

Essential Software Architecture

.

Ian Gorton

Essential
Software
Architecture
Second Edition

Ian Gorton
Laboratory Fellow
Pacific Northwest National Laboratory
PO Box 999
MSIN: K7-90
Richland, WA 99352
USA
ian.gorton@pnl.gov

ACM Computing Classification (1998): D.2

ISBN 978-3-642-19175-6 e-ISBN 978-3-642-19176-3
DOI 10.1007/978-3-642-19176-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926871

Springer-Verlag Berlin Heidelberg 2006, 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the second edition of Essential Software Architecture. It is 5 years

since the first edition was published, and in the software architecture world, 5 years

is a long time. Hence this updated version, with refreshed chapters to capture new

developments in methods and technologies, and to relate relevant experiences from

practise. There’s new material covering enterprise architecture, agile development,

enterprise service bus technologies and RESTful Web services. All chapters have

an updated and more extensive list of recommended reading, capturing many of the

best new books, papers, web sites and blogs that I know of.

Most notably, the completely new Chap. 10 provides a case study on the design

of the MeDICi technology, which extends an open source enterprise service bus

with a component-based programming model. The MeDICi technology is open

source and freely downloadable (http://www.medici.pnl.gov), making it a highly

suitable tool for teaching the advanced concepts of middleware and architecture

described in this text.

At its heart however, this remains a book that aims to succinctly impart a broad

sweep of software architecture knowledge relating to systems built from main-

stream middleware technologies. This includes a large, diverse spectrum of sys-

tems, ranging from Web-based ecommerce sites to scientific data management and

high performance financial data analysis systems.

Motivation

What hasn’t changed in the last 5 years is that many projects I work with or review

lack an explicit notion of an architectural design. Functional requirements are

usually captured using traditional or agile techniques, agreed with stakeholders,

and addressed through highly iterative or traditional waterfall methods. But the

architectural issues, the “how” the application achieves its purpose, the “what”

happens when things change and evolve or fail, are frequently implicit (this means

they are in somebody’s head, maybe) at best. At worst, they are simply not addressed

in any way that can be described in terms other than accidental. Frequently, when I

ask for an overview of the application architecture and the driving nonfunctional

v

requirements at the first technical meeting, people start drawing on a whiteboard. Or

they show me code and dive into the iternals of the implementation based around

their favorite, trendy technology. Either of these is rarely a good sign.

The problems and risks of poor architectural practices are well known and

documented within the software engineering profession. A large body of excellent

architectural knowledge is captured in broadly accessible books, journals and

reports from members of the Software Engineering Institute (SEI), Siemens and

various other renowned industrial and academic institutions.

While the focus of much of this literature is highly technical systems such as

avionics, flight simulation, and telecommunications switching, this book leans

more to the mainstream world of software applications. In a sense, it bridges the

gap between the needs of the vast majority of software professionals and the current

body of knowledge in software architecture. Specifically:

l It provides clear and concise discussions about the issues, techniques and

methods that are at the heart of sound architectural practices.
l It describes and analyzes the general purpose component and middleware tech-

nologies that support many of the fundamental architectural patterns used in

applications.
l It looks forward to how changes in technologies and practices may affect the

next generation of business information systems.
l It uses familiar information systems as examples, taken from the author’s

experiences in banking, e-commerce and government information systems.
l It provides many pointers and references to existing work on software architecture.

If you work as an architect or senior designer, or you want to 1 day, this book

should be of value to you. And if you’re a student who is studying software

engineering and need an overview of the field of software architecture, this book

should be an approachable and useful first source of information. It certainly won’t

tell you everything you need to know – that will take a lot more than can be

included in a book of such modest length. But it aims to convey the essence of

architectural thinking, practices and supporting technologies, and to position the

reader to delve more deeply into areas that are pertinent to their professional life

and interests.

Outline

The book is structured into three basic sections. The first is introductory in nature,

and approachable by a relatively nontechnical reader wanting an overview of soft-

ware architecture.

The second section is the most technical in nature. It describes the essential skills

and technical knowledge that an IT architect needs.

The third is forward looking. Six chapters each introduce an emerging area

of software practice or technology. These are suitable for existing architects and

vi Preface

designers, as well as people who’ve read the first two sections, and who wish to gain

insights into the future influences on their profession.

More specifically:

l Chapters 1–3: These chapters provide the introductory material for the rest of

the book, and the area of software architecture itself. Chapter 1 discusses the key

elements of software architecture, and describes the roles of a software architect.

Chapter 2 introduces the requirements for a case study problem, a design for

which is presented in Chap. 9. This demonstrates the type of problem and

associated description that a software architect typically works on. Chapter 3

analyzes the elements of some key quality attributes like scalability, perfor-

mance and availability. Architects spend a lot of time addressing the quality

attribute requirements for applications. It’s therefore essential that these quality

attributes are well understood, as they are fundamental elements of the knowl-

edge of an architect.
l Chapters 4–10: These chapters are the technical backbone of the book. Chapter 4

introduces a range of fundamental middleware technologies that architects com-

monly leverage in application solutions. Chapter 5 is devoted to describing Web

services, including both SOAP and REST-based approaches. Chapter 6 builds on

the previous chapters to explain advanced middleware platforms such as enter-

prise service bus technologies. Chapter 7 presents a three stage iterative software

architecture process that can be tailored to be as agile as a project requires.

It describes the essential tasks and documents that involve an architect. Chapter 8

discusses architecture documentation, and focuses on the new notations available

in the UML version 2.0. Chapter 9 brings together the information in the first

6 chapters, showing how middleware technologies can be used to address the

quality attribute requirements for the case study. It also demonstrates the use of

the documentation template described in Chap. 8 for describing an application

architecture. Chapter 10 provides another practical case study describing the

design of the open source MeDICi Integration Framework, which is a specialized

API for building applications structured as pipelines of components.
l Chapters 11–15: These chapters each focus on an emerging technique or tech-

nology that will likely influence the futures of software architects. These include

software product lines, model-driven architecture, aspect-oriented architecture

and the Semantic Web. Each chapter introduces the essential elements of the

method or technology, describes the state-of-the-art and speculates about how

increasing adoption is likely to affect the required skills and practices of a

software architect. Each chapter also relates its approach to an extension of the

ICDE case study in Chap. 9.

Richland, WA, USA Ian Gorton

December 2010

Preface vii

.

Acknowledgments

First, thanks to the chapter contributors who have helped provide the content on

software product lines (Mark Staples), aspect-oriented programming (Jenny Liu),

model-driven development (Liming Zhu), Web services (Paul Greenfield) and the

Semantic Web (Judi Thomson). Adam Wynne also coauthored the chapter on

MeDICi. Your collective efforts and patience are greatly appreciated.

Contact details for the contributing authors are as follows:

Dr Mark Staples, National ICT Australia, email: mark.staples@nicta.com.au

Dr Liming Zhu, National ICT Australia, email: liming.zhu@nicta.com.au

Dr Yan Liu, Pacific Northwest National Lab, USA, email: jenny.liu@nicta.com.au

Adam Wynne, Pacific Northwest National Lab, USA, email: adam.wynne@

pnl.gov

Paul Greenfield, School of IT, CSIRO, Australia, email: paul.greenfield@csiro.au

Dr Judi McCuaig, University of Guelph, Canada, email: judi@cis.uguelph.ca

I’d also like to thank everyone at Springer who has helped make this book a

reality, especially the editor, Ralf Gerstner.

I’d also like to acknowledge the many talented software architects, engineers

and researchers who I’ve worked closely with recently and/or who have helped

shape my thinking and experience through long and entertaining geeky discussions.

In no particular order these are Anna Liu, Paul Greenfield, Shiping Chen, Paul

Brebner, Jenny Liu, John Colton, Karen Schchardt, Gary Black, Dave Thurman,

Jereme Haack, Sven Overhage, John Grundy, Muhammad Ali Babar, Justin

Almquist, Rik Littlefield, Kevin Dorow, Steffen Becker, Ranata Johnson, Len

Bass, Lei Hu, Jim Thomas, Deb Gracio, Nihar Trivedi, Paula Cowley, Jim Webber,

Adrienne Andrew, Dan Adams, Dean Kuo, John Hoskins, Shuping Ran, Doug

Palmer, Nick Cramer, Liming Zhu, Ralf Reussner,Mark Hoza, Shijian Lu, Andrew

Cowell, Tariq Al Naeem, Wendy Cowley and Alan Fekete.

ix

.

Contents

1 Understanding Software Architecture . 1

1.1 What is Software Architecture? . 1

1.2 Definitions of Software Architecture . 2

1.2.1 Architecture Defines Structure . 3

1.2.2 Architecture Specifies Component Communication 4

1.3 Architecture Addresses Nonfunctional Requirements 5

1.3.1 Architecture Is an Abstraction . 6

1.3.2 Architecture Views . 7

1.4 What Does a Software Architect Do? . 8

1.5 Architectures and Technologies . 9

1.6 Architect Title Soup . 11

1.7 Summary . 12

1.8 Further Reading . 13

1.8.1 General Architecture . 13

1.8.2 Architecture Requirements . 13

1.8.3 Architecture Patterns . 14

1.8.4 Technology Comparisons . 14

1.8.5 Enterprise Architecture . 15

2 Introducing the Case Study . 17

2.1 Overview . 17

2.2 The ICDE System . 17

2.3 Project Context . 19

2.4 Business Goals . 21

2.5 Constraints . 22

2.6 Summary . 22

3 Software Quality Attributes . 23

3.1 Quality Attributes . 23

3.2 Performance . 24

3.2.1 Throughput . 24

3.2.2 Response Time . 25

xi

3.2.3 Deadlines . 25

3.2.4 Performance for the ICDE System . 26

3.3 Scalability . 27

3.3.1 Request Load . 27

3.3.2 Simultaneous Connections . 29

3.3.3 Data Size . 29

3.3.4 Deployment . 30

3.3.5 Some Thoughts on Scalability . 30

3.3.6 Scalability for the ICDE Application . 30

3.4 Modifiability . 30

3.4.1 Modifiability for the ICDE Application . 33

3.5 Security . 33

3.5.1 Security for the ICDE Application . 34

3.6 Availability . 34

3.6.1 Availability for the ICDE Application . 35

3.7 Integration . 35

3.7.1 Integration for the ICDE Application . 36

3.8 Other Quality Attributes . 36

3.9 Design Trade-Offs . 37

3.10 Summary . 37

3.11 Further Reading . 38

4 An Introduction to Middleware Architectures

and Technologies . 39

4.1 Introduction . 39

4.2 Middleware Technology Classification . 40

4.3 Distributed Objects . 41

4.4 Message-Oriented Middleware . 43

4.4.1 MOM Basics . 44

4.4.2 Exploiting MOM Advanced Features . 45

4.4.3 Publish–Subscribe . 50

4.5 Application Servers . 54

4.5.1 Enterprise JavaBeans . 55

4.5.2 EJB Component Model . 56

4.5.3 Stateless Session Bean Programming Example 57

4.5.4 Message-Driven Bean Programming Example 58

4.5.5 Responsibilities of the EJB Container . 59

4.5.6 Some Thoughts . 60

4.6 Summary . 61

4.7 Further Reading . 62

4.7.1 CORBA . 62

4.7.2 Message-Oriented Middleware . 62

4.7.3 Application Servers . 63

xii Contents

5 Service-Oriented Architectures and Technologies . 65

5.1 Background . 65

5.2 Service-Oriented Systems . 66

5.2.1 Boundaries Are Explicit . 68

5.2.2 Services Are Autonomous . 69

5.2.3 Share Schemas and Contracts, Not Implementations 69

5.2.4 Service Compatibility Is Based on Policy . 70

5.3 Web Services . 71

5.4 SOAP and Messaging . 73

5.5 UDDI, WSDL, and Metadata . 74

5.6 Security, Transactions, and Reliability . 77

5.7 RESTful Web Services . 78

5.8 Conclusion and Further Reading . 79

6 Advanced Middleware Technologies . 81

6.1 Introduction . 81

6.2 Message Brokers . 81

6.3 Business Process Orchestration . 87

6.4 Integration Architecture Issues . 91

6.5 What Is an Enterprise Service Bus . 95

6.6 Further Reading . 95

7 A Software Architecture Process . 97

7.1 Process Outline . 97

7.1.1 Determine Architectural Requirements . 98

7.1.2 Identifying Architecture Requirements . 98

7.1.3 Prioritizing Architecture Requirements . 99

7.2 Architecture Design . 101

7.2.1 Choosing the Architecture Framework . 102

7.2.2 Allocate Components . 108

7.3 Validation . 110

7.3.1 Using Scenarios . 111

7.3.2 Prototyping . 113

7.4 Summary and Further Reading . 114

8 Documenting a Software Architecture . 117

8.1 Introduction . 117

8.2 What to Document . 118

8.3 UML 2.0 . 119

8.4 Architecture Views . 120

8.5 More on Component Diagrams . 123

8.6 Architecture Documentation Template . 126

8.7 Summary and Further Reading . 127

Contents xiii

9 Case Study Design . 129

9.1 Overview . 129

9.2 ICDE Technical Issues . 129

9.2.1 Large Data . 129

9.2.2 Notification . 131

9.2.3 Data Abstraction . 131

9.2.4 Platform and Distribution Issues . 131

9.2.5 API Issues . 132

9.2.6 Discussion . 133

9.3 ICDE Architecture Requirements . 133

9.3.1 Overview of Key Objectives . 133

9.3.2 Architecture Use Cases . 134

9.3.3 Stakeholder Architecture Requirements . 134

9.3.4 Constraints . 136

9.3.5 Nonfunctional Requirements . 136

9.3.6 Risks . 137

9.4 ICDE Solution . 137

9.4.1 Architecture Patterns . 137

9.4.2 Architecture Overview . 138

9.4.3 Structural Views . 139

9.4.4 Behavioral Views . 142

9.4.5 Implementation Issues . 145

9.5 Architecture Analysis . 145

9.5.1 Scenario Analysis . 145

9.5.2 Risks . 146

9.6 Summary . 146

10 Middleware Case Study: MeDICi . 147

10.1 MeDICi Background . 147

10.2 MeDICi Hello World . 148

10.3 Implementing Modules . 151

10.3.1 MifProcessor . 151

10.3.2 MifObjectProcessor . 151

10.3.3 MifMessageProcessor . 152

10.3.4 Module Properties . 152

10.4 Endpoints and Transports . 153

10.4.1 Connectors . 153

10.4.2 Supported Transports . 154

10.5 MeDICi Example . 157

10.5.1 Initialize Pipeline . 158

10.5.2 Chat Component . 159

10.5.3 Implementation code . 161

10.6 Component Builder . 161

10.7 Summary . 163

10.8 Further Reading . 163

xiv Contents

11 Looking Forward . 165

11.1 Introduction . 165

11.2 The Challenges of Complexity . 165

11.2.1 Business Process Complexity . 166

11.3 Agility . 167

11.4 Reduced Costs . 168

11.5 What Next . 169

12 The Semantic Web . 171

12.1 ICDE and the Semantic Web . 171

12.2 Automated, Distributed Integration and Collaboration 172

12.3 The Semantic Web . 173

12.4 Creating and Using Metadata for the Semantic Web 174

12.5 Putting Semantics in the Web . 176

12.6 Semantics for ICDE . 178

12.7 Semantic Web Services . 180

12.8 Continued Optimism . 181

12.9 Further Reading . 182

13 Aspect Oriented Architectures . 185

13.1 Aspects for ICDE Development . 185

13.2 Introduction to Aspect-Oriented Programming 186

13.2.1 Crosscutting Concerns . 186

13.2.2 Managing Concerns with Aspects . 187

13.2.3 AOP Syntax and Programming Model . 188

13.2.4 Weaving . 189

13.3 Example of a Cache Aspect . 190

13.4 Aspect-Oriented Architectures . 191

13.5 Architectural Aspects and Middleware . 192

13.6 State-of-the-Art . 193

13.6.1 Aspect Oriented Modeling in UML . 193

13.6.2 AOP Tools . 193

13.6.3 Annotations and AOP . 194

13.7 Performance Monitoring of ICDE with AspectWerkz 195

13.8 Conclusions . 197

13.9 Further Reading . 198

14 Model-Driven Architecture . 201

14.1 Model-Driven Development for ICDE . 201

14.2 What is MDA? . 203

14.3 Why MDA? . 205

14.3.1 Portability . 205

14.3.2 Interoperability . 206

14.3.3 Reusability . 207

Contents xv

14.4 State-of-Art Practices and Tools . 208

14.4.1 AndroMDA . 208

14.4.2 ArcStyler . 209

14.4.3 Eclipse Modeling Framework . 209

14.5 MDA and Software Architecture . 210

14.5.1 MDA and Nonfunctional Requirements 211

14.5.2 Model Transformation and Software Architecture 211

14.5.3 SOA and MDA . 212

14.5.4 Analytical Models are Models Too . 212

14.6 MDA for ICDE Capacity Planning . 214

14.7 Summary and Further Reading . 216

15 Software Product Lines . 219

15.1 Product Lines for ICDE . 219

15.2 Software Product Lines . 220

15.2.1 Benefiting from SPL Development . 222

15.2.2 Product Lines for ICDE . 223

15.3 Product Line Architecture . 223

15.3.1 Find and Understand Software . 224

15.3.2 Bring Software into the Development Context 225

15.3.3 Invoke Software . 225

15.3.4 Software Configuration Management for Reuse 225

15.4 Variation Mechanisms . 227

15.4.1 Architecture-Level Variation Points . 227

15.4.2 Design-Level Variation . 227

15.4.3 File-Level Variation . 228

15.4.4 Variation by Software Configuration Management 228

15.4.5 Product Line Architecture for ICDE . 228

15.5 Adopting Software Product Line Development 229

15.5.1 Product Line Adoption Practice Areas . 231

15.5.2 Product Line Adoption for ICDE . 231

15.6 Ongoing Software Product Line Development 232

15.6.1 Change Control . 232

15.6.2 Architectural Evolution for SPL Development 233

15.6.3 Product Line Development Practice Areas 234

15.6.4 Product Lines with ICDE . 234

15.7 Conclusions . 235

15.8 Further Reading . 236

Index . 239

xvi Contents

.

Chapter 1

Understanding Software Architecture

1.1 What is Software Architecture?

The last 15 years have seen a tremendous rise in the prominence of a software

engineering subdiscipline known as software architecture. Technical Architect and
Chief Architect are job titles that now abound in the software industry. There’s an

International Association of Software Architects,1 and even a certain well-known

wealthiest geek on earth used to have “architect” in his job title in his prime. It can’t

be a bad gig, then?

I have a sneaking suspicion that “architecture” is one of the most overused and

least understood terms in professional software development circles. I hear it

regularly misused in such diverse forums as project reviews and discussions,

academic paper presentations at conferences and product pitches. You know a

term is gradually becoming vacuous when it becomes part of the vernacular of

the software industry sales force.

This book is about software architecture. In particular it’s about the key design

and technology issues to consider when building server-side systems that process

multiple, simultaneous requests from users and/or other software systems. Its aim is

to concisely describe the essential elements of knowledge and key skills that are

required to be a software architect in the software and information technology (IT)

industry. Conciseness is a key objective. For this reason, by no means everything an

architect needs to know will be covered. If you want or need to know more, each

chapter will point you to additional worthy and useful resources that can lead to far

greater illumination.

So, without further ado, let’s try and figure out what, at least I think, software

architecture really is, and importantly, isn’t. The remainder of this chapter will

address this question, as well as briefly introducing the major tasks of an architect,

and the relationship between architecture and technology in IT applications.

1http://www.iasahome.org/web/home/home

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_1, # Springer-Verlag Berlin Heidelberg 2011

1

1.2 Definitions of Software Architecture

Trying to define a term such as software architecture is always a potentially

dangerous activity. There really is no widely accepted definition by the industry.

To understand the diversity in views, have a browse through the list maintained by

the Software Engineering Institute.2 There’s a lot. Reading these reminds me of an

anonymous quote I heard on a satirical radio program recently, which went some-

thing along the lines of “the reason academic debate is so vigorous is that there is so

little at stake”.

I’ve no intention of adding to this debate. Instead, let’s examine three definitions.

As an IEEE member, I of course naturally start with the definition adopted by my

professional body:

Architecture is defined by the recommended practice as the fundamental organization of a

system, embodied in its components, their relationships to each other and the environment,

and the principles governing its design and evolution.

[ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of
Software-Intensive Systems]

This lays the foundations for an understanding of the discipline. Architecture

captures system structure in terms of components and how they interact. It also

defines system-wide design rules and considers how a system may change.

Next, it’s always worth getting the latest perspective from some of the leading

thinkers in the field.

The software architecture of a program or computing system is the structure or structures of

the system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them.

[L.Bass, P.Clements, R.Kazman, Software Architecture in Practice (2nd edition),
Addison-Wesley 2003]

This builds somewhat on the above ANSI/IEEE definition, especially as it makes

the role of abstraction (i.e., externally visible properties) in an architecture and

multiple architecture views (structures of the system) explicit. Compare this with

another, from Garlan and Shaw’s early influential work:

[Software architecture goes] beyond the algorithms and data structures of the computation;

designing and specifying the overall system structure emerges as a new kind of problem.

Structural issues include gross organization and global control structure; protocols for

communication, synchronization, and data access; assignment of functionality to design

elements; physical distribution; composition of design elements; scaling and performance;

and selection among design alternatives.

[D. Garlan, M. Shaw, An Introduction to Software Architecture, Advances in Software

Engineering and Knowledge Engineering, Volume I, World Scientific, 1993]

It’s interesting to look at these, as there is much commonality. I include the

third mainly as it’s again explicit about certain issues, such as scalability and

2http://www.sei.cmu.edu/architecture/definitions.html

2 1 Understanding Software Architecture

distribution, which are implicit in the first two. Regardless, analyzing these a

little makes it possible to draw out some of the fundamental characteristics of

software architectures. These, along with some key approaches, are described

below.

1.2.1 Architecture Defines Structure

Much of an architect’s time is concerned with how to sensibly partition an applica-

tion into a set of interrelated components, modules, objects or whatever unit of

software partitioning works for you.3 Different application requirements and con-

straints will define the precise meaning of “sensibly” in the previous sentence – an

architecture must be designed to meet the specific requirements and constraints of

the application it is intended for.

For example, a requirement for an information management system may be that

the application is distributed across multiple sites, and a constraint is that certain

functionality and data must reside at each site. Or, an application’s functionality

must be accessible from a web browser. All these impose some structural con-

straints (site-specific, web server hosted), and simultaneously open up avenues for

considerable design creativity in partitioning functionality across a collection of

related components.

In partitioning an application, the architect assigns responsibilities to each

constituent component. These responsibilities define the tasks a component can

be relied upon to perform within the application. In this manner, each component

plays a specific role in the application, and the overall component ensemble that

comprises the architecture collaborates to provide the required functionality.

Responsibility-driven design (see Wirfs-Brock in Further Reading) is a tech-

nique from object-orientation that can be used effectively to help define the key

components in an architecture. It provides a method based on informal tools and

techniques that emphasize behavioral modeling using objects, responsibilities and

collaborations. I’ve found this extremely helpful in past projects for structuring

components at an architectural level.

A key structural issue for nearly all applications is minimizing dependencies

between components, creating a loosely coupled architecture from a set of highly

cohesive components. A dependency exists between components when a change in

one potentially forces a change in others. By eliminating unnecessary dependen-

cies, changes are localized and do not propagate throughout an architecture (see

Fig. 1.1).

3Component here and in the remainder of this book is used very loosely to mean a recognizable

“chunk” of software, and not in the sense of the more strict definition in Szyperski C. (1998)
Component Software: Beyond Object-Oriented Programming, Addison-Wesley

1.2 Definitions of Software Architecture 3

Excessive dependencies are simply a bad thing. They make it difficult to make

changes to systems, more expensive to test changes, they increase build times, and

they make concurrent, team-based development harder.

1.2.2 Architecture Specifies Component Communication

When an application is divided into a set of components, it becomes necessary to

think about how these components communicate data and control information. The

components in an application may exist in the same address space, and communi-

cate via straightforward method calls. They may execute in different threads or

processes, and communicate through synchronization mechanisms. Or multiple

components may need to be simultaneously informed when an event occurs in the

application’s environment. There are many possibilities.

A body of work known collectively as architectural patterns or styles4 has

catalogued a number of successfully used structures that facilitate certain kinds of

component communication [see Patterns in Further Reading]. These patterns are

essentially reusable architectural blueprints that describe the structure and interac-

tion between collections of participating components.

Each pattern has well-known characteristics that make it appropriate to use in

satisfying particular types of requirements. For example, the client–server pattern

C1

Third Party
Component

Diagram Key

Component

Dependency

C1 C2 C3 C4

C

Third Party
Component

AL

Four components are directly
dependent on a third party
component. If the third party
component is replaced with a
new component with a
different interface, changes
to each component are likely.

Only the AL (abstraction layer)
component is directly dependent on
the third party component. If the third
party component is replaced,
changes are restricted to the AL
component only

C2 C4C3

Fig. 1.1 Two examples of component dependencies

4Patterns and styles are essentially the same thing, but as a leading software architecture author

told me recently, “the patterns people won”. This book will therefore use patterns instead of styles!

4 1 Understanding Software Architecture

has several useful characteristics, such as synchronous request–reply communica-

tions from client to server, and servers supporting one or more clients through a

published interface. Optionally, clients may establish sessions with servers, which

may maintain state about their connected clients. Client–server architectures must

also provide a mechanism for clients to locate servers, handle errors, and optionally

provide security on server access. All these issues are addressed in the client–server

architecture pattern.

The power of architecture patterns stems from their utility, and ability to convey

design information. Patterns are proven to work. If used appropriately in an architec-

ture, you leverage existing design knowledge by using patterns.

Large systems tend to use multiple patterns, combined in ways that satisfy the

architecture requirements. When an architecture is based around patterns, it also

becomes easy for team members to understand a design, as the pattern infers

component structure, communications and abstract mechanisms that must be

provided. When someone tells me their system is based on a three-tier client–server

architecture, I know immediately a considerable amount about their design. This is

a very powerful communication mechanism indeed.

1.3 Architecture Addresses Nonfunctional Requirements

Nonfunctional requirements are the ones that don’t appear in use cases. Rather than

define what the application does, they are concerned with how the application

provides the required functionality.

There are three distinct areas of nonfunctional requirements:

l Technical constraints: These will be familiar to everyone. They constrain design

options by specifying certain technologies that the application must use. “We

only have Java developers, so we must develop in Java”. “The existing database

runs on Windows XP only”. These are usually nonnegotiable.
l Business constraints: These too constraint design options, but for business, not

technical reasons. For example, “In order to widen our potential customer base,

we must interface with XYZ tools”. Another example is “The supplier of our

middleware has raised prices prohibitively, so we’re moving to an open source

version”. Most of the time, these too are nonnegotiable.
l Quality attributes: These define an application’s requirements in terms of scal-

ability, availability, ease of change, portability, usability, performance, and so

on. Quality attributes address issues of concern to application users, as well as

other stakeholders like the project team itself or the project sponsor. Chapter 3

discusses quality attributes in some detail.

An application architecture must therefore explicitly address these aspects of

the design. Architects need to understand the functional requirements, and create

a platform that supports these and simultaneously satisfies the nonfunctional

requirements.

1.3 Architecture Addresses Nonfunctional Requirements 5

1.3.1 Architecture Is an Abstraction

One of the most useful, but often nonexistent, descriptions from an architectural

perspective is something that is colloquially known as a marketecture. This is one
page, typically informal depiction of the system’s structure and interactions. It

shows the major components and their relationships and has a few well-chosen

labels and text boxes that portray the design philosophies embodied in the architec-

ture. A marketecture is an excellent vehicle for facilitating discussion by stake-

holders during design, build, review, and of course the sales process. It’s easy to

understand and explain and serves as a starting point for deeper analysis.

A thoughtfully crafted marketecture is particularly useful because it is an

abstract description of the system. In reality, any architectural description must

employ abstraction in order to be understandable by the team members and project

stakeholders. This means that unnecessary details are suppressed or ignored in

order to focus attention and analysis on the salient architectural issues. This is

typically done by describing the components in the architecture as black boxes,

specifying only their externally visible properties. Of course, describing system

structure and behavior as collections of communicating black box abstractions is

normal for practitioners who use object-oriented design techniques.

One of the most powerful mechanisms for describing an architecture is hierar-

chical decomposition. Components that appear in one level of description are

decomposed in more detail in accompanying design documentation. As an exam-

ple, Fig. 1.2 depicts a very simple two-level hierarchy using an informal notation,

with two of the components in the top-level diagram decomposed further.

Different levels of description in the hierarchy tend to be of interest to differ-

ent developers in a project. In Fig. 1.2, it’s likely that the three components in the

top-level description will be designed and built by different teams working on the

Client Broker Server

Diagram Key

Component

Dependency

C

Top Level Architecture Description

Security
Server

Message
Handler

Directory
Server Data

Store
Request
Handler

Fig. 1.2 Describing an architecture hierarchically

6 1 Understanding Software Architecture

application. The architecture clearly partitions the responsibilities of each team,

defining the dependencies between them.

In this hypothetical example, the architect has refined the design of two of the

components, presumably because some nonfunctional requirements dictate that fur-

ther definition is necessary. Perhaps an existing security service must be used, or the

Brokermust provide a specific message routing function requiring a directory service

that has a known level of request throughput. Regardless, this further refinement

creates a structure that defines and constrains the detailed design of these components.

The simple architecture in Fig. 1.2 doesn’t decompose the Client component.

This is, again presumably, because the internal structure and behavior of the client

is not significant in achieving the application’s overall nonfunctional requirements.

How the Client gets the information that is sent to the Broker is not an issue that

concerns the architect, and consequently the detailed design is left open to the

component’s development team. Of course, the Client component could possibly be

the most complex in the application. It might have an internal architecture defined

by its design team, which meets specific quality goals for the Client component.

These are, however, localized concerns. It’s not necessary for the architect to

complicate the application architecture with such issues, as they can be safely left

to the Client design team to resolve. This is an example of suppressing unnecessary

details in the architecture.

1.3.2 Architecture Views

A software architecture represents a complex design artifact. Not surprisingly then,

like most complex artifacts, there are a number of ways of looking at and under-

standing an architecture. The term “architecture views” rose to prominence in

Philippe Krutchen’s 19955 paper on the 4þ1 View Model. This presented a way

of describing and understanding an architecture based on the following four views:

l Logical view: This describes the architecturally significant elements of the archi-

tecture and the relationships between them. The logical view essentially captures

the structure of the application using class diagrams or equivalents.
l Process view: This focuses on describing the concurrency and communications

elements of an architecture. In IT applications, the main concerns are describing

multithreaded or replicated components, and the synchronous or asynchronous

communication mechanisms used.
l Physical view: This depicts how the major processes and components are

mapped on to the applications hardware. It might show, for example, how the

database and web servers for an application are distributed across a number of

server machines.

5P.Krutchen, Architectural Blueprints–The “4þ1” View Model of Software Architecture, IEEE
Software, 12(6) Nov. 1995.

1.3 Architecture Addresses Nonfunctional Requirements 7

l Development view: This captures the internal organization of the software

components, typically as they are held in a development environment or config-

uration management tool. For example, the depiction of a nested package and

class hierarchy for a Java application would represent the development view of

an architecture.

These views are tied together by the architecturally significant use cases (often

called scenarios). These basically capture the requirements for the architecture and

hence are related to more than one particular view. By working through the steps in

a particular use case, the architecture can be “tested”, by explaining how the design

elements in the architecture respond to the behavior required in the use case. We’ll

explore how to do this “architecture testing” in Chap. 5.

Since Krutchen’s paper, there’s been much thinking, experience, and develop-

ment in the area of architecture views. Mostly notably is the work from the SEI,

colloquially known as the “Views and Beyond” approach (see Further Reading).

This recommends capturing an architecture model using three different views:

l Module: This is a structural view of the architecture, comprising the code

modules such as classes, packages, and subsystems in the design. It also captures

module decomposition, inheritance, associations, and aggregations.
l Component and connector: This view describes the behavioral aspects of the

architecture. Components are typically objects, threads, or processes, and the

connectors describe how the components interact. Common connectors are

sockets, middleware like CORBA or shared memory.
l Allocation: This view shows how the processes in the architecture are mapped to

hardware, and how they communicate using networks and/or databases. It also

captures a view of the source code in the configuration management systems,

and who in the development group has responsibility for each modules.

The terminology used in “Views and Beyond” is strongly influenced by the

architecture description language (ADL) research community. This community has

been influential in the world of software architecture but has had limited impact on

mainstream information technology. So while this book will concentrate on two of

these views, we’ll refer to them as the structural view and the behavioral view.

Discerning readers should be able to work out the mapping between terminologies!

1.4 What Does a Software Architect Do?

The environment that a software architect works in tends to define their exact roles

and responsibilities. A good general description of the architect’s role is maintained

by the SEI on their web site.6 Instead of summarizing this, I’ll briefly describe, in no

6http://www.sei.cmu.edu/ata/arch_duties.html

8 1 Understanding Software Architecture

particular order, four essential skills for a software architect, regardless of their

professional environment.

l Liaison: Architects play many liaison roles. They liaise between the customers

or clients of the application and the technical team, often in conjunction with the

business and requirements analysts. They liaise between the various engineering

teams on a project, as the architecture is central to each of these. They liaise with

management, justifying designs, decisions and costs. They liaise with the sales

force, to help promote a system to potential purchasers or investors. Much of the

time, this liaison takes the form of simply translating and explaining different

terminology between different stakeholders.
l Software Engineering: Excellent design skills are what get a software engineer

to the position of architect. They are an essential prerequisite for the role. More

broadly though, architects must promote good software engineering practices.

Their designs must be adequately documented and communicated and their

plans must be explicit and justified. They must understand the downstream

impact of their decisions, working appropriately with the application testing,

documentation and release teams.
l Technology Knowledge: Architects have a deep understanding of the technology

domains that are relevant to the types of applications they work on. They are

influential in evaluating and choosing third party components and technologies.

They track technology developments, and understand how new standards, fea-

tures and products might be usefully exploited in their projects. Just as impor-

tantly, good architects know what they don’t know, and ask others with greater

expertise when they need information.
l Risk Management: Good architects tend to be cautious. They are constantly

enumerating and evaluating the risks associated with the design and technology

choices they make. They document and manage these risks in conjunction with

project sponsors and management. They develop and instigate risk mitigation

strategies, and communicate these to the relevant engineering teams. They try to

make sure no unexpected disasters occur.

Look for these skills in the architects you work with or hire. Architects play a

central role in software development, and must be multiskilled in software engi-

neering, technology, management and communications.

1.5 Architectures and Technologies

Architects must make design decisions early in a project lifecycle. Many of these are

difficult, if not impossible, to validate and test until parts of the system are actually

built. Judicious prototyping of key architectural components can help increase con-

fidence in a design approach, but sometimes it’s still hard to be certain of the success

of a particular design choice in a given application context.

1.5 Architectures and Technologies 9

Due to the difficulty of validating early design decisions, architects sensibly rely

on tried and tested approaches for solving certain classes of problems. This is one of

the great values of architectural patterns. They enable architects to reduce risk by

leveraging successful designs with known engineering attributes.

Patterns are an abstract representation of an architecture, in the sense that they

can be realized in multiple concrete forms. For example, the publish–subscribe

architecture pattern describes an abstract mechanism for loosely coupled, many-

to-many communications between publishers of messages and subscribers who

wish to receive messages. It doesn’t however specify how publications and sub-

scriptions are managed, what communication protocols are used, what types of

messages can be sent, and so on. These are all considered implementation details.

Unfortunately, despite the misguided views of a number of computer science

academics, abstract descriptions of architectures don’t yet execute on computers,

either directly or through rigorous transformation. Until they do, abstract architec-

tures must be reified by software engineers as concrete software implementations.

Fortunately, the software industry has come to the rescue. Widely utilized

architectural patterns are supported in a variety of prebuilt frameworks available

as commercial and open source technologies. For a matter of convenience, I’ll refer

to these collectively as commercial-off-the-shelf (COTS) technologies, even

though it’s strictly not appropriate as many open source products of very high

quality can be freely used (often with a pay-for-support model for serious applica-

tion deployments).

Anyway, if a design calls for publish–subscribe messaging, or a message broker,

or a three-tier architecture, then the choices of available technology are many and

varied indeed. This is an example of software technologies providing reusable,

application-independent software infrastructures that implement proven architec-

tural approaches.

As Fig. 1.3 depicts, several classes of COTS technologies are used in practice to

provide packaged implementations of architectural patterns for use in IT systems.

Within each class, competing commercial and open source products exist. Although

these products are superficially similar, they will have differing feature sets, be

implemented differently and have varying constraints on their use.

Architectural Patterns/Styles

Application
Servers

Messaging Message
Brokers

Object
Brokers

Process
Orchestration

Concrete COTS technologies

Abstract

Fig. 1.3 Mapping between logical architectural patterns and concrete technologies

10 1 Understanding Software Architecture

Architects are somewhat simultaneously blessed and cursed with this diversity

of product choice. Competition between product vendors drives innovation, better

feature sets and implementations, and lower prices, but it also places a burden on

the architect to select a product that has quality attributes that satisfy the application

requirements. All applications are different in some ways, and there is rarely, if

ever, a one-size-fits-all product match. Different COTS technology implementa-

tions have different sets of strengths and weaknesses and costs, and consequently

will be better suited to some types of applications than others.

The difficulty for architects is in understanding these strengths and weaknesses

early in the development cycle for a project, and choosing an appropriate reification

of the architectural patterns they need. Unfortunately, this is not an easy task, and

the risks and costs associated with selecting an inappropriate technology are high.

The history of the software industry is littered with poor choices and subsequent

failed projects. To quote Eoin Woods,7 and provide another extremely pragmatic

definition of software architecture:

Software architecture is the set of design decisions which, if made incorrectly, may cause

your project to be cancelled.

Chapters 4–6 provide a detailed description and analysis of these infrastructural

technologies.

1.6 Architect Title Soup

Scan the jobs advertisements. You’ll see chief architects, product architects, tech-

nical architects, solution architects (I want to place a spoof advert for a problem

architect), enterprise architects, and no doubt several others. Here’s an attempt to

give some general insights into what these mean:

l Chief Architect: Typically a senior position who manages a team of architects

within an organization. Operates at a broad, often organizational level, and

coordinates efforts across system, applications, and product lines. Very experi-

enced, with a rare combination of deep technical and business knowledge.
l Product/Technical/Solution Architect: Typically someone who has progressed

through the technical ranks and oversees the architectural design for a specific

system or application. They have a deep knowledge of how some important

piece of software really works.
l Enterprise Architect: Typically a much less technical, more business-focus role.

Enterprise architects use various business methods and tools to understand,

document, and plan the structure of the major systems in an enterprise.

The content of this book is relevant to the first two bullets above, which require a

strong computer science background. However, enterprise architects are somewhat

7http://www.eoinwoods.info/

1.6 Architect Title Soup 11

different beasts. This all gets very confusing, especially when you’re a software

architect working on enterprise systems.

Essentially, enterprise architects create documents, roadmaps, and models that

describe the logical organization of business strategies, metrics, business capabil-

ities, business processes, information resources, business systems, and networking

infrastructure within the enterprise.8 They use frameworks to organize all these

documents and models, with the most popular ones being TOGAF9 and the

Zachman Framework.10

Now if I’m honest, the above pretty much captures all I know about enterprise

architecture, despite having been involved for a short time on an enterprise archi-

tecture effort! I’m a geek at heart, and I have never seen any need for computer

science and software engineering knowledge in enterprise architecture. Most enter-

prise architects I know have business or information systems degrees. They are

concerned with how to “align IT strategy and planning with company’s business

goals”, “develop policies, standards, and guidelines for IT selection”, and “deter-

mine governance”. All very lofty and important concerns, and I don’t mean to be

disparaging, but these are not my core interests. The tasks of an enterprise architect

certainly don’t rely on a few decades of accumulated computer science and

software engineering theory and practice.

If you’re curious about enterprise architecture, there are some good references at

the end of this chapter. Enjoy.

1.7 Summary

Software architecture is a fairly well defined and understood design discipline.

However, just because we know what it is and more or less what needs doing, this

doesn’t mean it’s mechanical or easy. Designing and evaluating an architecture for

a complex system is a creative exercise, requiring considerable knowledge, experi-

ence and discipline. The difficulties are exacerbated by the early lifecycle nature of

much of the work of an architect. To my mind, the following quote from Philippe

Krutchen sums up an architect’s role perfectly:

The life of a software architect is a long (and sometimes painful) succession of sub-optimal

decisions made partly in the dark

The remainder of this book will describe methods and techniques that can help

you to shed at least some light on architectural design decisions. Much of this light

comes from understanding and leveraging design principles and technologies that

have proven to work in the past. Armed with this knowledge, you’ll be able to

8http://en.wikipedia.org/wiki/Enterprise_Architecture
9http://www.opengroup.org/togaf/
10http://www.zachmaninternational.com/index.php/the-zachman-framework

12 1 Understanding Software Architecture

tackle complex architecture problems with more confidence, and after a while,

perhaps even a little panache.

1.8 Further Reading

There are lots of good books, reports, and papers available in the software architec-

ture world. Below are some I’d especially recommend. These expand on the

information and messages covered in this chapter.

1.8.1 General Architecture

In terms of defining the landscape of software architecture and describing their

project experiences, mostly with defense projects, it’s difficult to go past the

following books from members of the Software Engineering Institute.

L. Bass, P. Clements, R Kazman. Software Architecture in Practice, Second

Edition. Addison-Wesley, 2003.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,

J. Stafford. Documenting Software Architectures: Views and Beyond.
2nd Edition, Addison-Wesley, 2010.

P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley, 2002.

For a description of the “Decomposition Style”, see Documenting Software
Architecture, page 53. And for an excellent discussion of the uses relationship

and its implications, see the same book, page 68.

The following are also well worth a read:

Nick Rozanski, Eion Woods, Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives, Addison-Wesley 2005

Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, Software Architecture:
Foundations, Theory, and Practice, John Wiley and Sons, 2009

Martin Fowler’s article on the role of an architect is an interesting read.

Martin Fowler, Who needs an Architect? IEEE Software, July-August 2003.

1.8.2 Architecture Requirements

The original book describing use cases is:

I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

1.8 Further Reading 13

Responsibility-driven design is an incredibly useful technique for allocating

functionality to components and subsystems in an architecture. The following

should be compulsory reading for architects.

R. Wirfs-Brock, A. McKean. Object Design: Roles, Responsibilities, and Colla-

borations. Addison-Wesley, 2002.

1.8.3 Architecture Patterns

There’s a number of fine books on architecture patterns. Buschmann’s work is an

excellent introduction.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,. Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons,

1996.

D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Pattern-Oriented Software Archi-
tecture, Volume 2, Patterns for Concurrent and Networked Objects. John Wiley

& Sons, 2000.

Two recent books that focus more on patterns for enterprise systems, especially

enterprise application integrations, are well worth a read.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,

2002.

G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, 2003.

1.8.4 Technology Comparisons

A number of papers that emerged from the Middleware Technology Evaluation

(MTE) project give a good introduction into the issues and complexities of technol-

ogy comparisons.

P. Tran, J. Gosper, I. Gorton. Evaluating the Sustained Performance of COTS-
based Messaging Systems. in Software Testing, Verification and Reliability,

vol 13, pp 229–240, Wiley and Sons, 2003.

I. Gorton, A. Liu. Performance Evaluation of Alternative Component Architectures
for Enterprise JavaBean Applications, in IEEE Internet Computing, vol.7, no. 3,

pages 18–23, 2003.

A. Liu, I. Gorton. Accelerating COTS Middleware Technology Acquisition: the
i-MATE Process. in IEEE Software, pages 72–79,volume 20, no. 2, March/April

2003.

14 1 Understanding Software Architecture

1.8.5 Enterprise Architecture

In my humble opinion, there’s some seriously shallow books written about enter-

prise architecture. I survived through major parts of this book, so would recommend

it as a starting point.

James McGovern, Scott Ambler, Michael Stevens, James Linn, Elias Jo and Vikas

Sharan, The Practical Guide to Enterprise Architecture, Addison-Wesley, 2003.

Another good general, practical book is:

Marc Lankhorst, Enterprise Architecture at Work, Springer-Verlag, 2009

I’m sure there’s joy to be had in the 700þ pages of the latest TOGAF version 9.0
book (Van Haren publishing, ISBN: 9789087532307), but like Joyce’s Ulysses,
I suspect it’s a joy I will never have the patience to savor. If the Zachman

Framework is more your thing, there’s a couple of ebooks, which look informative

at a glance:

http://www.zachmaninternational.com/index.php/ea-articles/25-editions

1.8 Further Reading 15

.

Chapter 2

Introducing the Case Study

2.1 Overview

This chapter introduces the case study that will be used in subsequent chapters

to illustrate some of the design principles in this book.1 Very basically, the

application is a multiuser software system with a database that is used to share

information between users and intelligent tools that aim to help the user complete

their work tasks more effectively. An informal context diagram is depicted in

Fig. 2.1.

The system has software components that run on each user’s workstation, and a

shared distributed software “back-end” that makes it possible for intelligent third

party tools to gather data from, and communicate with, multiple users in order to

offer assistance with their task. It’s this shared distributed software back-end that

this case study will concentrate on, as it’s the area where architectural complexity

arises. It also illustrates many of the common quality issues that must be addressed

by distributed, multiuser applications.

2.2 The ICDE System

The Information Capture and Dissemination Environment (ICDE) is part of a

suite of software systems for providing intelligent assistance to professionals

such as financial analysts, scientific researchers and intelligence analysts. To

this end, ICDE automatically captures and stores data that records a range of

actions performed by a user when operating a workstation. For example, when

1The case study project is based on an actual system that I worked on. Some creative license has

been exploited to simplify the functional requirements, so that these don’t overwhelm the reader

with unnecessary detail. Also, the events, technical details and context described do not always

conform to reality, as reality can be far too messy for illustration purposes.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_2, # Springer-Verlag Berlin Heidelberg 2011

17

a user performs a Google search, the ICDE system will transparently store in a

database:

l The search query string
l Copies of the web pages returned by Google that the user displays in their

browser

This data can be subsequently retrieved from the ICDE database and used by

third-party software tools that attempt to offer intelligent help to the user. These

tools might interpret a sequence of user inputs, and try to find additional informa-

tion to help the user with their current task. Other tools may crawl the links in the

returned search results that the user does not click on, attempting to find potentially

useful details that the user overlooks.

A use case diagram for the ICDE system is shown in Fig. 2.2. The three major

use cases incorporate the capture of user actions, the querying of data from the data

store, and the interaction of the third party tools with the user.

Workstations

Workstations

Servers

Data Store

Mainframes

Servers
ICDE 3rd Party
Applications

Mainframe

Servers

Data
Capture
Service

Data
Access
Service

ICDE
Clients

ICDE Server

Fig. 2.1 ICDE context diagram

18 2 Introducing the Case Study

2.3 Project Context

Few real projects are green-field efforts, allowing the design team to start with a

clean and mostly unconstrained piece of paper. The ICDE system certainly isn’t one

of these.

An initial production version (v1.0) of ICDE was implemented by a small

development team. Their main aim was to implement the Capture User Actions
use case. This created the client component that runs on each user workstation, and

drove the design and implementation of the data store. This was important as the

data store was an integral part of the rest of the system’s functionality, and its design

had to be suitable to support the high transaction rate that a large number of users

could potentially generate.

ICDE v1.0 was only deployed in a small user trial involving a few users. This

deployment successfully tested the client software functionality and demonstrated

the concepts of data capture and storage. The design of v1.0 was based upon a

simple two-tier architecture, with all components executing on the user’s worksta-

tion. This design is shown as a UML component diagram in Fig. 2.3. The collection

and analysis client components were written in Java and access the data store

ICDE

Analyst

3rd Party Tools

Data Store

Capture User
Actions

Query User Actions

User Assistance

*

*

* *

*

*

*

*

*

*

*

*

Fig. 2.2 ICDE system use cases

2.3 Project Context 19

(server) directly using the JDBC2 API. The complete ICDE application executed on

Microsoft Windows XP.

The role of each component is as follows:

l Data Collection: The collection component comprises a number of loosely

coupled processes running on a client workstation that transparently track the

user’s relevant activities and store them in the Data Store. The captured events

relate to Internet accesses, documents that are opened and browsed, edits made

to documents, and some basic windowing information about when the user

opens and closes applications on the desktop. Each event has numerous attri-

butes associated with it, depending on event type. For example, a mouse double

click has (x, y) coordinate attributes, and a window activation event has the

associated application name as an attribute.
l Data Store: This component comprises a commercial-off-the-shelf (COTS)

relational database. The relational database stores event information in various

tables to capture the user activities, with timestamps added so that the order of

events can be reconstructed. Large objects such as images on web pages and

binary documents are stored as Binary Large Object Fields (BLOBS) using the

native database facilities.
l Data Analysis: A graphical user interface (GUI) based tool supports a set of

queries on the data store. This was useful for testing purposes, and to give the

third party tool creators an initial look at the data that was being captured, and

was hence available to them for analysis.

Data Collection

Analyst Workstation

Data Store

Data Analysis

Fig. 2.3 ICDE Version 1.0 application architecture

2Java Database Connectivity.

20 2 Introducing the Case Study

2.4 Business Goals

ICDE v2.0 had much more ambitious aims. Having proven that the system worked

well in trial deployments, the project sponsors had two major business objectives

for the next version. These were:

l Encourage third party tool developers to write applications for the ICDE system.

For example, in finance, a third party developer might build a “stock advisor”

that watches the stocks that an analyst is looking at in their browser and informs

them of any events in the news that might affect the stock value.
l Promote the ICDE concept and tools to potential customers, in order to enhance

their analytical working environment.

Clearly, both these objectives are focused on fostering a growing business

around the ICDE technology, by creating an attractive market for third party tools

and an advanced advisory environment for users in a range of application domains.

Achieving these goals requires detailed technical and business plans to be drawn

up and followed through. From a purely technical perspective, leaving out such

activities as sales and marketing, the following major objectives were identified –

see Table 2.1:

In order to attract third party tool developers, it is essential that the environment

has a powerful and easy-to-use application programming interface (API) that could

be accessed from any operating system platforms that a developer chooses to use.

This would give tool developers flexibility in choosing their deployment platform,

and make porting existing tools simpler. Surveys of existing tools also raised the

issue that powerful analytical tools might require high-end cluster machines to run

on. Hence they’d need the capability to communicate with ICDE deployments over

local (and eventually wide) area networks.

Another survey of likely ICDE clients showed that potential user organizations

had groups of 10–150 analysts. It was consequently important that the software

could be easily scaled to support such numbers. There should also be no inherent

design features that inhibit the technology from supporting larger deployments

which may appear in the future.

Table 2.1 ICDE v2.0 business goals

Business goal Supporting technical objective

Encourage third party tool

developers

Simple and reliable programmatic access to data store for third party

tools

Heterogeneous (i.e., non-Windows) platform support for running

third party tools

Allow third party tools to communicate with ICDE users from a

remote machine

Promote the ICDE concept

to users

Scale the data collection and data store components to support up to

150 users at a single site

Low-cost deployment for each ICDE user workstation

2.4 Business Goals 21

Equally important, to keep the base cost of a deployment as low as possible,

expensive COTS technologies should be avoided wherever possible. This in turn

will make the product more attractive in terms of price for clients.

2.5 Constraints

The technical objectives were ambitious, and would require a different architecture

to support distributed data access and communications. For this reason, it was

decided to concentrate efforts on this new architecture, and leave the client,

including the GUI and data capture tools, stable. Changes would only be made to

the client to enable it to communicate with the new data management and notifica-

tion architecture that this project would design. For this reason, the client-side

design is not dealt with in this case study.

A time horizon of 12 months was set for ICDE v2.0. An interim release after 6

months was planned to expose tool developers to the API, and allow them to

develop their tools at the same time that ICDE v2.0 was being productized and

enhanced.

As well as having a fixed schedule, the development budget was also fixed. This

meant the development resources available would constrain the features that could

be included in the v2.0 release. These budget constraints also influenced the

possible implementation choices, given that the number of developers, their skills

and time available was essentially fixed.

2.6 Summary

The ICDE application makes an interesting case study for a software architecture. It

requires the architecture of an existing application to be extended and enhanced to

create a platform for new features and capabilities. Time and budget constraints

restrict the possible options. Certainly a redevelopment of the existing ICDE v1.0

client and data store is completely out of the question.

In Chap. 9, the design for the ICDE back-end will be elaborated and explained.

The next few chapters aim to provide the necessary background knowledge in

designing architectures to meet quality attributes, and exploiting technologies to

make the creation of such systems tractable.

22 2 Introducing the Case Study

Chapter 3

Software Quality Attributes

3.1 Quality Attributes

Much of a software architect’s life is spent designing software systems to meet a set

of quality attribute requirements. General software quality attributes include scal-

ability, security, performance and reliability. These are often informally called an

application’s “-ilities” (though of course some, like performance, don’t quite fit this

lexical specification).

Quality attribute requirements are part of an application’s nonfunctional

requirements, which capture the many facets of how the functional requirements

of an application are achieved. All but the most trivial application will have

nonfunctional requirements that can be expressed in terms of quality attribute

requirements.

To be meaningful, quality attribute requirements must be specific about how an

application should achieve a given need. A common problem I regularly encounter

in architectural documents is a general statement such as “The application must be

scalable”.

This is far too imprecise and really not much use to anyone. As is discussed later

in this chapter, scalability requirements are many and varied, and each relates to

different application characteristics. So, must this hypothetical application scale to

handle increased simultaneous user connections? Or increased data volumes? Or

deployment to a larger user base? Or all of these?

Defining which of these scalability measures must be supported by the system is

crucial from an architectural perspective, as solutions for each differ. It’s vital

therefore to define concrete quality attribute requirements, such as:

It must be possible to scale the deployment from an initial 100 geographically dispersed
user desktops to 10,000 without an increase in effort/cost for installation and configuration.

This is precise and meaningful. As an architect, this points me down a path to a

set of solutions and concrete technologies that facilitate zero-effort installation and

deployment.

Note however, that many quality attributes are actually somewhat difficult to

validate and test. In this example, it’d be unlikely that in testing for the initial

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_3, # Springer-Verlag Berlin Heidelberg 2011

23

release, a test case would install and configure the application on 10,000 desktops.

I just can’t see a project manager signing off on that test somehow.

This is where common sense and experience come in. The adopted solution must

obviously function for the initial 100-user deployment. Based on the exact mechan-

isms used in the solution (perhaps Internet download, corporate desktop manage-

ment software, etc), we can then only analyze it to the best of our ability to assess

whether the concrete scalability requirement can be met. If there are no obvious

flaws or issues, it’s probably safe to assume the solution will scale. But will it scale

to 10,000? As always with software, there’s only one way to be absolutely, 100%

sure, as “it is all talk until the code runs”.1

There are many general quality attributes, and describing them all in detail could

alone fill a book or two. What follows is a description of some of the most relevant

quality attributes for general IT applications, and some discussion on architectural

mechanisms that are widely used to provide solutions for the required quality

attributes. These will give you a good place to start when thinking about the

qualities an application that you’re working on must possess.

3.2 Performance

Although for many IT applications, performance is not a really big problem, it gets

most of the spotlight in the crowded quality attribute community. I suspect this is

because it is one of the qualities of an application that can often be readily quantified

and validated. Whatever the reason, when performance matters, it really does matter.

Applications that perform poorly in some critical aspect of their behavior are likely

candidates to become road kill on the software engineering highway.

A performance quality requirement defines a metric that states the amount of

work an application must perform in a given time, and/or deadlines that must be met

for correct operation. Few IT applications have hard real-time constraints like those
found in avionics or robotics systems, where if some output is produced a millisec-

ond or three too late, really nasty and undesirable things can happen (I’ll let the

reader use their imagination here). But applications needing to process hundreds,

sometimes thousands and tens of thousands of transactions every second are found

in many large organizations, especially in the worlds of finance, telecommunica-

tions and government.

Performance usually manifests itself in the following measures.

3.2.1 Throughput

Throughput is a measure of the amount of work an application must perform in unit

time. Work is typically measured in transactions per second (tps), or messages

1Ward Cunningham at his finest!

24 3 Software Quality Attributes

processed per second (mps). For example, an on-line banking application might

have to guarantee it can execute 1,000 tps from Internet banking customers. An

inventory management system for a large warehouse might need to process 50

messages per second from trading partners requesting orders.

It’s important to understand precisely what is meant by a throughput require-

ment. Is it average throughput over a given time period (e.g., a business day), or

peak throughput? This is a crucial distinction.

A stark illustration of this is an application for placing bets on events such as

horse racing. For most of the time, an application of this ilk does very little work

(people mostly place bets just before a race), and hence has a low and easily

achievable average throughput requirement. However, every time there is a racing

event, perhaps every evening, the 5 or so minute period before each race sees

thousands of bets being placed every second. If the application is not able to process

these bets as they are placed, then the business loses money, and users become very

disgruntled (and denying gamblers the opportunity to lose money is not a good

thing for anyone). Hence for this scenario, the application must be designed to meet

anticipated peak throughput, not average. In fact, supporting only average through-
put would likely be a “career changing” design error for an architect.

3.2.2 Response Time

This is a measure of the latency an application exhibits in processing a business

transaction. Response time is most often (but not exclusively) associated with the

time an application takes to respond to some input. A rapid response time allows

users to work more effectively, and consequently is good for business. An excellent

example is a point-of-sale application supporting a large store. When an item is

scanned at the checkout, a fast, second or less response from the system with the

item’s price means a customer can be served quickly. This makes the customer and

the store happy, and that’s a good thing for all involved stakeholders.

Again, it’s often important to distinguish between guaranteed and average

response times. Some applications may need all requests to be serviced within a

specified time limit. This is a guaranteed response time. Others may specify an

average response time, allowing larger latencies when the application is extremely

busy. It’s also widespread in the latter case for an upper bound response time

requirement to be specified. For example, 95% of all requests must be processed

in less than 4 s, and no requests must take more than 15 s.

3.2.3 Deadlines

Everyone has probably heard of the weather forecasting system that took 36 h to

produce the forecast for the next day! I’m not sure if this is apocryphal, but it’s an

excellent example of the requirement to meet a performance deadline. Deadlines in

3.2 Performance 25

the IT world are commonly associated with batch systems. A social security

payment system must complete in time to deposit claimant’s payments in their

accounts on a given day. If it finishes late, claimants don’t get paid when they

expect, and this can cause severe disruptions and pain, and not just for claimants. In

general, any application that has a limited window of time to complete will have a

performance deadline requirement.

These three performance attributes can all be clearly specified and validated.

Still, there’s a common pitfall to avoid. It lies in the definition of a transaction,

request or message, all of which are deliberately used very imprecisely in the above.

Essentially this is the definition of an application’s workload. The amount of

processing required for a given business transaction is an application specific
measure. Even within an application, there will likely be many different types of

requests or transactions, varying perhaps from fast database read operations, to

complex updates to multiple distributed databases.

Simply, there is no generic workload measure, it depends entirely on what work

the application is doing. So, when agreeing to meet a given performance measure,

be precise about the exact workload or transaction mix, defined in application-

specific terms, that you’re signing up for.

3.2.4 Performance for the ICDE System

Performance in the ICDE system is an important quality attribute. One of the

key performance requirements pertains to the interactive nature of ICDE. As

users perform their work tasks, the client portion of the ICDE application traps

key and mouse actions and sends these to the ICDE server for storage. It is

consequently extremely important that ICDE users don’t experience any delays in

using their applications while the ICDE software traps and stores events.

Trapping user and application generated events in the GUI relies on exploiting

platform-specific system application programming interface (API) calls. The APIs

provide hooks into the underlying GUI and operating system event handling

mechanisms. Implementing this functionality is an ICDE client application con-

cern, and hence it is the responsibility of the ICDE client team to ensure this is

carried out as efficiently and fast as possible.

Once an event is trapped, the ICDE client must call the server to store the event

in the data store. It’s vital therefore that this operation does not contribute any delay

that the user might experience. For this reason, when an event is detected, it is

written to an in-memory queue in the ICDE client. Once the event is stored in the

queue, the event detection thread returns immediately and waits to capture the next

event. This is a very fast operation and hence introduces no noticeable delay.

Another thread running in the background constantly pulls events from the queue

and calls the ICDE server to store the data.

This solution within the ICDE client decouples event capture and storage.

A delayed write to the server by the background thread cannot delay the GUI

26 3 Software Quality Attributes

code. From the ICDE server’s perspective, this is crucial. The server must of course

be designed to store events in the data store as quickly as possible. But the server

design can be guaranteed that there will only ever be one client request per user

workstation in flight at any instant, as there is only one thread in each client sending

the stream of user events to the server.

So for the ICDE server, its key performance requirements were easy to specify.

It should provide subsecond average response times to ICDE client requests.

3.3 Scalability

Let’s start with a representative definition of scalability2:

How well a solution to some problem will work when the size of the problem increases.

This is useful in an architectural context. It tells us that scalability is about how a

design can cope with some aspect of the application’s requirements increasing in

size. To become a concrete quality attribute requirement, we need to understand

exactly what is expected to get bigger. Here are some examples:

3.3.1 Request Load

Based on some defined mix of requests on a given hardware platform, an architec-

ture for a server application may be designed to support 100 tps at peak load, with

an average 1 s response time. If this request load were to grow by ten times, can the

architecture support this increased load?

In the perfect world and without additional hardware capacity, as the load

increases, application throughput should remain constant (i.e., 100 tps), and

response time per request should increase only linearly (i.e., 10 s). A scalable

solution will then permit additional processing capacity to be deployed to increase

throughput and decrease response time. This additional capacity may be deployed

in two different ways, one by adding more CPUs3 (and likely memory) to the

machine the applications runs on (scale up), the other from distributing the appli-

cation on multiple machines (scale out). This is illustrated in Fig. 3.1.

Scale up works well if an application is multithreaded, or multiple single

threaded process instances can be executed together on the same machine. The

latter will of course consume additional memory and associated resources, as

processes are heavyweight, resource hungry vehicles for achieving concurrency.

2From http://www.hyperdictionary.com
3Adding faster CPUs is never a bad idea either. This is especially true if an application has

components or calculations that are inherently single-threaded.

3.3 Scalability 27

Scale out works well if there is little or ideally no additional work required

managing the distribution of requests amongst the multiple machines. The aim is to

keep each machine equally busy, as the investment in more hardware is wasted if

one machine is fully loaded and others idle away. Distributing load evenly amongst

multiple machines is known as load-balancing.

Importantly, for either approach, scalability should be achieved without modifi-

cations to the underlying architecture (apart from inevitable configuration changes

if multiple servers are used). In reality, as load increases, applications will exhibit a

decrease in throughput and a subsequent exponential increase in response time.

This happens for two reasons. First, the increased load causes increased contention

for resources such as CPU and memory by the processes and threads in the server

architecture. Second, each request consumes some additional resource (buffer

space, locks, and so on) in the application, and eventually this resource becomes

exhausted and limits scalability.

As an illustration, Fig. 3.2 shows how six different versions of the same

application implemented using different JEE application servers perform as their

load increases from 100 to 1,000 clients.4

Application

ApplicationApplication
Application

Application

Scale-out: Application
replicated on different
machines

Scale-up:
Single application
instance is executed
on a multiprocessor
machine

CPU

Fig. 3.1 Scale out versus scale up

4The full context for these figures is described in: I.Gorton, A Liu, Performance Evaluation of
Alternative Component Architectures for Enterprise JavaBean Applications, in IEEE Internet
Computing, vol.7, no. 3, pages 18-23, 2003. Bear in mind, these results are a snapshot in time and

are meant for illustrative purposes. Absolutely no conclusions about the performance of the current

versions of these technologies can or should be drawn.

28 3 Software Quality Attributes

3.3.2 Simultaneous Connections

An architecture may be designed to support 1,000 concurrent users. How does the

architecture respond if this number grows significantly? If a connected user con-

sumes some resources, then there will likely be a limit to the number of connections

that can be effectively supported.

I encountered a classic example of this problem while performing an architec-

ture review for an Internet Service Provider (ISP). Every time a user connected

to the service, the ISP application spawned a new process on their server that

was responsible for distributing targeted advertisements to the user. This worked

beautifully, but each process consumed considerable memory and processing

resources, even when the user simply connected and did nothing. Testing quickly

revealed that the ISP’s server machines could only support about 2,000 connec-

tions before their virtual memory was exhausted and the machines effectively

ground to a halt in a disk thrashing frenzy. This made scaling the ISP’s operations

to support 100,000 users a prohibitively expensive proposition, and eventually,

despite frantic redesign efforts, this was a root cause of the ISP going out of

business.

3.3.3 Data Size

In a nutshell, how does an application behave as the data it processes increases in

size? For example, a message broker application, perhaps a chat room, may be

designed to process messages of an expected average size. How well will the

architecture react if the size of messages grows significantly? In a slightly different

vein, an information management solution may be designed to search and retrieve

data from a repository of a specified size. How will the application behave if the

size of the repository grows, in terms of raw size and/or number of items? The latter

Fig. 3.2 Effects of increasing client request load on JEE platforms

3.3 Scalability 29

is becoming such a problem that it has spawned a whole area of research and

development known as data intensive computing.5

3.3.4 Deployment

How does the effort involved in deploying or modifying an application to an

increasing user base grow? This would include effort for distribution, configuration

and updating with new versions. An ideal solution would provide automated

mechanisms that can dynamically deploy and configure an application to a new

user, capturing registration information in the process. This is in fact exactly how

many applications are today distributed on the Internet.

3.3.5 Some Thoughts on Scalability

Designing scalable architectures is not easy. In many cases, the need for scalability

early in the design just isn’t apparent and is not specified as part of the quality

attribute requirements. It takes a savvy and attentive architect to ensure inherently

nonscalable approaches are not introduced as core architectural components. Even

if scalability is a required quality attribute, validating that it is satisfied by a

proposed solution often just isn’t practical in terms of schedule or cost. That’s

why it’s important for an architect to rely on tried and tested designs and technol-

ogies whenever practical.

3.3.6 Scalability for the ICDE Application

The major scalability requirement for the ICDE system is to support the number of

users expected in the largest anticipated ICDE deployment. The requirements specify

this as approximately 150 users. The ICDE server application should therefore be

capable of handling a peak load of 150 concurrent requests from ICDE clients.

3.4 Modifiability

All capable software architects know that along with death and taxes, modifi-

cations to a software system during its lifetime are simply a fact of life. That’s

why taking into account likely changes to the application is a good practice during

5A good overview of data intensive computing issues and some interesting approaches is the

Special Edition of IEEE Computer from April 2008 – http://www2.computer.org/portal/web/csdl/

magazines/computer#3

30 3 Software Quality Attributes

architecture formulation. The more flexibility that can be built into a design

upfront, then the less painful and expensive subsequent changes will be. That’s

the theory anyway.

The modifiability quality attribute is a measure of how easy it may be to change

an application to cater for new functional and nonfunctional requirements. Note the

use of “may” in the previous sentence. Predicting modifiability requires an estimate
of effort and/or cost to make a change. You only know for sure what a change will

cost after it has been made. Then you find out how good your estimate was.

Modifiability measures are only relevant in the context of a given architectural

solution. This solution must be expressed at least structurally as a collection of

components, the component relationships and a description of how the components

interact with the environment. Then, assessing modifiability requires the architect

to assert likely change scenarios that capture how the requirements may evolve.

Sometimes these will be known with a fair degree of certainty. In fact the changes

may even be specified in the project plan for subsequent releases. Much of the time

though, possible modifications will need to be elicited from application stake-

holders, and drawn from the architect’s experience. There’s definitely an element

of crystal ball gazing involved.

Illustrative change scenarios are:

l Provide access to the application through firewalls in addition to existing

“behind the firewall” access.
l Incorporate new features for self-service check-out kiosks.
l The COTS speech recognition software vendor goes out of business and we need

to replace this component.
l The application needs to be ported from Linux to the Microsoft Windows

platform.

For each change scenario, the impact of the anticipated change on the architec-

ture can be assessed. This impact is rarely easy to quantify, as more often than not

the solution under assessment does not exist. In many cases, the best that can be

achieved is a convincing impact analysis of the components in the architecture that

will need modification, or a demonstration of how the solution can accommodate

the modification without change.

Finally, based on cost, size or effort estimates for the affected components, some

useful quantification of the cost of a change can be made. Changes isolated to

single components or loosely coupled subsystems are likely to be less expensive to

make than those that cause ripple effects across the architecture. If a likely change

appears difficult and complex to make, this may highlight a weakness in the

architecture that might justify further consideration and redesign.

A word of caution should be issued here. While loosely coupled, easily modifi-

able architectures are generally “a good thing”, design for modifiability needs to be

thought through carefully. Highly modular architectures can become overly com-

plex, incur additional performance overheads and require significantly more design

and construction effort. This may be justified in some systems which must be highly

configurable perhaps at deployment or run time, but often it’s not.

3.4 Modifiability 31

You’ve probably heard some systems described as “over engineered”, which

essentially means investing more effort in a system than is warranted. This is often

done because architects think they know their system’s future requirements, and

decide it’s best to make a design more flexible or sophisticated, so it can accom-

modate the expected needs. That sounds reasonable, but requires a reliable crystal

ball. If the predictions are wrong, much time and money can be wasted.

I recently was on the peripheral of such a project. The technical lead spent 5

months establishing a carefully designed messaging-based architecture based on the

dependency injection pattern.6 The aim was to make this architecture extremely

robust and create flexible data models for the messaging and underlying data store.

With these in place, the theory was that the architecture could be reused over and

over again with minimal effort, and it would be straightforward to inject new

processing components due to the flexibility offered by dependency injection.

The word theory in the previous sentence was carefully chosen however. The

system stakeholders became impatient, wondering why so much effort was being

expended on such a sophisticated solution, and asked to see some demonstrable

progress. The technical lead resisted, insisting his team should not be diverted and

continued to espouse the long term benefits of the architecture. Just as this initial

solution was close to completion, the stakeholders lost patience and replaced the

technical lead with someone who was promoting a much simpler, Web server based

solution as sufficient.

This was a classic case of overengineering. While the original solution was

elegant and could have reaped great benefits in the long term, such arguments are

essentially impossible to win unless you can show demonstrable, concrete evidence

of this along the way. Adopting agile approaches is the key to success here. It would

have been sensible to build an initial version of the core architecture in a few weeks

and demonstrate this addressing a use case/user story that was meaningful to the

stakeholder. The demonstration would have involved some prototypical elements in

the architecture, would not be fully tested, and no doubt required some throw-away

code to implement the use case – all unfortunately distasteful things to the technical

lead. Success though would’ve built confidence with the stakeholders in the techni-

cal solution, elicited useful user feedback, and allowed the team to continue on its

strategic design path.

The key then is to not let design purity drive a design. Rather, concentrating

on known requirements and evolving and refactoring the architecture through

regular iterations, while producing running code, makes eminent sense in almost

all circumstances. As part of this process, you can continually analyze your design

to see what future enhancements it can accommodate (or not). Working closely

with stakeholders can help elicit highly likely future requirements, and eliminate

those which seem highly unlikely. Let these drive the architecture strategy by all

means, but never lose sight of known requirements and short term outcomes.

6http://martinfowler.com/articles/injection.html

32 3 Software Quality Attributes

3.4.1 Modifiability for the ICDE Application

Modifiability for the ICDE application is a difficult one to specify. A likely

requirement would be for the range of events trapped and stored by the ICDE client

to be expanded. This would have implication on the design of both the ICDE client

and the ICDE server and data store.

Another would be for third party tools to want to communicate new message

types. This would have implications on the message exchange mechanisms that the

ICDE server supported. Hence both these modifiability scenarios could be used to

test the resulting design for ease of modification.

3.5 Security

Security is a complex technical topic that can only be treated somewhat superfi-

cially here. At the architectural level, security boils down to understanding the

precise security requirements for an application, and devising mechanisms to

support them. The most common security-related requirements are:

l Authentication: Applications can verify the identity of their users and other

applications with which they communicate.
l Authorization: Authenticated users and applications have defined access rights

to the resources of the system. For example, some users may have read-only

access to the application’s data, while others have read–write.
l Encryption: The messages sent to/from the application are encrypted.
l Integrity: This ensures the contents of a message are not altered in transit.
l Nonrepudiation: The sender of a message has proof of delivery and the receiver

is assured of the sender’s identity. This means neither can subsequently refute

their participation in the message exchange.

There are well known and widely used technologies that support these elements

of application security. The Secure Socket Layer (SSL) and Public Key Infrastruc-

tures (PKI) are commonly used in Internet applications to provide authentication,

encryption and nonrepudiation. Authentication and authorization is supported in

Java technologies using the Java Authentication and Authorization Service (JAAS).

Operating systems and databases provide login-based security for authentication

and authorization.

Hopefully you’re getting the picture. There are many ways, in fact sometimes

too many, to support the required security attributes for an application. Databases

want to impose their security model on the world. .NET designers happily leverage

the Windows operating security features. Java applications can leverage JAAS

without any great problems. If an application only needs to execute in one of these

security domains, then solutions are readily available. If an application comprises

several components that all wish to manage security, appropriate solutions must be

3.5 Security 33

designed that typically localize security management in a single component that

leverages the most appropriate technology for satisfying the requirements.

3.5.1 Security for the ICDE Application

Authentication of ICDE users and third party ICDE tools is the main security

requirements for the ICDE system. In v1.0, users supply a login name and password

which is authenticated by the database. This gives them access to the data in the

data store associated with their activities. ICDE v2.0 will need to support similar

authentication for users, and extend this to handle third party tools. Also, as third

party tools may be executing remotely and access the ICDE data over an insecure

network, the in-transit data should be encrypted.

3.6 Availability

Availability is related to an application’s reliability. If an application isn’t available

for use when needed, then it’s unlikely to be fulfilling its functional requirements.

Availability is relatively easy to specify and measure. In terms of specification,

many IT applications must be available at least during normal business hours. Most

Internet sites desire 100% availability, as there are no regular business hours on-

line. For a live system, availability can be measured by the proportion of the

required time it is useable.

Failures in applications cause them to be unavailable. Failures impact on an

application’s reliability, which is usually measured by the mean time between

failures. The length of time any period of unavailability lasts is determined by the

amount of time it takes to detect failure and restart the system. Consequently,

applications that require high availability minimize or preferably eliminate single

points of failure, and institute mechanisms that automatically detect failure and

restart the failed components.

Replicating components is a tried and tested strategy for high availability. When

a replicated component fails, the application can continue executing using replicas

that are still functioning. This may lead to degraded performance while the failed

component is down, but availability is not compromised.

Recoverability is closely related to availability. An application is recoverable if

it has the capability to reestablish required performance levels and recover affected

data after an application or system failure. A database system is the classic example

of a recoverable system. When a database server fails, it is unavailable until it has

recovered. This means restarting the server application, and resolving any transac-

tions that were in-flight when the failure occurred. Interesting issues for recoverable

applications are how failures are detected and recovery commences (preferably

automatically), and how long it takes to recover before full service is reestablished.

34 3 Software Quality Attributes

During the recovery process, the application is unavailable, and hence the mean

time to recover is an important metric to consider.

3.6.1 Availability for the ICDE Application

While high availability for the ICDE application is desirable, it is only crucial that it

be available during the business hours of the office environment it is deployed in.

This leaves plenty of scope for downtime for such needs as system upgrade, backup

and maintenance. The solution should however include mechanisms such as com-

ponent replication to ensure as close to 100% availability as possible during

business hours.

3.7 Integration

Integration is concerned with the ease with which an application can be usefully

incorporated into a broader application context. The value of an application or com-

ponent can frequently be greatly increased if its functionality or data can be used in

ways that the designer did not originally anticipate. The most widespread strategies

for providing integration are through data integration or providing an API.

Data integration involves storing the data an application manipulates in ways

that other applications can access. This may be as simple as using a standard

relational database for data storage, or perhaps implementing mechanisms to

extract the data into a known format such as XML or a comma-separated text file

that other applications can ingest.

With data integration, the ways in which the data is used (or abused) by other

applications is pretty much out of control of the original data owner. This is because

the data integrity and business rules imposed by the application logic are by-passed.

The alternative is for interoperability to be achieved through an API (see Fig. 3.3).

In this case, the raw data the application owns is hidden behind a set of functions

that facilitate controlled external access to the data. In this manner, business rules

and security can be enforced in the API implementation. The only way to access the

data and integrate with the application is by using the supplied API.

Application

Data

Third Party
Application

API

Interoperability through an
API facade

Interoperability achieved by
direct data accessFig. 3.3 Integration options

3.7 Integration 35

The choice of integration strategy is not simple. Data integration is flexible and

simple. Applications written in any language can process text, or access relational

databases using SQL. Building an API requires more effort, but provides a much

more controlled environment, in terms of correctness and security, for integration.

It is also much more robust from an integration perspective, as the API clients are

insulated from many of the changes in the underlying data structures. They don’t

break every time the format is modified, as the data formats are not directly exposed

and accessed. As always, the best choice of strategy depends on what you want to

achieve, and what constraints exist.

3.7.1 Integration for the ICDE Application

The integration requirements for ICDE revolve around the need to support third

party analysis tools. There must be a well-defined and understood mechanism for

third party tools to access data in the ICDE data store. As third party tools will often

execute remotely from an ICDE data store, integration at the data level, by allowing

tools direct access to the data store, seems unlikely to be viable. Hence integration

is likely to be facilitated through an API supported by the ICDE application.

3.8 Other Quality Attributes

There are numerous other quality attributes that are important in various application

contexts. Some of these are:

l Portability: Can an application be easily executed on a different software/

hardware platform to the one it has been developed for? Portability depends on

the choices of software technology used to implement the application, and the

characteristics of the platforms that it needs to execute on. Easily portable code

bases will have their platform dependencies isolated and encapsulated in a

small set of components that can be replaced without affecting the rest of the

application.
l Testability: How easy or difficult is an application to test? Early design decisions

can greatly affect the amount of test cases that are required. As a rule of thumb,

the more complex a design, the more difficult it is to thoroughly test. Simplicity

tends to promote ease of testing.7 Likewise, writing less of your own code by

incorporating pretested components reduces test effort.
l Supportability: This is a measure of how easy an application is to support once it

is deployed. Support typically involves diagnosing and fixing problems that

7“There are two ways of constructing a software design: One way is to make it so simple that there

are obviously no deficiencies, and the other way is to make it so complicated that there are no

obvious deficiencies. The first method is far more difficult”. C.A.R. Hoare.

36 3 Software Quality Attributes

occur during application use. Supportable systems tend to provide explicit

facilities for diagnosis, such as application error logs that record the causes of

failures. They are also built in a modular fashion so that code fixes can be

deployed without severely inconveniencing application use.

3.9 Design Trade-Offs

If an architect’s life were simple, design would merely involve building policies

and mechanisms into an architecture to satisfy the required quality attributes for a

given application. Pick a required quality attribute, and provide mechanisms to

support it.

Unfortunately, this isn’t the case. Quality attributes are not orthogonal. They

interact in subtle ways, meaning a design that satisfies one quality attribute require-

ment may have a detrimental effect on another. For example, a highly secure system

may be difficult or impossible to integrate in an open environment. A highly

available application may trade-off lower performance for greater availability. An

application that requires high performance may be tied to a particular platform, and

hence not be easily portable.

Understanding trade-offs between quality attribute requirements, and designing

a solution that makes sensible compromises is one of the toughest parts of the

architect role. It’s simply not possible to fully satisfy all competing requirements.

It’s the architect’s job to tease out these tensions, make them explicit to the system’s

stakeholders, prioritize as necessary, and explicitly document the design decisions.

Does this sound easy? If only this were the case. That’s why they pay you the big

bucks.

3.10 Summary

Architects must expend a lot of effort precisely understanding quality attributes, so

that a design can be conceived to address them. Part of the difficultly is that quality

attributes are not always explicitly stated in the requirements, or adequately cap-

tured by the requirements engineering team. That’s why an architect must be

associated with the requirements gathering exercise for system, so that they can

ask the right questions to expose and nail down the quality attributes that must be

addressed.

Of course, understanding the quality attribute requirements is merely a necessary

prerequisite to designing a solution to satisfy them. Conflicting quality attributes

are a reality in every application of even mediocre complexity. Creating solutions

that choose a point in the design space that adequately satisfies these requirements

is remarkably difficult, both technically and socially. The latter involves commu-

nications with stakeholders to discuss design tolerances, discovering scenarios

3.10 Summary 37

when certain quality requirements can be safely relaxed, and clearly communi-

cating design compromises so that the stakeholders understand what they are

signing up for.

3.11 Further Reading

The broad topic of nonfunctional requirements is covered extremely thoroughly in:

L. Chung, B. Nixon, E. Yu, J. Mylopoulos, (Editors). Non-Functional Requirements

in Software Engineering Series: The Kluwer International Series in Software

Engineering. Vol. 5, Kluwer Academic Publishers. 1999.

An excellent general reference on security and the techniques and technologies

an architect needs to consider is:

J. Ramachandran. Designing Security Architecture Solutions. Wiley & Sons, 2002.

An interesting and practical approach to assessing the modifiability of an

architecture using architecture reconstruction tools and impact analysis metrics is

described in:

I. Gorton, L. Zhu. Tool Support for Just-in-Time Architecture Reconstruction
and Evaluation: An Experience Report. International Conference on Software

Engineering (ICSE) 2005, St Loius, USA, ACM Press.

38 3 Software Quality Attributes

Chapter 4

An Introduction to Middleware Architectures

and Technologies

4.1 Introduction

I’m not really a great enthusiast for drawing strong analogies between the role of a

software architect and that of a traditional building architect. There are similarities,

but also lots of profound differences.1 But let’s ignore those differences for a

second, in order to illustrate the role of middleware in software architecture.

When an architect designs a building, they create drawings, essentially a design

that shows, from various angles, the structure and geometric properties of the

building. This design is based on the building’s requirements, such as the available

space, function (office, church, shopping center, home), desired aesthetic and func-

tional qualities and budget. These drawings are an abstract representation of the

intended concrete (sic) artifact.

There’s obviously an awful lot of design effort still required to turn the archi-

tectural drawings into something that people can actually start to build. There’s

detailed design of walls, floor layouts, staircases, electrical systems, water and

piping to name just a few. And as each of these elements of a building is designed

in detail, suitable materials and components for constructing each are selected.

These materials and components are the basic construction blocks for buildings.

They’ve been created so that they can fulfill the same essential needs in many types

of buildings, whether they are office towers, railway stations or humble family

homes.

Although perhaps it’s not the most glamorous analogy, I like to think of mid-

dleware as the equivalent of the plumbing or piping or wiring for software applica-

tions. The reasons are:

l Middleware provides proven ways to connect the various software components

in an application so they can exchange information using relatively easy-to-use

mechanisms. Middleware provides the pipes for shipping data between compo-

nents, and can be used in a wide range of different application domains.

1The following paper discusses of issues: J. Baragry and K. Reed. Why We Need a Different View
of Software Architecture. The Working IEEE/IFIP Conference on Software Architecture

(WICSA), Amsterdam, The Netherlands, 2001.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_4, # Springer-Verlag Berlin Heidelberg 2011

39

l Middleware can be used to wire together numerous components in useful, well-

understood topologies. Connections can be one-to-one, one-to-many or many-

to-many.
l From the application user’s perspective, middleware is completely hidden. Users

interact with the application, and don’t care how information is exchanged

internally. As long as it works, and works well, middleware is invisible
infrastructure.

l The only time application users are ever aware of the role middleware plays is

when it fails. This is of course very like real plumbing and wiring systems.

It’s probably not wise to push the plumbing analogy any further. But hopefully

it has served its purpose. Middleware provides ready-to-use infrastructure for

connecting software components. It can be used in a whole variety of different

application domains, as it has been designed to be general and configurable to meet

the common needs of software applications.

4.2 Middleware Technology Classification

Middleware got its label because it was conceived as a layer of software “plumbing-

like” infrastructure that sat between the application and the operating system, that

is, the middle of application architectures. Of course in reality middleware is much

more complex than plumbing or a simple layer insulating an application from the

underlying operating system services.

Different application domains tend to regard different technologies as middle-

ware. This book is about mainstream IT applications, and in that domain there’s a

fairly well-understood collection that is typically known as middleware. Figure 4.1

provides a classification of these technologies, and names some example products/

technologies that represent each category. Brief explanations of the categories are

below, and the remainder of this chapter and the next two go on to describe each in

detail:

Business Process Orchestrators

Message Brokers

Application Servers

Transport
Message-Oriented

Middleware, Distributed
Objects Systems, SOAP

JEE, CCM, .NET

Mule, WebSphere Message
Broker, SonicMQ

BizTalk, TIBCO StaffWare,
ActiveBPEL

Fig. 4.1 Classifying middleware technologies

40 4 An Introduction to Middleware Architectures and Technologies

l The transport layer represents the basic pipes for sending requests and moving

data between software components. These pipes provide simple facilities and

mechanisms that make exchanging data straightforward in distributed applica-

tion architectures.
l Application servers are typically built on top of the basic transport services.

They provide additional capabilities such as transaction, security and directory

services. They also support a programming model for building multithreaded

server-based applications that exploit these additional services.
l Message brokers exploit either a basic transport service and/or application

servers and add a specialized message processing engine. This engine provides

features for fast message transformation and high-level programming features

for defining how to exchange, manipulate and route messages between the

various components of an application.
l Business process orchestrators (BPOs) augment message broker features to

support workflow-style applications. In such applications, business processes

may take many hours or days to complete due to the need for people to perform

certain tasks. BPOs provide the tools to describe such business processes,

execute them and manage the intermediate states while each step in the process

is executed.

4.3 Distributed Objects

Distributed object technology is a venerable member of the middleware family.

Best characterized by CORBA,2 distributed object-based middleware has been in

use since the earlier 1990s. As many readers will be familiar with CORBA and the

like, only the basics are briefly covered in this section for completeness.

A simple scenario of a client sending a request to a server across an object

request broker (ORB) is shown in Fig. 4.2. In CORBA, servant objects support

interfaces that are specified using CORBA’s IDL (interface description language).

IDL interfaces define the methods that a server object supports, along with the

parameter and return types. A trivial IDL example is:

module ServerExample {
interface MyObject
{

string isAlive();
};

};

This IDL interface defines a CORBA object that supports a single method,

isAlive, which returns a string and takes no parameters. An IDL compiler is

used to process interface definitions. The compiler generates an object skeleton in

2Common Object Request Broker Architecture.

4.3 Distributed Objects 41

a target programming languages (typically, but not necessarily, C++ or Java). The

object skeleton provides the mechanisms to call the servant implementation’s

methods. The programmer must then write the code to implement each servant

method in a native programming language:

The server process must create an instance of the servant and make it callable

through the ORB:

A client process can now initialize a client ORB and get a reference to the

servant that resides within the server process. Servants typically store a reference to

themselves in a directory. Clients query the directory using a simple logical name,

and it returns a reference to a servant that includes its network location and process

identity.

The servant call looks like a synchronous call to a local object. However, the

ORB mechanisms transmit, or marshal, the request and associated parameters

across the network to the servant. The method code executes, and the result is

marshaled back to the waiting client.

Network

Client

Object Reference
request

Server

Servant
reply

server ORBclient ORB

Fig. 4.2 Distributed objects using CORBA

42 4 An Introduction to Middleware Architectures and Technologies

This is a very simplistic description of distributed object technology. There’s

much more detail that must be addressed to build real systems, issues like excep-

tions, locating servants and multithreading to name just a few. From an architect’s

perspective though, the following are some essential design concerns that must be

addressed in applications:

l Requests to servants are remote calls, and hence relatively expensive (slow) as

they traverse the ORB and network. This has a performance impact. It’s always

wise to design interfaces so that remote calls can be minimized, and performance

is enhanced.
l Like any distributed application, servers may intermittently or permanently be

unavailable due to network or process or machine failure. Applications need

strategies to cope with failure and mechanisms to restart failed servers.
l If a servant holds state concerning an interaction with a client (e.g., a customer

object stores the name/address), and the servant fails, the state is lost. Mechan-

isms for state recovery must consequently be designed.

4.4 Message-Oriented Middleware

Message-oriented middleware (MOM) is one of the key technologies for building

large-scale enterprise systems. It is the glue that binds together otherwise indepen-

dent and autonomous applications and turns them into a single, integrated system.

These applications can be built using diverse technologies and run on different

platforms. Users are not required to rewrite their existing applications or make

substantial (and risky) changes just to have them play a part in an enterprise-wide

application. This is achieved by placing a queue between senders and receivers,

providing a level of indirection during communications.

How MOM can be used within an organization is illustrated in Fig. 4.3. The

MOM creates a software bus for integrating home grown applications with legacy

Mainframe

Legacy
Apps

3-tier Application Trading Partners

Fig. 4.3 Integration through messaging

4.4 Message-Oriented Middleware 43

applications, and connecting local applications with the business systems provided

by business partners.

4.4.1 MOM Basics

MOM is an inherently loosely coupled, asynchronous technology. This means the

sender and receiver of a message are not tightly coupled, unlike synchronous

middleware technologies such as CORBA. Synchronous middleware technologies

have many strengths, but can lead to fragile designs if all of the components and

network links always have to be working at the same time for the whole system to

successfully operate.

A messaging infrastructure decouples senders and receivers using an intermedi-

ate message queue. The sender can send a message to a receiver and know that it

will be eventually delivered, even if the network link is down or the receiver is not

available. The sender just tells the MOM technology to deliver the message and

then continues on with its work. Senders are unaware of which application or

process eventually processes the request. Figure 4.4 depicts this basic send–receive

mechanism.

MOM is often implemented as a server that can handle messages from multiple

concurrent clients.3 In order to decouple senders and receivers, the MOM provides

message queues that senders place messages on and receivers remove messages

from. A MOM server can create and manage multiple messages queues, and can

handle multiple messages being sent from queues simultaneously using threads

organized in a thread pool. One or more processes can send messages to a message

queue, and each queue can have one or many receivers. Each queue has a name

which senders and receivers specify when they perform send and receive opera-

tions. This architecture is illustrated in Fig. 4.5.

A MOM server has a number of basic responsibilities. First, it must accept

a message from the sending application, and send an acknowledgement that the

message has been received. Next, it must place the message at the end of the queue

that was specified by the sender. A sender may send many messages to a queue

Sender
Queue

send (Queue, Msg)
Receiver

receive (Queue, Msg)

Fig. 4.4 MOM basics

3MOM can also be simply implemented in a point-to-point fashion without a centralized message

queue server. In this style of implementation, ‘send’ and ‘receive’ queues are maintained on the

communicating systems themselves.

44 4 An Introduction to Middleware Architectures and Technologies

before any receivers remove them. Hence the MOM must be prepared to hold

messages in a queue for an extended period of time.

Messages are delivered to receivers in a First-In-First-Out (FIFO) manner,

namely the order they arrive at the queue. When a receiver requests a message,

the message at the head of the queue is delivered to the receiver, and upon

successful receipt, the message is deleted from the queue.

The asynchronous, decoupled nature of messaging technology makes it an

extremely useful tool for solving many common application design problems.

These include scenarios in which:

l The sender doesn’t need a reply to a message. It just wants to send the message

to another application and continue on with its own work. This is known as send-
and-forget messaging.

l The sender doesn’t need an immediate reply to a request message. The receiver

may take perhaps several minutes to process a request and the sender can be

doing useful work in the meantime rather than just waiting.
l The receiver, or the network connection between the sender and receiver, may

not operate continuously. The sender relies on the MOM to deliver the message

when a connection is next established. The MOM layer must be capable of

storing messages for later delivery, and possibly recovering unsent messages

after system failures.

4.4.2 Exploiting MOM Advanced Features

The basic features of MOM technology are rarely sufficient in enterprise applica-

tions. Mission critical systems need much stronger guarantees of message delivery

and performance than can be provided by a basic MOM server. Commercial-

off-the-shelf (COTS) MOM products therefore supply additional advanced features

to increase the reliability, usability and scalability of MOM servers. These features

are explained in the following sections.

MOM Server

Senders

Message
Handler
Thread Pool

Receivers

Fig. 4.5 Anatomy of a MOM

server

4.4 Message-Oriented Middleware 45

4.4.2.1 Message Delivery

MOM technologies are about delivering messages between applications. In many

enterprise applications, this delivery must be done reliably, giving the sender

guarantees that the message will eventually be processed. For example, an applica-

tion processing a credit card transaction may place the transaction details on a

queue for later processing, to add the transaction total to the customer’s account.

If this message is lost due the MOM server crashing – such things do happen – then

the customer may be happy, but the store where the purchase was made and the

credit card company will lose money. Such scenarios obviously cannot tolerate

message loss, and must ensure reliable delivery of messages.

Reliable message delivery however comes at the expense of performance. MOM

servers normally offer a range of quality of service (QoS) options that let an

architect balance performance against the possibility of losing messages. Three

levels of delivery guarantee (or QoS) are typically available, with higher reliability

levels always coming at the cost of reduced performance. These QoS options are:

l Best effort: The MOM server will do its best to deliver the message. Undelivered

messages are only kept in memory on the server and can be lost if a system fails

before a message is delivered. Network outages or unavailable receiving appli-

cations may also cause messages to time out and be discarded.
l Persistent: The MOM layer guarantees to deliver messages despite system and

network failures. Undelivered messages are logged to disk as well as being kept

in memory and so can be recovered and subsequently delivered after a system

failure. This is depicted in Fig. 4.6. Messages are kept in a disk log for the queue

until they have been delivered to a receiver.
l Transactional: Messages can be bunched into “all or nothing” units for delivery.

Also, message delivery can be coordinated with an external resourcemanager such

as a database.More on transactional delivery is explained in the following sections.

Various studies have been undertaken to explore the performance differences

between these three QoS levels. All of these by their very nature are specific to a

particular benchmark application, test environment and MOM product. Drawing

some very general conclusions, you can expect to see between 30 and 80%

MOM Server

Disk Log

From
senders

To
receivers

Fig. 4.6 Guaranteed

message delivery in message

oriented middleware

46 4 An Introduction to Middleware Architectures and Technologies

performance reduction when moving from best-effort to persistent messaging,

depending on message size and disk speed. Transactional will be slower than

persistent, but often not by a great deal, as this depends mostly on how many

transaction participants are involved. See the further reading section at the end of

this chapter for some pointers to these studies.

4.4.2.2 Transactions

Transactional messaging typically builds upon persistent messages. It tightly inte-

grates messaging operations with application code, not allowing transactional mes-

sages to be sent until the sending application commits their enclosing transaction.

Basic MOM transactional functionality allows applications to construct batches of

messages that are sent as a single atomic unit when the application commits.

Receivers must also create a transaction scope and ask to receive complete

batches of messages. If the transaction is committed by the receivers, these transac-

tional messages will be received together in the order they were sent, and then

removed from the queue. If the receiver aborts the transaction, any messages already

read will be put back on the queue, ready for the next attempt to handle the same

transaction. In addition, consecutive transactions sent from the same system to the

same queue will arrive in the order they were committed, and each message will be

delivered to the application exactly once for each committed transaction.

Transactional messaging also allows message sends and receives to be coordi-

nated with other transactional operations, such as database updates. For example, an

application can start a transaction, send a message, update a database and then

commit the transaction. The MOM layer will not make the message available on the

queue until the transaction commits, ensuring either that the message is sent and the

database is updated, or that both operations are rolled back and appear never to have

happened.

A pseudocode example of integrating messaging and database updates is shown

in Fig. 4.7. The sender application code uses transaction demarcation statements

(the exact form varies between MOM systems) to specify the scope of the transac-

tion. All statements between the begin and commit transaction statements are

considered to be part of the transaction. Note we have two, independent transactions

occurring in this example. The sender and receiver transactions are separate and

commit (or abort) individually.

4.4.2.3 Clustering

MOM servers are the primary message exchange mechanism in many enterprise

applications. If a MOM server becomes unavailable due to server or machine

failure, then applications can’t communicate. Not surprisingly then, industrial

strength MOM technologies make it possible to cluster MOM servers, running

instances of the server on multiple machines (see Fig. 4.8).

4.4 Message-Oriented Middleware 47

Exactly how clustering works is product dependent. However, the scheme in

Fig. 4.8 is typical. Multiple instances of MOM servers are configured in a logical

cluster. Each server supports the same set of queues, and the distribution of these

queues across servers is transparent to the MOM clients. MOM clients behave

exactly the same as if there was one physical server and queue instance.

When a client sends a message, one of the queue instances is selected and the

message stored on the queue. Likewise, when a receiver requests a message, one of

the queue instances is selected and a message removed. The MOM server clustering

implementation is responsible for directing client requests to individual queue

instances. This may be done statically, when a client opens a connection to the

server, or dynamically, for every request.4

MOM Server

Senders Receivers

MOM Server

ApplicationQ

ApplicationQ

Fig. 4.8 Clustering MOM

servers for reliability and

scalability

Begin transaction...
update database record
put message on queue

commit transaction

Begin transaction
...
get message from queue
update database record

commit transaction

2

1

1

3

4

5

3

4
5

6

63

......2

Fig. 4.7 Transactional messaging

4An application that needs to receive messages in the order they are sent is not suitable for

operating in this a clustering mode.

48 4 An Introduction to Middleware Architectures and Technologies

A cluster has two benefits. First, if one MOM server fails, the other queue

instances are still available for clients to use. Applications can consequently keep

communicating. Second, the request load from the clients can be spread across the

individual servers. Each server only sees a fraction (ideally 1/[number of servers] in

the cluster) of the overall traffic. This helps distribute the messaging load across

multiple machines, and can provide much higher application performance.

4.4.2.4 Two-Way Messaging

Although MOM technology is inherently asynchronous and decouples senders and

receivers, it can also be used for synchronous communications and building more

tightly coupled systems. In this case, the sender simply uses the MOM layer to send

a request message to a receiver on a request queue. The message contains the name

of the queue to which a reply message should be sent. The sender then waits until

the receiver sends back a reply message on a reply queue, as shown in Fig. 4.9.

This synchronous style of messaging usingMOM is frequently used in enterprise

systems, replacing conventional synchronous technology such as CORBA. There

are a number of pragmatic reasons why architects might choose to use messaging

technology in this way, including:

l Messaging technology can be used with existing applications at low cost and

with minimal risk. Adapters are available, or can be easily written to interface

between commonly used messaging technologies and applications. Applications

do not have to be rewritten or ported before they can be integrated into a larger

system.
l Messaging technologies tend to be available on a very wide range of platforms,

making it easier to integrate legacy applications or business systems being run

by business partners.
l Organizations may already have purchased, and gained experience in using, a

messaging technology and they may not need the additional features of an

application server technology.

MOM Server

Senders Receivers

MOM Server

ReplyQ

RequestQ

Fig. 4.9 Request–Reply

messaging

4.4 Message-Oriented Middleware 49

4.4.3 Publish–Subscribe

MOM is a proven and effective approach for building loosely coupled enterprise

systems. But, like everything, it has its limitations. The major one is that MOM is

inherently a one-to-one technology. One sender sends a single message to a single

queue, and one receiver retrieves that message for the queue. Not all problems are

so easily solved by a 1–1 messaging style. This is where publish–subscribe archi-

tectures enter the picture.

Publish–subscribe messaging extends the basic MOM mechanisms to support

1 to many, many to many, and many to 1 style communications. Publishers send a

single copy of a message addressed to a named topic, or subject. Topics are a logical
name for the publish–subscribe equivalent of a queue in basic MOM technology.

Subscribers listen for messages that are sent to topics that interest them. The

publish–subscribe server then distributes each message sent on a topic to every

subscriber who is listening on that topic. This basic scheme is depicted in Fig. 4.10.

In terms of loose coupling, publish–subscribe has some attractive properties.

Senders and receivers are decoupled, each respectively unaware of which applica-

tions will receive a message, and who actually sent the message. Each topic may

also have more than one publisher, and the publishers may appear and disappear

dynamically. This gives considerable flexibility over static configuration regimes.

Likewise, subscribers can dynamically subscribe and unsubscribe to a topic. Hence

the subscriber set for a topic can change at any time, and this is transparent to the

application code.

In publish–subscribe technologies, the messaging layer has the responsibility for

managing topics, and knowingwhich subscribers are listening to which topics. It also

has the responsibility for delivering every message sent to all active current sub-

scribers. Topics can be persistent or nonpersistent, with the same effects on reliable

message delivery as in basic point-to-pointMOM (explained in the previous section).

Messages can also be published with an optional “time-to-live” setting. This tells the

publish–subscribe server to attempt to deliver a message to all active subscribers for

the time-to-live period, and after that delete the message from the queue.

The underlying protocol a MOM technology uses for message delivery can

profoundly affect performance. By default, most use straightforward point-to-point

Publisher

Subscriber

Subscriber

Subscriber

Topic

Create/
Publish

Register/
Subscribe

Fig. 4.10 Publish–Subscribe

messaging

50 4 An Introduction to Middleware Architectures and Technologies

TCP/IP sockets. Implementations of publish–subscribe built on point-to-point

messaging technology duplicate each message send operation from the server for

every subscriber. In contrast, some MOM technologies support multicast or broad-

cast protocols, which send each message only once on the wire, and the network

layer handles delivery to multiple destinations.

In Fig. 4.11, the multicast architecture used in TIBCO’s Rendezvous publish–

subscribe technology is illustrated. Each node in the publish–subscribe network

runs a daemon process known as rvd. When a new topic is created, it is assigned a

multicast IP address.

When a publisher sends a message, its local rvd daemon intercepts the message

and multicasts a single copy of the message on the network to the address associated

with the topic. The listening daemons on the network receive the message, and each

checks if it has any local subscribers to the message’s topic on its node. If so, it

delivers the message to the subscriber(s), otherwise it ignores the message. If a

message has subscribers on a remote network,5 an rvrd daemon intercepts the

message and sends a copy to each remote network using standard IP protocols.

Each receiving rvrd daemon then multicasts the message to all subscribers on its

local network.

Not surprisingly, solutions based on multicast tend to provide much better raw

performance and scalability for best effort messaging. Not too long ago, I was

rvd

rvd

Publisher

Subscriber

rvd

Subscriber

rvd

Subscriber

rvrd

rvd

Subscriber

rvd

Subscriber

rvrd

Fig. 4.11 Multicast delivery for publish–subscribe

5And the wide area network doesn’t support multicast.

4.4 Message-Oriented Middleware 51

involved in a project to quantify the expected performance difference between

multicast and point-to-point solutions. We investigated this by writing and running

some benchmarks to compare the relative performance of three publish–subscribe

technologies, and Fig. 4.12 shows the benchmark results.

It shows the average time for delivery from a single publisher to between 10 and

50 concurrent subscribers when the publisher outputs a burst of messages as fast as

possible. The results clearly show that multicast publish–subscribe is ideally suited

to applications with demands for low message latencies and hence very high

throughput.

4.4.3.1 Understanding Topics

Topics are the publish–subscribe equivalent of queues. Topic names are simply

strings, and are specified administratively or programmatically when the topic is

created. Each topic has a logical name which is specified by all applications which

wish to publish or subscribe using the topic.

Some publish–subscribe technologies support hierarchical topic naming. The

details of exactly how the mechanisms explained below work are product depen-

dent, but the concepts are generic and work similarly across implementations. Let’s

use the slightly facetious example shown in Fig. 4.13 of a topic naming tree.

Each box represents a topic name that can be used to publish messages. The

unique name for each topic is a fully qualified string, with a “/” used as separator

between levels in the tree. For example, the following are all valid topic names:

0
100
200
300
400
500
600
700

10 20 30 40 50
No. Of Subscribers

M
ill

is
ec

on
ds MC1

MC2

QB

Fig. 4.12 Publish–subscribe best effort messaging performance: Comparing 2 multicast technol-

ogies (MC1, MC2) with a queue-based (QB) publish–subscribe technology

52 4 An Introduction to Middleware Architectures and Technologies

Hierarchical topic names become really useful when combined with topic wild-

cards. In our example, an “*” is used as a wildcard that matches zero or more

characters in a topic name. Subscribers can use wildcards to receive messages from

more than one topic when they subscribe. For example:

This matches both Sydney/DevGroup/Information and

Sydney/SupportGroup/Information. Similarly, a subscriber

that specifies the following topic:

This will receive messages published on all three topics within the Sydney/
DevGroup tree branch. As subscribing to whole branches of a topic tree is very

useful, some products support a shorthand for the above, using another wildcard

character such as “**”, i.e.,:

The “**” wildcards also matches all topics that are in Sydney/
DevGroup branch. Such a wildcard is powerful as it is naturally extensible. If

new topics are added within this branch of the topic hierarchy, subscribers do not

have to change the topic name in their subscription request in order to receive

messages on the new topics.

Carefully crafted topic name hierarchies combined with wildcarding make

it possible to create some very flexible messaging infrastructures. Consider how

applications might want to subscribe to multiple topics, and organize your design to

support these.

Sydney

DevGroup SupportGroup

InformationInformation

work gossip work gossip

Fig. 4.13 An example of hierarchical topic naming

4.4 Message-Oriented Middleware 53

4.5 Application Servers

There are many definitions for application servers, but all pretty much agree on the

core elements. Namely, an application server is a component-based server technol-

ogy that resides in the middle-tier of an N-tier architecture, and provides distributed

communications, security, transactions and persistence. In this section, we’ll use

the Java Enterprise Edition6 as our example.

Application servers are widely used to build internet-facing applications.

Figure 4.14 shows a block diagram of the classic N-tier architecture adopted by

many web sites.

An explanation of each tier is below:

l Client Tier: In a web application, the client tier typically comprises an Internet

browser that submits HTTP requests and downloads HTML pages from a web

server. This is commodity technology, not an element of the application server.
l Web Tier: The web tier runs a web server to handle client requests. When a

request arrives, the web server invokes web server-hosted components such as

servlets, Java Server Pages (JSPs) or Active Server Pages (ASPs) depending on

the flavor of web server being used. The incoming request identifies the exact

web component to call. This component processes the request parameters, and

uses these to call the business logic tier to get the required information to satisfy

the request. The web component then formats the results for return to the user as

HTML via the web server.
l Business Component Tier: The business components comprise the core business

logic for the application. The business components are realized by for example

Enterprise JavaBeans (EJB) in JEE, .NET components or CORBA objects. The

business components receive requests from the web tier, and satisfy requests

usually by accessing one or more databases, returning the results to the web tier.

Client tier

Web tier

Business Component tier

Enterprise Information System tier

.NET Remoting IIOPRMI

http

SQLJDBC

browsers

Web
Servers

EJBs
.NET
Components

Databases
ERPs

Fig. 4.14 N-Tier architecture

for web applications

6The platform was known as Java 2 Platform, Enterprise Edition or J2EE until the name was

changed to Java EE in version 5.

54 4 An Introduction to Middleware Architectures and Technologies

A run-time environment known as a container accommodates the components.

The container supplies a number of services to the components it hosts. These

varying depending on the container type (e.g., EJB, .NET, CORBA), but include

transaction and component lifecycle management, state management; security,

multithreading and resource pooling. The components specify, in files external

to their code, the type of behavior they require from the container at run-time,

and then rely on the container to provide the services. This frees the application

programmer from cluttering the business logic with code to handle system and

environmental issues.
l Enterprise Information Systems Tier: This typically consists of one or more

databases and back-end applications like mainframes and other legacy systems.

The business components must query and interact with these data stores to

process requests.

The core of an application server is the business component container and the

support it provides for implementing business logic using a software component

model. As the details vary between application server technologies, let’s just look at

the widely used EJB model supported by JEE. This is a representative example of

application server technology.

4.5.1 Enterprise JavaBeans

The EJB architecture defines a standard programming model for constructing

server-side Java applications. A JEE-compliant application server provides an

EJB container to manage the execution of application components. In practical

terms, the container provides an operating system process (in fact a Java virtual

machine) that hosts EJB components. Figure 4.15 shows the relationship between an

application server, a container and the services provided. When an EJB client

invokes a server component, the container allocates a thread and invokes an instance

Application ServerEJB Container

Transaction
Service

Directory
Service

Security
Service

Thread Pool

Connection Pool

Persistence

Lifecycle Management

EJB Pool

Fig. 4.15 JEE application

server, EJB container and

associated services

4.5 Application Servers 55

of the EJB component. The container manages all resources on behalf of the com-

ponent and all interactions between the component and the external systems.

4.5.2 EJB Component Model

The EJB component model defines the basic architecture of an EJB component.

It specifies the structure of the component interfaces and the mechanisms by which

it interacts with its container and with other components.

The latest EJB specification (part of the JavaTM Platform, Enterprise Edition

(Java EE) version 5) defines two main types of EJB components, namely session
beans and message-driven beans. Earlier JEE specifications also defined entity
beans, but these have been phased out and replaced by the simpler and more

powerful Java Persistence API7. This provides an object/relational mapping facility

for Java applications that need access to relational databases from the server tier

(a very common requirement, and one beyond the scope of this book).

Session beans are typically used for executing business logic and to provide

services for clients to call. Session beans correspond to the controller in a model-

view-controller8 architecture because they encapsulate the business logic of a three-

tier architecture. Session beans define an application-specific interface that clients

can use to make requests. Clients send a request to a session bean and block until the

session bean sends a response.

Somewhat differently to session beans, message-driven beans are components

that process messages asynchronously. A message bean essentially acts as a listener

for messages that are sent from a Java Message Service (JMS) client. Upon receipt

of a message, the bean executes its business logic and then waits for the next

message to arrive. No reply is sent to the message sender.

Further, there are two types of session beans, known as stateless session beans

and stateful session beans. The difference between these is depicted in Fig. 4.16.

A stateless session bean is defined as not being conversational with respect to its
calling process. This means that it does not keep any state information on behalf of

any client that calls it. A client will get a reference to a stateless session bean in a

container, and can use this reference to make many calls on an instance of the bean.

However, between each successive bean invocation, a client is not guaranteed to

bind to any particular stateless session bean instance. The EJB container delegates

client calls to stateless session beans on an as needed basis, so the client can never

be certain which bean instance they will actually talk to. This makes it meaningless

to store client related state information in a stateless session bean. From the

container’s perspective, all instances of a stateless session bean are viewed as

equal and can be assigned to any incoming request.

7http://java.sun.com/javaee/reference/faq/persistence.jsp
8See http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

56 4 An Introduction to Middleware Architectures and Technologies

On the other hand, a stateful session bean is said to be conversational with

respect to its calling process; therefore it can maintain state information about a

conversation with a client. Once a client gets a reference to a stateful session bean,

all subsequent calls to the bean using this reference are guaranteed to go to the same

bean instance. The container creates a new, dedicated stateful session bean for each

client that creates a bean instance. Clients may store any state information they wish

in the bean, and can be assured it will still be there next time they access the bean.

EJB containers assume responsibility for managing the lifecycle of stateful

session beans. The container will write out a bean’s state to disk if it has not been

used for a while, and will automatically restore the state when the client makes a

subsequent call on the bean. This is known as passivation and activation of the

stateful bean. Containers can also be configured to destroy a stateful session bean

and its associated resources if a bean is not used for a specified period of time.

In many respects, message driven beans are handled by the EJB container in a

similar manner to stateless session beans. They hold no client-specific conversa-

tional data, and hence instances can be allocated to handle messages sent from any

client. Message beans don’t receive requests directly from clients however. Rather

they are configured to listen to a JMS queue, and when clients send messages to the

queue, they are delivered to an instance of a message bean to process.

4.5.3 Stateless Session Bean Programming Example

To create an EJB component in EJB version 3.0, the developer must provide session

bean class and a remote business interface. The remote interface contains the business

EJB Container

state

Stateless bean
pool

Stateful beans
state

state

state

state

state

state

EJB
Clients

Fig. 4.16 Stateless versus stateful session beans

4.5 Application Servers 57

methods offered by the bean. These are of course application specific. Below is a

(cut down) remote interface example for a stateless session bean. Note this is a

standard Java interface that is simply decorated with @Remote annotation:

The class definition is again standard Java, and is simply annotated with

@Stateless. The @Stateless annotation states that this class is a stateless session

bean, and the business interface is used to invoke it.

Accessing an EJB client in EJB 3.0 is very simple indeed, requiring the use of the

@EJB annotation, namely:

EJB clients may be standalone Java applications, servlets, applets, or even other

EJBs. Clients interact with the server bean entirely through the methods defined in

the bean’s remote interface.
The story for stateful session beans is pretty similar, using the @Stateful

annotation. Stateful session beans should also provide a bean specific initialization

method to set up the bean’s state, and a method annotated with@Remove, which is
called by clients to indicate they have finished with this bean instance, and the

container should remove it after the method completes.

4.5.4 Message-Driven Bean Programming Example

Message-driven beans are pretty simple to develop too. In the most common case of

a message driven bean receiving messages from a JMS server, the bean implements

the javax.jms.MessageListener interface. In addition, using the

58 4 An Introduction to Middleware Architectures and Technologies

@MessageDriven annotation, the developer specifies the name9 of the destina-

tion from which the bean will consume messages.

4.5.5 Responsibilities of the EJB Container

It should be pretty obvious at this stage that the EJB container is a fairly complex

piece of software. It’s therefore worth covering exactly what the role of the

container is in running an EJB application. In general, a container provides EJB

components with a number of services. These are:

l It provides bean lifecycle management and bean instance pooling, including

creation, activation, passivation, and bean destruction.
l It intercepts client calls on the remote interface of beans to enforce transaction

and security (see below) constraints. It also provides notification callbacks at the

start and end of each transaction involving a bean instance.
l It enforces session bean behavior, and acts as a listener for message-driven beans.

In order to intercept client calls, the tools associated with a container must

generate additional classes for an EJB at deployment time. These tools use Java’s

introspection mechanism to dynamically generate classes to implement the remote
interfaces of each bean. These classes enable the container to intercept all client calls

on a bean, and enforce the policies specified in the bean’s deployment descriptor.

The container also provides a number of other key run-time features for EJBs.

These typically include:

l Threading: EJB’s should not explicitly create and manipulate Java threads. They

must rely on the container to allocate threads to active beans in order to provide a

concurrent, high performance execution environment. This makes EJBs simpler

to write, as the application programmer does not have to implement a threading

scheme to handle concurrent client requests.
l Caching: The container can maintain caches of the entity bean instances it man-

ages. Typically the size of the caches can be specified in deployment descriptors.

9Specifically, the annotation contains amappedName element that specifies the JNDI name of

the JMS queue where messages are received from.

4.5 Application Servers 59

l Connection Pooling: The container can manage a pool of database connections

to enable efficient access to external resource managers by reusing connections

once transactions are complete.

Finally, there’s also some key features and many details of EJB that haven’t been

covered here. Probably the most important of these, alluded to above, are:

l Transactions: A transaction is a group of operations that must be performed as

a unit, or not at all. Databases provides transaction management, but when a

middle tier such as an EJB container makes distributed updates across multiple

databases, things can get tricky. EJB containers contain a transaction manager

(based on the Java Transaction API specification), that can be used to coordinate

transactions at the EJB level. Session and message driven beans can be annotated

with transaction attributes and hence control the commit or rollback of distri-

buted database transactions. This is a very powerful feature of EJB.
l Security: Security services are provided by the EJB container and can be used to

authenticate users and authorize access to application functions. In typical EJB

style, security can be specified using annotations in the EJB class definition, or

be implemented programmatically. Alternatively, EJB security can be specified

externally to the application in an XML deployment descriptor, and this infor-

mation is used by the container to override annotation-specified security.

4.5.6 Some Thoughts

This section has given a brief overview of JEE and EJB technology. The EJB

component model is widely used and has proven a powerful way of constructing

server-side applications. And although the interactions between the different parts

of the code are at first a little daunting, with some exposure and experience with the

model, it becomes relatively straightforward to construct EJB applications.

Still, while the code construction is not difficult, a number of complexities

remain. These are:

l The EJB model makes it possible to combine components in an application using

many different architectural patterns. This gives the architect a range of design

options for an application. Which option is best is often open to debate, along

with what does best mean in a given application? These are not always simple

questions, and requires the consideration of complex design trade-offs.
l The way beans interact with the container is complex, and can have a significant

effect of the performance of an application. In the same vein, all EJB server

containers are not equal. Product selection and product specific configuration is

an important aspect of the application development lifecycle.

For references discussing both these issues, see the further reading section at the

end of this chapter.

60 4 An Introduction to Middleware Architectures and Technologies

4.6 Summary

It’s taken the best part of 20 years to build, but now IT architects have a powerful

toolkit of basic synchronous and asynchronous middleware technologies to lever-

age in designing and implementing their applications. These technologies have

evolved for two main reasons:

1. They help make building complex, distributed, concurrent applications simpler.

2. They institutionalize proven design practices by supporting them in off-the-shelf

middleware technologies.

With all this infrastructure technology available, the skill of the architect lies in

how they select, mix and match architectures and technologies in a way that meets

their application’s requirements and constraints. This requires not only advanced

design skills, but also deep knowledge of the technologies involved, understanding

what they can be reliably called on to do, and equally importantly, what they cannot

sensibly do. Many applications fail or are delivered late because perfectly good

quality and well built middleware technology is used in a way in which it was never

intended to be used. This is not the technology’s fault – it’s the designers’. Hence

middleware knowledge, and more importantly experience with the technologies in

demanding applications, is simply a prerequisite for becoming a skilled architect in

the information technology world.

To make life more complex, it’s rare that just a single architecture and

technology solution makes sense for any given application. For example, simple

messaging or an EJB component-based design might make sense for a particular

problem. And these logical design alternatives typically have multiple imple-

mentation options in terms of candidate middleware products for building the

solution.

In such situations, the architect has to analyze the various trade-offs between

different solutions and technologies, and choose an alternative (or perhaps nomi-

nate a set of competing alternatives) that meets the application requirements. To be

honest, I’m always a little suspicious of architects who, in such circumstances,

always come up with the same architectural and technology answer (unless they

work for a technology vendor – in that case, it’s their job).

The cause of this “I have a hammer, everything is a nail” style behavior is often a

fervent belief that a particular design, and more often a favored technology, can

solve any problems that arise. As it’s the end of the chapter, I won’t get on my soap

box. But I’ll simply say that open-minded, experienced and technologically agnos-

tic architects are more likely to consider a wider range of design alternatives.

They’re also likely to propose solutions most appropriate to the quirks and con-

straints of the problem at hand, rather than enthusiastically promoting a particular

solution that demonstrates the eternal “goodness” of their favorite piece of technol-

ogy over its “evil” competitors.

4.6 Summary 61

4.7 Further Reading

There’s an enormous volume of potential reading on the subject matter covered in

this chapter. The references that follow should give you a good starting point to

delve more deeply.

4.7.1 CORBA

The best place to start for all CORBA related information is the Object Manage-

ment Group’s web site, namely:

http://www.omg.org

Navigate from here, and you’ll find information on everything to do with

CORBA, including specifications, tutorials and many books. For specific recom-

mendations, in my experience, anything written by Doug Schmidt, Steve Vinosky

or Michi Henning is always informative and revealing.

Talking of Michi Henning, another very interesting technology represented

by the approach taken in Internet Communications Engine (Ice) from ZeroC

(http://zeroc.com/). Ice is open source, and there’s a list of interesting articles at:

http://zeroc.com/articles/index.html

Particularly interesting are “A New Approach to Object-Oriented Middleware”

(IEEE Internet Computing, Jan 2004) and The Rise and Fall of CORBA (ACM

Queue, Jun 2006)

4.7.2 Message-Oriented Middleware

The best place to look for MOM information is probably the product vendor’s

documentation and white papers. Use your favorite search engine to look for

information on IBM WebSphere MQ, Microsoft Message Queue (MSMQ), Sonic

MQ, and many more. If you’d like to peruse the Java Messaging Service specifica-

tion, it can be downloaded from:

http://java.sun.com/products/jms/docs.html

If you’re interested in a very readable and recent analysis of some publish–

subscribe technology performance, including a JMS, the following is well worth

downloading:

Piyush Maheshwari and Michael Pang, Benchmarking Message-Oriented Middle-
ware: TIB/RV versus SonicMQ, Concurrency and Computation: Practice and

Experience, volume 17, pages 1507–1526, 2005

62 4 An Introduction to Middleware Architectures and Technologies

4.7.3 Application Servers

Again, the Internet is probably the best source of general information on applica-

tions servers. Leading product include WebLogic (BEA), WebSphere (IBM), .NET

application server (Microsoft), and for a high quality open source implementation,

JBoss. There’s a good tutorial for JEE v5.0 at:

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

There’s also lots of good design knowledge about EJB applications in:

F. Marinescu. EJB Design Patterns: Advanced Patterns, Processes, and Idioms.

Wiley, 2002

D. Alur, D. Malks, J. Crupi. Core JEE Patterns: Best Practices and Design Strategies.

Second Edition, Prentice Hall, 2003

Two excellent books on transactions in Java, and in general, are:

Mark Little, Jon Maron, Greg Pavlik, Java Transaction Processing: Design and

Implementation, Prentice-Hall, 2004

Philip A. Bernstein, Eric Newcomer, Principles of Transaction Processing, Second

Edition (The Morgan Kaufmann Series in Data Management Systems), Morgan

Kaufman, 2009

The following discusses how to compare middleware and application server

features:

I. Gorton, A. Liu, P. Brebner. Rigorous Evaluation of COTSMiddleware Technology.
IEEE Computer, vol. 36, no. 3, pages 50–55, March 2003

4.7 Further Reading 63

.

Chapter 5

Service-Oriented Architectures

and Technologies

Paul Greenfield

5.1 Background

Service-oriented architectures and Web services are the latest step in the develop-

ment of application integration middleware. They attempt to fix the interoperability

problems of the past and provide a foundation for future Internet-scale distributed

applications. They also attempt, and to some extent succeed, to mark the end of the

“middleware wars” with all major vendors finally agreeing on a single rich set of

technology standards for application integration and distributed computing.

Application integration middleware is used for many purposes from linking

together local components to create simple desktop or Web server applications to

building global supply chains that span the Internet. Traditional technologies in this

space, such as JEE application servers and messaging, can be excellent solutions

for building applications from components or integrating applications running

within the same organization. However, they fall well short of what is needed to

link together business processes run by independent organizations that are con-

nected over the global Internet. Web services and service-oriented architectures are

designed to meet just this need.

In many ways, service-oriented computing and Web services are nothing new.

Like earlier distributed computing technologies and architectures, their main pur-

pose is to let applications invoke functionality provided by other applications, just

as JEE middleware lets Java client applications call methods provided by JEE

components.

The real difference here is that the focus of the services-based model and its

supporting technologies is on interoperability and solving the practical problems

that arise because of differences in platforms and programming languages.

Although it is possible to design and build “service-oriented systems” using any

distributed computing or integration middleware, only Web services technologies

can today meet the critical requirement for seamless interoperability that is such an

important part of the service-oriented vision.

This emphasis on pragmatic interoperability is a result of accepting the diverse

nature of today’s enterprises, and realizing that this diversity is not going to

diminish in the future. Almost all organizations today support a mix of platforms,

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_5, # Springer-Verlag Berlin Heidelberg 2011

65

programming languages, and software packages, including business-critical legacy

applications. Any integration middleware proposal that assumes the wholesale

rewriting of applications or the migration of already working applications to new

platforms will fail at the first hurdle as the costs and risks will be too high.

The reality is that large-scale enterprise applications are increasingly being

woven together from applications, packages, and components that were never

designed to work together and may even run on incompatible platforms. This

gives rise to a critical need for interoperability, one that becomes even more impor-

tant as organizations start building a new generation of wide-area integrated

applications that directly incorporate functions hosted by business partners and

specialist service providers.

Web services and service-oriented architectures are the computing industry’s

response to this need for interoperable integration technologies.

5.2 Service-Oriented Systems

The shift to service-oriented systems is being driven by the need to integrate both

applications and the business systems they support. Most existing integration

technologies are closed or proprietary and only support the integration of applica-

tions built on the same technology, unless organizations are willing to bear the cost

of buying or writing complex, special purpose adapter code. These restrictions may

just be acceptable within a single organization, although, even then, the chances of

every application and every computer system being compatible are pretty slight in

reality.

There has been a need for business system integration ever since there have

been business systems. This integration has traditionally been handled through the

exchange of paper documents such as quotes, invoices, and orders. These tradi-

tional documents are still used today, but now they are almost always produced by

computerized systems. The task of integrating these business systems has changed

little though and is still commonly done by sending these paper documents by post

or fax, and then rekeying their data once they arrive.

The cost savings and efficiencies that come from getting rid of paper and directly

integrating computer-based business systems have been obvious (and attractive) for

many years but have proved difficult to attain for just about as long. EDI (Electronic

Data Interchange1) was one major early attempt to realize these potential benefits.

In many ways, it was before its time and so proved too costly for all but the largest

organizations because of the closed and private nature of EDI networks and the high

cost of proprietary EDI software.

The advent of the Internet and Web services has totally changed this picture. The

Internet now potentially connects every computer system in one global network,

1http://en.wikipedia.org/wiki/Electronic_Data_Interchange

66 5 Service-Oriented Architectures and Technologies

letting businesses send documents electronically to their partners and customers

anywhere in the world, quickly and at low cost. Web services addresses the other

part of the problem by providing a single set of application integration standards

that are implemented by every major vendor and are shipped as an integral part of

all server platforms. The result of these developments is that business-level inte-

gration may soon be relatively easy, inexpensive, and commonplace.

Web services are really just another application integration technology, concep-

tually little different from CORBA, JEE, DCOM, or any of their competitors. All of

these technologies are much alike: client applications can discover servers, find out

what services they are offering, and invoke the functions they provide. What is

different about service-oriented systems and their supporting Web services technol-

ogies is that these applications and servers are now expected to be accessed by

outside organizations and individuals over the public Internet. The result of this shift

in focus is a set of standards and architectural principles that emphasize interopera-

bility by making the fewest possible assumptions about how service providers and

consumers work internally and what implementation details they have in common.

Figure 5.1 shows a typical Internet-based retail application. Customers see a

single seamless application that lets them place orders for books and music and

(MVS/CICS)

Bank 1

(Win2K3/
COM+)

Credit Card
processor

Linux/
EJB

Merchant 2

(Win2K3
.NET)

Supplier 1

(Solaris/
CORBA)

Shipper 2

Smart client app

Browser-based client

On-line retail
application

(J2EE/IIOP/JMS)Web Server

Reseller

Win2K3
EJB

User
authentication

(Win2K/
MQ)

Supplier 3

Linux/
EJB

Supplier 2

Tandem

Bank 2

(VMS)

Shipper 1

Fig. 5.1 Example service-based retail application

5.2 Service-Oriented Systems 67

make payments. In reality this application consists of just a small core of business

logic provided by the retailer augmented by services provided by business partners,

and all running on a diverse mix of platforms and middleware. Customers can

access this application using Web browsers or they can run friendlier and smarter

client applications that make calls directly into the back-end services provided by

the retailer’s core application. These same services can also be used to support

outsourced order fulfillment services provided to specialized retailers, letting them

own and operate their own online shop fronts and rely on the retailer for services

such as handling orders and accepting payments.

This application could be built using any of the middleware technologies

discussed in previous chapters. The architect of any such system would however

face difficult and complex issues ensuring interoperability and robustness. These

are precisely the areas addressed by service-oriented architectures and Web services

technologies.

The fundamental principles underlying service-oriented architectures are not

new and largely just reflect years of experience in building large-scale integrated

systems that actually worked and were maintainable. These basic principles under-

lying service-oriented architectures are often expressed as four tenets:

l Boundaries are explicit
l Services are autonomous
l Share schemas and contracts, not implementations
l Service compatibility is based on policy

Let’s look at each of these.

5.2.1 Boundaries Are Explicit

The first of the tenets recognizes that services are independent applications, not

just code that is bound into your program that can be called at almost no cost.

Accessing a service requires, at least, crossing over the boundaries that separate

processes, and probably traversing networks and doing cross-domain user authen-

tication. Every one of these boundaries (process, machine, trust) that has to be

crossed reduces performance, adds complexity, and increases the chances of

failure. Importantly, they have to be consciously recognized and handled within

the design process.

Developers and service providers can also be geographically separated, so there

are boundaries to be crossed here too, with costs reflected in increased development

time and reduced robustness. The response to this challenge is to focus on simplic-

ity, both in the specification of services and in the supporting Web services

standards. Good services have simple interfaces and share as few abstractions and

assumptions as possible with their clients. This makes it easier for them to be

understood and successfully used by remote developers.

68 5 Service-Oriented Architectures and Technologies

5.2.2 Services Are Autonomous

Services are autonomous independent applications, not classes or components that

are tightly bound into client applications. Services are meant to be deployed onto a

network, quite possibly the Internet, where they can be easily integrated into any

application that finds them useful. Services need to know nothing about client

applications and may accept incoming service requests from anywhere, just as

long as the request messages are correctly formatted and meet specified security

requirements.

Services can be deployed and managed entirely and the owners of these services

can change their definitions, implementations, or requirements at any time. Version

compatibility is a long-standing problem with all distributed systems and technol-

ogies and is made worse by the open nature of services. How do you evolve a service

when you have a large (possibly unknown) number of clients that depend on it?

For example, a bank running a server component that is only called by an

internal teller application can know the identity and location of all client systems,

so updating the service together with all of its callers is at least technically feasible.

But the credit card processor that can accept authorization requests from any

merchant over the Internet has no way of either knowing how to locate its clients

(past, current, or potential) or getting them to upgrade their varied calling applica-

tions to match new service definitions.

Part of the answer to this problem lies in the deliberate simplicity and extensi-

bility of the services model. All that clients know about a service is what messages

it will accept and return, and this is the only dependency that exists between a client

and a service. Owners of services can change the implementation of a service at

will, just as long as currently valid messages are still accepted. They can also extend

and evolve their service request and response messages, just as long as they remain

backwardly compatible. Our credit card processor could totally change how their

service is implemented, perhaps moving from CICS/COBOL to a C#/.NET plat-

form, and this change will be invisible to all of their callers as long as no

incompatible changes are made to the “authorize payment” message.

As services are autonomous, they are also responsible for their own security and

have to protect themselves against possibly malicious callers. Systems deployed

entirely on a single system or on a closed network may be able to largely ignore

security or simply rely on firewalls or secure network pipes, such as SSL. However,

services accessible over the open Internet have to take security much more seriously.

5.2.3 Share Schemas and Contracts, Not Implementations

Years of experience has shown that building robust and reliable large-scale

integrated systems is difficult. Trying to build these systems from components

built using different programming models and running on different platforms is

5.2 Service-Oriented Systems 69

much harder still. Service-oriented technologies address this problem by deliber-

ately aiming for simplicity as much as possible. Services aren’t remote objects with

inheritance, methods, and complex run-time behavior like in CORBA, nor are they

components that support events, properties, and stateful method calls. Services are

just applications that receive and send messages. Clients and services share nothing

other than the definitions of these messages and certainly don’t share method code

or complex run-time environments.

All that an application needs to know about a service is its contract: the structure

(schema) of the messages it will accept and return, and whether they have to be sent

in any particular order. Client applications can use such a contract to build request

messages to send to a service, and services can use their schemas to validate

incoming messages and make sure they are correctly formatted.

5.2.4 Service Compatibility Is Based on Policy

Clients have to be completely compatible with the services they want to use.

Compatibility means not simply that clients are following the specified message

formats and exchange patterns, but also that they comply with other important

requirements, such as whether messages should be encrypted or need to be tracked

to ensure that none have been lost in transit. In the service-oriented model, these

nonfunctional requirements are defined using policies, and not just written down as

part of a service’s documentation.

For example, our credit card processor may decide that all merchants submitting

payment authorization requests must prove their identity using X.509-based

authentication tokens. This security constraint can be represented simply as a

statement in the published security policy for the authorization service.

Policies are collections of machine-readable statements that let a service

define its requirements for things like security and reliability. These policies can

be included as part of a service’s contract, allowing it to completely specify a

service’s behavior and expectations, or they can be kept in separate policy stores

and fetched dynamically at run-time.

Contract-based policies can be regarded as just a part of a service’s documenta-

tion, but they can also be used by development tools to automatically generate

compatible code for both clients and services. For example, a server-side security

policy can be used to generate code that will check that required parts of an

incoming message are encrypted and then decrypt this data, presenting it as plain

text to the service application. All this is done without any coding effort from the

developer.

The separation of policies from contracts also lets client applications dynami-

cally adapt to meet the requirements of a particular service provider. This will

become increasingly useful as services become standardized and offered by com-

peting providers. For example, our online retailer may use two shippers who offer

exactly the same services and use the same message schemas but have different

70 5 Service-Oriented Architectures and Technologies

authentication requirements. The use of dynamic policies lets our developers write

a single application that supports both authentication methods and dynamically

selects which one to use by fetching the target service’s policy before constructing

and sending any delivery requests.

5.3 Web Services

Web services are a set of integration technology standards that were designed

specifically to meet the requirements arising from service-oriented architectures

and systems. In many ways, Web services are really not much different from

existing middleware technologies, but they do differ in their focus on simplicity

and interoperability. The most important feature offered by Web services is that all

major software vendors have agreed to support them. Interoperability is still not, of

course, guaranteed to be painless but at least the problems encountered will be bugs

and misinterpretations of common standards, not intentionally introduced incom-

patibilities between similar but different proprietary technologies.

All application integration technologies, including Web services, really only

provide four basic functions that let developers (and programs) do the following:

l Find suitable services (using UDDI or another directory)
l Find out about a service (using WSDL)
l Ask a service to do something (using SOAP)
l Make use of services such as security (using WS-* standards)

SOAP, WSDL, and UDDI were the first Web services standards to be published,

but they only meet the most basic requirements for application integration. They

lack support for security, transactions, reliability, and many other important func-

tions. This gap is being progressively filled by a series of standards (commonly

called “WS-*”) first outlined by IBM and Microsoft at a W3C workshop in 2001.

The task of creating these additional standards and getting industry-wide agreement

is a confusing, work-in-progress, with specifications in varying degrees of maturity

and supported by various standards bodies. Some specifications complement,

overlap, and compete with each other. There are now however production-ready

implementations available for many of them. See http://www.w3.org/2002/ws/ for

some insights into these specifications.

Web services are XML standards. Services are defined using XML, and applica-

tions request services by sending XML messages and the Web services standards

make extensive use of other existing XML standards wherever possible. There are

multiple Web services standards and these can be organized into the categories

shown in Fig. 5.2.

This number of standards may suggest complexity rather than the desired

simplicity, and in many applications, only a few core standards are actually in

use. There is also increasingly good tool and library/framework support for these

standards, so developers only have to understand the capabilities offered rather than

5.3 Web Services 71

the detailed XML syntax. To illustrate this before showing the complexities of the

associated XML, below is a simple Web service definition using the Java API for

XML Web Services (JAX-WS), part of the JEE platform. Using annotations in the

manner used for EJBs, creating a Web service is very simple.

package brokerservice.endpoint;

import javax.jws.WebService;

@WebService
public class Broker {

@WebMethod
public String viewStock(String name) {

// code omitted
}

}

So, with toolkits like JAX-WS, the service developer does not need to create

or understand XML messages formatted as SOAP. The JAX-WS run-time system

simply converts the API calls and responses to and from underlying SOAP message

formats. You’ll be able to judge for yourself in a page or two if this is a good thing!

One of the simplifying principles underlying Web services is that the various

message fields and attributes used to support functions such as security and reli-

ability are totally independent of each other. Applications only need to include just

those few fields and attributes needed for their specific purposes and can ignore all

the other standards. For example, a SOAP request might identify the requestor of

a service by including a username and password in the form specified in the WS-

Security UsernameToken profile. This user/password related information is the

only security-related header element included in the message. WS-Security sup-

ports other forms of user authentication, as well as encryption and digital signa-

tures, but as these are not used by the service, they do not appear at all in the SOAP

message request.

Another aim of the Web services standards is to provide good support for system

architectures that make use of “intermediaries”. Rather than assuming that clients

always send requests directly to service providers, the intermediary model assumes

that these messages can (transparently) pass along a chain of other applications on

their way to their final destination. These intermediaries can do anything with the

messages they receive, including routing them, logging, checking security, or even

XML

Messaging

Reliable
messaging

Security Transactions M
etadata

Fig. 5.2 Overview of Web

services standards

72 5 Service-Oriented Architectures and Technologies

adding or subtracting bits of the message’s content. This model is shown in Fig. 5.3,

where intermediaries are providing routing and auditing services.

Web services provide support for intermediary-based architectures in a number

of ways. These include tagging header elements with the role of their intended

recipient and supporting the “end-to-end” principle for functions such as security,

so ensuring that they continue to work even if messages pass through intermediaries

rather than traveling directly from client to service. For example, in the application

shown in Fig. 5.3, the client can use mechanisms provided by WS-Security to

protect sensitive information intended only for the credit card application, hiding it

from the router that the message must pass through on its journey.

5.4 SOAP and Messaging

SOAP was the original Web services standard and is still the most important and

most widely used. It specifies a simple but extensible XML-based application-to-

application communication protocol, roughly equivalent to DCE’s RPC or Java’s

RMI, but much less complex and far easier to implement as a result. This simplicity

comes from deliberately staying well away from complex problems, such as distri-

buted garbage collection and passing objects by reference. All that the SOAP

standard does is define a simple but extensible message-oriented protocol for

invoking remote services, using HTTP, SMTP, UDP, or other protocols as the

transport layer and XML for formatting data.

SOAP messages have the simple structure as shown in Fig. 5.4. The header holds

information about the message payload, possibly including elements such as secu-

rity tokens and transaction contexts. The body holds the actual message content

being passed between applications. The SOAP standard does not mandate what can

go in a message header, giving SOAP its extensibility as new standards, such as

WS-Security, can be specified just by defining new header elements, and without

requiring changes to the SOAP standard itself.

Client Router

Supplier 3

Supplier 2

Audit log
Credit
Card

Place
Order

Supplier 1

Fig. 5.3 Simple intermediary sequence

5.4 SOAP and Messaging 73

SOAP originally stood for Simple Object Access Protocol but it is now officially

no longer an acronym, just a word, and certainly nothing to do with accessing

remote objects! SOAP clients send XML request messages to service providers

over any transport and can get XML response messages back in return. A SOAP

message asking for a stock quotation is shown in Fig. 5.5. This corresponds to the

WSDL definition shown in Fig. 5.6. The request carries a username and hashed

password in the header to let the service know who is making the request.

There are a number of other standards included in the Web services Messaging

category, including WS-Addressing and WS-Eventing. WS-Addressing exists

because Web services really have little to do with the Web and do not depend

solely on HTTP as a transport layer. SOAP messages can be sent over any transport

protocol, including TCP/IP, UDP, e-mail (SMTP), and message queues, and WS-

Addressing provides transport-neutral mechanisms to address services and identify

messages. WS-Eventing provides support for a publish–subscribe model by defin-

ing the format of the subscription request messages that clients send to publishers.

Published messages that meet the provided filtering expression are sent to callers

using normal SOAP messages.

5.5 UDDI, WSDL, and Metadata

There is a strong theme of metadata and policy running through the Web services

standards. SOAP services are normally described using WSDL (Web Services

Description Language) and can be located by searching a UDDI (Universal Descrip-

tion, Discovery, and Integration) directory. Services can describe their requirements

for things like security and reliability using policy statements, defined using the

WS-Policy framework, and specialized policy standards such as WS-SecurityPolicy.

These policies can be attached to aWSDL service definition or kept in separate policy

stores and retrieved using WS-MetadataExchange.

Envelope (Mandatory) -
Marks the start and end of a
message

Body (Mandatory) -
Data for the actual message
or document being sent

Header (Optional) -
General information about
message – e.g. authentication
and transaction management

Fig. 5.4 SOAP message

structure

74 5 Service-Oriented Architectures and Technologies

UDDI has proven to be the least used so far of the original three Web services

standards. In many ways, UDDI is either the least interesting or potentially most

interesting of these standards, depending on how important you think being able to

dynamically discover and link to services is to your application. Organizations are

developing large complex Web services systems today without the use of global

UDDI directories, using other methods of finding services such as personal contact

or published lists of services on Web sites. This could all change in the future,

especially when industry associations start releasing common service definitions

and need to publish directories of qualified service providers.

WSDL is used to describe Web services, including their interfaces, methods, and

parameters. The WSDL description of a service called StockQuoteService that

provides a single operation named GetLastTradePrice is depicted in Fig. 5.31.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelopexmlns:soap=

"http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis

-200401-wss-wssecurity-utility-1.0.xsd">

<soap:Header>
<wsa:Action>

http://myCompany.com/getLastTradePrice</wsa:Action>
<wsa:MessageID>uuid:4ec3a973-a86d-4fc9-bbc4-ade31d0370dc
</wsa:MessageID>
<wsse:Security soap:mustUnderstand="1"

<wsse:UsernameToken>
<wsse:Username>NNK</wsse:Username>
<wsse:PasswordType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username

-token-profile-1.0#PasswordDigest">
weYI3nXd8LjMNVksCKFV8t3rgHh3Rw==
</wsse:Password>
<wsse:Nonce>WScqanjCEAC4mQoBE07sAQ==</wsse:Nonce>
<wsu:Created>2003-07-16T01:24:32Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>

<soap:Body>
<m:GetLastTradePrice
xmlns:m="http://myCompany.com/stockServices">

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</soap:Body>

</soap:Envelope>

Fig. 5.5 SOAP message sample

5.5 UDDI, WSDL, and Metadata 75

This operation takes one parameter symbol of type string that names the stock of

interest and returns a float that holds the most recently traded price.

WSDL is well supported by development environments such as Visual Studio,

Eclipse, and WebSphere. These tools can generate WSDL automatically from pro-

gram method and interface definitions, and they take in WSDL service definitions

<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://myCompany.com/stockquote.wsdl"
xmlns:tns="http://myCompany.com/stockquote.wsdl"
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd="http://www.w3.org/2001/XMLSchema”
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="GetLastTradePrice">
<part name="body" type="xsd:string"/>

</message>
<message name="LastTradePrice">

<part name="body" type="xsd:float "/>
</message>

<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePrice"/>
<output message="tns:LastTradePrice"/>

</operation>
</portType>

<binding name="StockQuoteBinding"
type="tns:StockQuotePortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetLastTradePrice">

<soap:operation soapAction=
"http://myCompany.com/GetLastTradePrice"/>

<input>
<soap:body use="literal"/>

</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>

<service name="StockQuoteService">
<documentation>Stock quote service</documentation>
<port name="StockQuotePort"

binding="tns:StockQuoteBinding">
<soap:address location=

"http://myCompany.com/stockServices"/>
</port>

</service>
</definitions>

Fig. 5.6 WSDL for the GetLastTradePrice service

76 5 Service-Oriented Architectures and Technologies

and make it easy for developers to write code that calls these services. One adverse

side effect of this tool support is that it tends to encourage developers to think of

services as remote methods, rather than moving to the preferable and richer

message-based model provided by Web services.

5.6 Security, Transactions, and Reliability

One of the problems faced by most middleware protocols is that they do not work

well on the open Internet because of the connectivity barriers imposed by firewalls.

Most organizations do not want outsiders to have access to the protocols and

technologies they use internally for application integration and so block the neces-

sary TCP/IP ports at their perimeter firewalls.

The common technology response to this problem, and the one adopted by

Web services, has been to co-opt the Web protocol, HTTP, as a transport layer

because of its ability to pass through most firewalls. This use of HTTP is conve-

nient but also creates potential security problems as HTTP traffic is no longer just

innocuously fetching Web pages. Instead it may be making direct calls on internal

applications.

WS-Security and its associated standards address these problems by providing

strong cryptographic mechanisms to identify callers (authentication), protect con-

tent from eavesdroppers (encryption), and ensure information integrity (digital

signatures). These standards are designed to be extensible, letting them be adapted

easily to new security technologies and algorithms, and also supporting integration

with legacy security technologies.

WS-Security supports intermediary-based application architectures by allowing

multiple security header elements, each labeled with the role of their intended

recipient along the processing chain, and by supporting partial encryption and

partial signatures. As an illustration, in the example shown in Fig. 5.3, the sensitive

credit card details can be hidden by encrypting them, while leaving the rest of the

message unencrypted so that it can be read by the routing application.

The final set of Web services standards support transactions and reliable mes-

saging. There are two types of Web service transactions supported by standards.

WS-AtomicTransactions supports conventional distributed ACID transactions and

assumes levels of trust and fast response times that make this standard suitable only

for internal application integration tasks and unusable for Internet-scale application

integration purposes. WS-BusinessActivity is a framework and a set of protocol

elements for coordinating the termination of loosely coupled integrated appli-

cations. It provides some support for atomicity by invoking compensators when a

distributed application finishes in failure.

The support for reliable messaging in Web services simply ensures that all

messages sent between two applications actually arrive at their destination in the

order they were sent. WS-ReliableMessaging does not guarantee delivery in the

5.6 Security, Transactions, and Reliability 77

case of failure, unlike queued messaging middleware using persistent queues.

However, it is still a useful standard as it provides at most once, in-order message

delivery over any transport layer, even unreliable ones such as UDP or SMTP.

5.7 RESTful Web Services

The “Web” in “SOAP-based Web services” is really a misnomer as SOAP has

nothing to do with the Web, other than its (optional) use of the Web protocol,

HTTP, as a “firewall-friendly” transport layer. Perhaps as a reaction to this misuse

of the word “Web” (and SOAP’s total lack of adherence to the philosophies

underlying the “Web”), some adherents to the Web-way-of-doing-things have

developed and vigorously evangelized an alternative way of doing Web services:

REST (Representational State Transfer).

RESTful Web services rely on HTTP as a sufficiently rich protocol to completely

meet the needs of Web services applications. In the REST model, the HTTP GET,

POST, PUT, and DELETE verbs are used to transfer data (often in the form of XML

documents) between client and services. These documents are “representations” of

“resources” that are identified by normal Web URIs (Uniform Resource Identifiers).

This use of standard HTTP and Web technologies means that RESTful Web services

can leverage the full Web infrastructure, such as caching and indexing.

The following example shows how a simple customer database Web service

could be implemented using a RESTful approach. In this example, the customer

database is a “resource” and the individual customer records are also “resources” in

their own right. Each of these resources has a unique URI that can be used as the

subject of an HTTP verb.

l The URI http://example.com/customers identifies the customer database resource.

GET requests sent to this URI return the set of all customers as a single XML

document containing a list of URIs that point to the individual customer resources.
l The URI for each customer in the database is formed by appending the custo-

mer’s unique ID to the customer set URI. For example, http://example.com/

customers/1 identifies the resource corresponding to the customer with ID 1.
l A GET request sent to one of these unique customer URIs retrieves an XML

document that contains a representation of the current state of the corresponding

customer.
l Existing customer resources can be updated by PUTting an XML document

containing a representation of the desired new state of the customer to the

appropriate customer URI.
l New customers can be added to the database by POSTing XML documents

containing the representation of the new resource to the collection URI. The

URIs for the new customer resources are returned using the HTTP location

header in the server’s responses.
l Customer entries can be deleted by sending a DELETE request to the customer

URI.

78 5 Service-Oriented Architectures and Technologies

Some of the more enthusiastic proponents of the RESTful approach to Web

services see themselves as competing with SOAP-based technologies and their

vendors. Many of the arguments of the RESTful advocates come from their belief

that REST is “simple” and SOAP and WS-* are “complex”. Of course, “simplic-

ity” and “complexity” are relative to the architectural and technical problems you

are trying to solve, and the rich set of services provided by the WS-* standards

may well be just what you need to solve the complex issues you face in your

distributed enterprise applications. Conversely, the RESTful approach to building

Web services will be adequate for many simple problems, especially where

questions of robust security, reliability, and interoperability are not important. If

these “complex” issues are important in your application integration architecture,

then SOAP and WS-* may well be a better answer, offering standards-based and

interoperable solutions to these inherently complex nonfunctional requirements.

The choice is yours as SOAP and REST are really complementary approaches to

implementing Web services, each best suited to different kinds of distributed

applications.

5.8 Conclusion and Further Reading

Services and services-oriented architectures are pragmatic responses to the com-

plexity and interoperability problems encountered by the builders of previous

generations of large-scale integrated applications. Web services are a set of integra-

tion technology standards that reflect this need for simplicity and interoperability.

The “really” transforming thing about Web services is that there is (more or less)

only one set of common standards that everyone uses when offering or accessing

services. These standards are being supported by the entire computing industry and

are available on every application platform at low cost. The pervasive nature of

Web services makes them attractive to use for application integration, certainly for

cross-platform large-scale applications and, in many cases, for local integration

tasks as well.

Service-oriented architectures and Web services are hot topics in today’s IT

industry. All major software vendors are publishing tutorials and articles on ser-

vices and how they are supported by their products. There are quite a few good

books out there and any number of magazine articles as well. Good starting places

are Microsoft’s MSDN, IBM’s DeveloperWorks, and Sun’s developer Web sites, at

the following locations:

http://www.msdn.microsoft.com

http://www.ibm.com/developerworks

http://www.developers.sun.com/

You’ll also find more information on Web services and SOA using Google than

you care to imagine. Or just go to your own software vendor and look at what they

have to say about how they are supporting services.

5.8 Conclusion and Further Reading 79

Some excellent Web services text books are around. The following are three

examples I’d recommend:

Thomas Erl, SOA Design Patterns, Prentice-Hall, 2009

Thomas Erl, SOA Principles of Service Design, Prentice-Hall, 2007

O. Zimmermann, M. R Tomlinson, S. Peuser, Perspectives on Web Services

Applying SOAP, WSDL and UDDI to Real-World Projects. Springer-Verlag

2004

G. Alonso, F. Casati, H. Kuno, V. Machiraju,Web Services Concepts, Architectures
and Applications. Springer-Verlag 2004

S. Chatterjee, J. Webber, Developing Enterprise Web Services: An Architect’s
Guide. Prentice-Hall, 2004

There’s also plenty of reading material to keep you occupied on RESTful Web

services. For example:

Jim Webber, Savas Parastatidis, Ian Robinson, REST in Practice, O’Reilly Media,

2010

http://java.sun.com/developer/technicalArticles/WebServices/restful/

Leonard Richardson, Sam Ruby, Restful Web Services, O’Reilly Media, 2007

http://www.ibm.com/developerworks/webservices/library/ws-restful/

http://www.xfront.com/REST-Web-Services.html

Finally, Steve Vinoski’s blog always makes entertaining and educational reading

on REST – see http://steve.vinoski.net/blog/

80 5 Service-Oriented Architectures and Technologies

Chapter 6

Advanced Middleware Technologies

6.1 Introduction

The previous three chapters have described the basic middleware building blocks

that can be used to implement distributed systems architectures for large-scale

enterprise systems. Sometimes, however, these building blocks are not sufficient

to enable developers to easily design and build complex architectures. In such

cases, more advanced tools and designs are needed, which make it possible to

address architectural issues with more powerful middleware technologies. This

chapter describes two of these, namely message brokers and workflow engines,

and analyses the strengths and weaknesses of these approaches.

6.2 Message Brokers

Basic messaging using MOM and publish–subscribe technologies suffices for many

applications. It’s a simple, effective, and proven approach that can deliver high

levels of performance and reliability.

MOM deployments start to get a little more complex though when message

formats are not totally agreed among the various applications that communicate

using the MOM. This problem occurs commonly in the domain of enterprise

integration, where the basic problem is building business applications from large,

complex legacy business systems that were never designed to work together and

exchange information.

Enterprise integration is a whole field of study in itself (see Further Reading).

From the perspective of this book however, enterprise integration has spawned an

interesting and widely used class of middleware technologies, known as message

brokers.

Let’s introduce message brokers by way of a motivating example. Assume an

organization has four different legacy business systems that each hold information

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_6, # Springer-Verlag Berlin Heidelberg 2011

81

about customers.1 Each of these four stores some common data about customers, as

well as some unique data fields that others do not maintain. In addition, each of the

applications has a different format for a customer record, and the individual field

names are different across each (e.g., one uses ADDRESS, another LOCATION, as

a field name for customer address data). To update customer data, a proprietary API

is available for each legacy system.

While this is conceptually pretty simple, it’s a problem that many organizations

have. So, let’s assume keeping the data consistent in each of these four applications

is a problem for our hypothetical organization. Hence, they decide to implement a

web site that allows customers to update their own details online. When this occurs,

the data entered into the web page is passed to a web component in the web server

(e.g., a servlet or ASP.NET page). The role of this component is to pass the updated

data to each of the four legacy applications, so they can update their own customer

data correctly.

The organization uses MOM to communicate between applications. Conse-

quently, the web component formats a message with the new customer data and

uses the MOM to send the message to each legacy system.2 The message format,

labeled In-format in Fig. 6.1, is an agreed format that the web component and all the

legacy applications understand.

Web
Component

Legacy
System #1

Legacy
System #2

Legacy
System #3

Legacy
System #4

In-format

In-format In-format In-format In-format

Key:
Message =

Fig. 6.1 Using MOM to communicate a customer data update to four legacy systems

1Duplicate data holdings like this are very common in enterprises. For example, my bank still

manages to send my credit card statement and credit card rewards points statement to different

addresses.
2The MOMmay deploy a different queue for each legacy application or a single queue and include

a “destination” field in each message.

82 6 Advanced Middleware Technologies

Each legacy system has a queue interface component that can read messages

from the queue, and using the data in the message, create a call to the customer data

update API that the legacy system supports. In this example, the interface component

would read the message from the queue, extract the specific data fields from the

message that it needs to call its legacy system’s API, and finally issue the API call. As

shown in Fig. 6.2, the interface component is basically performing a transformation

from the In-format to a format suitable for its associated legacy system.

So, for each legacy application, there is a dedicated component that executes the

logic to transform the incoming message into a correctly formatted legacy system

API call. The transformation is implemented in the program code of the component.

This solution has some interesting implications:

l If the common In-format message format changes, then the web component and

every legacy system component that executes the transformation must be mod-

ified and tested.
l If any legacy system API changes, then only the transformation for that system

must be modified and tested.
l Modifying any of the transformations most likely requires coordinating with the

development team who are responsible for the upkeep of the legacy system(s).

These development teams are the ones who know the intimate details of how to

access the legacy system API.

Hence, there is a tight coupling between all the components in this architecture.

This is caused by the need for them to agree on the message format that is commu-

nicated. In addition, in large organizations (or even harder, across organizational

boundaries), communicating and coordinating changes to the common message

format across multiple legacy system development teams can be slow and painful.

It’s the sort of thing you’d like to avoid if possible.

The obvious alternative solution is to move the responsibility for the message

format transformation to the web component. This would guarantee that messages

are sent to each legacy system interface component in the format they need to

simply call the legacy API. The transformation complexity is now all in one place,

the web component, and the legacy system interface component becomes simple.

It basically reads a message from the queue and calls the associated API using

the data in the message. Changes to the In-formatmessage do not cause changes in

legacy interface components, as only the web component needs modifying and

testing. Changes to any legacy API though require the specific legacy system

development team to request a new message format from the web component

development team.

In-format
Message
Transform

Legacy
format

API
call

Queue
Read

Fig. 6.2 Message transformation from common to a legacy-specific format

6.2 Message Brokers 83

This is a much better solution as it reduces the number of changes needed to

the various software systems involved (and remember, “change” means “test”). The

major downside of this solution is the complexity of the web component. The

transformation for each legacy system is embedded in its program code, making it

prone to modification as it is effectively coupled to the message formats of every

legacy system it communicates with.

This is where message brokers offer a potentially attractive alternative solution.

Architecturally, a broker is a known architecture pattern3 incorporating a compo-

nent that decouples clients and servers by mediating the communications between

them. Similarly, message broker middleware augments the capabilities of a MOM

platform so that business logic related to integration can be executed within the

broker. In our example, using a broker we could embed the message transformation

rules for each legacy system within the broker, giving a solution as in Fig. 6.3.

A message broker solution is attractive because it completely decouples the web

component and the legacy interface components. The web component simply

assembles and emits a message, and the broker transforms the message into the

necessary format for each legacy system. It then sends an output message to the

legacy system interface components in the precise format they desire.

A further attraction is the simplification of all the components in the system, as

they now do not have to be concerned with message format transformation. The

message transformation logic is localized within the message broker and becomes

the responsibility of the integration group to maintain. Consequently, if changes

are needed in the web or legacy system message formats, the development team

Web
Component

Legacy
System #1

Legacy
System #2

Legacy
System #3

Legacy
System #4

In-format

L1-format L2-format L3-format L4-format

Key:
Message =

Message
Broker

Fig. 6.3 Decoupling clients and servers with a message broker

3See Buschmann reference in Further Reading, Chap. 1.

84 6 Advanced Middleware Technologies

responsible only need liaise with the integration group, whose job it is to correctly

update the transformations.

It’s not a massive job to implement the broker pattern in conjunction with a

standard MOM platform.4 Such a solution would still have the disadvantage of

defining the transformation logic in the program code. For simple transformations,

this is no big deal, but many such applications involve complex transformations with

fiddly string formatting and concatenations, formulas to calculate composite values,

and so on. Nothing too difficult to write, but if there were a better solution that made

creating complex transformations simple, I doubt many people would complain.

Message broker technologies begin to excel at this stage, because they provide

specialized tools for:

l Graphically describing complex message transformations between input formats

and output formats. Transformations can be simple in terms of moving an input

field value to an output field, or they can be defined using scripting languages

(typically product specific) that can perform various formatting, data conver-

sions, and mathematical transforms.
l High-performance multithreaded message transformation engines that can han-

dle multiple simultaneous transformation requests.
l Describing and executing message flows, in which an incoming message can be

routed to different transformations and outputs depending on the values in the

incoming message.

An example of a message mapping tool is shown in Fig. 6.4. This is Microsoft’s

BizTalk Mapper and is typical of the class of mapping technologies. In BizTalk,

Fig. 6.4 A message broker mapping tool example

4The solution is left as an exercise to the reader!

6.2 Message Brokers 85

the mapper can generate the transformations necessary to move data between two

XML schemas, with the lines depicting the mapping between source and destina-

tion schemas. Scripts (not shown in the figure) can be associated with any mapping

to define more complex mappings.

An example of a typical message routing definition tool is shown in Fig. 6.5. This

is IBM’s WebSphere MQSI technology. It shows how an incoming message, deliv-

ered on a queue, can be processed according to some data value in the message. In the

example, a Filter component inspects the incoming message field values, and based

on specified conditions, executes one of two computations, or sends the message to

one of two output queues. The message flow also defines exception handling logic,

which is invoked when, for example, invalidly formatted messages are received.

Hence, message brokers are essentially highly specialized message transforma-

tion and routing engines. With their associated customized development tools, they

make it simpler to define message transformations that can be:

l Easily understood and modified without changing the participating applications.
l Managed centrally, allowing a team responsible for application integration to

coordinate and test changes.
l Executed by a high-performance, multithreaded transformation engine.

Of course, as integration logic gets more and more complex, using a message

broker to implement this logic is tantamount to essentially moving the complexity

Fig. 6.5 Message routing and processing

86 6 Advanced Middleware Technologies

from the integration end points to the broker. It’s an architectural design decision,

based on the specifics of an enterprise and its technical and social environment,

whether this is a good decision or not. There’s no simple answers, remember.

Importantly, message brokers operate on a per message level. They receive an

input message, transform it according to the message routing rules and logic, and

output the resulting message or messages to their destinations. Brokers work best

when these transformations are short lived and execute quickly in, for example, a

few milliseconds. This is because they are typically optimized for performance and

hence try to avoid overheads that would slow down transformations. Consequently,

if a broker or its host machine crashes, it relies on the fact that failed transformation

can simply be executed again from the beginning, meaning expensive state and

transaction management is not needed. Note, however, that many message brokers

do optionally support transactional messaging and even allow the broker to modify

databases transactionally during transformation execution. These transactions are

coordinated by an ACID transaction manager, such as the one supplied with the

underlying MOM technology.

For a large class of application integration scenarios, high-speed transformation

is all that’s required. However, many business integration problems require the

definition of a series of requests flowing between different applications. Each

request may involve several message transformations, reads and updates to external

database systems, and complex logic to control the flow of messages between

applications and potentially even humans for offline decision making. For such

problems, message brokers are insufficient, and well, you guessed it, even more

technology is required. This is described in the next section.

Before moving on though, it should be emphasized that message brokers, like

everything in software architecture and technologies, do have their downsides.

First, many are proprietary technologies, and this leads to vendor lock-in. It’s the

price you pay for all those sophisticated development and deployment tools.

Second, in high-volume messaging applications, the broker can become a bottle-

neck. Most message broker products support broker clustering to increase per-

formance, scalability, and reliability, but this comes at the costs of complexity

and dollars. Recently open-source brokers have emerged, with Mule5 being a high-

quality example. These technologies are high-quality implementations and well

worth considering in many integration scenarios.

6.3 Business Process Orchestration

Business processes in modern enterprises can be complex in terms of the number of

enterprise applications that must be accessed and updated to complete the business

service. As an example, Fig. 6.6 is a simple depiction of a sales order business

process, in which the following sequence of events occurs.

5http://www.mulesoft.org/display/COMMUNITY/Home

6.3 Business Process Orchestration 87

A customer places an order through a call center. Customer data is stored in a

customer relationship management package (e.g., Oracle Siebel). Once the order is

placed, the customer’s credit is validated using an external credit service, and the

accounts payable database is updated to record the order and send an invoice to the

customer.

Placing an order causes a message to be sent to Shipping, who update their

inventory system and ship the order to the customer. When the customer receives

the order, they pay for the goods and the payment is recorded in the accounts

received system. All financial data are periodically extracted from the accounts

systems and stored in an Oracle data warehouse for management reporting and

archiving.

Implementing such business processes has two major challenges. First, from the

time an order is placed to when the payment is received might take several days or

weeks, or even longer if items are out of stock. Somewhere then, the current state of

the business process for a given order, representing exactly what stage it is up to,

must be stored, potentially for a long time. Losing this state, and hence the status of

the order, is not a desirable option.

Second, exceptions in the order process can cause the state of the order to fail

and rollback. For example, an order is taken for some stock item. Let’s assume that

this stock is not available in the warehouse, and when it is reordered, the supplier

tells the warehouse that the old stock is now obsolete, and that a newer, more

expensive model will replace it. The customer is informed of this, and they decide

to cancel the order. Canceling requires the order data to be removed from the

warehouse, accounts payable, and Siebel systems. This is potentially a complex

task to reliably and correctly perform.

This style of rollback behavior can be defined by the process designer using a

facility known as a compensating transaction. Compensating transactions allow the

Customer
Purchasing

Customer
Receiving

Sales desk
Shipping

Credit
Validation

Accounts
Payable

Accounts
Receivable

Oracle

Fig. 6.6 A typical business process

88 6 Advanced Middleware Technologies

process designer to explicitly define the logic required to undo a failed transaction

that partially completed.

In long-running business processes such as sales order processing, standard

ACID transactions, which lock all resources until the transaction completes, are

not feasible. This is because they lock data in the business systems for potentially

minutes, hours, or even weeks in order to achieve transaction isolation. Locked data

cannot be accessed by concurrent transactions, and hence lock contention will cause

these to wait (or more likely fail through timing out) until the locks are released.

Such a situation is unlikely to produce high-performance and scalable business

process implementations for long-running business processes.

Transactional behavior for long-running processes is therefore usually handled

by grouping a number of process activities into a long-running transaction scope.

Long-running transactions comprise multiple process activities that do not place

locks on the data items they modify in the various business systems. Updates are

made and committed locally at each business system. However, if any activity in

the transaction scope fails, the designer must specify a compensating function. The

role of the compensator is to undo the effects of the transaction that have already

committed. Essentially this means undoing any changes the transaction had made,

leaving the data in the same state as it was before the transaction commenced.

Long-running transactions are notoriously difficult to implement correctly. And

sometimes they are somewhat impossible to implement sensibly – how do you

compensate for a business process that has sent an e-mail confirming an order has

been shipped or has mailed an invoice? So, technology solutions for compensating

transactions don’t eradicate any of these fundamental problems. However, they do

provide the designer with a tool to make the existence of a long-running transaction

explicit, and an execution framework that automatically calls the compensator

when failures occur. For many problems, this is sufficient for building a workable

solution.

As Fig. 6.7 illustrates, business process orchestration (BPO) platforms are

designed to make implementing these long-running, highly integrated business

processes relatively straightforward. BPO platforms are typically built as a layer

that leverages some form of messaging infrastructure such as an SOA or a message

broker. They augment the messaging layer with:

l State management: the state of an executing business process is stored persis-

tently in a database. This makes it resilient to BPO server failure. Also, once the

process state is stored in the database, it does not consume any computational

resources in the BPO engine until that particular workflow instance is resumed.
l Development tools: visual process definition tools are provided for defining

business processes.
l Deployment tools: these enable developers to easily link logical business process

steps to the underlying business systems using various types of connectivity,

including message queues, web protocols, SOAP, and file systems.

An example from Microsoft’s BizTalk technology is shown in Fig. 6.8. This

shows the design of a simple business process for the ordering example in Fig. 6.6.

6.3 Business Process Orchestration 89

Fig. 6.8 BizTalk business process definition

Business Process Orchestration

Messaging

Process
Description

Process
State

Business
Systems

Data access Transformations

Fig. 6.7 Anatomy of a business process orchestration platform

90 6 Advanced Middleware Technologies

Messages are sent and received by activities in the process using ports. Ports

basically connect to the business systems using a port-defined transport mechanism,

for example, HTTP, a message queue or a file. All messages handled inside a

BizTalk orchestration must be defined by XML schemas. Activities can be carried

out in sequence or in parallel as shown in the example.

BPO engines are the most recent addition to the IT middleware stack. The need

for their functionality has been driven by the desire to automate more and more

business processes that must access numerous independent business applications.

There seems little doubt that this trend will continue as enterprises drive down costs

by better integrating and coordinating their internal applications, and seamlessly

connecting to external business partners.

6.4 Integration Architecture Issues

The difficulty of integrating heterogeneous applications in large enterprises is a

serious one. While there are many issues to deal with in enterprise integration, at the

core is an architectural problem concerning modifiability. The story goes like this.

Assume your enterprise has five different business applications that need inte-

grating to support some new business processes. Like any sensible architect, you

decide to implement these business processes one at a time (as you know a “big

bang” approach is doomed to fail!).

The first process requires one of the business systems to send messages to each

of the other four, using their published messaging interfaces. To do this, the sender

must create a message payload in the format required by each business application.

Assuming one-way messages only, this means our first business process must be

able to transform its source data into four different message formats. Of course, if

the other business systems decide to change their formats, then these transforma-

tions must be updated. What we’ve created with this design is a tight coupling,

namely the message formats, between the source and destination business systems.

This scenario is depicted in the left side of Fig. 6.9.

With the first business process working, and with many happy business users,

you go on to incrementally build the remainder. When you’ve finished, you find

1 business process =
4 interfaces

5 business processes =
20 interfaces

Fig. 6.9 Integrating

applications in a point-to-

point architecture

6.4 Integration Architecture Issues 91

you’ve created an architecture like that in the right side of Fig. 6.9. Each application

sends messages to each of the other four, creating 20 interfaces, or dependencies,

that need to be maintained. When one business application is modified, it’s possible

that each of the others will need to update their message transformations to send

messages in a newly required format.

This is a small-scale illustration of a problem that exists in thousands of

organizations. I’ve seen enterprise software architectures that have 300 point-to-

point interfaces between 40 or so standalone business applications. Changing an

application’s message interface becomes a scary exercise in such enterprises, as so

many other systems are dependent on it. Sometimes making changes is so scary,

development teams just won’t do it. It’s simply too risky.

In the general case, the number of interfaces between N applications is (N2 � N).
So as N grows, the number of possible interfaces grows exponentially, making such

point-to-point architectures nonscalable in terms of modifiability.

Now it’s true that very few enterprises have a fully connected point-to-point

architecture such as that on the right side of Fig. 6.9. But it’s also true that many

interfaces between two applications are two way, requiring two transformations.

And most applications have more than one interface, so in reality the number of

interfaces between two tightly coupled applications can be considerably greater

than one.

Another name for a point-to-point architecture is a “spaghetti architecture”,

hopefully for obvious reasons. When using this term, very few people are referring

to spaghetti with the positive connotations usually associated with tasty Italian

food. In fact, as the discipline of enterprise integration blossomed in the late 1990s,

the emerging dogma was that spaghetti architectures should be avoided at all costs.

The solution promoted, for many good reasons, was to use a message broker, as

explained earlier in this chapter.

Let’s analyze exactly what happens when a spaghetti architecture is transformed

using a message broker, as illustrated in Fig. 6.10. Complexity in the integration

end points, namely the business applications, is greatly reduced as they just send

messages using their native formats to the broker, and these are transformed inside

the broker to the required destination format. If you need to change an end point,

then you just need to modify the message transformations within the broker that are

dependent on that end point. No other business applications know or care.

Message BrokerFig. 6.10 Eliminating a

point-to-point architecture

with a message broker

92 6 Advanced Middleware Technologies

Despite all these advantages to introducing a message broker, the no free lunch6

principle, as always, applies. The downsides are:

l The spaghetti architecture really still exists. It’s now resident inside the message

broker, where complex dependencies between message formats are captured in

broker-defined message transformations.
l Brokers are potentially a performance bottleneck, as all the messages between

applications must pass through the broker. Good brokers support replication and

clustered deployments to scale their performance. But of course, this increases

deployment and management complexity, and more than likely the license costs

associated with a solution. Message broker vendors, perhaps not surprisingly,

rarely see this last point as a disadvantage.

So message brokers are very useful, but not a panacea by any means for

integration architectures. There is however a design approach that can be utilized

that possesses the scalability of a point-to-point architecture with the modifiability

characteristics of broker-based solution.

The solution is to define an enterprise data model (also known as a canonical

data model) that becomes the target format for all message transformations between

applications. For example, a common issue is that all your business systems have

different data formats to define customer information. When one application inte-

grates with another, it (or a message broker) must transform its customer message

format to the target message format.

Now let’s assume we define a canonical message format for customer infor-

mation. This can be used as the target format for any business application that needs

to exchange customer-related data. Using this canonical message format, a message

exchange is now reduced to the following steps:

l Source application transforms local customer data into canonical customer

information format.
l Source sends message to target with canonical message format as payload.
l Target receives message and transforms the canonical format into its own local

customer data representation.

This means that each end point (business application) must know:

l How to transform all messages it receives from the canonical format to its local

format
l How to transform all messages it sends from its local format to the canonical

format

As Fig. 6.11 illustrates, by using the enterprise data model to exchange mes-

sages, we get the best of both worlds. The number of transformations is reduced to

2 * N (assuming a single interface between each end point). This gives us much

better modifiability characteristics. Also, as there are now considerably fewer and

6http://en.wikipedia.org/wiki/Tanstaafl

6.4 Integration Architecture Issues 93

less complex transformations to build, the transformations can be executed in the

end points themselves. We have no need for a centralized, broker-style architecture.

This scales well, as there’s inherently no bottleneck in the design. And there’s no

need for additional hardware for the broker, and additional license costs for our

chosen broker solution.

I suspect some of you might be thinking that this is too good to be true. Perhaps

there is at least a low cost lunch option here?

I’m sorry to disappoint you, but there are real reasons why this architecture

is not ubiquitous in enterprise integration. The main one is the sheer difficulty of

designing, and then getting agreement on, an enterprise data model in a large

organization. In a green field site, the enterprise data model is something that can

be designed upfront and all end points are mandated to adhere to. But green field

sites are rare, and most organization’s enterprise systems have grown organically

over many years, and rarely in a planned and coordinated manner. This is why

broker-based solutions are successful. They recognize the reality of enterprise

systems and the need for building many ad hoc transformations between systems

in a maintainable way.

There are other impediments to establishing canonical data formats. If your

systems integrate with a business partner’s applications over which you have no

control, then it’s likely impossible to establish a single, agreed set of message

formats. This problem has to be addressed on a much wider scale, where whole

industry groups get together to define common message formats. A good example is

RosettaNet7 that has defined protocols for automating supply chains in the semi-

conductor industry. As I’m sure you can imagine, none of this happens quickly.8

For many organizations, the advantages of using an enterprise data model can

only be incrementally exploited. For example, a new business systems installation

might present opportunities to start defining elements of an enterprise data model

and to build point-to-point architectures that exploit end point transformations to

canonical formats. Or your broker might be about to be deprecated and require you

to upgrade your transformation logic? I’d recommend taking any chance you get.

Enterprise
Data
Model

Fig. 6.11 Integration using

an enterprise data model

7http://www.rosettanet.org
8See http://www.ebxml.org/ for examples of initiatives in this area.

94 6 Advanced Middleware Technologies

6.5 What Is an Enterprise Service Bus

You’ll see the term “ESB” used widely in the Service-Oriented Architecture

literature. When I first heard this, I wondered what “Extra Special Bitter” had

to do with software integration architectures, and when I found out it stood for

Enterprise Service Bus, I was sorely disappointed. Anyway, here’s my admittedly

somewhat cynical interpretation of where the acronym ESB came from.

Somewhere in the middle of the last decade (~2003–2005), SOA was becoming

the “next big thing” in enterprise integration. Software vendors needed something

new to help them sell their integration technology to support an SOA, so one of

them (I’m not sure who was first) coined the term ESB. Suddenly, every vendor had

an ESB, which was basically their message broker and business process orchestra-

tion technologies rebadged with of course the ability to integrate web service end

points. If you look under the covers of an ESB, you find all the technical elements

and software integration approaches described in this and the last two chapters.

There’s a lot of definitions out there for ESBs. All more or less agree that an ESB

provides fundamental mechanisms for complex integration architectures via an

event-driven and standards-based messaging engine. There’s some debate about

whether an ESB is a technology or a software integration design pattern, but some

debates really aren’t worth getting involved in. You can buy or download products

called ESBs, and these typically provide a messaging-based middleware infrastruc-

ture that has the ability to connect to external system endpoints over a variety of

protocols – TCP/IP, SOAP, JMS, FTP, and many more. If what you’ve read so far in

this book has sunk in to some degree, I don’t think you really need to know more.

6.6 Further Reading

There’s an enormous volume of potential reading on the subject matter covered in

this chapter. The references that follow should give you a good starting point to

delve more deeply.

D. S. Linthicum. Next Generation Application Integration: From Simple Informa-

tion to Web Services. Addison-Wesley, 2003.

David Chappell, Enterprise Service Bus: Theory in Practice, O’Reilly Media, 2004

Gero M€uhl, Ludger Fiege, Peter Pietzuch, Distributed Event-Based Systems,

Springer-Verlag 2006.

The following three books have broad and informative coverage of design

patterns for enterprise integration and messaging.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, 2003.

C. Bussler, B2B Integration Concepts and Architecture, Springer-Verlag 2003.

6.6 Further Reading 95

In terms of technologies, here are some quality message brokers and business

process orchestration systems to look at:

David Dossot, John D’Emic, Mule in Action, Manning Press, 2009.

Tijs Rademakers, Jos Dirksen, Open-Source ESBs in Action: Example Implemen-

tations in Mule and ServiceMix, Manning Press, 2008.

96 6 Advanced Middleware Technologies

Chapter 7

A Software Architecture Process

7.1 Process Outline

The role of an architect is much more than simply carrying out a software design

activity. The architect must typically:

l Work with the requirements team: The requirements team will be focused on

eliciting the functional requirements from the application stakeholders. The

architect plays an important role in requirements gathering by understanding

the overall systems needs and ensuring that the appropriate quality attributes are

explicit and understood.
l Work with various application stakeholders: Architects play a pivotal liaison

role by making sure all the application’s stakeholder needs are understood and

incorporated into the design. For example, in addition to the business user

requirements for an application, system administrators will require that the

application can be easily installed, monitored, managed and upgraded.
l Lead the technical design team: Defining the application architecture is a design

activity. The architect leads a design team, comprising system designers (or on

large projects, other architects) and technical leads in order to produce the

architecture blueprint.
l Work with the project management: The architect works closely with project

management, helping with project planning, estimation and task allocation and

scheduling.

In order to guide an architect through the definition of the application architec-

ture, it’s useful to follow a defined software engineering process. Figure 7.1 shows a

simple, three-step iterative architecture process that can be used to direct activities

during the design. Briefly, the three steps are:

l Define architecture requirements: This involves creating a statement or model of

the requirements that will drive the architecture design.
l Architecture design: This involves defining the structure and responsibilities of

the components that will comprise the architecture.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_7, # Springer-Verlag Berlin Heidelberg 2011

97

l Validation: This involves “testing” the architecture, typically by walking

through the design, against existing requirements and any known or possible

future requirements.

This architecture process is inherently iterative. Once a design is proposed,

validating it may show that the design needs modification, or that certain require-

ments need to be further defined and understood. Both these lead to enhancements

to the design, subsequent validation, and so on, until the design team is satisfied that

the requirements are met.

It’s important to note the flexibility of this process. Architecture sometimes gets

characterized as Big Up-Front Design by the agile methods community, but in

reality it doesn’t have to be. If you’re working on a project using agile methods, you

might want to have some early iterations (sprints, or whatever your favorite nomen-

clature is) that focus on establishing your overall architecture. The outcome of these

iterations will be a baseline architecture prototype that embodies and validates

the key system design decisions. Subsequent iterations build upon and extend this

prototype to add the emerging functionality. With the architecture in place early

in the project, subsequent refactoring becomes simpler as the core of the system

remains (mostly) stable, providing a solid foundation for the application.

The rest of this chapter explains each of these steps in more detail.

7.1.1 Determine Architectural Requirements

Before an architectural solution can be designed, it’s necessary to have a pretty good

idea of the requirements for the application architecture. Architecture requirements,

sometimes also called architecturally significant requirements or architecture use

cases, are essentially the quality and nonfunctional requirements for the application.

7.1.2 Identifying Architecture Requirements

As Fig. 7.2 shows, the main sources of architecture requirements are the functional

requirements document, and other documents that capture various stakeholder

Determine
Architectural

Requirements

Architecture
Design

Validation

Fig. 7.1 A three step

architecture design process

98 7 A Software Architecture Process

needs. The output of this step is a document that states the architecture requirements

for the application. Of course in reality, much of the information an architect needs

is not documented. The only way to elicit the information is to talk to the various

stakeholders. This can be a slow and painstaking task, especially if the architect is

not an expert in the business domain for the application.

Let’s look at some examples. A typical architecture requirement concerning

reliability of communications is:

Communications between components must be guaranteed to succeed with no message loss

Some architecture requirements are really constraints, for example:

The system must use the existing IIS-based web server and use Active Server Pages to
process web requests

Constraints impose restrictions on the architecture and are (almost always) non-

negotiable. They limit the range of design choices an architect can make. Sometimes

this makes an architect’s life easier, and sometimes it doesn’t.

Table 7.1 lists some example architecture requirements along with the quality

attribute they address.

Table 7.2 gives some typical examples of constraints, along with the source of

each constraint.

7.1.3 Prioritizing Architecture Requirements

It’s a rare thing when all architecture requirements for an application are equal.

Often the list of architecture requirements contains items that are of low priority, or

“this would be good to have, but not necessary” type features. It’s consequently

important to explicitly identify these, and rank the architecture requirements using

priorities. Initially, it’s usually sufficient to allocate each requirement to one of

three categories, namely:

Functional
Requirements

Stakeholder
Requirements

Architecture
Requirements

Determine
Architecture
Requirements

Fig. 7.2 Inputs and outputs

for determining architecture

requirements

7.1 Process Outline 99

1. High: the application must support this requirement. These requirements drive

the architecture design

2. Medium: this requirement will need to be supported at some stage, but not

necessarily in the first/next release

3. Low: this is part of the requirements wish list. Solutions that can accommodate

these requirements are desired, but they are not the drivers of the design

Prioritization gets trickier in the face of conflicting requirements. Common

examples are:

l Reusability of components in the solution versus rapid time-to-market. Making

components generalized and reusable always takes more time and effort.
l Minimal expenditure on COTS products versus reduced development effort/

cost. COTS products mean you have to develop less code, but they cost money.

There’s no simple solution to these conflicts. It is part of the architect’s job to

discuss these with the relevant stakeholders, and come up with possible solution

scenarios to enable the issues to be thoroughly understood. Conflicting require-

ments may even end up as the same priority. It is then the responsibility of the

solution to consider appropriate trade-offs, and to try to find that “fine line” that

adequately satisfies both requirements without upsetting anyone or having major

Table 7.1 Some example architecture requirements

Quality

attribute

Architecture requirement

Performance Application performance must provide sub-four second response times for 90% of

requests

Security All communications must be authenticated and encrypted using certificates

Resource

management

The server component must run on a low end office-based server with 2GB

memory

Usability The user interface component must run in an Internet browser to support remote

users

Availability The system must run 24 � 7 � 365, with overall availability of 0.99

Reliability No message loss is allowed, and all message delivery outcomes must be known

with 30 s

Scalability The application must be able to handle a peak load of 500 concurrent users during

the enrollment period

Modifiability The architecture must support a phased migration from the current Forth

Generation Language (4GL) version to a .NET systems technology solution

Table 7.2 Some example constraints

Constraint Architecture requirement

Business The technology must run as a plug-in for MS BizTalk, as we want to sell this to

Microsoft

Development The system must be written in Java so that we can use existing development staff

Schedule The first version of this product must be delivered within 6 months

Business We want to work closely with and get more development funding from

MegaHugeTech Corp, so we need to use their technology in our application

100 7 A Software Architecture Process

undesirable consequences on the application. Remember, good architects know

how to say “no”.

In a project with many stakeholders, it’s usually a good idea to get each set

of stakeholders to sign off on this prioritization. This is especially true in the face

of conflicting requirements. Once this is agreed, the architecture design can

commence.

7.2 Architecture Design

While all the tasks an architect performs are important, it’s the quality of the

architecture design that really matters. Wonderful requirement documents and

attentive networking with stakeholders mean nothing if a poor design is produced.

Not surprisingly, design is typically the most difficult task an architect under-

takes. Good architects draw on several years of software engineering and design

experience. There’s no substitute for this experience, so all this chapter can do is try

to help readers gain some of the necessary knowledge as quickly as possible.

As Fig. 7.3 shows, the inputs to the design step are the architecture requirements.

The design stage itself has two steps, which are iterative in nature. The first involves

choosing an overall strategy for the architecture, based around proven architecture

patterns. The second involves specifying the individual components that make up

the application, showing how they fit into the overall framework and allocating

them responsibilities. The output is a set of architecture views that capture the

architecture design, and a design document that explains the design, the key reasons

for some of the major design decisions, and identifies the risks involved in taking

the design forward.

Architecture
Requirements

Architecture
Views

Choose
Architecture
Framework

Allocate
Components

Architecture
DocumentFig. 7.3 Inputs and outputs

of architecture design

7.2 Architecture Design 101

7.2.1 Choosing the Architecture Framework

Most of the applications I’ve worked on in the last 15 years are based around a small

number of well understood, proven architectures. There’s a good reason for this –

they work. Leveraging known solutions minimizes the risks that an application will

fail due to an inappropriate architecture.

So the initial design step involves selecting an architecture framework that

seems likely to satisfy the key requirements. For small applications, a single archi-

tecture pattern like n-tier client-servermay suffice. For more complex applications,

the design will incorporate one or more known patterns, with the architect specify-

ing how these patterns integrate to form the overall architecture.

There’s no magic formula for designing the architecture framework. A prerequi-

site, however, is to understand how each of the main architecture patterns addresses

certain quality attributes. The following subsections briefly cover some of the major

patterns used, and describe how they address common quality requirements.

7.2.1.1 N-Tier Client Server

In Fig. 7.4 the anatomy of this pattern for a web application is illustrated. The key

properties of this pattern are:

l Separation of concerns: Presentation, business and data handling logic are

clearly partitioned in different tiers.
l Synchronous communications: Communications between tiers is synchronous

request–reply. Requests emanate in a single direction from the client tier,

through the web and business logic tiers to the data management tier. Each tier

waits for a response from the other tier before proceeding.
l Flexible deployment: There are no restrictions on how a multi-tier application is

deployed. All tiers could run on the same machine, or at the other extreme, each

tier may be deployed on its own machine. In web applications, the client tier is

Databases

Application Server

Web Server

Web
Client

Web
Client

Web
Client

Client
Tier

Web Server
Tier

Business
Logic Tier

Data
Management
Tier

Fig. 7.4 N-tier client-server

example

102 7 A Software Architecture Process

usually a browser running on a user’s desktop, communicating remotely over the

Internet with a web tier components.

Table 7.3 shows how common quality attributes can be addressed with this

pattern.

Precisely how each quality attribute is addressed depends on the actual web and

application server technology used to implement the application. .NET, each

implementation of JEE, and other proprietary application servers all have different

design-time and run-time features. These need to be understood during architecture

design so that no unpleasant surprises are encountered much later in the project,

when fixes are much more expensive to perform.

The N-Tier Client-Server pattern is commonly used and the direct support from

application server technologies for this pattern makes it relatively easy to implement

applications using the pattern. It’s generally appropriate when an application must

support a potentially large number of clients and concurrent requests, and each request

takes a relatively short interval (a few milliseconds to a few seconds) to process.

7.2.1.2 Messaging

In Fig. 7.5 the basic components of the messaging pattern are shown. The key

properties of this pattern are:

l Asynchronous communications: Clients send requests to the queue, where the

message is stored until an application removes it. After the client has written

the message to the queue, it continues without waiting for the message to be

removed.

Table 7.3 Quality attributes for the N-Tier Client Server pattern

Quality

attribute

Issues

Availability Servers in each tier can be replicated, so that if one fails, others remain available.

Overall the application will provide a lower quality of service until the failed

server is restored

Failure

handling

If a client is communicating with a server that fails, most web and application

servers implement transparent failover. This means a client request is, without

its knowledge, redirected to a live replica server that can satisfy the request

Modifiability Separation of concerns enhances modifiability, as the presentation, business and

data management logic are all clearly encapsulated. Each can have its internal

logic modified in many cases without changes rippling into other tiers

Performance This architecture has proven high performance. Key issues to consider are

the amount of concurrent threads supported in each server, the speed of

connections between tiers and the amount of data that is transferred. As

always with distributed systems, it makes sense to minimize the calls needed

between tiers to fulfill each request

Scalability As servers in each tier can be replicated, and multiple server instances run on the

same or different servers, the architecture scales out and up well. In practice,

the data management tier often becomes a bottleneck on the capacity of a

system

7.2 Architecture Design 103

l Configurable QoS: The queue can be configured for high-speed, nonreliable or

slower, reliable delivery. Queue operations can be coordinated with database

transactions.
l Loose coupling: There is no direct binding between clients and servers. The

client is oblivious to which server receives the message. The server is oblivious

as to which client the message came from.

Table 7.4 shows how common quality attributes are addressed by messaging.

Again, bear in mind, exact support for these quality attributes is messaging product

dependent.

Messaging is especially appropriate when the client does not need an immediate

response directly after sending a request. For example, a client may format an

email, and place it on a queue in a message for processing. The server will at some

stage in the future remove the message and send the email using a mail server. The

client really doesn’t need to know when the server processes the message.

Applications that can divide processing of a request into a number of discrete

steps, connected by queues, are a basic extension of the simple messaging pattern.

This is identical to the “Pipe and Filter” pattern (see Buschmann).
Messaging also provides a resilient solution for applications in which connectivity

to a server application is transient, either due to network or server unreliability.

In such cases, the messages are held in the queue until the server connects and

removes messages. Finally, as Chap. 4 explains, messaging can be used to imple-

ment synchronous request–response using a request–reply queue pair.

Client Queue Server

Fig. 7.5 Anatomy of the

messaging pattern

Table 7.4 Quality attributes for the messaging pattern

Quality attribute Issues

Availability Physical queues with the same logical name can be replicated across different

messaging server instances. When one fails, clients can send messages to

replica queues

Failure handling If a client is communicating with a queue that fails, it can find a replica queue

and post the message there

Modifiability Messaging is inherently loosely coupled, and this promotes high

modifiability as clients and servers are not directly bound through an

interface. Changes to the format of messages sent by clients may cause

changes to the server implementations. Self-describing, discoverable

message formats can help reduce this dependency on message formats

Performance Message queuing technology can deliver thousands of messages per second.

Nonreliable messaging is faster than reliable, with the performance

difference dependent of the quality of the messaging technology used

Scalability Queues can be hosted on the communicating endpoints, or be replicated

across clusters of messaging servers hosted on a single or multiple server

machines. This makes messaging a highly scalable solution

104 7 A Software Architecture Process

7.2.1.3 Publish–Subscribe

The essential elements of the Publish–Subscribe pattern are depicted in Fig. 7.6.

The key properties of this pattern are:

l Many-to-Many messaging: Published messages are sent to all subscribers who

are registered with the topic. Many publishers can publish on the same topic, and

many subscribers can listen to the same topic.
l Configurable QoS: In addition to nonreliable and reliable messaging, the under-

lying communication mechanism may be point-to-point or broadcast/multicast.

The former sends a distinct message for every subscriber on a topic, the latter

sends one message which every subscriber receives.
l Loose Coupling: As with messaging, there is no direct binding between publish-

ers and subscribers. Publishers do not know who receives their message, and

subscribers do not know which publisher sent the message.

Table 7.5 explains how publish–subscribe supports common quality attributes.

Architectures based on publish–subscribe are highly flexible and suited to

applications which require asynchronous one-to-many, many-to-one or many-to-

many messaging amongst components. Like messaging, two-way communications

is possible using request–reply topic pairs.

Subscriber
Publisher Subscriber

SubscriberTopic
Fig. 7.6 The

publish–subscribe pattern

Table 7.5 Quality attributes for the publish–subscribe pattern

Quality attribute Issues

Availability Topics with the same logical name can be replicated across different server

instances managed as a cluster. When one fails, publishers send messages

to replica queues

Failure handling If a publisher is communicating with a topic hosted by a server that fails, it

can find a live replica server and send the message there

Modifiability Publish–subscribe is inherently loosely coupled, and this promotes high

modifiability. New publishers and subscribers can be added to the

system without change to the architecture or configuration. Changes to

the format of messages published may cause changes to the subscriber

implementations

Performance Publish–subscribe can deliver thousands of messages per second, with

nonreliable messaging faster than reliable. If a publish–subscribe broker

supports multicast/broadcast, it will deliver multiple messages in a more

uniform time to each subscriber

Scalability Topics can be replicated across clusters of servers hosted on a single or

multiple server machines. Clusters of server can scale to provide very

high message volume throughput. Also, multicast/broadcast solutions

scale better than their point-to-point counterparts

7.2 Architecture Design 105

7.2.1.4 Broker

The major elements of the Broker pattern are shown in Fig. 7.7. The properties of a

broker-based solution are:

l Hub-and-spoke architecture: The broker acts as a messaging hub, and senders

and receivers connect as spokes. Connections to the broker are via ports that are

associated with a specific message format.
l Performs message routing: The broker embeds processing logic to deliver a

message received on an input port to an output port. The delivery path can be

hard coded or depend on values in the input message.
l Performs message transformation: The broker logic transforms the source mes-

sage type received on the input port to the destination message type required on

the output port.

Table 7.6 shows the pattern’s support for common quality attributes.

Brokers are suited to applications in which components exchange messages that

require extensive transformation between source and destination formats. The

broker decouples the sender and receiver, allowing them to produce or consume

Receiver-2

Sender-1 Receiver-1

Broker

Sender-2

InPort1

InPort2

OutPort1

OutPort2
Fig. 7.7 Elements of the

broker pattern

Table 7.6 Quality attributes for the broker pattern

Quality attribute Issues

Availability To build high availability architectures, brokers must be replicated. This is

typically supported using similar mechanisms to messaging and

publish–subscribe server clustering

Failure handling As brokers have typed input ports, they validate and discard any messages

that are sent in the wrong format. With replicated brokers, senders can fail

over to a live broker should one of the replicas fail.

Modifiability Brokers separate the transformation and message routing logic from the

senders and receivers. This enhances modifiability, as changes to

transformation and routing logic can be made without affecting senders or

receivers

Performance Brokers can potentially become a bottleneck, especially if they must service

high message volumes and execute complex transformation logic. Their

throughput is typically lower than simple messaging with reliable delivery

Scalability Clustering broker instances makes it possible to construct systems scale to

handle high request loads

106 7 A Software Architecture Process

their native message format, and centralizes the definition of the transformation

logic in the broker for ease of understanding and modification.

7.2.1.5 Process Coordinator

The Process Coordinator pattern is illustrated in Fig. 7.8. The essential elements of

this pattern are:

l Process encapsulation: The process coordinator encapsulates the sequence of

steps needed to fulfill the business process. The sequence can be arbitrarily

complex. The coordinator is a single point of definition for the business process,

making it easier to understand and modify. It receives a process initiation request,

calls the servers in the order defined by the process, and emits the results.
l Loose coupling: The server components are unaware of their role in the overall

business process, and of the order of the steps in the process. The servers simply

define a set of services which they can perform, and the coordinator calls them as

necessary as part of the business process.
l Flexible communications: Communications between the coordinator and servers

can be synchronous or asynchronous. For synchronous communications, the

coordinator waits until the server responds. For asynchronous communications,

the coordinator provides a callback or reply queue/topic, and waits until the

server responds using the defined mechanism.

The Process Coordinator pattern is commonly used to implement complex

business processes that must issue requests to several different server components.

By encapsulating the process logic in one place, it is easier to change, manage and

monitor process performance. Message broker and Business Process Orchestrator

technologies are designed specifically to support this pattern, the former for short

lived requests, the latter for processes that may take several minutes or hours or

days to complete. In less complex applications, the pattern is also relatively simple

to implement without sophisticated technology support, although failure handling is

an issue that requires careful attention.

Table 7.7 shows how this pattern addresses quality requirements.

Server-3Server-2 Server-4

Process
Coordinator

Server-1

step1

step2 step3 step4

Start
process
request

Process
results

Fig. 7.8 Components of the

process coordinator pattern

7.2 Architecture Design 107

7.2.2 Allocate Components

Once an overall architecture framework has been selected, based on one or more

architecture patterns, the next task is to define the major components that will

comprise the design. The framework defines the overall communication patterns for

the components. This must be augmented by the following:

l Identifying the major application components, and how they plug into the

framework.
l Identifying the interface or services that each component supports.
l Identifying the responsibilities of the component, stating what it can be relied

upon to do when it receives a request.
l Identifying dependencies between components.
l Identifying partitions in the architecture that are candidates for distribution over

servers in a network.

The components in the architecture are the major abstractions that will exist in

the application. Hence, it’s probably no surprise that component design has much in

common with widely used object-oriented design techniques. In fact, class and

package diagrams are often used to depict components in an architecture.

Some guidelines for component design are:

l Minimize dependencies between components. Strive for a loosely coupled

solution in which changes to one component do not ripple through the architec-

ture, propagating across many components. Remember, every time you change

something, you have to retest it.
l Design components that encapsulate a highly “cohesive” set of responsibilities.

Cohesion is a measure of how well the parts of a component fit together. Highly

cohesive components tend to have a small set of well-defined responsibilities

Table 7.7 Quality attributes for the process coordinator pattern

Quality attribute Issues

Availability The coordinator is a single point of failure. Hence it needs to be replicated to

create a high availability solution

Failure handling Failure handling is complex, as it can occur at any stage in the business

process coordination. Failure of a later step in the process may require

earlier steps to be undone using compensating transactions. Handling

failures needs careful design to ensure the data maintained by the servers

remains consistent

Modifiability Process modifiability is enhanced because the process definition is

encapsulated in the coordinator process. Servers can change their

implementation without affecting the coordinator or other servers, as long

as their external service definition doesn’t change

Performance To achieve high performance, the coordinator must be able to handle

multiple concurrent requests and manage the state of each as they

progress through the process. Also, the performance of any process will

be limited by the slowest step, namely the slowest server in the process

Scalability The coordinator can be replicated to scale the application both up and out

108 7 A Software Architecture Process

that implement a single logical function. For example, an EnrollmentReports
component encapsulates all the functions required to produce reports on a

student’s enrollments in courses. If changes to report format or type are needed,

then it’s likely the changes will be made in this component. Hence, strong

cohesion limits many types of changes to a single component, minimizing

maintenance and testing efforts.
l Isolate dependencies on middleware and any COTS infrastructure technologies.

The fewer components that are dependent on specific middleware and COTS

components API calls, the easier it is to change or upgrade the middleware or

other infrastructure services. Of course this takes more effort to build, and

introduces a performance penalty.
l Use decomposition to structure components hierarchically. The outermost level

component defines the publicly available interface to the composite component.

Internally, calls to this interface are delegated to the locally defined components,

whose interfaces are not visible externally.
l Minimize calls between components, as these can prove costly if the compo-

nents are distributed. Try to aggregate sequences of calls between components

into a single call that can perform the necessary processing in a single request.

This creates coarser grain methods or services in interfaces that do more work

per request.

Let’s explore a simple case study to illustrate some of these issues. Figure 7.9 is

an example of a structural view of an order processing application, defined using

Validate

OrderInput

read

New
Orders

OrderQ

Store

Customer
System

Order
System

SendEmail

Email
Server

Write
Order

Check
Order

Write
Order

Get
Order

Existing
Component

New
Component

Dependency

Database

Persistent
Queue

Error
Log

Figure Key

Fig. 7.9 Order processing example architecture

7.2 Architecture Design 109

a simple informal notation. New orders are received (from where is irrelevant) and

loaded into a database. Each order must be validated against an existing customer

details system to check the customer information and that valid payment options

exist. Once validated, the order data is simply stored in the order processing

database, and an email is generated to the customer to inform them that their

order is being processed.

The general architecture framework is based on straightforward messaging. The

customer order details are read from the database, validated, and if valid, they are

stored in the order application message and written to a queue. Information about

each valid order is removed from the queue, formatted as an email and sent to the

customer using the mail server. Hence, using a message queue this architecture

decouples the order processing from the email formatting and delivery.

Four components are introduced to solve this problem. These are described

below, along with their responsibilities:

l OrderInput: This is responsible for accessing the new orders database, encapsu-

lating the order processing logic, and writing to the queue.
l Validate: This encapsulates the responsibility of interacting with the customer

system to carry out validation, and writing to the error logs if an order is invalid.
l Store: This has the responsibility of interacting with the order system to store the

order data.
l SendEmail: This removes a message from the queue, formats an email message

and sends it via an email server. It encapsulates all knowledge of the email

format and email server access.

So, each component has clear dependencies and a small set of responsibilities,

creating a loosely coupled and cohesive architecture. We’ll return to this example

and further analyze its properties in the next section, in which the validation of an

architecture design is discussed.

7.3 Validation

During the architecture process, the aim of the validation phase is to increase the

confidence of the design team that the architecture is fit for purpose. Validating an

architecture design poses some tough challenges. Whether it’s the architecture for a

new application, or an evolution of an existing system, the proposed design is, well,

just that – a design. It can’t be executed or tested to see that it fulfills its require-

ments. It will also likely consist of new components that have to be built, and black

box off-the-shelf components such as middleware and specialized libraries and

existing applications. All these parts have to be integrated and made to work

together.

So, what can sensibly be done? There are two main techniques that have proved

useful. The first essentially involves manual testing of the architecture using test

scenarios. The second involves the construction of a prototype that creates a simple

110 7 A Software Architecture Process

archetype of the desired application, so that its ability to satisfy requirements can

be assessed in more detail through prototype testing. The aim of both is to identify

potential flaws and weaknesses in the design so that they can be improved before

implementation commences. These approaches should be used to explicitly iden-

tify potential risk areas for tracking and monitoring during the subsequent build

activities.

7.3.1 Using Scenarios

Scenarios are a technique developed at the SEI to tease out issues concerning an

architecture through manual evaluation and testing. Scenarios are related to archi-

tectural concerns such as quality attributes, and they aim to highlight the conse-

quences of the architectural decisions that are encapsulated in the design.

The SEI ATAM work describes scenarios and their generation in great detail. In

essence though, scenarios are relatively simple artifacts. They involve defining

some kind of stimulus that will have an impact on the architecture. The scenario

then involves working out how the architecture responds to this stimulus. If the

response is desirable, then a scenario is deemed to be satisfied by the architecture. If

the response is undesirable, or hard to quantify, then a flaw or at least an area of risk

in the architecture may have been uncovered.

Scenarios can be conceived to address any quality requirement of interest in a

given application. Some general hypothetical examples are shown in Table 7.8.

These scenarios highlight the implications of the architecture design decisions

in the context of the stimulus and the effects it elicits. For example, the “avail-

ability” scenario shows that messages can be lost if a server fails before messages

have been delivered. The implication here is that messages are not being persisted

to disk, most likely for performance reasons. The loss of messages in some

application contexts may be acceptable. If it is not, this scenario highlights a

problem, which may force the design to adopt persistent messaging to avoid

message loss.

Let’s look at some more specific examples for the order processing example

introduced in the previous section. The design in Fig. 7.9 needs to be validated, and

the scenarios in Table 7.9 probe more deeply into the architecture, looking to

expose flaws or areas of risk.

The first two scenarios seem to elicit positive responses from the design. The

Validate component bounds the changes needed to accommodate a new customer

database, and hence it insulates other components from change. And should the

email server be unavailable, the implication is that emails are merely delayed until

the email server returns.

The failure of the Customer or Order applications is more revealing however.

The communications with these two systems is synchronous, so if either is not

available, order processing must halt until the applications are restored. This may

be less than desirable.

7.3 Validation 111

Note the design does not discriminate between the interactions with the two

applications. It’s pretty obvious however that the interaction with the Customer
System requires a response saying whether the order data is valid. If it is not, it is

written to an error log and the order processing ceases for that order. The Order
System though simply stores the order data for subsequent processing. There’s no

need for the Store component to require an immediate response.

Table 7.8 Scenario examples

Quality attribute Stimulus Response

Availability The network connection to

the message consumers

fails

Messages are stored on the MOM server until

the connection is restored. Messages will

only be lost if the server fails before the

connection comes back up

Modifiability A new set of data analysis

components must be

made available in the

application

The application needs to be rebuilt with the new

libraries, and the all configuration files must

be updated on every desktop to make the

new components visible in the GUI toolbox

Security No requests are received

on a user session for

10 min

The system treats this session as potentially

insecure and invalidates the security

credentials associated with the session. The

user must logon again to connect to the

application

Modifiability The supplier of the

transformation engine

goes out of business

A new transformation engine must be

purchased. The abstract service layer that

wraps the transformation engine component

must be reimplemented to support the new

engine. Client components are unaffected as

they only use the abstract service layer

Scalability The concurrent user request

load doubles during the

3 week enrollment period

The application server is scaled out on a two

machine cluster to handle the increased

request load

Table 7.9 Scenarios for the order processing example

Quality

attribute

Stimulus Response

Modifiability The Customer System packaged

application is updated to an

Oracle database

The Validate component must be rewritten to

interface to the Oracle system

Availability The email server fails Messages build up in the OrderQ until the

email server restarts. Messages are then

sent by the SendEmail component to

remove the backlog. Order processing is

not affected

Reliability The Customer orOrder systems

are unavailable

If either fails, order processing halts and alerts

are sent to system administrators so that

the problem can be fixed

112 7 A Software Architecture Process

So, the reliability scenario has highlighted an area where the architecture could

be improved. An order can’t be processed until it has been successfully validated,

so a response from the Customer System is necessary. If it is unavailable, processing

can’t continue.

But the Order System is a different matter. Asynchronous communications is

better in this case. Store could just write to a persistent queue, and order process-

ing can continue. Another component could then be introduced to read the order

from the queue and add the details to the Order System. This solution is more

resilient to failure, as the Order System can be unavailable but order processing

can continue.

7.3.2 Prototyping

Scenarios are a really useful technique for validating a proposed architecture. But

some scenarios aren’t so simple to answer based only on a design description.

Consider a performance scenario for the order processing system:

On Friday afternoon, orders must be processed before close-of-business to ensure delivery
by Monday. Five thousand orders arrive through various channels (Web/Call centre/
business partners) five minutes before close-of-business.

The question here then is simply, can the 5,000 orders be processed in 5 min?

This is a tough question to answer when some of the components of the solution

don’t yet exist.

The only way to address such questions with some degree of confidence is to

build a prototype. Prototypes are minimal, restricted or cut-down versions of the

desired application, created specifically to test some high risk or poorly understood

aspects of the design. Prototypes are typically used for two purposes:

1. Proof-of-concept: Can the architecture as designed be built in a way that can

satisfy the requirements?

2. Proof-of-technology: Does the technology (middleware, integrated applications,

libraries, etc) selected to implement the application behave as expected?

In both cases, prototypes can provide concrete evidence about concerns that are

otherwise difficult, if not impossible to validate in any other way.

To answer our performance scenario above, what kind of prototype might we

build? The general answer is one that incorporates all the performance sensitive

operations in the design, and that executes on a platform as similar as possible

(ideally identical) to the one the application will be deployed on.

For example, the architect might know that the queue and email systems are

easily capable of supporting 5,000 messages in 5 min, as these solutions are used in

another similar application. There would therefore be no need to build this as part of

the prototype. However, the throughput of interactions between the Customer and

7.3 Validation 113

Order applications using their APIs are an unknown, and hence these two must be

tested to see if they can process 5,000 messages in 5 min. The simplest way to do

this is:

l Write a test program that calls the Customer System validation APIs 5,000 times,

and time how long this takes.
l Write a test program that calls theOrder System store APIs 5,000 times, and time

how long this takes.

Once the prototypes have been created and tested, the response of the architec-

ture to the stimulus in the scenario can be answered with a high degree of

confidence.

Prototypes should be used judiciously to help reduce the risks inherent in a

design. They are the only way that concerns related to performance, scalability,

ease of integration and capabilities of off-the-shelf components can be addressed

with any degree of certainty.

Despite their usefulness, a word of caution on prototyping is necessary. Proto-

typing efforts should be carefully scoped and managed. Ideally a prototype should

be developed in a day or two, a week or two at most. Most proof-of-technology and

proof-of-concept prototypes get thrown away after they’ve served their purpose.

They are a means to an end, so don’t let them acquire a life of their own and become

an end in themselves.

7.4 Summary and Further Reading

Designing an application architecture is an inherently creative activity. However,

by following a simple process that explicitly captures architecturally significant

requirements, exploits known architecture patterns and systematically validates the

design, some of the mystique of design can be exposed.

The three step process described in this chapter is inherently iterative. The initial

design is validated against requirements and scenarios, and the outcome of the

validation can cause the requirements or the design to be revisited. The iteration

continues until all the stakeholders are happy with the architecture, which then

becomes the blueprint from which detailed design commences. In agile projects,

iterations are short, and concrete implementations of the architecture result from

each iteration.

The process is also scalable. For small projects, the architect may be working

mostly directly with the customer, or there may in fact be no tangible customer

(often the case in new, innovative product development). The architect is also likely

to be a major part of the small development team that will build the project. In such

projects, the process can be followed informally, producing minimal documenta-

tion. For large projects, the process can be followed more formally, involving the

requirements and design teams, gathering inputs from the various stakeholders

involved, and producing extensive documentation.

114 7 A Software Architecture Process

Of course, other architecture processes exist, and probably the most widely used

is the Rational Unified Process (RUP). A good reference to RUP is:

P. Kruchten. The Rational Unified Process: An Introduction (2nd Edition).

Addison-Wesley, 2000

The most comprehensive source of information on methods and techniques for

architecture evaluation is:

P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures: Methods

and Case Studies. Addison-Wesley, 2002

This describes the ATAM process, and provides excellent examples illustrating

the approach. Its focus is evaluating large, complex systems, but many of the

techniques are appropriate for smaller scale applications.

7.4 Summary and Further Reading 115

.

Chapter 8

Documenting a Software Architecture

8.1 Introduction

Architecture documentation is often a thorny issue in IT projects. It’s common for

there to be little or no documentation covering the architecture in many projects.

Sometimes, if there is some, it’s out-of-date, inappropriate and basically not very

useful.

At the other extreme there are projects that have masses of architecture related

information captured in various documents and design tools. Sometimes this is

invaluable, but at times it’s out-of-date, inappropriate and not very useful!

Clearly then, experience tells us that documenting architectures is not a simple

task. But there are many good reasons why we want to document our architectures,

for example:

l Others can understand and evaluate the design. This includes any of the applica-

tion stakeholders, but most commonly other members of the design and devel-

opment team.
l We can understand the design when we return to it after a period of time.
l Others in the project team and development organization can learn from the

architecture by digesting the thinking behind the design.
l We can do analysis on the design, perhaps to assess its likely performance, or to

generate standard metrics like coupling and cohesion.

Documenting architectures is problematic though, because:

l There’s no universally accepted architecture documentation standard.
l An architecture can be complex, and documenting it in a comprehensible

manner is time consuming and nontrivial.
l An architecture has many possible views. Documenting all the potentially useful

ones is time consuming and expensive.
l An architecture often evolves as the system is incrementally developed and more

insights into the problem domain are gained. Keeping the architecture docu-

ments current is often an overlooked activity, especially with time and schedule

pressures in a project.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_8, # Springer-Verlag Berlin Heidelberg 2011

117

I’m pretty certain the predominant tools used for architecture documentation are

Microsoft Word, Visio and PowerPoint, along with their non-Microsoft equiva-

lents. And the most widely used design notation is informal “block and arrow”

diagrams, just like we’ve used in this book so far, in fact. Both these facts are a bit

of an indictment on the state of architecture documentation practices at present. We

should be able to do better.

This chapter examines some of the most useful architecture views to document,

and shows how the latest incarnation of the Unified Modeling Language, UML

v2.0, can help with generating these views. Using these techniques and supporting

tools, it’s not overly difficult or expensive to generate useful and valuable

documentation.

8.2 What to Document

Probably the most crucial element of the “what to document” equation is the

complexity of the architecture being designed. A two-tier client server application

with complex business logic may actually be quite simple architecturally. It might

require no more than an overall “marketeture” diagram describing the main com-

ponents, and a perhaps a structural view of the major components (maybe it uses a

model-view-controller architecture) and a description of the database schema, no

doubt generated automatically by database tools. This level of documentation is

quick to produce and routine to describe.

Another factor to consider is the likely longevity of the application. Will the

system serve a long-term business function, or is it being built to handle a one-off

need for integration, or is it just a stop-gap until a full ERP package is installed?

Projects with little prospect of a long life probably don’t need a lot of documenta-

tion. Still, never let this be an excuse to hack together some code and throw good

design practices to the wind. Sometimes these stop-gap systems have a habit of

living for a lot longer than initially anticipated, and someone (maybe even you)

might pay for these hacks 1 day.

The next factor to consider is the needs of the various project stakeholders. The

architecture documentation serves an important communications role between the

various members of the project team, including architects, designers, developers,

testers, project management, customers, partner organizations, and so on. In a small

team, interpersonal communication is often good, so that the documentation can be

minimal, and maybe even maintained on a whiteboard or two using agile develop-

ment techniques. In larger teams, and especially when groups are not colocated in

the same offices or building, the architecture documentation becomes of vital

importance for describing design elements such as:

l Component interfaces
l Subsystems constraints
l Test scenarios

118 8 Documenting a Software Architecture

l Third party component purchasing decisions
l Team structure and schedule dependencies
l External services to be offered by the application

So, there’s no simple answer here. Documentation takes time to develop, and

costs money. It’s therefore important to think carefully about what documentation

is going to be most useful within the project context, and produce and maintain this

as key reference documents for the project.

8.3 UML 2.0

There’s also the issue of how to document an architecture. So far in this book we’ve

used simple box-and-arrow diagrams, with an appropriate diagram key to give a

clear meaning to the notation used. This has been done deliberately, as in my

experience, informal diagrammatical notations are the most common vehicle used

to document IT application architectures.

There are of course many ways to describe the various architecture views that

might be useful in a project. Fortunately for all of us, there’s an excellent book that

describes many of these from Paul Clements et al. (see Further Reading), so no

attempt here will be made to replicate that. But there’s been one significant

development since that book was published, and that’s the emergence of the Unified

Modeling Language (UML) 2.0.

For all its greatly debated strengths and weaknesses, the UML has become the

predominant software description language used across the whole range of software

development domains. It has wide and now quality and low-cost tool support, and

hence is easily accessible and useable for software architects, designers, developers,

students – everyone in fact.

UML 2.0 is a major upgrade of the modeling language. It adds several new

features and, significantly, it formalizes many aspects of the language. This for-

malization helps in two ways. For designers, it eliminates ambiguity from the

models, helping to increase comprehensibility. Second, it supports the goal of

model-driven development, in which UML models are used for code generation.

There’s also a lot of debate about the usefulness of model-driven development, and

this topic is specifically covered in a later chapter, so we won’t delve into it now.

The UML 2.0 modeling notations cover both structural and behavioral aspects of

software systems. The structure diagrams define the static architecture of a model,

and specifically are:

l Class diagrams: Show the classes in the system and their relationships.
l Component diagrams: Describe the relationship between components with well-

defined interfaces. Components typically comprise multiple classes.
l Package diagrams: Divide the model into groups of elements and describe the

dependencies between them at a high level.

8.3 UML 2.0 119

l Deployment diagrams: Show how components and other software artifacts like

processes are distributed to physical hardware.
l Object diagrams: Depict how objects are related and used at run-time. These are

often called instance diagrams.
l Composite Structure diagrams: Show the internal structure of classes or com-

ponents in terms of their composed objects and their relationships.

In contrast, behavior diagrams show the interactions and state changes that occur as

elements in the model execute:

l Activity diagrams: Similar to flow charts, and used for defining program logic

and business processes.
l Communication diagrams: Called collaboration diagrams in UML 1.x, they

depict the sequence of calls between objects at run-time.
l Sequence diagrams: Often called swim-lane diagrams after their vertical time-

lines, they show the sequence of messages exchanged between objects.
l State Machine diagrams: Describe the internals of an object, showing its states

and events, and conditions that cause state transitions.
l Interaction Overview diagrams: These are similar to activity diagrams, but can

include other UML interaction diagrams as well as activities. They are intended

to show control flow across a number of simpler scenarios.
l Timing diagrams: These essentially combine sequence and state diagrams to

describe an object’s various states over time and the messages that alter the

object’s state.
l Use Case diagrams: These capture interactions between the system and its

environment, including users and other systems.

Clearly then, UML 2.0 is a large technical area in itself, and some pointers to

good sources of information are provided at the end of this chapter. In the following

sections though, we’ll describe some of the most useful UML 2.0 models for

representing software architectures.

8.4 Architecture Views

Let’s return to the order processing example introduced in the previous chapter.

Figure 7.9 shows an informal description of the architecture using a box and arrow

notation. In Fig. 8.1, a UML component diagram is used to represent an equivalent

structural view of the order processing system architecture. Note though, based on

the evaluation in the previous chapter, a queue has been added to communicate

between the OrderProcessing and OrderSystem components.

Only two of the components in the architecture require substantial new code to

be created. The internal structure of the most complex of these, OrderProcessing,
is shown in the class diagram in Fig. 8.2. It includes three classes that encap-

sulate each interaction with an existing system. No doubt other classes will be

120 8 Documenting a Software Architecture

id Component View

OrderProcessing MailQueue

SendEmail

MailServer

OrderSystem

Customer
System OrderQueue

«table»
NewOrders

1
validate

1

1

1

read

1

1

1

1

1

writeQ

1

send

readQ

writeQ

readQ

Fig. 8.1 A UML component diagram for the order processing example

cd OrderProcessing

OrderReader

Validate Store

QueueWriter

1

1 1

1

1

1

Fig. 8.2 Classes for the order processing component

8.4 Architecture Views 121

introduced into the design as it is implemented, for example one to represent a

new order, but these are not shown in the class diagram so that they do not clutter

it with unnecessary detail. These are design details not necessary in an architec-

ture description.

With this level of description, we can now create a sequence diagram

showing the main interactions between the architectural elements. This is shown

in Fig. 8.3, which uses the standard UML stereotypes for representing Boundary
(CustomerSystem, OrderQueue, MailQueue) and Entity (NewOrder) components.

This sequence diagram omits the behavior when a new order is invalid, and what

happens once the messages have been placed on the OrderQueue and MailQueue.
Again, this keeps the model uncluttered. Descriptions of this additional functional-

ity could either be described in subsequent (very simple) sequence diagrams, or just

in text accompanying the sequence diagram.

Sequence diagrams are probably the most useful technique in the UML for

modeling the behavior of the components in an architecture. One of their strengths

actually lies, somewhat ironically, in their inherent weakness in describing complex

processing and logic. Although it is possible to represent loops and selection in

sequence diagrams, they quickly become hard to understand and unwieldy to

create. This encourages designers to keep them relatively simple, and focus on

describing the major interactions between architecturally significant elements in the

design.

Quite often in this style of business integration project, it’s possible to create a

UML deployment diagram showing where the various components will execute.

sd Interactions

Order
Reader

MailQueue

Validate

Order
Queue

Store Queue
Writer

NewOrders
Customer
System

readOrder
Data

success:=validateOrder

success:=newOrder

success:=storeOrder

success:=writeQueue

success:=acknowledgeOrderSuccess

success:=writeQueue

Fig. 8.3 Sequence diagram for the order processing system

122 8 Documenting a Software Architecture

This is because many of the components in the design already exist, and the

architect must show how the new components interact with these in the deployment

environment. An example of a UML deployment diagram for this example is given

in Fig. 8.4. It allocates components to servers and shows the dependencies between

the components. It’s often useful to label the dependencies with a name that

indicates the protocol that is used to communicate between the components. For

example, the OrderProcessing executable component requires JDBC1 to access

the NewOrders table in the OrdersDB database.

8.5 More on Component Diagrams

Component diagrams are very useful for sketching out the structure of an applica-

tion architecture. They clearly depict the major parts of the system, and can show

which off-the-shelf technologies will be used as well as the new components that

Fig. 8.4 UML Deployment diagram for the order processing system

1Java Database Connectivity.

8.5 More on Component Diagrams 123

need to be built. UML 2.0 has also introduced improved notations for representing

component interfaces. An interface is a collection of methods that a component

supports. In addition to the UML 1.x “lollipop” notation for representing an

interface supported by a component (a “provided” interface), the “socket” notation

can be used to specify that a component needs a particular interface to be supported

by its environment (a “required” interface). These are illustrated in Fig. 8.5.

Interface definition is particularly important in an architecture, as it allows inde-

pendent teams of developers to design and build their components in isolation,

ensuring that they support the contracts defined by their interfaces.

By connecting provided and required interfaces, components can be “plugged”

or “wired” together, as shown in Fig. 8.5. The provided interfaces are named, and

capture the dependencies between components. Interface names should correspond

to those used by off-the-shelf applications in use, or existing home-grown compo-

nent interfaces.

UML 2.0 makes it possible to refine interface definitions even further, and depict

how they are supported within the context of a component. This is done by

associating interfaces with “ports”. Ports define a unique, optionally named inter-

action point between a component and its external environment. They are repre-

sented by small squares on the edge of the component, and have one or more

provides or requires interfaces associated with them.

The order processing system architecture using ports for the OrderProcessing
and CustomerSystem components is depicted in Fig. 8.6. All the ports in this design

id Component View

OrderProcessing MailQueue

SendEmail

MailServer

OrderSystem
CustomerSystem

OrderQueue

«table»

NewOrders

SMTP

QueueWrite

CustomerServices

JDBC QueueWrite

QueueRead

QueueRead

Fig. 8.5 Representing interfaces in the order processing example

124 8 Documenting a Software Architecture

are unidirectional, but there is nothing stopping them from being bidirectional in

terms of supporting one or more provides or requires interfaces. UML 2.0 compos-

ite diagrams enable us to show the internal structure of a design element such as a

component. As shown in Fig. 8.7, we can explicitly depict which objects comprise

id Component View

OrderProcessing

validateOrder

getOrders writeConfirmation

writeOrder

MailQueue

SendEmail

MailServer

OrderSystem
CustomerSystem

validate

ProvidedInterface1

OrderQueue

«table»

NewOrders

JDBC

QueueWrite

QueueWrite

CustomerServices SMTP

QueueRead

QueueRead

Fig. 8.6 Using ports in the order processing example

cd Component View

OrderProcessing

getOrders

validateOrder

writeConfirmation

writeOrder

or: OrderReader

val: Validate

qw:
QueueWriter

st: Store

«delegate»

«delegate»

«delegate»

«delegate»

Fig. 8.7 Internal design of the OrderProcessing component

8.5 More on Component Diagrams 125

the component implementation, and how they are related to each other and to the

ports the component supports. The internal objects are represented by UML 2.0

“parts”. Parts are defined in UML 2.0 as run-time instances of classes that are

owned by the containing class or component. Parts are linked by connectors and

describe configurations of instances that are created within an instance of the

containing component/class.

Composite diagrams are useful for describing the design of complex or impor-

tant components in a design. For example, a layered architecture might describe

each layer as a component that supports various ports/interfaces. Internally, a layer

description can contain other components and parts that show how each port is

supported. Components can also contain other components, so hierarchical archi-

tectures can be easily described. We’ll see some of these design techniques in the

case study in the next section.

8.6 Architecture Documentation Template

It’s always useful for an organization to have a document template available for

capturing project specific documentation. Templates reduce the start-up time for

projects by providing ready-made document structures for project members to use.

Once the use of the templates becomes institutionalized, the familiarity gained

with the document structure aids in the efficient capture of project design details.

Architecture Documentation Template
Project Name: XXX
1 Project Context
2 Architecture Requirements

2.1 Overview of Key Objectives
2.2 Architecture Use Cases
2.3 Stakeholder Architectural Requirements
2.4 Constraints
2.5 Non-functional Requirements
2.6 Risks

3 Solution
3.1 Relevant Architectural Patterns
3.2 Architecture Overview
3.3 Structural Views
3.4 Behavioral Views
3.5 Implementation Issues

4 Architecture Analysis

4.1 Scenario analysis
4.2 Risks

Fig. 8.8 Architecture documentation outline

126 8 Documenting a Software Architecture

Templates also help with the training of new staff as they tell developers what

issues the organization requires them to consider and think about in the production

of their system.

Figure 8.8 shows the headings structure for a documentation template that can be

used for capturing an architecture design. To deploy this template in an organiza-

tion, it should be accompanied by explanatory text and illustrations of what

information is expected in each section. However, instead of doing that here, this

template structure will be used to show the solution to the ICDE case study problem

in the next chapter.

8.7 Summary and Further Reading

Generating architecture documentation is nearly always a good idea. The trick is to

spend just enough effort to produce only documentation that will be useful for the

project’s various stakeholders. This takes some upfront planning and thinking.

Once a documentation plan is established, team members should commit to keeping

the documentation reasonably current, accurate and accessible.

I’m a bit of a supporter of using UML-based notations and tools for producing

architecture documentation. The UML, especially with version 2.0, makes it pretty

straightforward to document various structural and behavioral views of a design.

Tools make creating the design quick and easy, and also make it possible to capture

much of the design rationale, the design constraints, and other text based documen-

tation within the tool repository. Once it’s in the repository, generating design

documentation becomes a simple task of selecting the correct menu item and

opening up a browser or walking to the printer. Such automatic documentation

production is a trick that is guaranteed to impress nontechnical stakeholders, and

even sometimes the odd technical one!

In addition, it’s possible to utilize UML 2.0 flexibly in a project. It can be used to

sketch out an abstract architecture representation, purely for communication and

documentation purposes. It can also be used to closely model the components and

objects that will be realized in the actual implementation. This “closeness” can be

reduced further in the extreme case to “exactness”, in which elements in the model

are used to generate executable code. If you’re doing this, then you’re doing so-

called model-driven development (MDD).

There’s all manner of debates raging about the worth and value of using the

UML informally versus the precise usage required by MDD. Back in Chap. 1, the

role of a software architecture as an abstract representation of the system was

discussed. Abstraction is a powerful aid to understanding, and if our architecture

representation is abstract, then it argues for a more informal usage of the UML in

our design. On the other hand, if our UML models are a precise representation of

our implementation, then they are hardly much of an abstraction. But such detailed

models make code generation possible, and bridge the semantic gap between

models and implementation. I personally think there’s a place for both, it just

8.7 Summary and Further Reading 127

depends what you’re building and why. Like many architecture decisions, there’s

no right or wrong answer, as solutions need to be evaluated in the context of their

problem definition. Now there’s a classic consultant’s answer.

For in-depth discussions on architecture documentation approaches, the Views &
Beyond book from the SEI is the current font of knowledge:

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,

J. Stafford. Documenting Software Architectures: Views and Beyond. Addison-
Wesley, 2nd Edition, 2010

Good UML 2.0 books around. The one I find useful is:

S. W. Ambler. The Object Primer 3rd Edition: Agile Model Driven Development
with UML 2. Cambridge University Press, 2004

This book also gives an excellent introduction into agile development methods,

and how the UML can be used in lightweight and effective ways.

There’s an IEEE standard, IEEE 1471-2000, for architecture documentation that

is well worth a read if you’re looking at defining architecture documentation

standards for your organization. This can be found at:

http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

An emerging area of research is the architecture knowledge management, aim-

ing at capturing design rationale and “tribal knowledge” that is inevitably asso-

ciated with any long-lived software system. Here’s an excellent book that will give

you pointers to the emerging technologies and practices in this area:

Ali Babar, M.; Dingsøyr, T.; Lago, P.; Vliet, H. van (Eds.), Software Architecture
Knowledge Management: Theory and Practice, Springer-Verlag 2008

128 8 Documenting a Software Architecture

Chapter 9

Case Study Design

9.1 Overview

In this chapter, a design for the ICDE case study described in Chap. 2 is given. First,

a little more technical background to the project is given, so that the design details

are more easily digested. Then the design description is presented, and is structured

using the architecture documentation template introduced in the previous chapter.

The only section that won’t be included in the document is the first, the “Project

Context”, as this is basically described in Chap. 2. So, without further ado, let’s

dive into the design documentation.

9.2 ICDE Technical Issues

Chapter two gave a broad, requirements level description of the ICDE v1.0 appli-

cation and the goals for building the next version. Of course, this description is

necessary in order to understand architectural requirements, but in reality, it’s only

the starting point for the technical discussions that result in an actual design.

The following sections describe some of the technical issues, whose solutions are

reflected in the resulting design description later in the chapter.

9.2.1 Large Data

The ICDE database stores information about the actions of each user when using

their workstation and applications. This means events such as opening and closing

applications, typing in data, moving the mouse, accessing the Internet, and so on all

cause data to be written to the database. Although the database is periodically

purged (e.g., every day/week) to archive old data and control size, some database

tables can quickly grow to a size of several million rows.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_9, # Springer-Verlag Berlin Heidelberg 2011

129

This is not a problem for the database to handle, but it does create an interesting

design issue for the ICDE API. With the two-tier ICDE v1.0 application, the

data analysis tool can issue naı̈ve database queries (the classic SELECT * from
VERYBIGTABLE case) that can return very large data sets. These are inevitably

slow to execute and can bring down the analysis tool if the data set returned is

very large.

While inconvenient, according to the “you asked for it, you got it!” principle,

this isn’t a serious issue for users in a single user system as in ICDE v1.0. They only

do harm to themselves, and presumably after bringing down the application a few

times, will learn better.

However, in order to lower deployment costs and management complexity,

transitioning the ICDE system to be shared amongst multiple users is a potentially

attractive option because:

l It reduces database license costs, as only one is needed per deployment, not per

user.
l It reduces the specification of the PC that users need to run the ICDE application,

as it doesn’t need to run the database, just the ICDE client software. Simply, this

saves money for a deployment.
l It reduces support costs and simplifies database management, as there’s only one

shared ICDE server application to manage and monitor.

If the database is to be shared by multiple users, it would still be possible to use a

two-tier or three-tier application architecture. The two-tier option would likely

provide better performance for small deployments, and be easier to build as less

components would be needed (basically, no middle tier). The three-tier option

would likely scale better as deployments approach a 100–150 users, as the database

connections can be pooled and additional processing resources deployed in the

middle tier.

Regardless, when a shared infrastructure is used, the behavior of each client

impacts others. In this case, issues to consider are:

l Database performance
l For the three-tier option, resource usage in the middle tier

Memory usage in the middle tier is an important issue to consider, especially as

ICDE clients (both users and third party tools) might request result sets with many

thousands of rows. While the middle tier server could be configured with a large

memory heap, if several clients request sizeable result sets simultaneously, this

could easily consume all the servers memory resources, causing thrashing and poor

performance. In some cases this will cause requests to fail due to lack of memory

and timeouts, and will likely bring down the server in extreme cases.

For third party tools written to the ICDE API, this is not at all desirable. If

potentially huge result sets can be returned from an API request, it means it is

possible to create applications using the API that can fail unpredictably. The failure

circumstances would depend on the size of the result set and the concurrent load on

the server exerted by other clients. One API call might bring down the server, and

130 9 Case Study Design

cause all applications connected to the server to fail too. This is not likely to make

the development or support teams happy as the architecture would not be providing

a reliable application platform.

9.2.2 Notification

There are two scenarios when event notification is needed.

1. A third party tool may want to be informed when the user carries out a specific

action, for example, accesses a new site on the Internet.

2. The third party tools can share useful data that they store in the ICDE database

with other tools. Therefore they need a mechanism to notify any interested

parties about the data they have just written into the ICDE system.

Both of these cases, but especially the first, require the notification of the event

to be dispatched rapidly, basically as the event occurs. With a two-tier architecture,

instant notification is not so natural and easy to achieve. Database mechanisms

such as triggers can be used, but these have disadvantages potentially in terms of

scalability, and also flexibility. A database trigger is a block of statements that are

executed when there is an alteration (INSERT, UPDATE, DELETE) to a table in

the database. Trigger mechanisms tend to exploit database vendor specific features,

which would inhibit portability.

Flexibility is the key issue here. The ICDE development team cannot know what

events or data the third party tools wish to share a priori (simply, the tools don’t

exist yet). Consequently, some mechanism that allows the developers themselves to

create and advertise events types “on demand” is needed. Ideally, this should be

supported by the ICDE platform without requiring intervention from an ICDE

programmer or administrator.

9.2.3 Data Abstraction

The ICDE database structure evolved considerably from v1.0 to v2.0. The reasons

were to incorporate new data items, and to optimize the internal organization for

performance reasons. Hence it is important that the internal database organization is

not exposed to API developers. If it were, every time the schema changed, their

code would break. This would be a happy situation for precisely no one.

9.2.4 Platform and Distribution Issues

Third party tool suppliers want to be able to write applications on non-Windows

platforms such as Linux. Some tools will want to run some processes on the same

9.2 ICDE Technical Issues 131

workstation as the user (on Windows), others will want to run their tools remotely

and communicate with the user through ubiquitous mechanisms like email and

instant messaging. Again, the key here is that the ICDE solution should make both

options as painless as possible.

9.2.5 API Issues

The ICDE API allows programmatic access to the ICDE data store. The data store

captures detailed, time-stamped information about classes of events of user actions,

including:

l Keyboard events
l Internet browser access events
l Application (e.g., word processor, email, browser) open and close events
l Cut and paste events
l File open and close events

Hence the API must provide a set of interfaces for querying the event data stored

in the database. For example, if a third party tool wants to know the applications a

user has opened since they last logged on (their latest ICDE “session”), in pseudo

code the API call sequence might look something like:

Session sID = getSessionID(userID, CURRENT_SESSION);
ApplicationData[] apps = getApplicationEvent(sID,

APP_OPEN_EVENT, NULL); //NULL = all applications

The apps array can now be walked through and, for example, the web pages

opened by the user in their browser during the session can be accessed1 and

analyzed using more API calls.

The ICDE API should also allow applications to store data in the data store for

sharing with other tools or perhaps the user. An API for this purpose, in pseudo-

code, looks like:

ok = write(myData, myClassifier, PUBLISH, myTopic);

This stores the data in a predesignated database table, along with a classifier that

can be used to search for and retrieve the data. The API also causes information

about this event to be published on topic myTopic.

In general, to encourage third party developers, the ICDE API has to be useful

in terms of providing the developers with the facilities they need to write tools.

It should therefore:

1The ICDE data store keeps copies of all accessed web pages so that even dynamically changing

web pages (e.g., http://www.bbc.co.uk) can be viewed as they appeared at the time of access.

132 9 Case Study Design

l Be easy to learn and flexibly compose sequences of API queries to retrieve

useful data.
l Be easy to debug.
l Support location transparency. Third party tools should not have to be written to

a particular distributed configuration that relies on certain components being at

known, fixed locations.
l Be resilient as possible to ICDE platform changes. This means that applications

do not break when changes to the ICDE API or data store occur.

9.2.6 Discussion

Taken together, the above issues weave a reasonably complex web of requirements

and issues. The event notification requirements point strongly to a flexible publish–

subscribe architecture to tie together collaborating tools. The need to support

multiple platforms and transparent distributed configurations points to a Java

solution with the various components communicating over protocols like RMI

and JMS. The large data and data store abstraction requirements suggest some

layer is needed to translate API calls into the necessary SQL requests, and then

manage the safe and reliable return of the (potentially large) result set to the client.

The solution the ICDE team selected is based on a 3 three-tier architecture along

with a publish–subscribe infrastructure for event notification. The details of this

solution, along with detailed justifications follow in the next section, which docu-

ments the architecture using the template from Chap. 6.

9.3 ICDE Architecture Requirements

This section describes the set of requirements driving the design of the ICDE

application architecture.

9.3.1 Overview of Key Objectives

The first objective of the ICDE v2.0 architecture is to provide an infrastructure to

support a programming interface for third party client tools to access the ICDE data

store. This must offer:

l Flexibility in terms of platform and application deployment/configuration needs

for third party tools.
l A framework to allow the tools to “plug” into the ICDE environment and obtain

immediate feedback on ICDE user activities, and provide information to analysts

and potentially other tools in the environment.
l Provide convenient and simple read/write access to the ICDE data store.

9.3 ICDE Architecture Requirements 133

The second objective is to evolve the ICDE architecture so that it can scale to

support deployments of 100–150 users. This should be achieved in a way that offers

a low cost per workstation deployment.

The approach taken must be consistent with the stakeholder’s needs, and the

constraints and nonfunctional requirements detailed in the following sections.

9.3.2 Architecture Use Cases

Two basic use cases regarding the API usage have been identified from discussions

with a small number of potential third party tool vendors. These are briefly outlined

below:

l ICDE data access: Queries from the third party tools focus on the activities of a

single ICDE user. A query sequence starts by getting information about the

user’s current work assignment, which is basically the project (i.e., “analyze

Pfizer Inc financials”) they are working on. Query navigation then drills down to

retrieve detailed data about the user’s activity. The events retrieved are searched

in the time sequence they occur, and the application logic looks for specific data

items (e.g., window titles, keyboard values, document names, URLs) in the

retrieved records. These values are used to either initialize activity in the third

party analysis tool, or create an informational output that appears on the user’s

screen.
l Data Storage: Third party tools need to be able to store information in the ICDE

data store, so that they can share data about their activities. A notification

mechanism is needed for tools to communicate about the availability of new

data. The data from each tool is diverse in structure and content. It must therefore

contain associated discoverable metadata if it is to be useful to other tools in the

environment.

9.3.3 Stakeholder Architecture Requirements

The requirements from the perspectives of the three major project stakeholders are

covered in the following sections.

9.3.3.1 Third Party Tool Producers

l Ease of data access: The ICDE data store comprises a moderately complex

software component. The relational database has approximately 50 tables, with

134 9 Case Study Design

some complex interrelationships. In the ICDE v1.0 environment, this complex-

ity makes the SQL queries to retrieve data nontrivial to write and test. Also, as

the functional requirements evolve with each release, changes to the database

schema are inevitable, and these might break existing queries. For these reasons,

a mechanism to make it easy for third party tools to retrieve useful data is

needed, as well as an approach to insulate the tools from database changes. Third

party tools should not have to understand the database schema and write

complex queries.
l Heterogeneous platform support: Several of the third party tools are developing

technologies on platforms other than Windows. The ICDE v1.0 software is

tightly coupled to Windows. Also, the relational database used is available

only on the Windows platform. Hence, the ICDE v2.0 must adopt strategies to

make it possible for software not executing on Windows to access ICDE data

and plug into the ICDE environment.
l Instantaneous event notification: The third party tools being developed aim

to provide timely feedback to the analysts (ICDE users) on their activities.

A direct implication of this is that these tools need access to the events

recorded by the ICDE system as they occur. Hence, some mechanism is needed

to distribute ICDE user-generated events as they are captured in the Data
Store.

9.3.3.2 ICDE Programmers

From the perspective of the ICDE API programmer, the API should:

l Be easy and intuitive to learn.
l Be easy to comprehend and modify code that uses the API.
l Provide a convenient, concise programming model for implementing common

use cases that traverse and access the ICDE data.
l Provide an API for writing tool specific data and metadata to the ICDE data

store. This will enable multiple tools to exchange information through the ICDE

platform.
l Provide the capability to traverse ICDE data in unusual or unanticipated naviga-

tion paths. The design team cannot predict exactly how the data in the data store

will be used, so the API must be flexible and not inhibit “creative” uses by tool

developers.
l Provide “good” performance, ideally returning result sets in a small (1–5)

number of seconds on a typical hardware deployment. This will enable tool

developers to create products with predictable response times.
l Be flexible in terms of deployment options and component distribution. This will

make it cost-effective to establish ICDE installations for small workgroups, or

large departments.
l Be accessible through a Java API.

9.3 ICDE Architecture Requirements 135

9.3.3.3 ICDE Development Team

From the ICDE development team’s perspective, the architecture must:

l Completely abstract the database structure and server implementation mecha-

nism, insulating third party tools from the details of, and changes to, the ICDE

data store structure.
l Support ease of server modification with minimal impact on the existing ICDE

client code that uses the API.
l Support concurrent access from multiple threads or ICDE applications running

in different processes and/or on different machines.
l Be easy to document and clearly convey usage to API programmers.
l Provide scalable performance. As the concurrent request load increases on an

ICDE deployment, it should be possible to scale the system with no changes to

the API implementation. Scalability would be achieved by adding new hardware

resources to either scale up or scale out the deployment.
l Significantly reduce or ideally remove the capability for third party tools to

cause server failures, consequently reducing support effort. This means the API

should ensure that bad parameter values in API calls are trapped, and that no

API call can acquire all the resources (memory, CPU) of the ICDE server, thus

locking out other tools.
l Not be unduly expensive to test. The test team should be able to create a

comprehensive test suite that can automate the testing of the ICDE API.

9.3.4 Constraints

l The ICDE v1.0 database schema must be used.
l The ICDE v2.0 environment must run on Windows platforms.

9.3.5 Nonfunctional Requirements

l Performance: The ICDE v2.0 environment should provide sub five second

response times to API queries that retrieve up to 1,000 rows of data, as measured

on a “typical” hardware deployment platform.
l Reliability: The ICDE v2.0 architecture should be resilient to failures induced by

third party tools. This means that client calls to the API cannot cause the ICDE

server to fail due to passing bad input values or resource locking or exhaustion.

This will result in less fault reports and easier and cheaper application support.

Where architectural trade-offs must be made, mechanisms that provide reliabil-

ity are favored over those that provide better performance.

136 9 Case Study Design

l Simplicity: As concrete API requirements are vague (because few third party

tools exist), simplicity in design, based on a flexible2 foundation architecture,

is favored over complexity. This is because simple designs are cheaper to

build, more reliable, and easier to evolve to meet concrete requirements as

they emerge. It also ensures that, as the ICDE development team is unlikely to

possess perfect foresight, highly flexible3 and complex, but perhaps unnecessary

functionality is not built until concrete use cases justify the efforts. A large range

of features supported comes at the cost of complexity, and complexity inhibits

design agility and evolvability.

9.3.6 Risks

The major risk associated with the design is as follows:

Risk Mitigation strategy

Concrete requirements are not readily

available, as only a few third party tool

vendors are sufficiently knowledgeable

about ICDE to provide useful inputs

Keep initial API design simple and easily

extensible. When further concrete use cases are

identified, extend the API where needed with

features to accommodate new requirements

9.4 ICDE Solution

The following sections outline the design of the ICDE architecture.

9.4.1 Architecture Patterns

The following architecture patterns are used in the design:

l Three-tier: Third party tools are clients, communicating with the API implemen-

tation in the middle tier, which queries the ICDE v2.0 data store.
l Publish–subscribe: The middle tier contains a publish–subscribe capability.
l Layered: Both the client and middle tier employ layers internally to structure the

design.

2Flexible in terms of easy to evolve, extend and enhance, and not including mechanisms that

preclude easily adopting a different architectural strategy.
3Flexible in terms of the range of sophisticated features offered in the API for retrieving GB data.

9.4 ICDE Solution 137

9.4.2 Architecture Overview

The ICDE v2.0 architecture overview is depicted in Fig. 9.1. ICDE clients use the

ICDE API Client component to make calls to the ICDE API Services component.

This is hosted by a JEE application server, and translates API calls into JDBC calls

on the data store. The existing Data Collection client in ICDE v1.0 is refactored in

this design to remove all functionality with data store dependencies. All data store

access operations are relocated into a set of JEE hosted components which offer

data collection services to clients.

Event notification is achieved using a publish–subscribe infrastructure based on

the Java Messaging Service (JMS).

id Marketecture

ICDE API Client

ICDE Data
Store

ICDE Data
Collection

Client

J2EE App Server

ICDE API
Services

Data Collection
Services

JMS

3rd Party ICDE Tool ICDE User

API call

event notification

Write user
event

JDBC

Fig. 9.1 ICDE API architecture

138 9 Case Study Design

Using JEE as an application infrastructure, ICDE can be deployed so that one

data store can support:

l Multiple users interacting with the data collection components.
l Multiple third party tools interacting with the API components.

9.4.3 Structural Views

A component diagram for the API design is shown in Fig. 9.2.

This shows the interfaces and dependencies of each component, namely:

l ICDE Third Party Tool: This uses the ICDE API Client component interface.

The API interface supports the services needed for the third party tool to query

the data store, write new data to the data store, and to subscribe to events that are

id API View

ICDE API Client

CallAPI NotificationCallback

ClientAPI Notify

Subscribe

ICDE 3rd Party
Tool

NotificationCallback

ICDE Data
Store

ICDE API Services
QueryAPI WriteAPI

JDBC

JMS

Subscribe

Publish
Write

«delegate»«delegate»

«delegate» «delegate»

Java

Query

Fig. 9.2 Component diagram for ICDE API architecture

9.4 ICDE Solution 139

published by the JMS. It must provide a callback interface that the ICDE API
Client uses to deliver published events.

l ICDE API Client: This implements the client portion of the API. It takes requests

from third party tools, and translates these to EJB calls to the API server

components that either read or write data from/to the data store. It also packages

the results from the EJB and returns these to the third party tool. This component

encapsulates all knowledge of the use of JEE, insulating the third party tools

from the additional complexity (e.g., locating, exceptions, large data sets) of

interacting with an application server. Also, when a third party tool requests an

event subscription, the ICDE API Client issues the subscription request to the

JMS. It therefore becomes the JMS client that receives published events, and it

passes these on using a callback supported by the third party tools.
l ICDE API Services: The API services component comprises stateless session

EJBs for accessing the ICDE Data Store using JDBC. TheWrite component also

takes a topic parameter value from the client request and publishes data about the

event on the named topic using the JMS.
l ICDE Data Store: This is the ICDE v2.0 database.
l JMS: This is a standard JEE Java Messaging Service, and supports a range of

topics used for event notification using the JMS publish–subscribe interfaces.

A component diagram for the data collection functionality is depicted in Fig. 9.3.

The responsibilities of the components are:

cd Data Collection View

ICDE Data
Collection Client

JMS
Publish

Subscribe

ICDE Data
Store

PublishEvent

JDBC

CollectionAPI

EventPublisher

WriteEvent

ICDE API Client

NotificationCallback

Subscribe

publish

«delegate»

«delegate»

«delegate»

Data Collection Services

Fig. 9.3 Data collection components

140 9 Case Study Design

l ICDE Data Collection Client: This is part of the ICDE client application

environment. It receives event data from the client application, and calls the

necessary method in the CollectionAPI to store that event. It encapsulates all

knowledge of interacting with the JEE application server in the ICDE client

application.
l Data Collection Services: This comprises stateless session EJBs that write the

event data passed to them as parameters to the ICDE Data Store. Some event

types also cause an event notification to be passed to the EventPublisher.
l EventPublisher: This publishes event data on the JMS using a set of preconfi-

gured topics for events that should be published (not all user generated events are

published, e.g., moving the mouse). These events are delivered to any ICDE API
Client components that have subscribed to the event type.

A deployment diagram for the ICDE architecture is shown in Fig. 9.4. It shows

how the various components are allocated to nodes. Only a single ICDE user and a

Fig. 9.4 ICDE deployment diagram

9.4 ICDE Solution 141

single third party tool are shown, but the JEE server can support multiple clients of

either type. Issues to note are:

l Although the third party tools are shown executing on a different node to the

ICDE user workstation, this is not necessarily the case. Tools, or specific

components of tools, may be deployed on the user workstation. This is a tool-

dependent configuration decision.
l There is one ICDE API Client component for every third party tool instance.

This component is built as a JAR file that is included in the tool build.

9.4.4 Behavioral Views

A sequence diagram for a query event API call is shown in Fig. 9.5. The API

provides an explicit “Initialize” call which tools must invoke. This causes the ICDE
API Client to establish references to the EJB stateless session beans using the JEE

directory service (JNDI).

Once the API layer is initialized, the third party tool calls one of the available

query APIs to retrieve event data (perhaps a list of keys pressed while using the

word processor application on a particular file). This request is passed on to an EJB

instance that implements the query, and it issues the JDBC call to get the events that

satisfy the query.

sd API Call Sequence Diagram

Component
Model::ICDE 3rd

Party Tool

Component
Model::ICDE API

Client

Component
Model::ICDE API

Services

Component
Model::ICDE Data

StoreJNDI

loop More data

[while moreData]

[More data to retrieve]

Initialize

Lookup

Query API call

resultSet:= EJB API call

JDBC Query

Fig. 9.5 Query API call sequence diagram

142 9 Case Study Design

All the ICDE APIs that return collections of events may potentially retrieve

large result sets from the database. This creates the potential for resource exhaus-

tion in the JEE server, especially if multiple queries return large event collections

simultaneously.

To alleviate this potential performance and reliability problem, the design

employs:

l Stateless session beans that release the resources used by a query at the end of

every call
l A variation of the page-by-page iterator pattern4 to limit the amount of data each

call to the session bean retrieves

The ICDE API Client passes the parameter values necessary for constructing the

JDBC query, along with a start index and page size value. The page size value tells
the session bean the maximum number of objects5 to return from a single query

invocation, and for the initial query call, the start index is set to NULL.

The JDBC call issued by the session bean exploits SQL features to return only

the first page size rows that satisfy the query criteria. For example in SQL Server,

the TOP operator can be used as follows:

SELECT TOP (PAGESIZE) * FROM KEYBOARDEVENTS WHERE (EVENTID > 0
AND USER = “JAN” AND APP_ID = “FIREFOX”)

The result set retrieved by the query is returned from the session bean to the

client. If the result set has page size elements, the ICDE API Client calls the EJB

query method again, using the key of the last element of the returned result set as the

start index parameter. This causes the session bean to reissue the same JDBC call,

except with the modified start index value used. This retrieves the next page size
rows (maximum) that satisfy the query.

The ICDE API Client continues to loop until all the rows that satisfy the request

are retrieved. It then returns the aggregated event collection to its caller (the third

party tool). Hence this scheme hides the complexity of retrieving potentially large

result sets from the ICDE application programmer.

A sequence diagram depicting the behavior of a write API call is shown in

Fig. 9.6. The write API call contains parameter values that allow the ICDE API
Client to specify whether an event should be published after a successful write, and
if so, on which topic the event should be published.

A sequence diagram for storing an ICDE user-generated event is shown in

Fig. 9.7. An event type may require multiple JDBC INSERT statements to be

executed to store the event data; hence the container transaction services should be

used. After the event data is successfully stored in the database, if it is a publishable

4http://java.sun.com/developer/technicalArticles/JEE/JEEpatterns/
5The “page size” value can be tuned for each type of event to attempt to maximize server and

network performance. A typical value is 1,000.

9.4 ICDE Solution 143

event type, the event data is published using the JMS. The JMS publish operation is

outside the transaction boundary to avoid the overheads of a two-phase commit.6

sd Collection API call

Component
Model::Data
Collection

Component
Model::ICDE Data

Store

Component
Model::JMS

Component
Model::ICDE Data
Collection Client

There may be
multiple JDBC calls
for 1 event.

Java
Transaction

Service

alt PublishEvent

[if event is configured to be published]

storeEvent

beginTransaction

commitTransaction

publish(eventTopic)

Services

JDBC
Insert

Fig. 9.7 Sequence diagram for storing user generated events

sd Write API Call

Component
Model::ICDE 3rd

Party Tool

Component
Model::ICDE API

Client

Component
Model::Write

Component
Model::ICDE Data

Store

Component
Model::JMS

writeData

writeData

publishEvent

JDBC
insert

Fig. 9.6 Sequence diagram for the write API

6There’s a performance trade-off here. As the JMS publish operation is outside the transaction

boundary, there can be failures that result in data being inserted into the data store, but with no

associated JMS message being sent. In the ICDE context, this is undesirable, but will not cause

serious problems for client applications. Given the likely frequency of such failures happening

(i.e., not very often), this is a trade-off that is sensible for this application.

144 9 Case Study Design

9.4.5 Implementation Issues

The Java 2 Enterprise Edition platform has been selected to implement the ICDE

v2.0 system. Java is platform neutral, satisfying the requirement for platform

heterogeneity. There are also quality open source versions available for low-cost

deployment, as well as high performance commercial alternatives that may be

preferred by some clients for larger mission-critical sites. In addition, JEE has

inherent support for distributed component-based systems, publish–subscribe event

notification and database access.

Additional implementation issues to consider are:

l Threading: The ICDE API Client component should be thread-safe. This will

enable tool developers to safely spawn multiple application threads and issue

concurrent API calls.
l Security: ICDE tools authenticate with a user name and password. The API sup-

ports a login function, which validates the user/password combination against

the credentials in the ICDE data store, and allows access to a specified set of

ICDE user data. This is the same mechanism used in v1.0.
l EJBs: The Data Collection Services session beans issue direct JDBC calls to

access the database. This is because the JDBC calls already exist in the two-tier

ICDE v1.0, and hence using these directly in the EJBs makes the refactoring

exercise less costly.

9.5 Architecture Analysis

The following sections provide an analysis of the ICDE architecture in terms of

scenarios and risks.

9.5.1 Scenario Analysis

The following scenarios are considered:

l Modify ICDE Data Store organization: Changes to the database organization

will necessitate code changes in the EJB server-side components. Structural

changes that do not add new data attributes are contained totally within these

components and do not propagate to the ICDE API. Modifications that add new

data items will require interface changes in server-side components, and this will

be reflected in the API. Interface versioning and method deprecation can be used

to control how these interface changes affect client components.
l Move the ICDE architecture to another JEE supplier: As long as the ICDE

application is coded to the JEE standards, and doesn’t use any vendors extension

9.5 Architecture Analysis 145

classes, industry experience shows that JEE applications are portable from

one application server to another with small amounts of effort (e.g., less than a

week). Difficulties are usually encountered in the areas of product configuration

and application-server specific deployment descriptor options.
l Scale a deployment to 150 users: This will require careful capacity planning7

based on the specification of the available hardware and networks. The JEE

server tier can be replicated and clustered easily due to the use of stateless

session beans. It is likely that a more powerful database server will be needed for

150 users. It should also be feasible to partition the ICDE data store across two

physical databases.

9.5.2 Risks

The following risks should be addressed as the ICDE project progresses.

Risk Mitigation strategy

Capacity planning for a

large site will be

complex and costly

We will carry out performance and load testing once the basic

application server environment is in place. This will provide

concrete performance figures that can guide capacity planning

for ICDE sites

The API will not meet

emerging third party

tool supplier needs

The API will be released as soon as an initial version is complete for

tool vendors to gain experience with. This will allow us to obtain

early feedback and adapt/extend the design if/when needed

9.6 Summary

This chapter has described and documented some of the design decisions taken in

the ICDE application. The aim has been to convey the thinking and analysis that is

necessary to design such an architecture, and demonstrate the level of design

documentation that should suffice in many projects.

Note that some of the finer details of the design are necessarily glossed over due

to the space constraints of this forum. But the ICDE example is representative of a

medium complexity application, and hence provides an excellent exemplar of the

work of a software architect.

7Capacity planning involves figuring out how much hardware and software is needed to support a

specific ICDE installation, based on the number of concurrent users, network speeds and available

hardware.

146 9 Case Study Design

Chapter 10

Middleware Case Study: MeDICi

Adam Wynne

10.1 MeDICi Background

In many application domains in science and engineering, data produced by sensors,

instruments, and networks is naturally processed by software applications structured

as a pipeline.1 Pipelines comprise a sequence of software components that progres-

sively process discrete units of data to produce a desired outcome. For example, in a

Web crawler that is extracting semantics from text on Web sites, the first stage in

the pipeline might be to remove all HTML tags to leave only the raw text of the

document. The second step may parse the raw text to break it down into its con-

stituent grammatical parts, such as nouns, verbs, and so on. Subsequent steps may

look for names of people or places, interesting events or times so documents can be

sequenced on a time line. Using Unix pipes, this might look something like this:2

curl47 http://sites.google.com/site/iangortonhome/ | \
totext | \
parse | \
people \ \
places -O out.txt

Each of these steps can be written as a specialized program that works in

isolation with other steps in the pipeline.

In many applications, simple linear software pipelines are sufficient. However,

more complex applications require topologies that contain forks and joins, creating

pipelines comprising branches where parallel execution is desirable. It is also

increasingly common for pipelines to process very large files or high volume data

streams which impose end-to-end performance constraints. Additionally, processes in

a pipeline may have specific execution requirements and hence need to be distributed

as services across a heterogeneous computing and data management infrastructure.

From a software engineering perspective, these more complex pipelines become

problematic to implement. While simple linear pipelines can be built using minimal

1http://en.wikipedia.org/wiki/Pipeline_%28software%29
2http://en.wikipedia.org/wiki/CURL

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_10, # Springer-Verlag Berlin Heidelberg 2011

147

infrastructure such as scripting languages, complex topologies and large, high

volume data processing requires suitable abstractions, run-time infrastructures,

and development tools to construct pipelines with the desired qualities of service

and flexibility to evolve to handle new requirements.

The above summarizes the reasons we created theMeDICi Integration Framework

(MIF) that is designed for creating high-performance, scalable, and modifiable

software pipelines. MIF exploits a low friction, robust, open-source middleware

platform and extends it with component and service-based programmatic interfaces

that make implementing complex pipelines simple. The MIF run-time automatically

handles queues between pipeline elements in order to handle request bursts and

automatically executes multiple instances of pipeline elements to increase pipeline

throughput. Distributed pipeline elements are supported using a range of configurable

communications protocols, and the MIF interfaces provide efficient mechanisms for

moving data directly between two distributed pipeline elements.

The rest of this chapter describes MIF’s features, shows examples of pipelines

we’ve built, and gives instructions on how to download the technology.

10.2 MeDICi Hello World

We’ll start with a description of the classic universal salutations example with

MIF. The helloWorld sample in this section demonstrates a simple two-stage MIF

pipeline. In order to understand this example, below are four simple definitions of

MIF concepts that are used in the code.

1. Pipeline. A MIF application consists of a series of processing modules contained

in a processing pipeline. TheMifPipeline object is used to control the state of the
pipeline, as well as to add and register all objects contained in the pipeline.

2. Implementation code. This is the code (e.g., a Java class or C program) that

performs the actual processing at a given step in the pipeline.

3. Module. A module wraps the functionality of some implementation code with an

interface that encapsulates the implementation. An instantiated module can be

included as a step in a MIF pipeline.

4. Endpoint. Connects a module to other modules in the pipeline by using one of

several standard communication protocols, such as JMS, SOAP, and many others.

In the MIF helloWorld example, when the pipeline starts, the user is prompted

to enter a name. The name is sent to the helloNameModule which calls the

helloNameProcessor implementation to add “Hey” to the front of the name and

passes the whole string to the helloHalModule. This calls the helloHalProcessor to
add “what are you doing” to the end of the string, which is returned to the user via

the console.

In Fig. 10.1, the blue rectangles are modules and the black squares are endpoints.

The path of data is represented by blue-dotted lines, which are annotated with the

data strings that are passed between each step.

148 10 Middleware Case Study: MeDICi

The following code snippets demonstrate the pertinent portions of the code. The

code is presented in a “top-down” manner where we present the higher level code

first and move progressively down to the implementation details.

First, we need to create a MifPipeline object which is needed to start and stop the

processing pipeline. This object is also used to create and register all the objects that

run within the pipeline.

MifPipeline pipeline = new MifPipeline();

Next, we add the HelloNameModule which prepends “Hey” to the entered name

and sends the new string to the next stage in the pipeline. The first argument is

a string representing the full class name of the implementation class. The second

and third arguments are the inbound and outbound endpoints which allow our

HelloNameModule to receive and send data.

pipeline.addMifModule(HelloNameProcessor.class.getName(),
"stdio://stdin?promptMessage=enter name: ","vm://hal.queue");

Lastly, we add the HelloHalModule (and its endpoints) to the pipeline. This calls
the HelloHalProcessor to add another sentence fragment on the end of the string

and prints it to the user’s console.

pipeline.addMifModule(HelloHalProcessor.class.getName(),
"vm://hal.queue", "stdio://stdout");

Modules in the above example communicate using endpoints, which are

passed to a module as arguments. Endpoints are an abstraction which enable

the communication protocols between modules to be flexibly specified. This

encapsulates the module implementation logic from having to be concerned

with the communications protocols used to exchange messages with other

Fig. 10.1 MIF “Hello World” example

10.2 MeDICi Hello World 149

modules. This means for example that a module configured with a JMS endpoint

can be changed to send data over UDP without any change to the module’s

implementation code.

In this example, the HelloNameModule’s inbound endpoint, stdio://stdin, reads
user input from the console. That is, stdio is a special protocol that reads from the

console and sends the console data to the module. The outbound endpoint, vm://hal.
queue, is a MIF-provided endpoint implemented in the JVM, providing an efficient,

queued communication mechanism between modules. Note that for modules to be

able to communicate, the outbound endpoint of the sender must be the same as the

inbound endpoint of the receiver.

After the pipeline modules are configured in the pipeline, we start the application

by calling the method MifPipeline.start(). This starts the MIF with the pipeline

configuration and initiates the modules to listen for data.

pipeline.start();

Module implementation code is provided by the pipeline designer to perform

some form of processing on the data flowing through a pipeline. This code is then

wrapped by a module to form the smallest code unit which may be placed into a

pipeline. The implementation code can be written in Java or any other language.

When using Java, the code is integrated directly into the pipeline (it is treated as an

external executable for other languages, as is explained later). For now, we will

concentrate on creating Java implementation classes.

Implementation classes need to implement the MifProcessor interface, which

provides a listen method with the following signature:

public Serializable listen(Serializable input);

This method is called when a message arrives for the module that wraps the

implementation class. The input argument is the data received from the previous

module in the pipeline, and the return value is the message which is sent to the next

module in the pipeline.

Now let’s take a look at the implementation of one of the modules from

this example. The HelloNameProcessor implements the functionality for the

HelloNameModule. When this module receives data, its listen() method is called,

and the input data is passed in as the method argument. The method then processes

the data in some way and returns the result that is passed on to the next module in

the pipeline. In this case, the listenmethod simply adds the string “Hey” to the front

of the received string and returns the new string.

public class HelloNameProcessor implements MifProcessor {
public Serializable listen(Serializable name) {
String str = "Hey, " + name;
System.out.println("HelloNameProcessor: " + str);
return str;

}
}

150 10 Middleware Case Study: MeDICi

10.3 Implementing Modules

A MIF Module represents the basic unit of work in a MIF pipeline. Every module

has an implementation class, known as a MIF processor. The processor class is

specified as the first argument to the addMifModule factory method when you

create a module:

MifModule myModule =
pipeline.addMifModule(MyMifProcessor.class,"vm://in.endpoint"
, "vm://out.endpoint");

Each processor class must implement a Processor interface and an associated

listen method that accepts an object representing the data payload received on the

module’s inbound endpoint. The listen method also returns an object representing

the payload which is sent via the module’s outbound endpoint.

public class MyMifProcessor implements MifObjectProcessor {
public Object listen(Object input) {
// perform some processing on input

return output;
}

}

There are a few different types of processor interfaces depending on whether you

want to enforce the use of serialized objects and whether the processor needs to

explicitly handle message properties that are sent as a header on all messages that

pass through a MIF pipeline. These interfaces are found in the package gov.pnnl.
mif.user and explained below:

10.3.1 MifProcessor

The MifProcessor interface is used to implement a module if you want to enforce

that the types sent and received by the module are Serializable.

public interface MifProcessor {
public Serializable listen(Serializable input);

}

10.3.2 MifObjectProcessor

This is the most general type of interface, allowing any type of object to be received

by the listen method. It is often desirable to check the type of object received (with

the instanceof operator) to ensure that it matches the correct derived type.

public interface MifObjectProcessor {
public Object listen(Object input);

}

10.3 Implementing Modules 151

10.3.3 MifMessageProcessor

This type of processor is used when it is necessary to have access to the message

properties associated with a given message. Normally, a processor receives just the

message payload, but this interface allows the module to receive both.

public interface MifMessageProcessor {
public Object listen(Object input,

MessageProperties messageProperties);
}

10.3.4 Module Properties

Since the processor class for a given MifModule is instantiated by the underlying

MIF container, it is not possible to manually create and configure a processor class

before adding it into a pipeline. Therefore, module properties are provided by the

API to enable the user to pass any processor properties to MIF. MIF will then

populate the properties on the processor when it is instantiated. The properties are

set on the processor similarly to JavaBean properties, meaning that the class has a

zero-argument constructor and standard setter and getter methods.

For example, the following is a MifProcessor with JavaBean-style setters:

public class Apple implements MifObjectProcessor {

private String color;
private String type;

public Object listen(Object input) {
// do stuff
return output;

}
/* The apple's color */
public setColor(String color) {

this.color = color;
}
/* The type/variety of apple */
public setType(String type) {

this.type = type;
}

}

The properties for this module can then be set with the following code:

MifModule appleModule = pipeline.addMifModule(Apple.class,
"vm://in.endpoint", "vm://out.endpoint");
appleModule.setProperty("color", "red");
appleModule.setProperty("type", "Honeycrisp");

152 10 Middleware Case Study: MeDICi

10.4 Endpoints and Transports

In MIF, communication between modules is enabled by transports, which are res-

ponsible for abstracting network communications and passing messages throughout

a pipeline. Each communication protocol that is supported by MIF (e.g., JMS

or HTTP) is implemented by a separate transport. Most of the complexity of a

transport is hidden from the user by the use of configurable endpoints, which allow

a module to be oblivious to the communication protocols it is using. However, it is

sometimes necessary or desirable to configure the attributes of a transport. In such

circumstances, there are APIs which enable the programmer to explicitly create and

configure a connector.

Each transport has its own type of endpoint, which is used to connect modules

to each other so that they can exchange messages. Each module has a set of

inbound and outbound endpoints which can be set using the MIF API. To connect

one module to another, the outbound endpoint of one module in the pipeline must

match the inbound endpoint of another.

Endpoints are configured as strings representing a URI. It is possible to set proper-

ties on an endpoint to configure special behavior or override the default properties of a

connector. For example, it is possible to configurewhether an endpoint is synchronous

or asynchronous by setting the “synchronous” property, as we’ll explain soon.

An endpoint URI has the format:

scheme://host:port/path/to/service?property1=value1&property2
=value2

Where “scheme” is the particular type of transport being used (http, jms, vm,

etc.); “host:port” is a hostname and port (which may or may not be present due to the

nature of a given transport), and “path“ is the path that distinguishes the endpoint from

others. Properties are defined after a “?” at the end of a path and are delineated by key

value pairs.

Each transport’s endpoints are either synchronous or asynchronous by default.

This default can be overridden by setting the “synchronous” property on an

endpoint. For example, HTTP endpoints are synchronous by default. The following

defines an HTTP inbound endpoint that creates an asynchronous service, listening

at the address localhost:9090/helloService:

http://localhost:9090/helloService?synchronous=false

10.4.1 Connectors

Connectors are used to configure the attributes of a particular transport for the

current pipeline or component. For example, the JMS connector allows the user to

configure the location of the JMS server. Most of the time, the user does not need

10.4 Endpoints and Transports 153

to explicity configure a transport since a default connector will automatically be

created for each type of endpoint that occurs in the pipeline. It is however necessary

to create and configure connectors when:

1. It is necessary to optimize the performance of a transport. This is common, for

example, when using TCP endpoints.

2. No default connector can be created. For example, the use of JMS requires an

explicit connector because it is necessary to specify the location of the JMS server.

If there is only one connector for a given protocol in a MIF pipeline, all

endpoints associated with that transport will use this connector. However, multiple

connectors may exist for the same transport in a single pipeline. In this case, you

need to specify the name of the connector as a property on the endpoint so that MIF

knows which connector to use for that particular endpoint.

For example, the following code excerpt shows a JMS connector defined with

the name jms-localhost. Then, a module is configured with an inbound

endpoint which specifies that connector, using the “connector” endpoint property.

This allows endpoints in a MIF pipeline to connect to multiple JMS servers:

MifConnector conn = pipeline.addMifJmsConnector
("tcp://localhost:61616", JmsProvider.ACTIVEMQ);

conn.setName("jms-localhost");
MifModule fullNameModule = pipeline.addMifModule(
NameArrayProcessor.class,
"jms://topic:NameTopic?connector=jms-localhost",
"stdio://stdout");

Properties can be set on a connector by calling the setProperty method

on a MifConnector, e.g.:

MifConnector stdioConn =
pipeine.addMifConnector(EndpointType.STDIO);

stdioConn.setProperty("messageDelayTime", 1000);

10.4.2 Supported Transports

The MIF API supports a number of transports. Below is a description of these,

along with a description of the useful properties which can be set on endpoints

and/or connectors of this type. All endpoints support the connector¼
connectorName property as described above.

10.4.2.1 VM

The VM endpoint is used for communication between components within the JVM.

The key property that can be set on a VM endpoint is whether it is synchronous or

asynchronous. If this property is set to synchronous¼true, messages are

154 10 Middleware Case Study: MeDICi

passed synchronously from one module to another so that a slow receiver could

slow down the sender. On the other hand, if this property is set to false, the sender

sends as fast as it can without waiting for the receiver to complete each request.

Internally, the MIF container manages a queue of messages associated with the

connector.

For example, here is an example of an asynchronous VM endpoint

"vm://myqueue?synchronous=false"

10.4.2.2 STDIO

The STDIO transport is used to read from standard in and write to standard out.
It is useful for testing and debugging. An example of STDIO endpoints is:

MifModule appleModule = pipeline.addMifModule(
TextProc.class,
"vm://in.endpoint",
"vm://out.endpoint");

10.4.2.3 Java Messaging Service

The JMS transport connects MIF endpoints to JMS destinations (topics and

queues). It is possible to use any JMS server provider with MIF. For convenience,

the MIF installation includes ActiveMQ as the preferred JMS provider (and the

provider MIF is tested with).

By default, JMS endpoints specify queues. In ActiveMQ, queues must be created

administratively. For example, the following URI specifies that an endpoint con-

nects to the queue called “aQueue”

jms://aQueue

To specify a topic, prepend the destination name with the string “topic:”. For

example, the following URI specifies an endpoint connected to the topic called

“bTopic”

jms://topic:bTopic

To create an ActiveMQ JMS connector, it is necessary to specify the server URI,

as well as the JMS provider. Specifying the provider in this way allows provider-

specific properties to be automatically set on the connector:

pipeline.addMifJmsConnector(
"tcp://localhost:61616",
JmsProvider.ACTIVEMQ);

10.4 Endpoints and Transports 155

10.4.2.4 HTTP

The HTTP transport enables inbound endpoints to act as Web servers and outbound

endpoints to act as http clients. HTTP endpoints are synchronous by default. The

following is an HTTP inbound endpoint that creates an asynchronous service,

listening at the address localhost:9090/helloService.

http://localhost:9090/helloService?synchronous=false

10.4.2.5 HTTPS

The HTTPS transport enables the creation of secure services over HTTP. To create

such a service, the connector must be configured to point to the keystore where the
service’s certificate is located. This requires the following properties to be set:

Connector properties Description

keyStore The location of the java keystore file

keyStorePassword The password for the keystore

keyPassword Password for the private key

As an example, the following MIF pipeline creates an HTTPS connector which

is configured to use a self-signed certificate that can be created with the Java

keytool.3

MifPipeline pipeline = new MifPipeline();

MifConnector httpsConn = pipeline.addMifConnector
(EndpointProtocol.HTTPS);
httpsConn.setProperty("keyStore", "/dev/ssl/keys/pnl.jks");
httpsConn.setProperty("keyStorePassword", "storepass");
httpsConn.setProperty("keyPassword", "keypass");

pipeline.addBridgeModule("https://hostname:9090/secureService
", "stdio://out");
pipeline.start();

10.4.2.6 TCP

This transport enables the creation of servers listening on raw TCP sockets (for

inbound endpoints) and clients sending to sockets (outbound endpoints). As an

example, the following endpoint URI will create a server listening on the given host

and socket if used as an inbound endpoint.

tcp://localhost:7676

3http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

156 10 Middleware Case Study: MeDICi

The following is an example of a TCP connector definition. Since the TCP

protocol does not have the concept of a message, it is necessary to define a

“protocol” algorithm and set this as a property on the connector. Thus, you should

always explicitly create a TCP connector and choose an appropriate TCP proces-

sing protocol.

MifConnector conn = pipeline.addMifConnector
(EndpointProtocol.TCP);
conn.setProperty("tcpProtocol", new EOFProtocol());

The EOFProtocol class instantiated in this example is a Mule-provided

class which defines the message boundary to be when EOF (end of file) on the

socket is received. That is, the message ends when the client disconnects from

the server by sending an EOF character. All of the available protocols can be

found in Mule’s TCP transport documentation.4 For example, a protocol is provided

that assumes each message is preceded by the number of bytes to be sent, so

that an entire message can be constructed. It is also possible to specify a custom,

application-specific protocol class.

Other properties can be set on TCP connectors to optimize performance. These

include the size of the send and receive buffers, and for outbound endpoints,

whether a socket should stay open after each send in order to improve throughput.

Since MIF is a specialization and simplification of Mule, the transports used

in MIF are a subset of those in Mule. Thus, the documentation here is a highly

condensed form of the Mule transport documentation. It may be useful to refer to

the full Mule documentation to learn the full set of features provided by Mule.5

The documentation focuses on the properties required by MIF applications.

10.5 MeDICi Example

The example application we describe here analyzes Internet chat messages to

extract various types of content from the messages. The overall structure of the

application is shown in Fig. 10.2.

Basically, when the application starts, the main program initializes a MIF

pipeline and then simulates an external process that is pulling chat messages off

of a network and inserting them into the pipeline via JMS. From there, the Ingest
module takes a line of chat data and parses it into an object (MapWrapper) that

is utilized throughout the rest of the pipeline. From the Ingest module, separate

copies of the data (in the form of a MapWrapper) are routed to three concur-

rent processing modules (the actual logic of the processing is delegated to the

4http://www.mulesoft.org/documentation/display/MULE2USER/TCP+Transport
5http://www.mulesoft.org/documentation/login.action?os_destination¼%2Fdisplay%2FMU-

LE2USER%2FTCP%2BTransport

10.5 MeDICi Example 157

chat-specific code called by the MIF module and is beyond the scope of this

description). Next, an aggregator combines the three resulting data objects into

one message that is forwarded outside the pipeline for display, in this example’s

case, to the console.

Let’s examine this pipeline in more detail.

10.5.1 Initialize Pipeline

First, we need to create a MifPipeline object which is needed to start and

stop the processing pipeline. A MifPipeline is also used to create and

register all the objects that run within the pipeline.

MifPipeline pipeline = new MifPipeline();

Next, we create and add a JMS connector, giving it the server address and

the name of the server which it’ll be using (in this case we use an ActiveMQ JMS

provider).

pipeline.addMifJmsConnector
("tcp://localhost:61616", JmsProvider.ACTIVEMQ);

Fig. 10.2 MIF chat analysis pipeline

158 10 Middleware Case Study: MeDICi

Next, we create the ChatComponent object, assign the endpoints, and

add it to the pipeline. At this stage, we can start the pipeline so that it’s ready to start

receiving messages. As we’ll see below, the heavy lifting of the pipeline configura-

tion is encapsulated in the ChatComponent component.

ChatComponent chat = new ChatComponent();
chat.setInEndpoint("jms://topic:ChatDataTopic");
chat.setOutEndpoint

("stdio://stdio?outputMessage=CHAT RESULT: ");
pipeline.addMifComponent(chat);
pipeline.start();

Finally, we need to invoke a utility method that simulates a stream of chat

messages flowing into the pipeline over JMS by reading a file of chat messages and

sending them into the pipeline.

simulateChatStream();

10.5.2 Chat Component

The ChatComponent encapsulates the configuration of the application

modules into an internal pipeline. First, we set the component endpoints that are

passed in from the calling code (ChatComponentDriver.java in this case). Note how
the component is oblivious to the transport that is associated with the endpoints, a

JMS topic and stdout in this case. These details are abstracted completely in the

component code, and hence the component can be used to communicate over any

transport that is associated with its endpoints.

public void setInEndpoint (String inEndpoint) {
this.inEndpoint = inEndpoint;
}
public void setOutEndpoint (String outEndpoint) {
this.outEndpoint = outEndpoint;
}

ChatComponent has a number of internal modules. First, ingest-
Module is responsible for taking a chat message and parsing it into a data structure

(MapWrapper) to be processed by all of the downstream processing modules.

This module has three outbound endpoints since the outgoing message will be routed

to three downstream processing modules (Affect, Blackout, and Keyword).

MifModule ingestModule = pipeline.addMifModule
(Ingest.class.getName(),
inEndpoint,
"vm://ingest.keyword.queue");

// and add extra outbound endpoints
ingestModule.addOutboundEndpoint("vm://ingest.affect.queue");
ingestModule.addOutboundEndpoint("vm://ingest.blackout.queue");

10.5 MeDICi Example 159

Next, the downstream processing modules are connected by creating inbound

endpoints that correspond to theingestModule outbound endpoints (ingest.
keyword.queue in the example below for the Keyword module (the others work

similarly so we’ll leave those out of this description)).

//Add KEYWORD Module
pipeline.addMifModule(Keyword.class.getName(),

"vm:ingest.keyword.queue",
"vm://keyword.queue");

Finally, the last step of the component configuration is to aggregate the results

of the processing modules into one message and forward the result outside of

the component using the outbound endpoint. To achieve this, we create the

chatAggregateModule and connect to it the three outbound endpoints

from the three upstream modules.

MifModule chatAggregateModule =
pipeline.addMifModule(ChatAggregate.class.getName(),
"vm://keyword.queue",
outEndpoint);

chatAggregateModule.addInboundEndpoint("vm://affect.queue");
chatAggregateModule.addInboundEndpoing("vm://blackout.queue");

Aggregators are special MIF modules that combine messages from multiple

sources into a single message. They can be used to collate the results of modules

working in parallel (as in our chat example here) or to reduce a high volume of

messages into a single object. To collate groups of messages, a correlation identifier

must be added to each message. Events that should be aggregated have an identical

correlation value, enabling the aggregator to combine them. Any MIF module can

be associated with an aggregator that defines how multiple input messages are

combined.

To create a MIF aggregator, we need to extend the AbstractMif-
Aggregator abstract class. This requires implementing two methods,

shouldAggregateEvents and doAggregateEvents. Both

of these methods take a single MifEventGroup object that contains a list of

objects that have been received on the aggregator’s inbound endpoints.

The first method, shouldAggregateEvents, is called each time a

new message is received by the aggregator on any endpoint. Its return value is a

Boolean, representing whether or not that group of events contains a complete set that

is ready to be aggregated into a single message. Typical actions performed by this

method include counting the number of messages in the event group (for aggregating

the results of a certain number of parallel processes) or looking for a particular

message’s presence (for digesting messages arriving over a certain period of time).

The second method, doAggregateEvents, is called on a group of

messages whenever shouldAggregateEvents returns a true result for

that group. It returns an object that represents the value of the objects in that group

aggregated together. In an application distributing requests for airline fares, for

instance, the return value might represent the lowest fair returned after a 30-s timeout

160 10 Middleware Case Study: MeDICi

message is received. In our example, the ChatAnalysisAggregator is

responsible for combining the messages from the three upstream modules. This is

accomplished by using a correlation value (i.e., a unique message identifier for each

message that is assigned at the ingest stage) and combining these when all three

messages have been received (one for each upstream module). In the MIF API, we

simply create the aggregator and attach it to themodule that it must be associatedwith.

MifAggregator chatAnalysisAggregator =
pipeline.addMifAggregator (new ChatAnalysisAggregator());
chatAggregateModule.setAggregator(chatAnalsysiAggregator);

10.5.3 Implementation code

For this example, all processing modules are written in Java. They wrap specific text

processing libraries that perform the actual application logic. Below is an example of

one of the processing modules. TheBlackoutProcessor,which imple-

ments various identity protection algorithms, implements the functionality of the

BlackoutModule. This represents a very common example of utilizing a

wrapper class to call the “real” processing logic (usually in a library or jar) without

needing to make any changes to the code to incorporate it in a MIF pipeline.

In this case, the code simply delegates to the application-specific method

blackout.processContentAnalysis(message).

blackout.processContentAnalysis(message).

public class BlackoutModule implements MifInOutProcessor {
// lots of details omitted
private static BlackoutId blackout = null;
public BlackoutModule() {
initBlackout();

}
public Serializable listen(Serializable input) {
MapWrapper data = (MapWrapper) input;
HashMap message = data.getMap();
if(blackout != null){
// call test processing logic
blackout.processContentAnalysis(message);

}
return new MapWrapper(message);

}
}

10.6 Component Builder

The MIF Component Builder (CB) is based on Eclipse and can be used by pro-

grammers to design MIF pipelines, generate stub code for objects in the pipeline,

implement the stubbed code, and execute the resulting pipeline. The CB is capable

10.6 Component Builder 161

of round trip development, supporting repeating the process of design, generate,

implement, execute, until the programmer is satisfied with the pipeline. At that

point, the components in the pipeline can be deployed to a running MIF instance or

stored in a component library for later use. Figure 10.3 shows an example of using

the CB and calls out the various windows that support development, namely:

l Canvas. The canvas represents the diagram file and is where the pipeline is

configured. Objects are placed on the canvas and connected to create a pipeline.

When objects are moved around the canvas and the diagram is saved, the

changes are written to a .mifd file.
l Palette. The palette contains all the objects which make up a MIF pipeline

model. The objects are selected from the palette and placed on the canvas. The

palette separates objects into different categories for convenience. The Compo-
nents section holds MIF components and commonly used objects which can

appear inside a component. The MifModule section contains the MifModule
object and other objects which can be placed inside a module. The Communica-
tion Endpoint section contains endpoint objects plus the EndpointLink which

shows up on the canvas as a dotted line that connects an outbound endpoint on

one module to the inbound endpoint on the next.
l Package explorer. The package explorer is used for organizing source files,

configuration files, and MIF model files.
l Properties window. Properties for objects placed on the canvas are edited using the

Eclipse “Properties” window. Selecting an entity in the canvas makes it possible to

view and edit the necessary properties in the properties window. Properties for

Fig. 10.3 MIF component builder

162 10 Middleware Case Study: MeDICi

the whole pipeline can also be set by clicking on the Eclipse canvas, and then

by editing the properties that appear in the properties window. For example, note

in Fig. 10.3 that the Driver Class property has the value org.example.MifDriver.
This particular property means that this will be the class name of the generated

driver class that runs the pipeline created in the component builder.
l Console. The console is just like the Java console in that it displays standard

input and standard output within the IDE. In addition, the CB console also

outputs status and results of code generation actions.

Each time a MIF design is saved, the underlying MIF model is checked for

validity. This provides an error checking feature which is implemented by imposing

constraints on objects in the model, such as “a MifModule must not have an

undefined implementationClass.” If such a constraint is not satisfied, the CB places

a red “X” icon on the object(s) that are in error. When the user moves the mouse

over one of these error icons, the CB provides a hint as to what the problem is.

10.7 Summary

We have used MIF in several applications over the last 3 years, in domains as

diverse as bioinformatics, cybersecurity, climate modeling, and electrical power

grid analysis. In all these projects, MIF has proven to be robust, lightweight, and

highly flexible.

In building the MeDICi technology, we have been careful to leverage existing

technologies whenever possible, and build as little software as possible to support

the pipeline and component-based abstractions that our applications require.

Part of the success of MeDICi therefore undoubtedly lies in the strengths of its

foundations – Mule, ActiveMQ – which provide industrial-strength, widely

deployed platforms. We see this as a sensible model for other projects to follow,

especially in the scientific research community where resources for developing

middleware class technologies are scarce.

10.8 Further Reading

The complete MeDICi project is open source and available for download from

http://medici.pnl.gov. The site contains a considerable amount of documentation

and several examples.

We’ve also written several papers describing the framework and the applications

we’ve built. Some of these are listed below:

I. Gorton, H. Zhenyu, Y. Chen, B. Kalahar, B, S. Jin, D. Chavarria-Miranda,

D. Baxter, J. Feo, A High-Performance Hybrid Computing Approach to Massive
Contingency Analysis in the Power Grid, e-Science, 2009. e-Science ’09. Fifth
IEEE International Conference on e-Science, pp. 277–283, 9–11 Dec. 2009.

10.8 Further Reading 163

I. Gorton, A. Wynne, J. Almquist, J. Chatterton, The MeDICi Integration Frame-
work: A Platform for High Performance Data Streaming Applications, wicsa,
pp. 95–104, Seventh Working IEEE/IFIP Conference on Software Architecture

(WICSA 2008), 2008.

I. Gorton, Y. Liu, J. Yin, Exploring Architecture Options for a Federated, Cloud-
based Systems Biology Knowledgebase, in 2nd IEEE International Conference

on Cloud Computing Technology and Science (CloudCom 2010) November

30 – December 3, Indiana University, USA, IEEE.

164 10 Middleware Case Study: MeDICi

Chapter 11

Looking Forward

11.1 Introduction

The world of software technology is a fast moving and ever changing place. As our

software engineering knowledge, methods and tools improve, so does our ability to

tackle and solve more and more complex problems. This means we create “bigger

and better” applications, while still stressing the limits of our ever-improving

software engineering skills. Not surprisingly, many in the industry feel like they

are standing still. They don’t seem to be benefiting from the promised quality and

productivity gains of improved development approaches. I suspect that’s destined

to be life for all of us in the software industry for at least the foreseeable future.

11.2 The Challenges of Complexity

It’s worth dwelling for a moment to consider what might be some of the major

challenges for IT system builders in the next few years. It’s probably pretty

uncontroversial to state the inevitability that business applications will continue

to become more and more complex. Complexity is a multidimensional attribute

though. Which aspects of complexity exactly are most likely to influence the way

we design and build the next generation of IT applications?

From a business perspective, it seems highly likely that the following will be

drivers for much of what the IT profession does in the next decade:

l Enterprises will insist their IT infrastructure supports increasingly complex

business processes that increase their organizational efficiency and reduce

their cost of business.
l For many enterprises, the rate of change in their business environment will

require their IT systems to be easily and quickly adaptable. Agility in the way

an enterprise responds to their business needs will impact on their bottom line.
l Enterprises always want increased benefit from IT and to simultaneously reduce

their IT costs. Too many enterprises have seen massive waste on unsuccessful IT

systems. As a consequence, they now need seriously convincing of the necessity

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_11, # Springer-Verlag Berlin Heidelberg 2011

165

to heavily invest in IT, and will insist that their IT department continually “do

more with less”.

Let’s discuss each of these and see what implications they may have, especially

from an IT architect’s perspective.

11.2.1 Business Process Complexity

In large enterprises, high value business processes inevitably span multiple, inde-

pendent business applications, all operating in a highly heterogeneous IT infra-

structure. In such environments, the tools and technologies for business process

definition and enactment become of critical importance. In practical terms, this

means business process orchestration technologies are likely to become commod-

ity, mission critical components in many enterprises.

Today’s business process orchestration tools are proven and effective, and the

mature ones are increasingly able to support high requests loads and to scale. But

there are some fundamental problems that currently lie outside their capabilities.

Probably the key need is moving from “static” to “dynamic” processes. What does

this mean exactly?

A highly attractive aim for business processes is dynamic composition. For

example, an organization may have a stock purchasing business process defined

for purchasing from suppliers. Unexpectedly, one supplier goes out of business, or

another raises prices above the threshold the organization wants to pay. With

current technologies, it’s likely that the business process will have to be manually

modified to communicate with a new supplier. This is costly and slow.

Ideally, a business process would be able to “automagically” reconfigure itself,

following a set of business rules to connect to a new supplier and reestablish a

purchasing relationship. This would all happen in a few seconds, alleviating the

need for programmer involvement.

This kind of dynamic business process evolution isn’t too hard as long as the

environment is highly constrained. If there is a fixed, known set of potential

partners, each with known (ideally the same) interfaces, then business processes

can be constructed to modify their behavior when certain conditions occur (like a

partner interface disappears). However, once these constraints are removed, the

whole problem becomes exponentially more difficult.

To start with, if potential business partners are not known in advance, the

business process has to find a suitable new partner. This requires some form of

directory or registry, which can flexibly searched based on a number of properties.

That’s not too hard, and a search might yield one or more possibilities for the

business process to connect to. Assuming more than one, how does the process

decide which? How does it know which potential partner will provide the process

with the levels of service needed in terms of reliability and security? There has to be

some mechanism for describing provided service levels and establishing trust

dynamically for all this to work.

166 11 Looking Forward

Once a trusted partner has been selected based on the service levels they

advertise, it’s next necessary to figure out exactly how to communicate with the

partner. There’s no guarantee that every possible partner has the same interface and

accepts and understands the same set of messages. It’s therefore necessary for the

requesting business process to ensure that it sends requests in the correct format.

The killer problem here though is that an interface will typically only describe

the format of the requests it receives and sends, and not the semantics of the data in

the request. This means a message that tells you the price of an item may or may not

be in US dollars. If it’s in Euros, and you’re expecting US dollars, then depending

on exchange rates, you might be in for a shock or a pleasant surprise.

In their general forms, these problems of discovery trust and data semantics

are pretty much unsolved. Efforts are underway to tackle the discovery and trust

problems with Web services technologies, and the semantic problems with a

collection of technologies known as the Semantic Web, which are described in

Chap. 12.

11.3 Agility

Agility is a measure of how quickly an enterprise can adapt its existing applications

to support new business needs. If a business can get a new business service on-line

before its competitors, it can start making money while the competition struggles to

catch up.

From an architectural perspective, agility is very closely related to modifiability.

If an enterprise’s architecture is loosely coupled and application and technology

dependencies are abstracted behind sensible interfaces, implementing new business

processes might not be too onerous.

One genuine barrier to agility is heterogeneity. An architecture might be beauti-

fully designed, but if for example it suddenly becomes necessary to get a new .NET

application talking to existing J2EE application using a JMS, then life can get a

little messy. In reality, the sheer number of incompatible technology combinations

in an enterprise is usually not something that is pleasurable to think about.

As described in Chap. 5, SOAP and REST-based Web services are useful tech-

nologies that are widely used for linking together heterogeneous systems. They define

a standard protocol and mechanisms for plugging applications together, both within

and across enterprises.

Web services bring increased agility through standards-based integration. But

integration is not the only impediment to increasing an enterprise’s ability to

modify and deliver new applications. Improved development technologies that

make change less difficult and costly can also greatly increase an enterprise’s

agility. Two emerging approaches in this vein are aspect-oriented technologies

and Model-Driven Architectures (MDA).

Aspect-oriented technologies structure an application as a collection of indepen-

dent but related “aspects” of a solution, and provide tools to merge these aspects at

11.3 Agility 167

build or run-time. As aspects can be created, understood and modified indepen-

dently, they enhance development agility.

MDA, or model-driven development as it is increasing known, promotes appli-

cation development using abstract UML-based models of a solution. Executable

code is generated from these models using MDA tools. MDA raises the abstraction

level of the development process, in theory making changes easier to effect in the

models rather than in detailed code. MDA code generation tools also hide detailed

platform-specific knowledge from the application. For example, if the underlying

platform (e.g., MOM technology) changes, a code generator for the new platform is

simply acquired. The application can then be automatically regenerated from the

model to use the new platform. Now there’s agility for you! That’s the theory,

anyway.

Aspects and MDA are described in Chaps. 13 and 14 respectively.

11.4 Reduced Costs

The heady days of the late 1990s “dot.com” boom and massive IT spends have long

gone, and there’s still no sign of their return. Now businesses rightly demand to

know what business benefit their IT investments will bring, and what return-on-

investment they can expect. As an architect, writing business cases for investments

and acquisitions is a skill you’ll need to acquire, if you haven’t already of course.

In terms of reducing what we spend, while still achieving our business goals, the

place to start is to begin by working smarter. As a whole, the IT industry has

struggled to deliver on the promises of increased efficiency and lower costs from

new development technology adoption. Object and component technologies were

meant to make it easy for us to design and deliver reusable components that could

be used in many applications. Build something once, and use it for essentially no

cost, many times over. That’s a deal no one can possibly refuse, and one which is

simple for management to understand.

The truth is that the IT industry has pretty much failed to deliver on the reuse

promise. Successful reuse tends to take place with large scale, infrastructural com-

ponents like middleware and databases. Similarly, Enterprise Resource Planning

(ERP) systems like SAP and their like have managed to deliver generalized, custom-

izable business processes to a wide spectrum of organizations. None of these have

been without their difficulties of course. But think of how much of somebody else’s

code (i.e., investment) you’re using when you deploy an Oracle database or a JEE

application server. It’s significant indeed.

But on a smaller scale, reusable components have had less impact. The reason

for this is simple and well explained by much research in the software engineering

community. The argument goes like this.

Essentially, it costs money to build software components so they can be used in a

context which they were not originally designed for. You have to add more features

to cater for more general use. You need to test all these features extensively.

168 11 Looking Forward

You need to document the features and create examples of how to use the compo-

nent. Studies indicate that it costs between three and ten times as much to produce

quality reusable components.

Of course, all this investment may be worthwhile if the components are used

over and over again. But what if they’re not? Well, basically you’ve just invested a

lot of time and effort in generalizing a component for no purpose. That’s not smart.

Fortunately, some very smart architects thought about this problem a few years

back. They realized that successful reuse didn’t just happen “by magic”, but it could

be achieved if a product strategy was understood and planned out. Hence the term

“product line architecture” was coined. These are explained in Chap. 15. They

represent a set of proven practices that can be adopted and tailored within an

enterprise to leverage investments in software architectures and components. Soft-

ware product lines represent the state-of-the art in working smart right now.

11.5 What Next

The next four chapters in this book each cover an area of practice or technology that

you’re likely to encounter in a life of a software architect. These are:

l The Semantic Web
l Aspect-Oriented Programming
l Model-Driven Architectures (MDA)
l Software Product Lines

Each of the chapters that follow describes the fundamentals of each approach,

addresses the state-of-the-art, and speculates about future potential and adoption.

They also describe how the techniques or technologies can be applied to the ICDE

case study to provide enhanced features and functionality.

Hopefully these chapters will arm you with sufficient knowledge to at least seem

intelligent and informed when a client or someone in your project catches you by

surprise and suggests adopting one of these approaches. In such circumstances, a

little knowledge can go a long way.

11.5 What Next 169

.

Chapter 12

The Semantic Web

Judi McCuaig

12.1 ICDE and the Semantic Web

Exchanging and sharing data is a cornerstone challenge for application integration.

The ICDE platform provides a notification facility to allow third party tools to

exchange data. Suppose that an ICDE user is working with a third party tool to

analyze financial transaction records from several organizations. The tool generates

a list of finance-related keywords to describe the set of transaction records after

some complex analysis and stores this list in the ICDE data store. Suppose further

that this ICDE user has set up other third party tools to utilize their ICDE data as

input to those tools processes. One of these tools uses the stored keyword list to

perform a search for new, previously unseen information related to the ongoing

financial transaction analysis.

This scenario is possible only when the cooperating tools have the capacity to

share data. The sharing must include a consensus understanding of the semantics of

the data items being shared. Most often, this consensus is achieved by creating a

data structure that is coupled to every application using the shared data. The data

structure defines the format (e.g., list, table) and the semantics (e.g., document

name, document title, document location, document topic, etc.) of the shared data.

Within the ICDE framework, that shared understanding could be reached by

publishing a table structure and requiring all collaborating applications to use that

structure to share data. However, the ICDE development team could never antici-

pate suitable data structures for every third party tool and every application domain

in which ICDE would operate. New tables could be added of course, but each third

party tool vendor would have to negotiate with the ICDE team to get a suitable data

structure defined, making agile tool integration impossible.

A more flexible approach would allow third party tools to publish data via the

ICDE data store using any suitable structure. Subsequently, any other authorized

tool should be able to dynamically discover the structure of the published data and

understand the semantics of the content. No prior, hard-coded knowledge of data

structures should be needed.

The obvious requirement for such a flexible solution is to use self-describing

data structures for published data. Extensible Markup Language (XML) documents

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_12, # Springer-Verlag Berlin Heidelberg 2011

171

would suffice, as any program can dynamically parse an XML document and

navigate the data structure. However, raw XML doesn’t support semantic discovery

making understanding ad hoc data problematic. For example, one third party tool

might use the XML tag <location> to indicate the location of some infor-

mation, whereas another may use <URI>, and another <pathname>. The

semantics of these tag names tell a human reader that each tag contains the same

information, but there is no way to make that conclusion programmatically using

only XML. Forcing all tools to use the same strict tag vocabulary is not any more

flexible than forcing them all to use the same data structure.

What’s required is a mechanism to share the semantics of the chosen vocabulary,

allowing programmatic discovery of terms that describe similar concepts. Using

such a mechanism, a tool can determine that <URI> and <location> are

actually the same concept, even when the relationship is not explicitly defined in the

software or the published data.

The solution to this problem lies in the set of technologies associated with the

Semantic Web. The Semantic Web makes it possible to describe data in ways that

make its semantics explicit and hence discoverable automatically in software. One

of the key innovations lies in the use of ontologies, which describe the relevant

concepts in a domain, and the collection of relationships between those concepts.

This chapter introduces the basic technologies of the Semantic Web. It then

shows how domain ontologies could be used in the ICDE platform to support ease

of integration for third party tool vendors.

12.2 Automated, Distributed Integration and Collaboration

The difficulties associated with software integration have plagued software engi-

neers since the early days of the computing industry. Initial efforts at integration

(ignoring the problems of hardware and storage interoperability) centered on

making data accessible to multiple applications, typically through some sort of

database management system.

More recently efforts have been made to create interoperable processes using

components using technologies like CORBA or JEE. As explained in previous

chapters, services-oriented architectures and Web services are the latest technolo-

gies to give software designers the opportunity to create software systems by gluing

together services, potentially from a variety of providers, to create a specialized

software system designed for a particular business problem.

There are difficulties associated with locating, integrating, and maintaining a

system composed of autonomous services and components. The major challenges

include creation, management, and utilization of appropriate metadata to facilitate

dynamic interaction with the available information, services, and components. It is

precisely these problems that the technologies making up the Semantic Web tackle.

They provide tools and approaches to metadata management that are generically

useful for dynamically integrating software applications.

172 12 The Semantic Web

12.3 The Semantic Web

The purpose of the Semantic Web initiative is to create machine understandable

information where the semantics are explicit and usable by algorithms and com-

puter programs. This original goal has expanded to include the goal of creating

services, or processes, that are machine understandable and useable by other

processes. This shared understanding, whether it be of data or services, is made

possible by a rich collection of metadata description languages and protocols. For

the most part, the Semantic Web exists because of these languages.

The interoperability promised by Semantic Web technologies is made possible

through:

l The formalization of metadata representation
l Continued development in knowledge representation
l Logic and reasoning techniques that can exploit both the metadata and the

represented knowledge

The key capabilities offered are flexible representation of metadata and relation-

ships, encoded as ontologies. These allow translation between metadata vocabul-

aries and reasoning about the represented metadata entities.

Figure 12.1 illustrates the relationships between some of the technologies

associated with the Semantic Web. XML, Unicode, and Uniform Resource Identi-

fiers (URI) form the backbone and allow the storage and retrieval of information.

The Resource Description Framework (RDF) is the basis for describing the struc-

ture of information within Semantic Web applications. Ontologies, frequently

encoded using the Web Ontology Language (OWL) and Taxonomies described

using the Resource Description Framework Schema (RDFS), provide the layer at

Fig. 12.1 Semantic Web technologies

12.3 The Semantic Web 173

which the semantics of the information can be described and made available to

applications. An additional layer of computation provides facilities for queries and

reasoning about the available information. Semantic Web applications are typically

written on top of this query and reasoning layer.

12.4 Creating and Using Metadata for the Semantic Web

The advanced capabilities associated with the Semantic Web come almost entirely

on the back of extensive efforts in creating and maintaining metadata. The intro-

duction of the XML and the technologies related to it provided a structured, flexible

mechanism for describing data that is easily understood by machines (and a subset

of humans who like angled brackets). XML provides the means to label entities and

their parts, but it provides only weak capabilities for describing the relationships

between two entities. For example, consider the XML fragment in Fig. 12.2. It

describes a Person in terms of Name, Email_Address, and Phone_Number, and a

Transaction in terms of Type, Client, and AccountNumber. The example also shows

the use of attributes to create unique identifiers (id) for each entity.

XML is however not adequate for easy identification of relationships between

pieces of information. For example, using only the XML tag metadata in the figure,

the identification of the email address of the person who conducted a specific

transaction is somewhat complex. It relies on the ability to determine that the

Client field of the transaction represents the name of a person and that if the Client
field data matches the Name field of a person a relationship can be identified and the
person’s email address used.

A human can quickly make that determination because a human understands that

the tags Client and Name both signify information about people. A software process

unfortunately has no such capability because it does not have any way of represent-

ing those semantics.

<example>
<Person id="123">

<Name>J Doe</Name>
<Email_Address>doe@myplace</Email>
<Phone_Number>123 456 7899</Phone_Number>

</Person>
<Transaction transID="567">

<Downtick>500</Downtick>
<Client>Josef Doe</Client>
<AccountNumber>333222111</AccountNumber>

</Transaction>
</example>

Fig. 12.2 XML example

174 12 The Semantic Web

To address this problem, the RDF was developed as a machine understandable

representation of relationships between entities. It is assumed that each entity and

relationship can be identified with a URI. These URIs are used to form an RDF

statement of the form {Subject, Predicate, Object}, commonly called a “triple.”

To continue the above example discussion, the addition of an RDF relationship

conducted_by (see RDF example below) between the transaction and the person

(using the id attributes as the unique identifier) allows a machine to extract the

email address of the transaction owner, without requiring replication of informa-

tion. The RDF statement below indicates that the person referenced by id # 123

conducted the transaction referenced by id # 567.

<http://example.net/transaction/id567><http://example.net/conduc
ted_by><http://different.example.net/person/id123>

The relationship is explicit and easily exploited using computer programs once

a human identifies and records existence of the relationship. RDF doesn’t solve the

whole problem however, because there is still no mechanism to automatically

identify the relationships or to detail any restrictions on the participants in those

relationships. For instance, a human quickly understands that a transaction may be

conducted by a person, but that a person cannot be conducted by a transaction! The

RDF in the example has no such restrictions, so the algorithms processing the RDF

have no way of verifying the types or expected attributes of the entities in the

relationships.

A partial solution to the relationship identification problem is found in the

schema languages for XML and RDF. The schema languages allow a priori defini-

tion of entities and relationships that includes domains and ranges for attributes and

entities. Entities (or relationships) that reference the schema for their definition can

then be checked for consistency with the schema. Programs can then enforce range

and data type restrictions during data processing without human intervention.

Together RDF, XML, and their schema languages provide a robust, usable

method for encoding metadata and exploiting it to automatically identify relation-

ships between entities. However, our kitbag of essential technologies for automated

metadata understanding also needs the ability to make deductions and inferences

about metadata.

Consider again the transaction and client example. The completion of a transac-

tion is usually the result of collaboration between several individuals, including a

client, financial consultant, and clerk for instance. It would be trivial to modify the

XML metadata example given earlier to represent both the consultant and clerk as

part of the transaction’s metadata, thus explicitly representing the relationship

between the transaction and the collaborating individuals.

However, the collaboration between any particular pair of those three entities

(consultant, client, clerk) is not explicitly represented in the metadata. A program

that needs to identify both the client and the consultant for a transaction has no

mechanism for determining whether specific clients and consultants are known to

one another using our current set of metadata. One way to remedy this problem is to

12.4 Creating and Using Metadata for the Semantic Web 175

simply add more metadata and explicitly identify the client–consultant relationship,

but even for this small example it is apparent that metadata would rapidly exceed

data in quantity. A more general solution is to define logical rules that delineate the

possible deductions with the different types of metadata. Those logical rules define

the semantics associated with the metadata and are frequently described in con-

junction with the definition of a formal ontology. Ontologies are explained in the

next section.

Well-defined and ordered metadata is the backbone of the Semantic Web.

Metadata is used to dynamically assemble data from a variety of sources, for

making informed decisions, and to provide data for planning such things as, for

example, vacations and the shipping of goods. While metadata technologies are

most frequently used with Web-based information at the moment, they can be used

with equal power to identify connections between software services for the pur-

poses of creating any software system.

12.5 Putting Semantics in the Web

The one feature that distinguishes the Semantic Web from the World Wide Web is

the representation and utilization of meaning, or semantics. A common representa-

tion for semantics is an ontology. An ontology consists of a set of ideas or concepts

and the collection of relationships between those concepts.

An ontology can be used to identify ideas that are related to one another and to

provide the structure and rules for a reasoning engine to make inferences about

those ideas. An ontology models both abstraction and aggregation relationships.

More complex ontologies model domain-specific relationships about individuals

and classes in the ontology as well. Ontologies can also provide information about

concepts that are equivalent to other concepts. When suitably complex, an ontology

can provide the mapping between different metadata vocabularies, making integra-

tion of software processes much simpler.

For example, consider the ontology fragments represented in Fig. 12.3. The

ontology shows that Humans and Persons have Occupations and that certain kinds

of Occupations have relationships with other concepts in the ontology. Both

Students and Instructors are concerned with Courses and both Authors and Publish-
ers are concerned with Publications. This ontology could be used by an automated

system to identify related entities or identify the use of equivalent concepts (such as

Human and Person in this example). The ontology provides logical axioms to a

reasoning system, which can then make inferences about the information.

Within the Semantic Web, the OWL is a common representation of the axioms

and domain concepts.

Consider once more the example of the financial transaction. An ontology could

provide the logic to automatically identify a relationship between a client and a

financial consultant, even when the relationship is not explicitly stated in the

available metadata or in the schema. A reasoning system could deduce, given the

176 12 The Semantic Web

correct rules or training, that a client and consultant are known to one another if

they have collaborated on some specified number of transactions. An additional rule

could state that if they have collaborated on more than one type of transaction, they

are well known to each other.

Together, the financial transaction data, the metadata, and the ontology make up

a knowledge base that not only provides information about financial transactions

and clients, but can also be used to identify relationships between specific humans.

Information about client–consultant relationships could be useful to someone

analyzing financial transactions for the purpose of identifying sets or groups of

people conducting specific classes of transactions (i.e., transactions occurring in a

particular time period), or perhaps for organizations needing to determine the

outreach of particular financial consultants.

An ontology can also contain rules that constrain relationships. Suppose that the

example ontology contained a rule that precludes the same individual from being

both client and clerk for a transaction. The ontology could then be used, in

conjunction with a reasoning engine, to detect errors in information or to prevent

errors in data entry. Ontologies provide meaning for the metadata that is the

backbone of the Semantic Web.

XML, RDF, and OWL are the basic technologies supporting the Semantic Web,

which is now beginning to show up in the mainstream web and in industrial

Person

Occupation

isa

isa

Journal_Article Book

isa

Publisher

publishers* writes* teaches*attends*

has_text*

Author

CoursePublication

Student Instructor

isa isa isa

have_occupation* have_occupation*

Human
Fig. 12.3 Ontology example

12.5 Putting Semantics in the Web 177

applications. The Semantic Hacker1 is an example of a stand-alone demonstration

of the possibilities of the Semantic Web for information discovery. Ontoprise2 uses

Semantic Web technologies to develop troubleshooting and design validation

systems that function much like expert systems with more flexibility in the defini-

tion and maintenance of data and rules. Their clients include auto manufacturers,

makers of industrial robots, and investment firms.

One of the difficulties for early adoption of Semantic Web technologies was the

difficulty in authoring and developing materials. The mastery of XML, RDF, and

OWL requires a high level of technical expertise and a significant time commit-

ment. This barrier to use has slowed the adoption of the technologies and also

masked much of the progress on Semantic Web development behind prototype

sites and proof-of-concept applications. Fortunately, in the last few years that has

changed.

In the past year or so, the focus has shifted from individual organizations that

provide specific semantically enabled websites to vendors who wrap the technolo-

gies associated with the Semantic Web into turnkey systems for publishing parti-

cular types of information. For example, Allegrograph3 provides a database system

and query language for managing RDF data, queries using SPARQL and reasoning

services on the data, which frees potential developers from the need to build

a deep understanding of those technologies. Thetus4 provides a system to do

enterprise-wide knowledge modeling using Semantic Web technology. With the

increase in providers of publishing and authoring tools, the incidence of Semantic

Web-enabled applications and websites will continue to increase.

12.6 Semantics for ICDE

The ICDE system would benefit from using ontologies to support information

exchange and integration tasks for third party tools. As hinted in the chapter

introduction, one task within financial transaction analysis that would benefit

greatly from a solid description of semantics is the identification of consistent

vocabularies. Shown in Fig. 12.4 is a portion of a financial ontology originally

created by Teknowledge5 as part of the SUMO ontology. The ontology fragment

shows several different kinds of financial transactions arranged in an abstract

hierarchy.

Suppose that this ontology is available to the ICDE system, and an ICDE user

was analyzing the example presented in Fig. 12.2. In that data, Downtick is the

1http://www.semantichacker.com/
2http://www.ontoprise.de/de/en/home/products/semanticguide.html
3http://www.agraph.franz.com/allegrograph/
4http://www.thetus.com/
5http://www.teknowledge.com/

178 12 The Semantic Web

XML tag for the transaction ID, a choice which might prevent other third party

ICDE tools from making use of the data because the XML tag is not standard.

However, using the ontology and a reasoning engine, it is straightforward to

determine that Downtick is a type of Financial Transaction and that the informa-

tion should be shared with any tools that are interested in data about financial

transactions.

Ontologies could provide much more than just thesaurus services for ICDE

tools. An OWL ontology can encode complex rules about the relationships between

individuals of particular conceptual type, which would allow reasoning engines to

make deductions about individual data elements.

Consider the ontology fragment shown in Fig. 12.5. It shows that the ontology

contains rules describing the relationships between accounts, account holders,

transactions, and brokers. A reasoning engine can use these descriptions to deduce

relationships between a particular client and a broker or to deduce that a particular

broker had a likely involvement with an individual transaction, even when the data

being analyzed contained no specific linkage between the two entities.

FinancialTransaction

StockMarketTransaction

UptickDowntick

isa isa

isa isa

ShortSale Deposit ClosingAnAccount AssetAllocation

isa isa isa

Fig. 12.4 A simple financial transaction ontology

Contract

Financial Contract

Financial Transaction

Financial Account

Cognitive Agent

Client

Broker

isa

isa

isa

isa

account Transacted∗

transaction Conducted∗

held Account∗

holder of Account∗

account Consultant∗

managed Account∗

Fig. 12.5 Rules in an ontology

12.6 Semantics for ICDE 179

This kind of shared ontology could enable collaborating third party ICDE tools

to help the user notice previously unseen connections within data. For instance,

suppose that one tool helped a user select and analyze particular types of financial

transactions. Another tool assisted the user to identify social networks of indivi-

duals based on shared interest in accounts. Individually, neither of these two tools

would uncover relationships between an advisor and a particular type of transac-

tion, but the individual results from the two tools could be combined (possibly by a

third tool) to uncover the implicit relationships.

12.7 Semantic Web Services

Web services and service-oriented architectures were presented in the previous

chapter as a significant step toward a simple solution for the interoperability problems

that typically plague enterprise applications. Web services also play a part in

the Semantic Web. As Semantic Web applications increase in complexity, and as

information consumers become more discerning, the focus is turning from semanti-

cally addressable information to semantically addressable services that allow auto-

mated creation of customized software system, or Semantic Web services.

Current tools provide the capability to describe Web services but do not have

adequate means for categorizing and utilizing those descriptions. The categoriza-

tions available, such as WSIndex6 and Ping the Semantic Web,7 are designed

primarily for human use rather than machine. Automated system composition is

the subject of proof-of-concept prototypes at the moment, but few operating

systems.

However, web services are typically constructed with generous metadata descrip-

tions, which is the key component of the Semantic Web. As with all metadata, the

difficulty in using it for dynamic composition lies in understanding the semantics.

Predictably, a substantial research community is focused on applying ontologies

and Semantic Web technologies to define a domain called Semantic Web services.

Semantic Web services provide a mechanism for creating, locating, and utilizing

semantically rich descriptions of services. One of the foremost tasks for this commu-

nity is to standardize the description of the semantics associated with Web service

descriptions. Once the semantics are clear, Web service descriptions can be used

to create specifications for composite services, to represent business logic at a more

abstract level, and to supply knowledge for reasoning systems which can then

intelligently assemble software from service descriptions.

One of the underlying languages for the Semantic Annotation of Web services is

SAWSDL (Semantic Annotations for Web Services Description Language).8

6http://www.wsindex.org
7http://www.pingthesemanticweb.com/
8http://www.w3.org/2002/ws/sawsdl/

180 12 The Semantic Web

SAWSDL does not specify the ontology but provides the language for identifying

the ontological concepts associated with a Web service within the service descrip-

tion. SAWSDL outlines the definition of annotations for a small subset of the

possible components of a WSDL description. SAWSDL is ontology agnostic, in

that the specification makes no reference to a preferred language or encoding for

ontologies.

Languages for describing ontologies about Web services include OWL-S, a

service-specific variant of OWL, and the Web Services Modeling Ontology

(WSMO). These languages permit the integration of semantic annotation with the

Web Services Description Language (WSDL). Integration with WSDL is important

since most existing Web services use WSDL as the basis for service description.

The creation of Semantic Web Services for the general public however seems quite

a long way off at the moment. Good prototypes exist and the Semantic Web

community is slowly coming to an agreement about the languages and definitions

required to realize Semantic Web Services.

The technologies bear watching though, since successes in constructing and

using Semantic Web Services will change the way software is created. The current

state of Semantic Web Services shows promise for enterprise integration, but they

currently lack the capacity for automated discovery and composition of services.

Nonetheless, it seems inevitable that Semantic Web Services will soon define an

automated mechanism for finding and composing services and change the way we

think about software systems.

12.8 Continued Optimism

The Semantic Web has enjoyed immense publicity in the past few years. Many

research project descriptions have been quickly adjusted to reflect even the smallest

connection to the Semantic Web in an effort to take advantage of that popularity. Of

course, this results in an increase in the scope of research claiming to be Semantic

Web research, reducing the concentration of work addressing the important goals of

semantically rich, machine understandable metadata for data and processes.

While many believe in the technologies, general wariness seems to prevail. On

the surface, the Semantic Web looks like a refactoring of the artificial intelligence

projects that went out of vogue several years ago. However, the need for semantic

representations in software and information systems is now widely recognized, and

the demand for real solutions is growing. This time, the research goals are more

aligned with the needs of the public, and the technology might gain acceptance.

The Semantic Web has all of the data management issues associated with any

large information system. Who will take the time to provide all the detailed

metadata about existing services and information? Who monitors information and

services for integrity, authenticity, and accuracy? How are privacy laws and con-

cerns addressed when computing is composed from distributed services? Web

services providers will spring up as a new category of business, but how will they

12.8 Continued Optimism 181

be monitored and regulated? As systems are built that rely on quality metadata, its

maintenance and upkeep will become vital operational issues.

Despite the prototypical nature of most of the operational systems so far, the

Semantic Web places new techniques, new applications, and important experiences

in the toolbox of software architects. The Semantic Web is simply a conglomeration

of cooperating tools and technologies, but precisely because of the loose coupling

between technologies, the Semantic Web provides a flexible sandbox for develop-

ing new frameworks and architectures.

And, if one looks past the hype, the goals of the Semantic Web community are

the same as the goals for distributed software architecture: to create loosely coupled,

reliable, efficient software that addresses the needs of users. Through the formally

defined mechanisms for reasoning with metadata, the Semantic Web provides the

basis for creating software that is truly responsive to the needs of users, their tasks,

and their physical context.

Software developers and researchers are responding quickly to the needs of

semantic computing. The 2008 Semantic Web Conference hosted a research

track, a Semantic Web “in use” track, and workshops and tutorials on everything

from security to reasoning systems. The topic is active both in industry and in

academics. The Semantic Web services architecture identifies message mediation,

security, process composition, negotiation and contracting, and message formula-

tion as important aspects of the Semantic Web, and each of these is being explored

and prototyped. Developments such as SAWSDL and Service Ontologies (OWL-S

and WSMO) show promise as process description and composition languages. The

Semantic Web and software architecture are on paths that are rapidly converging on

a new, semantically driven, way of building software.

12.9 Further Reading

Three general books on the Semantic Web are:

Liyang Yu Introduction to the Semantic Web and Semantic Web Services Chapman

& Hall/CRC. 2007.

Pascal Hitzler, Sebastian Rudolph, Markus Kroetzsch, Foundations of Semantic

Web Technologies, Chapman & Hall/CRC. 2009.

Michael C. Daconta, Leo J. Obrst, Kevin T. Smith, The Semantic Web: A Guide to

the Future of XML, Web Services, and Knowledge Management, Wiley 2010.

Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee’s 2006 revisitation of the

original Scientific American article The Semantic Web sheds light on the vision of

people in the front lines and what they believe is required to realize the promise of

the Semantic Web.

Shadbolt, N., Berners-Lee, T., and Hall, W. 2006. The Semantic Web Revisited.

IEEE Intelligent Systems 21, 3 (May. 2006), 96–101.

182 12 The Semantic Web

David Provost has recently reviewed a number of organizations in the Semantic

Web industry and published his report under Creative Commons License. It is titled

On The Cusp, A Global Review of the Semantic Web Industry and is available from:

http://www.davidprovost.com/

The W3C’s Web site is a source of great information on the Semantic Web:

http://www.w3.org/2001/sw/

Specific details about some of the technologies can be found at the following

online locations:

OWL http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

SAWSDL http://www.w3.org/2002/ws/sawsdl/

RDF http://www.w3.org/RDF/

WSMO http://www.cms-wg.sti2.org/home/

OWL-S http://www.daml.org/services/owl-s/

A tool for building ontologies can be freely downloaded from http://www.

protege.stanford.edu/. It’s a good tool for exploring how ontologies can be built

and used:

12.9 Further Reading 183

.

Chapter 13

Aspect Oriented Architectures

Yan Liu

13.1 Aspects for ICDE Development

The ICDE 2.0 environment needs to meet certain performance requirements for

API data retrievals. To try and guarantee this performance level, the actual behavior

of an ICDE implementation needs to be monitored. Performance monitoring allows

remedial actions to be taken by the development team if the required performance

level is not met.

However, ICDE v2.0 is a large, multithreaded and distributed system, compris-

ing both off-the-shelf and custom written components. Such systems are notori-

ously difficult to monitor and isolate the root cause of performance problems,

especially when running in production environments.

The time-honored strategy for monitoring application performance and pin-

pointing components causing performance bottlenecks is to instrument the applica-

tion code with calls to log timing and resource usage. However this approach

leads to duplicate code being inserted in various places in the source. As always,

duplicate code creates code bloat, is error prone and makes it more difficult to

maintain the application as the ICDE application evolves.

The ICDE team was aware of the engineering problems of inserting performance

monitoring code throughout the ICDE code base. Therefore they sought a solution

that could separate the performance monitoring code from the application imple-

mentation in a modular, more maintainable way. Even better would be if it were

possible to inject the performance monitoring code into the application without the

need to recompile the source code.

So, the ICDE team started to look at aspect-based approaches and technologies

to address their performance monitoring problem. Aspect-oriented programming

(AOP) structures code in modules known as aspects. Aspects are then merged at

either compile time or run time to form a complete application.

The remainder of this chapter provides an overview of AOP, its essential

elements and tool support. It also discusses the influence of aspect-based approaches

on architecture and design. Finally, the chapter describes how the ICDE system

could leverage aspect-based techniques to monitor application performance in a

highly flexible, modular and maintainable way.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_13, # Springer-Verlag Berlin Heidelberg 2011

185

13.2 Introduction to Aspect-Oriented Programming

Aspect-oriented programming (AOP) is an approach to software design invented at

Xerox PARC in the 1990s.1 The goal of AOP is to let designers and developers

better separate the “crosscutting concerns” that a software system must address.

Crosscutting concerns are elements of a system’s behavior that cannot be easily

localized to specific components in an application’s architecture. Common cross-

cutting concerns are error handling, security checks, event logging and transaction

handling. Each component in the application must typically include specific code

for each crosscutting concern, making the component code more complex and

harder to change.

To address crosscutting concerns, AOP provides mechanisms for systematic

identification, separation, representation and composition. Crosscutting concerns

are encapsulated in separate modules, called “aspects”, so that localization can be

achieved.

AOP has a number of potential benefits. First, being able to identify and expli-

citly represent crosscutting concerns helps architects consider crosscutting behavior

in terms of aspects at an early stage of the project lifecycle. Second it allows

developers to easily reuse the code for an aspect in many components, and thus

reduces the effort of utilizing (often this means copying) the code. Third, AOP

promotes better modularity and encapsulation as component code is succinct and

uncluttered.

Structuring applications with aspects and directly implementing the design using

aspect-oriented programming languages has the potential for improving the quality

of software systems. Aspects can make it possible for large and complex software

systems to be factored and recomposed into simpler and higher quality offerings.

To see how this works, let’s look at this approach in more details.

13.2.1 Crosscutting Concerns

Separation of concerns is a fundamental principle of software engineering. This

principle helps manage the complexity of software development by identifying,

encapsulating and manipulating those parts of the software relevant to a particular

concern. A “concern” is a specific requirement or consideration that must be

addressed in order to satisfy the overall system goal.

1Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loing tier, J.-M., and

Irwin, J, Aspect-Oriented Programming, Proceedings European Conference on Object-Oriented

Programming, Vol. 1241. Springer-Verlag, (1997) 220–242.

186 13 Aspect Oriented Architectures

Any application is composed of multiple functional and nonfunctional concerns.

Functional concerns are relevant to the actual use of the application, whereas

nonfunctional concerns pertain to the overall quality attributes of the system,

such as the performance, transactions and security. Even applications that are

designed in a highly modular fashion suffer from tangling of functional and

nonfunctional aspects. For example, cache logic to improve database performance

might be embedded in the business logic of many different components, thus

mixing or tangling functional and performance concerns. Other examples of cross-

cutting concerns include performance monitoring, transaction control, service

authorization, error handling, logging and debugging. The handling of these con-

cerns spans across multiple application modules, replicating code and making the

application more complex.

13.2.2 Managing Concerns with Aspects

Using conventional design techniques, a crosscutting concern can be modularized

using an interface to encapsulate the implementation of the concern from its

invoking client components. Although the interface reduces the coupling between

the clients and the implementation of the concern, the clients still need to embed

code to call the interface methods from within its business logic. This pollutes the

business logic.

With aspect-oriented design and programming, each crosscutting concern is

implemented separately in a component known as an aspect. In Fig. 13.1, the

difference between implementing a logging concern using conventional program-

ming and AOP is demonstrated. The aspect defines execution points in client

components that require the implementation of the crosscutting concern. For each

1. (a) Conventional Model 2. (b) AOP Model

Manager
model

Visitor model

Employee

weaved Aspect

Access
Control
Model

Access
Control
Aspect

Manager
model

Visitor model

Employee

API
Invocation

Access
Control
Model

Fig. 13.1 Implementation of a logging concern

13.2 Introduction to Aspect-Oriented Programming 187

execution point, the aspect then defines the behavior necessary to implement the

aspect behavior, such as calling a logging API.

Importantly, the client modules no longer contain any code to invoke the aspect

implementation. This leads to client components that are unpolluted by calls to

implement one or more concerns.

Once defined, the use of an aspect is specified in composition rules. These

composition rules are input to a programming utility known as a “weaver.” A

weaver transforms the application code, composing the aspect with its invoking

clients. Aspect-oriented programming languages such as AspectJ provide weaving

tools, and hence AOP languages and tools are necessary to effectively implement

aspect-oriented designs.

13.2.3 AOP Syntax and Programming Model

“Crosscutting” is an AOP technique to enable identification of concerns and

structuring them into modules in a way that they can be invoked at different points

throughout an application. There are two varieties of crosscutting, namely static and

dynamic. Dynamic crosscutting modifies the execution behavior of an object by

weaving in new behavior at specific points of interest. Static crosscutting alters the

static structure of a component by injecting additional methods and/or attributes at

compile time. The basic language constructs and syntax used to define crosscutting

in AOP are:

l A “join point” is an identifiable point of execution in an application, such as a

call to a method or an assignment to a variable. Join points are important, as they

are where aspect behaviors are woven into the application.
l A “pointcut” identifies a join point in the program at which a crosscutting

concern needs to be applied. For example, the following defines a pointcut

when the setValue method of the Stock class is called:

pointcut log(String msg):args(msg)
execution(void Stock.setValue(float))

l An “advice” is a piece of code implementing the logic of a crosscutting concern.

It is executed when a specified pointcut is reached.
l An “introduction” is a crosscutting instruction that can make static changes to

the application components. An introduction may, for example, add a method to

a class in the application.
l An aspect in AOP is equivalent to a class in object-oriented programming. It

encapsulates pointcuts and associated advice and introductions.

In Fig. 13.2 the relationship between these AOP terms is illustrated.

188 13 Aspect Oriented Architectures

13.2.4 Weaving

Realizing an aspect-oriented design requires programming language support to

implement individual aspects. The language also defines the rules for weaving an

aspect’s implementation with the rest of the application code. Weaving can follow a

number of strategies, namely:

1. A special source code preprocessor executed during compilation

2. A postprocessor that patches binary files

3. An AOP-aware compiler that generates woven binary files

4. Load-time weaving (LTW); for example, in the case of Java, weaving the

relevant advice by loading each advice class into the JVM

5. Run-time weaving (RTW); intercepting each join point at runtime and executing

all relevant advices. This is also referred to as “hotswapping” after the class is

loaded

Most AOP languages support compile-time weaving (CTW) using one of the

first three options. In the case of Java, the way it typically works is that the compiler

generates standard Java binary class files, which any standard JVM can execute.

Then the .class files are modified based on the aspects that have been defined. CTW

isn’t always the best choice though, and sometimes it’s simply not feasible (e.g.,

with Java Server Pages).

LTW offers a better solution with greater flexibility. In the case of Java, LTW

requires the JVM classloader to be able to transform or instrument classes at

runtime. The JDK2 v5.0 supports this feature through a simple standard mechanism.

LTW must process Java bytecode at runtime and create data structures (this can

Callee.myMethod()

Caller

Join Point

Callee

public void myMethod() {
 ...
}

Advice

bind to
(expressed in pointcut)

Fig. 13.2 The anatomy of AOP

2Java Development Kit.

13.2 Introduction to Aspect-Oriented Programming 189

be slow) that represent the bytecode of a particular class. Once all the classes are

loaded, LTW has no effect on the speed of the application execution. AspectJ,3

JBoss AOP4 and AspectWerkz5 now support LWT.

RTW is a good choice if aspects must be enabled at runtime. However, like

LTW, RTW can have drawbacks in terms of performance at runtime while the

aspects are being weaved in.

13.3 Example of a Cache Aspect

In this section we’ll use a simple example to illustrate the AOP programming

model.6 This simple application calculates the square of a given integer. In order

to improve performance, if a particular input value has been encountered before, its

square value is retrieved from a cache. The cache is a crosscutting concern, not an

essential part of computing the square of an integer.

The example is implemented using AspectJ and shown in Fig. 13.3. The cache is

implemented as an aspect in Cache.aj and separated from the core application

implementation, Application.java. The method calculateSquare is a join point and

it is identified by the pointcut calculate in the Cache aspect, as in the following:

pointcut calculate(int i):args(i)
&&(execution(int Application.calculateSqure(int)));

The implementation of the cache function, retrieving a value from a java.util.
Hashtable, is provided inside the around advice. Note that this advice is only

applied to the class Application. The cache aspect is weaved into the application

code at compile time using an AspectJ compiler.

The following output from executing the program demonstrates the advice is

invoked at the join point.

Cache aspect is invoked for parameter 45
The square of 45 is 2025
Cache aspect is invoked for parameter 64
The square of 64 is 4096
Cache aspect is invoked for parameter 45
The square of 45 is 2025
Cache aspect is invoked for parameter 64
The square of 64 is 4096

3http://www.eclipse.org/aspectj/
4http://www.jboss.org/products/aop
5http://www.aspectwerkz.codehaus.org/
6Chapman, M., Hawkins, H. Aspect-oriented Java applications with Eclipse and AJDT, IBM
developerWorks, http://www-128.ibm.com/developerworks/library/j-ajdt/

190 13 Aspect Oriented Architectures

13.4 Aspect-Oriented Architectures

An aspect relating to a system’s quality attributes heavily influences the application

architecture, and many such aspects are basically impossible to localize. For

example, to guarantee the performance of a loosely coupled application, consider-

ation must be paid to the behavior of individual components and their interactions

with one another. Therefore, concerns such as performance tend to crosscut the

system’s architecture at the design level, and they cannot be simply captured in a

single module.

AOP provides a solution for developing systems by separating crosscutting

concerns into modules and loosely coupling these concerns to functional require-

ments. In addition, design disciplines like aspect-oriented design (AOD) and

aspect-oriented software development (AOSD) have been proposed to extend the

concepts of AOP to earlier stages in the software lifecycle. With AOD and AOSD,

the separation of concerns is addressed at two different levels.

//Source code of Application.java
package Caching;

public class Application {
public static void main(String[] args) {
System.out.println("The square of 45 is " + calculateSquare(45));
System.out.println("The square of 64 is " + calculateSquare(64));
System.out.println("The square of 45 is " + calculateSquare(45));
System.out.println("The square of 64 is " + calculateSquare(64));

}
private static int calculateSquare(int number) {
try {
Thread.sleep(6000);

}
catch (InterruptedException ie) {}
return number * number;

}
}

//Source code of Cache.aj
package Caching;
import java.util.Hashtable;

public aspect Cache {
private Hashtable valueCache;
pointcut calculate(int i) : args(i)

&& (execution(int Application.calculateSquare(int)));
int around(int i) : calculate(i) {

System.out.println("Cache aspect is invoked for parameter "+i);
if (valueCache.containsKey(new Integer(i))) {
return ((Integer) valueCache.get(new Integer(i))).intValue();

}
int square = proceed(i);
valueCache.put(new Integer(i), new Integer(square));
return square;

}
public Cache() {

valueCache = new Hashtable();
}

}

Fig. 13.3 A cache aspect implemented using AspectJ

13.4 Aspect-Oriented Architectures 191

First at the design level, there must be a clear identification and definition of the

structure of components, aspects, joint points and their relationship. Aspect design

and modeling are the primary design activities at this level. Individual concerns

tend to be related to multiple architectural artifacts.

For example, a concern for performance may be associated with a set of use

cases in the architecture requirements, a number of components in the design and

some algorithms for efficiently implementing specific logical components. The

requirements for each aspect need to be extracted from the original problem

statement, and the architecture needs to incorporate those aspects and identify

their relationship with other components. It is also important to identify potential

conflicts that arise when aspects and components are combined at this level. To be

effective, this approach requires both design methodologies and tool support for

modeling aspects.

Second, at the implementation level, these architectural aspects need to be

mapped to an aspect implementation and weaved into the implementation of

other components. This requires not only the expressiveness of an AOP language

that can provide semantics to implement join points, but also a weaving tool that

can interpret the weaving rules and combine the implementations of aspects.

13.5 Architectural Aspects and Middleware

As explained in Chap. 4, component-based middleware technologies such as JEE

provide services that support, for example, distributed transaction processing,

security, directory services, integration services, database connection pooling, and

so on. The various issues handled by these services are also the primary nonfunc-

tional concerns targeted by AOSD. In this case, both component technology and

AOP address the same issue of separation of concerns.

Not surprisingly then, middleware is one of the most important domains for

applying AOP. Research on aspect mining7 shows that 50% of the classes in three

CORBA ORB implementations are responsible for coordination with a particular

aspect. AOP has been used in such cases to effectively refactor a CORBA ORB and

modularize its functionality.

Following on from such endeavors, attempts have been made to introduce AOP

to encapsulate middleware services in order to build highly configurable middle-

ware architectures. Distribution, persistence and transaction aspects for software

components using AspectJ have been successfully implemented, and AspectJEE

extends AspectJ to implement the EJB model and several JEE services. In the open

source product world, JBoss AOP provides a comprehensive aspect library for

developing Java-based application using AOP techniques.

7Zhang, C., Jacobsen, H. Refactoring middleware with aspects. In IEEE Transactions on Parallel

and Distributed Systems, IEEE Computer Society, (2003), 14(11):1058 – 1073.

192 13 Aspect Oriented Architectures

The major problem in applying AOP to build middleware frameworks is that

middleware services are not generally orthogonal. Attaching a service (aspect) to a

component without understanding its interaction with other services is not sensible,

as the effects of the services can interact with each other.

For example, aspects are commonly used for weaving transactional behavior

with application code. Database transactions can be committed using either one

phase or two phase (for distributed transactions) commit protocols. For any indi-

vidual transaction, only one protocol is executed, and hence only one aspect, and

definitely not both, should be weaved for any join point. In general, handling

interacting aspects is a difficult problem. Either a compile-time error or a run-

time exception should be raised if the two interacting aspects share a join point.

13.6 State-of-the-Art

Recent research and development efforts have been dedicated to various aspect-

oriented technologies and practices. These include AOP language specification,

tool support for aspect modeling and code generation, and integration with

emerging technologies such as metadata based programming. Let’s discuss each

of these.

13.6.1 Aspect Oriented Modeling in UML

Several approaches exist to support aspect modeling for AOD and AOSD. Most of

these approaches extend UML by defining a new UML profile for AOSD. This

enables UML extensions with aspect concepts to be integrated into existing CASE

tools that support standard UML.

An advantage of aspect oriented modeling is the potential to generate code for

aspects from design models. In aspect oriented modeling and code generation,

aspect code and nonaspect code is generated separately. Using Model Driven

Architecture (MDA) approaches, tools use a transformation definition to transform

a platform independent model (PIM) into one or more platform specific models

(PSMs), from which the automated generation of aspect code and weaving can take

place. MDA technologies are explained in detail in the next chapter.

13.6.2 AOP Tools

The fundamental model of AOP is the join point model. All AOP tools employ this

model to provide a means of identifying where crosscutting concerns are applied.

13.6 State-of-the-Art 193

However, different tools implement the specifics of the aspect model in their own

way, and introduce new semantics and mechanisms for weaving aspects.

For example, in JBoss AOP, advices are implemented through “interceptors”

using Java reflection, and pointcuts are defined in an XML file that describes the

place to weave in an advice dynamically at run time. In AspectJ, both advices and

pointcuts are defined in an aspect class and weaved statically.

This diversity in AOP tools is problematic for software development using

aspects, because of the semantic differences of different AOP models and the

different ways an aspect is weaved with other classes. It is not possible to simply

redevelop an existing aspect in order for it to be weaved with other aspects

developed with another AOP model.

In order to address this problem, AspectWerkz8 utilizes bytecode modification to

weave Java classes at project build-time, class load time or runtime. It hooks in

using standardized JVM level APIs, and has a powerful join point model. Aspects,

advices and introductions are written in plain Java and target classes can be regular

POJOs. Aspects can be defined using either Java 5 annotations, Java 1.3/1.4 custom

doclets or a simple XML definition file. (In true aspect-oriented style, AspectWerkz

was weaved into the AspectJ v5.0 release in 2006).

13.6.3 Annotations and AOP

The join point model can utilize the properties of program elements such as method

signatures to capture join points. However it cannot capture join points needed to

implement certain crosscutting concerns, such as transaction and role-based secu-

rity, as there is no information in an element’s name or signature to suggest the need

for transactional or authorization related behaviors. Adding metadata to AOP

systems is therefore necessary to provide a solution for such cases.

In the programming language context, metadata known as “annotations,” cap-

ture additional information attached to program elements such as methods, fields,

classes, and packages. The JSE v5.0 and the C#/VB .NET languages provide

language standards to attach annotations to program elements. A good example

of applying annotations is declaring transactions in the JEE and .NET frameworks.

For example, the following annotation declares the transaction attribute of the

method update() in EJB 3.0:

@TransactionAttribute
(TransactionAttributeType.REQUIRED)

public void update (double newvalue)
throws Exception

8http://www.aspectwerkz.codehaus.org/

194 13 Aspect Oriented Architectures

13.7 Performance Monitoring of ICDE with AspectWerkz

When running in production, it is desirable to be able to inject performance

monitoring code into ICDE components without recompiling the complete applica-

tion. Using aspects, this can be achieved using LTW. Hence the ICDE team starts to

design an aspect-based architecture using AspectWerkz as shown in Fig. 13.4.

In this architecture, the performance instrumentation for different ICDE compo-

nents is encapsulated in a dedicated aspect that can be injected into the ICDE

application. This is necessary because the metrics that must be recorded are

different in nature. For example, the performance monitoring of a JMS server

measures both the message processing rate and the message size, while the instru-

mentation of SQL statements measures response time.

ICDE API
Client

ICDE Data
Collection

Client

ICDE API
Services

JMS
Data

Collection
Services

StartAPICall
Aspect

Instrument
Service Aspect P6Spy

Data query

JDBC Driver

ICDE Data
Store

JDBC call

Instrument
Message Aspect

Instrument
SQL Aspect

PerfStats
Management

Services

Write user event

API call

J2EE Server

Event notification

Get perfStats

SetperfStats

Set perfStats1
Set perfStats

Fig. 13.4 ICDE 2.0 aspect-based architecture for ICDE performance monitoring

13.7 Performance Monitoring of ICDE with AspectWerkz 195

In order to instrument the database query response time, an open source compo-

nent, P6Spy,9 is used. This acts as a layer between the JEE connection pool and the

JDBC drivers, capturing the SQL statements issued by JEE application. An aspect

must also be applied to this component to retrieve the SQL statement information.

Once all the performance data is captured, there are a variety of options to make

it available for subsequent processing. It can be simply written to a log file

periodically or loaded into a database. A more flexible and efficient solution to

provide direct access to live system performance data is to use a standard protocol

such as Java Management eXtension (JMX)10 that existing JEE management tools

can display and track.

public class InstrumentSQLAspect
{

public Object logJdbcQueries(final JoinPoint joinPoint)
throws Throwable

{
//access Runtime Type Information
MethodRtti rtti = (MethodRtti)joinPoint.getRtti();
String query = (String) rtti.getParameterValues()[0];
Long startTime = System.currentTimeMillis();
//execute the method
final Object result = joinPoint.proceed();
Long endTime = System.currentTimeMillis();
// log the timing information for this SQL statement execution
perfStatsManager.log(query,"Statement",endTime-startTime);
return result;

}

public Object logValuesInPreparedStatement(final JoinPoint
joinPoint) throws Throwable
{

MethodRtti rtti = (MethodRtti)joinPoint.getRtti();
Integer index = (Integer)rtti.getParameterValues()[0];
Object value = rtti.getParamterValues()[1];
String query = “index=”+ index.intValue()+ “value=”

+ value.toString();
Long startTime = System.currentTimeMillis();
//execute the method
Final Object result = joinPoint.proceed();
Long endTime = System.currentTimeMillis();
//log the timing information for this PreparedStatement
//execution
perfStatsManager.log(query, ”PreparedStatement”, endTime-
startTime);
return result;

}
};

Fig. 13.5 SQL statement instrumentation aspect implementation

9http://www.p6spy.com/
10http://www.java.sun.com/products/JavaManagement/

196 13 Aspect Oriented Architectures

To illustrate the design, implementation and deployment of AspectWerkz

aspects, we’ll describe in detail the InstrumentSQLAspect. To mea-

sure SQL statement response times, we need to locate all method calls where a

java.sql.Statement is created and inject timing code immediately

before and after the SQL query is executed. We also have to trace all method calls

where a value is set in a java.sql.PreparedStatement instance.

The resulting code snippet for the InstrumentSQLAspect is illustrated

in Fig. 13.5.

The next step is to compile the aspects as a normal Java class with the Aspect-

Werkz libraries. The weaving rules for binding the advice to the pointcut is

specified in the aop.xml file as shown in Fig. 13.6.11

LTW for AspectWerkz is achieved by loading the AspectWerkz library for the

JDK v5. The ICDE application can then be booted normally and the aspect code

will be weaved in at load-time

In summary, using AOP techniques, instrumentation code can be separated and

isolated into aspects. The execution of the aspects can be weaved into the system at

runtime without the need to recompile the whole system.

13.8 Conclusions

AOP was originally introduced as a programming mechanism to encapsulate

crosscutting concerns. Its success has seen aspect-oriented techniques become

used in various application domains, such as middleware frameworks. It has also

<aspectwerkz>
<system id="ICDE">
<package name="com.icde.perf.aop">
<aspect class="InstrumentSQLAspect"

deployment-model="perThread">
<pointcut name="Statement" expression=

"execution(* java.sql.Connection+.prepare*(..))" />
<pointcut name="PreparedStatement" expression=

"execution(void java.sql.PreparedStatement+.set*(..))" />
<advice name="logJdbcQueries(final JoinPoint joinPoint)"

type="around" bind-to="Statement" />
<advice name="logValuesInPreparedStatement(final JoinPoint

joinPoint)" type="around" bind-to="PreparedStatement" />
</aspect>

</package>
</system>

</aspectwerkz>

Fig. 13.6 InstrumentSQLAspect XML definition file

11Note that as JEE containers are multi-threaded, and individual requests are handled by threads

held in a thread pool, the aspect is deployed in perThread mode.

13.8 Conclusions 197

spawned modeling and design techniques which influence the architecture of a

software system built using aspect-oriented techniques.

AOP brings both opportunities and challenges for the software architect. In

limited domains, AOP has demonstrated a great deal of promise in reducing

software complexity through providing a clear separation and modularization of

concerns. Fruitful areas include further integrating AOP and middleware to increase

the flexibility of configuring middleware platforms. Even in this example though,

challenging problems remain, namely coordinating multiple aspects to deal with

conflicts, as crosscutting concerns are not completely orthogonal.

Aspect oriented design and implementation requires the support of efficient AOP

tools. With such tools, on-going research and development is still attempting to

provide better solutions in several areas, namely:

l Maintenance: Designing quality aspect-oriented systems means paying attention

to defining robust pointcuts and sensibly using aspect inheritance. Pointcuts

that capture more join points than expected or miss some desired join points

can lead to brittle implementations as the system evolves. Consequently an

efficient debugging tool is needed to detect the faulty join point and the pointcut

implementation.
l Performance: Using AOP introduces extra performance overheads in applica-

tions, both during the weaving process and potentially at runtime. The overhead

of AOP needs to be minimized to provide good build and runtime performance.
l Integration: The reusability of aspects hasn’t been explored sufficiently, so that

designers could utilize libraries of aspects instead of developing each aspect

from scratch. As each AOP tool only provides aspect implementations specific

to its own AOP model, an aspect implemented by one AOP model cannot be

easily weaved into a system with aspects using a different AOP model. This is

potentially a serious hurdle to the adoption of aspect-orientation in a wide range

of software applications.

In summary, aspect-oriented techniques are developing and maturing, and prov-

ing themselves useful in various application and tool domains. These include

security, logging, monitoring, transactions and caching. Whether aspect-orientation

will become a major design and development paradigm is very much open to

debate. However it seems inevitable based on current adoption that aspect-oriented

techniques will continue to be gradually infused into the software engineering

mainstream.

13.9 Further Reading

A good comparison of four Java AOP tools, namely AspectJ, AspectWerkz, JBoss

AOP and Spring AOP, in terms of their language mechanisms and development

environments is:

198 13 Aspect Oriented Architectures

M. Kersten, AOP Tools Comparison. IBM developerWorks, http://www-128.ibm.

com/developerworks/library/j-aopwork1/

A source of wide-ranging information on aspects is maintained at the AOSD

wiki at:

http://www.aosd.net/wiki/index.php?title¼Main_Page

The (deprecated) home page for Aspectwerkz is

http://www.aspectwerkz.codehaus.org/

AspectJ documentation can be found at:

http://www.eclipse.org/aspectj/docs.php

Good practical guides to AspectJ and aspects in database applications are:

Ramnivas Laddad, Aspectj in Action: Enterprise AOP with Spring Applications,
Manning Publications, 2009.

Awais Rashid, Aspect-Oriented Database Systems, Springer-Verlag, 2009.

13.9 Further Reading 199

.

Chapter 14

Model-Driven Architecture

Liming Zhu

14.1 Model-Driven Development for ICDE

One problem lurking at the back of the ICDE development team’s mind is related to

capacity planning for new ICDE installations. When an ICDE installation supports

multiple users, the request load will become high, and the hardware that the

platform runs on needs to be powerful enough to support this request load. If the

hardware becomes saturated, it will not be able to process all user generated events,

and important data may be lost. The situation is exacerbated by the following

issues:

l Different application domains and different individual installations within each

domain will use ICDE in different ways, and hence generate different request

loads per user.
l Different installations will deploy ICDE on different hardware platforms, each

capable of supporting a different number of users.
l The ICDE platform will be ported to different JEE application servers, and each

of these has different performance characteristics.

All of these issues relate to the software engineering activity of capacity

planning. Capacity planning is concerned with how large, in terms of hardware

and software resources, an installation must be to support its expected request load.

Mathematical modeling techniques can sometimes be used to predict a platform’s

capacity for standardized components and networks.1 But more typically, bench-

mark tests are executed on a prototype or complete application to test and measure

how the combined hardware/software deployment performs.

The only realistic way the ICDE team could anticipate to carry out capacity

planning was to execute a test load on specific deployment platforms. For each

installation, the team would need to:

1For example, Microsoft’s Capacity Manager and its support for Exchange deployments.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_14, # Springer-Verlag Berlin Heidelberg 2011

201

l Install ICDE on the target hardware platform, or one that is as close as possible

in specification to the expected deployment platform.
l Develop sample test requests generated by software robots to generate a load on

the platform, and measure how it responds. The test requests should reflect the

expected usage profile of the users operating on that ICDE installation.

So, for each installation, a set of tests must be developed, each of which will

execute a series of requests on the ICDE platform and measure the response time

and throughput. This is shown in Fig. 14.1.

Not surprisingly, the ICDE team were extremely interested in making this whole

capacity planning exercise as efficient and painless as possible. This would mean

minimizing the amount of site-specific development. So for example, instead of

writing a test robot specific for every installation, they would like to define the test

load and test data externally to the code, and somehow input this into the robot to

interpret. They would also like the performance results from test runs to be

produced and collated automatically as graphs for easy analysis.

To achieve this, the team decided to exploit model-driven architecture meth-

ods and supporting development technologies. Model-driven approaches encour-

age the components of a software system to be described in UML models. These

models are then input into code generators that automatically produce execut-

able code corresponding to the model. The team hoped they could develop a

single model of an ICDE test robot. Then, by simply changing parameters in the

model, they could generate an installation-specific load test at the press of a

button.

This chapter describes the essential elements of model-driven architecture

approaches. It then shows how the ICDE team could use model-driven techniques

to automate the development, deployment and results gathering of an ICDE instal-

lation for efficient capacity planning purposes.

ICDE
Installation

Load testing
robot

Site specific
request
profile

Site specific
test data

Performance
results

(1) define site
 specific test profile

(2) execute tests

(3) gather /analyze results

Fig. 14.1 Capacity planning for ICDE installations

202 14 Model-Driven Architecture

14.2 What is MDA?

One recurring theme in the evolution of software engineering is the on-going use of

more abstract formal languages for modeling solutions. In much mainstream

software development, abstract descriptions, for example in Java or C#, are trans-

formed by tools into executable forms. Developing solutions in abstract notations

increases productivity and reduces errors because the translation from abstract to

executable forms is automated by translation tools like compilers.

Of course, few people believe the nirvana of abstract programming languages is

Java, C# or any of their modern contemporaries. In fact, the history of programming

languages research is strewn with many proposals for new development languages,

some general-purpose, some restricted to narrow application domains. A small

minority ever see the light of day in “developerland”. This doesn’t stop the search

from continuing however.

Model-driven architecture (MDA) is a recent technology that leads the pack in

terms of more abstract specification and development tools (and use of new

acronyms) aimed at the IT market. MDA is defined by the OMG2 as “an approach
to IT system specification that separates the specification of functionality from the
specification of the implementation”.

As the name suggests, an “application model” is the driving force behind MDA.

A model in MDA is a formal specification of the function, structure and/or behavior

of an application or system. In the MDA approach, an IT system is first analysed

and specified as a “Computation Independent Model” (CIM), also known as a

domain model. The CIM focuses on the environment and requirements of the

system. The computational and implementation details of the system are hidden

at this level of description, or are yet to be determined.

As Fig. 14.2 shows, the CIM is transformed into a “Platform Independent

Model” (PIM) which contains computational information for the application, but

no information specific to the underlying platform technology that will be used to

eventually implement the PIM. Finally, a PIM is transformed into a “Platform

Specific Model” (PSM), which includes detailed descriptions and elements specific

to the targeted implementation platform.

A “platform” in MDA is defined as any set of subsystems and technologies

that provide a coherent set of functionalities through interfaces and specified usage

Fig. 14.2 Model transformation in MDA

2Object Management Group: http://www.omg.org

14.2 What is MDA? 203

patterns. An MDA platform is therefore a very broad concept. Platforms often refer

to technology specific sets of subsystems which are defined by a standard, such as

CORBA or JEE. Platforms can also refer to a vendor specific platform which is an

implementation of a standard, like BEA’s WebLogic JEE platform, or a proprietary

technology like the Microsoft .NET platform.

MDA is supported by a series of OMG standards, including the UML, MOF

(Meta-Object Facility), XMI (XML Metadata Interchange), and CWM (Common

Warehouse Metamodel). MDA also includes guidelines and evolving supporting

standards on model transformation and pervasive services. The standards in MDA

collectively define how a system can be developed following a model driven

approach and using MDA compatible tools. Each MDA standard has its unique

role in the overall MDA picture.

In MDA, models need to be specified by a modeling language. This can range

from generic modeling languages applicable to multiple domains (e.g., UML) to

a domain specific modeling language. The MOF provides facilities to specify

any modeling language using MOF’s met modeling facilities, as depicted in

Fig. 14.3.

The MOF also provides mechanisms to determine how any model defined in a

modeling language can be serialized into XML documents or be represented by

programmable interfaces. Any existing modeling language can be made MDA

compatible by creating a MOF representation of the language.

Fig. 14.3 The role of MOF in MDA

204 14 Model-Driven Architecture

The UML and CWM are two relatively generic MOF-defined modeling lan-

guages and are included in the MDA standards package. UML focuses on object

modeling and CWM focuses on data modeling.

The XMI standard in MDA is a mapping which can be used to define how an

XML schema and related XML serialization facilities can be derived from a

modeling language metamodel specified using the MOF. For example, the OMG

has applied XMI to the UML metamodel to come up with an XML schema for

representing UML models. Consequently, the XML schema for UML models can

be used by UML modeling tool vendors to interchange UML models.

So, from business domain models, to analysis models, to design models and

finally code models, MDA principles cover every phase of the software develop-

ment process, artifacts and tooling. In the next sections, we will discuss the overall

benefits of MDA and give some examples.

14.3 Why MDA?

Models play the central role in MDA. But why exactly do we need models? Here’s

the answer.

Models provide abstractions of a system that allow various stakeholders to

reason about the system from different viewpoints and abstraction levels. Models

can be used in many ways, for example, to predict the qualities (e.g., perfor-

mance) of a system, validate designs against requirements, and to communicate

system characteristics to business analysts, architects and software engineers.

And importantly in the MDA world, they can be used as the blueprint for system

implementation.

The three primary goals of MDA are portability, interoperability and reusability,

achieved through architectural separation of concerns. Critical design issues

concerning the CIM, PIM and PSM are very different in nature and can evolve

independently of each other. Multiple CIMs, PIMs and PSMs can exist for one

application, reflecting different refinement levels and viewpoints. Let’s see how

these primary goals are achieved in MDA.

14.3.1 Portability

Portability is achieved by model separation and transformation. High level models

do not contain low level platform and technical details. As Fig. 14.4 illustrates,

when the underlying platforms change or evolve, the upper level models can be

transformed to a new platform directly, without any remodeling.

Portability is also achieved by making models moveable across different tool

environments. The MOF and XMI standards allow a UML model to be serialized

into XML documents that can be imported into a new tool for different modeling

and analysis purposes.

14.3 Why MDA? 205

14.3.2 Interoperability

There is rarely an application which does not communicate with other applications.

Enterprise level applications particularly need to communicate across internal and

external organizational boundaries in a heterogeneous and distributed manner.

Most of the time, you have limited control over the other systems you need to

interoperate with.

Using MDA, interoperability is achieved through horizontal model mapping and

interaction (see Fig. 14.5). Early versions of MDA guidelines refer to integration as

the single biggest goal for MDA, which aims to improve interoperability in two

ways:

l The interoperability problem can be seen as a problem of horizontal model

mapping and interaction. For simplification, let’s suppose we have two sets of

CIM/PIM/PSM for the two systems, as shown in Fig. 14.5. The interaction

between higher level CIMs and PSMs can be first modeled and analysed.

These cross model mappings and interactions then can be mapped to detailed

communication protocols or shared databases supported by the underlying

models. Since explicit vertical transformations exist between models in each

system, the elements involved in the high level mapping can be easily traced or

even automatically translated into lower level elements.
l The same problem can also be seen as a problem of refining a single high level

model into multiple models operating across two or more platforms. Different

Fig. 14.4 MDA model mappings

206 14 Model-Driven Architecture

parts of the higher level models are refined into models specific to different

platforms. Associations in the original models are refined into communication

channels or shared databases between platform specific models.

With unified metamodeling facilities and explicit model transformation tools,

these two approaches become feasible in practice.

14.3.3 Reusability

Reusability is the key to improving productivity and quality. MDA encourages

reuse of models and best practices in designing applications, especially in creating

families of applications as in software product lines (see next chapter). MDA

supports software product line approaches with increasing levels of automation.

For example, the PIM is intended for reuse by mapping to different PSMs that a

product line supports, and an MDA platform is designed for reuse as a target for

multiple applications in a product line.

Fig. 14.5 Horizontal model mapping for interoperability

14.3 Why MDA? 207

14.4 State-of-Art Practices and Tools

Although it is possible to practice parts of the MDA without tool support, this is

only recommended for the brave and dedicated. A large portion of the standards is

aimed at tooling and tool interoperation. Some standards are meant to be mainly

machine readable, and not for general human consumption.

Since MDA standards, especially the guidelines, are intentionally suggestive and

nonprescriptive, there has been a plethora of tools claming to support MDA, all

with very different features and capabilities. Some loosely defined parts of MDA

have caused problems in terms of tool interoperability and development artifact

reusability. However, the correct balance between prescriptive and nonprescriptive

standards is hard to determine a priori and requires real world inputs from industry

users.

We’ll now discuss some tool examples from the JEE/Java platform community

because of its relatively wide adoption of MDA. The .NET platform is also moving

towards model driven approaches through its own Domain Specific Language

(DSL) standard. This is not compatible with MDA although third party vendors

have successfully developed MDA tools for .NET Platform.

Although the tools discussed in the following have their roots in JEE/Java

technologies, all here have the capability to support other platforms. The architec-

ture and infrastructure services of these tools all allow extensions and “cartridges”

to be built to support other platforms. Some of them simply have out of the box

support for JEE related technologies.

14.4.1 AndroMDA

AndroMDA3 is an open source MDA framework. It has a plug-in architecture in

which platforms and supporting components can be swapped in and out at any time.

It heavily exploits existing open source projects for both platform specific purposes

(e.g., XDoclet for EJB) and general infrastructure services (Apache Velocity for

transformation templating).

In AndroMDA, developers can extend the existing modeling language through

facilities known as “metafacades”. The extension is reflected as a UML profile in

modeling libraries and templates in transformation tools. AndroMDA’s current

focus is to generate as much code as possible from a marked PIM using UML

tagged values, without having an explicit PSM file (it exists only in memory).

Hence it does not provide opportunities for PSM inspection and bidirectional

manipulation between PSM and PIM.

The reason for this is mainly because of the trade off between the complexity of

bidirectional PIM/PSM traceability and the benefits of maintaining explicit PSMs

3http://www.andromda.org/

208 14 Model-Driven Architecture

for different platforms. At the UML stereotype level, this approach usually works

well because only general platform independent semantics are involved, but for

code generation, markings through tagged values usually includes platform depen-

dent information which pollutes PIMs to a certain degree.

14.4.2 ArcStyler

Arcstyler4 is one of the leading commercial tools in the MDA market. It supports

the JEE, and .NET platforms out of the box. In additional to UML profiles,

ArcStyler uses its own MDA “marks” as a way to introduce platform dependent

information in PIMs without polluting the model with platform level details. Like

AndroMDA, ArcStyler supports extensible cartridges for code generation. The

cartridges themselves can also be developed within the ArcStyler environment

following MDA principles. The tool also supports model to model transformation

through external explicit transformation rule files.

14.4.3 Eclipse Modeling Framework

The inseparable link between MDA models and the code created through code

generation requires consistent management of models and code in a single IDE.

Eclipse Modeling Framework (EMF) is the sophisticated metamodeling and mod-

eling framework behind the Eclipse IDE. Although EMF was only released publicly

as an Eclipse subproject in 2003, it has a long heritage as a model driven metadata

management engine in IBM’s Visual Age IDE.

EMF is largely MDA compatible with only minor deviations from some of the

standards. For example, the base of EMF’s metamodeling language is known as

Ecore, which is close but not identical to the Essential MOF (EMOF) in MOF 2.0.

EMF can usually load an EMOF constructed metamodel, and mappings and

transformations have been developed between EMOF and Ecore.

EMF comes with standard mechanisms for building metamodels and persisting

them as programmable interfaces, code and XML (see Fig. 14.6). A model editor

framework and code generation framework are also provided. However, EMF does

not include any popular platform support out of the box, and it didn’t initially

impress the MDA community as a fully fledged ready-to-use MDA tool for

platform-based distributed systems.

However, EMF’s tight integration with the Eclipse IDE and the capability

of leveraging the Eclipse architecture and common infrastructures supports the

integration of disparate metadata across multiple tools cooperating in a common

4http://www.interactive-objects.com/en/soa-governance.html

14.4 State-of-Art Practices and Tools 209

Eclipse-based ecosystem. This raises the level of tool interoperability while being

largely compatible with MDA practices.

This is also an example that demonstrates that model driven principles and

standards go beyond the modeling of the system, and include modeling of all

aspects of system construction. With little fanfare, IBM has migrated many of its

development tools to Eclipse and manages their metadata via EMF. Third party

vendors are also actively developing EMF based tools.

Due to the ongoing standardization of model transformation and the significant

production gains from code generation, most existing tools focus on code genera-

tion from models. The support for model to model transformation is usually

lacking. This results in primitive support for bidirectional CIM-PIM-PSM transfor-

mation. Overall though, the MDA market is maturing with both industry strength

commercial and open source tools emerging.

14.5 MDA and Software Architecture

Most ofmodels inMDA are essentially representations of a software architecture. In a

broad sense, domain models and system models are abstractions and different view-

points of software architecture models. Generated code models possess the character-

istics of the architecture models along with implementation details. The code can in

fact be used in reverse engineering tools to reconstruct the application architecture.

A software architecture can be described in an architecture description language

(ADL). There have been many ADLs developed in recent years, each with their

expressiveness focused on different aspects of software systems and application

domains. Many useful ADL features have recently been either absorbed into

revisions of the UML, or specified as lightweight (through UML profiles) or

heavyweight (MOF) UML extensions. Hence, the UML is used in MDA as an ADL.

Fig. 14.6 The eclipse modeling framework

210 14 Model-Driven Architecture

Some exotic formalisms and dynamic characteristics of certain ADLs still

cannot be fully expressed using UML. But the growing MDA/UML expertise

pool in industry along with high quality architecture and UML modeling tools

outweighs the downside of some modeling limitations in most domains.

14.5.1 MDA and Nonfunctional Requirements

Non-functional requirements (NFRs) are a major concern of software architecture.

NFRs include requirements related to quality attributes like performance, modifi-

ability, reusability, interoperability and security. Although MDA does not address

each individual quality attribute directly, it promotes and helps achieve these

quality attributes because:

l A certain degree of interoperability, reusability and portability is built into all

models through the inherent separation of concerns. We have explained how

these benefits are achieved in previous sections.
l The MOF and UML profile mechanisms allow UML to be extended for model-

ing requirements and design elements specifically targeting NFRs. UML profiles

for expressing NFRs exist, such as the OMG’s profile for performance, schedul-

ing and time.
l Along with NFR modeling extensions for requirements and design, explicit

model mapping rules encourage addressing quality attributes during model

transformation.

14.5.2 Model Transformation and Software Architecture

A large part of software architecture R&D concerns how to design and validate

software architectures so that they fulfill their requirements and are implemented

faithfully to the design. One major obstacle in architecture design is the difficulty

of designing an architecture that clearly captures how the various aspects of the

design satisfy the requirements. For this reason, it can be difficult to systematically

validate whether the architecture models fulfill the requirements, as traceability

between requirements and design elements is not formalized. This does not help to

increase confidence that the architecture is fit for purpose.

In MDA, all modeling languages are well defined by syntax and semantics in a

metamodel. The process of transforming from one model (e.g., requirements) to

another model (e.g., design) is a systematic process, following explicitly defined

transformation rules. This explicitness and potential automation can greatly improve

the quality and efficiency of validating an architecture model.

The model transformation standard that has emerged from the OMG is known as

“Query, View and Transformation” (QVT). At the time of writing there are several

products (commercial and open source) that claim compliance to the QVT standard.

14.5 MDA and Software Architecture 211

QVT defines a standard way to transform source models into target models. These

are based around the idea that the transformation program is itself a model, and as a

consequence conforms to a MOF metamodel. This means that the abstract syntax of

QVT also conforms to a MOF metamodel.

If the QVT standard gains widespread traction, it is possible that much of the

tacit knowledge, best practices and design patterns used in architecture design and

evaluation will be formally codified as various forms of bidirectional transforma-

tion rules. These will create rich forms of traceability in architecture models. In

fact, transformations based on patterns and best practices have already been imple-

mented in some tools in addition to normal platform specific mappings between

PIMs and PSMs.

14.5.3 SOA and MDA

Both MDA and SOA try to solve the same interoperability problem but from a totally

different perspective and level of abstraction. One is from the general semantic

modeling perspective; the other is from the communication protocols and architecture

style perspective. Following MDA, it is possible to consistently map high level

semantic interactions and mappings between the two systems into lower level

model elements and communication channels with necessary supporting services.

MDA can also increase productivity when the functions of a system need to be

exposed as Web services, one of the most common requirements in SOAs. If the

existing system is already modeled following MDA rules, exposing its services is

just a matter of applying transformation rules for the Web services platform. For

example, in AndroMDA, the “webservice” cartridge provides WSDL and WSDD

file generation using a simple UML profile. To expose the same business logic as

Web services, users only need to change the business process PIM (the ultimate

goal is to have no change) and use the “webservice” cartridge.

In summary, SOA bridges heterogeneous systems through communication pro-

tocols, pervasive services and an associated service-oriented architecture style.

MDA can take care of the seamless high level semantic integration between

systems and transforming the system models into lower level SOA based facilities.

This synergy between MDA and SOA might mean that the next generation service

oriented computing world with a highly federated and flexible architecture is not

too far away.

14.5.4 Analytical Models are Models Too

The importance of using analytical models to examine characteristics of a system

is often ignored, even in the official MDA guidelines. However, just like QVT

transformation models, the benefits of having analytical models that are also

compatible with MDA are potentially huge.

212 14 Model-Driven Architecture

According to the MDA definition, a model is defined as a description of a system

in a well-defined language. This definition can be applied to a wide range of models.

For example, in performance engineering, we can choose to view a system as a

queue-based model which has servers and queues. In modifiability analysis, we can

choose to view a system as a dependency graph model which has nodes to represent

conceptual or implementation elements and edges to represent dependency rela-

tionships among them.

Currently, these models are usually expressed in their own modeling languages.

In order to build an analytical model for an existing UML model, either we have to

do the modeling manually or a low level transformation must be carried out based

on the UML model represented in XML. This is shown in Fig. 14.7, and has several

limitations:

l The transformation relies solely on primitive XML transformation facilities such

as XSLT. Debugging and maintenance is difficult with no clear semantic

mapping between the two models.
l Without a clear semantic mapping and round trip engineering facilities, it is very

hard to place the results gained from the analytical model back into the original

UML model context.
l The original design model will likely be further refined and eventually imple-

mented in code. The analytical model is essentially also a derived model from

the same design model. But as the analytical model is not compatible with the

MDA standard, it is even harder to cross-reference the analytical model with all

the other derived models for validation, calibration and other purposes.

Fig. 14.7 MDA model transformation for model analysis

14.5 MDA and Software Architecture 213

14.6 MDA for ICDE Capacity Planning

In order to conduct capacity planning for ICDE installations, the ICDE team needed

a test suite that could be quickly tailored to define a site-specific test load. It should

then be simple and quick to execute the test suite on the intended deployment

environment, and gather the performance statistics such as throughput and response

time.

After a close look at their performance testing requirements, the ICDE team

found that their needs for rapid development across different JEE platforms were

amenable to applying MDA principles, leveraging its support for portability,

interoperability and reusability. The reasons are as follows:

l For different JEE application servers, only the platform related plumbing code

and deployment details differ. Using MDA, a generic application model could be

used, and platform specific code and plumbing generated from the model. This

leverages the portability inherent in MDA.
l The generation of repetitive plumbing code and deployment configuration is

supported for many JEE application servers by a number of open source MDA

projects. These code generation cartridges are usually maintained by a large

active user community, and are of high quality. Thus the ability to reuse these

cartridges in MDA tools was very attractive.
l The ICDE team has extensive experience in performance and load testing. By

refactoring their existing libraries into a reusable framework, much of this can be

easily reused across JEE platforms. However, each site-specific test will require

custom code to be created to capture client requirements. Using MDA, these

site-specific features can be represented using UML stereotypes and tagged

values, as a combination of modeling details and configuration information.

From this design description, the MDA code generation cartridge can produce

the site-specific features and hook these in with the team’s reusable framework

components.

So, the ICDE team designed a UML profile and a tool to automate the generation

of complete ICDE performance test suites from a design description. The input is a

UML-based set of design diagrams for the benchmark application, along with a

load testing client modeled in a performance tailored version of the UML 2.0

Testing Profile.5 The output is a deployable benchmark suite including monitoring,

profiling and reporting utilities. Executing the generated benchmark application

produces performance data in analysis friendly formats, along with automatically

generated performance graphs. The tool is built on top of an open source extensible

framework – AndroMDA. The overall structure of the benchmark generation and

related process workflow is presented in the boxed area in Fig. 14.8.

A snippet of the model is represented in Fig. 14.9. The load testing entry

point is the ICDEAPIService. It is the front end component of the system under

5http://www.omg.org/technology/documents/formal/test_profile.htm

214 14 Model-Driven Architecture

Fig. 14.8 Overview of ICDE’s MDA-based performance test generator

<<TestContext>>
ICDEAPIClient

{@andromda.config.initialThreads=25,
@andromda.clinent.serverPrincipal=weblogic,
@andromda.confilg.runs=10,
@andromda.config.threadIncrement=25}

<<TestCase>>+loadTestAll() : void

<<DataRef>>

TranDeck

<<DeckSize>>+@@SIZE :int=100{frozen}
+@@TRAN_Query : int = 25{frozen}
+@@TRAN_WRITE : int = 55{frozen}
+@@TRAN_UPDATE : int = 10{frozen}
+@@TRAN_GETAPPEVENT : int = 5{frozen}
-@TRAN_...=XXX

<<DataSelector>>+shuffle() : void

<<DataRef>>

<<DataPartition>>

LoadTestingTrxnData

<<DataSelector>>+getLoadTestingTrxnData() : TrxnData

<<DataPool>>

TrxnData

-sid
-event
-classifier
-notification
-topic
-data
-dataID
-appName
-…

<<SeederRef>>

<<Seeder>>
Seeder

{@andromda.seeder.driveName=Oracle}

<<TestComRef>>

<<SUT>>
<<Service>>

ICDEAPISerice

{@andromda.ejb.viewType=remote}

<<EJBRemoteMethod>>+queryData(sid, event, classifier) : Collection
<<EJBRemoteMethod>>+writeData(data, classifier, notification, topic) : void
<<EJBRemoteMethod>>+updateData(dataID, data, classfier, notification, topic) : void
<<EJBRemoteMethod>>+getApplicationEvent(sid, even, appName) : ApplicationData
<<EJBRemoteMethod>>+…()

Fig. 14.9 ICDE performance test model

14.6 MDA for ICDE Capacity Planning 215

test, which is marked with the <<SUT>> stereotype. ICDEAPIClient is the

<<TestContext>> which consists of a number of test cases. Only the default

loadTestAll() test case is included with its default generated implementation.

All the test data to be used for calling ICDE APIs is modeled in the TrxnData
class. The TranDeck class contains values that configure the transaction mix for a

test using tagged values, shown in Fig. 14.9. For example, calls to the ICDE API

queryData represents 25% of all transactions and writeData represents 55% for the

test defined in this model. This data is used to randomly generate the test data which

simulates the real work load of the ICDE installation under test.

In Fig. 14.10, example test outputs are depicted for the response time distribution

for two different application servers under a workload of 150 concurrent clients.

The amount of time saved using MDA can be considerable. Community-

maintained technology cartridges automatically generate repetitive and error prone

plumbing code, and the best practices inherited through using the cartridges

improve the quality of the performance testing software. Above all, MDA princi-

ples raise the abstraction level of the test suite development, making it easy and

cheap to modify and extend.

For more information on this work, please refer to the MDABench reference at

the end of the chapter.

14.7 Summary and Further Reading

MDA, as the industry wide standardization of model driven software development,

is proving successful and is continuing to evolve. MDA impacts on software

architecture practices, as it requires the architecture team to create formal models

of their application using rigorously defined modeling languages and supporting

tools. This essentially represents raising the level of abstraction for architecture

models. The software industry has been raising abstraction levels in software

development (e.g., from machine code to assembly language to 3GLs to object-

oriented languages and now to models) for the best part of five decades. MDA is the

latest step in this direction, and if it achieves it goals the industry could attain new

levels of development productivity only dreamt of today.

Fig. 14.10 Example response time results

216 14 Model-Driven Architecture

Still, MDA draws criticism from many sides concerning its limitations, some of

which are arguably intrinsic and hard to improve without a major revision. Micro-

soft has chosen not to comply with MDA standards and follow its own path,

defining and using its own DSL as the modeling language in its Visual Studio

IDE. While this may splinter the development community and create incompatible

models and tools, both the OMG’s and Microsoft’s promotion of general model-

driven development principles is likely to have positive outcomes for the software

community in the years to come.

The best reference for all MDA-related standard information is the OMG’s

web site:

OMG, MDA Guide Version 1.0.1. http://www.omg.org/mda/

Some good books on MDA from prominent authors are:

Thomas Stahl, Markus Voelter,Model-Driven Software Development: Technology,
Engineering, Management, Wiley 2006.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks, EMF: Eclipse
Modeling Framework, Addison Wesley Professional, 2nd Edition, 2008.

Michael Guttman, John Parodi, Real-Life MDA: Solving Business Problems with
Model Driven Architecture, Morgan Kaufman 2006.

S. J. Mellor, S. Kendall, A. Uhl, D. Weise. MDA Distilled. Addison-Wesley, 2004.

For some further details on the MDA-based performance and capacity planning

tools, see:

L. Zhu, J. Liu, I. Gorton, N. B. Bui. Customized Benchmark Generation Using
MDA. in Proceedings of the 5th Working IEEE /IFIP Conference on Software

Architecture, Pittsburgh, November 2005.

14.7 Summary and Further Reading 217

.

Chapter 15

Software Product Lines

Mark Staples

15.1 Product Lines for ICDE

The ICDE system is a platform for capturing and disseminating information that

can be used in different application domains. However, like any generically appli-

cable horizontal technology, its broad appeal is both a strength and weakness.

The weakness stems from the fact that a user organization will need to tailor the

technology to suit its application domain (e.g., finance), and make it easy for their

users to learn and exploit. This takes time and money, and is hence a disincentive to

adoption.

Recognizing this, the product development team decided to produce a tailored

version of the ICDE platform for their three major application domains, namely

financial analysis, intelligence analysis and government policy research. Each of

the three would be marketed as different products, and contain specific components

that make the base ICDE platform more user-friendly in the targeted application

domain.

To achieve this, the team brainstormed several strategies that they could employ

to minimize the design and development effort of the three different products. The

basic idea they settled on was to use the base ICDE platform unchanged in each of

the three products. They would then create additional domain-specific components

on top of the base platform, and build the resulting products by compiling the base

platform with the domain-specific components. This basic architecture is depicted

in Fig. 15.1.

What the team had done was to take the first steps to creating a product line

architecture for their ICDE technology. Product lines are a way of structuring and

managing the on-going development of a collection of related products in a highly

efficient and cost-effective manner. Product lines achieve significant cost and effort

reductions through large scale reuse of software product assets such as architec-

tures, components, test cases and documentation.

The ICDE product development team already benefits from software reuse in a

few different ways. They reuse some generic libraries (like JDBC drivers to handle

database access), and entire off the shelf applications (like the relational database in

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_15, # Springer-Verlag Berlin Heidelberg 2011

219

the ICDE data store). Market forces are driving the introduction of the three tailored

versions of the ICDE product. But if the team developed each of these separately,

it could triple their development or maintenance workload. Hence their plan is

to reuse core components for the fundamental ICDE functionality and to create

custom components for the functionality specific to each of the three product’s

markets. This is a kind of software product line development, and it should signifi-

cantly reduce their development and maintenance costs.

The remainder of this chapter overviews product line development and archi-

tectures, and describes a range of reuse and variation mechanisms that can be

adopted for product line development.

15.2 Software Product Lines

Widespread software reuse is a “holy grail” for software engineering. It promises a

harmonious world where developers can quickly assemble high-quality solutions

from a suite of preexisting software components. The quest for effective software

reuse has in the past stereotypically focused on “reuse in the small,” exploiting

techniques to reuse individual functions, or libraries of functions for data-types

and domain-independent technologies. Collection class and mathematical function

libraries are good examples. Such approaches are proven to be beneficial, but they

have not realized the full promise of software reuse.

Reusing software is easy if you know it already does exactly what you want. But

software that does “almost” what you want is usually completely useless. For this

reason, to realize the full benefits of software reuse, we need to practice effective

“software variation” as well. Modern approaches to software reuse, such as Soft-

ware Product Line (SPL) development, support software variation “in the large,”

with an architectural basis and a domain-specific focus. Software Product Line

(SPL) development has proven to be an effective way to benefit from software reuse

and variation. It has allowed many organizations to reduce development costs,

reduce development duration, and increase product quality.

In SPL development, a collection of related products is developed by combining

reused core assets with product-specific custom assets that vary the functionality

ICDE
Platform

Fin - ICDE Intel - ICDEGov - ICDE

Key:
Domain-specific
components

Fig. 15.1 Developing

domain-specific products for

the ICDE platform

220 15 Software Product Lines

provided by the core assets. A simple conceptual example of a product line is shown

in Fig. 15.2. In the picture, two different calculator products are developed, with

both using the same core asset internal boards. The different functionalities of the

two calculator products are made available by each of their custom assets, including

the two different kinds of buttons that provide the individualized interface to the

generic, reused functionality.

From this simple perspective, SPL development is just like more traditional

hardware-based product line development, except that in SPL development, the

products are of course software!1

For any product in a SPL, almost everything is implemented by reused core

assets. These core assets implement base functionality which is uniform across

products in the SPL, as well as providing support for variable features which can be

selected by individual products. Core asset variation points provide an interface

to select from among this variable functionality. Product-specific custom assets

instantiate the core assets’ variation points, and may also implement entire product-

specific features.

Software variation has a number of roles in SPL development. The most obvious

role is to support functional differences in the features of the SPL. Software

variation can also be used to support nonfunctional differences (such as perfor-

mance, scalability, or security) in features of the SPL.

SPL development is not simply a matter of architecture, design, and pro-

gramming. SPL development impacts existing processes across the software

development lifecycle, and requires new dimensions of process capability for the

management of reused assets, products, and the overarching SPL itself. The

Software Engineering Institute has published Product Line Practice guidelines

(see Further Reading at the end of the chapter) for these processes and activities

that support SPL development. We will refer to these practice areas later within

this chapter.

Deluxe Buttons

Basic Buttons

Generic CalculatorBasic Calculator

Deluxe Calculator

Fig. 15.2 A schematic view of a simple product line

1Product lines are also widely used in the embedded systems domain, where products are a

software/hardware combination.

15.2 Software Product Lines 221

15.2.1 Benefiting from SPL Development

When an organization develops a set of products that share many commonalities, a

SPL becomes a good approach. Typically an organization’s SPL addresses a broad

market area, and each product in the SPL targets a specific market segment. Some

organizations also use an SPL to develop and maintain variants of a standard

product for each of their individual customers.

The scope of a product line is the range of possible variations supported by the

core assets in a SPL. The actual products in a SPL will normally be within the SPL

scope, but custom assets provide the possibility for developing functionality beyond

the normal scope of the SPL. To maximize the benefit from SPL development, the

SPL scope should closely match both the markets of interest to the company (to

allow new products within those markets to be developed quickly and efficiently),

and also the full range of functionality required by the actual products developed by

the company. These three different categories of product (the company’s markets of

interest, the SPL scope, and the actual products developed by the company) are

depicted in a Venn diagram in Fig. 15.3.

The most obvious benefit from SPL development is increased productivity. The

costs of developing and maintaining core assets are not borne by each product

separately, but are instead spread across all products in the SPL. Organizations can

capture these economies of scale to benefit from the development of large numbers

of products. The SPL approach scales well with growth, as the marginal cost of

adding a new product should be small.

However, SPL development also has other significant benefits. When the core

assets in an SPL are well established, the time required to create a new product in

the SPL is much smaller than with traditional development. Instead of having to

wait for the redevelopment of functionality in the core assets, customers need only

wait for the development of functionality that is unique to their needs.

Organizations can also experience product quality benefits from SPL develop-

ment. In traditional product development, a defect might be repeated across many

products, but in SPL development, a defect in a core asset only needs to be fixed

All Possible Products

Scope of SPL
(All possible products within

Variation supported by core assets)

Actual Products
All possible products
in Markets of Interest

Out-of-scope
variation can be
supported by
custom assets

Fig. 15.3 The scope of an SPL

222 15 Software Product Lines

once. Moreover, although the defect might be initially found in the use of only one

product, every product in the SPL will benefit from the defect fix. These factors

allow more rapid improvements to product quality in SPL development.

There are additional second-order benefits to SPL development. For example,

SPL development provides organizations with a clear path enabling them to turn

customized project work for specific customers into product line features reused

throughout the SPL. When organizations have processes in place to managed

reused assets, the development of customer-specific project work can initially be

managed in a custom asset. If the features prove to have wider significance, the

custom asset can be moved into the reused core asset base.

Another related benefit is that the management of core and custom assets

provides a clear and simple view of the range of products maintained by the

organization. This view enables organizations to more easily:

l Upgrade products to use a new core version
l See what assets are core for the business
l See how products differ from each other
l Consider options for future functionality for the SPL

15.2.2 Product Lines for ICDE

The three planned ICDE products all operate in a similar way and the differences for

each of the products are fairly well understood. The Government product will have a

user interface that supports policy and governance checklists, the Finance product

will support continually updated displays of live market information, and the Intelli-

gence product will integrate views of data from various sources of classified data.

The variation required in the product line can be defined largely in terms of

the data collection components. The GUI options and the access to domain specific

data sources will have to be supported by variation points in the collection com-

ponents. This means the Data Collection client component will need variation

points in order to support access to application domain-specific data sources. This

will require custom components to handle the specific details of each of the new

government/financial/intelligence data sources. The Data Store component should

not need to support any variation for the three different products. It should be able to

be reused as a simple core asset.

15.3 Product Line Architecture

SPL development is usually described as making use of a Product Line Architecture

(PLA). A PLA is a reuse-oriented architecture for the core assets in the SPL. The

reuse and variation goals of a PLA are to:

15.3 Product Line Architecture 223

l Systematically support a preplanned scope of variant functionality
l Enable products within the SPL to easily choose options from among that variant

functionality

A PLA achieves these goals using a variety of technical mechanisms for reuse

and variation that are described in the following sections. Jan Bosch2 has identified

three levels of PLA maturity:

1. Under-specified architecture (ad-hoc variation)

2. Specified architecture

3. Enforced architecture (all required variation supported by planned architectural

variation points)

Increasing levels of architectural maturity provide more benefits from system-

atic variation by making product development faster and cheaper. However,

increasingly mature PLAs provide fewer opportunities for ad-hoc variation, which

can reduce opportunities for reuse. Nonetheless, increasing levels of reuse can be

achieved if there is better systematic variation, that is, better adaptation of the PLA

to the scope and application domain of the SPL.

A PLA is not always necessary for successful SPL development. The least mature

of Bosch’s maturity levels is “under-specified architecture,” and experiences have

been reported of the adoption of SPL development with an extremely under-

specified PLA. Although products in an SPL will always have some sort of archi-

tecture, it does not necessarily have to be a PLA, namely one designed to support

goals of reuse and variation. Essentially, to reuse software, developers must:

1. Find and understand the software

2. Make the software available for use by incorporating it into their development

context

3. Use the software by invoking it

Let’s look at each of these steps in turn.

15.3.1 Find and Understand Software

Software engineers use API documentation and reference manuals to support the

simple reuse of software libraries. For SPL development, the Product Line Practice

guidelines from the SEI (see Further Reading) describe the Product Parts Pattern
which addresses the discovery and understanding of core asset software for SPL

development. This pattern relies on the documentation of procedures to use and

instantiate core assets in the construction of products.

2J. Bosch, Maturity and Evolution in Software Product Lines. In Proceedings of the Second

International Software Product Line Conference (San Diego, CA, U.S.A., August 19–22 2002).

Springer LNCS Vol. 2379, 2002, pp. 257–271.

224 15 Software Product Lines

15.3.2 Bring Software into the Development Context

After finding the software, a developer has to make it available to be used. There are

many ways to bring software into a development context, which can be categorized

according to their “binding time.” This is the time at which the names of reused

software assets are bound to a specific implementation. The main binding times and

some example mechanisms are:

l Programming time – by version control of source code
l Build time – by version control of static libraries
l Link time – by operating system or virtual machine support for dynamic libraries
l Run time – by middleware or application-specific mechanisms for configuration

or dynamic plug-ins, and by programming language mechanisms for reflection

Earlier binding times (such as programming or build time) make it easier to use

ad-hoc variation. Later binding times (such as link or run time) delay commitment

to specific variants, and so make it easier to benefit from the options provided by

systematic variation. Increasingly mature PLAs for SPL development tend to use

later binding time mechanisms. This enables them to maximize the benefits from an

SPL scope that is well understood and has a good fit with the company’s markets of

interest.

15.3.3 Invoke Software

To invoke software, programming languages provide procedure/function/method

call mechanisms. For distributed systems, interoperation standards such as CORBA

and SOAP provide remote invocation mechanisms that are tied into programming

language mechanisms, to allow developers to invoke software systems running on

other machines. These invocation mechanisms are the same for SPL development

as for traditional software development.

15.3.4 Software Configuration Management for Reuse

For organizations that are adopting SPL development, the most common binding

times for reuse are programming time and build time. This makes software confi-

guration management (SCM) a critical supporting process area for SPL develop-

ment. SCM includes version control and change control for software assets.

SCM for SPL development is more complicated than in normal product deve-

lopment partly because configuration identification (CI) is more complicated. CI

is the SCM activity of specifying the names, attributes, and relationships between

configurations (a versioned collection of versioned objects). In normal product

15.3 Product Line Architecture 225

development, a product’s configuration usually has a simple structure (e.g., a single

versioned binary or versioned file system directory hierarchy). However in SPL

development, each core asset, custom asset, and product is a configuration that must

be identified and the relationships between these configurations must be specified

and managed. Basically, SCM gets much more architectural for SPL development.

One approach to SCM for SPL development is depicted in Fig. 15.4. In this

approach, core assets and products each have their own line of development (LOD).

Each product version includes its own custom assets, as well as versions of core

assets. The version control system ensures that reused core assets are read-only for a

product, and that they are not modified solely within the context of a specific

product’s LOD. However, a product’s LOD can take a later version of a core

asset which has been produced on its own LOD.

This view of SPL development provides a quantitative basis for seeing why SPL

development can prove so effective. The LOD for each product contains source

code for customer-specific assets and also (read-only) source code for core assets.

So each LOD contains essentially the same source code as it would were product

line approaches not being used. However the total volume of branched code has

been reduced, because the size of core assets is not multiplied across every product.

Core assets are not branched for each product, and so low level design, coding and

unit test costs within core assets can be shared across many products.

In the ICDE example there are three products, and let’s assume that the core

components have 140,000 LOC (Lines of Code) and each product’s custom part

have 10,000 LOC. In normal product development, each product would be main-

tained on a separate LOD, giving a total of:

ð140; 000þ 10; 000Þ � 3 ¼ 450; 000 branched LOC:

In SPL development, the core is on its own LOD, and each product has a LOD

only for changing their custom assets, giving a total of:

140; 000þ ð10; 000� 3Þ ¼ 170; 000 branched LOC:

Baselines on the Core Asset’s Line of Development

Custom Asset Baselines

One Product’s Line of Development

Read-Only Copies of Core Asset Baselines

Fig. 15.4 A SCM branching pattern for SPL development

226 15 Software Product Lines

That’s only 38% of the original total. The improvement gets better when develop-

ing more products, or when the size of the custom assets compared to core assets is

proportionately smaller.

15.4 Variation Mechanisms

In an SPL, core assets support variable functionality by providing variation points.

A PLA typically uses specific architectural variation mechanisms to implement

variable functionality. However, an SPL can also use nonarchitectural variation

mechanisms to vary software functionality.

In addition to architectural-level variation mechanisms, there are design-level

and source-level variation mechanisms. These different types of variation are not

incompatible. For example, it is possible to use file-level variation at the same time

as architectural variation. This section describes some of the variation mechanisms

at these different levels of abstraction. This classification is similar to the taxonomy

of variability realization techniques in terms of software entities that has been

proposed by Svahnberg et al.3

15.4.1 Architecture-Level Variation Points

Architectural variation mechanisms are high-level design strategies intended to

let systems support a range of functionality. These strategies are only very loosely

related to the facilities of any specific programming language. Examples of these

include frameworks and plug-in architectures. Even the formal recognition of a

space of configuration options or parameters for selecting between variant func-

tionality can be considered to be an architectural variation mechanism.

15.4.2 Design-Level Variation

The boundary between architecture and design is not always a clear one. Here we

will say that design-level mechanisms are those supported directly by programming

language facilities and that architecture-level mechanisms must be created by

programming. Programming language mechanisms can be used to represent varia-

tion. These mechanisms include component interfaces that can allow various

functionally different implementations, and inheritance and overriding that simi-

larly allow objects to have variant functionality that satisfies base classes.

3M. Svahnberg, J. van Gurp, J. Bosch, A Taxonomy of Variability Realization Techniques,
Technical paper, Blekinge Institute of Technology, Sweden, 2002.

15.4 Variation Mechanisms 227

15.4.3 File-Level Variation

Development environments and programming languages provide ways to imple-

ment variation at the level of source code files. Some programming languages

provide conditional compilation or macro mechanisms that can implement func-

tional variation. In any event, build scripts can perform logical or physical file

variation that can be used to represent functional variation.

15.4.4 Variation by Software Configuration Management

The main role of SCM for product line development is to support asset reuse by

identifying and managing the versions of (and changes to) products and their

constituent component assets. New product versions do not have to use the most

recent version of a core asset. SCM systems can allow a product to use whatever

core asset version that meets the needs of the product’s stakeholders. The version

history and version branching space within an SCM tool can be used to represent

variation.

In a version control tool, a branched LOD of a core asset can be created to

contain variant functionality. Branching reused core assets in order to introduce

ongoing variation is a sort of technical decay that reduces the benefits of SPL

development. In the extreme case where every product has its own branch of core

assets, an organization will have voided SPL development completely and will be

back doing ordinary product development. Nonetheless, in some circumstances a

temporary branch is the most pragmatic way to introduce variation into a compo-

nent in the face of a looming delivery deadline.

15.4.5 Product Line Architecture for ICDE

Early on in the development of the ICDE product the development team had put

considerable effort into the product architecture. This means that they’re in the

fortunate position of already having many architectural variation mechanisms in

place, making the adoption of product line development easier. For example, the

Data Source adapter mechanism provides all the required variability for the three

new products. These existing variation mechanisms form the heart of the product

line architecture for the ICDE product line.

The team needs to define some new variation mechanisms too. To support the

real-time display of market information for the Financial product, the existing GUI

components need new functionality. The GUI is currently too rigid, so the team

plans to extend the GUI framework to let them add new types of “plug-in” panels

connected to data sources. When this framework is extended, it’ll be much easier to

228 15 Software Product Lines

implement the real-time display panel, connect it to the market data source, and

include it in the GUI for the Financial product build.

However, although the ICDE team thought the Data Storewould be the same for

all three products, it turns out that separating the classified data for the Security

product is a nontrivial problem, with requirements quite different from the other

two products. The team has to come up with some special-purpose Data Store code
just for that product. The easiest way to make these special changes is in a separate

copy of the code, so in their version control tool they create a branch of the Data
Store component just for the Security product. Having to maintain two different

implementations of the Data Store might hurt a little, but it’s the best the team can

do under a tight deadline. Once the product ships they’ll have time to design a better

architectural variation mechanism for the next release, and move all the products

onto that new Data Store component.

15.5 Adopting Software Product Line Development

Like many radical business changes, the adoption of SPL development in an organi-

zation is often driven in response to a crisis (what Schmid and Verlage4 diplomati-

cally called a “reengineering-driven” situation). This may be an urgent demand to

quickly develop many new products, or to reduce development costs, or to scale

new feature development in the face of a growing maintenance burden. This section

points out some paths and processes relevant to the adoption of SPL development.

There are two different starting points in the adoption of SPL development:

1. Green Fields: where no products initially exist

2. Ploughed Fields: where a collection of related legacy products have already

been developed without reuse in mind

Each situation has special considerations, as described below.

For Green Fields adoption of product lines, the SEI’s What to Build pattern is

particularly relevant. This pattern describes how a number of interacting practice

areas can result in the generation of an SPL Scope (to know what SPL will be built)

and a business case (to know why building the SPL is a good investment for the

organization). The SEI’s Scoping and Building a Business Case practice areas that
are directly responsible for these outputs are supported by the Understanding
Relevant Domains, Market Analysis, and Technology Forecasting practice areas.

An organization has to decide on their markets of interest, their medium-to-

long term SPL scope, and their short-to-medium term product production plans.

The organization must plan and evaluate the various investment options of having

the PLA of the core asset base support a large-enough SPL scope. This makes it

4K. Schmid, M. Verlage, The Economic Impact of Product Line Adoption and Evolution. In IEEE

Software, July/August 2002, pp. 50–57.

15.5 Adopting Software Product Line Development 229

possible to trade off the potential for return from the products that can be generated

within that scope for the markets of interest to the organization.

Investing in a PLA at the beginning of an SPL will provide a better long-term

return assuming that the products in the SPL are successful in the market. However,

the cost and technical difficulty of creating such a PLA ex nihlio can pose a barrier

to the adoption of SPL development, especially if the organization is not already

expert within the application domain being targeted by the SPL.

In contrast, when a set of products exists and is being transitioned to an SPL, an

organization will, as for Green Fields adoption, need to decide on the SPL scope

and markets of interest for the SPL. However, organizations in this position will

generally already have a good understanding about these. The scope of the SPL will

largely be driven by the functionality of existing products and future product plans.

The other significant considerations for Ploughed Fields adoption are potential

barriers related to change control, and defining the core assets and PLA.

Change control issues can pose a barrier to the adoption of SPL development for

an organization’s legacy products. The stakeholders of existing products will

already have established expectations about how their product releases change.

As discussed in the SCM section, every product in the SPL has stakeholders that

influence changes made to core assets, and these core asset changes in the SPL will

ultimately affect every product in the SPL, including other stakeholders. This

change in the nature of product releases must be understood and accepted by the

products’ stakeholders.

When initially defining an SPL for an existing set of independent products, the

organization must decide what is core for every product, and what is custom or

specific to any individual product. Instead of throwing away the existing assets for

the organization’s products and starting from a blank slate, it is possible to use an

extractive approach to mine core assets from existing products. The SEI describes

a product line practice area Mining Existing Assets addressing this activity. In

many ways, the extraction of core assets is like a giant refactoring exercise, as

depicted in Fig. 15.5. Starting from an initial collection of products, the goal of

Custom A

Core

Custom B

Core

Product A

Product B

Custom B

Custom A

Core

Product A

Custom A
Core

Product B

Custom A
Core

Core

Identify
Core

Extract
Core

Refactor Products
into SPL

Fig. 15.5 Mining core assets from a collection of existing products

230 15 Software Product Lines

the exercise is to finish with identical products, except now all built using a

common core asset.

When defining the core assets, the organization can also define a PLA to cater for

variation that is identified among the products. Svahnberg et al. have presented a set

of minimally necessary steps to introduce variability into a SPL. These are:

l Identification of variability
l Constraining variability
l Implementing variability
l Managing the variability

In order to reduce change control conflicts, it may be easier to introduce SPL

development early in the cycle leading to the release of a major new version of a

product. Product stakeholders are prepared for major changes when receiving a

major new version. Although moving to SPL development need not in principle

result in any functional difference to a product, there will at least be change control

policy modifications, which customers may find easier to accept in the context of a

major new product version.

An organization adopting product lines can also reduce business and technical

risks by incrementally rolling out the SPL within the organization. Adoption can be

incremental either by progressively increasing the size of the core assets, by

progressively adding more products to use the core assets, or a combination of both.

15.5.1 Product Line Adoption Practice Areas

The adoption of SPL development has impact outside the technical development

context. Regardless of the starting point for product line adoption (Green or

Ploughed Fields) and regardless of the specific product and technical process

changes that are to be made, many organizational management issues must be

dealt with to successfully transition to SPL development. The SEI product line

practice guidelines describe the Cold Start Pattern that groups together practice

areas that can help an organization effectively prepare for the launch of its first SPL.

The structure of the pattern is shown in Fig. 15.6.

Although the details of these practice areas are beyond the scope of this chapter,

the pattern as a whole highlights the fact that SPL development must have broad

business support from within the adopting organization and from its customers.

15.5.2 Product Line Adoption for ICDE

The ICDE team was driven to SPL development by the daunting prospect of

developing three new products at once. They are creating three new products for

three specific markets, but are using their existing product as a starting point.

15.5 Adopting Software Product Line Development 231

Their adoption of SPL development is thus a Ploughed Field scenario. They have

to mine reusable components from their existing code base.

Luckily their existing customers aren’t going to be too concerned initially about

the move to a PLA, because the move is part of the development of a major new

version of the product. The customers will be happy to upgrade because of the new

features they’ll also be getting.

15.6 Ongoing Software Product Line Development

SPL development must be effective not just for the initial development of new

products, but also for their ongoing maintenance and enhancement. Although SPL

development can have many benefits, it is more complicated than normal product

development. Enhanced processes are necessary to make ongoing SPL develop-

ment effective. This section gives an overview of a few of these SPL development

processes. We pay particular attention to “change control” and “architectural evo-

lution” for SPL development, but also summarize other SEI Product Line Practice

areas for ongoing SPL development.

15.6.1 Change Control

Software change control is related to software configuration management, and is

concerned with planning, coordinating, tracking, and managing the impact of change

to software artifacts (e.g., source code). Change control is harder when you do soft-

ware reuse, and this affects SPL development.

Launching and Institutionalising

Funding Structuring the Organisation

Operations

Organisational
Planning

Customer
Interface

Management

Developing an
Acquisition

Strategy
Training

Organisational
Risk Management

Fig. 15.6 The structure of product line practice areas in SEI’s Cold Start pattern (after Clements

and Northrup 2002, p383)

232 15 Software Product Lines

In any kind of product development, every product has a collection of stake-

holders that is concerned with how their product changes to accommodate their

needs for new functionality. In addition, stakeholders are concerned about nonfunc-

tional characteristics (such as release schedule, product reliability) related to the

release of their products. Risk-averse stakeholders (such as those using safety-

critical software or those in the banking industry) are often motivated to ensure

that their products do not change at all! Such stakeholders sometimes prefer to be

confident in their understanding of the product (bugs and all) rather than use new,

perhaps better versions.

Change control is harder when you do software reuse, including software reuse

for SPL development. For ordinary product development, each product is devel-

oped separately, and so each product’s stakeholders are kept separate too. However,

in SPL development each product depends on reused core assets, and so these

products’ stakeholders also vicariously depend on these reused core assets. If one

product’s customer has a change request that involves a change to a core asset, then

implementing that will force that change on every other customer who uses the new

version of that core asset. The many, often conflicting, needs of the products’

stakeholders will need to be simultaneously satisfied by the reused core assets.

15.6.2 Architectural Evolution for SPL Development

In SPL development there is constant evolution of both individual product custom

assets and the reused core assets. The PLA is the architectural basis for the variation

supported by core assets. A change to a core assets’ interface is a change to the

PLA, and can force changes in all products that use the new version of these core

assets. How then should the new or enhanced core features be added to a product

line? That is, how should changes be made to the PLA?

There are three ways to time the introduction of variation points into core assets:

l Proactive: Plan ahead for future features, and implement them in core assets

before any product needs them.
l Reactive: Wait until a new feature is actually required by a product, and then

implement it in core assets at that time.
l Retroactive: Wait until a new feature is actually required by a product, and then

implement it in a custom asset at that time. When enough products implement

the feature in their custom assets, add it to the core assets. New products can use

the new core assets’ feature, and the older products can drop their custom asset

implementation in favor of the core assets’ implementation.

It is possible to use a mix of these approaches, for different enhancements. For

example, enhancements on a long-term Road Map could be added in a proactive

way, by planning architectural changes to support the future increased scope of

the SPL. Limited but generally useful enhancements to core assets could be added

in a reactive way, by modifying the PLA as required by those enhancements.

15.6 Ongoing Software Product Line Development 233

Enhancements needed by one product that are more speculative or are less well

defined could be added retroactively.

Each of these strategies has different costs, benefits, and risks. The choice of

strategy for a particular feature will be driven by consideration of these tradeoffs in

the organization’s business context. Table 15.1 summarizes some of the differences

between the three approaches:

15.6.3 Product Line Development Practice Areas

The SEI product line practice guidelines provide the Factory pattern that links

together other patterns and their constituent practice areas relevant to the ongoing

development and maintenance of a SPL. The In Motion pattern groups together

organizational management practice areas. Other relevant SEI patterns are the

Monitor, Process, and Curriculum patterns that describe ongoing aspects of SPL

development.

For technical practice areas, the SEI’s Each Asset pattern describes practice

areas that are relevant to the development of core assets. The Product Parts pattern
ties together the core assets with the product development. The Product Builder
pattern describes practice areas relevant to the development of any specific product.

The Assembly Line pattern describes how products are output from the SPL.

15.6.4 Product Lines with ICDE

Doing SPL development wasn’t just an architectural issue for the ICDE team.

Each of the products had a customer steering group that was involved in defining

requirements for the new products, and defined enhancement requests that they

wanted to track through to the delivery of the products. But the ICDE team didn’t

want the Financial product customer steering group to see all the details of the

Security product steering group, and vice-versa. The problem was that some enhance-

ment requests were the same (or similar), and the team didn’t want to get confused

about duplicate requests when they started coding.

Table 15.1 Comparing strategies for architecture evolution

Proactive Reactive Retroactive

No long-term investment No Yes Yes

Reduces risk of core asset change conflict Yes No Yes

Reduces lead time to add feature to first product Yes No No

Reduces risk of core feature not required

in a number of products

No (0 products) No (1 product) Yes

234 15 Software Product Lines

So, the ICDE team set up different customer-facing request systems for each of

the products. These linked to an internal change request system which could track

changes to each of the main reused subsystems and also the product-specific custom

components.

Eventually the first product was released. Instead of releasing all three products at

once, the team shipped the simplest product first, namely the Government product.

The Government customers quickly raised a few postrelease defect reports, but the

ICDE development team was able to respond quickly. The good news was that one of

the defects that was fixed was in the core Data Collection component, so when the

other two products were released later, their customers wouldn’t see that problem.

The ICDE team was beginning to see some quality benefits from SPL development.

The bad news came after the other products were released. The Security and

Financial customers were happy to have the new version, though the Financial

customers did raise a defect report on the Data Analysis component. It would have

been easy to fix in the core component, but by that time the Government customers

had gone into production. They hadn’t seen that problem in the Data Analysis area,
and in fact the bug was related to the framework extensions required to support the

Financial product real-time display panel.

However, if the Data Analysis component changed in any way at all, the

Government customers would have to follow their policy and rerun all of the

related acceptance tests, which would cost them time and money. So they really

didn’t want to see any changes, and put pressure on the ICDE sales team to try to

stop the change.

The ICDE development team really wanted to change the core version, but how

could they satisfy everyone? They thought about faking the core changes in custom

assets just for the Financial product, but in the end they decided to keep the

Government product on the old version of the Data Analysis component, and

implemented the fix in the core. The ICDE development team also created a Core

CCB involving representative members from each of the three customer steering

groups. This meant that in future the negotiations could be managed inside the Core

CCB, instead of via the ICDE sales team.

A bright spot on the horizon was that the Security customers were starting to talk

about their need to see real-time visualization of news reports. The ICDE develop-

ment team could implement that just by reusing the real-time display panel devel-

oped for the Financial product. The company had already accounted for the costs of

developing that feature, so being able to sell it again to other customers would mean

all the new revenue would go straight to the bottom line.

15.7 Conclusions

Product line development has already given many organizations orders of magni-

tude improvements to productivity and time to market, and significant improve-

ments in product quality. If we think about SPL development simply from a SCM

15.7 Conclusions 235

perspective, we can see that (proportionately large) core assets are not branched for

each product, and so the total number of branched lines of code is vastly reduced for

the whole SPL.

What does the future hold for SPL development? Because of its massive

potential, SPL development is likely to become even more widely known, better

understood, and increasingly used. However, SPL development will also have

impacts on software architecture practices, as architectural mechanisms for reuse

in the large become better and more widely understood.

Improved architectural practices combined with a deeper understanding of

specific application domains can also support increasingly declarative variation

mechanisms. This could transform software reuse to be more like the mythical

vision of software construction using software building blocks. Simple reuse relies

heavily on procedural variation, writing ad-hoc code to achieve the particular

functionality that is required. Increasing architectural sophistication and domain

knowledge can support configurable variation, realized by systematic variation

supported by core assets interfaces.

Choosing a variant for such a system requires choosing values from a list of

configuration options. When an application domain is very well understood, then a

domain-specific language becomes a viable way of declaratively specifying product

variation. Sentences in this language can specify system variants, and can be

dynamically interpreted by the core assets.

Other architectural and design approaches such as aspect-oriented programming

and model-driven development also have promise as variation or mass-customiza-

tion mechanisms that may be able to support SPL development.

As the time of system variation extends out of the development context, so does

the need to extend the control and management of variation. For systems that can

vary at installation time, load time, or run time, the need to control and manage

system variation does not end when the system is released from development.

Software configuration management supports control and management of variation

during development. However, for installation, load or run time, existing package

management and application management frameworks have very weak facilities for

version and variation control. In future, the boundaries between configuration

management, package management, and application management will become

blurred. A unified framework is therefore required to control and manage variation

across the entire product lifecycle.

15.8 Further Reading

The Software Engineering Institute has been a leader in defining and reporting the

use of software product lines. An excellent source of information is the following

book by two of the pioneers of the field:

P. Clements, L. Northrop. Software Product Lines: Practices and Patterns.
Addison Wesley, 2001.

236 15 Software Product Lines

The SEI’s web site also contains much valuable information and links to other

product line related sources:

http://www.sei.cmu.edu/productlines/

Other excellent references are:

Klaus Pohl, G€unter B€ockle, Frank J. van der Linden, Software Product Line

Engineering: Foundations, Principles and Techniques, Springer-Verlag 2010

Frank J. van der Linden, Klaus Schmid, Eelco Rommes, Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering, Springer-

Verlag 2007.

Software configuration management is a key part of software product lines.

A good book on this topic is:

S.P. Berczuk, B. Appleton. Software Configuration Management Patterns:

Effective Teamwork, Practical Integration. Addison-Wesley, 2002.

A case study describing how to exploit file-based variation to create a software

product line is:

M. Staples, D. Hill. Experiences Adopting Software Product Line Development
without a Product Line Architecture. Proceedings of the 11th Asia-Pacific

Software Engineering Conference (APSEC 2004), Busan, S. Korea, 30 Nov –

3 Dec 2004, IEEE, pp. 176–183.

A slightly different perspective on product lines is the Software Factories work

by Jack Greenfield et al. This book is definitely worth a read.

J. Greenfield, K. Short, S. Cook, S. Kent, J. Crupi, Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, Wiley 2004.

15.8 Further Reading 237

.

Index

A

Abstraction, 2, 6, 127

ACID transactions, 77, 89

ActiveMQ, 155

Adapters, 49

Address space, 4

Agile, 118

Agile methods, 98

Agility, 167

AndroMDA, 208, 214

Annotations, 194

AOP. See Aspect-oriented programming

Application programming interface (API), 21

Application server, 41, 54, 55

Architect role, 8, 37

Architecturally significant use cases. See
Scenarios

Architectural patterns, 10

Architecture

design, 101

documentation, 117

framework, 102, 108, 110

patterns, 5, 14, 84, 101

process, 97, 98, 110

requirements, 5, 98

validation, 110

Architecture description language (ADL),

8, 210

Architecture views, 2, 7, 8, 101, 118

4+1 view model, 7

ArcStyler, 209

Artificial intelligence, 181

AspectJ, 188, 190, 192, 194

Aspect-oriented design, 191

Aspect-oriented programming (AOP), 185, 236

advice, 188

introduction, 188

join port, 188

pointcut, 188

Aspect-oriented software development, 191

Aspects, 186, 188

composition rules, 188

join point, 193, 194

AspectWerkz, 194

ATAM, 111, 115

Availability, 34, 100, 103, 104, 105, 106,

108, 112

B

Behavioral view, 8

Big Up-Front Design, 98

Binding time, 225

BizTalk, 85, 89, 90, 100

ports, 91

BPO. See Business process orchestration
Broadcast, 51

Business objectives, 21

Business processes, 65, 88, 91, 107

Business process orchestration (BPO), 41

Business process orchestrator, 89

C

Caching, 59

Canonical data model, 93

Canonical message format, 93

Capacity planning, 146, 201

Chief architect, 11

Client-server, 4

Clustering, 106

Cohesion, 108, 117

Commercial-off-the-shelf (COTS), 10, 14, 20,

22, 31, 45, 63, 100

Common Warehouse Metamodel, 204

Complexity, 68, 165

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3, # Springer-Verlag Berlin Heidelberg 2011

239

Component

black box, 6

communication, 4

composite, 109

decomposition, 109

Computation independent model (CIM), 203

Connection pooling, 60

Connectors, 153

Constraints

business, 5

technical, 5

Container, 55, 57, 59

CORBA, 8, 41, 44, 49, 54, 67, 192, 225

COTS. See Commercial-off-the-shelf

Coupling, 83, 104, 107, 117, 187, 191

Crosscutting concerns, 186, 187, 191, 193, 194

dynamic, 188

static, 188

D

Data integration, 35

DCOM, 67

Deadlines, 25

Dependency, 3, 69

Deployment descriptor, 59

Distributed object technology, 41

Domain Specific Language (DSL), 208

DSL. See Domain Specific Language

Dynamic composition, 166

E

Eclipse, 209

EDI. See Electronic data interchange
EJB. See Enterprise JavaBeans
Electronic data interchange (EDI), 66

Encapsulation, 186

Enterprise architect, 11

Enterprise data model, 93

Enterprise integration, 81

Enterprise JavaBeans (EJB), 55, 57, 59, 63, 192

Enterprise Service Bus, 95

Entity beans, 56, 59

Event notification, 131

Extensible Markup Language (XML), 86, 91

F

Firewalls, 69

Functional requirements, 5, 97

H

Heterogeneity, 167

Hierarchical decomposition, 6

HTTP, 73, 77

Hub-and-spoke, 106

I

IEEE 1471–2000, 128

Impact analysis, 31

Integration, 35

Interface description language (IDL), 41

International Association of Software

Architects, 1

Internet Reasoning Service, 181

Interoperability, 65, 71

J

Java

threads, 59

Java Management eXtension (JMX), 196

Java Messaging Service (JMS), 138, 155

Java Persistence API, 56

JBoss AOP, 192, 194

JDBC, 138, 219

JEE, 54, 55, 60, 65, 67, 103, 138, 192, 194,

204, 208, 209

JMS. See Java Messaging Service

JNDI, 142

L

Latency, 25

Load-balancing, 28

Loose coupling, 50, 182

M

Marketecture, 6

MeDICi Integration Framework, 148

Message broker, 41, 81, 87, 92

Message-driven beans, 56

Message-oriented middleware (MOM), 43, 44,

45, 47, 49, 50, 81, 82

clustering, 48

Message transformation, 41, 84, 85, 106

Messaging, 49, 50, 65, 87, 103, 110

best effort, 46

persistent, 46

transactional, 46, 47

Metadata, 174

Meta-Object Facility (MOF), 204, 205,

209, 211

Middleware, 8, 39, 40, 41, 43, 65, 68, 77,

192, 197

Model driven architecture (MDA), 193

Model-driven development (MDD), 119,

127, 217, 236

Model-view-controller, 56

Modifiability, 31, 38, 91, 92, 93, 103, 104,

105, 106, 108, 112, 167, 211, 213

Modularity, 186

MOF. See Meta-Object Facility

240 Index

MOM. See Message-oriented middleware

Mule, 87, 163

Multicast, 51, 105

Multi-threaded, 41, 86

N

.NET, 54, 69, 103, 194, 208, 209

Non-functional requirements, 5, 7, 23, 31,

38, 70, 98, 211

N-tier architecture, 54

O

Object-oriented design, 6

Ontology, 172, 173, 176, 177

Open source JEE, 145

Over engineered, 32

OWL. See Web Ontology Language

P

Page-by-page iterator, 143

Performance, 24, 26, 43, 46, 49, 50, 51, 60, 68,

81, 87, 100, 103, 108, 111, 113, 114,

117, 136, 190, 198, 205, 211, 213, 221

bottleneck, 93

monitoring, 185

Pipe and filter, 104

Pipeline, 147

Platform independent model (PIM), 203

Platform specific model (PSM), 203

Point-to-point architecture, 92

Portability, 36, 205, 214

Process Coordinator pattern, 107

Productivity, 222, 235

Product line architecture, 219, 223

Green Field, 229

Ploughed Fields, 230

Product Line Practice guidelines, 224

Project lifecycle, 9

Prototyping, 9, 110, 113, 114

proof-of-concept, 113

proof-of-technology, 113

Publish-subscribe, 10, 50, 52, 105, 133, 137

Q

Quality, 186, 216, 222, 235

Quality attribute requirements, 23, 30

Quality attributes, 5, 11, 37, 111

Quality goals, 7

Quality of service, 46

R

RDF. See Resource Description Framework

Recoverability, 34

Refactoring, 145, 181, 230

Reliability, 14, 34, 99, 100, 112, 136

Reliable message delivery, 46

Representational State Transfer (REST), 78

Request load, 27

Resource Description Framework (RDF), 175

Response time, 25, 28

Responsibility-driven design, 3, 14

REST. See Representational State Transfer
RESTful, 79

Return-on-investment, 168

Reusability, 100, 207

Reuse, 168, 219, 220, 224, 236

Risk, 9, 231

Robustness, 68

RosettaNet, 94

S

Scalability, 2, 23, 24, 27, 28, 51, 93, 100,

103, 105, 106, 108, 112, 114, 221

scale out, 28, 112

scale up, 27

Scalable, 136, 104

Scenarios, 8, 31, 37, 110, 111, 113, 145

Security, 5, 33, 38, 60, 69, 100, 112, 221

authentication, 33

authorization, 33

encryption, 33

non-repudiation, 33

SEI. See Software Engineering Institute

Semantic discovery, 172

Semantics, 167, 171, 176

Semantic Web, 167, 172, 173, 176

Send-and-forget messaging, 45

Separation of concerns, 102, 186, 191,

192, 205, 211

Service oriented architectures, 65, 66, 68,

71, 180

Session bean, 56

stateful, 57

stateless, 56

SOAP, 71, 72, 73, 74, 225

Sockets, 8, 51

Software architecture definition, 2

Software configuration management, 225

line of development, 226

Software Engineering Institute, 2, 13, 221

Software Factories, 237

Software product line development, 220

core assets, 220, 222

custom assets, 220, 221, 222

Software product lines, 207

Spaghetti architecture, 92

Index 241

SQL, 133, 135

Stateful session beans, 58

Stateless session bean, 58

Structural constraints, 3

Structural view, 8

Styles. See Architectural patterns
Subject. See Topic
Supportability, 36

Synchronization, 4

T

Tangling, 187

TCP/IP, 51

Testability, 36

Threads, 4

Thread-safe, 145

Thread-safety, 145

Three-tier architecture, 130

Throughput, 7, 24, 27, 52, 106

average, 25

peak, 25

TIBCO, 51

Time to market, 235

TOGAF, 12

Topic, 50, 51, 52, 53

hierarchy, 53

wildcards, 53

TOP operator, 143

Transaction, 34, 60, 104, 193

compensating, 88

demarcation, 47

isolation, 89

long-running, 89

Two-tier architecture, 130, 131

U

UDDI, 71, 74

Unified Modeling Language (UML), 19, 118,

119, 123, 127, 204, 205, 208, 211, 213

class diagram, 120

component diagram, 19, 120, 140

component interfaces, 124

composite diagram, 126

deployment diagram, 122

parts, 126

ports, 124

profile, 193

provided interface, 124

required interface, 124

sequence diagram, 122

stereotypes, 122, 214

tagged values, 214

Unix pipes, 147

Use case, 18

V

Variation mechanisms, 220

Variation point, 221, 227, 233

Views and Beyond approach, 8

W

Weaver, 188

Weaving

compile-time, 189

load-time, 189

run-time, 189

Web Ontology Language (OWL), 176, 179

Web services, 65, 167, 172, 212

WebSphere, 76

WS-Addressing, 74

WS-AtomicTransactions, 77

WS-BusinessActivity, 77

WSDL, 71, 74

WS-Eventing, 74

WS-MetadataExchange, 74

WS-Policy, 74

WS-ReliableMessaging, 77

WS-Security, 72, 77

WS-SecurityPolicy, 74

WS-* standards, 71

X

XMI, 204, 205

XML. See Extensible Markup Language

XSLT, 213

Z

Zachman Framework, 12

242 Index

	Cover
	Essential Software Architecture, Second Edition
	ISBN 9783642191756
	Preface
	Motivation
	Outline
	Acknowledgments
	Contents
	Chapter 1: Understanding Software Architecture
	1.1 What is Software Architecture?
	1.2 Definitions of Software Architecture
	1.2.1 Architecture Defines Structure
	1.2.2 Architecture Specifies Component Communication

	1.3 Architecture Addresses Nonfunctional Requirements
	1.3.1 Architecture Is an Abstraction
	1.3.2 Architecture Views

	1.4 What Does a Software Architect Do?
	1.5 Architectures and Technologies
	1.6 Architect Title Soup
	1.7 Summary
	1.8 Further Reading
	1.8.1 General Architecture
	1.8.2 Architecture Requirements
	1.8.3 Architecture Patterns
	1.8.4 Technology Comparisons
	1.8.5 Enterprise Architecture

	Chapter 2: Introducing the Case Study
	2.1 Overview
	2.2 The ICDE System
	2.3 Project Context
	2.4 Business Goals
	2.5 Constraints
	2.6 Summary

	Chapter 3: Software Quality Attributes
	3.1 Quality Attributes
	3.2 Performance
	3.2.1 Throughput
	3.2.2 Response Time
	3.2.3 Deadlines
	3.2.4 Performance for the ICDE System

	3.3 Scalability
	3.3.1 Request Load
	3.3.2 Simultaneous Connections
	3.3.3 Data Size
	3.3.4 Deployment
	3.3.5 Some Thoughts on Scalability
	3.3.6 Scalability for the ICDE Application

	3.4 Modifiability
	3.4.1 Modifiability for the ICDE Application

	3.5 Security
	3.5.1 Security for the ICDE Application

	3.6 Availability
	3.6.1 Availability for the ICDE Application

	3.7 Integration
	3.7.1 Integration for the ICDE Application

	3.8 Other Quality Attributes
	3.9 Design Trade-Offs
	3.10 Summary
	3.11 Further Reading

	Chapter 4: An Introduction to Middleware Architectures and Technologies
	4.1 Introduction
	4.2 Middleware Technology Classification
	4.3 Distributed Objects
	4.4 Message-Oriented Middleware
	4.4.1 MOM Basics
	4.4.2 Exploiting MOM Advanced Features
	4.4.2.1 Message Delivery
	4.4.2.2 Transactions
	4.4.2.3 Clustering
	4.4.2.4 Two-Way Messaging

	4.4.3 Publish-Subscribe
	4.4.3.1 Understanding Topics

	4.5 Application Servers
	4.5.1 Enterprise JavaBeans
	4.5.2 EJB Component Model
	4.5.3 Stateless Session Bean Programming Example
	4.5.4 Message-Driven Bean Programming Example
	4.5.5 Responsibilities of the EJB Container
	4.5.6 Some Thoughts

	4.6 Summary
	4.7 Further Reading
	4.7.1 CORBA
	4.7.2 Message-Oriented Middleware
	4.7.3 Application Servers

	Chapter 5: Service-Oriented Architectures and Technologies
	5.1 Background
	5.2 Service-Oriented Systems
	5.2.1 Boundaries Are Explicit
	5.2.2 Services Are Autonomous
	5.2.3 Share Schemas and Contracts, Not Implementations
	5.2.4 Service Compatibility Is Based on Policy

	5.3 Web Services
	5.4 SOAP and Messaging
	5.5 UDDI, WSDL, and Metadata
	5.6 Security, Transactions, and Reliability
	5.7 RESTful Web Services
	5.8 Conclusion and Further Reading

	Chapter 6: Advanced Middleware Technologies
	6.1 Introduction
	6.2 Message Brokers
	6.3 Business Process Orchestration
	6.4 Integration Architecture Issues
	6.5 What Is an Enterprise Service Bus
	6.6 Further Reading

	Chapter 7: A Software Architecture Process
	7.1 Process Outline
	7.1.1 Determine Architectural Requirements
	7.1.2 Identifying Architecture Requirements
	7.1.3 Prioritizing Architecture Requirements

	7.2 Architecture Design
	7.2.1 Choosing the Architecture Framework
	7.2.1.1 N-Tier Client Server
	7.2.1.2 Messaging
	7.2.1.3 Publish-Subscribe
	7.2.1.4 Broker
	7.2.1.5 Process Coordinator

	7.2.2 Allocate Components

	7.3 Validation
	7.3.1 Using Scenarios
	7.3.2 Prototyping

	7.4 Summary and Further Reading

	Chapter 8: Documenting a Software Architecture
	8.1 Introduction
	8.2 What to Document
	8.3 UML 2.0
	8.4 Architecture Views
	8.5 More on Component Diagrams
	8.6 Architecture Documentation Template
	8.7 Summary and Further Reading

	Chapter 9: Case Study Design
	9.1 Overview
	9.2 ICDE Technical Issues
	9.2.1 Large Data
	9.2.2 Notification
	9.2.3 Data Abstraction
	9.2.4 Platform and Distribution Issues
	9.2.5 API Issues
	9.2.6 Discussion

	9.3 ICDE Architecture Requirements
	9.3.1 Overview of Key Objectives
	9.3.2 Architecture Use Cases
	9.3.3 Stakeholder Architecture Requirements
	9.3.3.1 Third Party Tool Producers
	9.3.3.2 ICDE Programmers
	9.3.3.3 ICDE Development Team

	9.3.4 Constraints
	9.3.5 Nonfunctional Requirements
	9.3.6 Risks

	9.4 ICDE Solution
	9.4.1 Architecture Patterns
	9.4.2 Architecture Overview
	9.4.3 Structural Views
	9.4.4 Behavioral Views
	9.4.5 Implementation Issues

	9.5 Architecture Analysis
	9.5.1 Scenario Analysis
	9.5.2 Risks

	9.6 Summary

	Chapter 10: Middleware Case Study: MeDICi
	10.1 MeDICi Background
	10.2 MeDICi Hello World
	10.3 Implementing Modules
	10.3.1 MifProcessor
	10.3.2 MifObjectProcessor
	10.3.3 MifMessageProcessor
	10.3.4 Module Properties

	10.4 Endpoints and Transports
	10.4.1 Connectors
	10.4.2 Supported Transports
	10.4.2.1 VM
	10.4.2.2 STDIO
	10.4.2.3 Java Messaging Service
	10.4.2.4 HTTP
	10.4.2.5 HTTPS
	10.4.2.6 TCP

	10.5 MeDICi Example
	10.5.1 Initialize Pipeline
	10.5.2 Chat Component
	10.5.3 Implementation code

	10.6 Component Builder
	10.7 Summary
	10.8 Further Reading

	Chapter 11: Looking Forward
	11.1 Introduction
	11.2 The Challenges of Complexity
	11.2.1 Business Process Complexity

	11.3 Agility
	11.4 Reduced Costs
	11.5 What Next

	Chapter 12: The Semantic Web
	12.1 ICDE and the Semantic Web
	12.2 Automated, Distributed Integration and Collaboration
	12.3 The Semantic Web
	12.4 Creating and Using Metadata for the Semantic Web
	12.5 Putting Semantics in the Web
	12.6 Semantics for ICDE
	12.7 Semantic Web Services
	12.8 Continued Optimism
	12.9 Further Reading

	Chapter 13: Aspect Oriented Architectures
	13.1 Aspects for ICDE Development
	13.2 Introduction to Aspect-Oriented Programming
	13.2.1 Crosscutting Concerns
	13.2.2 Managing Concerns with Aspects
	13.2.3 AOP Syntax and Programming Model
	13.2.4 Weaving

	13.3 Example of a Cache Aspect
	13.4 Aspect-Oriented Architectures
	13.5 Architectural Aspects and Middleware
	13.6 State-of-the-Art
	13.6.1 Aspect Oriented Modeling in UML
	13.6.2 AOP Tools
	13.6.3 Annotations and AOP

	13.7 Performance Monitoring of ICDE with AspectWerkz
	13.8 Conclusions
	13.9 Further Reading

	Chapter 14: Model-Driven Architecture
	14.1 Model-Driven Development for ICDE
	14.2 What is MDA?
	14.3 Why MDA?
	14.3.1 Portability
	14.3.2 Interoperability
	14.3.3 Reusability

	14.4 State-of-Art Practices and Tools
	14.4.1 AndroMDA
	14.4.2 ArcStyler
	14.4.3 Eclipse Modeling Framework

	14.5 MDA and Software Architecture
	14.5.1 MDA and Nonfunctional Requirements
	14.5.2 Model Transformation and Software Architecture
	14.5.3 SOA and MDA
	14.5.4 Analytical Models are Models Too

	14.6 MDA for ICDE Capacity Planning
	14.7 Summary and Further Reading

	Chapter 15: Software Product Lines
	15.1 Product Lines for ICDE
	15.2 Software Product Lines
	15.2.1 Benefiting from SPL Development
	15.2.2 Product Lines for ICDE

	15.3 Product Line Architecture
	15.3.1 Find and Understand Software
	15.3.2 Bring Software into the Development Context
	15.3.3 Invoke Software
	15.3.4 Software Configuration Management for Reuse

	15.4 Variation Mechanisms
	15.4.1 Architecture-Level Variation Points
	15.4.2 Design-Level Variation
	15.4.3 File-Level Variation
	15.4.4 Variation by Software Configuration Management
	15.4.5 Product Line Architecture for ICDE

	15.5 Adopting Software Product Line Development
	15.5.1 Product Line Adoption Practice Areas
	15.5.2 Product Line Adoption for ICDE

	15.6 Ongoing Software Product Line Development
	15.6.1 Change Control
	15.6.2 Architectural Evolution for SPL Development
	15.6.3 Product Line Development Practice Areas
	15.6.4 Product Lines with ICDE

	15.7 Conclusions
	15.8 Further Reading

	Index

