allow you to hoist concurrency concerns.

Visible connector types. If components can be difficult to see in the source code,
then connectors are almost invisible. The most common connector, a procedure call,
is impossible to differentiate from regular messages being sent between the smallest
of objects. So it is arguably more important for you to provide hints about connectors,
since they make inter-component communication visible.

Figure 10.10 shows the source code that implements a pipe connector. Similar to
the Filter component, the pipe is its own class that is a subclass of an empty Connector
class. You could use your IDE to show all subclasses of Connector, which will let you
know the kinds of connectors available in the system.

Unlike the abstract Filter class, the Pipe class provides a concrete implementation
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1 package infrastructure.pipeAndFilterStyle;
2 import infrastructure.Connector;
3 import java.util.concurrent.*;
4 /**
5 * Implements a pipe to be used as-is, not subclassed like
6 * the Filter superclass. Reads from the pipe will block if
7 * no data is available. Writers should invoke close(), which
8 * a) prevents future writes to the pipe
9 * b) lets the reader know that no more data is coming

10 */
11 public final class Pipe<T> extends Connector {
12 private BlockingQueue<T> myPipe = new LinkedBlockingQueue<T>();
13 private boolean isClosed = false;
14
15 public T blockingRead() throws InterruptedException {
16 if ( myPipe.isEmpty() ) return null;
17 T t = myPipe.take();
18 return t;
19 }
20 public void blockingWrite(T t) throws InterruptedException {
21 if ( isClosed() ) throw new IllegalStateException();
22 myPipe.put( t );
23 }
24 public void close() throws InterruptedException {
25 this.isClosed = true;
26 }
27 public boolean isClosed() {
28 return isClosed ;
29 }
30 public boolean isClosedAndEmpty() {
31 if ( isClosed() && myPipe.isEmpty() ) return true;
32 else return false;
33 }
34 }

Figure 10.10: The source code for the Pipe class. Unlike the Filter class, it provides the final,
non-subclassable implementation of a pipe. It provides a safe concurrent queue that can be used
by any Filter.

of a pipe and is not designed to be subclassed. It uses a thread-safe BlockingQueue
from java.util.concurrent to enqueue and dequeue messages. As long as filters ex-
clusively use this pipe class to communicate with other filters, the filters can mostly
ignore concurrency and not have problems, which was the intention of architecturally
hoisting the concurrency concern into the Pipe and Filter infrastructure classes. (Note
that since this connector implementation does not clone the sent messages, the sender
could interfere with the receiver if it held a reference and mutated the message object
after sending).

The Pipe class has a simple API consisting of reading, writing, and closing. The
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class will throw an exception if reads or writes occur after the pipe has been closed.
The state of the protocol is explicitly represented in the isClosed boolean field. While
the system does have explicit components and connectors in the source code, it has
omitted explicit ports. If the protocol had been more complex, or if a component
had to track the state of connections to multiple components, it would have been
reasonable to have explicit ports.

The Pipe class shows one additional kind of hint: it reveals properties. The read
and write calls are not asynchronous, so the caller may block if there is no message
ready to read, or if the pipe is full. Consequently, the methods are named block-
ingRead and blockingWrite. This hint works well because it highlights just one prop-
erty, the synchronous nature of the call, so but it would work less well with many
properties, such as a blockingFooBarBazRead.

Easy mapping to runtime viewtype. So far the code has provided hints to make
elements of the module viewtype more visible: modules, component types, and con-
nector types. As you saw before in Section 9.6.4, envisioning how a system will
behave at runtime by looking at its code can be quite difficult. You can make that
mapping from module viewtype to runtime viewtype easier by following conventions
in the source code.

Figure 10.11 shows an excerpt from the source code that instantiates the compo-
nents and connectors for the system. This system has a static component assembly,
that is, its configuration of components and connectors does not change as the pro-
gram runs (see Section 9.7 on static and dynamic architectures). If you co-locate all
of the initialization and setup code, then a developer reading that code can directly
see what instances are created and how they are arranged.

While this example shows an example of hoisting the concurrency concern, the
program itself is in control of instantiating its components and connectors. Other
systems hoist this concern too, such as Apache Struts, which uses a configuration file
to declare the servlets it should instantiate. So, this example cannot ensure that this
is the only place where components are instantiated or connections are made.

Reflection on example. Looking back on this example, you can see that the code
embeds concepts from the architecture model. Not all of the architecture model is
expressed and there are still opportunities for a new developer to accidentally violate
intended constraints, but there are plenty of hints to guide him in the right direction
also. For example, the code clearly expresses the use of the pipe-and-filter architec-
tural style. This style is well-suited to the demands of the problem and enables easy
parallelization of the computationally intensive feature extraction stages.

Concurrency is always a tricky problem. The code simplifies the problem by solv-
ing it once and applying that solution consistently: filters only interact via thread-safe
pipes. In the system here, your worries do not ramp up as the number of threads in-
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1 ...
2 public static void main(String[] args) {
3 createPipes();
4 createFilters();
5 startFilters();
6 ...
7 }
8 protected static void createPipes() {
9 pipeCleanupToTagging = new Pipe<EmailMessage>( );

10 pipeTaggingToMux = new Pipe<EmailMessage>( );
11 ...
12 }
13 protected static void createFilters() {
14 filterCleanup = new InputCleanupFilter();
15 filterTagging = new TaggingFilter();
16 ...
17 }
18 protected static void startFilters() {
19 filterCleanup.run();
20 filterTagging.run();
21 ...
22 }

Figure 10.11: Arbitrary source code can create and reconfigure new component instances at any
time, but readers of the code will have difficulty imagining the runtime structure. Instead, as seen
here, you can co-locate the code that creates components, and similarly co-locate their configura-
tion, which makes it easy for readers.

creases. The filters are constrained by the style to always read from their inputs and
write to their outputs, a simplification that makes reasoning about many threads pos-
sible. Compare this solution with an unconstrained system with hundreds of threads,
one where you would be right to worry about concurrency problems.

The system embodies architecture-focused design (see Section 2.7), since it con-
sciously relies on the architectural design to solve the concurrency problem. It does
not address problems locally, nor does its thread safety arise accidentally. It hoists the
concurrency problem into actual running code in the infrastructure package, rather
than just a design. In practice, this would allow a developer working on a filter to
focus exclusively on the job of the filter, rather than also worrying about concurrency.

10.9 Conclusion

While architecture models may take many forms, including drawings on paper, white-
board sketches, or simply verbal communication between developers, models lose
their value when they no longer correspond to the source code. Developers face the
challenge of overcoming the model-code gap between what the models express and
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what the source code expresses. It exists because models and code have different
vocabularies, express ideas at different levels of abstraction, have different levels of
design commitments, and most importantly differ in their use of intensional and ex-
tensional elements.

Once you recognize that a gap exists, you are confronted with the challenge of
managing it, because the models and code tend to diverge over time. Teams may fol-
low various strategies to manage the divergence, but some key insights are: that tool
and programming language choices can reduce gaps and therefore divergence, that
higher detail models will diverge faster than lower detail models, and that projects
will vary in their tolerance for divergence.

Design intent is lost during the transition between design and code. Currently,
developers avoid losing design intent by expressing hints in the code, including us-
ing intention revealing names, and applying the concepts of design by contract. The
model-in-code principle says that expressing a model in the system’s code helps com-
prehension and evolvability. Developers already mirror their understanding of the
domain in the code they write by creating classes that correspond to types in the
domain. Making the domain model evident in the code goes beyond what is strictly
necessary for a solution to work, but developers do it to aid code comprehension
and to make future code changes easier. They use a combination of hard and soft
mechanisms to communicate the model.

An architecturally-evident coding style seeks to minimize the amount of lost ar-
chitectural design intent. Making the architecture model evident in the code has the
same advantages as making the domain model evident. The architecture model rep-
resents hard-won knowledge that developers should strive to maintain as they write
code. This chapter provided a set of patterns that can be used to encode architectural
elements in object-oriented languages like C++, Java, and C#.

You must make judgment calls about whether or not to apply these patterns and
choose which parts of your architecture model to express in the code. For example,
the email processing example did not represent the ports in the code because they
would add bureaucracy to the code without much benefit. In another system, it might
be rather important to express ports, perhaps because the protocols are complex and
ports are a natural place to represent those protocols.



Chapter 11

Encapsulation and Partitioning

The choices made by software developers have a big impact on the qualities of the
software. This chapter discusses one of the biggest choices that developers must
make: how they partition the software into smaller pieces, and what the interfaces to
those pieces look like.

Most systems are organized into a hierarchy of modules or components. If you
build this hierarchy well, it will tell a story to whoever looks at it, and it will be easy
to understand. This chapter presents several strategies for partitioning components
or modules. Not all interfaces are effectively encapsulated, and an interface descrip-
tion is more than a list of operation signatures. This chapter presents a method for
describing the minimal set of abstractions necessary to understand how operations
work. A theme that runs through the chapter is that partitioning and encapsulation
are tied closely to comprehensibility.

11.1 Story at many levels

Invariably, large systems will have lots of interacting parts. Unless great care was
taken in their design, they will be hard to understand. For example, if you look at old
machines, like the ones in London’s National Museum of Science and Industry, you
will see many parts intricately interconnected. After staring at these machines for a
long time, you can begin to understand how they work, but the understanding does
not come easily. If you look at their modern equivalents, you will see that they are
better structured and that their constituent parts are encapsulated.
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Both the old machines and the new ones work, so the benefit is cognitive, not
technical. The systems themselves do not care if they are elegantly designed or in-
scrutable, but developers who work with them do. Developers prefer systems that are
well-organized, not ones that are a sea of classes, modules, or components that make
their heads swim.

The question is: how can you build systems that are comprehensible? The usual
answer is to structure the system using a hierarchical nesting of parts. Yet this is
only part of the solution, since a hierarchically nested system may still be hard to
understand. For example, what if a system has many components, but just one level
of nesting? Or if its modules are haphazard groupings of functions? Or if modules
and components have poor encapsulation boundaries that couple them tightly and
reveal their implementations?

To be comprehensible, your software should be structured so that it reveals a story
at many levels. Each level of nesting tells a story about how those parts interact. A
developer who was unfamiliar with the system could be dropped in at any level and
still make sense of it, rather than being swamped.

Constructing the story. No simple process or set of rules will always yield a system
that is comprehensible and tells a story at many levels, but here are a few general
guidelines that will steer you in the right direction.

1. Create levels of abstraction by hierarchically nesting elements (primarily mod-
ules, components, and environmental elements).

2. Limit the number of elements at any level.
3. Give each element a coherent purpose.
4. Ensure that each element is encapsulated and does not reveal unnecessary in-

ternal details.

If you do this at every level of nesting, developers will see a reasonable number of
elements and will infer a story about how they work together. For example, in the
Yinzer example, there were just four components (see Figure 9.8). You can infer how
they collaborate to solve a problem, and with the provided scenario it is even easier.
You should expect that each of those components will have subcomponents or objects
within it, but if those components or objects also follow the guidelines above, then
you could understand them too. The result is a story at many levels.

Note that maintaining multiple levels of nesting is a bureaucratic burden. You
must trade off the cognitive benefit of maintaining a story at many levels with the
maintenance costs. While each project will strike its own balance, here are some
rough heuristics.

At a particular level of abstraction, a reasonable number of elements is likely be-
tween 5 and 50, with 50 being quite large. So, most components should be composed
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of 5 to 50 sub-components (or classes), and most modules should have between 5 and
50 sub-modules (or files). When you approach 50 elements, consider refactoring to
bring the number back down. Similarly, if you find you have very few elements,
consider refactoring to “eliminate middle management” by combining levels.

Benefits and difficulties. Architecture models enable you to tell a story at a higher
level of abstraction. When the first programs were written, the invention of sub-
routines allowed developers to tell a story of a master and servant routines. The
master task could be understood at an abstract level without reading each of the sub-
routines. The invention of modules, structured programming, and object-oriented
programming enabled stories to be told with increasingly large codebases. The story
from the subroutine level was still there, but it was augmented with a story about
what each module did. The concepts in software architecture allow you to tell a story
about larger chunks — for example, that this is a 3-tier system with one tier behind a
security firewall.

Having a story at many levels provides several benefits. First, developers are more
able to cope with scale and can reason about modules, components, or environmental
elements in huge systems. This is increasingly important as internet-scale systems
are constructed by composing existing systems. Second, developers are confronted
with less complexity. Large systems entail lots of moving pieces, but the story at
many levels restricts how much complexity has to be comprehended at any given
moment. Developers treat subcomponents as black boxes and must reason only about
the components at the current level. Being “dropped into the code” at any level is
possible. These benefits are cognitive, not technical, as they benefit developers and
their ability to maintain the system.

There is some cost, however. Maintaining a story at many levels is a bit like
gardening, since as the system evolves the story needs maintenance to keep it up.
Beyond the upkeep, it requires effective encapsulation, which is difficult and is a kind
of deferred gratification.

11.2 Hierarchy and partitioning

Creating a story at many levels is a beneficial way to structure a system. It relies on
the idea of partitioning, which is the division of a system into disjoint pieces. For
example, a spacecraft can be partitioned into the payload and launch vehicle, and
software might be partitioned into a client and a server. The whole system and its
constituent parts are related, sometimes being called hierarchical nesting or hierarchi-
cal decomposition. The relationship between the parts and the whole is referred to as
a partition relationship, and is described in more detail in Section 13.2.
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Non-hierarchical systems. As helpful as partitioning is, every once and a while you
will come across a problem that resists your efforts to decompose it. Each time you
try to partition it a different way, you find something that gives you trouble.

Daniel Dvorak gives an example of such trouble: he compares using a hard disk
in a server room with using it on a spacecraft (Dvorak, 2002). Turning on a hard
disk drive always requires power, creates heat, and applies torque to the disk drive
enclosure. When it is in a server room you can safely ignore these effects and treat
the hard drive as a hierarchically encapsulated piece of a computer. If you place
that same disk in a spacecraft, however, you will find that those effects cannot be
encapsulated. The drive will sap scarce power from other devices, heat up one part
of the spacecraft inappropriately, and torque the spacecraft to change its course. His
point is that not every system can be hierarchically decomposed, with subcomponents
treated as encapsulated black boxes.

Seeing the challenges on a spacecraft makes it easy to appreciate how powerful
the idea of hierarchy is. Because hierarchical nesting is so effective, almost all systems
use it, whether they are natural systems or engineered ones.

Top-down design. Just because the parts in your system are hierarchically nested
does not imply that you should build them following a top-down process. Although
it may be your first instinct when you hear about hierarchical decomposition, design
rarely proceeds top-down. Just because an internals model is more detailed than a
boundary model does not mean you cannot build it first. Many different processes
will end up with a hierarchically nested set of components and modules.

Even if you do begin with top-down design, as you dig in you will likely find
some details that force you to revise your earlier design decisions. A common path
is to work both top-down and bottom-up at the same time and reconcile the designs.
Top-down design is an architecture anti-pattern discussed in Section 5.6.

Dominant decomposition. Every library organizes its books on the shelves. Some
order the books by topic so that you can browse nearby related books. Others order
the books by size so that space is efficiently used. The trouble is that a single organi-
zational system must be chosen — the books can be organized by topic, by color, by
size, by author, or any other concern, but this single concern becomes the dominant
decomposition.

Consequently, problems related to that dominant concern will be easier to solve,
but problems related to other concerns will be harder. For example, if you organize
books by their size, then it will be easy to find the tallest books but harder to find
ones by a specific author. This problem of one concern dominating others is referred
to as the tyranny of the dominant decomposition (Tarr et al., 1999).

When you decompose your system into modules and components, you are impos-
ing an organization on it, just like the librarians did to their libraries. Most systems
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Decomposition Strategy Elements

Functionality Clumps of related functions

Archetypes Salient types from domain

Architectural style Named elements from style

Attribute Driven Design Tactics from table

Ports An element corresponding to each port

Orthogonal abstraction Elements from another domain, e.g., math or graph theory

Jigsaw puzzle Existing elements, plus new ones as glue

Figure 11.1: A summary of decomposition strategies for components and modules. Design rarely
proceeds top-down and just because an internals model is more detailed than a boundary model
does not mean you cannot build it first.

choose functionality as their dominant concern, but you find some systems where
other concerns are dominant. You may have never consciously thought about your
strategies for decomposing a module or component into smaller pieces. The next sec-
tion surveys several strategies that will make you consciously aware of which strate-
gies are available, and enable you to choose a strategy that best fits your problem.

11.3 Decomposition strategies

At the end of your project, you will have created modules and components with in-
ternal structure. They will be made up of other modules and components, and even-
tually objects. But how do you decide on those subdivisions and internal structures?
Most developers would say they depend on their intuition rather than following any
prescribed strategy. Studying the strategies of experienced developers will accelerate
your progress and generally raise the quality of your designs.

Sometimes there is little choice in the decomposition, because a framework forces
design choices, or because company style guidelines require a certain design, but
other times your choice is relatively unconstrained. To illustrate different strate-
gies, the examples that follow continue with the Yinzer example. The decomposition
strategies that follow are summarized in Figure 11.1.

11.3.1 Functionality

Decomposing a system based on functionality is perhaps the most obvious strategy.
To do so, you inventory the required functionality and clump together related func-
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tions. For the Yinzer system, consider the following two options that clump together
functionality into components:

1. Website, Database, Email, Business Networking, Job Advertisements
2. Member Operations, Non-Member Operations

Both clumpings seem reasonable but yield different design challenges. The first op-
tion consolidates infrastructure into three components — Website, Database, and
Email — which would mean that they are shared by the Business Networking and Job
Advertisements components. The second option would make such sharing harder,
since Member or Non-Member Operations would crosscut the infrastructure func-
tions. Presumably both Member and Non-Member Operations would be further de-
composed into subcomponents.

Choosing functionality as the dominant concern is usually compatible with achiev-
ing required quality attributes, except in extreme cases. Imagine that the Yinzer sys-
tem’s first priority was scalability. Arguably either decomposition is compatible with
scalability, though perhaps the second, by not reusing a single database, lends itself
to easier scalability.

11.3.2 Archetypes

The allocation of responsibility can be aided by identifying what Jan Bosch calls
archetypes (Bosch, 2000) or what John Cheesman and John Daniels call core types
(Cheesman and Daniels, 2000). Archetypes / core types are salient types from the
domain, such as a Contact, Advertisement, User, or Email. Notice that this is the
decomposition strategy originally used in Figure 9.8.

Characteristics of an archetype include having an independent existence and hav-
ing few mandatory associations to other types. So, could the concept of a Job Match
(the pairing of a person to a job) be an archetype? Probably not, since it is not very
long lived and is strongly dependent on an Advertisement.

As with a functional decomposition, archetypes are usually compatible with
achieving required quality attributes, except in extreme cases.

11.3.3 Architectural style

A system can be decomposed so that its components are elements defined by an
architectural style. A system in the pipe-and-filter style would have components that
were filters and connectors that were pipes, each suitably specialized for the system.
Section 10.3 shows an example of a pipe-and-filter system where that style is used to
build a system that answers emails.

It is common to initially decompose a system based on an architectural style, then
to decompose one of those components using a different style. For example, you could
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1. Choose the module to decompose
2. Refine the module

a) Choose the architecture drivers
b) Choose or invent a suitable architecture pattern
c) Create modules and allocate responsibilities
d) Define module interfaces
e) Verify functionality scenarios and QA scenarios

3. Repeat for every module

Figure 11.2: A synopsis of the SEI’s Attribute Driven Design process, which guides you to tactics
that address your quality attribute drivers.

build the Yinzer system using a 3-tier style, with a User Interface tier, a Business Logic
tier, and a Persistence tier. The Business Logic tier could be decomposed according to
functionality, perhaps with Job Ad and Business Networking subcomponents.

Choosing an architectural style as the dominant concern is highly effective at
achieving quality attribute goals because each style has known qualities that it pro-
motes, such as modifiability with the pipe-and-filter style.

11.3.4 Quality attributes and Attribute Driven Design (ADD)

Small systems usually focus their attention on functionality, while larger systems must
pay more attention to achieving quality attributes. The larger the system is, the more
likely it is that subcomponents will have stringent quality attribute requirements.
The Attribute Driven Design (ADD) process from the Software Engineering Institute
describes how quality attributes can be used to drive recursive design of modules
(Bass, Clements and Kazman, 2003). Figure 11.2 shows a sketch of the ADD process.
Note that the process is defined for modules, but it is straightforward to apply it to
components.

The core idea of ADD is to first decide which quality attributes are the most im-
portant for this component, expressed as quality attribute scenarios, then choose a
pattern or design that is suited to achieving those qualities. The patterns used in ADD
could include architectural styles, design patterns, or domain-specific patterns known
by the developer.

The critical difference between simple decomposition based on architectural styles
and ADD is the reliance on a table that maps quality attributes to tactics. Section 3.4
briefly mentions tactics, describing them as a kind of pattern bigger than a design pat-
tern and smaller than an architectural style. Examples of tactics include: Ping/Echo,
Active Redundancy, Runtime Registration, Authenticate Users, and Intrusion Detec-
tion (Bass, Clements and Kazman, 2003). The table of tactics maps from a quality
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attribute to some general tactics and then to several specialized tactics. Using the
table, a developer can go from the architecture driver that is known to a set of spe-
cialized tactics that should enable that driver.

11.3.5 Ports

Every component has ports, which are used to communicate with other components.
Since each port represents a distinct grouping of functionality or responsibility, it
can be reasonable to provide a component to handle that port’s interactions, or to
act as a mediator (Gamma et al., 1995) to other components. Creating components
corresponding to each port is rarely a complete solution and developers must add
other components.

For the Yinzer example, you could create components corresponding to each of
the four ports: Non-Member, Contacts, Job/Ads, and SMTP Client. This choice might
be a good one if you were concerned about security and wanted to segregate access
by members and non-members. Alternately, it could help provide different service
levels to different kinds of users, such as free and paying users.

11.3.6 Orthogonal abstraction

A powerful but often overlooked strategy is to recast the responsibilities of a compo-
nent into a different domain, such as a domain where an algorithmic formalism can
help (D’Souza and Wills, 1998; Bosch, 2000). For example, a system that handles
work orders could be cast into a directed graph of dependencies and processed by a
component like the MAKE program, or computer graphics operations can be cast as
matrix operations that are much faster to compute. Arguably the map-reduce archi-
tectural style (see Section 14.14) is the recasting of a data processing problem into a
particular distributed computing abstraction.

Some domains have a stable set of abstractions that have been devised by experts
in the field, for example the domains of compilers or databases. In these domains it
makes sense to take advantage of that domain-specific knowledge and consider using
these abstractions as the basis for your decomposition. The abstractions may reveal
underlying truths that are not evident from a superficial investigation of the domain,
or using the abstractions may enable a higher performance implementation.

When this strategy is relevant it can be a big win. However, applying it is depen-
dent on a flash of insight that connects the current domain with another, more fully
investigated domain. The Yinzer system has no obvious connection to an orthogonal
abstraction, or perhaps the right flash of insight has simply yet to strike.
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11.3.7 Jigsaw puzzle

Sometimes you have several sub-components already, and the desire to reuse them
drives your design. You might have a relational database, an existing vendor com-
ponent, and some code from a previous project that can be repackaged. You can
assemble these pieces to get partial coverage of the required features and qualities,
and you add some new code, perhaps in the form of connectors or adapters, to com-
plete the job. This kind of design can be like assembling a puzzle where the pieces
were not originally from the same set.

11.3.8 Choosing a decomposition

For most systems, choosing any decomposition will work acceptably, but if you choose
one that is suitable for your quality attribute requirements then your job will be easier.
The architectural style and ADD approaches are most directly connected to quality
attribute requirements.

Looking back at these approaches, you can see a pattern emerge. Several of these
approaches choose an architectural element and make it the dominant concern: qual-
ity attributes, functionality, architectural style, and ports. Sometimes it is best to
choose an orthogonal abstraction from the problem domain, and other times existing
COTS components will be such compelling candidates for reuse that they drive the
internal design.

11.4 Effective encapsulation

Encapsulation is closely related to decomposition. Where decomposition insists that
the problem be broken down into smaller problems, encapsulation says that the so-
lution to the smaller problem should be partially hidden. If you use a toaster, you
probably do not care if the heating elements are metal or ceramic, only that the toast
comes out according to the dial setting. If the toaster required you to be aware of
the required voltage on the metal or ceramic element heating elements, you would
consider that a failure to encapsulate its implementation choices. Sadly, programs
with poorly encapsulated parts are quite common.

An effective API of a module or component should hide implementation details
and provide the user with a simplified understanding of what each API operation
does. For example, if you have a collection with a sort() operation, you may not know
the data structure used to hold the collection or the algorithm used to sort, but you
must know that the collection consists of possibly unordered elements, and that after
the sort() operation is invoked it consists of ordered elements. Effective encapsulation
enables users to comprehend the API, as well as hiding implementation details from
them.
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Cognitive burden reduction. Architecture needs encapsulation because encapsula-
tion reduces complexity. For example, you may appreciate that a radio is doing many
difficult tasks in tuning in signals and presenting them clearly, but your mind only
has to deal with an on/off button and channel selector. You could learn a more com-
plicated interface, like the interface to old crystal radios, but the tradeoff is that you
would have less time to learn other things.

As the complexity and scale of systems grows, encapsulation helps you treat parts
as black boxes whose internals you do not need to understand, as long as you un-
derstand their interfaces. Encapsulation saves you time and conserves your mental
resources, but only when the encapsulation is effective.

Encapsulation failure. I once worked at a company where they changed our
timesheet process. Before the change, we would submit timesheets only when we
used vacation time. But, at the urging of the accounting department, the process
was changed so that we submitted a form each week that allocated hours to various
accounts, such as normal working, vacation, and holidays. We were sent to an hour
of training on how to fill out the forms. It was sufficiently complicated that whenever
I took vacation I had to go back and read the directions on how to debit and credit
the various accounts.

The lesson of this story is that not all encapsulation is effective. The accounting
department had designed a system that was arguably encapsulated because the soft-
ware developers did not actually have to do the work of the accountants nor did they
have access to the accounts. But the encapsulation was ineffective because the inter-
face leaked abstractions. It exposed the abstractions used by the accountants (i.e.,
the debiting and crediting of accounts), which made the accountants’ jobs easier at
the expense of every employee. This probably sounds similar to APIs you have used
in the past — thin veneers over the implementation that were easy for the module
developers to present, but that forced you to engage in details and abstractions that
seemed to be unnecessary distractions.

The accounting example shows that encapsulation is not simply binary, so it is
unhelpful to talk about an “encapsulated component.” Instead, you must distinguish
between effective encapsulation and poor encapsulation. Perhaps an interface hides
some details, but are they the details that you want to hide? And given what you
want to hide, is the interface as small as possible? Effective encapsulation is beneficial
but requires good judgment.

Parnas modules. As a thought experiment, imagine that a module’s operations were
simple getters and setters for the data structures inside the module. In some sense
that interface would be encapsulated, but it would be ineffective at hiding any de-
sign secrets or choices. You would have great difficulty changing the internal data
structures, or possibly even the algorithms, without disturbing your users.
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In 1972, David Parnas wrote a paper on how to create stable modules that ex-
hibit effective encapsulation (Parnas, 2001). The essence of his approach is that you
should ensure that the details likely to change are hidden inside the module, and that
changes to those details will not influence the module’s interface. Imagine that you
are considering two design alternatives, A and B. Parnas suggests that you design the
modules and interfaces so that both alternatives are possible to implement with the
same API. You are hiding your design secret, which is whether you used design A or
B. That secret should be encapsulated behind the interface, so you retain the option
to change your mind without the change rippling out to users.

A Parnas module hides a secret to minimize coupling, rather than just grouping to-
gether related code. However, consider how rarely this advice is followed in practice:
in a 3-tier system, how many modules must change when a new attribute is added
to an item (e.g., an order or customer) appearing in the UI and database? Instead
of creating Parnas modules, other criteria are used for modularizing code, such as
relatedness, architectural style, authorship, or deployment needs.

Judgment and risk. Effective encapsulation is hard to achieve: Parnas’ good advice
is often violated to serve other goals, and the accountants who designed the time-
keeping system thought they had effectively encapsulated their system. So how can
anyone achieve effective encapsulation?

Ideally, every module and component would have a well-encapsulated interface,
but the effort to build good API’s is expensive. Some API’s will be used by external
users of the module, while others will be used only by the team that built the mod-
ule. You may choose to spend more effort on the external-facing API’s because the
consequences for making mistakes there are higher: users could become dependent
on details of the implementation or fail to understand how the API works.

Your architecture may drive you to partition the system in a certain way, and to
encapsulate some implementation details instead of others. For example, if you are
considering the possibility of moving a module or component to a different machine,
you may design an API so that the connector can be local or remote. If you anticipate
that developers beyond your team will add components to your system, you may
choose to make the plug-in API for them well-encapsulated.

To get effective encapsulation, you must anticipate how you and others will use
the module in the future, and consider implementation options that you want to
keep open. Such crystal ball gazing is difficult, error-prone, and expensive. Keeping
options open takes effort and usually complicates the design.

Here again, the idea of using risk to drive architecture is applicable. Sometimes
it would be a big risk to expose data structures, or have an API that is hard to use,
such as in a published Windows API. On the other hand, it may be OK if some module
API’s end up with ineffective encapsulation, perhaps those that are not user-facing or
are cheap to refactor. The next section describes a somewhat expensive process for
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creating encapsulated API’s, so you will need to use your judgment and risk estimates
to decide when it is worth the effort.

11.5 Building an encapsulated interface

Encapsulation requires that a module or component’s boundary, or interface, is de-
scribed separately from its internals. This section describes how to create a com-
ponent interface based on the idea of abstract data types. It first describes how an
abstract data type of a stack works, then extends this idea to components.

11.5.1 Stack abstract data type

When people talk about abstract data types (ADT’s) they usually use a stack. Fur-
thermore, they used to provide the real world example of the spring-loaded stacks of
cafeteria plates, but I have not seen one of those in a long time. A stack is a simple
data type that can be accessed only from the top, not the middle or bottom. You can
push an item onto the top of the stack and pop an item from the top of the stack.
Sometimes there is an operation to peek at what is on top without removing it.

There are two useful and related benefits of ADT’s. The first benefit is that you
can invent and analyze algorithms that depend only on ADT’s instead of a concrete
source code implementation. That way you can show that an algorithm runs in O(log
n) time without depending on any particular implementation. Most developers do
not invent or analyze new algorithms, but they do use encapsulation, which is the
second benefit. Encapsulation is the idea that a developer reveals an interface to use
a mechanism but hides the insides that implement it.

The simple way to specify an interface would be to provide method signatures for
the methods. Here are signatures for push and pop:

void push( Object o )
Object pop( )

With signatures like these it is easy to see what must be passed in as parameters
and what will come back out as return values. What is surprisingly missing is the stack
itself. Perhaps you can deduce what these methods do because you have previously
been exposed to stack ADT’s before, but if this were a new ADT then it is unlikely you
would understand how it works.

It is possible to make these signatures more clear by providing pre- and post-
condition specifications. Pre-conditions state what must be true in order for the
method to complete successfully. Post-conditions state what will be true when the
method completes. Here is an example of how you can augment the signatures,
yielding an action specification:
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void push( Object o )
pre-condition: stack is not full
post-condition: stack is unchanged except that o is on the top
of the stack

Object pop( )
pre-condition: stack is not empty
post-condition: stack is unchanged except that the returned ob-
ject is the one that was previously, and no longer, on the top of
the stack

While these specifications may be incomplete and not perfectly precise, they are an
improvement compared to the simple signatures. The stack is explicitly mentioned,
the success case behavior of push (when the stack is not full) and pop (when the stack
is not empty) are described in the post-conditions.

A user of a stack needs a mental model of what the push and pop operations
do, even if the details of how they do it are hidden. That mental model includes at
least these concepts: the stack exists, the stack is unchangeable except at its top, the
stack can be full, and the stack can be empty. The conceptual model includes both
information and behavior because the push and pop methods manipulate the state of
the stack.

Reflecting on this stack ADT, three big ideas emerge:

1. The model of information and behavior should be self-consistent. The behavior
specifications must refer to the information specifications. When methods are
invoked they transform the information from one legal state to another.

2. The model should be minimally sufficient for clients. The clients should not
need to understand more details than are necessary.

3. So long as the implementation is consistent with the model, the implementation
can vary arbitrarily. You could, for example, implement the stack as an array, a
linked list, a database, or a distributed memory cache so long as it behaves like
the model.

11.5.2 Modules and components as ADT’s

The boundary model of a module or component has a lot in common with an abstract
data type. Both describe an encapsulation boundary behind which an implementation
is hidden. When you create models of modules, the interfaces are defined with Java
interfaces or C .h files. When you create models of components, the interfaces are
defined with ports. Just as you can create an interface model for users of the stack
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Figure 11.3: Snapshots showing the state of the model before and after Kevin accepts Alan’s Invite
to be part of each other’s Contact Network. Note that the Invite instance in the first snapshot is
replaced by a Contact instance in the second snapshot.

ADT, you can create an interface model for users of a Yinzer port. The example looks
at a single action but the process is the same if there were multiple actions.

Consider the action from the Yinzer system where a member accepts an invitation
to be part of another member’s contact network. The method signature for the action
might look like this:

void acceptInvitation( Member requestor, Member requestee )

Note that the concept of an invitation is not seen as a parameter. An alternative
signature would be to make the invitation object a parameter. Either way, the mental
model of the user must include the idea of invitations. As with the stack ADT, pre-
and post-conditions are added, like this:

void acceptInvitation( Member requestor, Member requestee )
pre-condition: invitation exists with requestor and requestee
post-condition: the invitation no longer exists and the requestor
and requestee are in each other’s network of contacts

This describes the behavior of the Yinzer system, but only hints at the mental
model a user needs. You can build an explicit type model that shows how they relate
to each other by focusing on the terms referred to in the return values, parameters,
and pre- and post-conditions. You could try to draw that type model now but, in-
stead, first create some snapshots that you can use to test the type model. At this
early stage they are more helpful because they are concrete. Figure 11.3 shows a
pair of snapshots, the first showing that Alan has invited Kevin to join his contact
network, and the second showing Alan and Kevin as Contacts of each other after the
acceptInvitation action.
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Figure 11.4: A minimally sufficient type model to support the Accept Invitation action. Notice that
the graphical notation is not sufficient to express all the needed constraints, hence the invariants
as notes.

You should use the pair of snapshots as a guide to help you create an accurate type
model. Figure 11.4 shows a type model that is consistent with the snapshots. Notice
that it has a few invariants to prevent some snapshots you do not want, snapshots
that would otherwise be permitted by the graphical part of the model.

This is not the only possible model — you could have devised other snapshots
and type models that are consistent with the action and pre- and post-conditions. For
example, you could have eliminated the Invite type and added a boolean attribute to
Contact indicating if it was a pending invitation or an accepted contact. Either model
would work for the users and still allow developers to build arbitrary implementations
in the internals model.

If this Yinzer port had more actions, then you would follow the process again to
elaborate the type model. The result is a model that describes what a user of the
port needs to know to use the provided actions. You have seen this process for ADT’s
and ports, but the idea is the same for describing methods on objects, or describing
functions in modules.

Here is the process in a nutshell:

1. Select a port on the component (or an object, module, etc.).
2. For each action (or method, function, etc.) on that port, write out its signature

and pre- and post-conditions.
3. Sketch one or more snapshot pairs showing how the instances would change as

a result of the action (possibly reusing your functionality scenarios to help build
the snapshots).

4. Generalize the snapshot pairs into a type model.

Following this process hides internal details yet reveals how to use the interface.
In short, it gives you effective encapsulation. The resulting type model should be
minimally sufficient to describe the behavior of the port, but does not describe how
the internals of the component are implemented. It should also be self-consistent in
that there are no terms used in the action descriptions that are undefined in the type
model, and vice versa.
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11.6 Conclusion

When you build software, you will make choices about how the system is divided up
into smaller parts. You will almost always design it as a hierarchically nested set of
parts. The choices you make regarding partitioning and encapsulation will have a
big impact on the system’s qualities. Invariably, you will be faced with partitioning
choices that make some features or qualities easier to achieve, but others harder to
achieve.

If you follow a particular style of hierarchical structure, then your system can be
understood as a story at many levels. Other developers will be able to infer how it
works and will not be swamped with too many objects, modules, or components at
any given level of abstraction.

Your designs will have a dominant concern that organizes their decomposition.
This chapter discussed several partitioning strategies: Functionality, Archetypes, Ar-
chitectural style, Attribute Driven Design, Ports, Orthogonal abstraction, and Jigsaw
puzzle. Although these might seem to imply that you should follow a top-down de-
sign path, it is more effective to work both top-down and bottom-up and reconcile
the problems you discover.

Each part that is divided up will have an interface, and that interface should hide
some of the details of the internal implementation. As the story about the account-
ing timesheets demonstrated, not all encapsulation is effective, and inappropriate
abstractions can leak out across API boundaries. Parnas modules are one antidote.
Parnas advocated keeping design secrets behind module interfaces such that you can
choose between your design alternatives without that change being visible to clients.

The biggest benefit of encapsulation is that it reduces the cognitive burden of other
developers. They can treat the component or module as a black box and not look
beyond its interface. Effective encapsulation also contributes to comprehensibility,
because simpler interfaces are easier to understand.

But there is no free lunch since building encapsulated interfaces takes effort. This
chapter presented a process for building a full description of interfaces that includes
the operation signatures, their pre- and post-conditions, and the type model necessary
to understand what the operations do. You will need to apply your judgment to decide
when such effort is justified. However, once you internalize this idea, you will see and
analyze API’s differently, and may not need to go through the full process to get the
benefit.

11.7 Further reading

The idea of abstract data types is an old one, dating back to the early 1970s with
the CLU and Alphard programming languages (Liskov, 1987; Shaw, 1981). The ap-
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plication of those ideas to components is described in D’Souza and Wills (1998) and
D’Souza (2006), including using minimal type models to describe port operations
based on pre- and post-conditions, and the use of snapshot pairs to drive the creation
of the type model.

This chapter has deliberately conflated two distinct forms of abstraction, ADT’s
and objects, which are from a theoretical perspective quite different. William Cook’s
essay on the topic highlights the differences (Cook, 2009).

Subjects, aspects, and multi-dimensional separation of concerns were introduced
to programming languages starting in the 1990s. Two papers that have high relevance
to architectural modeling are Harrison and Ossher (1993) and Tarr et al. (1999),
since they discuss the general problem of dividing a system into elements and the
impact of the dominant decomposition.

Herb Simon noticed that the distinction between the inside and outside of a system
may not be a purely human invention, as it occurs commonly as emergent organiza-
tion patterns in nature (Simon, 1981). Many biological systems observe a nested
hierarchy like architecture models do.





Chapter 12

Model Elements

This chapter describes the vocabulary of elements that are needed to produce archi-
tecture models, elements like modules, components, connectors, ports, roles, qual-
ity attributes, rationales, environment elements, scenarios, invariants, tradeoffs, and
styles. This is the core set of elements that is needed for architecture modeling, and
this core set is broadly supported both in industry and academics. The set of elements
here is not comprehensive, as many views exist with specialized elements.

Chapter 9 discussed these same elements, but in less detail. The primary goal
of that chapter was to make the conceptual model of architecture clear, and digging
into details of the elements would have distracted from big picture understanding.
This chapter probes the corner cases, compares and contrasts related elements, and
provides advice on usage. As a result, you will notice some duplication as this chapter
reviews those ideas, but the advantage is that you can come back to this chapter as
a reference. You can safely skip over this chapter on your first read and come back
later.

The diagrams here conform to UML syntax, or are quite close. This book recom-
mends against digging too deep into the intricacies of UML for fear that only UML
experts will understand subtle distinctions, such as the shape of arrowheads or the
slant of the font. If you need to make subtle distinctions, remind readers of the syntax
in the diagram legend.

Examples that run throughout this chapter will primarily use the canonical Library
Problem (Wing, 1988) because of its widely understood domain, and to show you
another example. The library in this problem statement is rather simple: It allows
librarians to check out and return copies of books, add copies to the library, list books
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by author or subject, list the copies checked out by a borrower, and list the borrower
who last checked out a copy. Borrowers (library patrons) can use the web to list the
books they have checked out.

12.1 Allocation elements

Software runs on hardware, and that hardware must be located somewhere: in a
server closet, in a data center, in the accounting department, or on a satellite. Allo-
cation diagrams like Figure 9.6 show where modules and component instances are
deployed. Such diagrams can help you reason about failures related to location, such
as security breaches and reliability.

Software engineering authors are in broad agreement about what should be in
allocation models and diagrams, but there is little agreement on what the elements
should be called. UML refers to places where software can be deployed as nodes and
refers to the communication channels between nodes as connections (Booch, Rum-
baugh and Jacobson, 2005). SEI authors refer to both as environmental elements
(Bass, Clements and Kazman, 2003). And a recent textbook refers to them as hard-
ware hosts and network links (Taylor, Medvidović and Dashofy, 2009). The term node
is rather general, the term connection is easy to confuse with connector, and the term
host does not really fit for some hardware, like routers. So this book uses the terms
environmental elements and communication channels, as clumsy as they are.

Examples of elements that can be allocated include the executable code for the
user interface, the executable code for the database, and the configuration files that
define the database schema. Notice that these examples include both component
instances and modules. These elements are deployed onto environmental elements.
The most obvious environmental element is hardware, such as an individual laptop
or a server farm. Environmental elements can be nested within each other, so you
can show that the server farm has hundreds of server computers inside of it.

In addition to hardware, it is expedient to treat human and political entities as
environmental elements. That way you can draw a diagram showing a server farm
(hardware) with subdivisions for the accounting department’s servers and the finance
department’s servers. Strictly speaking, you cannot deploy software onto the account-
ing department. However, think of it as a shortcut that is equivalent to annotating
some servers with a property saying they are owned by the accounting department.
If you are mindful that you are taking a shortcut, and realize that accountants them-
selves do not run the software (computers do), this is a timesaving shortcut.

Properties on the environmental elements, modules, and components can be used
for other purposes, such as indicating compatibility. A component might require 2GB
of memory or access to the internet from the hardware it runs on. These constraints
and capabilities can be expressed as properties of the elements and could even be
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(b) Component instance

Figure 12.1: A component type and instance. Notice that component instances are underlined and
have a colon, optionally preceded by the instance name.

checked by a tool. Even without tools, properties give you a place to express these
constraints so that other developers can see them.

12.2 Components

Components, the workhorse abstraction of software architecture, are defined as
“the principal computation elements and data stores that execute in a system”
(Clements et al., 2010). Components communicate only via connectors, and con-
nectors themselves can do substantial work.

This section discusses several topics relating to components, including: compo-
nent types and component instances, the relationship between modules and compo-
nents, the use of subcomponents, uncertainties and ambiguities that exist in com-
ponent modeling, and Component-Based Development (CBD). The next section dis-
cusses components as they are used in component assemblies.

Types and instances. Components follow the same type-instance relationship, gener-
alization, as classes and objects do. In object-oriented programming languages today,
you define classes in the programming language and see objects at runtime. If you
had a programming language that supported components directly, you would declare
component types in that language and you would see their component instances at run-
time. Classes and component types are defined in the module viewtype, since you
see them directly in the source code; objects and component instances are seen in the
runtime viewtype, since you do not see them until runtime.

The distinction should now be clear between a component type and a component
instance, but you will hear people say just “component” without distinguishing. They
usually mean a component instance, but it is best to ask when it is unclear. Unlike
classes, which usually have many object instances, component types are often instan-
tiated only once in a system.
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Components Modules

Exist in module viewtype Types: Yes; Instances: No Yes

Exist at runtime Types: No; Instances: Yes Rarely

Multiple instances Often Rarely

Used for encapsulation Yes Yes

Communicates via Ports and connectors Interfaces

Figure 12.2: A table showing some features that highlight the differences between components
and modules. Both modules and component types are composed of source code, but you rarely
instantiate a module (you would only have one instance of a math library, for example) but multiple
instances of components are common.

Here is an example that highlights the differences between component types and
instances. Imagine that the Library System is designed with mirrored database servers
in case of problems. That design would have at least two component instances for the
database, with one of them ready to take over if the other fails. Both database com-
ponent instances do the same job, namely they store information about the library, so
they are of the same component type and run the same executable program. Notice,
however, that you can tell the two instances apart even though they run the same
code and hold the same data, so the instances are said to have identity.

Figure 12.1 shows how component types and instances are depicted in diagrams.
You can distinguish a type from an instance because the instance is always underlined
and has a colon before type name. In the example, the component type is “Library
System” and the instance has no name, so it is called an anonymous instance. Notice
that in isolation you cannot visually distinguish a port type from a port instance, but
you can tell based on what it is attached to.

Compared with modules. Components are composed of the same things as modules
(such as source code and configuration files), but the intention is that you will see in-
stances of components at runtime. Those component instances will interact with each
other in constrained, well-understood ways via ports and connectors. Compare this
with a module, which is a collection of implementation artifacts (classes, interfaces,
etc.) that may have been grouped together for arbitrary reasons (e.g., math functions,
legacy Fortran routines, data interchange types, or code authored elsewhere), that is
rarely instantiated at runtime, and that has no constraints on how it interacts with
other modules. Figure 12.2 summarizes some important differences between them.

You may wonder why there are both modules and components: Is a component
not an instance of a module? Said another way, is it true that class:object :: mod-
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ule:component? While this would clean up the conceptual model, and is sometimes
true, it is not true for many modules. Plenty of modules are never instantiated, such
as math modules, nor does it make much sense to think of them as having runtime
existence or structure.

However, a well-organized module can closely resemble a component type. Imag-
ine a system with a user interface module and a backend module. The developer
of this system has organized the modules so that they correspond to what will be
instantiated at runtime. While this is good practice, it is not always possible, and
therefore the concepts of components and modules must be separate because they
will not always line up as well as they do in this example. It may help you to think
of a component as a special case of a module, one that you intend to instantiate at
runtime (often more than once), and one that interacts with other such modules in a
constrained way.

Subcomponents and implementation. Every system will have at least one compo-
nent, which is the system itself. It is good practice to have additional components
nested within the system because then each component is individually easier to un-
derstand and reason about, as discussed in Section 11.1. A nested component can be
referred to as a subcomponent, but it is a matter of perspective — your component is
perhaps someone else’s subcomponent.

This nesting can be repeated many times but does not continue forever. At some
point of your choosing, the nesting stops and the component is implemented, not
with more components, but with classes, functions, procedures, etc. Many factors
enter into the decision of how many components a system should have and how
many levels of nested components to use, including the size of the components, the
availability of off-the-shelf components for inclusion, and natural division points such
as differing source code languages or physical deployment locations. Ultimately a
developer makes a judgment call, one that becomes easier with experience. As a
general rule, it is rare to see subcomponents implemented with a single class or just
a few lines of code.

Uncertainties and ambiguities. At some point, what was meant by object and class
was up for debate and many alternatives were proposed. Today, mainstream lan-
guages have codified generally agreed definitions for them. Since you cannot yet
define component types and instances in programming languages, there is still sub-
stantial room for uncertainties and ambiguities between people who use the terms.
Here are a few areas of common misunderstandings.

• Types and instances. Not everyone who talks about components is careful
enough to distinguish component types from instances. It is easy to conflate
them because components are often instantiated just once. A system might have
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just one user interface, one business logic component, and one database. In this
case there are three component types and three component instances, one for
each component type. In object-oriented programming, a class with a single
instance is unusual, but seen often enough that the pattern has been named
the Singleton design pattern (Gamma et al., 1995). Components are generally
much larger than classes, so instantiating them just once is common.

• Just component. It is best to be careful and say either component type or compo-
nent instance, not just component. Saying component instance takes a long time
and has a lot of syllables, so sometimes it is (understandably) shortened to just
component. Depending on the context, you may be able to take this shortcut
too, but be aware of your audience and choose accordingly.

• Files and databases. Some things are obviously components, like big chunks of
running code, but other things are not so clear. Is a file a component? Sin-
gle files or the filesystem are often represented as components so that you
can show clearly that your other components interact with them. Otherwise,
someone reading a diagram may be surprised to later learn that a component
reads or writes files, since other communication is shown clearly. What about
a database? Databases are always represented as components, but the type of
a database should never be “Oracle” or even simply “Database.” Instead, its
type depends on how you have configured it for its purpose, for example an
InventoryDB, or PayrollDB.

• Modules and components. Keep in mind that although this book describes a
conceptual model of architecture that has distinct meanings for modules and
components, you will find many people using the terms interchangeably.

CBD and a component marketplace. In the 1990s, many people talked about a fu-
ture component marketplace, something that was central to component-based devel-
opment (CBD). The idea was that the software industry would embrace development
of components to be sold individually as products to be used by software developers,
rather than selling them assembled into an end-user product (Heineman and Coun-
cill, 2001). Parallels were drawn with the computer hardware market, where some
companies sell complete computers while others sell components that are assembled
into computers. So far, the market for components has been small. For example,
databases are sold as components, but they are the exception rather than the rule.

While a component marketplace has not flourished, plenty of software applica-
tions have CBD underpinnings and scripting languages have programmatic access to
their core functions, independent of their GUIs. Furthermore, many companies inter-
nally produce components that are used by other teams inside the company.
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Figure 12.3: A system context diagram of the Library System. A system context diagram is a
kind of component assembly that shows the system to be built (here, the Library System) and the
external systems it connects to. The Library System component instance shown here is refined in
Figure 12.4.

The idea of components as something packaged for sale in a market is differ-
ent than the architectural definition of components in this book. Clemens Szyperski
provided a definition of components that emphasizes the fully-packaged nature: “A
software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed in-
dependently and is subject to composition by third parties.” (Szyperski, 2002) It is
probably easiest to think of such CBD components as a special case of architecture
components since every CBD component would satisfy the definition of component,
but not vice versa.

12.3 Component assemblies

A component assembly, also known as a component and connector diagram or simply as
a runtime diagram, shows an assembly of component, port, and connector instances
or types. Their arrangement is the component design and different arrangements will
yield different qualities.

System context diagram. A system context diagram is a component assembly that
focuses on the system being designed. It shows that system as a component instance
and also includes external systems that the system connects to. Figure 12.3 shows a
system context diagram of the Library System.

Refinement. Another way to use a component assembly is to use it to refine another
component, showing its internal design. Figure 12.4 shows how we can refine the
Library System component from Figure 12.3 to show how it is implemented with
subcomponents. The component assembly consists of the five internal components,
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Figure 12.4: A component assembly of the Library System component instance. External ports are
bound to internal ones. It is the same component instance seen in Figure 12.3 and this diagram
additionally shows its internal details.

shown as anonymous component instances, and the connector instances between
them.

Notice that the diagram shows the Library System as a component instance that
wraps around the component assembly. This wraparound component is referred to
as the external or enclosing component and it its name should be shown, often in the
upper left or right corner. Using bindings, ports on the external component are bound
to compatible or identical ports on internal components. In this case, notice that the
three ports of the Library System component have been bound to ports on the internal
components.

This refinement can continue to nest recursively. For example, you could take the
Borrower Presentation component from Figure 12.4 and build a component assembly
showing its refinement. The outer box (the enclosing component) would be labeled
“: Borrower Presentation” and it would have the two ports on Borrower Presentation
bound to internal subcomponents.

Refinement semantics. When you use a component assembly to refine an existing
component, the component assembly must conform to the enclosing component’s
specification, which includes its port definitions, quality attribute scenarios, and in-
variants. This internal design may go beyond what was specified by adding addi-
tional functionality, or exceeding the specified performance invariants, but it cannot
do worse.
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During refinement, you could in theory add any detail — but you risk angering
the reader of your diagram if you do something unexpected. For example, if you
show a component with two ports but later reveal, in the refinement, the existence of
previously unmentioned third port then a reader would be justifiably surprised.

Refinement always insists that the high-detail model of the component be com-
patible with the low-detail version. The conservative rules followed (called closed
semantics and discussed further in Section 13.7.1) go further to prevent surprises.
The rules are:

• The number and types of ports are unchanged

• The externally-visible constraints and behavior (e.g., invariants, quality at-
tribute scenarios) are unchanged

Sticking with closed refinement semantics is usually the best choice, but sometimes it
is difficult since real components may have dozens of ports. Showing all those ports
may work against the desire to show a high-level diagram that is simple and clear. For
example, a component might have ports for administration, logging, and other tech-
nical details that could be elided from diagrams used as “big picture” introductions.

The simple solution to this dilemma is to omit the ports, but to put a note on the
diagram saying that some ports have been omitted. That way a reader will not be
surprised when encountering a more detailed diagram that shows those ports, nor
will the reader try to draw any conclusions based on the absence of those ports.

When you follow these rules, you prevent a reader from becoming surprised and
saying, “Hey, where did that come from?” You should encounter no surprise when
you look at examples of component refinement in this book, such as the refinement
between the Library System component in Figure 12.3 and Figure 12.4, because they
follow this set of rules that limit what can change and what new details can be intro-
duced.

Expressiveness. Some component assemblies are more expressive than others. If
you refer back to Figure 4.4, you will notice that it clearly shows the different types
of connectors used, while Figure 12.4 does not. If you have different types of ports
or connectors, it is a good idea to distinguish them visually and add them to the
diagram’s legend. An alternative and more compact way to describe the ports is to
label each port’s type on the diagram, as seen in Figure 12.4, and separately provide
a specification for each port type.

Understanding the design. A component assembly does not describe everything
about how the internals of a component work. The component assembly refers to
component, connector, and port types, so each of these needs to be understood by
the person reading the diagram. Understanding a component, connector, or port
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Figure 12.5: System context diagram of the Library System, as in Figure 12.3, with component
types instead of instances. This diagram says that there can be only one instance of the Library
System and PeopleDB components. There can be multiple instances of the LibraryDesk and
WebPC components and their connections to the Library System terminate on unique (not shared)
ports.

type means understanding its properties, invariants, responsibilities, type model, and
behavior model.

Said another way, the system context diagram in Figure 12.3 is just the beginning
of what a reader needs to know to understand the design. That diagram would
need to be accompanied, either verbally or on paper, by descriptions of the ports,
invariants, styles, quality attribute scenarios, design decisions, etc., that go along
with the design. A component assembly is a great way to introduce a design, but it is
not in itself sufficient to understand it.

Snapshot of a dynamic architecture. Almost every system has a dynamic architec-
ture, meaning that its configuration of components changes during runtime. Most
systems quickly converge on a steady-state configuration that is stable for most of its
runtime, so you may simply think of them as static, but during startup and shutdown
there are changes. A component assembly usually shows a single runtime configu-
ration of the instances and it is usually the steady-state system configuration. But it
could alternately show types instead of instances, as discussed next.

Be aware that if you want to analyze the system’s startup or shutdown behavior,
looking at its steady-state configuration will be insufficient, and you will need to
use multiple component assemblies that represent its configuration at different times.
Also, to analyze a fully dynamic architecture you will also need many component
assemblies.

Using component types. The system context diagram in Figure 12.3 and its refine-
ment shown in Figure 12.4 are both drawn using component, connector, and port
instances. Using instances instead of types makes those diagrams exceptionally easy
to read and understand. However, those diagrams represent just one of the many pos-
sible configurations that you wish to allow. The system has just one Library System
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component instance and one PeopleDB component instance, but it can have many
Library Desk and Web PC component instances, yet this is not clear from the system
context diagram.

A component assembly that uses types instead of instances can show this. Fig-
ure 12.5 is a system context diagram for the Library System but it uses component,
connector, and port types instead of instances. Notice too that it has numbers on it
representing the multiplicities of the components and ports that are allowed.

Most of the time when you are drawing component assemblies you will want to
stick to instances because the diagram is so clear, but sometimes you may wish to
draw them with types. If you are struggling to create a component assembly with
types, recall that it is OK to draw one with instances and add a note describing your
intentions. For the system context diagram, it might be simplest to use the diagram
with instances and add a note saying, “The Library System and PeopleDB components
have just one instance; the Library Desk and Web PC components can have many
instances, each with an unshared pDesk or pWeb port.”

12.4 Connectors

Components are the principal computation elements and data stores, and they only
communicate via their ports. The port on one component is attached to the port
on another component by a connector, defined as “a runtime pathway of interaction
between two or more components” (Clements et al., 2010). Connectors are shown in
most diagrams that show components, including Figure 12.4 in this chapter.

Following the pattern you saw with components, you find connector types in the
module viewtype and connector instances in the runtime viewtype. As with compo-
nents, you should similarly assume that people mean “connector instances” when
they simply say “connectors,” but it is better to ask and be sure.

The importance of connectors. It is easy to underestimate connectors, perhaps be-
cause the most common one is a local method call, or perhaps because they are
shown on models as a simple line, rather than as a box like components are. Con-
nectors, more so than components, drive architectural styles (Shaw and Garlan,
1996; D’Souza and Wills, 1998). Most styles allow components to do arbitrary com-
putations, but restrict what the connectors can do and their topology. Connectors
dictate that clients can call servers but not the reverse. Connectors ensure that two
copies of a database component are replicated and ready in case of failover. Connec-
tors either enable or prevent a COTS component from integrating with your existing
systems.

Connectors enable components to communicate, but this should not be interpreted
as a less important job. Connectors do real work and often that real work is the
communication that must happen.
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Connector type Notes

Local procedure call Most common connector when components are all in the same
memory space.

Remote procedure call Concrete examples include SOAP and HTTP requests. Both
local and remote procedure call connectors are kinds of
request-reply connectors.

SQL or other datastore Declarative language used to load/store data.

Pipe Simple producer-consumer relationships between components.

Shared memory Fast but complex communication.

Event broadcast Consumers depend only on events, not on producers.

Enterprise bus Standardizes intra-application communication for assembly of
large systems.

Data drop Distribution mechanism for shared data from single source.

Incremental replication Handles state synchronization.

Figure 12.6: A tabulation of some common connector types and notes about them.

Often the value of an application is in its connectors, rather than its components.
An architect at a large financial institution put it to me like this: Several programs
may do a given job, but differ in how well they inter-operate with other programs. It
may take longer to build the connectors than the component itself.

Real work can be done in connectors. Connectors can convert, transform, or trans-
late datatypes between components. They can adapt protocols and mediate between
a collection of components. They can broadcast events, possibly cleaning up duplicate
events or prioritizing important ones. Significantly, they can do the work that enables
quality attributes, such as encryption, compression, synchronization / replication,
and thread-safe communication. It is hard to imagine systems achieving qualities like
reliability, durability, latency, and auditability if their connectors are not contributing.

Common types. The concept of a connector is quite general, and encompasses the
common ways to communicate, including procedure calls and events, as well as more
complex mechanisms like pipes, batch transfers, and incremental replicators. It also
covers indirect means of communicating such as interrupts and shared memory. Some
example implementations of connectors include remote procedure calls, the rsync
program, SOAP over HTTP, and enterprise service buses. Figure 12.6 shows a list of
common types of connectors. Complex connectors are often built using simpler ones.
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Connector substitutability. Academic experts on architecture insist that connectors
are first-class elements of an architecture in the same way that components are. You
should already be comfortable that a component has an interface, defined by its ports,
and that you could swap it for another component that supports that same interface.

If connectors are first-class elements in your architecture language, can you swap
them too? For example, if your components are communicating via pipe connectors,
can you swap the pipes for an event bus without affecting the clients of the connec-
tor? In architecture models the answer is yes, but often this property is lost in the
translation into code. Source code that implements components often implements
an interface and clients depend on that interface. However, source code that im-
plements connectors rarely implements an interface, so clients depend on a specific
connector implementation. Examples of this include clients knowing that they are
putting events onto an event bus, or making remote method calls.

Maintaining substitutability of connectors in the implementation is a choice that
developers must make. A component may be able to provide users better error han-
dling and reporting, for example, if it knows that it is using a remote procedure call
instead of a local one.

However, most systems would benefit from substitutable connectors. Increasingly,
no system is an island, and standalone systems today are integrated into a larger
system tomorrow. As will be discussed in Section 10.3, giving connectors first-class
status in the code is easy and has little performance impact. Most communication
in code happens inside components, which would be unchanged. But when commu-
nication happens between components, as in the connection between a client and a
server, it is worthwhile considering making the connector first class and substitutable,
which lets you change its implementation without disturbing those who use it.

Choosing suitable connectors. In principle, you could use any kind of connector
between your components, but in practice you will have preferences for one kind of
connector or another. For example, it might be inefficient to use an event bus when
simple method calls would work, or it might be complicated to use shared memory
communication with lots of threads, but you could imagine making them work. Once
you put all of these seemingly dissimilar means of communication in the category
called “connector,” it is easier to focus on the problem of choosing a suitable type of
connector.

When connectors are treated as first-class elements of your architecture language,
it is easier to see that your choice of connector, much like your choice of architecture,
can be appropriate or inappropriate. You may assume by default that all connectors
are local method calls, and indeed they are often the best choice, but they cannot be
used when communication spans machines or processes. Nor are they the necessarily
best choice when you need to analyze a system or ensure an emergent property.
Method calls are a low-level connector, and as such will give you little leverage on
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Property Notes

Connector
name

If you cannot think of a descriptive name, you can use the names of the
components on either end.

Roles Each role should be named and its port compatibility should be clear.

Topology Most connectors are binary, but some are ternary or N-way.

Functionality Connectors can do data conversions, fix or patch data for consistency (such
as quoting special characters or closing dangling HTML tags), or encrypt and
decrypt streams.

Type model As with ports, connectors have a domain that users must understand. When
documenting the type model, be clear if the types are conceptual or data
interchange types. If the model is graphical, the latter can be stereotyped with
«interchange».

Behavior
model

Many connectors are simply open or closed, but if they have a more complex
protocol it can be documented graphically using a UML state diagram (or
similar) or textually.

Other
properties

May include reliability, performance, resource requirements, security,
implementation technology, standards.

Figure 12.7: Example properties of a connector. A diagram rarely shows every property you might
care about for a connector. Consider these common properties when describing a connector.

the problem to be solved compared to a connector with more smarts.
In the library example, each connector has a domain-specific job to do, such as

communicating checkin and checkout requests from the Library Desk to the Library
System. You must match the requirements of that domain-specific job with a connec-
tor type that provides appropriate qualities and features. For example, if you chose a
local procedure call connector or a shared memory connector then the Library Desk
and Library System components would need to be on the same machine. If you chose
a pipe then it would be easy to transform the stream of input, but you would need
a separate connector for any return values that go back to the Library Desk. Asyn-
chronous event connectors make it easier to balance incoming events across many
machines, but usually entail complexity to handle responses that come back at an
unknown time in the future.

Chapter 2 described how, at macro-scale, architecture choices yield systems with
different qualities (throughput, usability, modifiability, etc.). Here at micro-scale, you
see that connector choices yield different qualities too.
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Connector name LibrarySystem-PeopleDB Connector

Roles rPeople, compatible with rPeople port
pPeople, compatible with pPeople port

Topology Binary

Other properties Protocol: SQL
Transport: TCP/IP
Throughput: 10,000 person records/sec
Synchronous

Functionality TBD

Type model A row from the PERSON table in the pPeople role contains ...
A Person class in the rPeople role contains ...

Behavior model The connector starts in the CLOSED state, transitions to the OPEN state
after a call to open(), then to the CLOSED state after a call to close().

Figure 12.8: A description of the LibrarySystem-PeopleDB connector between the Library System
component and the People Database component from Figure 12.3.

Properties. Like other architecture elements, connectors have properties. Common
properties of connectors include performance (throughput and latency), security, re-
liability, synchronous / asynchronous delivery, delivery guarantees, compression, and
buffering.

Diagrams rarely have enough space to show all of the connector’s relevant details,
so details are usually provided elsewhere. When you are explaining a connector to
someone else, think about explaining the common connector properties described in
Figure 12.7. An example of documenting the connector between the Library System
and an external database containing records of people (the connector shown in Figure
12.3), is shown in Figure 12.8.

When connectors are shown on diagrams, ensure that the type of each connector
is evident. When there are only a few connector types, changing the line style (thick,
thin, dashed, etc.) is effective, but with more types it is clearer to use the UML
stereotype to indicate the connector’s type.

It is tempting to annotate diagrams to indicate technology properties of the con-
nectors, and it is easy to do this in a first draft. But then you will want to add another
property, perhaps indicating the throughput of different connectors, and then which
connectors are synchronous versus asynchronous. There are two solutions to this
property overload: first, either omit properties from the diagram and rely on a legend
or external descriptions, and second, have multiple versions of the diagram, each an-
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Figure 12.9: An example component assembly showing an event bus instance connecting several
component instances, which can have a read port, a write port, or both. Note that in diagrams
like this, where all instances are connected to a bus, you cannot tell which ones are intended to
communicate with each other.

notated for different purposes. For example, you might have one diagram annotated
to show properties relevant to throughput, while another diagram is annotated to
help you with security.

It is also tempting to put arrows on connectors, but this can cause confusion as to
what the arrow means, as described in Section 15.4.

Roles. The end of a connector that attaches to a port is called a role. For a connector
to successfully attach to a port, the role and the port must be compatible. Roles are
rarely shown in graphical diagrams (i.e., just the port and the connector are visible),
though an example is shown in Figure 12.11 because it shows the refinement of a
connector, and therefore must show the connector’s roles.

Intuitively, you know that you cannot attach any connector to any port, which
means that you are mentally type-checking the connector’s role with the port. Ar-
chitecture Description Languages (ADL’s) formalize this intuition and let you declare
ports and roles so that compatibility can be explicitly checked.

N-way and bus connectors. Most connectors are binary, meaning that they have two
roles. A binary connector enables two components to communicate. N-way (or N-ary)
connectors have three or more roles, which enables N-way communication between
many ports. The best-known example is a event bus, or publish-subscribe, connector.
Since an event bus may connect many components, they are usually are shown in a
slightly different notation than other components, as seen in Figure 12.9.

An event bus can be a boon for designers because it enables flexible reconfigu-
ration of applications. Any component on the bus can potentially send messages to
any other component on the bus. This flexibility is a liability when it comes to clear
documentation, however. If you look at Figure 12.9, it is impossible to tell which
components are communicating with each other and which are not. That is, while
you can tell that it is possible that component A could communicate with component
B, you do not know if it actually does.
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Figure 12.10: A component assembly showing a master and hot backup slave connected by a
replication connector. Giving the connector a goal encourages you to think about the domain of
replication and how it might fail.

A partial solution is to use differentiated read and write ports, as on the D, E,
and F component instances, which yields some additional information, but still not
who is talking to whom. A better remedy is to keep using the normal point-to-point
style of diagrams, which are quite clear about which components are communicating
and which are not, and put a note on the diagram saying that the connectors are
actually the same shared event bus. Another good solution is to use multiple N-way
connectors to indicate that a subset of the components are collaborating.

Goal connectors. It is useful to juxtapose two kinds of connectors. The first is the
micromanaged connector that simply does a job you assign to it. If it fails, that is
because you did not supervise it sufficiently. Its job is only to do what you told it to
do. Micromanaged connectors do the simplest job possible and are simple connectors.
The second kind of connector, a goal connector, has an assigned goal, or objective,
that it is responsible for accomplishing. A developer who builds a goal connector
must avoid failure by looking into the problem, discovering possible failure cases,
and ensuring that the connector handles them. Goal connectors are usually complex
as they have real domain work to do, and are responsible for seeing it completed.

Consider the seemingly simple task of keeping a hot backup copy of a component,
ready for failover, seen in Figure 12.10. There must be communication between the
master and slave, because the slave should maintain the same state as the master.

Your first thought may be to make a procedure call to the slave every time the
master changes. That might work if the two components were co-located on the same
machine, but backups are often kept on separate machines for reliability, so you may
consider using remote procedure calls or events. But now there are more concerns:
What if messages do not arrive? Is the latency between master and slave acceptable?
Does the master process the replication synchronously or asynchronously? Does the
data need to be compressed, or can you efficiently send deltas? Perhaps worst of all,
are there transactional problems, where if a master fails in a transitional state you
need to revert the slave back to the last known good state?
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Figure 12.11: A refinement of the Replication Connector from Figure 12.10. It is more common to
refine components than connectors, but large and complex connectors are composed of compo-
nents on the inside.

By assigning a goal to this connector you reduce the chance that you treat it as a
trivial mover of data. If the connector were made simpler, one or both of the compo-
nents would be forced to assume additional responsibilities, diluting their cohesion
and purpose. Assigning the synchronization goal to a connector simplifies your com-
ponents, making them easier to build, maintain, and comprehend. It also simplifies
your system description by raising its level of abstraction.

Domain connectors. Another way to encourage interesting connectors is use domain
connectors. You do this by treating components as domains and assigning the job of
bridging the domains to the connectors. Michael Jackson described a patient moni-
toring system where sensors on the patient reported body temperature and pulse; the
system’s job was to alert a nurse in case of emergency (Jackson, 2000). He showed
that two different kinds of alarms were needed: one where the patient is suffering
a heart attack, and another less urgent alarm where the patient has inadvertently
removed the sensors.

Let’s look at this example from the perspective of using connectors to bridge the
domains. The first domain is that of collecting accurate sensor readings. There may be
acquisition, digital to analog conversion, smoothing, signal transformation, and other
work to be done in order to sense the patient’s temperature and pulse. The second
domain is that of alarms. There will be several severities of alarms and various ways
of informing people. You might configure low severity alarms to blink a light, medium
severity alarms to sound a local beeper, and high severity alarms to do all that plus
sound a remote beeper.

Defining the domains this way, you might even be able to reuse these components
in a different context other than patient monitoring, because each component handles
a single domain, rather than knowing about the other component or about the patient
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monitoring system. The connector acts as an insulator, preventing domain details
from one component seeping into the other.

Whenever two domain-specific components interact, you will need to write some
code that understands both domains, whether that code is in one or both of the
components, or in the connector. In this case, you need to write code that triggers
a medium severity alarm if the patient has accidentally removed his sensors, and a
high severity alarm if he is suffering a heart attack. If you place this code in either
the sensing or alarm components then they will have a mixture of domains. You can
instead place it in the connector, which at one end will take in sensor events and at
the other end emit alarm events. It is impossible to avoid having code that knows
about both sensors and alarms, but you can locate this code in the connector and
thereby insulate the components.

Someone with the job of building the connector is more likely to create a good
interface that describes the possible events that the connector will provide. The ob-
vious interface recognizes heart rate and temperature events, but a developer of this
connector is more likely to recognize that another event is needed: sensors discon-
nected. If you build a simple connector that provides the raw data to the monitoring
component, it is easier to overlook the concept of disconnected sensors because you
are unlikely to carefully consider the domain of the events. The insight here is that
when you let the connectors do real work, you benefit both because you get sim-
pler domains to work with, and because you may understand each domain better in
isolation.

In this example the translation between the sensor domain and the alarm domain
was rather simple, but in other cases it will be complex. Is it OK for a connector to be
large and complex? Yes. You have already seen how a component can be refined to
show its internal design, and the same refinement process can be used for connectors.
In fact, connectors can be themselves implemented using components, as is described
in more detail next. For example, an enterprise service bus guarantees properties like
durability and in-order delivery, and that communication infrastructure is complex,
so it is implemented using many distributed components and data stores.

Connectors should be treated as equals of components in software architecture.
If you give them simple jobs then you do yourself a disservice, and likely pollute
your components by hurting their cohesion and increasing coupling. Two concrete
strategies are to assign goals to connectors and to use connectors to bridge domains.

Refinement. Connector refinement is essentially the same as component refinement.
When you refine a component, you relate a boundary model of the component to
an internals model of the component. Externally visible features from the boundary
model are commitments that the internals model must uphold, things like the ports,
invariants, and quality attribute scenarios.

Figure 12.11 shows the refinement of a replication connector, similar to the one
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(a) Most verbose: Temporary file and component B shown.
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(b) Temporary file modeled as internal to
component B.
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(c) Most terse: Temporary file and compo-
nent B are part of the connector.

Figure 12.12: Different options for modeling a connection between components A and C, which is
intermediated by component B and a temporary file.

originally shown in Figure 12.10. Recall that when a component is refined, the exter-
nal ports must be the same (see Section 12.3). In connector refinement, it is the roles
that must be the same. So where you earlier saw ports sticking out of the component
assembly, here you see a source role and a sink role sticking out of the replication
connector. A binding shows how the source role corresponds to a role on the inside
of the subcomponent.

This figure is unlike any other in this book because it shows a connector with a
dangling role, one not attached to a port. All of the other diagrams show connectors
that are bound to ports, in which case the role is not shown graphically.

Modeling flexibility. Like components, connectors can do real work and you can
reveal their internal implementations via refinement. This combination yields options
for how you can model connectors. Consider, for example, the three alternatives
shown in Figure 12.12 that all show components A and C communicating. In option
(a), component B intermediates the connection and writes to a file. This model is
consistent with the implementation of a durable event bus, one that does not lose
messages even during a power failure. It can also be modeled as option (b), where
the file is omitted. The file might still be used, but since it communicates only with
B, you can choose to show it in the internals model for component B. And it can be
modeled quite simply as in option (c), where both the file and component B are part
of the internals model of the connector between A and C. It is important to note that
the design is the same with all three modeling options, but (b) and (c) hide more
details.

Choosing among modeling options like these is difficult, and without any context
it is impossible to choose well. Recall that your architecture models are a bit like story
problems in math. When you hear the story about the two trains traveling and are
asked when they will meet, you abstract away details from your model that do not
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help you answer the question that is asked. That is, to decide which modeling option
is best, focus on what questions the model must answer.

For example, if A and C are components you purchase, and you are to build B,
it seems likely that you will choose a model that shows B explicitly. If you need
to analyze your model for possible security threats, then you will want to see the
intermediate file (and know if it can be tampered with). If you were analyzing the
composition of components A and C using component B as an event bus, then you
will hide both B and the file.

In the 1990’s as object-oriented programming was becoming mainstream, devel-
opers would often joke about the nature of an object. “What is an object?” they
would ask, then answer, “Anything you want!” Once you have done object-oriented
programming for a while, the joke ceases to be funny because you develop an intu-
ition for when something must be modeled as an object and when it can simply be
an attribute of an existing object. The same shift will take place with architecture
modeling as it becomes mainstream, and instead of joking about modeling flexibility,
developers will build models that help answer their questions.

12.5 Design decisions

As developers design and build software, they make decisions about the design, and
some decisions are bigger than others. That is, some decisions are pivotal. These
pivotal design decisions shape the decisions from that point onward and constrain the
design space. Such design decisions are not made lightly, and developers usually have
an extensive rationale that underlies the decision.

Developers make decisions every day about the system’s design and most of these
provide little insight into the system. Only a handful of decisions are worthy of being
considered pivotal design decisions. You should be wary of wasting time by expressing
the less important decisions, whether you are writing them down or discussing them
verbally.

Highlighting pivotal design decisions can help others understand why the system
is the way it is. The rationale will connect the design decision to the forces that shape
the system, including its functional requirements, quality attribute requirements, and
tradeoffs present in the design space. Design decisions do not have a formal structure,
but usually consist of a decision and a rationale. In the Library System example, a
design decision could be:

Design decision: The system will be built using Java because: the team
has experience using with Java and a high-level and such a statically typed
language can improve modifiability, which we value highly. C might be
harder to evolve, its performance benefits are not a priority, and (potential)
pointer bugs would hurt reliability.
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Notice that the decision is interesting by itself, but provides insight via its connection
to the forces that shape the system. Before hearing about the design decision, you
might have been wondering why this team did not use your favorite language. Just
knowing that the decision was to use Java does not answer your question. You may
still disagree about their choice, but since you have the rationale, at least you know
why the decision was made.

Writing down pivotal design decisions can help even when a design exists. Some-
one else looking at a design, or at code, cannot tell which decisions in the design are
arbitrary and which are pivotal. Arbitrary decisions could be changed without funda-
mentally upsetting the design, pivotal ones cannot. Expressing the design decisions
explicitly avoids loss of design intent, as is discussed in Section 10.4.

12.6 Functionality scenarios

Functionality scenarios describe the behavior of a system. In other architecture mod-
els, the system is described as a collection of components, modules, ports, interfaces,
allocation elements, and so on. Functionality scenarios tell a story of how those ele-
ments can change over time and interact with each other. For example, a component
assembly of the library system, like the ones shown earlier in Figures 12.3 and 12.4,
only shows which component instances exist, not their behavior. A functionality sce-
nario can describe how that component assembly model, or another model, changes
over time. Functionality scenarios can be written textually, as in Figure 12.13, or they
can be written graphically, as a UML sequence diagram.

Figure 12.13 shows an example functionality scenario of the life of a copy of Moby-
Dick in a library. The scenario shows a single legal trace of behavior through a model,
but it cannot describe every possible behavior. For example, this functionality scenario
does not say what happens when borrowers lose the copy that they checked out.

Use cases are another popular way of describing behavior. They are largely equiv-
alent to functionality scenarios, but there are some important differences. Use cases
are activities that are high-level and visible to the users of the system. Use cases are
often defined to be accomplishing a goal of an actor outside the system, so internal
system activities would not count as use cases. Where functionality scenarios are
a single trace of behavior, use cases can include variation steps that allow them to
describe multiple traces. Because of these potential differences, this book uses the
term functionality scenario to describe traces, but so long as you are clear about the
possible misunderstandings, you may call them use cases.

Functionality scenarios and quality attribute (QA) scenarios, despite the similarity
in names1, are quite different. QA scenarios are similar to a single step in a func-
tionality scenario. The term quality attribute scenarios comes from Bass, Clements

1This book refrains from changing existing terminology because it seems to be the lesser of the evils.
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Name: End-to-end copy of Moby-Dick
Initial state: Larry is a Librarian; Bart is a Borrower
Actors: Larry, Bart
Steps:

1. Larry lists all Books about “fishing” / No matching books are found.
2. Larry adds a Copy of the Book “Moby-Dick” by Herman Melville to the Library. A record of

the Book is also added.
3. Larry lists all Books by Herman Melville / “Moby-Dick” is returned.
4. Larry lists all Books about “fishing” / “Moby-Dick” is returned.
5. Larry (with Bart) checks out the Copy of “Moby-Dick” to Bart. Its due date is set to 6

September.
6. Larry lists who last checked out the Copy of “Moby-Dick” / Bart.
7. Larry lists the Copies currently checked out by Bart / Copy of “Moby-Dick”.
8. Larry (with Bart) returns the Copy of “Moby-Dick” to the Library.
9. Larry removes the Copy of “Moby-Dick” from the Library.

Figure 12.13: An end-to-end functionality scenario showing the initial addition of a book copy to
the library, it being checked out, and eventually removed from the library. It applies to the system
context diagram for the Library System shown in Figure 12.3.

and Kazman (2003). The term functionality scenarios (or just scenarios) comes from
D’Souza and Wills (1998), whose use of scenarios inspired the approach and tech-
niques presented here. When it is clear from context, you can refer to functionality
scenarios just as scenarios.

Structure. Functionality scenarios are easy to read because of their story-like quality,
similar to fiction, but a useful scenario is non-fiction. It is structured and has check-
able references to other models. Step 5 in the scenario above cannot be “Larry the
librarian conjures elves from the computer system / the elves tie up Bart” because
that (presumably) is not something the Library System can do, however fun it might
be to build that system.

In this case, the story is about libraries and books, not elves. We know that because
the other design models define the vocabulary we can use in this story, and those
models talk about books, but not elves. The other design models further constrain
the actions in the story: actions like adding copies and checking out copies, but not
tying up library patrons. To achieve this connection with the other design models, a
functionality scenario consists of the five parts shown in Figure 12.14: target model,
scenario name, initial state, actors, and steps.

The meta-model of a functionality scenario is shown in Figure 12.15, and it for-
malizes the description above. It shows that each functionality scenario has one target
model and a sequence of steps. Each step has an actor who initiates it and a single
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Name The scenario name can be anything that is helpfully descriptive.

Target
model

The model that the scenario applies to. Functionality scenarios are often
applied to component assemblies and port type models, but could apply
to any model with elements that can change over time.

Initial
state

The initial state describes the state of the model before the scenario
starts. For example, the initial state could describe the contents of the
library and the existing loans.

Actors The list of actors who are involved in and initiate the scenario steps.

Steps Steps consist of the following:

Actor Each step has an actor who initiates the step. Scheduled or
timed events can be modeled as a timer actor.

Action Each step represents an invocation of an action that is defined
on the target model. For example, Step 1 in the library
scenario corresponds to a ListBooksAbout(topic) action.

Referenced
model
elements

Each step may refer to model elements. For example, Step 5
in the library scenario refers to “Copy of Book” and “due date”,
which must be defined in the model.

Return value Each step has an optional return value, or response, which is
described after a slash, as in Step 1 in the library scenario.

Figure 12.14: The parts of a functionality scenario. A functionality scenario refers to a target model,
and consists of a scenario name, an initial state, a list of actors, and steps. Steps are broken down
into the actor that initiates it, the action performed, references to model elements, and an optional
return value.

action that is invoked. Each step transitions a model from a begin state to an end
state. Actions belong to a model and reference some of the model’s elements.

What is an action, exactly? Each model has ways that it can be changed, and
actions are the mechanism for manipulating the model. For some models, the actions
are obvious. When the scenario applies to modules with interfaces, actions are the
operations that are defined on the interfaces. Component assemblies work similarly
because ports define the behavior. But other times the action is less clearly defined
and more abstract. For example, a scenario could discuss reconfiguring a router,
which is a step done by a person. A developer compiling code could also be an
action, or starting up a new data center. When the model already has clearly defined
actions, it is easy to write precise scenarios, but when the model is less formal then
writing a good scenario requires more discipline.
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Figure 12.15: The meta-model for a functionality scenario. A functionality scenario is a behavior
trace consisting of a sequence of steps. Each step is an occurrence of an action, initiated by an
actor, and transitions the model from one legal state to another.

Two-level scenarios. Scenarios should be written at a consistent level of abstraction.
Following a structure enforces this, because a scenario refers only to elements of the
target model, which is itself presumably at a consistent level of abstraction. This
is neat and tidy, but leads to the difficulty of understanding how scenarios at one
level of abstraction relate to those at a different level. For example, a scenario for
the Library System could refer to the system and its publicly visible operations (as
in Figure 12.13), but not to the Library System’s internal components. Separately,
another scenario could be written that refers to the subcomponents inside the Library
System.

To see how two scenarios at different levels of abstraction connect, the two can be
merged and related. Figure 12.16 shows the first couple steps of the earlier scenario
plus a second column that describes what happens to the internal subcomponents.
The first column is the more abstract scenario that cannot see the subcomponents
inside the Library System. The second column is the more detailed scenario that
explains how the subcomponents accomplish the action described in the abstract sce-
nario.

Generalizing functionality scenarios. A functionality scenario is just a trace, mean-
ing that is it just one possible legal sequence involving the model, the actors, and the
actions. You may need to build a general model that expresses every possible trace.
For example, general models are useful for documenting or analyzing protocols be-
tween components. If you are publishing your component for use outside of your
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Name: End-to-end copy of Moby-Dick
Initial state: Larry is a Librarian; Bart is a Borrower
Actors: Larry, Bart
Steps:

1. Larry lists all
Books about
“fishing” / No
matching books are
found.

Library Presentation (LP) extracts and sanitizes input from user form

LP queries books about “fishing” from Library Core (LC)

LC queries Inventory Database (ID) for all entries in Book table whose
subject contains the substring “fishing”. LC returns list of book objects
to LP

LP renders list of book objects as a result screen

2. Larry adds a
Copy of the Book
“Moby-Dick” by
Herman Melville to
the Library. A
record of the Book
is also added.

LP extracts and sanitizes input from user form

LP adds book “Moby-Dick” to LC

LC queries for existence of book “Moby-Dick” in ID. ID says no.

LC inserts new book “Moby-Dick” into ID

LC inserts new copy of book “Moby-Dick” into ID

LP renders success screen
...

Figure 12.16: A fragment of a two-level functionality scenario, which elaborates the first two steps
of the scenario from Figure 12.13. The right column references subcomponents of the Library
System: The Library Presentation (LP), Library Core (LC), Inventory Database (ID).

group then you may want to provide documentation that goes beyond a few example
scenarios.

There are many options for describing general behavior, including state diagrams,
activity diagrams, and sequence diagrams. Note that sequence diagrams have tradi-
tionally been used to describe traces, but they can be augmented with annotations
like “loop up to five times” to generalize the trace.

General behavior models can be difficult and expensive to build. Getting them
somewhat right is easy, but 100% right, including exceptional paths, is hard. You
may need them if you want to rigorously analyze a protocol or provide exact doc-
umentation. A general behavior model should be accompanied by at least one sce-
nario, if only because of the analysis benefits from animating the scenario. This book
recommends using scenarios when possible because they are cheap and effective in
many situations, and because their story-like quality makes them approachable by
both architecture experts and non-experts.



12.7. INVARIANTS (CONSTRAINTS) 239

12.7 Invariants (constraints)

Invariants, also known as constraints, restrict the system, specifying either how it must
be, or must not be. A defining characteristic of an architectural style is the constraints
it places on the elements in a system. A pipe-and-filter style, for example, constrains
the ordering of items in pipes and constrains the topology of how pipes and filters
may be connected.

Developers impose guide rails (as constraints) on their designs so that they can
understand them better. An unconstrained system can do anything, and therefore
it is impossible to reason about what it may or may not do. Seemingly simple con-
straints like “Clients must not connect directly to the database, and must instead
connect only to the business tier” enable developers to better reason about caching
and performance. In short, no constraints = no analysis.

Invariants on class diagrams are written in UML notes, and can be written in
Object Constraint Language (OCL) by putting the OCL expression inside curly braces.
Architectural constraints are more often written down separately from diagrams as
text. Static invariants deal with structure and dynamic invariants deal with behavior.

Static invariants. A static invariant is a restriction on the arrangement or quantity
of instances (e.g., objects, component instances, connector instances) that can be
created. An example of static invariants is that every truck must have an even number
of wheels. In this case, you would have types that represent trucks and wheels,
and the invariant restricts the how the instances of trucks and wheels are arranged.
Another example static invariant is that every piece of data collected from a user
must exist on at least two hard drives in separate server rooms. Static invariants can
appear in many models and in different forms. In UML class diagrams, cardinalities
on associations are static invariants, as are the ordering constraints like {sorted}.

Dynamic invariants. A dynamic invariant is a restriction on the behavior of in-
stances. Examples of dynamic invariants include: only the print driver may send
commands to the printer, every opening of a drawer is afterwards paired with a sin-
gle closing of that drawer, or every ticket submitted by a user results in a response
email being sent. In practice, you see many more static invariants documented be-
cause it is rather hard for humans to reason precisely about behavior.

12.8 Modules

A module is a collection of implementation artifacts, such as source code (classes,
functions, procedures, rules, etc.), configuration files, and database schema defini-
tions. They appear only in the module viewtype.
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Figure 12.17: A UML module diagram where Module A depends on Module B, which contains
nested modules C and D.

Modules can group together related code, revealing an interface but hiding the
implementation. In this way they are similar to classes, but at a larger scale, since
a module will usually contain many classes and other artifacts. The interface of a
module is distinct from the interfaces of its contents.

Some languages provide explicit support for modules, so modules can be declared
in the programming language. For example, modules in Ada are called packages and
their interfaces are declared separately from the package body (i.e., implementation).
Other languages have implicit support, such as C, where files that are conceptually in
a package are simply placed in the same directory in the filesystem.

Modules have properties which apply to the implementation artifacts inside a mod-
ule, such as what language they are written in, what standards they conform to, if
they have been reviewed, if they have test harnesses, and what platform they work
on. These properties can be shown on diagrams using UML stereotypes (e.g., «Java»
or «encrypted»), or using your own notation that you define in the diagram legend.
When representing the modules textually in a table or list, adding any number of
properties is straightforward.

Modules can provide and require services. For example, a credit card billing mod-
ule can provide payment services, but it requires a compatible credit card provider to
complete its job.

A module can depend on another module, and there are many kinds of dependen-
cies. Perhaps the most common dependency is that code from one module invokes
code in another module. Another example of a dependency is that a class in one
module can depend on a database schema in another module, because the fields of
the class are persisted into the schema.

One module can be contained inside another, a relationship called nesting, or con-
tainment. Depending on its visibility, this may make the nested module and its con-
tents inaccessible to other modules. Figure 12.17 shows a UML diagram with nesting
and dependencies between modules. Modules selectively reveal their contents, so a
module containing three classes might reveal some of the methods from one class,
but none from the other two.

The architectural notion of modules is broader than what is available in most
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programming languages, so developers may have to apply programming idioms to
implement the full notion of a module. For example, from an architectural perspec-
tive, every module has properties but few programming languages can express these
properties directly, so programmers may express them in comments in the code.

Layers. A layered system organizes its modules such that lower layers act as virtual
machines to higher layers. Dependencies are (almost) exclusively downward, where
higher layers can use and depend on lower layers, but not the reverse. Layering is
a specific style of organizing modules, and it is discussed in detail in Section 14.6.
Not every system follows the layered style, yet you occasionally see diagrams where
someone has attempted to force-fit it. In brief, every system has modules but not
every system has layers.

12.9 Ports

All communication in or out of a component is done via ports on the component. All
of the publicly available methods that a component supports, and all of the public
events it responds to, will be specified in its ports. If a component sends a message to
another component, writes to a database, or reads from the internet, it is through a
port.

Operating systems also have the concept of ports, but there is no necessary con-
nection between ports on components and ports in your operating system. You can
choose to align the two concepts, so that there is a 1:1 relationship, or treat them as
completely different things.

Ports reveal behavior through operations. Often clients must invoke operations in
a particular sequence, a protocol. Ports can be stateful, in particular so that they can
track the state of their protocols. Ports can also be annotated with properties. Ports
are seen on many diagrams in this chapter, including Figures 12.3 and 12.4.

Provided and required ports. There is a range of options for how to specify ports.
The easiest is to just name the port. A port can be categorized as provided or required,
meaning that it provides services to other components, or that it depends on services
from other components.

On diagrams, the color or shading of a port can indicate if it is provided or re-
quired, or the port name can be prefixed with a “p” or an “r”, as seen in Figure 12.1.
Provided and required ports often come in pairs, with the port on one side of connec-
tion providing a service and the other requiring it.

The simple provided / required dichotomy breaks down quickly when you look
at real components, however, because most interactions are not purely provided or
required. Furthermore, provided and required services are just one property of the
port; others include which side originates communication, the primary direction of
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data flow, and qualities of the data itself like its format. Despite these issues, labeling
ports as provided or required is often a useful, if coarse, designation.

Multiple port types. Although it is perfectly legal for a component type to have just
one port type that exposes all of its operations, many component types have more
than one port. Having just one port type requires you to route all communication
through that one port type, so having multiple ports is desirable for several reasons:

• Responsibilities. As components become large, a single port would have enor-
mous and varied responsibilities which would be better factored out into multi-
ple ports that are smaller, simpler, and easier to understand.

• Protocols. Since ports can be stateful, using a single port may mean combining
multiple state machines, which quickly creates a complex mess.

• Coupling. The component reveals a limited view of itself to each user, reducing
coupling. In the Library System example (see Figure 12.3), the LibraryDesk has
access to more operations than the WebPC does. Consequently, the coupling
between the WebPC and the LibrarySystem is reduced. In particular, operations
for the LibraryDesk can be changed without affecting the WebPC.

• Usability. Providing a smaller or simpler port has the benefit of simplifying
what the user of each port has to understand.

• Compatibility. Each port has a type that can be checked for compatibility. A
component might perform the same calculation, but provide results in JSON
format from one port and in XML format from another port. The same compo-
nent can offer different versions of the same interface so that legacy clients can
be supported.

Informally, when a developer looks at a diagram or code and sees the human-readable
names of port types, some knowledge about the system is conveyed (in the way de-
scribed in Section 10.3 on an architecturally-evident coding style), so having multiple
ports means more opportunity to convey knowledge and design intent.

Multiple port instances. A port type can have multiple instances. In the Library Sys-
tem, for example, many WebPC instances might be connected to the Library System.
This yields options, as seen in Figure 12.18. In option (a), each component instance
connects to a different port instance on the server. In option (b), all the component
instances connect to a single port instance on the server. In option (c), each client
and the server has a single port instance, but they use an N-way (in this case a 3-way)
connector instead of binary connectors.

How do you choose whether or not to share a single port? It is easier to track
a port’s state with multiple port instances, and you should by default choose this
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(a) Component assembly showing multiple ports.
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(c) Component assembly showing a 3-way
connector.

Figure 12.18: Component assemblies showing three options for handling multiple clients. The
server can have (a) one port for each client or (b) one port shared by many clients, or (c) an N-way
connector for many clients.

option. Shared ports are shortcut and can be a good choice when the connector
protocol is stateless, like HTTP, and there is no security concern of data leaking across
connectors. If clients are using distinct parts of an API, then sharing a port is a
poor choice for coupling reasons, since changes made for one client will impact the
other. You should also be aware that there is some semantic ambiguity, such as what
happens when the component sends a message out a port: does it go to just one or
all connected components?

How do you choose binary or N-way connectors? Again, security can influence the
choice, since it is likely easier to secure a binary connector than events across a shared
connector. An event bus is a special kind of N-way connector that gives designers
the option to easily add and remove components while the set of events stays the
same. Other kinds of N-way connectors are appropriate in special circumstances,
such as querying multiple servers to get a consensus answer. They can also be used
to reduce latency or distribute load by querying multiple servers. In general, if you
see a component that must manage connections to multiple similar servers, consider
if the connector could better handle some of those logistics.

Ports and interfaces. No mainstream programming languages support ports directly,
though, as discussed in Section 10.3, you can adopt an architecturally-evident coding
style to make them visible. Interfaces, on the other hand, are directly expressible. In
programming languages, interfaces are usually just simple lists of operations. Ports
and interfaces are similar in that clients depend on them rather than an implemen-
tation, but different in that it is unusual to think of interfaces as having instances
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Figure 12.19: The Library System component shown with its two provided ports (pDesk and pWeb)
and one required port (rPeople). These ports are shown with provided and required interfaces
using UML ball-and-socket notation.

or state. Additionally, architecture models have the idea of required ports but few
programming languages support the idea of required interfaces.

A port can support one or more interfaces. For example, the Library System has a
pDesk port and it could support (i.e., provide) the ICheckout and IQuery interfaces, as
shown in Figure 12.19. The figure also shows the rPeople port requiring the IPeople
interface.

Stateful ports and protocols. Ports can have state, which usually happens because
there is a protocol associated with them. Files, for example, support operations like
open(), close(), read(), and write(), but clients cannot call those operations in any
order they want to. A call to close() followed by a call to write() is likely to cause
problems.

If the domain is unfamiliar to users, it may be worthwhile to write down the port’s
state machine. Figure 12.20 shows a Store component with one port, pCart, that
provides shopping cart services. The port supports several operations: newCart(),
addItem(Item), removeItem(Item), and checkout(). The figure shows these opera-
tions on a state machine that constrains their sequencing. This example is simplified
and a more detailed one would include abandoned shopping carts that expire after
some amount of time, removing items during checkout, etc. The more complex the
state machine is, the more useful it is to write it down, either graphically, as in the
figure, or textually.

If you have prioritized the risk of making protocol mistakes, then carefully mod-
eling the protocol of ports is a good idea. If you work within an object-oriented
framework, be sure that you understand the protocols of the callback methods, as
this is an easy place to make mistakes that can crash your application.

Port type models. You can put multiple ports on a component for many reasons,
but one important reason is to provide a simple and limited set of operations for
a particular client. A component may support many operations and understand a
complex domain, but a single port may expose just some of those operations and a
simpler domain. The idea of effectively encapsulating a component through its ports
is described in Section 11.4.
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Figure 12.20: A state machine showing the protocol for using operations on a port. Users of
the store’s pCart port can invoke newCart() first, then addItem(Item) and removeItem(Item) any
number of times, then checkout().

Figure 12.21 shows the Library Core component (shown earlier in Figure 12.4)
and its four ports. It also shows the type model for the pInventory port. Clients using
that port need to understand just three types: Library, Copy and Book. They do not
need to understand other types that the Library Core reveals via other ports, including
Loan and Borrower. Clients using the pInventory port need to understand if a Copy
is removed from the Library or not, which is visible as an attribute is_removed on the
Copy type, but clients do not need to know about other attributes of the Copy.

Notice that this figure shows the Library Core component annotated (stereotyped)
with the UML icon for a component. UML uses the same diagram element (the clas-
sifier element) for both types and components, but there is little chance of confusion
because you rarely see both on the same diagram. In Figure 12.21, the icon serves to
disambiguate them since it has both types and components.

In most architecture models, the port’s type model does not represent the
datatypes that flow into and out of the port as parameters. When it does, you can
stereotype the types with «interchange», meaning that this is a commitment to a data
structure layout used for data interchange. See Section 15.8 for a discussion of the
advantages and disadvantages of having an architecture model at exactly the API
level.

Bindings and attachment. When you nest components inside of each other, you
should be clear about how an external port maps to a port on the nested components,
which you do with a binding. Figure 12.22 shows components B and C nested inside
of component A, and a binding between port P1 on component A and port P1 on
component B. The port on the subcomponent must be compatible with the port on
the containing component, so in this case P2 must be compatible with P1. P2 could
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Figure 12.21: A type model showing the types used by one of the ports. The clients of a port
need to understand just a subset of the component’s full type model. The Library Core component
instance was previously shown in Figure 12.4.

add more operations, but it must support all the operations on P1, and cannot change
their meanings.

Generally, a binding is not a connector and no work can be done in a binding.
Instead, a binding exists to preserve encapsulation. Users of component A do not
even know that the subcomponents B and C exist, so they do not know that port P2
exists either.

Your source code implementations will often differ from the way the component
assembly looks because your programming language probably has visibility restric-
tions (e.g., public and private modifiers in Java) that allow you to selectively hide
and reveal elements. An implementation could reveal the interface corresponding to
port P2 while hiding the implementation of components B and C. In that case, port
P1 would have no runtime existence, so neither would the binding. You may think of
a binding this way: A binding enables you to show which nested component’s port is
“sticking out” of the external component and visible to clients.

Two caveats are needed here. First, in UML, a delegation connector (i.e., a binding)
is a subtype of a connector, though in its description it notes that it may or may not
exist at runtime. Second, occasionally you will see work being done in a binding at
runtime, such as selectively routing messages to several internal ports.

Ports can be attached to compatible roles on a connector. In Figure 12.22, port P3
is graphically shown as attached to the (graphically invisible) role on the connector.
In contrast, port P1 is shown unattached.

12.10 Quality attributes

A quality attribute is a kind of extra-functional requirement, which are also called
non-functional requirements and non-functional properties. The term extra-functional
is preferred over non-functional because “extra” is more etymologically accurate than
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Figure 12.22: When a component is implemented with multiple nested components, external ports
must be bound to internal ports. In this diagram, externally visible port P1 is bound to internal port
P2, which must be compatible with port P1.

“non” in this context — these requirements go beyond functional requirements, not
negate them. Most people would interpret a sign saying “non-functional” hanging on
a water fountain to mean that it is broken, not that it is high throughput.

Understanding quality attributes is central to software architecture because a sys-
tem’s architecture will influence which qualities it can achieve. As with most things
in engineering, it is easy to inhibit a quality, but hard to promote it. Seemingly trivial
oversights can ruin a quality (e.g., security), but it takes careful planning to promote
one.

Ideally, you would specify a testable condition for the quality you want, such as
“Credit card transactions are authorized within 7 seconds 95% of the time.” In prac-
tice, it is difficult to write good tests for some qualities, especially less quantitative
ones like usability, security, modifiability, and portability. Section 12.11 discusses how
to write testable quality attribute scenarios

Some quality attributes are best analyzed using a particular viewtype or view. My
friend Tim once made this point vividly when he dropped a thick source code listing
on the table and challenged anyone to find the one line of code that made the system
run half as fast. Instead, he found it by looking at an execution trace (a runtime
view), which quickly revealed the culprit.

Orthogonality to functionality. It may seem counter-intuitive initially, but function-
ality and quality attributes are mostly orthogonal concerns, meaning that they are
independent of each other. You can convince yourself it is true by asking hypothetical
questions: Can I build a specific system, such as a word processor, that is slow or
fast? Secure or insecure? Testable or untestable? ... and so on for any quality at-
tribute. Truly orthogonal concerns have no relationship to each other, like color and
weight. Something can be red or blue, heavy or light, and there is no connection.
However, size and weight are strongly related, as larger things tend to be heavier.
Functionality and quality attributes are only mostly orthogonal because they do in-
teract a bit. You could select a functional requirement and a quality requirement so
that it is impossible to satisfy either, but not both, such as sorting a list faster than
O(n). But usually the design space is large, so functionality and quality attributes can
vary independently.
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Viewtype Quality attributes

Runtime Performance Latency
Throughput
Efficiency
Scalability

Dependability Availability
Reliability
Safety

Security Confidentiality
Integrity
Availability

Usability Conceptual integrity / Consistency

Non-runtime Modifiability Modularity
(Module & Interoperabilty
Allocation) Portability

Integratability
Conceptual integrity / Consistency
Extensibility
Configurability

Reusability

Supportability

Deployability

Testability

Figure 12.23: A partial taxonomy of common quality attributes, also known as extra-functional
requirements or “the -ities”. Quality attributes are mostly orthogonal to functionality.

Taxonomy. Although it is possible to talk about quality attributes as broad categories,
such as performance, you will usually need to be more specific within that category.
For example, both throughput and latency are kinds of performance qualities, yet
each is different. A new credit card processing system that increases throughput is
desirable, but perhaps not if each authorization now has higher latency. Table 12.23
shows some common quality attributes organized by viewtype. Most of the quality
attributes can be divided into finer-grained qualities. A larger taxonomy of quality at-
tributes can be found in SEI technical reports (Barbacci et al., 1995; Firesmith, 2003).
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Source System stakeholder or developer

Stimulus Wishes to change the PeopleDB

Environment Design time

Artifact Code

Response PeopleDB replaced with no changes to LibrarySystem code

Response Measure Within three days

Full QA scenario A system stakeholder wishes to replace the PeopleDB with a
compatible one; change is made within three days without changing
the LibrarySystem code

Figure 12.24: An example of a full quality attribute scenario for the Library System. You may omit
some sections, but you should strive to write falsifiable scenarios.

12.11 Quality attribute scenarios

Quality attribute scenarios concisely express extra-functional requirements. They are
described in depth in (Bass, Clements and Kazman, 2003) and are an essential part
of ATAM (Section 15.6.2) and the Attribute Driven Design process (Section 11.3.4).

Developers on most projects usually know the system’s expected functions suffi-
ciently well, but often they must infer or guess the quality attribute requirements.
Since the architecture of a system strongly influences its throughput, security, and
other quality attributes, developers who are not armed with QA scenarios or some-
thing equivalent are forced to choose an architecture based on their hunches, and
stakeholders may not discover problems until quite late. Developers will build a good
system, but there are different flavors of good: it may be a highly secure system in-
stead of a highly usable system, or it may have excellent throughput instead of being
easy to modify.

Structure. QA scenarios are like functionality scenarios in that they describe how the
system should behave. Where functionality scenarios consist of a series of steps, each
of which transforms the system, QA scenarios consist of a single step. At a minimum,
a QA scenario describes a stimulus and a response. Examples of stimuli include users
pressing buttons, intruders attacking the system, a batch job being submitted, and
stakeholders requesting modifications. Responses include generated data, adminis-
trators notified of attacks, job completion, and changes integrated into the system.

The full structure of a QA scenario includes: source, stimulus, environment, arti-
fact, response, and response measure. Figure 12.24 shows an example QA scenario
from the Library System.
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Falsifiability. Even when writing minimal QA scenarios, you should strive to make
them falsifiable. If the QA scenario is not falsifiable then you cannot be sure that your
system supports it (or that it does not). The system should be “user friendly” but who
will be the judge of that? One of the best reasons to include a response measure is
that it forces you to make the outcome falsifiable, and therefore testable.

Writing falsifiable QA scenarios is easy for quantitative quality attributes like
throughput, but awkward and difficult for QA’s like usability and modifiability. When
you write a performance QA scenario you feel like it cuts to the essence of what the
system should do, such as respond to 100 queries per second within 1 second 90% of
the time, and always within 5 seconds. On the other hand, while you can write mod-
ifiability scenarios as above, they feel more like special cases rather then the essence.
For example, it is easy to imagine a system that can handle three or four modifiability
scenarios but be otherwise terribly difficult to evolve. Even though they are imperfect,
a falsifiable QA scenario is better than “make it user friendly.”

Finding scenarios. It is often said that the best way to appreciate your own culture is
to travel to see other cultures. So it is with quality attributes. If you always develop IT
systems then you will have internalized some prioritization of quality attributes, and
your ranking is likely different from what Systems, Web, and Embedded developers
have internalized. Looking at other kinds of systems will help you appreciate the
qualities you are building in, and perhaps help you re-prioritize.

If you are not seeking QA scenarios then you will not find them, but any searching
you do will reveal some of them. If your architecture is a big risk for the project then
you should search diligently. Note that humans are better at criticizing a strawman
than a blank sheet of paper, so you will likely elicit better responses from stakeholders
by seeding them with your best QA scenario guesses and asking them to fix them.
Structured processes like Quality Attribute Workshops (see Section 15.6.2) and the
Architectural Tradeoff Analysis Method (see Section 15.6.2) are more formal ways of
soliciting QA scenarios.

Architecture drivers. Architecture drivers are quality attribute scenarios that are both
important to stakeholders and difficult to achieve. They can also be functionality sce-
narios. They represent the intersection of the most difficult scenarios and most im-
portant scenarios. As such, they are the scenarios that you should pay most attention
to when designing your system.

Your architecture needs to support the demands placed on it, but often your system
has so many requirements that it is hard to focus your thinking. By keeping the list
of architecture drivers short, you can both focus your thinking and ensure that your
architecture supports the hardest, most important demands on it.

Architecture drivers are selected from your existing lists of QA and functionality
scenarios. Stakeholders rate each scenario by how important it is to them, usually on
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a High (H), Medium (M), Low (L) scale. Additionally, developers rate each scenario
by how hard it will be to achieve. The result is a tuple like (H, M). Architecture drivers
are usually the (H, H) tuples, scenarios that are both important to stakeholders and
hard to build.

Architecture drivers are so named by the SEI authors of (Bass, Clements and Kaz-
man, 2003) because they advocate using them to drive the architectural design pro-
cess (as in Attribute Driven Design, Section 11.3.4). This book advocates using risk to
help choose architecture activities, which is a similar goal, but not quite the same. The
risk-driven model helps to answer the question, “What activities should my team do
and when should we stop?” Architecture drivers are better at answering the related
question, “What technical qualities must my architecture have?” There is overlap
because some scenarios can be cast as risks, such as the risk that the system does
not handle its transactional load. However, not every risk is clearly categorized as a
scenario. For example, integration with a new framework might be a risk but is not
obviously a QA or functionality scenario.

12.12 Responsibilities

As you design a system, you allocate responsibilities to system elements. You can
allocate responsibilities to elements of any model in any viewtype. For example, a
user interface module (module viewtype) may be responsible for rendering the user
interface, a component instance (runtime viewtype) may be responsible for data on
Colorado employees, and the Arlington facility (allocation viewtype) may be respon-
sible for offsite backups. An element’s responsibilities are often implied in its name.

System elements can have both functional and quality attribute responsibilities.
Developers tend to think about the functional responsibilities first, but quality at-
tribute responsibilities should not be overlooked. A database may be responsible
for storing data on Colorado employees, but it may also be responsible for servicing
queries within a half second, or for 99.99% uptime.

Chains of intentionality. Responsibility allocation is tied into the idea of a chain of
architecture intentionality (see Section 2.1). Specifically, the chain of intentionality
helps you decide which responsibilities you need to allocate to an element and which
you can leave open to any reasonable implementation.

Here is an example that shows how the highest level architecture intentions flow
through into responsibility allocations. Imagine that one of the system’s architecture
drivers is to handle queries within one second and you decided on a 3-tier architecture
style with user interface, business logic, and persistence tiers. Because you need to
ensure that queries are handled in one second, you assign performance budgets to
each of the tiers and connectors such that the round-trip time will be safely less than
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one second. The performance budget on each element is a responsibility allocation
that flows from the architecture driver.

In contrast, what you are not doing is assigning every element a responsibility for
every quality attribute. In the example, the system did not have an architecture driver
for security, so no security responsibilities are assigned. So, unless your chain of ar-
chitecture intentionality has a reason to assign security responsibilities to a module,
do not assign any. Of course, when you are looking at the details of a component
and believe that it should have security responsibilities, yet you do not have an archi-
tecture driver for security, that is a clue that you might have missed an architecture
driver.

Universal and enumerated responsibilities. Responsibility allocations are con-
straints, and the way that a responsibility is written (or thought about, or verbally
communicated, etc.) determines how strong the constraint is. Responsibilities can
be written as either universal or enumerated (i.e., intensional or extensional, as dis-
cussed in Section 10.1). Consider the following universal (intensional) responsibility
allocation:

(a) All input validation should be done in the UI tier.

This responsibility is quantified across all elements and says that only the UI tier
should be doing input validation. It is a general rule, so even as the system evolves to
add new tiers, it still prohibits those tiers from doing input validation. Compare that
universal responsibility allocation with this enumerated (extensional) one:

(b) The UI tier checks credit card checksums and integer ranges.

Perhaps today this covers all cases of input validation, so (a) and (b) seem equivalent.
However, since (b) is an enumerated list, it does not say anything about what might
happen tomorrow when a new tier is added. It provides no guidance on whether the
next feature can implement its validation checks in a different tier.

The universal responsibility allocation is a stronger constraint, which may or may
not be what you want. However, if you intend the stronger constraint, you should
state it universally, as in (a), rather than leaving others to wonder if they should be
inferring a pattern from an enumeration, as in (b).

12.13 Tradeoffs

Quality attributes often trade off with respect to each other. If you design a system
so that its response time is as fast as possible, you may find yourself sacrificing mod-
ifiability, portability, or security. Sometimes these tradeoffs will be inherent in the
problem, but more often they will be dependent on a particular design.
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When you investigate your design space (the set of all possible designs that achieve
the functional requirements), you will find designs that promote or inhibit the qual-
ity attributes in different amounts. You are confronted with a messy set of possi-
ble designs. When you discover a tradeoff, you have created clarity from the mess,
and have simplified and condensed your understanding of the problem. You might
find that, “Generally speaking, dependence on the platform (portability) trades off
against speed. As we make the system faster, we have to use platform-specific APIs
which make porting more difficult.” These tradeoffs are nuggets of gold: a condensed
insight into the problem you are working on.

Other things trade off besides quality attributes. At a more detailed level, de-
sign decisions may open up one set of features at the expense of another set. At a
higher level, quality attributes may trade off against business decisions. For example,
some companies are known for producing highly usable products with fewer features.
Adding features might actually be undesirable because it adds complexity.

Tradeoffs are perhaps the most condensed knowledge about the system, so if any-
thing about the system is documented it should be the tradeoffs. A new developer
can gain insight into a system and its domain just by reading a short list of tradeoffs
that shape its design space.

12.14 Conclusion

This chapter has covered the important model elements that you will use in archi-
tecture modeling. The elements are used on architecture models like system context
diagrams, module diagrams, layer diagrams, allocation diagrams, and component as-
semblies. This chapter augments Chapter 7, which describes how the model elements
can be put together into a canonical stack of models, and Chapter 9, which gives
an overview of the design model. This chapter and the next are useful reference
material, covering model elements and relationships, respectively.

You should certainly not strive to use every modeling technique in your archi-
tecture models. I once had to maintain some C++ code that had been written by
someone who had just read a book on C++, so that code was full of multiple inher-
itance and other corners of the language. That is not what you want. Books have to
spend more time on tricky concepts than on simple ones, but do not make the mistake
of mirroring that emphasis in your system and models. They should be dominated
by the straightforward concepts, like components and functionality scenarios. How-
ever, occasionally the best way to model an idea is with an N-way connector (or other
tricky concept), and now you know how to do that.





Chapter 13

Model Relationships

Throughout this book, you have seen relationships between models. For example, the
canonical model structure of domain, design, and code models uses the designation
and refinement relationships. Refinement is also used to relate boundary models to
internals models. Views are used everywhere. So far, these relationships have been
described intuitively and informally.

At some point, however, you will want to know that the ground you are building
on is more solid than that. This chapter adds precision to your understanding of the
relationships but, in an effort to stay readable, it stops short of being fully formal.
You can safely skip over this chapter on your first read and come back later.

A full understanding of model relationships will enrich your conceptual model
of architecture and consequently your ability to detect bugs in your models. The
conceptual model taught throughout this book makes some modeling choices, notably
the use of closed refinement semantics and the use of master models instead of views-
as-requirements. By the end of this chapter, you will understand why these were
chosen and will be ready to read models that use different choices.

The modeling relationships are more general than software architecture or the
Unified Modeling Language (UML), so you will see little of those here. Instead, the
relationships are explained using an example of a house, for example relating the real
house to its blueprints, and relating diagrams of its floorplan to a three-dimensional
model of it.

The following sections discuss nine relationships between models, summarized in
Figure 13.1: projection (view), partition, composition, classification, generalization,
designation, refinement, binding, and dependency. The chapter concludes with an
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Relationship From-To Description

Projection Model-Model Subset of details with optional transformation
Partition Model-Models Subdividing a model
Composition Models-Model Combining models
Classification Type-Instance Categorization of instances
Generalization Supertype-Subtype Subsuming relationship between categories
Designation World/Model-Model Correspondences between models
Refinement Model-Model Low-detail to high-detail
Binding Model-Model Conforming to a pattern
Dependency Model-Model Change to one may imply change to other

Figure 13.1: A summary of the relationships described in this chapter.

example showing how all the relationships can be used together. We begin with
projection, the most commonly used relationship.

13.1 Projection (view) relationship

Cartographers have invented many projections of the Earth’s curved surface onto a
flat map. Each requires a mathematical function that maps (i.e., projects) a spherical
surface onto a planar surface. Perhaps the best known is the Mercator projection,
invented in 1569, which has the property that all lines of longitude and latitude
intersect at right angles. On the Earth’s surface, such intersections occur only at the
equator, so as a consequence the Mercator projection exaggerates the size of land that
is far from the equator. While falsely depicting Greenland as larger than Africa, this
projection had the beneficial property that sailors wanting to get from one place to
another can draw a line between the two and simply sail at that compass bearing.
The Gall-Peters projection seeks to represent accurate sizes of countries but sacrifices
the property of simple navigation.

A projection, which you can use interchangeably with the term view, can be infor-
mally thought of as what something looks like from a particular perspective. More for-
mally, a projection shows a defined subset of a model’s details, possibly transformed.
A projection can remove details, such as a map that omits country boundaries. It
can also transform the model, as seen in how the Mercator and Gall-Peters projec-
tions choose their transformations for easy navigation or accurate area. However, a
projection cannot add information that does not already exist — it would be quite
surprising to project the globe onto a piece of paper and discover a new continent.

Projections are used when creating blueprints of houses. While a three-
dimensional house is being designed, two-dimensional drawings of the house are
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Figure 13.2: A two dimensional (2-D) floorplan view (i.e., a projection) of a three dimensional (3-D)
house model.

produced. Each of these 2-D drawings is a projection of the entire house, as shown in
Figure 13.2.

Consider a computer-aided design (CAD) program that stores an internal repre-
sentation of your 3-D house plans and can compute any 2-D view that you ask. It may
seem that this contradicts the rule that “projections cannot add information that does
not already exist,” because not every possible view already exists in the 3-D internal
representation. But it is OK for the CAD program to transform its internal represen-
tation to show a view, which may require it to calculate and display a cross-section.
What the rule prohibits is views that would be impossible to derive from the 3-D
internal representation, such as a new room, or a garage.

Although you will use a lot of graphical views, some of the most useful are views
textual or tabular. Figure 13.3 shows a view of the house that lists the costs. You could
draw it graphically, but it would be easier and better to use a spreadsheet program.

13.1.1 Consistency across views

Having more than one view introduces a challenging problem: maintaining consis-
tency across multiple views. If you use a 3-D CAD program to edit your 3-D objects,
the problem of inconsistent views will not arise because the program mechanically
computes the views for you, and presumably does not make mistakes. However, de-
signers often work with 2-D views and use their own brains to keep the various views
consistent.

My brother who constructs buildings encountered this problem on one of his
projects. The front-facing view of the school he was building showed rainspouts,
which he built as designed. Once he started grading the terrain using a top-down
view of the grounds, however, he discovered that the design had the rainspouts ex-
iting several feet below ground instead of at the surface. He had bulldozers on site
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Roof $17
Deck $12
... ...
Driveway $35
Total $100

Figure 13.3: Many views are created ad hoc, like this table view of house construction costs.

when the inconsistency was detected — you would prefer to discover inconsistencies
sooner.

View consistency is one of the harder problems in software architecture (see Sec-
tion 16.1). You can use techniques to check consistency between particular parings
of views, such as 2-D-floorplan to 2-D-side-view, but the number of specific pairings
increases combinatorially with the number of views, so you should prefer general
techniques when possible.

Since keeping views consistent is a difficult problem, you should insist on good
reasons for using views at all. Views help you cope with two primary foes: complexity
and scale. By showing a subset of the details of the full model, a view necessarily
reduces the amount you need to comprehend. A view often highlights a single concern
of the model, such as speed, airflow, or navigability. A specialist can use the view
instead of the full model, for example as an electrician uses a wiring diagram to trace
circuits. We will return to the issue of view consistency in Section 15.2.

13.1.2 A view of what?

Let’s start with two views of a house, like the views in Figure 13.4. If you look at
these two floorplans, you will notice that the staircases do not match up. The first
floor view has the staircase on the right and the second floor view has it on the left.
When you build multiple views, you will sooner or later encounter the problem of
conflicting views.

But interpreting what the conflict means can be tricky because there are multiple
interpretations. Perhaps the views are firm requirements, so a conflict means that the
house is unbuildable until the requirements change. Or perhaps the designer made
a design mistake and had not yet realized it. The following sections describe three
interpretations of views: as requirements, as projections of a master model, and as
projections of reality.

Views as requirements. One approach is to interpret each view as expressing re-
quirements. The complete set of views represents the requirements for the system.
For example, when designing the plans for a house, the architect may have insisted
on locating the bathroom over the kitchen so that the water lines are aligned, and
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Figure 13.4: The same master model can have multiple views that focus your attention on different
parts of the master model. The floorplan views put the staircase in different places, which raises
the question: where does the error lie, in the views or in the main house model?

required the master bedroom to face east. He would create a view for each of these,
constraining the house. The views could also come from different stakeholders, for
example a view from the future owner constraining the house cost and another view
from the city constraining the house size.

Let’s refer to this approach as the views-as-requirements interpretation. Since each
view expresses requirements for the solution, you should wonder if you can design
a model (and subsequently build a house) that satisfies the requirements from all
the views. In the case of Figure 13.4, solutions exist for each view, but not for the
combined views. My friend Dean illustrates the challenge of conflicting requirements
with the following example: “I want a 20-inch display that fits into my pocket.”

Master model. Another way of approaching the problem of view consistency is to
interpret each view as a projection of a complete design in the designer’s head. Let’s
refer to this approach as the master model approach, because it assumes that the de-
signer has a complete master model from which views could be mechanically derived.
If the views are inconsistent, it is because the design is flawed. You would interpret
the contradictions in the house floorplans as a flaw in the master model in the de-
signer’s head. We have all experienced the situation where we believe our plans or
models are coherent until we try to put them into practice, at which time we discover
latent errors.

The master model must contain all of the details needed to project the views and
all the details needed to design the real artifact. In practice, designers often keep the
master model in their heads and produce a selection of views. For example, designers
often draw only 2-D views of a house, not a 3-D model. However, if you asked them,
they could produce any 2-D view you desired from the master model in their heads.
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Project reality. A third interpretation of views is that they are not projections of
another model at all, but instead are projections of the real-world artifact. Using
this interpretation, the floorplan blueprint of a house is either a projection of the to-
be-built future house (using the views-as-requirements approach), or a projection of
the actual house (using the master model approach). This interpretation combines
the idea of projection and designation into one step, like the way that experienced
mathematicians will skip over or combine steps in their work.

This book uses the master model approach and its diagrams show views that are
projections of the master model. This way you avoid the possibility of creating a set
of views for which there is no solution, and you keep the explicit step of showing
correspondence between your models and the real world.

13.1.3 Views Aid Analysis

A well-chosen view can aid in analyzing a model, and this analysis is often informal
and visual. If you are trying to schedule contractors to work on your house, you would
start with a list of the contractors and their availability dates. Conflicts are not obvious
if the list is unordered, but if you place them onto a timeline chart the conflicting
appointments will jump out because your brain is good at detecting overlaps when
shown like this. Leveraging our built-in skills as humans to do architecture analysis
is discussed in more detail in Section 15.6.1.

Other analyses can be done algorithmically by computers. If your new house is
subject to local taxes based upon its square footage, number of windows, and energy
efficiency then a specialized view can be used to calculate the tax burden of various
design options. Each specialist contractor you hire, such as heating or electrical, likely
has specialized analyses they perform using a custom view of the house.

13.1.4 Grouping Views into Viewtypes

In Section 9.6, you learned that views can be grouped based on their similarity. All of
the physical views of the house can be reconciled by using a detailed 3-D design. But
you can also view your house from various legal perspectives: tax liabilities, mineral
rights beneath the house, and whether or not you can keep chickens in the backyard.
It is difficult to imagine how these fit into a 3-D physical model, but perhaps you could
make a legal model of the neighborhood and reconcile the additional views there.
These groupings of views are called viewtypes. A characteristic of a viewtype is that it
is hard to reconcile it with another viewtype. In software architecture, the standard
viewtypes are the module viewtype, runtime viewtype, and allocation viewtype.
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Figure 13.5: A partition divides a whole into non-overlapping parts. My father did not care how my
brothers and I partitioned the yard, so long as we cut the grass.

13.2 Partition relationship

Growing up, one of the chores my brothers and I had to do was to cut the grass. There
was a lot of it, and we were using a push-mower, so we would partition the chore into
the front yard and the back yard and take turns cutting the parts. Between those two
parts, the entire yard was covered. My father did not care how we divided our work
as much as he cared about the whole yard being cut. Conveniently, this is a property
of partitions: they must add up to the whole with no overlapping.

If you delight in corner cases, you may have thought, “If I define a view that only
shows the front yard, and another view that only shows the back yard, wouldn’t that
be the same as a partition?” Indeed, those views would yield the same result as a
partitioning. But every partition requires that the pieces comprise a complete set that
covers the original without overlap, while a projection has no such requirement.

13.3 Composition relationship

Composition is almost the mirror opposite of partitioning. Where partitioning takes
a model and describes how it can be divided into smaller models, composition takes
smaller models and creates a larger model. The difference is that the parts combined
through composition need not be the parts that made up the whole — so I could
compose the front yard, the back yard, and the neighbor’s yard (i.e., not part of the
original partitioning of my yard) to make a huge yard. In modeling, this is quite
useful when you have some parts of model you would like to share, for example
shared datatypes used by both a frontend and backend.

13.4 Classification relationship

A system of classification allows you to pick up something and decide what category
it belongs to. Using the definition originating with Plato, an ideal system of clas-
sification would have three properties (Bowker and Star, 1999). First, it would be
unambiguous. Second, each thing would fit into one and only one category. And
third, any item could be sorted into a category. Much like other ideas about ideals
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from Plato, like perfect geometric forms, you almost never see a classification system1

that strictly conforms to these properties.
Despite Plato’s rules, people are quite comfortable sorting things into multiple

categories simultaneously. A drywall screw used in a house is in the categories of
Fastener and also Magnetic. According to Plato, these cannot be part of the same
system of classification because a thing must fall into just one category. You can solve
this problem either by deciding that there are really two classification systems — one
by function and one by electromagnetism — or by simply dropping the one-and-only-
one category requirement.

This book uses the word type to refer to a category and instance to refer to the
thing itself, and allows an instance to have multiple types. Classification is the rela-
tionship between a type and an instance. The classification relationship can apply to
component types and instances, classes and objects, or other pairs of category and
categorized thing.

You should resist the temptation to use the terms class and type interchangeably
because it can cause confusion between the concept of classifying something (type)
and the implementation of that concept in an object-oriented programming language
(class). Note that in most object-oriented programming languages, an object has a
single class, even if that class is derived from many other classes (multiple inheri-
tance).

13.5 Generalization relationship

While classification describes how a type may categorize an instance, generalization
describes how one type can subsume another. My house (an instance of a house)
might be in the category of Modern Houses, but that means that my house is also
of the type Eclectic House, as seen in Figure 13.6. It is also a (just plain) House,
because House generalizes Eclectic House, which generalizes Modern House. The
more general type is called the supertype and the less general type as the subtype.

The Liskov substitution principle (Liskov, 1987) provides an easy test for general-
ization: a subtype must be substitutable for its supertype. If a Modern House is a
subtype of an Eclectic House, and you can sleep in an Eclectic House, then you can
sleep in a Modern House. Note that in object-oriented programs you will encounter
subclasses that do not pass this subtyping test.

1Another way to classify is to define a category with a prototype which exemplifies the category, and deter-
mine inclusion by similarity to that prototype. Empirical studies by Elanor Rosch indicate that this is likely how
our brains work: we think that birds are small, quick moving, flying things that resemble sparrows. Ostriches
and penguins make lousy birds and so it takes us longer to recognize them as belonging in the category Bird,
but crows are pretty typical birds and robins are even more so. In this system of categorization, categorization
is not boolean in or out, but rather degree of inclusion (Rosch and Lloyd, 1978).
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Figure 13.6: Generalization is the relationship between two types, such as the House and Victorian
House types shown here. Using generalization, several types can be organized into a taxonomy.

Supertypes and subtypes can be organized into a hierarchy, called a taxonomy,
shown in Figure 13.6. Common examples include geometric shapes and the Linnean
taxonomy used to classify living things.

Taxonomies are unquestionably useful, but a few cautions are in order. A com-
mon experience is that the initial construction of a taxonomy is easy, but it becomes
progressively more difficult as it approaches completeness. Taxonomies can become
brittle over time because the instances being categorized change, and the way the
taxonomy is used changes. Many useful categories crosscut established taxonomies;
for example, birds, bugs, bats, and biplanes are Flying Things. A final caution is that
taxonomies are subjective. Recall the drywall screws could be placed into a taxonomy
organized by their purpose as fasteners, or one organized by what can be picked up
with magnets.

We have been describing how one type can generalize another. It is also possible
for one type to classify another. When you diagrammed sentences in school, catego-
rizing parts of speech as nouns and verbs, you were classifying types. The types Mod-
ern House, Eclectic House, and House are related to each other by a generalization
relationship, but they are all related to the type Noun by a classification relationship.
In the field of models, this is referred to as meta-modeling. The UML has a defined
meta-model called the Meta Object Facility that classifies all the UML boxes and lines.

13.6 Designation relationship

A designation allows you to bridge between two domains, for example between the
real world and a problem domain model. A house made from bricks can keep you
dry during a storm, while a box drawn with a pen on a piece of paper labeled House
cannot. It is your intention, however, that the box in your domain model corresponds
to the brick house in the real world. A designation identifies the two things and
declares them to correspond. Designation can also show correspondence between
two models, for example between a problem domain model and a design model.
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You do not need to designate everything you put into the model. You should
designate as few things as possible, what Michael Jackson refers to as a narrow bridge
(Jackson, 1995). You can define the rest. So if you designate how your model house
corresponds to your real house, you could define how the arrangement of walls in
the house determines the square footage, or the taxes owed. You can think of the
designations as a minimal set of variables you need to act as the base for your model,
like some raw data you enter into a spreadsheet. The equations in your spreadsheet
act as definitions, and they compute the rest of what you need based on the input
data.

Designation is surprisingly common since computer systems are often used to keep
track of what is happening in the real world. There must be a real thing and a
computer representation of that real thing. Perhaps in the past you have had a difficult
conversation with a clerk or customer service representative, trying to convince them
that their designation relationship is wrong. Perhaps they believe that you live at
your former address or owe them some money. Conflating the real thing and the
designated thing in the model can be a source of errors.

13.7 Refinement relationship

Refinement is a relationship between a high- and low-detail representation of the same
thing, as shown in Figure 13.7. A pencil-drawn picture of a house can be refined into
a photo-realistic picture of a house. An alternate definition is that in refinement, all
conclusions drawn from high level model are also true in low-level model.

Do not dwell on whether the high- or low-detail representation is created first,
because refinement is the relationship between the two representations. You could
start with the low-detail version (also called the abstract version) and add detail, or
you could do the reverse, such as sketching a picture of your house. Either way you
have two representations of the same thing, one high-detail, one low-detail.

The higher-detail representation is not always the more useful one. Consider the
uses of an executive summary compared to the whole document, meeting minutes
compared to a recording of the whole meeting, or an architecture model compared
to a 10MLOC implementation.

Refinement maps. If the two representations are of the same thing, there should
be correspondences between elements in each. The roof in a sketch of a house cor-
responds to the roof seen in a painting. The collection of these correspondences is
called a refinement map. The refinement map is not always written down because
most correspondences are simple.
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Figure 13.7: Refinement is a relationship between a high- and low-detail representation of the
same thing. In this diagram, refinement is used to relate a high-detail representation of a house
(the right one, with three dimensions) with a low-detail representation (the left one, with two dimen-
sions). The higher-detail representation is not always the more useful one. A refinement map is
rarely written down, but it relates the elements from one representation to the other.

13.7.1 Open and closed refinement semantics

If you build an abstract model, others who use it need to know what they can rely
on. For example, if you show someone a diagram of a house, like the one at the left
of Figure 13.7, that has no garage, can they assume that a more detailed model will
not reveal a garage? You would like to be able to add details in the refined model,
but also give some assurances to others about what new details you are allowed to
introduce. You can communicate your intentions by committing to either open or
closed refinement semantics.

• Open semantics. In refinement with open semantics, the refinement can intro-
duce whatever new items it pleases. Adding a new garage or storey is fair game,
as would be chicken coops and windmills.

• Closed semantics. In contrast, closed semantics restricts what kinds of new
items can be introduced, often by listing the kinds of items that will not change.

In the house example, using closed semantics, you might categorically restrict the
refinement so that no new garages or storeys are introduced. Things you do not
mention in the list are OK to introduce, such as new windows or chimneys, so you
still have an opportunity to add details. A common choice is to prohibit the addition
of the kinds of items already shown in the low-detail model. For example, since the
left side of Figure 13.7 shows a chimney, closed refinement semantics would prohibit
the refinement from adding more chimneys, but since windows are not shown, any
number of windows could be added. Figure 13.8 shows the house example with both
open and closed semantics refinement.
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Refinement
Mapclosed

(a) Closed semantics: Categorical exclu-
sion of added elements.

Refinement
Mapopen

(b) Open semantics. Anything can be
added.

Figure 13.8: The kind of refinement semantics determines what details can be introduced. In
this example, the closed semantics categorically restricts the refinement so that no new garages,
chimneys, or storeys are introduced. With open semantics, there are no such restrictions. In
software architecture, it is best to follow closed semantics and prohibit new ports from being added.

13.7.2 Nesting

Two common uses of refinement in architecture models are nesting models within
other models and zooming in or out from details. When you nest, you build a bound-
ary model of an element (e.g., a component, module, environmental element) and
an internals model of the same element. The relationship between them is refine-
ment, because there are two models of the same thing with different levels of detail.
Each model of the element has exactly the same interface/API, including operations,
invariants, and quality attributes. They differ only in that the internals model shows
more details; that is, it shows the internal design. Returning to the house example,
you could use nesting to show two models of a house: one that included the rooms
inside it and another that did not.

13.7.3 Zooming in/out from details

Another way you can use refinement is to stand off from details so that you can think
about a more general, or abstract, version of the problem. When working on a story
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Figure 13.9: Refinement can be used for nesting (showing hidden internal elements) and zooming
(showing additional details).

problem where Barbara has five apples and Ralph has three apples, you realize that
you can decide how many apples they have combined without thinking about apples
at all. Refinement can be used to stand off from those details and see the essential
problem clearly.

A famous example of standing off from the details concerns the bridges of Königs-
berg. The Pregel river runs through Königsberg and in 1735 there were seven bridges
to and from two islands. People of Königsberg sought a path that crossed each bridge
once and only once. Leonhard Euler demonstrated that there was no such path. He
did this by abstracting away unnecessary details, such as the city being Königsberg
and even that there were bridges, and in so doing he invented graph theory.

Figure 13.9 shows both nesting and zooming uses of refinement. On the left, it
shows how the boundary model shows just a single component (or module, envi-
ronmental element, etc.), while the internals model shows that component and its
internal design with subcomponents B, C, and D. On the right, it shows refinement
being used to relate two models, a zoomed-out model of component A and a zoomed-
in model of the same component with a more detailed API.

The examples in this book use refinement to zoom out from details. You will notice
that APIs on components and modules are more abstract than what you would expect
in the source code, and that each step in the scenario is not quite detailed enough to
be a method invocation.
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13.7.4 Challenges and advantages

Whenever refinement is used, you will face some downsides because it omits details.
The first is the risk that when you add in the full detail you will invalidate the design.
Where Euler succeeded with zooming out, others find trouble. Josh Bloch discovered
a bug that has existed in almost all Quicksort implementations for the past fifty years
(Bloch, 2006). The problem is that an expression like (x+ y)/2 in pseudocode yields
the average, but the same expression in the implementation can overflow when the
variables become large enough to overflow their number of bits of precision. The
standard way to address this risk is to find out which missing details caused the
problem, and add them back into your more abstract model. While your abstract
model is now more detailed and complex, the old model was too zoomed-out to solve
the problem, like a back of the envelope sketch used to plan a moon landing.

The second downside is that your abstract model cannot be used as API-level
documentation, but nothing stops you from building that more detailed model if it is
needed. In practice, API-level models are uncommon because they become outdated
each time the code changes. Strategies for managing model-code consistency are
discussed in Section 10.2.

The big advantage to using refinement is one that runs throughout this book: it
can be used as a weapon to attack complexity and scale. Your mind is a limited size
and it it hard to squeeze in a full understanding of a big and complex system. You
will be able to build software systems that are larger and more intricate only if you
can transform those bigger problems so they fit in your head. Refinement allows you
to simplify complexity and compress scale so that they become tractable.

13.8 Binding relationship

Neighborhoods and houses follow patterns. For example, some neighborhoods have
alleys where garages are behind the houses, while others lack alleys and so have
garages facing front. Similarly, the architectural style of a house may dictate double-
hung or sliding windows. At a smaller scale, electrical outlets follow the pattern set
by electrical codes.

In all of these examples, a general pattern is established and individual elements
are bound to the placeholders in the pattern. A binding relationship between two
models pulls in the concepts from the source model and relates the placeholders with
elements from the destination model.

Imagine you have a model (the source model) with a house and a garage. In
this model, you are free to place the garage anywhere relative to the house. The
garage could face the front, an alley, or perhaps the side. Next, imagine a pattern
for neighborhoods where garages abut the house. The pattern would have three
elements:
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• a constraint saying the garage must abut the house
• a garage placeholder
• a house placeholder

When you bind this pattern to your source model, you bind the two placeholders to
the house and garage, and now also have the “abut” constraint in the model. The
result is a new model where the house must abut the garage.

Explicitly writing out the details of the binding can be tedious, but the intuition
is clear. When you are binding in a pattern or a style, you must describe what-
corresponds-to-what between the pattern and the source model. The resulting model
includes all of the elements and constraints from both the pattern and the source
model.

13.9 Dependency relationship

A dependency relationship exists when changes to one model may cause changes to
another model. For example, you can express a dependency between an estimated
price for constructing a house and the current prices of raw materials.

13.10 Using the relationships

Throughout this chapter, as each relationship was described, you have seen how the
relationships were used in isolation, but their utility is clearer in context. Figure 13.10
shows most of the relationships in the context of plans for a house and garage. Each
model is shown inside of an icon that resembles a folder.

At the right, the house and garage 2-D model is mapped into the real world using
the designation relationship. That is, the house and garage in the real world are
shown to correspond to the elements in the model. Next, the 2-D model is partitioned
to show the garage and house separately. At the top, the garage model is related to
the Rolling Door Style (a pattern) by binding its elements to those in the pattern. The
model of the house is refined (using closed semantics) into a more detailed 3-D model.
The 3-D house model is projected to show a view of the floorplan for the first floor.
The floorplan view shows a room of type Kitchen, labeled R1; a room of type Living,
labeled R2; and a room of type Dining, labeled R3. The relationship between R1 and
Kitchen is a classification, a type-instance relationship, where the instance is called
R1 and the type is Kitchen. And this floorplan model refers to a taxonomy of rooms,
which shows that Kitchens, Dining Rooms, and Living Rooms are all kinds of Rooms.

It is easy to see how this diagram could be extended. If someone asks for more
details on the garage, you could build a detailed model of the garage and relate it
with refinement to the partition showing the garage. Similarly, additional projections
could show views from different perspectives or enable analysis.
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Figure 13.10: This summary diagram shows most of the relationships discussed in this chapter.
The real world has correspondences to our full model, so it is a designation relationship. It is
partitioned into a model of the garage and the house. The house model is refined to show details,
then projected to show a view of one floor, which composes several room models.

13.11 Conclusion

This chapter has covered relationships that you will use in building models: projection
(view), partition, composition, classification, generalization, designation, refinement,
binding, and dependency. You have most likely already used these relationships infor-
mally. By shining some light on them specifically, you should now understand better
what each is for and thereby avoid some modeling errors or confusion. You should
understand that there are options you must choose: open or closed semantics, and
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master model or views-as-requirements.
The final example from Figure 13.10 shows a common occurrence: a collection of

diagrams that relate to each other. Knowing the relationships from this chapter will
help you put those diagrams together into a coherent and comprehensible model.

13.12 Further reading

Michael Jackson provides detailed discussions on a number of relationships includ-
ing projection, partition, definition, and designation in Jackson (1995). Desmond
D’Souza and Alan Wills base the Catalysis approach around the refinement relation-
ship and discuss its use in analysis, design, and code. Refinement is a staple of archi-
tectural modeling, and Moriconi, Qian and Riemenschneider (1995) provide a formal
treatment of correct architectural refinement.





Chapter 14

Architectural Styles

A pattern is a reusable solution to a recurring problem (Gamma et al., 1995). Patterns
can be low-level and detailed, such as programming language idioms, at a moderate-
level such as design patterns that express common object and class patterns, or at an
even higher level. An architectural style is a kind of pattern that occurs at an archi-
tectural level and applies to architectural elements like components and modules. An
architectural style defines a language consisting of elements and constraints.

An architectural style, often shortened to just style, defines a set of element types
(such as modules, components, connectors, and ports) that can be used. A system that
conforms to that style must use those types (and sometimes only those types), which
restricts the design space. A style further defines a set of constraints that restrict how
the types can be used, such as the system’s runtime topology, dependencies between
modules, direction of data flow across connectors, and visibility of components. A
style may also define responsibilities for elements.

Some industry standards can be thought of as architectural styles. Enterprise Java
Beans (EJB), for example, consists of a specification and several vendor implementa-
tions. It defines a set of elements, such as beans and the application container, and
relationships between them.

Architectural styles were first recognized in the runtime viewtype, which still has
the greatest variety of recognized styles, but the concept of style has been expanded
to cover the module and allocation viewtypes also.

This chapter provides a modest catalog of architectural styles, most of which ap-
pear in catalogs published elsewhere. The descriptions here emphasize the connec-
tion between the constraints you impose and the system properties that you achieve as
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a result. Before jumping into the catalog, however, this chapter covers the advantages
of architectural styles, the difference between the styles you see in practice (embodied
styles) and the ones in the catalogs (Platonic styles), the connection between styles
and architecture-focused design, and the distinction between architectural patterns
and architectural styles.

14.1 Advantages

Constraints can act as guide rails (recall Section 2.2) that point a system where you
want it to go. For example, to improve security in a web system, you may impose the
constraint that all input must be sanitized.

Working within a style’s constraints can be difficult. The constraints that you (or
someone else) imposed yesterday can be inappropriate today. Once a system is built
within a style, it can require considerable effort to change to a different style. That
might be OK if you could easily decide, in advance, which style was the best choice,
but that is hard to do. Once you impose constraints, maintaining a system can be
more difficult because you may have to seek out non-obvious designs just to stay
within the style’s constraints. So why should you consider imposing constraints or
using a style?

Prefabricated set of constraints. You can think of a style as a prefabricated set of
constraints with known benefits and drawbacks. Like anything prefabricated, you
save yourself the work of designing and debugging it. It may not be perfectly tai-
lored to your needs but it has the advantages of already existing and having known
properties.

Consistency and understandability. The consistency brought about by the style’s
constraints can encourage clean evolution of the system, which can make mainte-
nance easier. Rather than a bunch of arbitrarily different good ideas being imple-
mented, you get a single good idea, consistently implemented.

Communication. Communication between developers is improved because the sim-
ple name of a style, like publish-subscribe, concisely conveys design intent to other
developers. Just like with the named design patterns (e.g., Factory, Observer, and
Strategy), developers who know the names can communicate much more efficiently.

Design reuse. When you use a style, you reuse a prefabricated set of constraints.
As a result, any engineer writing in that style has the benefit of reusing the design
knowledge of senior engineers who either invented or selected it. You can go further
and push these style constraints into running code, called architecture hoisting. For
example, the NASA/JPL Mission Data System (MDS) project designed a set of com-
ponents and relationships that worked well to bridge their system engineering with
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their software engineering. They then they hoisted this style into an implementation
that enforced the style constraints (Barrett et al., 2004). As a result, any engineer on
the project was able to reuse the design knowledge of the senior engineers.

Ensure quality attributes. One problem with unconstrained, arbitrary code is that
it can do anything. If you need the code to have a certain quality, such as maintain-
ability, scalability, or security, you must constrain it. For example, a piece of software
I regularly use has the ability to be extended with user-written plugins written in a
scripting language. While I can download many of these plugins, they rarely work.
Why? Because the software runs on several platforms, and yet the plugins are not con-
strained to use a cross-platform library. The unconstrained plugins invariably make a
platform-specific reference, like C:\TEMP, which causes them to break on other plat-
forms. In short, if the software wants plugins to run cross-platform, it must constrain
what the plugin code can do.

Analyses. The other problem with unconstrained, arbitrary code is that you cannot
analyze it. If you are asked to decide if a COTS system will integrate with yours,
and that system has no constraints, then you will need to put on your deep wading
boots and dig through the code. On the other hand, if you know that it uses the
same architectural style as your system (perhaps client-server) and its messages are
formatted using the same standard as yours, you should have an easier time deciding
(i.e., analyzing). In short, no constraints means no analysis.

14.2 Platonic vs. embodied styles

If you have read the design patterns book (Gamma et al., 1995), you will have noticed
that real code can vary from the ideal version of the pattern in the book. It should be
no surprise, then, that architectural styles and patterns differ from the ideal too, and
the variance can be quite large.

Patterns and styles serve several purposes. One purpose is explanatory, in that
the name of the pattern communicates the overall design. Another purpose is to
provide design qualities, such as the pipe-and-filter style enabling reconfiguration of
the filters. A change to the pattern or style might still communicate the overall design,
while diminishing its influence on design qualities. With that in mind, here are two
polarized ways to think about architectural styles or patterns.

• Platonic styles. A Platonic architectural style is an idealization, so named for
Platonic ideals like perfect circles. These are the kinds of styles and patterns
you find in books and only rarely in source code.

• Embodied styles. An embodied architectural style is seen in real systems. It
often violates the strict constraints found in Platonic styles. That violation often
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involves a big tradeoff: you can no longer rely on the style properties anymore,
since those properties derive from the constraints. Sometimes embodied styles
are also Platonic, as was the NASA/JPL Mission Data System (MDS) style.

A couple of examples should reinforce the difference between the two and highlight
the tradeoffs. The pipe-and-filter architectural style imposes the constraint that filters
only communicate via pipes and are otherwise independent. However, in practice,
you will often encounter chains of pipes and filters where the first and/or the last
filter violates the constraint. Sometimes the first filter reads data from somewhere
other than a pipe, and sometimes the last filter exerts control over the entire chain.
Do these violations impact the style’s property, reconfigurability of filters? Probably,
but just the first or last filter, and other filters can be reconfigured. Do these violations
impact the explanatory value of the style name? Probably not.

A second example involves the client-server style. The Platonic style requires that
servers be unaware of clients, as this yields coupling benefits: changes to the client
will not impact the server. However, you may encounter embodied versions of the
style where servers occasionally push data, unprompted, to the client. Depending on
how this is implemented, it may result in a server that depends on the clients.

14.3 Constraints and architecture-focused design

Platonic architectural styles and architecture-focused design (see Section 2.7) are
conceptually related. Recall that architecture-focused design means that you are re-
lying on your architecture to reduce risks, achieve features, or ensure qualities: you
are consciously depending on the architecture to achieve a goal. When following
architecture-focused design, you could invent a novel architecture to achieve your
goal, or you could employ an existing architectural style with its known effects on
system qualities.

Relying on your architecture to ensure system qualities is related to Platonic and
embodied styles. Strictly following the constraints in a Platonic architectural style
yields known properties, which you are more likely to do with architecture-focused
design. You may even choose to hoist (see Section 2.8) parts of the style to enforce
its use.

In contrast, if you are following architecture-indifferent design (see Section 2.6)
then you can use embodied styles, where the style constraints are not strictly fol-
lowed. Despite deviations, the system may obtain some of the desired qualities. The
named style will still serve as an inspiration or guide. It is not wrong to use an em-
bodied style like this, but you should do it knowingly, as it would be foolhardy to
violate a style’s constraints yet still expect its benefits.
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14.4 Patterns vs. styles

It can be helpful to distinguish architectural patterns from architectural styles, where
patterns are at a smaller scale than styles. Patterns can appear anywhere in your
design, and multiple patterns could appear in the same design. In contrast, a system
usually has a single dominant architectural style. For example, if a system has a
client-server style architecture, you would expect to see client and server components
in the top-level design views. The system could also employ architecture patterns,
such as the Representational State Transfer (REST) pattern to constrain the format of
the messages exchanged by the clients and servers, or the directory pattern, so that
clients can look up the server addresses.

The distinction between architectural styles and architectural patterns is not clear-
cut and you will undoubtedly find examples where it is hard to differentiate them. As
systems get larger, it is more common to see systems-of-systems, where a system that
was freestanding is now incorporated into a larger system. If the original freestanding
system had an architectural style, but it is now subordinate to the larger system’s style,
does that demote it to an architectural pattern? Probably. So instead of worrying
about categorizing something as an idiom, a design pattern, an architectural pattern,
or an architectural style, you can safely call them all patterns, and probably use the
terms architectural pattern and architectural style as synonyms.

14.5 A catalog of styles

The following sections describe some of the most common architectural styles. These
styles span the module, runtime, and allocation viewtypes. Architectural styles apply
to your design and implementation models, but not your domain models (analysis
patterns (Fowler, 1996) do apply to domain models). Most of these architectural
styles have been described before and they are described here for two reasons. The
first is to provide you with complete coverage of architectural topics, as you would
otherwise wonder what those most common styles are. The second reason is to rein-
force the connection between constraints and the resulting quality attributes.

Figure 14.1 provides a quick overview of the styles. It describes which viewtype
each style applies to, its elements and relations, its constraints, and the quality at-
tributes it promotes. The detailed textual descriptions in the following sections go
into more depth and describe style variants and examples.

14.6 Layered style

The layered architectural style is perhaps the most common — so common that many
developers assume that all systems are, or should be, layered. You may encounter
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Figure 14.2: An example of the layered architectural style, part of the module viewtype. It consists
of an ordered stack of layers that can only use the lower adjacent layer(s). Here, Layer 3 could use
Layer 2 or Layer 1. Lower layers cannot use higher layers, except through callbacks.

systems that have been documented as layered, but the layers have been force-fit. It
applies to source code elements, so it is part of the module viewtype.

Elements and constraints. The essential element of the layered style is a layer and
the essential relationship is a uses relationship, a specialization of a dependency re-
lationship. The layered style consists of a stack of layers where each layer acts as a
virtual machine for the layers above it (see Figure 14.2) and their ordering forms a
directed acyclic graph. In a simple layered style, a layer can use only the layer di-
rectly beneath it. This constraint means that subsequent lower layers are hidden, so
a layer’s interface defines a virtual machine for the layer above. Consider the Java
Virtual Machine (JVM): programs that run on it cannot use subsequent lower layers
and consequently are independent of the operating system and hardware.

Resulting qualities. The layered style’s constraint leads directly to the quality at-
tributes it promotes: modifiability, portability, and reusability. Since a layer depends
only on the layer directly beneath it, subsequent layers can be swapped or emulated.
Taller stacks of layers yield more opportunities for substitution at the possible expense
of efficient execution (performance). For example, the Open System Interconnection
(OSI) Reference Model defines a stack of layers for computer networking, but a naive
layered implementation can be substantially slower than a non-layered one.

Variants. Variants of the layered style bend the constraint such that a layer may be
able to skip down to lower layers. For example, the HornetQ message bus runs on
the JVM and uses the Non-blocking Input/Output (NIO) library. However, when it
detects that it is running on Linux, it uses the Kernel Asynchronous Input/Output
(AIO) library, which improves performance. Notice that in this case it overcomes the
performance liability yet maintains modifiability, portability, and reusability because
it can fall back on the standard NIO library from the JVM.

Another variant you will see is shared layers, where every layer can use these
shared, or vertical, layers. Such usage strains the definition of a layer to the breaking
point, for how does a shared layer differ from an arbitrary, unconstrained module?
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If you interpret these shared layers as a visual expediency to show dependence on a
shared module, rather than as a different kind of layer, this variant makes more sense.
For example, if every layer in your system depends on the C Standard Library (libc),
and you thought it important to show on a diagram, you could show it as a shared
layer.

Notes. The layered style can vary greatly from its Platonic form to its embodied form.
The Platonic form, described above, derives clear quality attribute benefits from its
constraint. However, in practice a layered style may violate its constraint, and you
may see skipping of layers or lower layers using upper layers, which has the effect of
negating the quality attribute benefits. Still, even in this relaxed form, layers may pro-
vide cognitive benefits to developers because the layers group modules into coherent
functionality.

Lower layers can safely communicate with higher layers if they use a callback
mechanism. Consider the common case of a user interface layer and a core function-
ality layer. The user interface may need to update its display based on what the core
is doing, perhaps updating a progress bar based on the relative completion of a task.
The core module could define a callback interface that reports the task status. To keep
the layer ordering intact, the UI layer must initiate the callback, perhaps by asking
the core to report its status and passing the UI layer as a parameter. The core layer
does not know about or depend on the UI layer per se, since the UI layer implements
a callback interface defined by the core layer.

The layered style is described in (Clements et al., 2010), (Buschmann et al., 1996),
and (Shaw and Garlan, 1996).

14.7 Big ball of mud style

If the layered style is the most common targeted style, the big ball of mud style is per-
haps the one most often actually achieved (Foote and Yoder, 2000). It is characterized
by the absence of any evident structure, or perhaps vestiges of now-eroded structure.
Also typical is promiscuous sharing of information, sometimes to the extent that data
structures become effectively global. Although the module, runtime, or allocation
organization can be a mess, it often starts in the module viewtype and spreads else-
where. Repairs and maintenance are expedient and resemble crude patches rather
than elegant refactorings. No effort is made to enforce any conceptual integrity or
consistency. Technical debt is astronomically high.

Big balls of mud can happen as a result of throwaway code that persists longer
than expected, often because it was useful and therefore maintained. Another factor
is tradeoffs between short-term and long-term benefits. It may be in your short-term
interest to make expedient patches rather than more expensive refactorings.
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Figure 14.3: An example of the pipe-and-filter architectural style, part of the runtime viewtype,
showing five filters and five pipes. Each filter must incrementally process its input and write its
output. Consequently, several filters and pipes may be executing concurrently.

Unsurprisingly, such systems have poor maintainability and extensibility. It is
tempting to dismiss the style as a pure anti-pattern, but Brian Foote and Joseph Yo-
der make the compelling argument that the style describes a good enough strategy
of engineering (Bach, 1997), in the tradition of Richard Gabriel’s worse is better ar-
gument (Gabriel, 1994). The authors note that “Not every backyard storage shack
needs marble columns.” (Foote and Yoder, 2000)

The forces that push systems to become big balls of mud have a peculiar stability in
that once a system becomes a ball of mud, some developers find security and prestige
in being the select few who can understand and evolve it, while those who detest the
mud (and presumably could clean it up) run away. The result is that the ball of mud
is rarely cleaned up.

14.8 Pipe-and-filter style

In the pipe-and-filter architectural style, data flows through pipes to filters that work
on the data, similarly to the way that fluid could flow through pipes in a chemical
processing plant. A key characteristic of the style is that the whole pipe-and-filter
network is continually and incrementally processing data. This distinguishes it from
the batch-sequential architectural style (see Section 14.9), in which each stage fully
processes its data before handing it off to the next. An example of a pipe-and-filter
system was seen in the linguistic processing system in Figure 10.7 and another exam-
ple is seen in Figure 14.3. The pipe-and-filter style applies to runtime elements, so it
is part of the runtime viewtype.

Elements and constraints. The pipe-and-filter style consist of four elements: pipes,
filters, read ports, and write ports. When operating, a filter reads some input from one
or more input ports, does some processing, and writes output to one or more output
ports. It repeats this until it is time to stop. Filters can enrich, refine or transform the
data, but pipes must only transport the data in one direction, without changes, and in
order (Garlan, 2003). You can think of each filter as applying a function to its input.

In the simplest pipe-and-filter network, a linear one, data flows from a source
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through the pipes and filters until it reaches a sink. Sources and sinks are often files,
but they can also be other stream sources or destinations. By having more than one
input or output port, a network can become more complicated than just a straight
line, but data still flows in one direction from the source(s) to the sink(s). Loops in
the network are rare and often prohibited.

The pipe-and-filter style requires independent filters. Filters may not interact with
each other, even indirectly, except through pipes, and cannot share state with each
other. A filter cannot make assumptions about what happens upstream or down-
stream. To reinforce the idea of filter independence, you can think of a filter as a
simple clerk in a locked room who receives message envelopes slipped under one
door, processes them without referencing anything or anyone outside of the room,
then slips another message envelope under another door.

A filter should incrementally read the input it receives and, as it processes that
input, incrementally write its output. The intention of this constraint is to keep the
entire pipe-and-filter network working at all times with data flowing through it, rather
than having that data pile up in a filter, starving downstream filters. It is difficult to
be precise about this constraint, however. For example, is it OK for a filter to read
two input tokens and write the bigger of the two to its output? Probably, since it
does not allow much data to pile up before it writes some incremental output. But
this exception allows something that is arguably not very incremental: parsing. What
about a filter that reads tokens until it recognizes an expression? That might allow
quite a bit of data, perhaps all of it, to pile up before writing any output. You should
evaluate this constraint in regards to your intentions with the pipe-and-filter network,
as it might be either quite important or a rule that you can bend or break.

The correctness of the pipe-and-filter network should be deterministic with respect
to concurrency. Whether or not your implementation is implemented with concur-
rency, a given input should always yield the same output.

Resulting qualities. The pipe-and-filter style enables late (re-)composition of a net-
work. For example, in Linux, you can construct a pipe-and-filter network1 on the
command line, like this:

cat “expenses.txt” | grep “^computer” | cut -f 2-

This would grab all lines in the file that begin with “computer” and output the re-
maining columns. There are many existing filters to choose from (such as grep and
cut seen here), so users can create a network on the fly to compute the results they
desire. This is an example of modifiability or reconfigurability. You may not even
deliver a network, just a collection of pre-made filters for others to assemble. These

1Notice, however, that by piping the output through the sort filter breaks the style constraint for incremental
computation, because sort must see the entire input stream before it can write its output.
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filters would be reused by users. By working within this style, opportunities for con-
currency are enhanced since each filter could run in its own thread or process. In
general, pipe-and-filter networks are inappropriate for interactive applications.

Variants. Sometimes the network is constrained to be linear. Networks are usually
directed acyclic graphs, but with care it is possible to introduce loops. Filters may
either pull or push data from their input ports.

Notes. When implementing a pipe-and-filter network you will need to pay attention
to how it should stop. You can terminate the network eternally, perhaps by killing off
the processes, but how do you know that it is done processing? Sometimes the answer
comes from the domain, such as when the input data (e.g., a file) has reached the
end. Another alternative is to send an in-band token, along the pipe, that indicates
the end of the stream. Yet another option is to close the pipes explicitly, and let filters
test to see if the pipe is still open.

In the abstract, pipes are infinitely fast and big. But in practice pipes are usually
implemented with a limited-size buffer that can fill up, which may impact perfor-
mance of the system. There will also be performance differences if the filters are all
in the same memory space or if they are on separate machines. CPU-bound networks
may perform better if run on separate machines, but bandwidth-bound networks may
run faster on a single machine.

It is worthwhile to distinguish two roles, possibly played by same developer, in
order to clarify the meaning of filter independence. One role is that of a filter de-
veloper. When developing a filter, the developer can make no assumptions about
upstream and downstream, or even the filter’s role in the big picture, much like that
clerk in the locked room. The second role is that of a pipe-and-filter network de-
veloper. This developer is responsible for assembling existing filters into a network
that accomplishes the overall system goal, and has global knowledge about what is
upstream and downstream of each filter.

The pipe-and-filter style is described in (Clements et al., 2010), (Taylor, Medvi-
dović and Dashofy, 2009), (Buschmann et al., 1996), (Garlan, 2003), and (Shaw and
Garlan, 1996).

14.9 Batch-sequential style

In the batch-sequential architectural style, data flows from stage to stage and is pro-
cessed incrementally. However, in contrast to the pipe-and-filter style, each stage
completes all of its processing before it writes its output. Data can flow between
stages in a stream but is more often written to a file on disk. An example batch-
sequential system is seen in Figure 14.4. The batch-sequential style applies to runtime
elements, so it is part of the runtime viewtype.
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Figure 14.4: An example of the batch-sequential architectural style, part of the runtime viewtype,
showing three stages. Each stage reads its entire input and writes its full output at one time, not
incrementally. Consequently, each stage executes in sequence.

Elements and constraints. The processing components in a batch-sequential archi-
tecture are called a variety of different names, sometimes called stages or steps. There
appears to be no standard name for the connectors between stages, probably because
it is a leap of abstraction to see a file on disk as a connector. A single task that flows
through the batch-sequential system is called a batch or a job. A stage has one or
more read ports and write ports.

The batch-sequential style has similar constraints to the pipe-and-filter style. In
particular, each stage is similarly independent. A stage depends on the data that it
takes in, but not on the stages that come before it. Stages do not interact with each
other except through the input and output streams or files. Stages fully process their
input then terminate, after which the next stage does the same.

A batch-sequential system is most often a linear series of stages. No work is done in
the connectors, which simply pass data unaltered from the write ports of the previous
stage to the read ports of the next stage. A batch-sequential system is less commonly
structured as a directed acyclic graph, but doing so creates opportunities for stages to
run in parallel.

Resulting qualities. Batch-sequential systems promote the same quality attributes
as the pipe-and-filter style, especially modifiability since stages are independent of
each other. One difference is that where a pipe-and-filter system produces its output
incrementally, a batch-sequential system’s final output will be either absent or fully
available, which will impact a system’s usability. Another difference is that it has
fewer opportunities for concurrency since the stages cannot be executed in parallel
unless multiple jobs are flowing through the system. Batch systems are conceptually
simpler since only one stage is running at a given time. They may also have greater
throughput.

Notes. The batch-sequential style is described in (Taylor, Medvidović and Dashofy,
2009), (Garlan, 2003), and (Shaw and Garlan, 1996).
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Figure 14.5: An example of the model-centered architectural style, part of the runtime viewtype,
showing the Model, one component that receives updates about the model (the View), one com-
ponent that updates the model (the Controller), and one component that does both (the View/Con-
troller). The views and controllers do not interact with each other except through the model.

14.10 Model-centered style

In the model-centered architectural style, independent components interact with a
central model (also called a data store or repository) instead of with each other. It
is also known as the repository style, shared-data style, or data-centered style, It is
renamed here because the the other names have caused developers to incorrectly
infer that it requires a relational database, or similar. This style may use a relational
database, but is more often used in-memory. An example is seen in Figure 14.5. This
style applies to runtime elements, so it is part of the runtime viewtype.

For example, in a modern integrated development environment (IDE), a single
central model represents the state of the edited program, including source code and
parsed representation. This model is presented to the user with many views and
controls. The view and control components are independent of each other, but all are
dependent on the central model component. If the user edits the source code, this
changes the central model. The central model notifies the compilation component of
the source code change, prompting it to recompile and update the central model of
the parsed code. That change to the central model is sent to the view that shows the
lists of method names.

This architectural style is related to several design patterns, including the
Document-View, Model-View-Controller (MVC), and Observer patterns (Gamma et al.,
1995; Schmidt and Buschmann, 2003).

Elements and constraints. Every model-centered system has a model component
and one or more view, controller, or view-controller components. The names for these
components will vary depending on which variety of model-centered style is used.
The types of connectors can similarly vary. If the model implements the Observer
pattern then the connectors will notify the views of changes, but views could also
poll the model. If a relational database is used, triggers can be used to cause update
notifications.
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Views and controllers depend only on the model, not on each other. There is a
single shared model and many views and controllers. As in Model-View-Controller,
special views and controllers may short-circuit and communicate directly, bypassing
the model, but this tarnishes their independence with the benefit of better perfor-
mance.

Resulting qualities. Model-centered systems are highly modifiable because of the
independence of view and controller components from the model component and
the minimal dependencies. Modifiability is also enhanced because the producer and
consumer of information are decoupled. The system is extensible since unanticipated
views and controllers are easy to add later. It can be easier to manage and persist
state since it is centralized in the model component. Concurrency may be promoted
since views and controllers can run in their own threads or processes, or even on
different hardware.

Notes. Some example variants of this style are blackboards, tuple spaces, and con-
tinuous query databases. One important variation point is whether or not the model
is structured in advance. Some variants make available a pile of unstructured data
that is incrementally cleaned up by the views and controllers. Other variants make
available structured data, but do not know how that data will be used by the views
and controllers.

Because of its modifiability and extensibility, this style is useful when you do
not know the future configuration of the system. The model-centered style is de-
scribed in (Taylor, Medvidović and Dashofy, 2009), (Schmidt and Buschmann, 2003),
(Clements et al., 2010), and (Shaw and Garlan, 1996).

14.11 Publish-subscribe style

In the publish-subscribe architectural style, also known as pub-sub or event-based,
independent components publish events and subscribe to them. A publishing com-
ponent is ignorant of the big-picture reason why an event is published, nor does a
subscribing component know why or who published the event. To be sure, the de-
veloper who designs the system places publishers and subscribers deliberately, for
example, one component publishes a “New Employee” event and another component
subscribes to it and orders that new employee a computer. An example of a publish-
subscribe system is seen in Figure 14.6. The publish-subscribe style applies to runtime
elements, so it is part of the runtime viewtype.

Elements and constraints. The publish-subscribe style defines two kinds of ports,
publish ports and subscribe ports, and one connector, an event bus (i.e., publish-
subscribe) connector. Any kind of component can publish events (or subscribe to
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Figure 14.6: An example of the publish-subscribe architectural style, part of the runtime viewtype,
showing five components attached to a publish-subscribe (pub-sub) connector using publish ports
and subscribe ports. Subscribers depend only on the event, not on the publisher of the event, and
publishers “fire and forget” the event, not depending on the response of other components.

them) so long as it uses a publish (or subscribe) port. The event bus is an N-way
connector in that many ports can attach to it, rather than the usual binary connector
that connects exactly two ports. Consequently, one component can publish an event
and many components can subscribe to it. Notice that in this style the connector is
the rock star, not the components, and that connector is responsible for quite a bit of
work.

The event bus connector is responsible for delivering events. Components that
publish events trust that events are delivered to subscribers, and subscribers trust
that they receive events they subscribe to.

Subscribers depend only on the event, not on the publisher of the event. Sub-
scribers are unaffected if the system developer replaces one event publisher with a
compatible one, or splits its responsibilities across two publishers, so long as the same
events are published.

Similarly, publishers are oblivious to event consumption. They must work equally
well if their events are received or if no other component subscribes to them. You can
imagine using an event bus to simulate a procedure call: one component publishes
an event that is received by another and the response returns via a second event. This
violates the obliviousness constraint since the first component is expecting a reply.

Resulting qualities. The biggest benefit of the publish-subscribe style is that it de-
couples producers and consumers of events. As a consequence, the system is more
maintainable and evolvable. Consider the situation when a new component needs to
do work based on an event. It can simply subscribe to that event and the system
is otherwise unchanged. Specifically, the event publisher is unchanged. Similarly, a
new event publisher can be added without affecting the system, and later a compo-
nent (new or existing) can begin subscribing to those events.

The event bus adds a layer of indirection between producers and consumers. It
can therefore hurt the system’s performance. However, reusable resources may have
better engineering (and performance tweaking) behind them than ad hoc but be-
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spoke resources: consider the engineering behind a COTS relational database versus
a bespoke file-based repository. An event bus implementation is something that you
can buy and several open source implementations exist, so the performance handicap
from the style may be offset by the comparative maturity of the event bus code.

Variants. Some publish-subscribe style variants require subscribers to register and
deregister for events. Others use a declarative model where the subscriber simply
states it should receive an event, for example using a programming language anno-
tation or in a configuration file. This is related to another variation point: dynamic
creation of event types, publishers, or subscribers. When the style variant allows such
runtime changes, it is an example of a dynamic architecture (see Section 9.7).

Event busses vary in what properties they support. Some are durable in that they
guarantee any message they accept will not be lost during a failure (e.g., power
outage). They usually guarantee durability by writing all events to reliable storage, at
least temporarily, but this comes with a latency tradeoff. They may also guarantee in-
order delivery or prioritized delivery of events. Some may allow events to be batched
together to avoid storms of similar events.

Publishers and subscribers define the vocabulary of the events. So, if a publisher
puts out event A and a subscriber listens for event B, the vocabulary of the system
consists of events A and B. The system may allow management of this vocabulary, for
example translating event A into event B.

Notes. From a software maintenance and evolvability standpoint, the publish-
subscribe style decouples event publishers from consumers, but do not confuse this
with the system developer’s knowledge and intentions. If you are designing a pub-
sub system, you will deliberately introduce, say, a publisher of the “New Employee”
event and a consumer of it. Be careful that this knowledge and intent is not lost in
your diagrams. It is tempting to simply show an event bus with all of the components
attached to it. In such a diagram, how can you tell who-talks-to-who? It only shows
that anyone can talk to anyone.

The publish-subscribe style is described in (Clements et al., 2010) and (Shaw and
Garlan, 1996). It is also described in (Taylor, Medvidović and Dashofy, 2009) as the
event-based style, but be careful to note that they use the name publish-subscribe to
describe a different style, what this book calls the model-centered style.

14.12 Client-server style & N-tier

In the client-server architectural style, clients request services from servers. The re-
quest is usually synchronous and across a request-reply connector, but can vary. There
is an asymmetry between client and server in that the client can request that the server
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Figure 14.7: An example of the client-server architectural style, part of the runtime viewtype, show-
ing a single server connected to two clients. Clients can initiate communication but the server
cannot. The server does not know the identity of the clients until it is contacted.

do work, but not the reverse. An example of a client-server system is seen in Figure
14.7. This style applies to runtime elements, so it is part of the runtime viewtype.

Elements and constraints. The client-server style contains client and server com-
ponents and, usually, a request-reply connector and ports. Clients can initiate com-
munication but the server cannot. The server does not know the identity of the client
until it is contacted, but clients must either know the identity of the server or know
how to look up the server.

Variants. The client-server style has several variation points. Connectors may be
synchronous or asynchronous, there may be limits on the number of clients or servers,
connections may be stateless or stateful (i.e., sessions), and the system topology can
be static or dynamic.

One variant of the style allows the server, after first being contacted by the client,
to send the client subsequent updates. An example of this is the IMAP mail protocol
where clients can contact the server and leave open a connector that provides them
with updates as emails arrive on the server. Even in this variant, the server cannot
contact the client without first being solicited, and the nature of the server to client
communication is limited.

Another variant of the client-server style is the N-tier style. This style uses two
or more instances of the client-server style to form a series of tiers, as seen in Figure
14.8. Requests must flow in a single direction across the system. A common case
is a 3-tier system where a user interface tier acts as a client for the business logic
tier server, which in turn acts as a client for the persistence tier server. In this style,
tiers have exclusive functional responsibilities, so for example the user interface tier is
exclusively responsible for user interaction and the persistence tier exclusively saves
persistent data. The N-tier style has been described as a hybrid between the runtime
and allocation viewtypes, since tiers are often (but not always) associated with differ-
ent hardware. However, hardware could host two or more tiers. Definitions of tiers
vary, but most agree that they are logical groupings of functions (like components)
that can be allocated to hardware.
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Figure 14.8: An example of the N-Tier architectural style, part of the runtime and allocation view-
types, showing three tiers. Each tier has defined responsibilities, such as the first tier handling user
interaction, the second tier handling business logic, and the third tier handling persistence. Tiers
are usually allocated to specific hardware, but hardware may host multiple tiers.

Resulting qualities. The client-server style establishes an asymmetrical power re-
lationship between the client and server in regards to who can initiate processing.
However, the result is usually that the server ends up with more influence since it
is providing the service. An organization can change a business process or rule by
changing its implementation in one place, the server, rather than across the many
clients, so maintainability is enhanced. This central control also aids evolvability of
the system. The client-server style can also be used to integrate existing systems by
creating a facade around the existing system and treating it as a server.

Notes. The client-server style is similar to the model-centered style, but the model-
centered style has the additional constraint that the view and controller components
do not interact. In practice, clients in a client-server system rarely interact, but the
style does not prohibit it. The peer-to-peer style is also similar, except that it has no
asymmetry between clients and servers — each peer can be either.

14.13 Peer-to-peer style

In the peer-to-peer architectural style, nodes communicate with each other as peers
and hierarchical relationships are prohibited. Each node has the ability, but not obli-
gation, to act both as a client and as a server. The result is a network of nodes operat-
ing as peers, where any node can request or provide services to any other node. The
peer-to-peer style applies to runtime elements, so it is part of the runtime viewtype.

Elements and constraints. The elements of the peer-to-peer style are similar to
those of the client-server style. However, where the client-server connector (usually
a request-reply connector) enforces a client role and a server role, a peer-to-peer
connector has identical roles on either end that allow both requests and responses.
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A peer-to-peer system is egalitarian where the client-server style is hierarchical.
The ability to act as a server to any other node and make requests of any other node
is required but it does not mean that every node must be fully connected to every
other node. At any given time, a node is usually connected to a subset of the nodes,
and connections may be added and removed as the system runs.

It is important to recognize that the peer-to-peer style is not simply a relaxation of
the client-server asymmetry constraint, but a specific prohibition of that constraint,
since the peer-to-peer style’s qualities derive from the lack of asymmetry.

Resulting qualities. Peer-to-peer networks are often used to provide access to re-
sources, such as files in a BitTorrent network, with redundant copies of the files held
on multiple nodes. A node could request the file, or parts of it, from any of the nodes.
Consequently, availability is promoted, since the file is still available even if one of
the nodes goes offline. It also promotes resiliency, since failures of individual nodes
are less likely to impair the system.

In contrast to client-server styles, a true peer-to-peer network has no single point
of failure and no central infrastructure is needed. The network is highly scalable
and extensible, as there are examples2 of peer-to-peer networks that have grown to
millions of nodes, including BitTorrent and Skype. These systems can grow in size
after they are deployed without changing the code and without developer action.

Notes. Some of the strengths of peer-to-peer networks derive from the interconnect-
edness of the nodes, but this can be subverted if a clique of nodes is disjoint from the
main network: an island. Avoiding islands may involve violating the strict interpre-
tation of the guidelines, such as designating some well-known master nodes that can
connect new nodes to the main network.

14.14 Map-reduce style

The map-reduce architectural style is appropriate for processing large datasets, such
as those found in internet-scale systems like search engines or social networking sites
(Dean and Ghemawat, 2004; Oreizy, Medvidović and Taylor, 2008). Conceptually
simple programs, such as sorting or searching, would execute slowly on large datasets
if a single computer were used. This style enables the computation to be spread
across multiple computers. As the number of computers used increases, the likelihood
that one of them will fail also increases, so this style enables recovery from such
failures. The general arrangement of elements in a map-reduce system is seen in
Figure 14.9. The map-reduce style applies to runtime elements but is also dependent

2Note that these specific examples are not pure peer-to-peer in that BitTorrent has trackers than facilitate
peer exchanges and Skype has supernodes and other non-peer mechanisms to prevent islands in the network.
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Figure 14.9: An example of the map-reduce architectural style, part of the runtime and allocation
viewtypes, with three map workers and two reduce workers. A Master coordinates and distributes
work to the map workers, who process a part of the input dataset that they read from the global
filesystem (FS) and write to their local FS. Reduce workers read those results and combine them,
writing their output to the global FS.

on a particular configuration of allocation elements to achieve its scalability, so it is
part of both the runtime and allocation viewtypes.

The large dataset is split up into smaller datasets (called splits) and stored in a
global filesystem. One or more of these datasets is processed (i.e., mapped) by a map
worker component and the intermediate results are written to its local filesystem. The
intermediate results and map workers are independent, so no map worker can read
another’s output. A reduce worker component reads the local results from multiple
local filesystems and combines (i.e., reduces) the results to produce a complete final
result, which is stored in the global filesystem. As with map workers, reduce workers
are independent. Map workers and reduce workers execute on a set of computers,
each with its own local filesystem. The master worker is responsible for instantiating
the other workers and for allocating the splits to map workers. It also monitors the
health of the workers and reschedules work when workers fail.

Developers working in this style only need to reason about the correctness of how
a single machine is processing a single chunk of data. Lots of parallel computation is
going on, but developers can safely ignore it, instead simply ensuring that any single
map or reduce worker implements its function correctly.
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Elements and constraints. A map-reduce system has a single master worker and
multiple map worker and reduce worker components. The master worker communi-
cates with the others with a worker controller connector. Map workers can write data
to their local filesystem using a local filesystem connector, and reduce workers read
data similarly. Both also use a global filesystem connector.

Much of this style is hoisted into a standard implementation library (or frame-
work), so programmers are both shielded from its complexity and must abide by its
constraints. To write a program, a developer must provide a map function and a re-
duce function. If the function that divides the original input set is ineffective creating
equally hard chunks (e.g., size or complexity), some map workers will take longer to
run than others, slowing down the overall system.

When deterministic map and reduce functions are used, the parallelized compu-
tation, even in when recovering from failures, is the same as a sequential one.

Resulting qualities. The primary quality attribute that map-reduce improves is scal-
ability. Tasks that were impractical to compute with a single computer can be divided
across many machines, improving the performance. Once a program is written to use
the map-reduce style, it could run on a cluster of one, or one thousand, machines.
Map-reduce also promotes availability, since it recovers from machine failures by
rescheduling the work on another machine.

Notes. The performance of this style is heavily influenced by data locality. Interme-
diate results need to be kept close to the map and reduce worker components to
avoid network bandwidth use. The global filesystem is often a distributed, redundant
filesystem.

Map-reduce is often combined with the batch-sequential style, where output from
one map-reduce job provides the input for the next. Each map-reduce job is a stage
in the batch-sequential network. The combination of these two architectural styles
(or patterns) can transform a problem that was not suitable for map-reduce into one
that is.

Map-reduce is described as an architectural style in (Oreizy, Medvidović and Tay-
lor, 2008), but the seminal paper is (Dean and Ghemawat, 2004). Hadoop, an open
source implementation of map-reduce is described in (Hoff, 2008b) and (Apache
Software Foundation, 2010).

14.15 Mirrored, rack, and farm styles

So far, the architectural styles have been from the module and runtime viewtypes.
The styles from the allocation viewtype are more likely to be discussed by network
engineers (or architects) than software architects. Here are some brief examples to
give you a feel for what allocation styles look like.
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Mirrored. In the mirrored style, identical hardware is duplicated and run in paral-
lel. The government has historically regulated the landline telephone business and
imposes uptime requirements. It is difficult to make a single computer (a telephone
switch is just a computer with a lot of “peripherals” connected) sufficiently reliable,
plus it may need to be offline to upgrade the software. Consequently, telephone
switches are often built with two mirror image computers inside. Generally, they op-
erate in lock-step, duplicating the effort, but if one fails then the other continues on
its own. Software can up upgraded on one half separately from the other. Since each
computer is equally reliable, the telephone switch reliability goes down, since there
are twice as many computers that can now fail, but its availability goes up, since the
likelihood that both simultaneously fail is lowered.

Rack. In the rack style, commodity server computers are stacked vertically to take up
relatively little floor space. All of the computers in the rack are connected to the same
network. That network in turn has one or more uplinks to the internet. The network
connection for the rack is often faster, or less bandwidth constrained, than the uplink
network, so it is faster for two computers on the same rack to communicate than two
not on the same rack. Google has some of their original computer racks on display
in their lobby and the rack is remarkable for its density: no cases, just computer
motherboards and hard drives separated by cardboard. Even when using cases, the
rack style is effective at increasing the density of computers in a server room and at
providing a group of computers with high bandwidth between them.

Server farm. In the server farm style, many (usually identical) computers are located
in the same room. The interconnection of the computers can vary and the farm
may be composed of many racks. Farms are best understood in comparison to their
alternative: dedicated, specially-configured computers tied to applications. Farms, in
contrast, are thought of as a mass resource that can host any application. Note that
applications may have restrictions on them so that they are suitable to run on a farm,
such as being stateless. A farm is easily scalable by adding more of the same kind of
hardware. Common uses of farms are for the user interface and middle tiers in 3-tier
systems, where a farm of web servers handles the user interface and another farm
handles the middle tier.

14.16 Conclusion

An architectural style is a kind of pattern that occurs at an architectural level and
applies to architectural elements like components and modules. Patterns range in
scope from idioms at the programming language level to styles at the architecture
level. Architectural styles are patterns that dominate an architecture. They provide
a known set of elements, relations, and constraints. The constraints restrict how
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the elements can be used, such as the system’s runtime topology, the dependencies
between its modules, the direction of data flow across its connectors, and the visibility
of its components.

The use of styles encourages consistency and comprehensibility in your architec-
ture, improves the density and accuracy of communication between developers, and
promotes design reuse. Perhaps most importantly, through their constraints, they
enable your architecture to promote or even guarantee quality attributes, and they
promote your ability to analyze it.

The styles you have read about here are best thought of as Platonic ideals. When
you look at actual systems, you are more likely to encounter embodied styles, ones
that bend the style’s strict constraints. If the constraints are bent too far, the style may
lose its ability to provide desirable qualities.

Styles have a strong connection to architecture-focused design. Architecture-
focused design means that you are consciously depending on the architecture to
achieve a goal. One way to do that is to design a custom architecture tuned to the
qualities you desire. Another way is to use an off-the-shelf architectural style that
promotes those same qualities. When you are following architecture-focused design,
you will gravitate towards Platonic styles, because bending the constraints puts the
desired qualities at risk.

This chapter discussed architectural styles from the module, runtime, and allo-
cation viewtypes. The module viewtype styles were layers and the big ball of mud.
The runtime styles were pipe-and-filter, batch-sequential, model-centered, publish-
subscribe, client-server, and peer-to-peer. The map-reduce and N-tier styles spanned
the runtime and allocation viewtypes. And the mirrored, server farm, and rack styles
were all from the allocation viewtype.

14.17 Further reading

Early writing on architectural styles includes Perry and Wolf (1992) and the per-
fectly titled “A Field Guide to Boxology” by Shaw and Clements (1997). Shaw and
Garlan (1996) also covers architectural styles, including most of the ones included
in this chapter, but also organizes them into categories, such as data flow styles.
Clements et al. (2010) organizes these styles into viewtypes and provides a compre-
hensive accounting of the elements, relations, and constraints of each.

Architectural styles and patterns are both included in Buschmann et al. (1996),
along with lower level design patterns and idioms. More recent writing on patterns
and styles includes Taylor, Medvidović and Dashofy (2009) and the enterprise archi-
tecture patterns in Fowler (2002).





Chapter 15

Using Architecture Models

At some point you will have mastered the details of architecture models such that
you can tell modules apart from components, can write perfect functional and quality
attribute scenarios, and can recall every architectural style. But this is not your goal:
you will want to go further and use models to make you a better engineer. You will
use different views of your master model to highlight different details, yet still have
them form a coherent picture of your architecture. You will want to build systems
that are high performance, or secure, etc., so you will need to analyze the models you
build.

This chapter provides guidance that goes beyond the syntax of drawing a model
so that you can use your models productively. Compared to other chapters in the
book, its topics range widely. It covers desirable model traits (like precision and
accuracy), how to use views effectively, how to draw effective diagrams, when testing
and proving are appropriate, how to analyze your architecture models, the dangers
of architectural mismatch, how to plan for your user interface, models that describe
existing systems versus models that prescribe future systems, and some hints about
how to model existing systems.

15.1 Desirable model traits

What traits do good models have? What differentiates the insightful and useful model
from another that is uninspired? This section discusses several desirable traits found
in good models. Some are traits to strive for, such as low cost and a consistent level
of detail. Other traits, such as accuracy and an ability to promote understanding, are



298 CHAPTER 15. USING ARCHITECTURE MODELS

essential. This list of desirable model traits incorporates ideas from David Garlan,
Grady Booch, and Bran Selic, who have published similar lists.

Perhaps counter-intuitively, completeness is not always a desirable model trait. On
occasion, you will build a complete model because one is needed by an analysis. As
engineers, however, you must balance the cost of building the model against its ben-
efit. That decision usually yields a compromise where models are incomplete yet still
useful. The following sections discuss precision, accuracy, prediction, comprehension,
detail, monothemacity, and cost as they relate to models.

15.1.1 Sufficiently precise

Here are caricatures of two popular approaches to modeling. The first caricature is of
a sloppy model and the second is of a precise model.

• The cartoon. You have seen hundreds of these box and line diagrams projected
during meetings to “give you a rough idea” of some design. When the model
author is being honest, he may refer to these diagrams as cartoons to emphasize
their lack of formality. However, all too often the author does not recognize the
imprecision in the model. The sloppy model could have been created in a rush,
or could be slickly produced with impressive 3-D effects. You may get dismissive
replies if you ask questions like “What does it mean if two boxes are adjacent,
or not?” or “Why are some lines blue and others red?” The most insidious kind
of cartoon is one that looks sufficiently precise, but is not.

• The blueprint. The precise model is often based on a well-understood formal-
ism, relying on set theory or Petri nets for semantics. The author exhorts you to
understand that this is not a cartoon, and can be trusted. The model may ex-
plain some things in great detail to the exclusion of others, making you wonder
if the author is searching for his keys1 where the light is good, because some
ideas are easier to formalize, or are better understood. The precise model takes
a long time to build because anything good is worth the effort.

From these caricatures you may assume that both are bad and there is a better way.
You would be only half right, since both can be good or bad depending on the context
— you just need to know how to choose accordingly. One of the themes in this book
is making engineering tradeoffs, and since your choice of model precision costs time
(or money, or attention, etc.) you have to weigh its benefit against its cost.

The best way to choose the precision in your model is to decide, in advance,
which questions the model must help you answer (as discussed in Section 6.6). Once

1This refers to an old joke: One man sees another searching for his car keys in the park underneath a lamp.
He says, “Lucky you lost your keys over here.” The other replies, “Actually I lost them over there, but the light is
better over here.”
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you know the questions, you can choose the cheapest model that will answer the
question. Often a sloppy model will suffice; other times only the most precise model
can answer your questions. Beware of backwards justifications, where a precise model
is generated and then questions put forth that only it can answer.

You may do your project a disservice if you choose the wrong level of precision.
One way to do this is to be sufficiently vague in descriptions or designs so that re-
viewers do not object to them. One of the implicit questions your model must answer
is, “Can a reviewer, stakeholder, or subject matter expert understand it well enough
to identify flaws and provide feedback?”

If you do not know what questions you need your model to answer, your first
impulse should be to avoid creating a model. However, if your lack of questions is
because you are unfamiliar with the domain, you could build models according to the
norm in your domain.

When you are building architectural models, the kind of project will influence the
detail level in your models. For example, greenfield software development projects
(i.e., those that build completely new software) have different risks than brownfield
projects (i.e., those that extend an existing system).

15.1.2 Accurate

Accuracy in a model seems like an obviously desirable trait, because no one wants
the errors implied by inaccurate model. However, a model may be accurate in some
respects (e.g., it yields accurate performance estimates) but not in others (e.g., it
gives poor cost estimates). Also, consider the model of Newtonian mechanics, which
is useful in describing our normal observations, but is less accurate than quantum
mechanics.

Accuracy is an broad term related to several distinct ideas, including consistency
with the real world, consistency within the model, referential integrity, and falsifi-
ability. A model that lacks these traits is unlikely to be useful, and may in fact be
counterproductive if it leads you to false conclusions.

Consistency with the real world. When using a model, the basic process is to (1)
map from the real world into your model, (2) do some work within the model, then
(3) map the model output into conclusions about the real world (see Figure 6.1).
Consistency with the real world requires that the model have designations from the
real world that it uses as inputs (see Section 13.6), and also that the model’s output
agrees with the real world.

Self-consistency and referential integrity. Self-consistency requires that the model
have no internal contradictions. An example of an internal contradiction was seen in
Figure 13.4, where the first and second floor views of a house floorplan revealed a
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conflict about the staircase location. In addition to self-consistency, a model can have
referential integrity, which means that the model only refers to elements in the model,
and has no “dangling references” to things not mentioned in the model.

Falsifiability. Falsifiability requires that you are able to determine if the conclusions
made in the model are true or false. Informal architecture models, sometimes called
marketecture or PowerPoint architecture can fail to be falsifiable when they are so
vague it is impossible to tell if they represent the real system or not. Open refinement
semantics (see Section 7.3) make models difficult to falsify, because the refinement is
free to change so many details that few things are certain.

15.1.3 Predictive

Engineers strive to build models that are predictive in that they can tell you some-
thing about the future. Predictions often anticipate behaviors, like “these processes
will deadlock.” Another kind of valuable prediction is one about constructability or
suitability. It is better to know today that two components are incompatible than to
find out during implementation. A model with no predictive power has little chance
of reducing engineering risks.

In software architecture, it usually requires an expert modeler to produce a pre-
dictive model and the utility of the model depends on the skill of the person using it.
As discussed in Section 6.5, many people can learn the syntax of a model and will be
able to create one, but to choose which models to create, and to employ those models
to amplify your analysis abilities requires a skilled and experienced engineer.

15.1.4 Promote comprehension

As with accuracy, to say that a model should promote comprehension seems to be obvi-
ous. A model that made a problem harder to understand would need to be balanced
by quite a few other advantages.

Limiting details. The most obvious way a model can promote understanding is to
exclude details. This way, a large problem is easier to fit into our limited-size minds.
By excluding the right details, you effectively make the problem smaller.

Focusing attention. Another way to promote understanding is to focus attention.
Herb Simon popularized the idea that while the world is growing increasingly com-
plex, your attention is limited (Simon, 1981). A model can promote understanding
by focusing your scarce attention on appropriate details in the problem. You will have
already noticed that experts examining an artifact can quickly narrow their attention
to salient details, something that is harder for non-experts.
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In building a model and exposing select details, you can provide the reader with
the benefit of your expertise through your selection of details. Contrast this with
a computer-aided design (CAD) program that can mechanically generate an infinite
number of views of a building design. The fact that you choose to present a particular
view, for example the throughput and reliability of connectors, necessarily focuses
the reader’s attention on those details instead of others. If the model author acts like
the CAD program and indiscriminately generates views, he has hindered the reader’s
comprehension.

Suitable format and notation. Not all models are equally easy to comprehend. It is
usually the case that the essence of a model can be expressed in different forms and
some forms will be easier to understand than others. It is possible that object-oriented
programming has become popular because the abstraction of an object meshes more
easily with most programmers’ minds. Functional programming, for example, has
many benefits, but it may be that most programmers reason about objects more easily
than about functions.

Whether this theory is right or not, you should be wary of your own models and
ensure that they are helping those who read them. If you find that a particular model
always causes readers problems, you should investigate other equivalent models that
are more easily understood. As discussed in Section 15.6.1, the human brain has a
lot of hardware for special-purpose analyses, especially visual and linguistic ones, so
it is prudent to choose models that take advantage of it.

Story at many levels. One way to promote comprehensibility of your models is to
structure them as a story at many levels (see Section 11.1). Most complex things
are designed to have internal structure so that a constituent piece can be understood
separately from the whole and that the whole can be understood without knowing
exactly how a piece accomplishes its job. The top-level of design should be compre-
hensible without opening subcomponents, and again each subcomponent should be
comprehensible without opening its own subcomponents.

15.1.5 Consistent level of detail

A model with more detail is not always preferred to one with less detail. Instead, a
model should strive for a consistent level of detail, rather than having some parts more
detailed than others. Refinement can be used to selectively show more or less detail
in a model. A model with a consistent level of detail can be refined to show additional
detail in chosen parts.

A model with mixed levels of detail can be confusing to a reader because the dif-
fering detail may arise for different reasons. One interpretation is that the model is
simply unfinished. Alternately, the model could be missing important details because
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those details are not known. Finally, the model could be deliberately eliding details
because those details were unimportant. If you must create a model with an inconsis-
tent level of detail, put a note on the model explaining the reason and you will reduce
the reader’s confusion.

Another reason to avoid mixing detail levels in a model is to avoid the phe-
nomenon of “following the contours of the seabed.” The reader should be allowed
to absorb the additional details when the reader wants them, rather than when the
model author wants to reveal them. A model that provides all available details will
be deeper in some places than others. Most readers find it easier to first comprehend
the big picture in a simpler model, and then later selectively explore the details as
their need or curiosity guides them.

If you wish to show additional details concerning selected parts, build one model
at a consistent level of detail, then build a refinement model that shows selected parts
in greater detail, which yields a consistent level of detail, avoids confusion, and still
provides additional detail as appropriate.

15.1.6 Monothematic views

The best and most useful models are produced through the deliberate inclusion and
exclusion of information. When presenting a view of a model, it is best to use
monothematic views, ones that selectively and consistently show categories of infor-
mation from the model.

For example, a view could choose to show a component assembly annotated with
the throughput of connectors. A monothematic view like this is suitable for analyzing
throughput and its reader is undistracted by other categories of details like security
and implementation language.

The name monothematic emphasizes the idea that a view consistently shows a sin-
gle thing, but does not imply that only a single category of information is shown, so it
is OK to show both throughput and reliability. What is discouraged is to inconsistently
sprinkle in information, for example if some connectors are annotated to show their
implementation technology and others are not. A view that has various categories of
information similarly sprinkled on quickly becomes a mess.

15.1.7 Inexpensive

A central theme of this book is that effort spent on engineering should be aligned
with perceived risks. It follows that an inexpensive model is easier to justify building.
Models may have detail knobs that allow you to adjust their level of detail between
rough sketches and intricate Swiss watches. Even better, the benefit curve often races
ahead of the cost curve, so you should look for the least expensive model that ad-
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dresses your risks. For example, creating a textual list of components and connectors
requires very little effort, but is significantly more useful than having no model at all.

15.2 Working with views

We now shift our discussion from the desirable qualities of views to how best to work
with them. If it were easier to reason about a system from the master model, or just
one viewtype, or just one view, you would do that and forget about multiple views
because they are a challenge to build and coordinate. However, a single model of
even a medium-sized software system would be difficult to comprehend. It would be
difficult to analyze too, since the salient details would be mixed in with extraneous
ones.

Divide and conquer. As you have already seen, the solution to this problem is to
keep the large model as a master model (see Section 13.1.2), but to show views of
it that reveal only selected details. Conceptually, a system has just a single master
model that has all details. You can slice it initially into three primary viewtypes and
then further subdivide each of these into specific views. For example, a view might
show just a component assembly or a single module. Slicing and dicing your master
model into views that are easier to work with is an example of a divide and conquer
strategy.

After knowing the basic strategy, some questions remain. Which views should
you create? What problems are you likely to encounter with the divide and conquer
strategy? And are there anti-patterns you should avoid?

A view for each concern. How do you choose which views to create? One answer
is to build a view for each concern, where a concern is a dimension of the problem
or system that you are interested in. For example, if you have an architecture driver
related to security, you will probably get value from a view that reveals security details
of your system.

Some engineering fields have a standard set of concerns. In the design of satel-
lites, for example, the standard concerns are mechanisms, propulsion, thermal, stress,
dynamics, and fluids/aerodynamics. Engineers specializing in thermal analysis draw
specialized views of the satellite that help them solve heat-related problems and de-
tect design errors. It is unlikely that the details needed for thermal analysis are the
same as the details needed for stress analysis, hence the different views. Each engi-
neering specialist gets a view that enhances or enables quantitative and qualitative
analysis of his concern. In software, concerns often align with quality attributes and
functionality.

Like engineers in other fields, most software developers learn specialized skills
relating to concerns during their careers. Some developers are recognized as experts
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in security, for example, and others at telecommunications, but these skillsets are not
as standardized as they are in other fields of engineering.

15.2.1 Problems you will encounter

In general, dividing up a big problem into smaller ones is a good strategy. You will,
however, encounter difficulties because each view will have a narrow focus and be-
cause some problems live in between those narrow views.

Specialized views yield narrow focus. When you look at a collection of specialized,
narrow views, it can be difficult to mentally synthesize those views together to en-
vision the master model or the entire system. Your narrow views are much like the
story of the three blind men describing an elephant, where one says the elephant is
round and strong like a tree, another says it is flexible like a snake, and another says
it is flat like a piece of paper. The challenge is to integrate the views back into an un-
derstanding of the whole elephant, rather than just understanding its leg, its trunk,
and its ear.

When you are building views with the hope that your reader can reassemble them
to understand the system, a partial solution is to include a view from each viewtype:
module, runtime, and allocation.

Some problems live in between views. A narrow, specialized view excludes extra-
neous details so that you can focus on a particular concern. You gain leverage by
creating such views, but there is a cost. If a view is monothematic and shows just
one concern, where do you put knowledge about interactions between concerns? For
example, there is a tradeoff in the design of an internal combustion engine: You can
increase power by making the cylinders wider, but doing so reduces the space be-
tween the cylinders, which becomes a heat and stress problem. This tradeoff would
not show up in a thermal-only view, or in a mechanical-only view.

In software systems, developers often learn a new domain each time they change
projects, so such expert knowledge is unlikely to be known implicitly. One solution
is to create mixed concern views, ones that show details relevant to two or more
concerns, which allows you to write down the concern interactions that you discover,
often as tradeoffs or invariants.

Inconsistency between views. When you create multiple views of your system, you
open the door to inconsistencies between those views. This book uses the interpre-
tation that there is a master model from which all views are projected. The master
model approach says that inconsistencies can arise because the master model can
have flaws, or because you made mistakes when drawing views of the master model.
So, when you discover views that contradict, you need to trace that contradiction
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back to either a bug in the master model or a bug in the process by which you created
the view.

Everything that views take apart must be put back together such that a system can
be built. Consider an example from another engineering domain. If a thermal engi-
neer’s analysis reveals that one part of a satellite can become too hot, he rearranges
the design of the subcomponents to compensate. It is essential that this update to
the satellite propagates to every other view, otherwise the mechanical, electrical, and
other engineers will be wasting time by working with out-of-date views. If the incon-
sistency is not caught, someone will start constructing the satellite only to discover it
is unbuildable, perhaps because the views require its antenna to be in two places at
once.

15.2.2 Anti-patterns you should avoid

Anti-patterns are ideas that are repeated by many people because they seem like good
ideas, but in hindsight they can be seen as ideas to be avoided. When dealing with
views, some developers become fond of a particular view, perhaps because it has
helped them in the past, or they may try to create a single view that has every needed
detail.

Anti-pattern: favorite view. Despite the need for various views to solve various prob-
lems, developers can become attached to their favorite “pet” views, even when they
are inappropriate for the problem at hand. Perhaps their last project was organized
into layers, so they gravitate to a layered module view, even if this project uses a
peer-to-peer style.

Continuing to use a favorite view to reason about your system is usually possible,
just more difficult than using a more appropriate view or viewtype. For example,
developers can find protocol violations simply by looking at source code, but they
would have an easier job if they used state models. Generally, you should use the
views and viewtypes that are appropriate to your problem, rather than struggling
with a favorite view.

Anti-pattern: one diagram to rule them all. Closely related to the idea of focusing
on a single view is the attempt to make a single diagram serve all purposes: the one
diagram to rule them all. This often occurs because the diagram2 author does not yet
realize that viewtypes are hard or impossible to reconcile and dutifully struggles to
cram every detail onto a single diagram.

2The words diagram (a picture) and view (a projection of a model) can generally be used interchangeably.
The word diagram is used here instead of view because this diagram does not necessarily adhere to the semantics
we associate with views as projections of a master model.
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Consequently, it can be impossible to tell if a line between two boxes represents
a dependency between two modules or a runtime communication between two com-
ponent instances. You may even notice the diagram author arguing that module de-
pendencies (seen in a module view) and runtime communication (seen in a runtime
component assembly) are the same thing.

As a result, a single diagram that tries to reveal code organization, runtime struc-
tures, and allocation to hardware becomes crowded and hard to understand. The
diagram author may omit relevant details because they are hard to express, rather
than drawing another diagram where they would fit easily.

15.3 Improving view quality

At this point you may be a bit worried about your ability to handle many views of
your architecture. Perhaps you are even wondering if the divide and conquer strategy
was such a good idea. Fortunately, there are techniques that help you manage those
views, detect inconsistencies, and steer them to become consistent. Three techniques
are discussed here: writing functionality scenarios, animating scenarios, and writing
action specifications. The techniques on functionality scenarios augment the advice
given in Section 12.6.

15.3.1 Functionality scenarios stitch together views

What views show in isolation, functionality scenarios reassemble into a whole, like
a thread that connects separate pieces of cloth into a quilt. This insight is critical to
Philippe Kruchten’s 4+1 views of architecture (?, ), where the +1 view is scenarios
that connect the other four views. A single scenario can refer to elements that appear
in different views, and even different viewtypes, so scenarios help the reader to relate
the pieces and understand the whole of the model.

In its most common use, a functionality scenario applies to a single model in a
single view, such as applying to a domain model, a port, an allocation model, or
a component assembly. However, it is easy to write a scenario that applies across
models and even viewtypes. For example, a scenario for packaging and deploying
source code would describe how it is compiled (module viewtype), tested (runtime
viewtype), and distributed onto servers (allocation viewtype). Strictly speaking, a
scenario applies to just one model, so when they are used to stitch together several
views, those views must be of the same model, perhaps the master model.

Regardless of how casually you write them, functionality scenarios always have
the advantage of reading like a story. However, if you take care in how you structure
them, they are effective at tying together views. This section describes that structure
and the rigor you should apply. As you grow to appreciate why the structure exists, it
will feel less like a burden and more like an opportunity.
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Informal dialogue. Here is an example of how you can keep your scenario tightly
connected to your model. If you were working on the scenario for the library system
(from Chapter 12), your inner dialogue, or perhaps even spoken dialogue if you are
collaborating with someone else, might sound like this:

OK, this step deals with how the borrower returns the copy. Is there an
operation defined on the port for that? Yes, it’s called Return(). So the
borrower, Bart, will “return the copy of Moby-Dick” via the pDesk port.
Actually that would be Bart and Larry, since only Larry the librarian can
use the pDesk port. Then the system will need to match that up with the
loan. Of course Bart doesn’t know the loan ID, so the system will need to
look the loan up and then change the loan’s state from ... hmm, I haven’t
defined loan states yet.

This is just a snippet of dialogue but should give you an idea of how the writing of a
scenario immerses you in the details of the target model. It might even feel a bit like
writing code.

Checklist. As a reference, a checklist can be quite helpful in helping you learn to
write a good scenario. Below is a checklist that can be used either while writing a
scenario or when checking one after-the-fact.

• Actor. The actor that initiates each step should be clear, as should the recip-
ient. To ensure this, always use the present tense, which will avoid linguistic
constructions that hide the initiator, as in, “The copy is checked in.” While you
are thinking about the initiating actor, ensure it already knows about any data
it must pass as a parameter. Also consider if the actor is allowed to initiate this
action. The actor must also have a path of communication to the recipient, so a
connector, dependency, or a communication channel may need to exist.

• Action. Each step should refer clearly to a single action defined on the target
model. A good scenario has a single level of abstraction across steps. For exam-
ple, if one step is, “Larry adds a copy of Moby-Dick to the library,” another step
should be at about that same level of detail, and not “Larry enters his username
and password.” Action names in the scenario should be as close as possible
to the action name in the target model, but you can allow minor differences,
especially if they improve readability.

• References. Scenario steps refer to model elements, such as parameters passed
in or return values. The scenario should have no dangling references, so all ref-
erences must be defined in the target model, including associations, attributes,
and states (or other details relevant to the model type). However, the scenario



308 CHAPTER 15. USING ARCHITECTURE MODELS

should avoid referencing “things inside of things,” so a scenario at the boundary
of your system should not refer to subcomponents inside the system.

• Target Model. Each step should transform the target model from one legal
configuration, or state, to another. An example of an illegal state would be a
stack containing -1 items, or a loan that is not associated with a borrower. You
should insist that each step causes a visible change to the target model. If it
does not, you may need a more detailed model or a less detailed scenario. An
exception to this is query operations, which rarely change the model. No step
should cause invariants or constraints on the model to be broken.

• Overall. Does the scenario make sense overall? Has it skipped over any steps
or difficulties? Does any actor in the scenario “just know” where something is,
or “just know” which other object or actor to talk to, one that it should have to
look up? Does it omit any difficult start-up or tear-down steps? As you write a
scenario step, think, “is this exactly the right word; does it match the rest of the
model?” You can also start with an empty target model and use the scenario to
begin populating it, adding items as you mention them in the scenarios.

Scenarios without this careful attention to references are useful for understanding
and documenting the design, but carefully structured scenarios help you while you
write them to catch errors or omissions, and help you to think about how the views
are stitched together to reveal the whole of the design.

15.3.2 Animating functionality scenarios

You have just learned how to write structured functionality scenarios such that you
can catch problems. Your models will change after you write your scenarios, so you
would like to be able to go back and re-check the scenarios. This section describes
how to animate scenarios to check for problems in your models.

Developers often mentally animate programs in their minds in order to debug
them. They walk through the program line-by-line and think about what impact each
line of code will have and consider possibilities for bugs. The result is higher quality
code with fewer bugs.

Animating scenarios is analogous to animating a program and often feels the same.
Animating a scenario means that developers walk through a scenario and mentally
animate it step-by-step. With each step, they imagine the changes that are taking
place to the model. Animation promotes a close mental connection with the model,
a perspective that helps you to catch inconsistencies and errors of omission.

The simplest version of animating a scenario is simple syntax and reference check-
ing, but you can do much more. To do so requires you to use the scenario to examine



15.3. IMPROVING VIEW QUALITY 309

your understanding of the system. Recall that at the pinnacle of the pyramid of model-
ing competence (from Figure 6.3). Developers use models to amplify their reasoning.
Each step in the scenario can be used as a context from which to examine the sys-
tem and see if it is reasonable and complete. The following are some questions that
you can ask as you animate a scenario that will help you go beyond simple syntax
checking.

• Communication. Does the actor have a choice about which port or connector to
use? Should another port be added? Are the properties on the port or connector
appropriate for the kind of message being sent (e.g., an insecure channel or a
daily batch)? Does/should the actor know how to contact the recipient, or know
how to choose the right recipient?

• Before and after. Should this action initiate any other messages? Is something
returned or should it be? What should the state change of the model look like?
Is this step dependent on something that must have happened before? Do the
actors and the system have access to the data they are required to pass?

• Beyond the scenario. Is there a variant of this scenario step that would be
more challenging to the system? Is there interesting behavior involved with
startup, shutdown, empty collections, or deleting elements? How many scenar-
ios are needed to give confidence in the system behavior? Is the behavior of
each element reasonable given its allocated responsibilities?

These kinds of questions could be answered without a scenario, but the concrete
context of the scenario can help uncover problems and can open up new avenues of
thinking. These questions do not have right or wrong answers based on simple checks
— do the connectors have appropriate properties? — so developers use scenarios to
augment their analysis. When you animate scenarios across your model with the
intention of detecting problems, you will find that reading through a single step is a
rich mental activity that reinforces the interconnected nature of your models.

15.3.3 Writing action specifications

A third way to tie together your models is to use action specifications. Action specifica-
tions can tie together various views in much the same way that functionality scenarios
can. Consider the action check_out_copy that describes how a borrower could check
out a copy of a book from a library.

void check_out_copy (Copy c, Borrower b)
pre-condition: c is not removed, c has no current loans
post-condition: new Loan l, linked to b and c, out = today, in =
null, due = c.library.loanLength + today
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Reading the action spec itself gives you some understanding of how the system
must work: copies can be removed from the library, there are loans recorded, some
loans are “current,” loans identify the book and the copy, and there is a standard loan
length.

You can use the action specifications to limit the size of your model by only in-
cluding details that are required in the action specifications. You might be tempted to
include the age of the book copy in the model, but if it is not mentioned or needed in
any action spec then you would omit it from the model.

Action specifications make specific demands on other models. This spec requires
that the following terms be defined: Copy, Borrower, Loan, and Library. Those terms
have additional attributes: current loans, out, in, due, and loan length. And some
states are referenced: removed books and current loans. A complete model would
describe all of the states and transitions, and how the actions drive the state transi-
tions. It should also describe how attributes relate to states, for example that a Copy
has an attribute called isRemoved that corresponds to its state. You would also expect
to see this action appear as a step in at least one use case.

Despite their utility, action specifications are time consuming and therefore expen-
sive, so this book refrains from advocating that you regularly include them in your
models. The idea underlying them, however, is that all the views of your model are
interrelated, so knowing how action specifications work will improve your modeling
ability. Even when you do not write down the spec, you may be thinking, “Have I
defined all the terms I would need to satisfy the pre-conditions and post-conditions?”

15.4 Improving diagram quality

Here are two easy things you can do to improve your diagrams: include a legend and
omit the arrowheads. I acquired both of these bugbears from David Garlan.

15.4.1 Put legends on diagrams

Unless it is on a whiteboard, diagrams always need legends. Consider this book: you
have probably flipped through the pages and glanced at headings and diagrams. Even
if the notational conventions were consistent, but stated only once on page 15, you
would likely have difficulty understanding a diagram that you flip to on page 200. If
you ever put together a packet that includes diagrams, people will flip through that
too, and may well be confused without legends.

If you are using a standard notation, like UML, you can put an annotation on the
diagram saying that, but realize that not everyone will recall the difference in UML
arrows that distinguishes a dependency from subclassing. In any case, it is easy to
copy a legend from an old diagram to the new one so that every diagram has one.
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Figure 15.1: The legend on left is accurate, but minimal. The legend on the right provides insight
into the mind of the designer and the abstractions employed.

Notice too that legends force you to be careful in your notation, since they sum-
marize the elements and relations you are using in the figure. For example, if you
start drawing some components with rounded corners, having to define them in the
legend forces you to think about what they mean, and you may either decide that it
is a significant distinction, or not.

Not all legends are, well, legendary. Consider the two in Figure 15.1. The one on
the left has done the bare minimum job, like a kid who has told his mother that yes,
he has cleaned his room. Even without seeing the diagram, the legend on the right is
a glimpse into the architecture. It shows that the developer was not thinking of the
lowest common denominator of interactions — component A connects to component
B — but instead thinking about the nature of the communication, and possibly relying
upon it to achieve qualities like performance or modifiability.

15.4.2 Avoid arrowheads on connectors

This book, like many books on software architecture, does not put arrowheads on the
connectors. Why? Surely it is important to know that component A is the one that
sends data to component B, and not the reverse. And it is important to know that B
is the one that initiates the connection. And it is important to know that A can sever
the connection. And so on. Sadly, there are many properties you would like to reveal
in the diagram, yet only one arrowhead.

There are also semantic concerns: connector A requests data from B, who then
replies with the bulk of the data transferred. Should the arrow point from A to B,
because the first data transfer is from A, or from B to A because the bigger data
transfer goes that direction?

The worst problem is that readers of the diagram tend to assume they know what
the arrowhead means, but they can guess wrong. The alternative to arrows is to
reveal some details using typographic differences in the ports and connectors, as you
see in detailed legends. Remaining details are listed textually as properties of the
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ports and connectors. Few readers will jump to conclusions about port shading the
way they do arrowheads, for example that a port shaded gray is an event output port,
so they instead look at the legend to get the correct interpretation.

Using arrowheads is not right or wrong; it is a stylistic choice. However, if you do
use arrowheads, you should use a legend to reveal what the arrowhead means.

15.5 Testing and proving

You are probably already aware of the difference between testing and proving but it
is worth covering because of its importance in how you use your models. In short,
testing can demonstrate the presence of bugs but not their absence. Depending on
what kinds of questions you need your model to answer, either testing or proving may
be appropriate.

Test models with good data. If testing is appropriate, you still need the right data
to feed into the model. Developers usually have a few concrete test cases “in their
pockets” that they use to create candidate models. Models that cannot express the
data in the test case must be revised or eliminated. For example, in the Home Media
Player system example from Chapter 4, the model authors used the Prince songs to
test the general model.

Once a model passes these pocket example tests, it should be evaluated on a
broader set of concrete data. For example, I once built a model of security permis-
sions using a few pocket examples. I then collected actual data from a broad range
of groups in the company, covering different platforms and operating systems, and
ensured the model worked on these also. Of course the model did not work perfectly,
since real data throws unexpected curveballs.

Proving with analytic models. Sometimes you need a model that has properties like
isolation, freedom from deadlock, performance, or security. Usually these properties
are emergent, and it is easier to reason about emergent properties in simpler models
than in complex ones. You may need to simplify your model to give you leverage over
the problem and to prove (or informally convince yourself) that you know what the
emergent properties are. To prove properties, you probably need an analytic model
instead of an analogic model, as discussed in Section 3.5. When using analysis tools
to prove properties, most models will need to be transformed before being read by
the tool, as discussed in the next section.

15.6 Analyzing architecture models

You may be under the impression that the benefit of expressing your architecture us-
ing a precise modeling language is that hairy, complex analysis programs can analyze
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your model and find problems that mere mortals cannot. Prepare yourself for a bit
of an anticlimax because the primary analysis tool is between your ears. This section
will describe some of those hairy and complex analysis programs, but its message is
that your most valuable analysis tool is your brain plus clear models.

An appropriate view can obviate sophisticated analysis. Consider the humble cal-
endar. If you want to know what day of the week December 26, 1965 falls on, you
can flip to that calendar page and look at which column it falls under. In fact, you
can do tricky operations on that date so easily, like finding the following Wednesday,
that you hardly consider them computations. But consider what kind of program you
would have to write, one that would have to compute leap years, etc., to answer
similar questions and compare it to the answer that just pops out of a calendar view.

This section will survey some techniques you can use to analyze your designs and
architectures. Many are applied as “back of the envelope” evaluations. They can still
be quantitative and, when you are willing to invest the time, some of them can be
formalized. We will start by looking at the informal techniques and move on to the
formal ones.

15.6.1 Humans as architecture analysis machines

With computational analyses available, it is easy to overlook the option of analyzing
models yourself. Human brains are remarkable at processing information, but quite
dependent on the form of that information. Imagine trying to navigate from a map,
but not a traditional 2D map. This “map” is an alphabetical listing of the street
segments in the country. This representation would thwart a human, but a computer
might actually find the task easier this way. That is because people have lots of visual
processing capabilities that they use to find a route on a map. Maps are drawn to
work with those human capabilities, for example by drawing major roads thicker
than minor roads.

Architecture models can be built to similarly leverage our human capabilities. If
you are searching for single points of failure in a system, you is going to have a hard
time if you only look at the source code. However, the fact that all requests flow
through a single load balancer would jump out when you look at an allocation view.

Standard viewtypes. But do the standard allocation, runtime, and module architec-
ture viewtypes provide the right representations for humans to leverage their built-in
analysis? There is no way to give a refutable answer to this question, but the general
experience is that yes, the standard architecture views are good, but no, they are not
ideal.

You should augment them with other views or viewtypes as needed. For example,
Philippe Kruchten’s 4+1 views includes a process view that is helpful if your sys-
tem has multiple threads or processes. The standard architecture views are general-
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purpose, which gives them some leverage on almost all domains. The flip side to this
is that they provide no domain-specific leverage. Consider again the calendar exam-
ple. A calendar, as a domain-specific view, has the nice property that all the Mondays
are in the same column, a domain-specific encoding that you would not get from the
standard architecture views.

Flash vs. substance. The next time you are tempted to put a fancy gradient fill on an
architecture model, stop and consider whether it aids or impedes comprehension. It
may superficially glitz up the model and improve its boardroom-presentation appeal,
but make sure it does not hurt anyone’s ability to comprehend it because the human
brain is usually the analysis machine.

15.6.2 Informal analysis techniques

Several informal techniques exist to analyze an architecture, including quality at-
tribute workshops, architectural checklists, architecture and design reviews, and the
Architectural Tradeoff Analysis Method.

Quality attribute workshops. Different analysis techniques work at different times
in a project’s lifecycle. Quality attribute workshops are a technique to discover and
prioritize system quality attribute scenarios and are used before design begins (Bar-
bacci et al., 2003). A workshop leader solicits stakeholders to write quality attribute
scenarios where each scenario describes the system’s measurable response to a stim-
ulus. A simple scenario is “When the system receives a request, a response must
be returned within 200ms.” Quality attribute workshops provide a prioritized list
of scenarios and can be used to identify risks. Some scenarios are very important to
stakeholders, but not difficult for a system to achieve. When the scenarios are difficult
to achieve, however, they help identify a risk of failure.

Architectural checklists. Architecture checklists are used during design or reviews to
ensure that known risks are considered. Several general-purpose checklists exist that
you can use as-is (Maranzano, 2005; Meier et al., 2003; Rozanski and Woods, 2005).
Domain-specific checklists have the ability to catch even more specific problems, such
as cross-site scripting vulnerabilities in web applications, something that would not
appear on a general checklist.

Architecture and design reviews. An architecture review consists of a presentation
of a proposed architecture, or design, to a group of reviewers who did not participate
in the design (Maranzano, 2005). The review process provides the reviewers, who
are domain experts and/or software architecture experts, an opportunity to identify
potential risks or defects in the design. Participants have noted, however, that simply
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preparing for such reviews encourages them to scour their design for flaws so that
most problems are caught before the actual review.

The reviewers may follow a risk-driven evaluation of the design, thinking of how
the design might fail. They may suggest techniques to address the newly identified
risks, and may identify techniques that could have been performed earlier.

Architectural Tradeoff Analysis Method. The Architectural Tradeoff Analysis Method
(ATAM) is a kind of architecture review designed evaluate the suitability of a proposed
architecture (Bass, Clements and Kazman, 2003). ATAM sessions must be performed
after an architecture has been proposed since it investigates and discovers tradeoffs
for a particular architecture. By knowing the quality attribute tradeoffs, developers
have the opportunity to change the architecture, yielding a better set of tradeoffs.

ATAM also delivers a set of ways the architecture may not achieve the desired
quality attribute scenarios, which are a particular kind of risk. ATAM sessions work
best when both architecture experts and domain experts collaborate to identify risks.
ATAM sessions can be both time consuming and expensive, making them difficult to
apply on smaller projects, but the essential ideas of ATAM can be adapted to a lower-
ceremony development process.

15.6.3 Formal analysis techniques

In addition to the informal techniques, there are quite a few formalisms and corre-
sponding tools that can be used to check models. In most cases these tools will not
work directly on your model or source code, so it must be transformed into a for-
mat that can be handled by the tool. First, we will take a look at the transformation
process then proceed on to discuss specific analyses, formalisms, and tools.

Transforming models for analysis. The exact process for analyzing your architec-
tural model using a particular tool will depend on each, but it is possible to make
some generalizations. What follows is a sketch of the basic process for the round trip
to get an answer from a tool that includes transforming your model into a format
the tool can read, using the tool to check something, and making sense of the tool’s
output.

1. Simplify the model. Your model may need to be simplified, where the simpler
model will have fewer elements and relationships than the original. The analy-
ses performed by the tools generally work very quickly on small models, perhaps
taking just a few seconds or minutes to run. But because of their computational
complexity, larger models may take hours or even fail to complete in any rea-
sonable amount of time. The relationship between this simpler model and your
original model must be a refinement relationship, so that what you learn about
the simple model will still be true about the more detailed model.
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2. Map to the tool vocabulary. Your model must be adapted so that it is expressed
in the primitive elements that the tool understands. Some tools only understand
directed graphs or arrays, while others understand data structures like sets.
This is roughly analogous to transforming story problems in math class, where
the velocities of two trains are converted into variables in an equation. This
transformation strips domain-specific details from your model, in the way that
you do not care what color the train is, or what time of day it is traveling, or
even that it is a train.

3. Express model in the tool’s language. Your model must be expressed in the
input language of the tool. This is similar to converting between pseudocode
and the concrete syntax of a particular language, and could even be automated.

4. Devise an assertion to check. You must devise and express an assertion (a
predicate) to check in the formalism. Sometimes the assertion is implicit, as
with rate monotonic analysis: “These processes can be safely scheduled.” Other
assertions will be domain specific, like, “A call to Open is always followed by
a single call to Close.” The assertion must be converted from natural language
into a form that the tool understands, which can be harder than it seems. Linear
temporal logic, for example, has operators like next, always, and eventually that
are used to express the assertion.

5. Use the tool to check the assertion. The tool analyzes your model and the
assertion. Tools provide various results, but often they provide either an as-
surance that the assertion holds or they provide a counterexample of how the
model could violate it.

6. Reverse-map the tool output to a meaningful answer. You must convert the
results of the analysis back into the domain of your model. When the results
are positive, as in “this model will not deadlock,” this interpretation is rather
easy. Sometimes a problem may be reported by the tool, yet impossible in the
real system because of some constraints that you simplified out of the model. In
that case you can revise the model to add these constraints back in, or otherwise
reformulate the model.

Doing each of these steps yourself can be a lot of work, but analyses can be built into
modeling tools to save effort. The following sections describe analyses grouped into
categories based on quality attributes.

Security analysis. Security is a difficult quality attribute to achieve because small
coding slips can result in gaping security holes. When securing a system, developers
usually follow checklists, looking for known types of attack vectors and examining
their code to ensure it is not vulnerable.
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It is possible to formalize and automate such an approach by modeling the system
as a data flow diagram (DFD) and building a program analyzer that would extract
the same from source code (Abi-Antoun, Wang and Torr, 2007). They were able to
look for attack vectors by analyzing the DFD and ensure that the source code had no
deviations that could cause problems.

Security also provides design challenges because you can always apply more secu-
rity measures. Each additional measure comes at a cost, yet it is hard for stakeholders
to know which basket of measures will be optimal for them. Shawn Butler’s security
process guides stakeholders to understand their needs so that they can choose effi-
ciently (Butler, 2002).

Reliability analysis. Reliability in software is usually achieved through both code
quality and architecture. Code-level reviews reduce bugs to a minimum and pro-
cesses are used to ensure high code quality from the start. Architecture comes into
play because even the best code can fail, so architectures for high reliability can op-
erate in different modes, such as steady state mode and degraded mode. Spacecraft
that encounter problems may revert to a safe mode where they point their antenna to-
wards Earth and wait for more instructions. Software architectures with single points
of failure are dangerous for reliability and you can scour your runtime and allocation
viewtype models to find them.

Because dynamism is hard to reason about, architectures for high reliability may
be mostly static. For example, designers of a high reliability system might use rate
monotonic analysis to ensure that the system cannot become overloaded by its jobs.

Performance analysis. Most often, performance is modeled coarsely based on back-
of-the envelope estimates. For example, to analyze latency, you might annotate a
runtime view of your system with numbers corresponding to how long processing
should take in each element. The estimated latency is the sum of the latencies along
a path, perhaps from user interface through the business logic and database.

Estimates can be made more accurate by using distributions instead of individual
latency numbers and by taking measurements on a running system. At some point,
you step up to queueing theory, which is a mathematical formalism you can use to
estimate latencies and other properties, or Monte Carlo analysis, a numerical analysis
suitable when there are many degrees of freedom in the system.

Accuracy, completeness, and other analysis. Model checkers are tools that evaluate
a model with respect to a predicate. Some popular ones are Spin (Holzmann, 2003)
and Alloy (Jackson, 2002). They are general purpose checkers, so you will need to
transform your model for analysis as described above. Labeled Transition System
Analyzer (LTSA) for Finite State Processes (FSP) (Magee and Kramer, 2006) models
systems as finite state machines and can check that they meet properties, also mod-
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Figure 15.2: Architectural mismatch occurs when elements in an system have conflicting assump-
tions about the architecture. You can document these assumptions using UML notes so that others
will watch out for them.

eled as state machines. It can be helpful in modeling concurrency and finding places
where protocols can deadlock.

Models can have gaps with respect to the real world. They require experience to
detect and expert modelers develop a spider sense in rooting them out. These gaps
can only be identified by humans since the model itself may be internally consistent.
Internal model inconsistencies, also called referential integrity violations, can be au-
tomatically checked. An example of an internal inconsistency is that a scenario refers
to a component that is not defined in the model.

This concludes our brief tour of analysis techniques. The following sections discuss
architectural mismatch, planning for your user interface, prescriptive and descriptive
models, and how to model existing systems.

15.7 Architectural mismatch

The term architectural mismatch was coined when a team led by David Garlan built
a system by assembling existing parts. They were burdened by difficulties that will
be familiar to anyone who has done similar COTS integration, including code bloat,
slow execution, re-implemented functions, concurrency difficulties, and error-prone
composition. Their paper on the experience went beyond noting that integration
is hard, and categorized the architectural properties that can make two pieces of
software incompatible (Garlan, Allen and Ockerbloom, 1995). Their categories of
potential architectural mismatch are:

1. Assumptions about components: infrastructure, who has control, data use
2. Assumptions about connectors: protocols, structure of transmitted data
3. Assumptions about system: system topology, component presence or absence
4. Assumptions about construction process: initialization sequence

The authors suggest a number of solutions that require a change in the landscape
of COTS software. However, only one of their suggestions is helpful as you attempt



15.8. CHOOSE YOUR ABSTRACTION LEVEL 319

to integrate some existing software: build models that highlight the architectural
assumptions.

When your models point out potentially troublesome assumptions, you will be
able to detect mismatches earlier, and can either choose different COTS software
that is compatible, or change your system design to accommodate the assumptions
embedded in the COTS software.

Conceptually, it does not matter where you document these assumptions, but in
practice it is best to put them directly on the architecture diagrams as notes, since oth-
erwise they can easily be overlooked. Figure 15.2 shows an example of a component
and some assumptions it makes.

15.8 Choose your abstraction level

Models are abstractions and so, by definition, they omit details. When you build a
model of a system you must choose which details to include and which to leave out.
It is a particularly difficult choice for models of your system interfaces since you must
decide: should the model represent the actual API operations, or be more abstract?

Your first instinct might be to model the actual API operations of the system. Such
a model has the benefit that it is concrete and testable, since you can compare it with
the source code. It can be used to detect problems in the actual API, which more
abstract models cannot. For example, are the data interchange structures sufficient
for your purposes? And you could use that model as API-level documentation.

But there are drawbacks related to size, since API-level models are usually quite
large. Assuming that there are 1000 lines of implementation for every API operation,
a 1MLOC program would have a thousand API operations to model. Though your
ratio may be different, it is evident that building an API-level model for a large system
is a considerable effort. Keeping it updated is perhaps even harder than the initial
construction. An API-level model may also obscure your sight of the architecture, as
it can be hard to see the forest for the trees. At the API-level, interfaces and modules
are easy to see, but architecture abstractions like styles, ports, or connectors are not.

Perhaps most serious is that API-level models can be hard to reason about. Most
obviously, size works against comprehension. Recall the story problems you worked
on in math class, like the one where you must determine when two trains will meet.
The model you built abstracted away every detail except for those relevant to answer
the question at hand. If your architecture question concerns the system throughput,
answering that question will be easier with a more abstract model, not the API-level
model. In moderation, API-level models are valuable, but you should pause before
building one for your entire system.

You must be aware that anytime you build a model, you are explicitly or implicitly
choosing its level of abstraction. To choose effectively, know what questions the model
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must answer (e.g., security questions, performance questions, usability questions)
and build the least expensive model that can answer them.

15.9 Planning for the user interface

The old wisdom concerning software design was that the backend and user interface
(UI) could be built independently. The new wisdom is that the backend design will
enable or inhibit usability of the user interface, perhaps to the point of making some
user interface choices impractical (Bass and John, 2003). For example, a backend that
simply supports individual CRUD (Create, Read, Update, and Delete) operations will
likely have difficulty with undo and multi-element operations. Consider also what
kind of backend support is necessary to support the increasingly common feature of
text completion as you type.

Consequently, the user interface cannot be bolted on after-the-fact. Architecture
models often include mockups of the UI and express the anticipated interactions be-
tween the UI and backend. An additional benefit of designing the user interface
concurrently with other parts of the system is that user interface mockups can reveal
errors or omissions in the low-level APIs (D’Souza and Wills, 1998).

15.10 Prescriptive vs. descriptive models

When you use an architecture model, you need to be aware of the distinction be-
tween prescriptive and descriptive models. Prescriptive models say how things should
be while descriptive models say how things are. The standard set of architecture ab-
stractions (modules, components, connectors, ports, roles, etc.) seeks to point future
software development in the right direction, and so it is prescriptive in that it encour-
ages encapsulation and clear channels of communication.

Architecture languages and the abstractions embedded in them overwhelmingly
tend to be prescriptive in that their abstractions are cleaner than code you typically
find in practice. When you model an existing system, you are creating a descriptive
model, which will reveal some challenges, as discussed in the next section.

15.11 Modeling existing systems

You may already have an existing system and wonder if you can build an architecture
model that explains it. Perhaps the system has a million lines of code and you do not
have time to read every one. This book argues that building models is a good way
to attack complexity and scale because you can apply knowledge, partitioning, and
abstractions. But first you need to ask yourself why you want a model and what that
model should do.
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Reason for modeling Candidate models

Understand current Low detail: Domain model, boundary model
system better High detail: None

Evaluate alternative Low detail: Boundary and internals models
architecture High detail: On selected tricky details

Re-architecting, Low detail: Boundary model
new platform High detail: Internals model, styles and invariants

Document for external Low detail: Domain model, boundary model
developers High detail: Styles and invariants

Investigate integration Low detail: Domain model, boundary model, internals model
& compatibility High detail: Selected domain modeling, connectors

Pre-purchase Low detail: Boundary model
investigation High detail: Domain modeling, connectors

Figure 15.3: There are many reasons to build models of existing systems, but the kind of model
you build should depend on the reason. Here are some examples of reasons and corresponding
candidate models that you could use to investigate designs and reduce risks.

Limit modeling based on needs. There are many common reasons to build an ar-
chitecture model. You may want to understand the current system better, or evaluate
how an alternative architecture could affect the system’s quality attributes. The model
could be a precursor to re-architecting or transitioning to a new platform. You may
need to document the system for external developers, partners, or for outsourcing.
You may be investigating the system’s compatibility with a reference architecture or
for integration with another system. Or perhaps the system is not yours but you are
investigating purchasing it.

You should limit your models to those aspects of the system that will help you an-
swer your questions. To give you an idea about choosing a reasonable subset, Figure
15.3 lists some possible reasons to build an architecture model and some correspond-
ing candidate models (adapted from Fairbanks, Bierhoff and D’Souza, 2006). The
candidate models and their level of detail are just ballpark estimates to illustrate that
you can get value from just a subset of the possible models, and you should make
adjustments on your projects. If you are investigating compatibility, watch out that
you do not merely validate technical compatibility (e.g., the data files are XML) when
the domain models are incompatible.

Prepare to find mud. If you are building an architecture model in order to under-
stand the system better, be prepared for some level of disappointment. Clarity and a
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story at many levels (see Section 11.1) can be revealed by architecture models only if
it is there to be found. Clean, well-thought-out designs are a result of careful design
by the system’s developers. If the system is built as a big ball of mud (see Section
14.7) then no amount of modeling will reveal anything but mud. If the system was
built expediently and not refactored then expect to see a jumble of dependencies and
communication paths. On the other hand, if the design is clean then models can make
that evident.

Another thing you should expect is exceptions to general rules such as styles and
invariants. It is common for a system to be “in style X, except ...” The architectural
styles from books like this one are the purest expression of the style, so-called Platonic
styles (see Section 14.2), but embodied styles are much more common in practice.

Building an architecture model of an existing system can be effective if you set
your expectations appropriately, decide in advance what questions you want to an-
swer with the models, and build appropriate models at the right level of detail. Sec-
tion 16.1.1 describes some specific challenges you will face in modeling existing sys-
tems.

15.12 Conclusion

The ideas in this chapter should enable you to avoid some modeling pitfalls, such as
sloppy or overly precise models. You should also know what to strive for when mod-
eling: models that are accurate, predictive, and inexpensive; models that promote
comprehension and have a consistent level of detail; and views that are monothe-
matic. By building architecture models, you are striving not only to write models that
are syntactically correct, but use those models to amplify your reasoning.

To be useful, models should be consistent with the real world, self-consistent, and
falsifiable. Some models aim to predict, but all models should strive to be compre-
hensible by humans. One way to do this is to structure them as a story at many
levels.

Decide in advance what questions your model should answer, then build a suffi-
ciently precise model. Failing to do this means not knowing when you should stop
modeling. You must embrace the fact that your models will be incomplete, yet still
useful. Complexity and scale force you to use the long way around Shaw’s commut-
ing diagram (see Figure 6.1). You should do just enough modeling, since the goal is
building a system, not building a model.

The general idea of working with views follows the divide and conquer strategy,
where you break up a big master model into smaller views, each of which is more
tractable and focused on a single concern. This strategy, however, introduces the
problem of view consistency and being able to stitch together views to understand
the whole system.
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Fortunately, functionality scenarios are great for stitching together what would
otherwise be disconnected views of your architecture. When you write them correctly,
they engage you with the details of the architecture and help you to find problems and
inconsistencies. You can animate them in your mind, just as you animate programs to
debug them, and therefore gain an understanding of your system’s behavior. Precise
action specifications are another way to achieve this and are a great mental discipline
to use, but they are usually too expensive to use all the time.

Techniques exist to improve the quality of your models. Some models can be
tested; others must be proved correct. Proving usually entails transforming your
model to be analyzed by a tool, then interpreting the results. It may have come as a
surprise, but the most effective analysis tool is your own brain when it is looking at a
clear model.

Quality attribute workshops, architectural checklists, design reviews, and the Ar-
chitectural Tradeoff Analysis Method are all informal techniques you can use to ana-
lyze your architecture and improve its quality. There are formal analysis techniques
and tools. They generally require you to transform your model and interpret the
results that come out of the tool, but they let the computer grind through the calcu-
lations to find problems, rather than you.

When analyzing your architecture, you should be on the lookout for architectural
mismatch. Seemingly compatible components can fail to integrate because of hid-
den assumptions about the components, connectors, the system, and its initialization
process.

Oftentimes a system already exists and you want to build a model of its archi-
tecture. This can be effective if you set your expectations appropriately, decide in
advance what questions the models should answer, and build appropriate models at
the right level of detail.

15.13 Further reading

This chapter describes a list of desirable traits of models that is derived in part from
other lists, including David Garlan’s software graduate architecture course (Garlan,
2003), Grady Booch’s software architecture presentation (Booch, 2004), and Bran
Selic’s presentation on UML2’s desirable traits (Selic, 2003a).

Various authors have discussed techniques for achieving model quality. Philippe
Kruchten (?, ) discusses how to use scenarios to tie together architectural views.
Desmond D’Souza and Alan Wills (D’Souza and Wills, 1998) continue that idea and
additionally discuss how precise action specifications can do the same. Many books
advocate modeling using precise specifications, including Cook and Daniels (1994),
Coleman (1993) D’Souza and Wills (1998), and Cheesman and Daniels (2000).





Chapter 16

Conclusion

The first part of this book described software architecture and gave an answer to the
hard question, “How much architecture work should you do?” It suggested that your
architecture and design efforts should address the failure risks you perceive, which
lets you calibrate your effort based on how bad it would be to get that part wrong. It
also showed that it is more effective to solve tricky problems using models, because
models simplify the problems.

The second part of the book answered the logical next question, “What do archi-
tecture models look like?” It encouraged you to use the standard architecture models
and abstractions to build up a conceptual model of architecture, which helps you see
software the way that a coach sees a sports game.

Taken together, the first and second parts of the book exist to help you design
software better. The next time you look at a computer system, you will not just
see code written in a particular language, you will see a system that promotes or
inhibits various quality attributes, one that exploits architecture hoisting, or one that
is indifferent to its architecture.

In this concluding chapter, you will learn about challenges you will face when
applying the knowledge from this book. The chapter also reprises and reinforces
themes that run through the book, including using standard architecture abstractions,
focusing on quality attributes, judicious application of constraints as guide rails, and
the use of models.
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16.1 Challenges

In Section 5.7, we looked at some challenges that you will face in applying software
architecture and the risk-driven model. Now that you have seen the details of how
to build architecture models, it is helpful to revisit that topic again and see some
additional challenges. As before, the point of identifying these challenges is not to
discourage you, but to forewarn you in the hope that you will recognize them and be
more ready to overcome them.

The challenges are organized into three broad themes: the suitability of the archi-
tecture abstractions, the mechanics of architecture modeling, and the effectiveness of
models.

16.1.1 Suitability of architecture abstractions

The architecture abstractions described in this book are the best that have been in-
vented, but that does not mean that they are perfect. It can be difficult to align them
with existing programs, abstractions in programming languages, frameworks, and
non-object languages.

Misaligned architecture and programming abstractions. Chapter 10 discussed
how architecture abstractions relate to those in programming languages, and de-
scribed a set of patterns to make the alignment more visible. It would have been
unnecessary if the architecture abstractions discussed in this book were the same as
the abstractions available in your programming language, but that is not the case
today. Consequently, there will be some friction when you try to implement your
models in code, or try to interpret your code’s architecture.

This friction is nothing new. The transition to structured programming saw some
developers saying that they could not express their existing programs in the new,
more constrained, programming languages. Some argued that their old programs
were more efficient and perfectly understandable, so the new abstractions were un-
desirable.

When you discover code that does not line up neatly with software architecture
abstractions, you could refactor the existing code into more explicit modules and com-
ponents, but would likely be prohibitively expensive. It is more practical to think of
your existing system as a collection of large modules or components, and not attempt
to model its internal subcomponents.

By preparing for this misalignment of abstractions, you will be less tempted to
reject architecture abstractions, and more likely to view it instead as the natural state
of software engineering, where abstractions evolve and our programming languages
catch up over time. You will experience difficulty with existing programs, but you
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should find it easier to line up your code and architecture models when you are
writing new programs.

Frameworks. Frameworks present a particular example of misaligned abstractions
because the interaction between client code and a framework does not neatly align
with the standard architectural abstractions. Frameworks provide deep, wide inter-
faces to the clients that use them, often exposing the implementation details of the
framework (i.e., its internals model). Ports, in contrast, provide shallow, narrow in-
terfaces and encourage encapsulation (i.e., exposing only a boundary model). Some
frameworks exist at runtime, so they can be represented as components, since com-
ponents also have runtime presence. Other frameworks, especially older ones, are
collections of code that cannot be instantiated until augmented with client code, so
they can only be represented as modules, which lack runtime existence. The pre-
cise modeling of frameworks is an open research topic for academics, so perhaps this
challenge will be addressed soon.

Object-oriented and other languages. As you have seen, every system will have at
least one component instance at runtime, which is the entire system itself. When
programming in object-oriented languages, it is comfortable to think about this com-
ponent as having internal runtime structures that are objects, and not a big stretch to
think about grouping those objects into subcomponents.

In non-object-oriented languages, such as functional, rule-based, or procedural
languages, it is harder to envision what the runtime instances are. The entire running
system is still clearly a component instance, but what subcomponents does it have?
When you are building new code, you can ensure those subcomponent divisions are
evident. You can deliberately create subcomponents, allocating responsibilities to
them, and building them in whatever style of language is most appropriate, including
non-object languages.

Even when using object-oriented languages, there are problems moving between
the architecture abstractions and the object abstractions, because each has a differ-
ent vocabulary and communication idioms. Objects, functions, procedures, etc., are
concretely represented in programming languages and substantial design guidance
exists for them. Architecture abstractions are not yet concretely available in main-
stream programming languages, which raises the question of when to switch from
one abstraction to another.

For example, a standard object-oriented pattern is to use an Adapter to convert
from one interface to another. However, the Home Media Player in Section 4.2 repre-
sented an adapter as a component, not an object. There was a choice between putting
this adapter into the existing components and revealing its existence as a new port,
or making the adapter into its own component. Components range in size, but this
example is unusual in that it has a single object as a component.
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Within a single language, you can develop a coding style that makes the compo-
nents and connectors evident (see Section 10.3). In practice, scripting languages are
often used expediently and without the same attention to coding discipline as the rest
of the code. Keeping up the discipline of an architecturally-evident coding style can
be difficult with multiple languages, especially when they are substantially different
and the conventions you are following in one do not translate well into the other.

16.1.2 Modeling mechanics

As you have seen, many architecture abstractions have been built up and guidance
exists to help you build good models. Yet building models still presents challenges.

When to stop modeling functionality. The techniques in this book cover the model-
ing of both quality attributes and functionality. Architecture models that only describe
quality attributes tend to reach a natural level of detail in modeling (i.e., you can tell
when to stop), but models that include functionality can easily be elaborated until
they describe details like individual operations on classes.

You rarely want to dig in deep, so when should you stop? Architecture modeling
has the ability transition into design, then detailed design, then a paper-based version
of coding. This ability to go deep is a benefit because you can dig into details when
needed, but a challenge because you must decide when to dig in and when to resist.
Time spent modeling has an opportunity cost: time spent building the system.

It is difficult to decide how much of the system’s functionality you should model.
As discussed in the Home Media Player example in Chapter 4, you can look at the
risks you face and only model functionality if it addresses an identified risk. So, for
example, you might build a use case model of the system only when you are asked to
deliver a presentation that explains your architecture. Generally, you will need to be
on guard that you do not dig down too far into modeling your system’s functionality.

Non-static component configurations (Dynamic architectures). Most systems
settle down into a stable set of runtime component instances, even though during
initialization there are changes (see Section 9.7). When you draw diagrams showing
the runtime configuration of component instances, you usually simplify the problem
by not drawing diagrams of the intermediate configurations during startup and shut-
down. You do this because reasoning about dynamic configurations is hard, and there
are few tools or notations to make it easier.

However, some systems must change at runtime. For example, peer-to-peer sys-
tems evolve at runtime into different configurations of components, as do frameworks
that can dynamically load new components. It is difficult to convince yourself that
runtime re-configuration like this is free from problems, so developers tend to avoid
it, but some problem domains demand a dynamic architecture.
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View consistency. The ubiquitous advice on software architecture is to build multiple
views of your system. Multiple views help by focusing attention on one aspect. Some
views cannot be easily reconciled (recall the definition of a viewtype from Section
9.6), and creating a single view would create a muddle of details that defeats the
purpose of having a model.

The downside of multiple views is reconciling the views for consistency. Today,
tools have a limited ability to catch inconsistencies, so you will be doing most of your
checking manually. Some view inconsistencies are simply cruft because you update
one view but have not yet updated older views. Other consistency problems stem
from design errors and may lead to un-buildable designs.

Crosscutting concerns. Components, modules, and nodes allow you to encapsulate
your thinking, but some ideas will crosscut these abstractions. As discussed in Section
11.2, your choice of decomposition will affect which problems are easy to solve, and
which are difficult. A design, for example, that makes horizontal scalability easy may
result in poor encapsulation of your domain types.

Another example is concurrency, which often crosscuts your abstractions. Concur-
rency has always been one of the most challenging problems in developing systems.
Novice developers may relish the challenge and seek out opportunities for concur-
rency, but jaded developers view it warily as a source of difficult bugs and are happy
to get it right then leave it alone. Concurrency is introduced into systems either
through forces in the problem domain or by a desire to improve a quality attribute,
such as performance or usability.

With a clean-slate design, you may be able to perfectly align the threads or pro-
cesses in your system with the component boundaries. If so, you can annotate the
components and connectors, as the media player example in Chapter 4, to indicate
the concurrency. Anytime a concern cross-cuts your decomposition (see Section 15.2)
there will be trouble expressing it, and concurrency is particularly difficult.

Refinement. Models will become unsynchronized with other models and with code.
Maintaining consistency between them is more difficult when there is a refinement
relationship between models. For example, it is easy to forget to revise the high-level
model of your system when you revise the low-level model. Forgetfulness aside, as
discussed in Section 10.2, you may deliberately allow your various models to become
out-of-date because it is expensive to keep them updated.

It is possible to be sufficiently precise in the refinement map so that you can detect
refinement problems, but it is also prohibitively expensive. In practice, few developers
even sketch the correspondences between high- and a low-level models, though they
may eyeball each to convince themselves that the refinement is OK.
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16.1.3 Effective modeling

Section 6.5 discussed the idea that some people can read models, fewer people can
write syntactically correct models, and fewer still can use models to more effectively
solve problems. As a software developer, building models is a necessary distraction
from building code — necessary because you will have difficulty reasoning about
large and complex systems without models. Two challenges that arise in using models
as a reasoning aid are the choice of details to promote and building predictive models.

Promoting details. Choosing which details to promote to the architectural level is
difficult. The challenge is how to select relevant details for the model while at the
same time keeping the model minimally sufficient. Different developers are likely to
choose different details, which means that some models will be better than others,
yet there is no guidance on how best to choose.

It is difficult to know when your model is precise enough, or detailed enough. In
general, you should make your model precise enough to answer the questions you
ask of it, or sufficient to reduce the risks you perceive. However, this is easier said
than done, because you may not be able to perceive the risk until after you have built
the detailed model.

Prediction. Using architecture models to discover problems in advance is harder, and
requires more effort, than modeling simply to document a design, because small de-
tails can distort predictions. A friend of mine built a model to predict performance
of his web service. However, his performance predictions were substantially wrong
because the actual distribution of requests into his system was burstier than in his
model. Improved architecture modeling technology holds the promise of better pre-
dictions about performance, but producing a sufficiently detailed model for accurate
predictions can be expensive.

Reflection on challenges. All of these challenges can cause trouble on your projects,
but all of them can be overcome too. Despite imperfections in the techniques and
abstractions, you are far better prepared to develop software with an understanding
of architecture than without it.

We now turn our attention to several themes that run through the book: focusing
on quality attributes, solving problems, using constraints as guide rails, and using
standard architecture abstractions.

16.2 Focus on quality attributes

Software architecture encourages a shift in attention toward quality attributes. Main-
stream software developers give most of their attention to a system’s functionality
rather than its quality attributes or extra-functional requirements. But architecture
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has a big impact on which qualities will be easy or hard to achieve, so when choosing
a system’s architecture, you should focus on quality attributes, such as performance,
security, and modifiability.

Usually, any reasonable architecture will support the desired functionality, but
only a carefully chosen architecture will enable the desired qualities. Unfortunately,
it is expensive to change the architecture of even a well-maintained system, so it is
worthwhile to consider quality attribute requirements early to avoid costly architec-
ture mistakes.

Some domains have presumptive architectures that have been shown historically
to be suitable for the desired quality attribute requirements in the domain. By us-
ing a presumptive architecture, a developer may succeed with architecture-indifferent
design, where little attention is paid to architecture. When risks are higher, devel-
opers may use architecture-focused design to ensure that the architecture enables the
required qualities and features. They may even choose to hoist some qualities into the
architecture, such as scalability, so that the development team can focus on building
the functionality instead of the hoisted qualities.

16.3 Solve problems, not just model them

This book advocates attacking complexity and scale by building models. This is the
long way around the commuting diagram (Figure 6.1), but it should help you solve
problems that you cannot solve directly. You should always remember, however, that
the goal is to build a system that solves a problem, not to build models. Models are
not running systems and you cannot eat a picture of a sandwich.

It is possible that your temperament may incline you to believe the problem is
solved when the software is designed, but ensure that you validate your model by
building a prototype or demonstrating it in the real system. To help you remember,
here is a joke that reinforces the importance of validation:

A fireman wakes up in the night to find his kitchen on fire. He pours water
on the fire until it goes out and then he goes back to bed. An engineer
wakes up in the night to find his kitchen on fire. He does some calculations,
pours 2.3 buckets of water on the fire, observes the fire is out, and then he
goes back to bed. A mathematician (software architect?) wakes up in the
night to find his kitchen on fire. He does some calculations, says “Eureka!”
and then he goes back to bed.

This advice is related to other obvious, but often repeated, fallacies from software
engineering, like “the code must be correct because it compiles.” Once you have a
design, building a working system is almost always more difficult than just “turning
the crank.”
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16.4 Use constraints as guide rails

An idea that runs through this book is that you can achieve a desired outcome by
imposing constraints on your architecture. This idea is called architecture-focused
design and you learned how it contrasts with architecture-indifferent design (Section
2.7). You have seen several examples of architecture-focused design:

• In the introduction, you saw how the Rackspace company switched from a
client-server style to a map-reduce style in order to achieve scalability. You
can think of architecture styles as a collection of pre-fabricated constraints with
known benefits and drawbacks (Chapter 14).

• You saw another example of it in the Home Media Player system (Section
4.2), where overall reliability was promoted by running the unreliable COTS
NextGenVideo component in its own process, isolating the main system.

• The Yinzer job advertising and networking system (Section 9.5.10) needed to
send emails but also have good response times to web requests. It used an asyn-
chronous connector (such as a message bus) to queue email messages rather
than waiting for confirmation that they had been sent.

Tradeoffs. Most of the time constraints will involve tradeoffs. The older Rackspace
client-server system could enjoy fresher results and ad hoc querying compared to the
map-reduce system. The Home Media Player system became more complex and pos-
sibly less efficient by introducing concurrent processes. And you can easily imagine
developers grumbling that the event bus in the Yinzer system made their lives more
difficult than a simple method call would.

Guide rails. Constraints are not (or should not be) arbitrary and capricious restric-
tions, but guide rails that ensure that the system goes where you point it. If you are
an enterprise architect, you are neither the designer nor developer of any one system,
so constraints are your only tool to influence the direction of the set of systems.

Analysis. In addition to giving you control over where your system is going, con-
straints can give you the ability to analyze your system. If you have a hundred lines of
unconstrained code, what can it do? Essentially anything. How fast does it run? No
idea. Is it a security risk? Maybe. If the answers to questions like these is important
to you, you could impose constraints to help you answer them. For example, the An-
droid operating system constrains code by restricting its access to system services, so
if code wants to access the internet, it must declare that it does, and users can inspect
these properties before running an application.
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Process sketch. But make no mistake: constraints close off design options. By
choosing to impose a constraint you are saying that the system will not be a certain
way. And if you are not the only developer, you are restricting potentially wonderful
solutions that others may invent. With that warning in mind, consider the following
process sketch for how you might choose to introduce constraints.

1. Start with no constraints.

2. Decide what the system’s goals are. For example, it may need to inter-operate
with other systems, be highly secure, or run fast. These goals will likely overlap
or be the same as your architecture drivers (see Section 9.5.8).

3. Then ask yourself hard questions about how you will accomplish those goals.
How could your system fail to accomplish its goals? Are there constraints that
could guide it to success? How onerous are those constraints? What are the
tradeoffs?

4. Finally, you may decide to impose constraints that promote or guarantee a de-
sired feature, quality, or risk.

You will notice that this process sketch errs on the side of liberty rather than guaran-
tees. If you follow this process, most of the time you will end up choosing to follow
an architectural style because their constraints are relatively mild yet put the project
on an appropriate foundation to achieve its goals. On projects with demanding re-
quirements you may introduce more stringent constraints.

16.5 Use standard architectural abstractions

Developers build large systems and need to communicate about them with other de-
velopers. The language used by mainstream developers covers the most tangible
development artifacts quite well: objects, classes, methods, interfaces, etc. However,
there is great diversity and ambiguity when developers talk about larger chunks. One
developer might call something a module while another calls it a component. And
while design patterns have mostly standardized the vocabulary for talking about ob-
ject patterns, the names of architectural styles are not as consistently used. When two
developers chat at a whiteboard, they may sketch classes and objects that are pretty
close to standard UML, but more often than not they invent notations for communi-
cating architectural ideas.

When developers do not share a common set of architectural abstractions and
notations, the bigger danger is not that they will communicate inefficiently, but that
they do not communicate at all. Their discussions will center on the language they
share, such as objects, rather than the language suited to their architecture discussion.



334 CHAPTER 16. CONCLUSION

Large systems are built using architectural styles and have constraints that span more
than a few objects. Developers who have not embraced architectural abstractions are
at a disadvantage because they will communicate these ideas inefficiently, if at all.

Even before communication starts, developers benefit from architectural abstrac-
tions. Like a coach who watches a game and integrates all the low-level happenings
into a big picture of what is happening, a developer looks at a system and integrates
all the low-level interactions between objects into a big picture of the system’s design.
When developers do not think in terms of architectural abstractions, the big picture
will be revealed more slowly and problems will be less evident. A developer who
lacks architecture abstractions (like styles, components, and connectors) will strug-
gle, both in recognizing those ideas, and in articulating why a proposed change is, or
is not, appropriate.

Architectural abstractions co-exist with older ones. Protocols can still be described
using state machines, and classes can still be described with class diagrams. Architec-
ture abstractions are like a new tool in the toolbox that developers should reach for
when they need to battle scale and complexity. Looking back, you can see that each
decade has introduced new abstractions to combat new difficulties. Sharpening old
tools is always helpful, but is unlikely to overcome the difficulties of the next decade.
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Action specification A (sometimes formal) specification of a method, procedure, or more abstrac-
tion behavior. Often consists of a pre-condition (what must be true for the method to success-
fully run) and a post-condition (what the method guarantees will be true after it completes).
See design by contract.

Agile process A style of software development process characterized by iterative development. See
waterfall process, Extreme Programming, iterative process, agile process, and spiral process.

Allocation element (i.e., UML node or environmental element) Hardware (such as computers) and
geographical locations (such as datacenters) that can host modules and component instances.
UML (Booch, Rumbaugh and Jacobson, 2005) refers to places where software can be de-
ployed as nodes and the SEI authors (Bass, Clements and Kazman, 2003) refer to it as an
environmental element.

Allocation viewtype The viewtype that contains views of elements related to the deployment of
the software onto hardware. It includes deployment diagrams, descriptions of environmental
elements like servers, and descriptions of communication channels like ethernet links. It may
also include geographical elements, so that you can describe two servers in different cities.
See runtime viewtype and module viewtype.

Analogic model In an analogic model, each model element has an analogue in the domain of
interest. A radar screen is an analogic model of some terrain, where blips on the screen cor-
respond to airplanes — they are analogues. Analogic models support analysis only indirectly,
and usually domain knowledge and human reasoning are required. See analytic model.

Analysis paralysis The situation where a developer spends inordinate time analyzing or building
models, and not building a solution.

Analytic model An analytic model directly supports analysis of the domain of interest. Mathemat-
ical equations are examples of analytic models, as are state machines. You could imagine an
analytic model of the airplanes where each is represented by a vector. Mathematics provides
an analytic model to evaluate the vectors, so you could quantitatively answer questions about
collision courses. See analogic model.
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Anonymous instance An instance (such as an object or a component instance) that has not been
given a name. Graphically, it is labeled “: TypeName”. In contrast, a named instance would
have a name preceding the colon.

Application architect Application architects are developers who are responsible for a single appli-
cation. It is possible for them to understand and manage thousands of objects that comprise
their application. Application architects are like movie directors whose daily actions create
the shape of the product.

Application Programming Interface (API) A set of operations that can be performed on a mod-
ule, component, or object. When we refer to API-level operations, we mean that they are not
abstract, and those operations are exactly what would be seen in the programming language.

Architectural style (i.e., architectural pattern). An architectural style is “a specialization of el-
ement and relation types, together with a set of constraints on how they can be used.”
(Clements et al., 2010)

Architecturally-evident coding style A style of programming that encodes additional design in-
tent by providing hints about the system’s architecture. It encourages you to embed hints in
the source code that make the architecture evident to a developer who reads the code. It
follows the model-in-code principle.

Architecture see software architecture.

Architecture description language (ADL) A language used to describe architectures that defines
elements (e.g., components, connectors, modules, ports) and relationships. Examples include
UML, C2, AADL, and Acme.

Architecture drift Architecture drift is the tendency for a system, over time, to violate its initial
design. (Perry and Wolf, 1992)

Architecture driver Quality attribute scenarios or functionality scenarios that are both important to
stakeholders and difficult to achieve. As such, they are the scenarios that you should pay
most attention to when designing the system (Bass, Clements and Kazman, 2003)

Architecture hoisting When following an architecture hoisting approach, developers design the
architecture with the intent of guaranteeing a goal or property of the system. The idea is that
once a goal or property has been hoisted into the architecture, developers should not need
to write any additional code to achieve it. See architecture-focused design and architecture-
indifferent design.

Architecture refactoring A refactoring of a system’s architecture, possibly from one architectural
style to another, or the introduction of consistency (see constraints) where none were present
before.

Architecture-focused design In architecture-focused design, developers are aware of their system’s
software architecture and they deliberately choose it so that their system can achieve its goals.
See architecture-indifferent design and architecture hoisting.
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Architecture-indifferent design In architecture-indifferent design, developers are oblivious to their
system’s architecture and do not consciously choose an architecture to help them reduce risks,
achieve features, or ensure qualities. The developers may simply ignore their architecture,
copy the architecture from their previous project, use the presumptive architecture in their
domain, or follow a corporate standard. See architecture-focused design and architecture hoist-
ing.

Baked-in risks When a process is designed to always address a certain risk, that risk is said to
be baked-in to the process. For example, agile processes address customer rejection risk by
building and delivering the system incrementally.

Big Design Up Front (BDUF) In Big Design Up Front (BDUF), the early weeks or months of a
project are primarily spent designing instead of prototyping or building. It is a pejorative
term coined by people, like agile advocates, who are concerned about analysis paralysis, a
situation where a project spends too much time designing and not enough time building.
BDUF is associated more with waterfall processes than spiral processes.

Binary connector A connector that can be attached to just two components. See N-way connector.

Binding (1) Using bindings, ports on an external component are bound to compatible or identical
ports on internal components. Invariants and quality attribute scenarios on the external
component must be satisfied by the internal components. (2) The binding relationship is
used to show correspondence between parts in pattern and elements in a model using that
pattern.

Boundary model The boundary model is what outsiders can see of the system (or an element
in the system), which includes its behavior, interchange data, and quality attributes. The
boundary is a commitment to an interface but not to implementation details. The boundary
model describes what a user needs to know to understand how a system works. It is an
encapsulated view of the system that hides internal details. When developers change the
internal design, users are undisturbed. See internals model.

Business model A business model describes what a business or organization does and why it does
it. Business models rarely talk about software. Different businesses in the same domain will
have different strategies, capabilities, organizations, processes, and objectives and therefore
different business models. It describes not only facts (which would appear in a domain model)
but also decisions and goals that organizations must make.

Canonical model structure A set of models, ranging from abstract to concrete, that use views to
drill down into the details of each model. It consists of three primary models: the domain
model, the design model, and the code model. The canonical model structure has the most
abstract model (the domain) at the top and the most concrete (the code) at the bottom. The
designation and refinement relationships ensure that the models correspond, yet enable them
to differ in their level of abstraction.

Classification relationship A classification relationship is the same one that exists between classes
and objects in object-oriented programming.

Closed semantics In refinement with closed semantics, the refinement restricts what kinds of new
items can be introduced by listing the kinds of items that will not change. See open semantics.
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Code model The code model describes the system source code. The code model is either the source
code implementation of the system or a model that is equivalent. It could be the actual Java
code or the result of running a code-to-UML tool, but its important feature is that has a
full set of design commitments. Where the design model has an incomplete set of design
commitments, the code model has a complete set, or at least a sufficiently complete set to
execute on a machine. Compare with the domain model and design model. All three are part
of the canonical model structure.

Commercial Off-The-Shelf (COTS) Modules, components, or other source code available from
third parties. This term is often used even if they are open source or from a non-commercial
group.

Communication channel (i.e., connection or environmental element) Hardware that allows alloca-
tion elements to communicate. UML (Booch, Rumbaugh and Jacobson, 2005) refers to the
communication channels between nodes as connections and the SEI authors (Bass, Clements
and Kazman, 2003) refer to them as environmental elements.

Component “Components [are] the principal computation elements and data stores that execute
in a system.” (Clements et al., 2010) Usually refers to a component instance, but could also
refer to a component type. See module.

Component assembly (i.e., component and connector diagram) A component assembly shows a
specific configuration of component, port, and connector instances or types. Their arrange-
ment is the component design and different arrangements will yield different qualities. It
may show bindings between external and internal ports.

Component-Based Development (CBD) Software development whose end-product is loosely-
coupled components to be sold in a component marketplace.

Conceptual model A conceptual model identifies salient features and how they operate. Introduc-
tory physics classes teach Newtonian mechanics, a conceptual model of how physical objects
behave, which includes features like mass and forces.

Connector A connector is a pathway of runtime interaction between two or more components.
This is just slightly different than the definition from (Clements et al., 2010), which states
that a “connector [is] a runtime pathway of interaction between two or more components.”

Constraint See invariant.

System context diagram A component assembly that focuses on the system being designed and
includes all external systems that the system connects to.

Design by contract Bertrand Meyer popularized the concept of design by contract where method
pre- and post-conditions as well as object invariants are inserted into the source code and
checked by automated tools (Meyer, 2000). By relying on a method’s contract, clients can
safely ignore any internal implementation and treat the method or the entire object as a black
box.

Design decision Decisions made by developers during the course of designing the system that
commit the project to a particular design choice or restrict the design space. See invariant.
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Design intent The understanding and intentions of the system’s developers. Design intent is im-
perfectly contained in the source code of a system, forcing developers to infer parts of it.

Design model The design model describes the system you will build, and is largely under your
control. The system to be built appears in the design model. The design model is a partial
set of design commitments. That is, you leave undecided some (usually low-level) details
about how the design will work, deferring them until the code model. The design model
is composed of recursively nested boundary models and internals models. Compare with the
domain model and code model. All three are part of the canonical model structure.

Designation A designation relationship allows you to show correspondences between two do-
mains, for example between the real world and a problem domain model. It identifies that
something from one domain corresponds to something in a second domain.

Documentation package A complete, or mostly complete, written description of a software archi-
tecture.

Domain connector A connector that bridges the domains of the components it connects. When
two components interact, there is often some logic that is dependent on the domain of both
components. By putting this logic into a domain connector, you insulate each of the compo-
nents from knowing unnecessary details about the other.

Domain driven design Domain driven design advocates a embedding the domain model in the
source code (Evans, 2003). It is compatible with the model-in-code principle but goes further
by encouraging an agile development process and discouraging expressing domain models on
paper.

Domain model The domain model describes enduring truths about the domain that are relevant
to your system. In general, the domain is not under your control, so you cannot decide that
weeks have six days or that you have a birthday party every week. The system to be built
does not appear in the domain model. Compare with the design model and code model. All
three are part of the canonical model structure.

Dominant decomposition The organizational system of a system that promotes a single concern.
Problems related to that dominant concern will be easier to solve, but problems related to
other concerns will be harder. For example, if you organize books by their size, then it will
be easy to find the tallest books but harder to find ones by a specific author. This problem
of one concern dominating others is referred to as the tyranny of the dominant decomposition
(Tarr et al., 1999).

Driver See architecture driver.

Dynamic architecture model A model that generalizes all the possible instantaneous configura-
tions (e.g., topology of component instances) of an architecture. Most systems change during
startup and shutdown, but have a long steady-state configuration in between that is modeled
as a static architecture model.

Effective encapsulation Encapsulation where the boundary does not unnecessarily leak abstrac-
tions across its interface. Ultimately, what counts as effective is subjective and requires good
judgment.
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Encapsulation "[T]he process of compartmentalizing the elements of an abstraction that constitute
its structure and behavior; encapsulation serves to separate the contractual interface of an
abstraction and its implementation." (Booch et al., 2007)

Engineering risk A risk related to the analysis, design, and implementation of the product. See
project management risk.

Enterprise architect Architects who are responsible for many applications, who do not control
the functionality of any one application, and who instead design an ecosystem inside which
individual applications contribute to the overall enterprise. Enterprise architects are like
movie producers in that they influence the outcome only indirectly.

Enterprise architecture The software architecture of an organization that spans multiple applica-
tions (systems).

Environmental element (i.e., UML node) Hardware with the primary purpose of running software
that communicates via communication channels.

Event bus An N-way publish-subscribe connector.

Evolutionary design Evolutionary design “means that the design of the system grows as the system
is implemented” (Fowler, 2004). Often paired with refactoring. Compare with planned design.

Extensional element Extensional elements are enumerated, such as “The system is composed of
a client, an order processor, and an order storage components.” Examples include modules,
components, connectors, ports, and component assemblies. See intensional element.

Extreme Programming_(XP) A specialization of an iterative and agile software development pro-
cess, so it contains multiple iterations (Beck and Andres, 2004). It suggests avoiding up-
front design work, though some projects add an iteration zero (Schuh, 2004), in which no
customer-visible functionality is delivered. It guides developers to apply evolutionary design
exclusively, though some projects modify it to incorporate a small amount of planned design.
Each iteration is prioritized by the customer’s valuation of features, not risks. Compare with
waterfall process, iterative process, agile process, and spiral process.

Framework (i.e., software framework or object-oriented framework) A form of software reuse
characterized by inversion of control. Frameworks, in contrast with libraries, are an effective
means of sharing or reusing a software architecture.

Functionality scenario Functionality scenarios, also called simply scenarios, express a series of
events that cause changes to a model. A scenario describes a single possible path rather than
generalizing many paths. See use case.

Generalization The relationship between a more general type and a more specific type, such as
furniture and chair.

Goal connector A goal connector has an assigned goal, or objective, that it is responsible for ac-
complishing. A developer who builds a goal connector must avoid failure by looking into the
problem, discovering possible failure cases, and ensuring that the connector handles them.
Goal connectors are usually complex as they have real domain work to do, and are responsi-
ble for seeing it completed. See micromanaged connector.
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Information model A set of types and their definitions that describes the things that exist in the
domain. It also describes the relationships between those types. It can be drawn textually,
often as a table, or graphically, often using UML class diagram syntax.

Information Technology (IT) A specialty inside software design that focuses on “the study, design,
development, implementation, support or management of computer-based information sys-
tems, particularly software applications and computer hardware.” (Information Technology
Association of America).

Intensional element Intensional elements are those that are universally quantified, such as “All
filters can communicate via pipes.” Examples include styles, invariants, responsibility alloca-
tions, design decisions, rationale, protocols, and quality attributes. See extensional element.

Internals model An internals model is a refinement of a boundary model. Both are views of the
design model but they differ in the details they reveal. Anything that is true in the boundary
model must be true in the internals model. Any commitments made in the boundary model
(the number and type of ports, QA scenarios) must be upheld in the internals model. See
boundary model.

Invariant Approximately the same as a constraint. Can be expressed as a predicate that is always
true with respect to the system or design. Sometimes divided into static invariants (or rep-
resentation invariants) that deal with static structures and dynamic invariants that deal with
behaviors. The term invariant is more often used to apply to source code or data structures.
When referring to systems, the term constraint is more often used.

Iteration A period of time in an iterative process where all software development activities can
take place.

Iterative process An iterative development process builds the system in multiple work blocks,
called iterations (Larman and Basili, 2003). With each iteration, developers are allowed
to rework existing parts of the system, so it is not just built incrementally. Iterative devel-
opment optionally has up-front design work but it does not impose a prioritization across
the iterations, nor does it give guidance on the nature of design work. See waterfall process,
Extreme Programming, agile process, and spiral process.

Layer A layered system organizes its modules such that lower layers act as virtual machines to
higher layers. Dependencies are (almost) exclusively downward, where higher layers can use
and depend on lower layers but not the reverse.

Link An edge between two objects in a snapshot (or instance diagram).

Master model A model that contains a complete set of details necessary to project out the views
you build.

Method signature A specification of a method or procedure that usually includes the method
name, its return type, and the types of its parameters. It can be augmented with pre-
conditions and post-conditions to form an action specification.

Micromanaged connector An connector that simply does a job you assign to it. If it fails that
is because you did not supervise it sufficiently. Its job is only to do what you told it to do.
Micromanaged connectors are simple connectors. See goal connector.
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Minimal planned design (i.e., Little Design Up Front) In between evolutionary design and planned
design is minimal planned design (Martin, 2009). Advocates of minimal planned design worry
that they might design themselves into a corner if they did all evolutionary design, but they
also worry that all planned design is difficult and likely to get things wrong.

Model A symbolic representation of a system that contains only selected details.

Model-code gap The difference between how we express the solution in the design model and
how we express it in the source code. See intensional element and extensional element.

Model-in-code principle Expressing a model in the system’s code helps comprehension and evo-
lution. A corollary of this principle is that expressing a model in code necessarily involves
doing more work than is strictly necessary for the solution to work.

Module (i.e., package) A collection of implementation artifacts, such as source code (classes, func-
tions, procedures, rules, etc.), configuration files, and database schema definitions. Modules
can group together related code, revealing an interface but hiding the implementation.

Module viewtype The viewtype that contains views of the elements you can see at compile-time.
It includes artifacts like source code and configuration files. Definitions of component types,
connector types, and port types are also in the module viewtype, as are definitions of classes
and interfaces. See runtime viewtype and allocation viewtype.

N-way connector A connector that can join one to many components, usually three or more, such
as an event bus. See binary connector.

Navigation The idea that you can traverse from node to node in a model across edges. For example,
you can navigate across a UML class diagram from class to class across the associations. See
Object Constraint Language.

Object Constraint Language (OCL) A precise language for expressing invariants and constraints
over UML models. See navigation.

Open semantics In refinement with open semantics, the refinement can introduce whatever new
items it pleases. See closed semantics.

Parnas module A modularization technique where you ensure that the details likely to change are
hidden inside the module, and that changes to those details will not influence the module’s
interface. A Parnas module hides a secret to minimize coupling, rather than just grouping
together related code. See encapsulation and effective encapsulation.

Partition (1) As a noun, a relationship between parts and a whole such that the parts combine to
form exactly the whole, no more and no less. (2) As a verb, a loose synonym with “divide” or
“decompose.” Or as in (1), the division of a system into disjoint pieces.

Pattern A pattern is a reusable solution to a recurring problem (Gamma et al., 1995).

Planned design (i.e., up-front design) A kind of software development process where design is
done mostly or completely before implementation begins. See evolutionary design and evolu-
tionary design.
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Port All communication in or out of a component is done via ports on the component. All of
the publicly available methods that a component supports, and all of the public events it
responds to, will be specified in its ports. There is no necessary connection between ports on
components and ports in an operating system.

Pre-condition & Post-condition See action specification.

Presumptive architecture A software architecture (or, more carefully, a family of architectures)
that is dominant in a particular domain. Rather than justifying their choice to use it, develop-
ers in that domain may have to justify a choice that differs from the presumptive architecture.
For example, a 3-Tier architecture is a presumptive architecture in many Information Tech-
nology (IT) groups. See reference architecture.

Projection See view.

Project management risk Risks related to schedules, sequencing of work, delivery, team size, ge-
ography, etc. See engineering risk.

Property Model elements can be annotated with properties that elaborate details about the ele-
ment. For example, a connector can be annotated with a property describing its protocol or
its throughput.

Prototype (i.e., architectural spike or proof of concept) An implementation intended to reduce
risk by demonstrating feasibility, evaluating properties, or similar. Not used pejoratively (i.e.,
“throwaway code”) in this book.

Prototypical risk Each domain has a set of prototypical risks that is different from other domains.
For example, Systems projects usually worry more about performance than IT projects.

Quality attribute (i.e., QA’s, extra-functional requirements, or the “-ities”) A quality attribute is a
kind of extra-functional requirement, such as performance, security, scalability, modifiability,
or reliability.

Quality attribute scenario (i.e., QA scenario) A concise description of an extra-functional require-
ment, consisting of a source, stimulus, environment, artifact, response, and response mea-
sure.

Rational architecture choice Rational architecture choices are ones where your tradeoffs align
with your quality attribute priorities. They often follow this template: Since <x> is a priority,
we chose design <y>, and accepted downside <z>.

Rational Unified Process (RUP) A meta-process that can be tailored, for example into an iterative,
spiral, or waterfall process.

Refactoring A code or design transformation that improves its structure, or other quality, while
preserving its behavior. See architecture refactoring. (Fowler, 1999)

Reference architecture A specification that describes an prescribed architectural solution to a
problem. Reference architectures are often proposed by vendors or experts as the canonical
architectures for given problems. See presumptive architecture. (Bass, Clements and Kazman,
2003)
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Refinement Refinement is a relationship between a low-detail and a high-detail model of the same
thing.

Responsibility-driven design In contrast to thinking about data and algorithms, responsibility-
driven design focuses on roles and responsibilities.

Risk In this book, risk is the perceived probability of failure times the perceived impact.

Risk-driven model The risk-driven model of software architecture guides developers to apply a
minimal set of architecture techniques to reduce their most pressing risks. It suggests a
relentless questioning process: “What are my risks? What are the best techniques to reduce
them? Is the risk mitigated and can I start coding?” The key element of the risk-driven model
is the promotion of risk to prominence.

Role (1) In a UML class diagram, the name on the end of an association. (2) The typed end of a
connector, roughly equivalent to a port on a component. (3) In a pattern, a part that can be
bound or substituted for a concrete part in the implementation.

Runtime viewtype (i.e., component & connector viewtype) The viewtype that contains views of
elements that you can see at runtime. It includes artifacts like functionality scenarios, re-
sponsibility lists, and the component assemblies. Instances of components, connectors, and
ports are in the runtime viewtype, as are objects (class instances). See module viewtype and
allocation viewtype.

Scale When referring to software, scale usually refers to the absolute size of a system, often counted
in lines of code. Scalability (a quality attribute) refers to the ability of a system to handle
a greater load than it currently does, such as running on larger hardware (as in vertical
scalability) or more copies of the hardware (horizontal scalability). Somewhat confusingly,
the question, “Will it scale?” refers to a system’s scalability, not its lines of code.

Scenario Usually refers to a functionality scenario but could also refer to a quality attribute scenario.

Snapshot (i.e., instance diagram) A diagram showing objects or component instances at an instant
in time.

Software architecture This is the standard definition from the SEI: “The software architecture
of a computing system is the set of structures needed to reason about the system, which
comprise software elements, relations among them and externally visible properties of both.”
(Clements et al., 2010)

Software Engineering Institute (SEI) A federally funded research and development center whose
mission is to “advance software engineering and related disciplines to ensure the development
and operation of systems with predictable and improved cost, schedule, and quality.”

Source code The programming language statements typed by developers that appear cryptic to the
uninitiated.

Spanning viewtype The viewtype that contains views that cross over between two or more view-
types. An example of a tradeoff that spans viewtypes is: you decide to denormalize a database
schema (which would be described in the module viewtype) in order to achieve greater trans-
action throughput (which would be described in the runtime viewtype), so you describe that
tradeoff in the spanning viewtype.
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Spiral process The spiral process (Boehm, 1988) is a kind of iterative development, so it has many
iterations, yet it is often described as having no up-front design work. Iterations are priori-
tized by risk, with the first iteration handling the riskiest parts of a project. The spiral model
handles both management and engineering risks. For example, it may address “personnel
shortfalls” as a risk. The spiral process gives no guidance on the nature of design work, or on
which architecture and design techniques to use. See waterfall process, Extreme Programming,
iterative process, and agile process.

Stakeholder A customer or other person who has an interest in the features or success of a system.

Static architecture model A model of a system that shows it at an instant in time or in its steady
state configuration. See dynamic architecture model.

Story at many levels A way of structuring your software such that each level of nesting tells a
story about how those parts interact. A developer who was unfamiliar with the system could
be dropped in at any level and still make sense of it rather than being swamped. Its primary
benefit is cognitive, not technical.

Subject Matter Expert (SME) A domain expert, sometimes a customer.

System context diagram A component assembly diagram in the top-level boundary model that in-
cludes the system (as a component) and its connections (as connectors) to external systems.
See use case diagram.

Tactic In Attribute Driven Design, a tactic is a kind of pattern that is bigger than a design pattern
and smaller than an architectural style. Examples of tactics include: Ping/Echo, Active Re-
dundancy, Runtime Registration, Authenticate Users, and Intrusion Detection (Bass, Clements
and Kazman, 2003).

Technical debt The accumulated misalignment of code with respect to the current understanding
of the problem (Cunningham, 1992; Fowler, 2009)

Technique A software engineering activity performed by developers. Techniques exist on a spec-
trum from pure analyses, like calculating stresses, to pure solutions, like using a flying but-
tress on a cathedral. Other software architecture and design books have inventoried tech-
niques on the solution-end of the spectrum, and call these techniques tactics (Bass, Clements
and Kazman, 2003) or patterns (Schmidt et al., 2000; Gamma et al., 1995). This book focuses
on techniques that are on the analysis-end of the spectrum, procedural, and independent of
the problem domain.

Top-Down Design Top-down design is the process of refining a high-level specification of an el-
ement (component, module, etc.) into a detailed design by decomposing the element into
smaller pieces and specifying those pieces by allocating responsibilities.

Top-level boundary model The top-level boundary model is the single, topmost encapsulated
view of the design model. It can be refined into an internals model to show internal, non-
encapsulated design details.

Tradeoff Sometimes getting more of one thing entails getting less of something else. Tradeoffs can
exist between quality attributes, such as adding security can trade off against usability.
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Two-level scenarios A functionality scenario that has been elaborated to show an additional level
of internal messages, such as between the components in an internals model.

Ubiquitous language A common language shared by developers and domain experts, as opposed
to the developers using one term and the domain experts using different one for the same
concept. See domain driven design.

Unified Modeling Language (UML) A common modeling language suited to object-oriented de-
sign and software architecture.

Use case Use cases are largely equivalent to functionality scenarios, but there are some important
differences. Use cases are activities that are high-level and visible to the users of the system.
Use cases are often defined to be accomplishing a goal of an actor outside the system, so
internal system activities would not count as use cases. Where functionality scenarios are
a single trace of behavior, use cases can include variation steps that allow them to describe
multiple traces.

Use case diagram A UML diagram showing actors, the system, and use cases.

View (i.e., projection) A view shows a defined subset of a model’s details, possibly with a transfor-
mation.

Viewpoint The view of a system from a single perspective, such as the view of a single stakeholder.
Used in the IEEE definition of software architecture. Viewpoints are used in the views-as-
requirements approach, rather than the master model approach to views.

Viewtype A set or category of views that can be easily reconciled with each other (Clements et al.,
2010). See module viewtype, runtime viewtype, and allocation viewtype.

Waterfall process The waterfall process (Royce, 1970) proceeds from beginning to end as a single
long block of work which delivers the entire project. It assumes planned design work that
is done in its analysis and design phases. These precede the construction phase, which can
be considered a single iteration. With just one iteration, work cannot be prioritized across
iterations, but it may be built incrementally within the construction phase. See Extreme
Programming, iterative process, agile process, and spiral process.

XP See Extreme Programming.

Yinzer A slang term for someone from Pittsburgh, home of Carnegie Mellon University, and is
derived from yinz, which is Pittsburgh dialect equivalent to y’all, the plural form of you.
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