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Preface: Invalidating Axioms

Axiom

A statement or proposition which is regarded as being
established, accepted, or self-evidently true.

Mathematicians create theories based on axioms, assumptions for
things indisputably true. Software architects also build theories atop
axioms, but the software world is, well, softer than mathematics:
fundamental things continue to change at a rapid pace, including the
axioms we base our theories upon.

The software development ecosystem exists in a constant state of
dynamic equilibrium: while it exists in a balanced state at any given
point in time, it exhibits dynamic behavior over the long term. A
great modern example of the nature of this ecosystem follows the
ascension of containerization and the attendant changes: tools like
Kubernetes didn’t exist a decade ago, yet now entire software
conferences exist to service its users. The software ecosystem
changes chaotically: one small change causes another small change;
when repeated hundreds of times, it generates a new ecosystem.

Architects have an important responsibility to question assumptions
and axioms left over from previous eras. Many of the books about
software architecture were written in an era that only barely
resembles the current world. In fact, the authors believe that we must

https://kubernetes.io/


question fundamental axioms on a regular basis, in light of improved
engineering practices, operational ecosystems, software development
processes—everything that makes up the messy, dynamic equilibrium
where architects and developers work each day.

Careful observers of software architecture over time witnessed an
evolution of capabilities. Starting with the engineering practices of
Extreme Programming, continuing with Continuous Delivery, the
DevOps revolution, microservices, containerization, and now cloud-
based resources, all of these innovations led to new capabilities and
trade-offs. As capabilities changed, so did architects’ perspectives on
the industry. For many years, the tongue-in-cheek definition of
software architecture was “the stuff that’s hard to change later.” Later,
the microservices architecture style appeared, where change is a first-
class design consideration.

Each new era requires new practices, tools, measurements, patterns,
and a host of other changes. This book looks at software architecture
in modern light, taking into account all the innovations from the last
decade, along with some new metrics and measures suited to today’s
new structures and perspectives.

The subtitle of our book is “An Engineering Approach.” Developers
have long wished to change software development from a craft,
where skilled artisans can create one-off works, to an engineering
discipline, which implies repeatability, rigor, and effective analysis.
While software engineering still lags behind other types of
engineering disciplines by many orders of magnitude (to be fair,
software is a very young discipline compared to most other types of

http://www.extremeprogramming.org/


engineering), architects have made huge improvements, which we’ll
discuss. In particular, modern Agile engineering practices have
allowed great strides in the types of systems that architects design.

We also address the critically important issue of trade-off analysis.
As a software developer, it’s easy to become enamored with a
particular technology or approach. But architects must always soberly
assess the good, bad, and ugly of every choice, and virtually nothing
in the real world offers convenient binary choices—everything is a
trade-off. Given this pragmatic perspective, we strive to eliminate
value judgments about technology and instead focus on analyzing
trade-offs to equip our readers with an analytic eye toward
technology choices.

This book won’t make someone a software architecture overnight—
it’s a nuanced field with many facets. We want to provide existing
and burgeoning architects a good modern overview of software
architecture and its many aspects, from structure to soft skills. While
this book covers well-known patterns, we take a new approach,
leaning on lessons learned, tools, engineering practices, and other
input. We take many existing axioms in software architecture and
rethink them in light of the current ecosystem, and design
architectures, taking the modern landscape into account.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic



Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

TIP
This element signifies a tip or suggestion.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at http://fundamentalsofsoftwarearchitecture.com.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for

http://fundamentalsofsoftwarearchitecture.com/
mailto:bookquestions@oreilly.com


permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or
distributing examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and ISBN. For
example: “Fundamentals of Software Architecture by Mark Richards
and Neal Ford (O’Reilly). Copyright 2020 Mark Richards, Neal Ford,
978-1-492-04345-4.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, conferences, and our online

mailto:permissions@oreilly.com
http://oreilly.com/


learning platform. O’Reilly’s online learning platform gives you on-
demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and
video from O’Reilly and 200+ other publishers. For more
information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at
https://oreil.ly/fundamentals-of-software-architecture.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

http://oreilly.com/
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For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Introduction

The job “software architect” appears near the top of numerous lists of
best jobs across the world. Yet when readers look at the other jobs on
those lists (like nurse practitioner or finance manager), there’s a clear
career path for them. Why is there no path for software architects?

First, the industry doesn’t have a good definition of software
architecture itself. When we teach foundational classes, students
often ask for a concise definition of what a software architect does,
and we have adamantly refused to give one. And we’re not the only
ones. In his famous whitepaper “Who Needs an Architect?” Martin
Fowler famously refused to try to define it, instead falling back on the
famous quote:

Architecture is about the important stuff…whatever that is.
—Ralph Johnson

When pressed, we created the mindmap shown in Figure 1-1, which
is woefully incomplete but indicative of the scope of software
architecture. We will, in fact, offer our definition of software
architecture shortly.

Second, as illustrated in the mindmap, the role of software architect
embodies a massive amount and scope of responsibility that
continues to expand. A decade ago, software architects dealt only
with the purely technical aspects of architecture, like modularity,
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components, and patterns. Since then, because of new architectural
styles that leverage a wider swath of capabilities (like microservices),
the role of software architect has expanded. We cover the many
intersections of architecture and the remainder of the organization in
“Intersection of Architecture and…”.





Figure 1-1. The responsibilities of a software architect encompass technical abilities, soft
skills, operational awareness, and a host of others

Third, software architecture is a constantly moving target because of
the rapidly evolving software development ecosystem. Any definition
cast today will be hopelessly outdated in a few years. The Wikipedia
definition of software architecture provides a reasonable overview,
but many statements are outdated, such as “Software architecture is
about making fundamental structural choices which are costly to
change once implemented.” Yet architects designed modern
architectural styles like microservices with the idea of incremental
built in—it is no longer expensive to make structural changes in
microservices. Of course, that capability means trade-offs with other
concerns, such as coupling. Many books on software architecture
treat it as a static problem; once solved, we can safely ignore it.
However, we recognize the inherent dynamic nature of software
architecture, including the definition itself, throughout the book.

Fourth, much of the material about software architecture has only
historical relevance. Readers of the Wikipedia page won’t fail to
notice the bewildering array of acronyms and cross-references to an
entire universe of knowledge. Yet, many of these acronyms represent
outdated or failed attempts. Even solutions that were perfectly valid a
few years ago cannot work now because the context has changed.
The history of software architecture is littered with things architects
have tried, only to realize the damaging side effects. We cover many
of those lessons in this book.

Why a book on software architecture fundamentals now? The scope
of software architecture isn’t the only part of the development world

https://oreil.ly/YLsY2


that constantly changes. New technologies, techniques, capabilities…
in fact, it’s easier to find things that haven’t changed over the last
decade than to list all the changes. Software architects must make
decisions within this constantly changing ecosystem. Because
everything changes, including foundations upon which we make
decisions, architects should reexamine some core axioms that
informed earlier writing about software architecture. For example,
earlier books about software architecture don’t consider the impact of
DevOps because it didn’t exist when these books were written.

When studying architecture, readers must keep in mind that, like
much art, it can only be understood in context. Many of the decisions
architects made were based on realities of the environment they
found themselves in. For example, one of the major goals of late
20th-century architecture included making the most efficient use of
shared resources, because all the infrastructure at the time was
expensive and commercial: operating systems, application servers,
database servers, and so on. Imagine strolling into a 2002 data center
and telling the head of operations “Hey, I have a great idea for a
revolutionary style of architecture, where each service runs on its
own isolated machinery, with its own dedicated database (describing
what we now know as microservices). So, that means I’ll need 50
licenses for Windows, another 30 application server licenses, and at
least 50 database server licenses.” In 2002, trying to build an
architecture like microservices would be inconceivably expensive.
Yet, with the advent of open source during the intervening years,
coupled with updated engineering practices via the DevOps
revolution, we can reasonably build an architecture as described.



Readers should keep in mind that all architectures are a product of
their context.

Defining Software Architecture
The industry as a whole has struggled to precisely define “software
architecture.” Some architects refer to software architecture as the
blueprint of the system, while others define it as the roadmap for
developing a system. The issue with these common definitions is
understanding what the blueprint or roadmap actually contains. For
example, what is analyzed when an architect analyzes an
architecture?

Figure 1-2 illustrates a way to think about software architecture. In
this definition, software architecture consists of the structure of the
system (denoted as the heavy black lines supporting the architecture),
combined with architecture characteristics (“-ilities”) the system
must support, architecture decisions, and finally design principles.





Figure 1-2. Architecture consists of the structure combined with architecture characteristics
(“-ilities”), architecture decisions, and design principles

The structure of the system, as illustrated in Figure 1-3, refers to the
type of architecture style (or styles) the system is implemented in
(such as microservices, layered, or microkernel). Describing an
architecture solely by the structure does not wholly elucidate an
architecture. For example, suppose an architect is asked to describe
an architecture, and that architect responds “it’s a microservices
architecture.” Here, the architect is only talking about the structure of
the system, but not the architecture of the system. Knowledge of the
architecture characteristics, architecture decisions, and design
principles is also needed to fully understand the architecture of the
system.





Figure 1-3. Structure refers to the type of architecture styles used in the system

Architecture characteristics are another dimension of defining
software architecture (see Figure 1-4). The architecture
characteristics define the success criteria of a system, which is
generally orthogonal to the functionality of the system. Notice that all
of the characteristics listed do not require knowledge of the
functionality of the system, yet they are required in order for the
system to function properly. Architecture characteristics are so
important that we’ve devoted several chapters in this book to
understanding and defining them.





Figure 1-4. Architecture characteristics refers to the “-ilities” that the system must support

The next factor that defines software architecture is architecture
decisions. Architecture decisions define the rules for how a system
should be constructed. For example, an architect might make an
architecture decision that only the business and services layers within
a layered architecture can access the database (see Figure 1-5),
restricting the presentation layer from making direct database calls.
Architecture decisions form the constraints of the system and direct
the development teams on what is and what isn’t allowed.





Figure 1-5. Architecture decisions are rules for constructing systems

If a particular architecture decision cannot be implemented in one
part of the system due to some condition or other constraint, that
decision (or rule) can be broken through something called a variance.
Most organizations have variance models that are used by an
architecture review board (ARB) or chief architect. Those models
formalize the process for seeking a variance to a particular standard
or architecture decision. An exception to a particular architecture
decision is analyzed by the ARB (or chief architect if no ARB exists)
and is either approved or denied based on justifications and trade-
offs.

The last factor in the definition of architecture is design principles. A
design principle differs from an architecture decision in that a design
principle is a guideline rather than a hard-and-fast rule. For example,
the design principle illustrated in Figure 1-6 states that the
development teams should leverage asynchronous messaging
between services within a microservices architecture to increase
performance. An architecture decision (rule) could never cover every
condition and option for communication between services, so a
design principle can be used to provide guidance for the preferred
method (in this case, asynchronous messaging) to allow the developer
to choose a more appropriate communication protocol (such as REST
or gRPC) given a specific circumstance.





Figure 1-6. Design principles are guidelines for constructing systems

Expectations of an Architect
Defining the role of a software architect presents as much difficulty
as defining software architecture. It can range from expert
programmer up to defining the strategic technical direction for the
company. Rather than waste time on the fool’s errand of defining the
role, we recommend focusing on the expectations of an architect.

There are eight core expectations placed on a software architect,
irrespective of any given role, title, or job description:

Make architecture decisions

Continually analyze the architecture

Keep current with latest trends

Ensure compliance with decisions

Diverse exposure and experience

Have business domain knowledge

Possess interpersonal skills

Understand and navigate politics

The first key to effectiveness and success in the software architect
role depends on understanding and practicing each of these
expectations.

Make Architecture Decisions



An architect is expected to define the architecture decisions and
design principles used to guide technology decisions within the team,
the department, or across the enterprise.

Guide is the key operative word in this first expectation. An architect
should guide rather than specify technology choices. For example, an
architect might make a decision to use React.js for frontend
development. In this case, the architect is making a technical decision
rather than an architectural decision or design principle that will help
the development team make choices. An architect should instead
instruct development teams to use a reactive-based framework for
frontend web development, hence guiding the development team in
making the choice between Angular, Elm, React.js, Vue, or any of the
other reactive-based web frameworks.

Guiding technology choices through architecture decisions and
design principles is difficult. The key to making effective
architectural decisions is asking whether the architecture decision is
helping to guide teams in making the right technical choice or
whether the architecture decision makes the technical choice for
them. That said, an architect on occasion might need to make specific
technology decisions in order to preserve a particular architectural
characteristic such as scalability, performance, or availability. In this
case it would be still considered an architectural decision, even
though it specifies a particular technology. Architects often struggle
with finding the correct line, so Chapter 19 is entirely about
architecture decisions.

Continually Analyze the Architecture



An architect is expected to continually analyze the architecture and
current technology environment and then recommend solutions for
improvement.

This expectation of an architect refers to architecture vitality, which
assesses how viable the architecture that was defined three or more
years ago is today, given changes in both business and technology. In
our experience, not enough architects focus their energies on
continually analyzing existing architectures. As a result, most
architectures experience elements of structural decay, which occurs
when developers make coding or design changes that impact the
required architectural characteristics, such as performance,
availability, and scalability.

Other forgotten aspects of this expectation that architects frequently
forget are testing and release environments. Agility for code
modification has obvious benefits, but if it takes teams weeks to test
changes and months for releases, then architects cannot achieve
agility in the overall architecture.

An architect must holistically analyze changes in technology and
problem domains to determine the soundness of the architecture.
While this kind of consideration rarely appears in a job posting,
architects must meet this expectation to keep applications relevant.

Keep Current with Latest Trends

An architect is expected to keep current with the latest technology
and industry trends.



Developers must keep up to date on the latest technologies they use
on a daily basis to remain relevant (and to retain a job!). An architect
has an even more critical requirement to keep current on the latest
technical and industry trends. The decisions an architect makes tend
to be long-lasting and difficult to change. Understanding and
following key trends helps the architect prepare for the future and
make the correct decision.

Tracking trends and keeping current with those trends is hard,
particularly for a software architect. In Chapter 24 we discuss various
techniques and resources on how to do this.

Ensure Compliance with Decisions

An architect is expected to ensure compliance with architecture
decisions and design principles.

Ensuring compliance means that the architect is continually verifying
that development teams are following the architecture decisions and
design principles defined, documented, and communicated by the
architect. Consider the scenario where an architect makes a decision
to restrict access to the database in a layered architecture to only the
business and services layers (and not the presentation layer). This
means that the presentation layer must go through all layers of the
architecture to make even the simplest of database calls. A user
interface developer might disagree with this decision and access the
database (or the persistence layer) directly for performance reasons.
However, the architect made that architecture decision for a specific
reason: to control change. By closing the layers, database changes



can be made without impacting the presentation layer. By not
ensuring compliance with architecture decisions, violations like this
can occur, the architecture will not meet the required architectural
characteristics (“-ilities”), and the application or system will not work
as expected.

In Chapter 6 we talk more about measuring compliance using
automated fitness functions and automated tools.

Diverse Exposure and Experience

An architect is expected to have exposure to multiple and diverse
technologies, frameworks, platforms, and environments.

This expectation does not mean an architect must be an expert in
every framework, platform, and language, but rather that an architect
must at least be familiar with a variety of technologies. Most
environments these days are heterogeneous, and at a minimum an
architect should know how to interface with multiple systems and
services, irrespective of the language, platform, and technology those
systems or services are written in.

One of the best ways of mastering this expectation is for the architect
to stretch their comfort zone. Focusing only on a single technology or
platform is a safe haven. An effective software architect should be
aggressive in seeking out opportunities to gain experience in multiple
languages, platforms, and technologies. A good way of mastering this
expectation is to focus on technical breadth rather than technical
depth. Technical breadth includes the stuff you know about, but not at



a detailed level, combined with the stuff you know a lot about. For
example, it is far more valuable for an architect to be familiar with 10
different caching products and the associated pros and cons of each
rather than to be an expert in only one of them.

Have Business Domain Knowledge

An architect is expected to have a certain level of business domain
expertise.

Effective software architects understand not only technology but also
the business domain of a problem space. Without business domain
knowledge, it is difficult to understand the business problem, goals,
and requirements, making it difficult to design an effective
architecture to meet the requirements of the business. Imagine being
an architect at a large financial institution and not understanding
common financial terms such as an average directional index,
aleatory contracts, rates rally, or even nonpriority debt. Without this
knowledge, an architect cannot communicate with stakeholders and
business users and will quickly lose credibility.

The most successful architects we know are those who have broad,
hands-on technical knowledge coupled with a strong knowledge of a
particular domain. These software architects are able to effectively
communicate with C-level executives and business users using the
domain knowledge and language that these stakeholders know and
understand. This in turn creates a strong level of confidence that the
software architect knows what they are doing and is competent to
create an effective and correct architecture.



Possess Interpersonal Skills

An architect is expected to possess exceptional interpersonal skills,
including teamwork, facilitation, and leadership.

Having exceptional leadership and interpersonal skills is a difficult
expectation for most developers and architects. As technologists,
developers and architects like to solve technical problems, not people
problems. However, as Gerald Weinberg was famous for saying, “no
matter what they tell you, it’s always a people problem.” An architect
is not only expected to provide technical guidance to the team, but is
also expected to lead the development teams through the
implementation of the architecture. Leadership skills are at least half
of what it takes to become an effective software architect, regardless
of the role or title the architect has.

The industry is flooded with software architects, all competing for a
limited number of architecture positions. Having strong leadership
and interpersonal skills is a good way for an architect to differentiate
themselves from other architects and stand out from the crowd.
We’ve known many software architects who are excellent
technologists but are ineffective architects due to the inability to lead
teams, coach and mentor developers, and effectively communicate
ideas and architecture decisions and principles. Needless to say, those
architects have difficulties holding a position or job.

Understand and Navigate Politics

An architect is expected to understand the political climate of the
enterprise and be able to navigate the politics.

https://oreil.ly/wyDB8


It might seem rather strange talk about negotiation and navigating
office politics in a book about software architecture. To illustrate how
important and necessary negotiation skills are, consider the scenario
where a developer makes the decision to leverage the strategy pattern
to reduce the overall cyclomatic complexity of a particular piece of
complex code. Who really cares? One might applaud the developer
for using such a pattern, but in almost all cases the developer does not
need to seek approval for such a decision.

Now consider the scenario where an architect, responsible for a large
customer relationship management system, is having issues
controlling database access from other systems, securing certain
customer data, and making any database schema change because too
many other systems are using the CRM database. The architect
therefore makes the decision to create what are called application
silos, where each application database is only accessible from the
application owning that database. Making this decision will give the
architect better control over the customer data, security, and change
control. However, unlike the previous developer scenario, this
decision will also be challenged by almost everyone in the company
(with the possible exception of the CRM application team, of course).
Other applications need the customer management data. If those
applications are no longer able to access the database directly, they
must now ask the CRM system for the data, requiring remote access
calls through REST, SOAP, or some other remote access protocol.

The main point is that almost every decision an architect makes will
be challenged. Architectural decisions will be challenged by product
owners, project managers, and business stakeholders due to increased

https://oreil.ly/QG3RQ


costs or increased effort (time) involved. Architectural decisions will
also be challenged by developers who feel their approach is better. In
either case, the architect must navigate the politics of the company
and apply basic negotiation skills to get most decisions approved.
This fact can be very frustrating to a software architect, because most
decisions made as a developer did not require approval or even a
review. Programming aspects such as code structure, class design,
design pattern selection, and sometimes even language choice are all
part of the art of programming. However, an architect, now able to
finally be able to make broad and important decisions, must justify
and fight for almost every one of those decisions. Negotiation skills,
like leadership skills, are so critical and necessary that we’ve
dedicated an entire chapter in the book to understanding them (see
Chapter 23).



Intersection of Architecture and…
The scope of software architecture has grown over the last decade to
encompass more and more responsibility and perspective. A decade
ago, the typical relationship between architecture and operations was
contractual and formal, with lots of bureaucracy. Most companies,
trying to avoid the complexity of hosting their own operations,
frequently outsourced operations to a third-party company, with
contractual obligations for service-level agreements, such as uptime,
scale, responsiveness, and a host of other important architectural
characteristics. Now, architectures such as microservices freely
leverage former solely operational concerns. For example, elastic
scale was once painfully built into architectures (see Chapter 15),
while microservices handled it less painfully via a liaison between
architects and DevOps.

HISTORY: PETS.COM AND WHY WE HAVE ELASTIC SCALE
The history of software development contains rich lessons, both good and bad. We assume that
current capabilities (like elastic scale) just appeared one day because of some clever developer, but
those ideas were often born of hard lessons. Pets.com represents an early example of hard lessons
learned. Pets.com appeared in the early days of the internet, hoping to become the Amazon.com of
pet supplies. Fortunately, they had a brilliant marketing department, which invented a compelling
mascot: a sock puppet with a microphone that said irreverent things. The mascot became a superstar,
appearing in public at parades and national sporting events.

Unfortunately, management at Pets.com apparently spent all the money on the mascot, not on
infrastructure. Once orders started pouring in, they weren’t prepared. The website was slow,
transactions were lost, deliveries delayed, and so on…pretty much the worst-case scenario. So bad, in
fact, that the business closed shortly after its disastrous Christmas rush, selling the only remaining
valuable asset (the mascot) to a competitor.

What the company needed was elastic scale: the ability to spin up more instances of resources, as
needed. Cloud providers offer this feature as a commodity, but in the early days of the internet,
companies had to manage their own infrastructure, and many fell victim to a previously unheard of
phenomenon: too much success can kill the business. Pets.com and other similar horror stories led
engineers to develop the frameworks that architects enjoy now.



The following sections delve into some of the newer intersections
between the role of architect and other parts of an organization,
highlighting new capabilities and responsibilities for architects.

Engineering Practices

Traditionally, software architecture was separate from the
development process used to create software. Dozens of popular
methodologies exist to build software, including Waterfall and many
flavors of Agile (such as Scrum, Extreme Programming, Lean, and
Crystal), which mostly don’t impact software architecture.

However, over the last few years, engineering advances have thrust
process concerns upon software architecture. It is useful to separate
software development process from engineering practices. By
process, we mean how teams are formed and managed, how meetings
are conducted, and workflow organization; it refers to the mechanics
of how people organize and interact. Software engineering practices,
on the other hand, refer to process-agnostic practices that have
illustrated, repeatable benefit. For example, continuous integration is
a proven engineering practice that doesn’t rely on a particular
process.



THE PATH FROM EXTREME PROGRAMMING TO CONTINUOUS
DELIVERY

The origins of Extreme Programming (XP) nicely illustrate the difference between process and
engineering. In the early 1990s, a group of experienced software developers, led by Kent Beck,
started questioning the dozens of different development processes popular at the time. In their
experience, it seemed that none of them created repeatably good outcomes. One of the XP founders
said that choosing one of the extant processes was “no more guarantee of project success than
flipping a coin.” They decided to rethink how to build software, and they started the XP project in
March of 1996. To inform their process, they rejected the conventional wisdom and focused on the
practices that led to project success in the past, pushed to the extreme. Their reasoning was that
they’d seen a correlation on previous projects between more tests and higher quality. Thus, the XP
approach to testing took the practice to the extreme: do test-first development, ensuring that all code
is tested before it enters the code base.

XP was lumped into other popular Agile processes that shared similar perspectives, but it was one of
the few methodologies that included engineering practices such as automation, testing, continuous
integration, and other concrete, experienced-based techniques. The efforts to continue advancing the
engineering side of software development continued with the book Continuous Delivery (Addison-
Wesley Professional)—an updated version of many XP practices—and came to fruition in the DevOps
movement. In many ways, the DevOps revolution occurred when operations adopted engineering
practices originally espoused by XP: automation, testing, declarative single source of truth, and others.

We strongly support these advances, which form the incremental steps that will eventually graduate
software development into a proper engineering discipline.

Focusing on engineering practices is important. First, software
development lacks many of the features of more mature engineering
disciplines. For example, civil engineers can predict structural change
with much more accuracy than similarly important aspects of
software structure. Second, one of the Achilles heels of software
development is estimation—how much time, how many resources,
how much money? Part of this difficulty lies with antiquated
accounting practices that cannot accommodate the exploratory nature
of software development, but another part is because we’re
traditionally bad at estimation, at least in part because of unknown
unknowns.

http://www.extremeprogramming.org/


…because as we know, there are known knowns; there are things
we know we know. We also know there are known unknowns; that
is to say we know there are some things we do not know. But there
are also unknown unknowns—the ones we don’t know we don’t
know.

—Former United States Secretary of Defense Donald
Rumsfeld

Unknown unknowns are the nemesis of software systems. Many
projects start with a list of known unknowns: things developers must
learn about the domain and technology they know are upcoming.
However, projects also fall victim to unknown unknowns: things no
one knew were going to crop up yet have appeared unexpectedly.
This is why all “Big Design Up Front” software efforts suffer:
architects cannot design for unknown unknowns. To quote Mark (one
of your authors):

All architectures become iterative because of unknown unknowns,
Agile just recognizes this and does it sooner.

Thus, while process is mostly separate from architecture, an iterative
process fits the nature of software architecture better. Teams trying to
build a modern system such as microservices using an antiquated
process like Waterfall will find a great deal of friction from an
antiquated process that ignores the reality of how software comes
together.

Often, the architect is also the technical leader on projects and
therefore determines the engineering practices the team uses. Just as
architects must carefully consider the problem domain before
choosing an architecture, they must also ensure that the architectural



style and engineering practices form a symbiotic mesh. For example,
a microservices architecture assumes automated machine
provisioning, automated testing and deployment, and a raft of other
assumptions. Trying to build one of these architectures with an
antiquated operations group, manual processes, and little testing
creates tremendous friction and challenges to success. Just as
different problem domains lend themselves toward certain
architectural styles, engineering practices have the same kind of
symbiotic relationship.

The evolution of thought leading from Extreme Programming to
Continuous Delivery continues. Recent advances in engineering
practices allow new capabilities within architecture. Neal’s most
recent book, Building Evolutionary Architectures (O’Reilly),
highlights new ways to think about the intersection of engineering
practices and architecture, allowing better automation of architectural
governance. While we won’t summarize that book here, it gives an
important new nomenclature and way of thinking about architectural
characteristics that will infuse much of the remainder of this book.

Neal’s book covers techniques for building architectures that change
gracefully over time. In Chapter 4, we describe architecture as the
combination of requirements and additional concerns, as illustrated in
Figure 1-7.

http://shop.oreilly.com/product/0636920080237.do


Figure 1-7. The architecture for a software system consists of both requirements and all the
other architectural characteristics

As any experience in the software development world illustrates,
nothing remains static. Thus, architects may design a system to meet
certain criteria, but that design must survive both implementation
(how can architects make sure that their design is implemented
correctly) and the inevitable change driven by the software



development ecosystem. What we need is an evolutionary
architecture.

Building Evolutionary Architectures introduces the concept of using
fitness functions to protect (and govern) architectural characteristics
as change occurs over time. The concept comes from evolutionary
computing. When designing a genetic algorithm, developers have a
variety of techniques to mutate the solution, evolving new solutions
iteratively. When designing such an algorithm for a specific goal,
developers must measure the outcome to see if it is closer or further
away from an optimal solution; that measure is a fitness function. For
example, if developers designed a genetic algorithm to solve the
traveling salesperson problem (whose goal is the shortest route
between various cities), the fitness function would look at the path
length.

Building Evolutionary Architectures co-opts this idea to create
architectural fitness functions: an objective integrity assessment of
some architectural characteristic(s). This assessment may include a
variety of mechanisms, such as metrics, unit tests, monitors, and
chaos engineering. For example, an architect may identify page load
time as an importance characteristic of the architecture. To allow the
system to change without degrading performance, the architecture
builds a fitness function as a test that measures page load time for
each page and then runs the test as part of the continuous integration
for the project. Thus, architects always know the status of critical
parts of the architecture because they have a verification mechanism
in the form of fitness functions for each part.



We won’t go into the full details of fitness functions here. However,
we will point out opportunities and examples of the approach where
applicable. Note the correlation between how often fitness functions
execute and the feedback they provide. You’ll see that adopting Agile
engineering practices such as continuous integration, automated
machine provisioning, and similar practices makes building resilient
architectures easier. It also illustrates how intertwined architecture
has become with engineering practices.

Operations/DevOps

The most obvious recent intersection between architecture and related
fields occurred with the advent of DevOps, driven by some rethinking
of architectural axioms. For many years, many companies considered
operations as a separate function from software development; they
often outsource operations to another company as a cost-saving
measure. Many architectures designed during the 1990s and 2000s
assumed that architects couldn’t control operations and were built
defensively around that restriction (for a good example of this, see
Space-Based Architecture in Chapter 15).

However, a few years ago, several companies started experimenting
with new forms of architecture that combine many operational
concerns with the architecture. For example, in older-style
architectures, such as ESB-driven SOA, the architecture was
designed to handle things like elastic scale, greatly complicating the
architecture in the process. Basically, architects were forced to
defensively design around the limitations introduced because of the
cost-saving measure of outsourcing operations. Thus, they built



architectures that could handle scale, performance, elasticity, and a
host of other capabilities internally. The side effect of that design was
vastly more complex architecture.

The builders of the microservices style of architecture realized that
these operational concerns are better handled by operations. By
creating a liaison between architecture and operations, the architects
can simplify the design and rely on operations for the things they
handle best. Thus, realizing a misappropriation of resources led to
accidental complexity, and architects and operations teamed up to
create microservices, the details of which we cover in Chapter 17.

Process

Another axiom is that software architecture is mostly orthogonal to
the software development process; the way that you build software
(process) has little impact on the software architecture (structure).
Thus, while the software development process a team uses has some
impact on software architecture (especially around engineering
practices), historically they have been thought of as mostly separate.
Most books on software architecture ignore the software development
process, making specious assumptions about things like
predictability. However, the process by which teams develop software
has an impact on many facets of software architecture. For example,
many companies over the last few decades have adopted Agile
development methodologies because of the nature of software.
Architects in Agile projects can assume iterative development and
therefore a faster feedback loop for decisions. That in turn allows



architects to be more aggressive about experimentation and other
knowledge that relies on feedback.

As the previous quote from Mark observes, all architecture becomes
iterative; it’s only a matter of time. Toward that end, we’re going
assume a baseline of Agile methodologies throughout and call out
exceptions where appropriate. For example, it is still common for
many monolithic architectures to use older processes because of their
age, politics, or other mitigating factors unrelated to software.

One critical aspect of architecture where Agile methodologies shine
is restructuring. Teams often find that they need to migrate their
architecture from one pattern to another. For example, a team started
with a monolithic architecture because it was easy and fast to
bootstrap, but now they need to move it to a more modern
architecture. Agile methodologies support these kinds of changes
better than planning-heavy processes because of the tight feedback
loop and encouragement of techniques like the Strangler Pattern and
feature toggles.

Data

A large percentage of serious application development includes
external data storage, often in the form of a relational (or,
increasingly, NoSQL) database. However, many books about
software architecture include only a light treatment of this important
aspect of architecture. Code and data have a symbiotic relationship:
one isn’t useful without the other.

https://oreil.ly/ZRpCc
https://trunkbaseddevelopment.com/


Database administrators often work alongside architects to build data
architecture for complex systems, analyzing how relationships and
reuse will affect a portfolio of applications. We won’t delve into that
level of specialized detail in this book. At the same time, we won’t
ignore the existence and dependence on external storage. In
particular, when we talk about the operational aspects of architecture
and architectural quantum (see Chapter 3), we include important
external concerns such as databases.

Laws of Software Architecture
While the scope of software architecture is almost impossibly broad,
unifying elements do exist. The authors have first and foremost
learned the First Law of Software Architecture by constantly
stumbling across it:

Everything in software architecture is a trade-off.
—First Law of Software Architecture

Nothing exists on a nice, clean spectrum for software architects.
Every decision must take into account many opposing factors.

If an architect thinks they have discovered something that isn’t a
trade-off, more likely they just haven’t identified the trade-off yet.

—Corollary 1

We define software architecture in terms beyond structural
scaffolding, incorporating principles, characteristics, and so on.
Architecture is broader than just the combination of structural
elements, reflected in our Second Law of Software Architecture:



Why is more important than how.
—Second Law of Software Architecture

The authors discovered the importance of this perspective when we
tried keeping the results of exercises done by students during
workshop as they crafted architecture solutions. Because the
exercises were timed, the only artifacts we kept were the diagrams
representing the topology. In other words, we captured how they
solved the problem but not why the team made particular choices. An
architect can look at an existing system they have no knowledge of
and ascertain how the structure of the architecture works, but will
struggle explaining why certain choices were made versus others.

Throughout the book, we highlight why architects make certain
decisions along with trade-offs. We also highlight good techniques
for capturing important decisions in “Architecture Decision
Records”.



Part I. Foundations

To understand important trade-offs in architecture, developers must
understand some basic concepts and terminology concerning
components, modularity, coupling, and connascence.



Chapter 2. Architectural
Thinking

An architect sees things differently from a developer’s point of view,
much in the same way a meteorologist might see clouds differently
from an artist’s point of view. This is called architectural thinking.
Unfortunately, too many architects believe that architectural thinking
is simply just “thinking about the architecture,” as depicted in
Figure 2-1.





Figure 2-1. Architectural thinking (iStockPhoto)

Architectural thinking is much more than that. It is seeing things with
an architectural eye, or an architectural point of view. There are four
main aspects of thinking like an architect. First, it’s understanding the
difference between architecture and design and knowing how to
collaborate with development teams to make architecture work.
Second, it’s about having a wide breadth of technical knowledge
while still maintaining a certain level of technical depth, allowing the
architect to see solutions and possibilities that others do not see.
Third, it’s about understanding, analyzing, and reconciling trade-offs
between various solutions and technologies. Finally, it’s about
understanding the importance of business drivers and how they
translate to architectural concerns.

In this chapter we explore these four aspects of thinking like an
architect and seeing things with an architectural eye.

Architecture Versus Design
The difference between architecture and design is often a confusing
one. Where does architecture end and design begin? What
responsibilities does an architect have versus those of a developer?
Thinking like an architect is knowing the difference between
architecture and design and seeing how the two integrate closely to
form solutions to business and technical problems.

Consider Figure 2-2, which illustrates the traditional responsibilities
an architect has, as compared to those of a developer. As shown in the



diagram, an architect is responsible for things like analyzing business
requirements to extract and define the architectural characteristics (“-
ilities”), selecting which architecture patterns and styles would fit the
problem domain, and creating components (the building blocks of the
system). The artifacts created from these activities are then handed
off to the development team, which is responsible for creating class
diagrams for each component, creating user interface screens, and
developing and testing source code.





Figure 2-2. Traditional view of architecture versus design

There are several issues with the traditional responsibility model
illustrated in Figure 2-2. As a matter of fact, this illustration shows
exactly why architecture rarely works. Specifically, it is the
unidirectional arrow passing though the virtual and physical barriers
separating the architect from the developer that causes all of the
problems associated with architecture. Decisions an architect makes
sometimes never make it to the development teams, and decisions
development teams make that change the architecture rarely get back
to the architect. In this model the architect is disconnected from the
development teams, and as such the architecture rarely provides what
it was originally set out to do.

To make architecture work, both the physical and virtual barriers that
exist between architects and developers must be broken down, thus
forming a strong bidirectional relationship between architects and
development teams. The architect and developer must be on the same
virtual team to make this work, as depicted in Figure 2-3. Not only
does this model facilitate strong bidirectional communication
between architecture and development, but it also allows the architect
to provide mentoring and coaching to developers on the team.





Figure 2-3. Making architecture work through collaboration

Unlike the old-school waterfall approaches to static and rigid
software architecture, the architecture of today’s systems changes and
evolves every iteration or phase of a project. A tight collaboration
between the architect and the development team is essential for the
success of any software project. So where does architecture end and
design begin? It doesn’t. They are both part of the circle of life within
a software project and must always be kept in synchronization with
each other in order to succeed.

Technical Breadth
The scope of technological detail differs between developers and
architects. Unlike a developer, who must have a significant amount of
technical depth to perform their job, a software architect must have a
significant amount of technical breadth to think like an architect and
see things with an architecture point of view. This is illustrated by the
knowledge pyramid shown in Figure 2-4, which encapsulates all the
technical knowledge in the world. It turns out that the kind of
information a technologist should value differs with career stages.





Figure 2-4. The pyramid representing all knowledge

As shown in Figure 2-4, any individual can partition all their
knowledge into three sections: stuff you know, stuff you know you
don’t know, and stuff you don’t know you don’t know.

Stuff you know includes the technologies, frameworks, languages, and
tools a technologist uses on a daily basis to perform their job, such as
knowing Java as a Java programmer. Stuff you know you don’t know
includes those things a technologist knows a little about or has heard
of but has little or no expertise in. A good example of this level of
knowledge is the Clojure programming language. Most technologists
have heard of Clojure and know it’s a programming language based
on Lisp, but they can’t code in the language. Stuff you don’t know you
don’t know is the largest part of the knowledge triangle and includes
the entire host of technologies, tools, frameworks, and languages that
would be the perfect solution to a problem a technologist is trying to
solve, but the technologist doesn’t even know those things exist.

A developer’s early career focuses on expanding the top of the
pyramid, to build experience and expertise. This is the ideal focus
early on, because developers need more perspective, working
knowledge, and hands-on experience. Expanding the top incidentally
expands the middle section; as developers encounter more
technologies and related artifacts, it adds to their stock of stuff you
know you don’t know.

In Figure 2-5, expanding the top of the pyramid is beneficial because
expertise is valued. However, the stuff you know is also the stuff you



must maintain—nothing is static in the software world. If a developer
becomes an expert in Ruby on Rails, that expertise won’t last if they
ignore Ruby on Rails for a year or two. The things at the top of the
pyramid require time investment to maintain expertise. Ultimately,
the size of the top of an individual’s pyramid is their technical depth.





Figure 2-5. Developers must maintain expertise to retain it

However, the nature of knowledge changes as developers transition
into the architect role. A large part of the value of an architect is a
broad understanding of technology and how to use it to solve
particular problems. For example, as an architect, it is more beneficial
to know that five solutions exist for a particular problem than to have
singular expertise in only one. The most important parts of the
pyramid for architects are the top and middle sections; how far the
middle section penetrates into the bottom section represents an
architect’s technical breadth, as shown in Figure 2-6.





Figure 2-6. What someone knows is technical depth, and how much someone knows is
technical breadth

As an architect, breadth is more important than depth. Because
architects must make decisions that match capabilities to technical
constraints, a broad understanding of a wide variety of solutions is
valuable. Thus, for an architect, the wise course of action is to
sacrifice some hard-won expertise and use that time to broaden their
portfolio, as shown in Figure 2-7. As illustrated in the diagram, some
areas of expertise will remain, probably in particularly enjoyable
technology areas, while others usefully atrophy.





Figure 2-7. Enhanced breadth and shrinking depth for the architect role

Our knowledge pyramid illustrates how fundamentally different the
role of architect compares to developer. Developers spend their
whole careers honing expertise, and transitioning to the architect role
means a shift in that perspective, which many individuals find
difficult. This in turn leads to two common dysfunctions: first, an
architect tries to maintain expertise in a wide variety of areas,
succeeding in none of them and working themselves ragged in the
process. Second, it manifests as stale expertise—the mistaken
sensation that your outdated information is still cutting edge. We see
this often in large companies where the developers who founded the
company have moved into leadership roles yet still make technology
decisions using ancient criteria (see “Frozen Caveman Anti-Pattern”).

Architects should focus on technical breadth so that they have a
larger quiver from which to draw arrows. Developers transitioning to
the architect role may have to change the way they view knowledge
acquisition. Balancing their portfolio of knowledge regarding depth
versus breadth is something every developer should consider
throughout their career.



FROZEN CAVEMAN ANTI-PATTERN
A behavioral anti-pattern commonly observed in the wild, the Frozen Caveman Anti-Pattern, describes
an architect who always reverts back to their pet irrational concern for every architecture. For
example, one of Neal’s colleagues worked on a system that featured a centralized architecture. Yet,
each time they delivered the design to the client architects, the persistent question was “But what if we
lose Italy?” Several years before, a freak communication problem had prevented headquarters from
communicating with its stores in Italy, causing great inconvenience. While the chances of a
reoccurrence were extremely small, the architects had become obsessed about this particular
architectural characteristic.

Generally, this anti-pattern manifests in architects who have been burned in the past by a poor
decision or unexpected occurrence, making them particularly cautious in the future. While risk
assessment is important, it should be realistic as well. Understanding the difference between genuine
versus perceived technical risk is part of the ongoing learning process for architects. Thinking like an
architect requires overcoming these “frozen caveman” ideas and experiences, seeing other solutions,
and asking more relevant questions.

Analyzing Trade-Offs
Thinking like an architect is all about seeing trade-offs in every
solution, technical or otherwise, and analyzing those trade-offs to
determine what is the best solution. To quote Mark (one of your
authors):

Architecture is the stuff you can’t Google.

Everything in architecture is a trade-off, which is why the famous
answer to every architecture question in the universe is “it depends.”
While many people get increasingly annoyed at this answer, it is
unfortunately true. You cannot Google the answer to whether REST
or messaging would be better, or whether microservices is the right
architecture style, because it does depend. It depends on the
deployment environment, business drivers, company culture, budgets,
timeframes, developer skill set, and dozens of other factors.



Everyone’s environment, situation, and problem is different, hence
why architecture is so hard. To quote Neal (another one of your
authors):

There are no right or wrong answers in architecture—only trade-
offs.

For example, consider an item auction system, as illustrated in
Figure 2-8, where someone places a bid for an item up for auction.





Figure 2-8. Auction system example of a trade-off—queues or topics?

The Bid Producer service generates a bid from the bidder and
then sends that bid amount to the Bid Capture, Bid Tracking,
and Bid Analytics services. This could be done by using queues
in a point-to-point messaging fashion or by using a topic in a publish-
and-subscribe messaging fashion. Which one should the architect
use? You can’t Google the answer. Architectural thinking requires the
architect to analyze the trade-offs associated with each option and
select the best one given the specific situation.

The two messaging options for the item auction system are shown in
figures Figure 2-9 and Figure 2-10, with Figure 2-9 illustrating the
use of a topic in a publish-and-subscribe messaging model, and
Figure 2-10 illustrating the use of queues in a point-to-point
messaging model.





Figure 2-9. Use of a topic for communication between services





Figure 2-10. Use of queues for communication between services

The clear advantage (and seemingly obvious solution) to this problem
in Figure 2-9 is that of architectural extensibility. The Bid
Producer service only requires a single connection to a topic,
unlike the queue solution in Figure 2-10 where the Bid Producer
needs to connect to three different queues. If a new service called
Bid History were to be added to this system due to the
requirement to provide each bidder with a history of all the bids they
made in each auction, no changes at all would be needed to the
existing system. When the new Bid History service is created, it
could simply subscribe to the topic already containing the bid
information. In the queue option shown in Figure 2-10, however, a
new queue would be required for the Bid History service, and
the Bid Producer would need to be modified to add an additional
connection to the new queue. The point here is that using queues
requires significant change to the system when adding new bidding
functionality, whereas with the topic approach no changes are needed
at all in the existing infrastructure. Also, notice that the Bid
Producer is more decoupled in the topic option—the Bid
Producer doesn’t know how the bidding information will be used
or by which services. In the queue option the Bid Producer
knows exactly how the bidding information is used (and by whom),
and hence is more coupled to the system.

With this analysis it seems clear that the topic approach using the
publish-and-subscribe messaging model is the obvious and best



choice. However, to quote Rich Hickey, the creator of the Clojure
programming language:

Programmers know the benefits of everything and the trade-offs of
nothing. Architects need to understand both.

Thinking architecturally is looking at the benefits of a given solution,
but also analyzing the negatives, or trade-offs, associated with a
solution. Continuing with the auction system example, a software
architect would analyze the negatives of the topic solution. In
analyzing the differences, notice first in Figure 2-9 that with a topic,
anyone can access bidding data, which introduces a possible issue
with data access and data security. In the queue model illustrated in
Figure 2-10, the data sent to the queue can only be accessed by the
specific consumer receiving that message. If a rogue service did listen
in on a queue, those bids would not be received by the corresponding
service, and a notification would immediately be sent about the loss
of data (and hence a possible security breach). In other words, it is
very easy to wiretap into a topic, but not a queue.

In addition to the security issue, the topic solution in Figure 2-9 only
supports homogeneous contracts. All services receiving the bidding
data must accept the same contract and set of bidding data. In the
queue option in Figure 2-10, each consumer can have its own
contract specific to the data it needs. For example, suppose the new
Bid History service requires the current asking price along with
the bid, but no other service needs that information. In this case, the
contract would need to be modified, impacting all other services



using that data. In the queue model, this would be a separate channel,
hence a separate contract not impacting any other service.

Another disadvantage of the topic model illustrated in Figure 2-9 is
that it does not support monitoring of the number of messages in the
topic and hence auto-scaling capabilities. However, with the queue
option in Figure 2-10, each queue can be monitored individually, and
programmatic load balancing applied to each bidding consumer so
that each can be automatically scaled independency from one another.
Note that this trade-off is technology specific in that the Advanced
Message Queuing Protocol (AMQP) can support programmatic load
balancing and monitoring because of the separation between an
exchange (what the producer sends to) and a queue (what the
consumer listens to).

Given this trade-off analysis, now which is the better option? And the
answer? It depends! Table 2-1 summarizes these trade-offs.

Table 2-1. Trade-offs between topics and queues

Topic advantages Topic disadvantages

Architectural 
extensibility

Data access and data security 
concerns

Service decoupling No heterogeneous contracts

Monitoring and programmatic 
scalability

The point here is that everything in software architecture has a trade-
off: an advantage and disadvantage. Thinking like an architect is

https://www.amqp.org/


analyzing these trade-offs, then asking “which is more important:
extensibility or security?” The decision between different solutions
will always depend on the business drivers, environment, and a host
of other factors.

Understanding Business Drivers
Thinking like an architect is understanding the business drivers that
are required for the success of the system and translating those
requirements into architecture characteristics (such as scalability,
performance, and availability). This is a challenging task that requires
the architect to have some level of business domain knowledge and
healthy, collaborative relationships with key business stakeholders.
We’ve devoted several chapters in the book on this specific topic. In
Chapter 4 we define various architecture characteristics. In Chapter 5
we describe ways to identify and qualify architecture characteristics.
And in Chapter 6 we describe how to measure each of these
characteristics to ensure the business needs of the system are met.

Balancing Architecture and Hands-On
Coding
One of the difficult tasks an architect faces is how to balance hands-
on coding with software architecture. We firmly believe that every
architect should code and be able to maintain a certain level of
technical depth (see “Technical Breadth”). While this may seem like
an easy task, it is sometimes rather difficult to accomplish.



The first tip in striving for a balance between hands-on coding and
being a software architect is avoiding the bottleneck trap. The
bottleneck trap occurs when the architect has taken ownership of
code within the critical path of a project (usually the underlying
framework code) and becomes a bottleneck to the team. This happens
because the architect is not a full-time developer and therefore must
balance between playing the developer role (writing and testing
source code) and the architect role (drawing diagrams, attending
meetings, and well, attending more meetings).

One way to avoid the bottleneck trap as an effective software
architect is to delegate the critical path and framework code to others
on the development team and then focus on coding a piece of
business functionality (a service or a screen) one to three iterations
down the road. Three positive things happen by doing this. First, the
architect is gaining hands-on experience writing production code
while no longer becoming a bottleneck on the team. Second, the
critical path and framework code is distributed to the development
team (where it belongs), giving them ownership and a better
understanding of the harder parts of the system. Third, and perhaps
most important, the architect is writing the same business-related
source code as the development team and is therefore better able to
identify with the development team in terms of the pain they might be
going through with processes, procedures, and the development
environment.

Suppose, however, that the architect is not able to develop code with
the development team. How can a software architect still remain
hands-on and maintain some level of technical depth? There are four



basic ways an architect can still remain hands-on at work without
having to “practice coding from home” (although we recommend
practicing coding at home as well).

The first way is to do frequent proof-of-concepts or POCs. This
practice not only requires the architect to write source code, but it
also helps validate an architecture decision by taking the
implementation details into account. For example, if an architect is
stuck trying to make a decision between two caching solutions, one
effective way to help make this decision is to develop a working
example in each caching product and compare the results. This allows
the architect to see first-hand the implementation details and the
amount of effort required to develop the full solution. It also allows
the architect to better compare architectural characteristics such as
scalability, performance, or overall fault tolerance of the different
caching solutions.

Our advice when doing proof-of-concept work is that, whenever
possible, the architect should write the best production-quality code
they can. We recommend this practice for two reasons. First, quite
often, throwaway proof-of-concept code goes into the source code
repository and becomes the reference architecture or guiding example
for others to follow. The last thing an architect would want is for their
throwaway, sloppy code to be a representation of their typical work.
The second reason is that by writing production-quality proof-of-
concept code, the architect gets practice writing quality, well-
structured code rather than continually developing bad coding
practices.



Another way an architect can remain hands-on is to tackle some of
the technical debt stories or architecture stories, freeing the
development team up to work on the critical functional user stories.
These stories are usually low priority, so if the architect does not have
the chance to complete a technical debt or architecture story within a
given iteration, it’s not the end of the world and generally does not
impact the success of the iteration.

Similarly, working on bug fixes within an iteration is another way of
maintaining hands-on coding while helping the development team as
well. While certainly not glamorous, this technique allows the
architect to identify where issues and weakness may be within the
code base and possibly the architecture.

Leveraging automation by creating simple command-line tools and
analyzers to help the development team with their day-to-day tasks is
another great way to maintain hands-on coding skills while making
the development team more effective. Look for repetitive tasks the
development team performs and automate the process. The
development team will be grateful for the automation. Some
examples are automated source validators to help check for specific
coding standards not found in other lint tests, automated checklists,
and repetitive manual code refactoring tasks.

Automation can also be in the form of architectural analysis and
fitness functions to ensure the vitality and compliance of the
architecture. For example, an architect can write Java code in
ArchUnit in the Java platform to automate architectural compliance,
or write custom fitness functions to ensure architectural compliance

https://www.archunit.org/
https://evolutionaryarchitecture.com/


while gaining hands-on experience. We talk about these techniques in
Chapter 6.

A final technique to remain hands-on as an architect is to do frequent
code reviews. While the architect is not actually writing code, at least
they are involved in the source code. Further, doing code reviews has
the added benefits of being able to ensure compliance with the
architecture and to seek out mentoring and coaching opportunities on
the team.



Chapter 3. Modularity

First, we want to untangle some common terms used and overused in
discussions about architecture surrounding modularity and provide
definitions for use throughout the book.

95% of the words [about software architecture] are spent extolling
the benefits of “modularity” and that little, if anything, is said
about how to achieve it.

—Glenford J. Myers (1978)

Different platforms offer different reuse mechanisms for code, but all
support some way of grouping related code together into modules.
While this concept is universal in software architecture, it has proven
slippery to define. A casual internet search yields dozens of
definitions, with no consistency (and some contradictions). As you
can see from the quote from Myers, this isn’t a new problem.
However, because no recognized definition exists, we must jump into
the fray and provide our own definitions for the sake of consistency
throughout the book.

Understanding modularity and its many incarnations in the
development platform of choice is critical for architects. Many of the
tools we have to analyze architecture (such as metrics, fitness
functions, and visualizations) rely on these modularity concepts.
Modularity is an organizing principle. If an architect designs a system
without paying attention to how the pieces wire together, they end up



creating a system that presents myriad difficulties. To use a physics
analogy, software systems model complex systems, which tend
toward entropy (or disorder). Energy must be added to a physical
system to preserve order. The same is true for software systems:
architects must constantly expend energy to ensure good structural
soundness, which won’t happen by accident.

Preserving good modularity exemplifies our definition of an implicit
architecture characteristic: virtually no project features a requirement
that asks the architect to ensure good modular distinction and
communication, yet sustainable code bases require order and
consistency.

Definition
The dictionary defines module as “each of a set of standardized parts
or independent units that can be used to construct a more complex
structure.” We use modularity to describe a logical grouping of
related code, which could be a group of classes in an object-oriented
language or functions in a structured or functional language. Most
languages provide mechanisms for modularity (package in Java,
namespace in .NET, and so on). Developers typically use modules
as a way to group related code together. For example, the
com.mycompany.customer package in Java should contain
things related to customers.

Languages now feature a wide variety of packaging mechanisms,
making a developer’s chore of choosing between them difficult. For
example, in many modern languages, developers can define behavior



in functions/methods, classes, or packages/namespaces, each with
different visibility and scoping rules. Other languages complicate this
further by adding programming constructs such as the metaobject
protocol to provide developers even more extension mechanisms.

Architects must be aware of how developers package things because
it has important implications in architecture. For example, if several
packages are tightly coupled together, reusing one of them for related
work becomes more difficult.

MODULAR REUSE BEFORE CLASSES
Developers who predate object-oriented languages may puzzle over why so many different separation
schemes commonly exist. Much of the reason has to do with backward compatibility, not of code but
rather for how developers think about things. In March of 1968, Edsger Dijkstra published a letter in
the Communications of the ACM entitled “Go To Statement Considered Harmful.” He denigrated the
common use of the GOTO statement common in programming languages at the time that allowed non-
linear leaping around within code, making reasoning and debugging difficult.

This paper helped usher in the era of structured programming languages, exemplified by Pascal and
C, which encouraged deeper thinking about how things fit together. Developers quickly realized that
most of the languages had no good way to group like things together logically. Thus, the short era of
modular languages was born, such as Modula (Pascal creator Niklaus Wirth’s next language) and
Ada. These languages had the programming construct of a module, much as we think about packages
or namespaces today (but without the classes).

The modular programming era was short-lived. Object-oriented languages became popular because
they offered new ways to encapsulate and reuse code. Still, language designers realized the utility of
modules, retaining them in the form of packages, namespaces, etc. Many odd compatibility features
exist in languages to support these different paradigms. For example, Java supports modular (via
packages and package-level initialization using static initializers), object-oriented, and functional
paradigms, each programming style with its own scoping rules and quirks.

For discussions about architecture, we use modularity as a general
term to denote a related grouping of code: classes, functions, or any
other grouping. This doesn’t imply a physical separation, merely a
logical one; the difference is sometimes important. For example,
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lumping a large number of classes together in a monolithic
application may make sense from a convenience standpoint.
However, when it comes time to restructure the architecture, the
coupling encouraged by loose partitioning becomes an impediment to
breaking the monolith apart. Thus, it is useful to talk about
modularity as a concept separate from the physical separation forced
or implied by a particular platform.

It is worth noting the general concept of namespace, separate from
the technical implementation in the .NET platform. Developers often
need precise, fully qualified names for software assets to separate
different software assets (components, classes, and so on) from each
other. The most obvious example that people use every day is the
internet: unique, global identifiers tied to IP addresses. Most
languages have some modularity mechanism that doubles as a
namespace to organize things: variables, functions, and/or methods.
Sometimes the module structure is reflected physically. For example,
Java requires that its package structure must reflect the directory
structure of the physical class files.



A LANGUAGE WITH NO NAME CONFLICTS: JAVA 1.0
The original designers of Java had extensive experience dealing with name conflicts and clashes in
the various programming platforms at the time. The original design of Java used a clever hack to avoid
the possibility of ambiguity between two classes that had the same name. For example, what if your
problem domain included a catalog order and an installation order: both named order but with very
different connotations (and classes). The solution in Java was to create the package namespace
mechanism, along with the requirement that the physical directory structure just match the package
name. Because filesystems won’t allow the same named file to reside in the same directory, they
leveraged the inherent features of the operating system to avoid the possibility of ambiguity. Thus, the
original classpath in Java contained only directories, disallowing the possibility of name conflicts.

However, as the language designers discovered, forcing every project to have a fully formed directory
structure was cumbersome, especially as projects became larger. Plus, building reusable assets was
difficult: frameworks and libraries must be “exploded” into the directory structure. In the second major
release of Java (1.2, called Java 2), designers added the jar mechanism, allowing an archive file to
act as a directory structure on a classpath. For the next decade, Java developers struggled with
getting the classpath exactly right, as a combination of directories and JAR files. And, of course, the
original intent was broken: now two JAR files could create conflicting names on a classpath, leading to
numerous war stories of debugging class loaders.

Measuring Modularity
Given the importance of modularity to architects, they need tools to
understand it. Fortunately, researchers created a variety of language-
agnostic metrics to help architects understand modularity. We focus
on three key concepts: cohesion, coupling, and connascence.

Cohesion

Cohesion refers to what extent the parts of a module should be
contained within the same module. In other words, it is a measure of
how related the parts are to one another. Ideally, a cohesive module is
one where all the parts should be packaged together, because
breaking them into smaller pieces would require coupling the parts
together via calls between modules to achieve useful results.



Attempting to divide a cohesive module would only result in
increased coupling and decreased readability.

—Larry Constantine

Computer scientists have defined a range of cohesion measures, listed
here from best to worst:

Functional cohesion

Every part of the module is related to the other, and the module
contains everything essential to function.

Sequential cohesion

Two modules interact, where one outputs data that becomes the
input for the other.

Communicational cohesion

Two modules form a communication chain, where each operates
on information and/or contributes to some output. For example,
add a record to the database and generate an email based on that
information.

Procedural cohesion

Two modules must execute code in a particular order.

Temporal cohesion

Modules are related based on timing dependencies. For example,
many systems have a list of seemingly unrelated things that must
be initialized at system startup; these different tasks are
temporally cohesive.

Logical cohesion

The data within modules is related logically but not functionally.
For example, consider a module that converts information from



text, serialized objects, or streams. Operations are related, but the
functions are quite different. A common example of this type of
cohesion exists in virtually every Java project in the form of the
StringUtils package: a group of static methods that operate
on String but are otherwise unrelated.

Coincidental cohesion

Elements in a module are not related other than being in the same
source file; this represents the most negative form of cohesion.

Despite having seven variants listed, cohesion is a less precise metric
than coupling. Often, the degree of cohesiveness of a particular
module is at the discretion of a particular architect. For example,
consider this module definition:

Customer Maintenance

add customer

update customer

get customer

notify customer

get customer orders

cancel customer orders

Should the last two entries reside in this module or should the
developer create two separate modules, such as:

Customer Maintenance

add customer



update customer

get customer

notify customer

Order Maintenance

get customer orders

cancel customer orders

Which is the correct structure? As always, it depends:

Are those the only two operations for Order
Maintenance? If so, it may make sense to collapse those
operations back into Customer Maintenance.

Is Customer Maintenance expected to grow much
larger, encouraging developers to look for opportunities to
extract behavior?

Does Order Maintenance require so much knowledge
of Customer information that separating the two modules
would require a high degree of coupling to make it
functional? This relates back to the Larry Constantine quote.

These questions represent the kind of trade-off analysis at the heart of
the job of a software architect.

Surprisingly, given the subjectiveness of cohesion, computer
scientists have developed a good structural metric to determine
cohesion (or, more specifically, the lack of cohesion). A well-known
set of metrics named the Chidamber and Kemerer Object-oriented
metrics suite was developed by the eponymous authors to measure
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particular aspects of object-oriented software systems. The suite
includes many common code metrics, such as cyclomatic complexity
(see “Cyclomatic Complexity”) and several important coupling
metrics discussed in “Coupling”.

The Chidamber and Kemerer Lack of Cohesion in Methods (LCOM)
metric measures the structural cohesion of a module, typically a
component. The initial version appears in Equation 3-1.

Equation 3-1. LCOM, version 1

LCOM ={ |P | − |Q|, if |P | > |Q|

0, otherwise

P increases by one for any method that doesn’t access a particular
shared field and Q decreases by one for methods that do share a
particular shared field. The authors sympathize with those who don’t
understand this formulation. Worse, it has gradually gotten more
elaborate over time. The second variation introduced in 1996 (thus
the name LCOM96B) appears in Equation 3-2.

Equation 3-2. LCOM 96b

LCOM96b =
a

∑
j=1

We wont bother untangling the variables and operators in Equation 3-
2 because the following written explanation is clearer. Basically, the
LCOM metric exposes incidental coupling within classes. Here’s a
better definition of LCOM:

1

a

m − μ(Aj)

m



LCOM

The sum of sets of methods not shared via sharing fields

Consider a class with private fields a and b. Many of the methods
only access a, and many other methods only access b. The sum of the
sets of methods not shared via sharing fields (a and b) is high;
therefore, this class reports a high LCOM score, indicating that it
scores high in lack of cohesion in methods. Consider the three classes
shown in Figure 3-1.



Figure 3-1. Illustration of the LCOM metric, where fields are octagons and methods are
squares

In Figure 3-1, fields appear as single letters and methods appear as
blocks. In Class X, the LCOM score is low, indicating good
structural cohesion. Class Y, however, lacks cohesion; each of the
field/method pairs in Class Y could appear in its own class without



affecting behavior. Class Z shows mixed cohesion, where
developers could refactor the last field/method combination into its
own class.

The LCOM metric is useful to architects who are analyzing code
bases in order to move from one architectural style to another. One of
the common headaches when moving architectures are shared utility
classes. Using the LCOM metric can help architects find classes that
are incidentally coupled and should never have been a single class to
begin with.

Many software metrics have serious deficiencies, and LCOM is not
immune. All this metric can find is structural lack of cohesion; it has
no way to determine logically if particular pieces fit together. This
reflects back on our Second Law of Software Architecture: prefer
why over how.

Coupling

Fortunately, we have better tools to analyze coupling in code bases,
based in part on graph theory: because the method calls and returns
form a call graph, analysis based on mathematics becomes possible.
In 1979, Edward Yourdon and and Larry Constantine published
Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design (Prentice-Hall), defining many core
concepts, including the metrics afferent and efferent coupling.
Afferent coupling measures the number of incoming connections to a
code artifact (component, class, function, and so on). Efferent
coupling measures the outgoing connections to other code artifacts.



For virtually every platform tools exist that allow architects to
analyze the coupling characteristics of code in order to assist in
restructuring, migrating, or understanding a code base.

WHY SUCH SIMILAR NAMES FOR COUPLING METRICS?
Why are two critical metrics in the architecture world that represent opposite concepts named virtually
the same thing, differing in only the vowels that sound the most alike? These terms originate from
Yourdon and Constantine’s Structured Design. Borrowing concepts from mathematics, they coined the
now-common afferent and efferent coupling terms, which should have been called incoming and
outgoing coupling. However, because the original authors leaned toward mathematical symmetry
rather than clarity, developers came up with several mnemonics to help out: a appears before e in the
English alphabet, corresponding to incoming being before outgoing, or the observation that the letter e
in efferent matches the initial letter in exit, corresponding to outgoing connections.

Abstractness, Instability, and Distance from the
Main Sequence

While the raw value of component coupling has value to architects,
several other derived metrics allow a deeper evaluation. These
metrics were created by Robert Martin for a C++ book, but are
widely applicable to other object-oriented languages.

Abstractness is the ratio of abstract artifacts (abstract classes,
interfaces, and so on) to concrete artifacts (implementation). It
represents a measure of abstractness versus implementation. For
example, consider a code base with no abstractions, just a huge,
single function of code (as in a single main() method). The flip side
is a code base with too many abstractions, making it difficult for
developers to understand how things wire together (for example, it
takes developers a while to figure out what to do with an
AbstractSingletonProxyFactoryBean).



The formula for abstractness appears in Equation 3-3.

Equation 3-3. Abstractness

A =

In the equation, ma represents abstract elements (interfaces or
abstract classes) with the module, and mc represents concrete
elements (nonabstract classes). This metric looks for the same
criteria. The easiest way to visualize this metric: consider an
application with 5,000 lines of code, all in one main() method. The
abstractness numerator is 1, while the denominator is 5,000, yielding
an abstractness of almost 0. Thus, this metric measures the ratio of
abstractions in your code.

Architects calculate abstractness by calculating the ratio of the sum
of abstract artifacts to the sum of the concrete ones.

Another derived metric, instability, is defined as the ratio of efferent
coupling to the sum of both efferent and afferent coupling, shown in
Equation 3-4.

Equation 3-4. Instability

I =

In the equation, ce represents efferent (or outgoing) coupling, and ca

represents afferent (or incoming) coupling.

∑ma

∑mc

C e

C e + C a



The instability metric determines the volatility of a code base. A code
base that exhibits high degrees of instability breaks more easily when
changed because of high coupling. For example, if a class calls to
many other classes to delegate work, the calling class shows high
susceptibility to breakage if one or more of the called methods
change.

Distance from the Main Sequence

One of the few holistic metrics architects have for architectural
structure is distance from the main sequence, a derived metric based
on instability and abstractness, shown in Equation 3-5.

Equation 3-5. Distance from the main sequence

D = |A + I − 1|

In the equation, A = abstractness and I = instability.

Note that both abstractness and instability are ratios, meaning their
result will always fall between 0 and 1. Thus, when graphing the
relationship, we see the graph in Figure 3-2.





Figure 3-2. The main sequence defines the ideal relationship between abstractness and
instability

The distance metric imagines an ideal relationship between
abstractness and instability; classes that fall near this idealized line
exhibit a healthy mixture of these two competing concerns. For
example, graphing a particular class allows developers to calculate
the distance from the main sequence metric, illustrated in Figure 3-3.





Figure 3-3. Normalized distance from the main sequence for a particular class

In Figure 3-3, developers graph the candidate class, then measure the
distance from the idealized line. The closer to the line, the better
balanced the class. Classes that fall too far into the upper-righthand
corner enter into what architects call the zone of uselessness: code
that is too abstract becomes difficult to use. Conversely, code that
falls into the lower-lefthand corner enter the zone of pain: code with
too much implementation and not enough abstraction becomes brittle
and hard to maintain, illustrated in Figure 3-4.





Figure 3-4. Zones of Uselessness and Pain

Tools exist in many platforms to provide these measures, which assist
architects when analyzing code bases because of unfamiliarity,
migration, or technical debt assessment.

LIMITATIONS OF METRICS
While the industry has a few code-level metrics that provide valuable insight into code bases, our tools
are extremely blunt compared to analysis tools from other engineering disciplines. Even metrics
derived directly from the structure of code require interpretation. For example, cyclomatic complexity
(see “Cyclomatic Complexity”) measures complexity in code bases but cannot distinguish from
essential complexity (because the underlying problem is complex) or accidental complexity (the code
is more complex than it should be). Virtually all code-level metrics require interpretation, but it is still
useful to establish baselines for critical metrics such as cyclomatic complexity so that architects can
assess which type they exhibit. We discuss setting up just such tests in “Governance and Fitness
Functions”.

Notice that the previously mentioned book by Edward Yourdon and
and Larry Constantine (Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design) predates the
popularity of object-oriented languages, focusing instead on
structured programming constructs, such as functions (not methods).
It also defined other types of coupling that we do not cover here
because they have been supplanted by connascence.

Connascence

In 1996, Meilir Page-Jones published What Every Programmer
Should Know About Object-Oriented Design (Dorset House), refining
the afferent and efferent coupling metrics and recasting them to
object-oriented languages with a concept he named connascence.
Here’s how he defined the term:



Two components are connascent if a change in one would require
the other to be modified in order to maintain the overall
correctness of the system.

—Meilir Page-Jones

He developed two types of connascence: static and dynamic.

STATIC CONNASCENCE

Static connascence refers to source-code-level coupling (as opposed
to execution-time coupling, covered in “Dynamic connascence”); it is
a refinement of the afferent and efferent couplings defined by
Structured Design. In other words, architects view the following
types of static connascence as the degree to which something is
coupled, either afferently or efferently:

Connascence of Name (CoN)

Multiple components must agree on the name of an entity.

Names of methods represents the most common way that code
bases are coupled and the most desirable, especially in light of
modern refactoring tools that make system-wide name changes
trivial.

Connascence of Type (CoT)

Multiple components must agree on the type of an entity.

This type of connascence refers to the common facility in many
statically typed languages to limit variables and parameters to
specific types. However, this capability isn’t purely a language
feature—some dynamically typed languages offer selective
typing, notably Clojure and Clojure Spec.

https://clojure.org/
https://clojure.org/about/spec


Connascence of Meaning (CoM) or Connascence of Convention
(CoC)

Multiple components must agree on the meaning of particular
values.

The most common obvious case for this type of connascence in
code bases is hard-coded numbers rather than constants. For
example, it is common in some languages to consider defining
somewhere int TRUE = 1; int FALSE = 0. Imagine the
problems if someone flips those values.

Connascence of Position (CoP)

Multiple entities must agree on the order of values.

This is an issue with parameter values for method and function
calls even in languages that feature static typing. For example, if a
developer creates a method void updateSeat(String
name, String seatLocation) and calls it with the values
updateSeat("14D", "Ford, N"), the semantics aren’t
correct even if the types are.

Connascence of Algorithm (CoA)

Multiple components must agree on a particular algorithm.

A common case for this type of connascence occurs when a
developer defines a security hashing algorithm that must run on
both the server and client and produce identical results to
authenticate the user. Obviously, this represents a high form of
coupling—if either algorithm changes any details, the handshake
will no longer work.

DYNAMIC CONNASCENCE

The other type of connascence Page-Jones defined was dynamic
connascence, which analyses calls at runtime. The following is a



description of the different types of dynamic connascence:

Connascence of Execution (CoE)

The order of execution of multiple components is important.

Consider this code:

email = new Email();
email.setRecipient("foo@example.com");
email.setSender("me@me.com");
email.send();
email.setSubject("whoops");

It won’t work correctly because certain properties must be set in
order.

Connascence of Timing (CoT)

The timing of the execution of multiple components is important.

The common case for this type of connascence is a race condition
caused by two threads executing at the same time, affecting the
outcome of the joint operation.

Connascence of Values (CoV)

Occurs when several values relate on one another and must
change together.

Consider the case where a developer has defined a rectangle as
four points, representing the corners. To maintain the integrity of
the data structure, the developer cannot randomly change one of
points without considering the impact on the other points.

The more common and problematic case involves transactions,
especially in distributed systems. When an architect designs a
system with separate databases, yet needs to update a single value
across all of the databases, all the values must change together or
not at all.



Connascence of Identity (CoI)

Occurs when several values relate on one another and must
change together.

The common example of this type of connascence involves two
independent components that must share and update a common
data structure, such as a distributed queue.

Architects have a harder time determining dynamic connascence
because we lack tools to analyze runtime calls as effectively as we
can analyze the call graph.

CONNASCENCE PROPERTIES

Connascence is an analysis tool for architect and developers, and
some properties of connascence help developers use it wisely. The
following is a description of each of these connascence properties:

Strength

Architects determine the strength of connascence by the ease with
which a developer can refactor that type of coupling; different
types of connascence are demonstrably more desirable, as shown
in Figure 3-5. Architects and developers can improve the
coupling characteristics of their code base by refactoring toward
better types of connascence.

Architects should prefer static connascence to dynamic because
developers can determine it by simple source code analysis, and
modern tools make it trivial to improve static connascence. For
example, consider the case of connascence of meaning, which
developers can improve by refactoring to connascence of name by
creating a named constant rather than a magic value.





Figure 3-5. The strength on connascence provides a good refactoring guide

Locality

The locality of connascence measures how proximal the modules
are to each other in the code base. Proximal code (in the same
module) typically has more and higher forms of connascence than
more separated code (in separate modules or code bases). In other
words, forms of connascence that indicate poor coupling when far
apart are fine when closer together. For example, if two classes in
the same component have connascence of meaning, it is less
damaging to the code base than if two components have the same
form of connascence.

Developers must consider strength and locality together. Stronger
forms of connascence found within the same module represent
less code smell than the same connascence spread apart.

Degree

The degree of connascence relates to the size of its impact—does
it impact a few classes or many? Lesser degrees of connascence
damage code bases less. In other words, having high dynamic
connascence isn’t terrible if you only have a few modules.
However, code bases tend to grow, making a small problem
correspondingly bigger.

Page-Jones offers three guidelines for using connascence to improve
systems modularity:

1. Minimize overall connascence by breaking the system into
encapsulated elements

2. Minimize any remaining connascence that crosses
encapsulation boundaries

3. Maximize the connascence within encapsulation boundaries



The legendary software architecture innovator Jim Weirich
repopularized the concept of connascence and offers two great pieces
of advice:

Rule of Degree: convert strong forms of connascence into weaker
forms of connascence

Rule of Locality: as the distance between software elements
increases, use weaker forms of connascence

Unifying Coupling and Connascence Metrics

So far, we’ve discussed both coupling and connascence, measures
from different eras and with different targets. However, from an
architect’s point of view, these two views overlap. What Page-Jones
identifies as static connascence represents degrees of either incoming
or outgoing coupling. Structured programming only cares about in or
out, whereas connascence cares about how things are coupled
together. To help visualize the overlap in concepts, consider Figure 3-
6.



Figure 3-6. Unifying coupling and connascence

In Figure 3-6, the structured programming coupling concepts appear
on the left, while the connascence characteristics appear on the right.
What structured programming called data coupling (method calls),
connascence provides advice for how that coupling should manifest.
Structured programming didn’t really address the areas covered by
dynamic connascence; we encapsulate that concept shortly in
“Architectural Quanta and Granularity”.

THE PROBLEMS WITH 1990S CONNASCENCE



Several problems exist for architects when applying these useful
metrics for analyzing and designing systems. First, these measures
look at details at a low level of code, focusing on code quality and
hygiene than necessarily architectural structure. Architects tend to
care more about how modules are coupled rather than the degree of
coupling. For example, an architect cares about synchronous versus
asynchronous communication, and doesn’t care so much about how
that’s implemented.

The second problem with connascence lies with the fact that it
doesn’t really address a fundamental decision that many modern
architects must make—synchronous or asynchronous communication
in distributed architectures like microservices? Referring back to the
First Law of Software Architecture, everything is a trade-off. After
we discuss the scope of architecture characteristics in Chapter 7,
we’ll introduce new ways to think about modern connascence.

From Modules to Components
We use the term module throughout as a generic name for a bundling
of related code. However, most platforms support some form of
component, one of the key building blocks for software architects.
The concept and corresponding analysis of the logical or physical
separation has existed since the earliest days of computer science.
Yet, with all the writing and thinking about components and
separation, developers and architects still struggle with achieving
good outcomes.



We’ll discuss deriving components from problem domains in
Chapter 8, but we must first discuss another fundamental aspect of
software architecture: architecture characteristics and their scope.



Chapter 4. Architecture
Characteristics Defined

A company decides to solve a particular problem using software, so it
gathers a list of requirements for that system. A wide variety of
techniques exist for the exercise of requirements gathering, generally
defined by the software development process used by the team. But
the architect must consider many other factors in designing a
software solution, as illustrated in Figure 4-1.



Figure 4-1. A software solution consists of both domain requirements and architectural
characteristics

Architects may collaborate on defining the domain or business
requirements, but one key responsibility entails defining, discovering,
and otherwise analyzing all the things the software must do that isn’t
directly related to the domain functionality: architectural
characteristics.



What distinguishes software architecture from coding and design?
Many things, including the role that architects have in defining
architectural characteristics, the important aspects of the system
independent of the problem domain. Many organizations describe
these features of software with a variety of terms, including
nonfunctional requirements, but we dislike that term because it is
self-denigrating. Architects created that term to distinguish
architecture characteristics from functional requirements, but naming
something nonfunctional has a negative impact from a language
standpoint: how can teams be convinced to pay enough attention to
something “nonfunctional”? Another popular term is quality
attributes, which we dislike because it implies after-the-fact quality
assessment rather than design. We prefer architecture characteristics
because it describes concerns critical to the success of the
architecture, and therefore the system as a whole, without discounting
its importance.

An architecture characteristic meets three criteria:

Specifies a nondomain design consideration

Influences some structural aspect of the design

Is critical or important to application success

These interlocking parts of our definition are illustrated in Figure 4-2.



Figure 4-2. The differentiating features of architecture characteristics



The definition illustrated in Figure 4-2 consists of the three
components listed, in addition to a few modifiers:

Specifies a nondomain design consideration

When designing an application, the requirements specify what the
application should do; architecture characteristics specify
operational and design criteria for success, concerning how to
implement the requirements and why certain choices were made.
For example, a common important architecture characteristic
specifies a certain level of performance for the application, which
often doesn’t appear in a requirements document. Even more
pertinent: no requirements document states “prevent technical
debt,” but it is a common design consideration for architects and
developers. We cover this distinction between explicit and
implicit characteristics in depth in “Extracting Architecture
Characteristics from Domain Concerns”.

Influences some structural aspect of the design

The primary reason architects try to describe architecture
characteristics on projects concerns design considerations: does
this architecture characteristic require special structural
consideration to succeed? For example, security is a concern in
virtually every project, and all systems must take a baseline of
precautions during design and coding. However, it rises to the
level of architecture characteristic when the architect needs to
design something special. Consider two cases surrounding
payment in a example system:

Third-party payment processor

If an integration point handles payment details, then the
architecture shouldn’t require special structural
considerations. The design should incorporate standard



security hygiene, such as encryption and hashing, but doesn’t
require special structure.

In-application payment processing

If the application under design must handle payment
processing, the architect may design a specific module,
component, or service for that purpose to isolate the critical
security concerns structurally. Now, the architecture
characteristic has an impact on both architecture and design.

Of course, even these two criteria aren’t sufficient in many cases
to make this determination: past security incidents, the nature of
the integration with the third party, and a host of other criteria
may be present during this decision. Still, it shows some of the
considerations architects must make when determining how to
design for certain capabilities.

Critical or important to application success

Applications could support a huge number of architecture
characteristics…but shouldn’t. Support for each architecture
characteristic adds complexity to the design. Thus, a critical job
for architects lies in choosing the fewest architecture
characteristics rather than the most possible.

We further subdivide architecture characteristics into implicit versus
explicit architecture characteristics. Implicit ones rarely appear in
requirements, yet they’re necessary for project success. For example,
availability, reliability, and security underpin virtually all
applications, yet they’re rarely specified in design documents.
Architects must use their knowledge of the problem domain to
uncover these architecture characteristics during the analysis phase.
For example, a high-frequency trading firm may not have to specify
low latency in every system, yet the architects in that problem



domain know how critical it is. Explicit architecture characteristics
appear in requirements documents or other specific instructions.

In Figure 4-2, the choice of a triangle is intentional: each of the
definition elements supports the others, which in turn support the
overall design of the system. The fulcrum created by the triangle
illustrates the fact that these architecture characteristics often interact
with one another, leading to the pervasive use among architects of the
term trade-off.

Architectural Characteristics (Partially)
Listed
Architecture characteristics exist along a broad spectrum of the
software system, ranging from low-level code characteristics, such as
modularity, to sophisticated operational concerns, such as scalability
and elasticity. No true universal standard exists despite attempts to
codify ones in the past. Instead, each organization creates its own
interpretation of these terms. Additionally, because the software
ecosystem changes so fast, new concepts, terms, measures, and
verifications constantly appear, providing new opportunities for
architecture characteristics definitions.

Despite the volume and scale, architects commonly separate
architecture characteristics into broad categories. The following
sections describe a few, along with some examples.

Operational Architecture Characteristics



Operational architecture characteristics cover capabilities such as
performance, scalability, elasticity, availability, and reliability.
Table 4-1 lists some operational architecture characteristics.

Table 4-1. Common operational architecture characteristics

Ter
m Definition

Ava
ilab
ility

How long the system will need to be available (if 24/7, steps need to be in 
place to allow the system to be up and running quickly in case of any failure).

Con
tinu
ity

Disaster recovery capability.

Perf
orm
anc
e

Includes stress testing, peak analysis, analysis of the frequency of functions 
used, capacity required, and response times. Performance acceptance 
sometimes requires an exercise of its own, taking months to complete.

Rec
ove
rabi
lity

Business continuity requirements (e.g., in case of a disaster, how quickly is 
the system required to be on-line again?). This will affect the backup strategy 
and requirements for duplicated hardware.

Reli
abil
ity/
safe
ty

Assess if the system needs to be fail-safe, or if it is mission critical in a way 
that affects lives. If it fails, will it cost the company large sums of money?

Rob
ustn
ess

Ability to handle error and boundary conditions while running if the internet 
connection goes down or if there’s a power outage or hardware failure.

Sca
labi
lity

Ability for the system to perform and operate as the number of users or 
requests increases.



Operational architecture characteristics heavily overlap with
operations and DevOps concerns, forming the intersection of those
concerns in many software projects.

Structural Architecture Characteristics

Architects must concern themselves with code structure as well. In
many cases, the architect has sole or shared responsibility for code
quality concerns, such as good modularity, controlled coupling
between components, readable code, and a host of other internal
quality assessments.

Table 4-2 lists a few structural architecture characteristics.



Table 4-2. Structural architecture characteristics

Term Definition

Configu
rability

Ability for the end users to easily change aspects of the software’s 
configuration (through usable interfaces).

Extensib
ility

How important it is to plug new pieces of functionality in.

Installab
ility

Ease of system installation on all necessary platforms.

Leverag
eability/
reuse

Ability to leverage common components across multiple products.

Localiza
tion

Support for multiple languages on entry/query screens in data fields; on 
reports, multibyte character requirements and units of measure or 
currencies.

Maintai
nability

How easy it is to apply changes and enhance the system?

Portabili
ty

Does the system need to run on more than one platform? (For example, 
does the frontend need to run against Oracle as well as SAP DB?

Support
ability

What level of technical support is needed by the application? What level 
of logging and other facilities are required to debug errors in the system?

Upgrade
ability

Ability to easily/quickly upgrade from a previous version of this 
application/solution to a newer version on servers and clients.

Cross-Cutting Architecture Characteristics

While many architecture characteristics fall into easily recognizable
categories, many fall outside or defy categorization yet form
important design constraints and considerations. Table 4-3 describes a
few of these.



Table 4-3. Cross-cutting architecture characteristics

Ter
m Definition

Acce
ssibil
ity

Access to all your users, including those with disabilities like colorblindness 
or hearing loss.

Arch
ivabi
lity

Will the data need to be archived or deleted after a period of time? (For 
example, customer accounts are to be deleted after three months or marked 
as obsolete and archived to a secondary database for future access.)

Auth
entic
ation

Security requirements to ensure users are who they say they are.

Auth
oriza
tion

Security requirements to ensure users can access only certain functions 
within the application (by use case, subsystem, webpage, business rule, 
field level, etc.).

Lega
l

What legislative constraints is the system operating in (data protection, 
Sarbanes Oxley, GDPR, etc.)? What reservation rights does the company 
require? Any regulations regarding the way the application is to be built or 
deployed?

Priva
cy

Ability to hide transactions from internal company employees (encrypted 
transactions so even DBAs and network architects cannot see them).

Secu
rity

Does the data need to be encrypted in the database? Encrypted for network 
communication between internal systems? What type of authentication 
needs to be in place for remote user access?

Supp
ortab
ility

What level of technical support is needed by the application? What level of 
logging and other facilities are required to debug errors in the system?

Usab
ility/
achie
vabil
ity

Level of training required for users to achieve their goals with the 
application/solution. Usability requirements need to be treated as seriously 
as any other architectural issue.



Any list of architecture characteristics will necessarily be an
incomplete list; any software may invent important architectural
characteristics based on unique factors (see “Italy-ility” for an
example).

ITALY-ILITY
One of Neal’s colleagues recounts a story about the unique nature of architectural characteristics. She
worked for a client whose mandate required a centralized architecture. Yet, for each proposed design,
the first question from the client was “But what happens if we loose Italy?” Years ago, because of a
freak communication outage, the head office had lost communication with the Italian branches, and it
was organizationally traumatic. Thus, a firm requirement of all future architectures insisted upon what
the team eventually called Italy-ility, which they all knew meant a unique combination of availability,
recoverability, and resilience.

Additionally, many of the preceding terms are imprecise and
ambiguous, sometimes because of subtle nuance or the lack of
objective definitions. For example, interoperability and compatibility
may appear equivalent, which will be true for some systems.
However, they differ because interoperability implies ease of
integration with other systems, which in turn implies published,
documented APIs. Compatibility, on the other hand, is more
concerned with industry and domain standards. Another example is
learnability. One definition is how easy it is for users to learn to use
the software, and another definition is the level at which the system
can automatically learn about its environment in order to become
self-configuring or self-optimizing using machine learning
algorithms.

Many of the definitions overlap. For example, consider availability
and reliability, which seem to overlap in almost all cases. Yet
consider the internet protocol UDP, which underlies TCP. UDP is



available over IP but not reliable: the packets may arrive out of order,
and the receiver may have to ask for missing packets again.

No complete list of standards exists. The International Organization
for Standards (ISO) publishes a list organized by capabilities,
overlapping many of the ones we’ve listed, but mainly establishing an
incomplete category list. The following are some of the ISO
definitions:

Performance efficiency

Measure of the performance relative to the amount of resources
used under known conditions. This includes time behavior
(measure of response, processing times, and/or throughput rates),
resource utilization (amounts and types of resources used), and
capacity (degree to which the maximum established limits are
exceeded).

Compatibility

Degree to which a product, system, or component can exchange
information with other products, systems, or components and/or
perform its required functions while sharing the same hardware or
software environment. It includes coexistence (can perform its
required functions efficiently while sharing a common
environment and resources with other products) and
interoperability (degree to which two or more systems can
exchange and utilize information).

Usability

Users can use the system effectively, efficiently, and satisfactorily
for its intended purpose. It includes appropriateness
recognizability (users can recognize whether the software is
appropriate for their needs), learnability (how easy users can

https://oreil.ly/SKc_Y


learn how to use the software), user error protection (protection
against users making errors), and accessibility (make the software
available to people with the widest range of characteristics and
capabilities).

Reliability

Degree to which a system functions under specified conditions for
a specified period of time. This characteristic includes
subcategories such as maturity (does the software meet the
reliability needs under normal operation), availability (software is
operational and accessible), fault tolerance (does the software
operate as intended despite hardware or software faults), and
recoverability (can the software recover from failure by
recovering any affected data and reestablish the desired state of
the system.

Security

Degree the software protects information and data so that people
or other products or systems have the degree of data access
appropriate to their types and levels of authorization. This family
of characteristics includes confidentiality (data is accessible only
to those authorized to have access), integrity (the software
prevents unauthorized access to or modification of software or
data), nonrepudiation, (can actions or events be proven to have
taken place), accountability (can user actions of a user be traced),
and authenticity (proving the identity of a user).

Maintainability

Represents the degree of effectiveness and efficiency to which
developers can modify the software to improve it, correct it, or
adapt it to changes in environment and/or requirements. This
characteristic includes modularity (degree to which the software
is composed of discrete components), reusability (degree to
which developers can use an asset in more than one system or in



building other assets), analyzability (how easily developers can
gather concrete metrics about the software), modifiability (degree
to which developers can modify the software without introducing
defects or degrading existing product quality), and testability
(how easily developers and others can test the software).

Portability

Degree to which developers can transfer a system, product, or
component from one hardware, software, or other operational or
usage environment to another. This characteristic includes the
subcharacteristics of adaptability (can developers effectively and
efficiently adapt the software for different or evolving hardware,
software, or other operational or usage environments),
installability (can the software be installed and/or uninstalled in a
specified environment), and replaceability (how easily developers
can replace the functionality with other software).

The last item in the ISO list addresses the functional aspects of
software, which we do not believe belongs in this list:

Functional suitability
This characteristic represents the degree to which a product or
system provides functions that meet stated and implied needs
when used under specified conditions. This characteristic is
composed of the following subcharacteristics:

Functional completeness
Degree to which the set of functions covers all the specified
tasks and user objectives.

Functional correctness
Degree to which a product or system provides the correct
results with the needed degree of precision.

Functional appropriateness



Degree to which the functions facilitate the accomplishment
of specified tasks and objectives. These are not architecture
characteristics but rather the motivational requirements to
build the software. This illustrates how thinking about the
relationship between architecture characteristics and the
problem domain has evolved. We cover this evolution in
Chapter 7.

THE MANY AMBIGUITIES IN SOFTWARE ARCHITECTURE
A consistent frustration amongst architects is the lack of clear definitions of so many critical things,
including the activity of software architecture itself! This leads companies to define their own terms for
common things, which leads to industry-wide confusion because architects either use opaque terms
or, worse yet, use the same terms for wildly different meanings. As much as we’d like, we can’t impose
a standard nomenclature on the software development world. However, we do follow and recommend
the advice from domain-driven design to establish and use a ubiquitous language amongst fellow
employees to help ensure fewer term-based misunderstandings.

Trade-Offs and Least Worst Architecture
Applications can only support a few of the architecture characteristics
we’ve listed for a variety of reasons. First, each of the supported
characteristics requires design effort and perhaps structural support.
Second, the bigger problem lies with the fact that each architecture
characteristic often has an impact on others. For example, if an
architect wants to improve security, it will almost certainly negatively
impact performance: the application must do more on-the-fly
encryption, indirection for secrets hiding, and other activities that
potentially degrade performance.

A metaphor will help illustrate this interconnectivity. Apparently,
pilots often struggle learning to fly helicopters because it requires a
control for each hand and each foot, and changing one impacts the



others. Thus, flying a helicopter is a balancing exercise, which nicely
describes the trade-off process when choosing architecture
characteristics. Each architecture characteristic that an architect
designs support for potentially complicates the overall design.

Thus, architects rarely encounter the situation where they are able to
design a system and maximize every single architecture
characteristic. More often, the decisions come down to trade-offs
between several competing concerns.

TIP
Never shoot for the best architecture, but rather the least worst architecture.

Too many architecture characteristics leads to generic solutions that
are trying to solve every business problem, and those architectures
rarely work because the design becomes unwieldy.

This suggests that architects should strive to design architecture to be
as iterative as possible. If you can make changes to the architecture
more easily, you can stress less about discovering the exact correct
thing in the first attempt. One of the most important lessons of Agile
software development is the value of iteration; this holds true at all
levels of software development, including architecture.



Chapter 5. Identifying
Architectural Characteristics

Identifying the driving architectural characteristics is one of the first
steps in creating an architecture or determining the validity of an
existing architecture. Identifying the correct architectural
characteristics (“-ilities”) for a given problem or application requires
an architect to not only understand the domain problem, but also
collaborate with the problem domain stakeholders to determine what
is truly important from a domain perspective.

An architect uncovers architecture characteristics in at least three
ways by extracting from domain concerns, requirements, and implicit
domain knowledge. We previously discussed implicit characteristics
and we cover the other two here.

Extracting Architecture Characteristics
from Domain Concerns
An architect must be able to translate domain concerns to identify the
right architectural characteristics. For example, is scalability the most
important concern, or is it fault tolerance, security, or performance?
Perhaps the system requires all four characteristics combined.
Understanding the key domain goals and domain situation allows an



architect to translate those domain concerns to “-ilities,” which then
forms the basis for correct and justifiable architecture decisions.

One tip when collaborating with domain stakeholders to define the
driving architecture characteristics is to work hard to keep the final
list as short as possible. A common anti-pattern in architecture entails
trying to design a generic architecture, one that supports all the
architecture characteristics. Each architecture characteristic the
architecture supports complicates the overall system design;
supporting too many architecture characteristics leads to greater and
greater complexity before the architect and developers have even
started addressing the problem domain, the original motivation for
writing the software. Don’t obsess over the number of charateristics,
but rather the motivation to keep design simple.

CASE STUDY: THE VASA
The original story of over-specifying architecture characteristics and ultimately killing a project must be
the Vasa. It was a Swedish warship built between 1626 and 1628 by a king who wanted the most
magnificent ship ever created. Up until that time, ships were either troop transports or gunships—the
Vasa would be both! Most ships had one deck—the Vasa had two! All the cannons were twice the size
of those on similar ships. Despite some trepidation by the expert ship builders (who ultimately couldn’t
say no to King Adolphus), the shipbuilders finished the construction. In celebration, the ship sailed out
into the harbor and shot a cannon salute off one side. Unfortunately, because the ship was top-heavy,
it capsized and sank to the bottom of the bay in Sweden. In the early 20th century, salvagers rescued
the ship, which now resides in a museum in Stockholm.

Many architects and domain stakeholders want to prioritize the final
list of architecture characteristics that the application or system must
support. While this is certainly desirable, in most cases it is a fool’s
errand and will not only waste time, but also produce a lot of
unnecessary frustration and disagreement with the key stakeholders.



Rarely will all stakeholders agree on the priority of each and every
characteristic. A better approach is to have the domain stakeholders
select the top three most important characteristics from the final list
(in any order). Not only is this much easier to gain consensus on, but
it also fosters discussions about what is most important and helps the
architect analyze trade-offs when making vital architecture decisions.

Most architecture characteristics come from listening to key domain
stakeholders and collaborating with them to determine what is
important from a domain perspective. While this may seem like a
straightforward activity, the problem is that architects and domain
stakeholders speak different languages. Architects talk about
scalability, interoperability, fault tolerance, learnability, and
availability. Domain stakeholders talk about mergers and
acquisitions, user satisfaction, time to market, and competitive
advantage. What happens is a “lost in translation” problem where the
architect and domain stakeholder don’t understand each other.
Architects have no idea how to create an architecture to support user
satisfaction, and domain stakeholders don’t understand why there is
so much focus and talk about availability, interoperability,
learnability, and fault tolerance in the application. Fortunately, there
is usually a translation from domain concerns to architecture
characteristics. Table 5-1 shows some of the more common domain
concerns and the corresponding “-ilities” that support them.



Table 5-1. Translation of domain concerns to architecture 
characteristics

Domain 
concern Architecture characteristics

Mergers and 
acquisitions

Interoperability, scalability, adaptability, extensibility

Time to market Agility, testability, deployability

User satisfaction Performance, availability, fault tolerance, testability, 
deployability, agility, security

Competitive 
advantage

Agility, testability, deployability, scalability, availability, fault 
tolerance

Time and budget Simplicity, feasibility

One important thing to note is that agility does not equal time to
market. Rather, it is agility + testability + deployability. This is a trap
many architects fall into when translating domain concerns. Focusing
on only one of the ingredients is like forgetting to put the flour in the
cake batter. For example, a domain stakeholder might say something
like “Due to regulatory requirements, it is absolutely imperative that
we complete end-of-day fund pricing on time.” An ineffective
architect might just focus on performance because that seems to be
the primary focus of that domain concern. However, that architect
will fail for many reasons. First, it doesn’t matter how fast the system
is if it isn’t available when needed. Second, as the domain grows and
more funds are created, the system must be able to also scale to finish
end-of-day processing in time. Third, the system must not only be
available, but must also be reliable so that it doesn’t crash as end-of-
day fund prices are being calculated. Forth, what happens if the end-



of-day fund pricing is about 85% complete and the system crashes? It
must be able to recover and restart where the pricing left off. Finally,
the system may be fast, but are the fund prices being calculated
correctly? So, in addition to performance, the architect must also
equally place a focus on availability, scalability, reliability,
recoverability, and auditability.

Extracting Architecture Characteristics
from Requirements
Some architecture characteristics come from explicit statements in
requirements documents. For example, explicit expected numbers of
users and scale commonly appear in domain or domain concerns.
Others come from inherent domain knowledge by architects, one of
the many reasons that domain knowledge is always beneficial for
architects. For example, suppose an architect designs an application
that handles class registration for university students. To make the
math easy, assume that the school has 1,000 students and 10 hours for
registration. Should an architect design a system assuming consistent
scale, making the implicit assumption that the students during the
registration process will distribute themselves evenly over time? Or,
based on knowledge of university students habits and proclivities,
should the architect design a system that can handle all 1,000 students
attempting to register in the last 10 minutes? Anyone who
understands how much students stereotypically procrastinate knows
the answer to this question! Rarely will details like this appear in
requirements documents, yet they do inform the design decisions.



THE ORIGIN OF ARCHITECTURE KATAS
A few years ago, Ted Neward, a well-known architect, devised architecture katas, a clever method to
allow nascent architects a way to practice deriving architecture characteristics from domain-targeted
descriptions. From Japan and martial arts, a kata is an individual training exercise, where the
emphasis lies on proper form and technique.

How do we get great designers? Great designers design, of course.
—Fred Brooks

So how are we supposed to get great architects if they only get the chance to architect fewer than a
half dozen times in their career?

To provide a curriculum for aspiring architects, Ted created the first architecture katas site, which your
authors Neal and Mark adapted and updated. The basic premise of the kata exercise provides
architects with a problem stated in domain terms and additional context (things that might not appear
in requirements yet impact design). Small teams work for 45 minutes on a design, then show results to
the other groups, who vote on who came up with the best architecture. True to its original purpose,
architecture katas provide a useful laboratory for aspiring architects.

Each kata has predefined sections:

Description

The overall domain problem the system is trying to solve

Users

The expected number and/or types of users of the system

Requirements

Domain/domain-level requirements, as an architect might expect from domain users/domain
experts

Neal updated the format a few years later on his blog to add the additional context section to each
kata with important additional considerations, making the exercises more realistic.

Additional context

Many of the considerations an architect must make aren’t explicitly expressed in requirements but
rather by implicit knowledge of the problem domain

We encourage burgeoning architects to use the site to do their own kata exercise. Anyone can host a
brown-bag lunch where a team of aspiring architects can solve a problem and get an experienced
architect to evaluate the design and trade-off analysis, either on the spot or from a short analysis after
the fact. The design won’t be elaborate because the exercise is timeboxed. Team members ideally get
feedback from the experienced architecture about missed trade-offs and alternative designs.

http://nealford.com/katas


Case Study: Silicon Sandwiches
To illustrate several concepts, we use an architecture kata (see “The
Origin of Architecture Katas” for the origin of the concept). To show
how architects derive architecture characteristics from requirements,
we introduce the Silicon Sandwiches kata.

Description

A national sandwich shop wants to enable online ordering (in
addition to its current call-in service).

Users

Thousands, perhaps one day millions

Requirements

Users will place their order, then be given a time to pick up
their sandwich and directions to the shop (which must
integrate with several external mapping services that include
traffic information)

If the shop offers a delivery service, dispatch the driver with
the sandwich to the user

Mobile-device accessibility

Offer national daily promotions/specials

Offer local daily promotions/specials

Accept payment online, in person, or upon delivery

Additional context

Sandwich shops are franchised, each with a different owner

Parent company has near-future plans to expand overseas



Corporate goal is to hire inexpensive labor to maximize
profit

Given this scenario, how would an architect derive architecture
characteristics? Each part of the requirement might contribute to one
or more aspects of architecture (and many will not). The architect
doesn’t design the entire system here—considerable effort must still
go into crafting code to solve the domain statement. Instead, the
architect looks for things that influence or impact the design,
particularly structural.

First, separate the candidate architecture characteristics into explicit
and implicit characteristics.

Explicit Characteristics

Explicit architecture characteristics appear in a requirements
specification as part of the necessary design. For example, a shopping
website may aspire to support a particular number of concurrent
users, which domain analysts specify in the requirements. An
architect should consider each part of the requirements to see if it
contributes to an architecture characteristic. But first, an architect
should consider domain-level predictions about expected metrics, as
represented in the Users section of the kata.

One of the first details that should catch an architect’s eye is the
number of users: currently thousands, perhaps one day millions (this
is a very ambitious sandwich shop!). Thus, scalability—the ability to
handle a large number of concurrent users without serious
performance degradation—is one of the top architecture



characteristics. Notice that the problem statement didn’t explicitly ask
for scalability, but rather expressed that requirement as an expected
number of users. Architects must often decode domain language into
engineering equivalents.

However, we also probably need elasticity—the ability to handle
bursts of requests. These two characteristics often appear lumped
together, but they have different constraints. Scalability looks like the
graph shown in Figure 5-1.





Figure 5-1. Scalability measures the performance of concurrent users

Elasticity, on the other hand, measures bursts of traffic, as shown in
Figure 5-2.





Figure 5-2. Elastic systems must withstand bursts of users

Some systems are scalable but not elastic. For example, consider a
hotel reservation system. Absent special sales or events, the number
of users is probably consistent. In contrast, consider a concert ticket
booking system. As new tickets go on sale, fervent fans will flood the
site, requiring high degrees of elasticity. Often, elastic systems also
need scalability: the ability to handle bursts and high numbers of
concurrent users.

The requirement for elasticity did not appear in the Silicon
Sandwiches requirements, yet the architect should identify this as an
important consideration. Requirements sometimes state architecture
characteristics outright, but some lurk inside the problem domain.
Consider a sandwich shop. Is its traffic consistent throughout the
day? Or does it endure bursts of traffic around mealtimes? Almost
certainly the latter. Thus, a good architect should identify this
potential architecture characteristic.

An architect should consider each of these business requirements in
turn to see if architecture characteristics exist:

1. Users will place their order, then be given a time to pick up
their sandwich and directions to the shop (which must
provide the option to integrate with external mapping
services that include traffic information).

External mapping services imply integration points, which
may impact aspects such as reliability. For example, if a
developer builds a system that relies on a third-party system,
yet calling it fails, it impacts the reliability of the calling
system. However, architects must also be wary of over-



specifying architecture characteristics. What if the external
traffic service is down? Should the Silicon Sandwiches site
fail, or should it just offer slightly less efficiency without
traffic information? Architects should always guard against
building unnecessary brittleness or fragility into designs.

2. If the shop offers a delivery service, dispatch the driver with
the sandwich to the user.

No special architecture characteristics seem necessary to
support this requirement.

3. Mobile-device accessibility.

This requirement will primarily affect the design of the
application, pointing toward building either a portable web
application or several native web applications. Given the
budget constraints and simplicity of the application, an
architect would likely deem it overkill to build multiple
applications, so the design points toward a mobile-optimized
web application. Thus, the architect may want to define
some specific performance architecture characteristics for
page load time and other mobile-sensitive characteristics.
Notice that the architect shouldn’t act alone in situations like
this, but should instead collaborate with user experience
designers, domain stakeholders, and other interested parties
to vet decisions like this.

4. Offer national daily promotions/specials.

5. Offer local daily promotions/specials.

Both of these requirements specify customizability across
both promotions and specials. Notice that requirement 1 also
implies customized traffic information based on address.
Based on all three of these requirements, the architect may
consider customizability as an architecture characteristic. For
example, an architecture style such as microkernel



architecture supports customized behavior extremely well by
defining a plug-in architecture. In this case, the default
behavior appears in the core, and developers write the
optional customized parts, based on location, via plug-ins.
However, a traditional design can also accommodate this
requirement via design patterns (such as Template Method).
This conundrum is common in architecture and requires
architects to constantly weight trade-offs between competing
options. We discuss particular trade-off in more detail in
“Design Versus Architecture and Trade-Offs”.

6. Accept payment online, in person, or upon delivery.

Online payments imply security, but nothing in this
requirement suggests a particularly heightened level of
security beyond what’s implicit.

7. Sandwich shops are franchised, each with a different owner.

This requirement may impose cost restrictions on the
architecture—the architect should check the feasibility
(applying constraints like cost, time, and staff skill set) to see
if a simple or sacrificial architecture is warranted.

8. Parent company has near-future plans to expand overseas.

This requirement implies internationalization, or i18n. Many
design techniques exist to handle this requirement, which
shouldn’t require special structure to accommodate. This
will, however, certainly drive design decisions.

9. Corporate goal is to hire inexpensive labor to maximize
profit.

This requirement suggests that usability will be important,
but again is more concerned with design than architecture
characteristics.



The third architecture characteristic we derive from the preceding
requirements is performance: no one wants to buy from a sandwich
shop that has poor performance, especially at peak times. However,
performance is a nuanced concept—what kind of performance should
the architect design for? We cover the various nuances of
performance in Chapter 6.

We also want to define performance numbers in conjunction with
scalability numbers. In other words, we must establish a baseline of
performance without particular scale, as well as determine what an
acceptable level of performance is given a certain number of users.
Quite often, architecture characteristics interact with one another,
forcing architects to define them in relation to one another.

Implicit Characteristics

Many architecture characteristics aren’t specified in requirements
documents, yet they make up an important aspect of the design. One
implicit architecture characteristic the system might want to support
is availability: making sure users can access the sandwich site.
Closely related to availability is reliability: making sure the site stays
up during interactions—no one wants to purchase from a site that
continues dropping connections, forcing them to log in again.

Security appears as an implicit characteristic in every system: no one
wants to create insecure software. However, it may be prioritized
depending on criticality, which illustrates the interlocking nature of
our definition. An architect considers security an architecture



characteristic if it influences some structural aspect of the design and
is critical or important to the application.

For Silicon Sandwiches, an architect might assume that payments
should be handled by a third party. Thus, as long as developers follow
general security hygiene (not passing credit card numbers as plain
text, not storing too much information, and so on), the architect
shouldn’t need any special structural design to accommodate security;
good design in the application will suffice. Each architecture
characteristic interacts with the others, leading to the common pitfall
of architects of over-specifying architecture characteristics, which is
just as damaging as under-specifying them because it
overcomplicates the system design.

The last major architecture characteristic that Silicon Sandwiches
needs to support encompasses several details from the requirements:
customizability. Notice that several parts of the problem domain offer
custom behavior: recipes, local sales, and directions that may be
locally overridden. Thus, the architecture should support the ability to
facilitate custom behavior. Normally, this would fall into the design
of the application. However, as our definition specifies, a part of the
problem domain that relies on custom structure to support it moves
into the realm of an architecture characteristic. This design element
isn’t critical to the success of the application though. It is important to
note that there are no correct answers in choosing architecture
characteristics, only incorrect ones (or, as Mark notes in one of his
well-known quotes):

There are no wrong answers in architecture, only expensive ones.



DESIGN VERSUS ARCHITECTURE AND TRADE-OFFS
In the Silicon Sandwiches kata, an architect would likely identify customizability as a part of the
system, but the question then becomes: architecture or design? The architecture implies some
structural component, whereas design resides within the architecture. In the customizability case of
Silicon Sandwiches, the architect could choose an architecture style like microkernel and build
structural support for customization. However, if the architect chose another style because of
competing concerns, developers could implement the customization using the Template Method
design pattern, which allows parent classes to define workflow that can be overridden in child classes.
Which design is better?

Like in all architecture, it depends on a number of factors. First, are there good reasons, such as
performance and coupling, not to implement a microkernel architecture? Second, are other desirable
architecture characteristics more difficult in one design versus the other? Third, how much would it
cost to support all the architecture characteristics in each design versus pattern? This type of
architectural trade-off analysis makes up an important part of an architect’s role.

Above all, it is critical for the architect to collaborate with the developers, project manager, operations
team, and other co-constructors of the software system. No architecture decision should be made
isolated from the implementation team (which leads to the dreaded Ivory Tower Architect anti-pattern).
In the case of Silicon Sandwiches, the architect, tech lead, developers, and domain analysts should
collaborate to decide how best to implement customizability.

An architect could design an architecture that doesn’t accommodate
customizability structurally, requiring the design of the application
itself to support that behavior (see “Design Versus Architecture and
Trade-Offs”). Architects shouldn’t stress too much about discovering
the exactly correct set of architecture characteristics—developers can
implement functionality in a variety of ways. However, correctly
identifying important structural elements may facilitate a simpler or
more elegant design. Architects must remember: there is no best
design in architecture, only a least worst collection of trade-offs.

Architects must also prioritize these architecture characteristics
toward trying to find the simplest required sets. A useful exercise
once the team has made a first pass at identifying the architecture
characteristics is to try to determine the least important one—if you



must eliminate one, which would it be? Generally, architects are more
likely to cull the explicit architecture characteristics, as many of the
implicit ones support general success. The way we define what’s
critical or important to success assists architects in determining if the
application truly requires each architecture characteristic. By
attempting to determine the least applicable one, architects can help
determine critical necessity. In the case of Silicon Sandwiches, which
architecture characteristic that we have identified is least important?
Again, no absolute correct answer exists. However, in this case, the
solution could lose either customizability or performance. We could
eliminate customizability as an architecture characteristic and plan to
implement that behavior as part of application design. Of the
operational architecture characteristics, performance is likely the least
critical for success. Of course, the developers don’t mean to build an
application that has terrible performance, but rather one that doesn’t
prioritize performance over other characteristics, such as scalability
or availability.



Chapter 6. Measuring and
Governing Architecture
Characteristics

Architects must deal with the extraordinarily wide variety of
architecture characteristics across all different aspects of software
projects. Operational aspects like performance, elasticity, and
scalability comingle with structural concerns such as modularity and
deployability. This chapter focuses on concretely defining some of
the more common architecture characteristics and building
governance mechanisms for them.

Measuring Architecture Characteristics
Several common problems exist around the definition of architecture
characteristics in organizations:

They aren’t physics

Many architecture characteristics in common usage have vague
meanings. For example, how does an architect design for agility
or deployability? The industry has wildly differing perspectives
on common terms, sometimes driven by legitimate differing
contexts, and sometimes accidental.

Wildly varying definitions



Even within the same organization, different departments may
disagree on the definition of critical features such as performance.
Until developers, architecture, and operations can unify on a
common definition, a proper conversation is difficult.

Too composite

Many desirable architecture characteristics comprise many others
at a smaller scale. For example, developers can decompose agility
into characteristics such as modularity, deployability, and
testability.

Objective definitions for architecture characteristics solve all three
problems: by agreeing organization-wide on concrete definitions for
architecture characteristics, teams create a ubiquitous language
around architecture. Also, by encouraging objective definitions,
teams can unpack composite characteristics to uncover measurable
features they can objectively define.

Operational Measures

Many architecture characteristics have obvious direct measurements,
such as performance or scalability. However, even these offer many
nuanced interpretations, depending on the team’s goals. For example,
perhaps a team measures the average response time for certain
requests, a good example of an operational architecture
characteristics measure. But if teams only measure the average, what
happens if some boundary condition causes 1% of requests to take 10
times longer than others? If the site has enough traffic, the outliers
may not even show up. Therefore, a team may also want to measure
the maximum response times to catch outliers.



THE MANY FLAVORS OF PERFORMANCE
Many of the architecture characteristics we describe have multiple, nuanced definitions. Performance
is a great example. Many projects look at general performance: for example, how long request and
response cycles take for a web application. However, architects and DevOps engineers have
performed a tremendous amount of work on establishing performance budgets: specific budgets for
specific parts of the application. For example, many organizations have researched user behavior and
determined that the optimum time for first-page render (the first visible sign of progress for a webpage,
in a browser or mobile device) is 500 ms—half a second; Most applications fall in the double-digit
range for this metric. But, for modern sites that attempt to capture as many users as possible, this is
an important metric to track, and the organizations behind them have built extremely nuanced
measures.

Some of these metrics have additional implications for the design of applications. Many forward-
thinking organizations place K-weight budgets for page downloads: a maximum number of bytes’
worth of libraries and frameworks allowed on a particular page. Their rationale behind this structure
derives from physics constraints: only so many bytes can travel over a network at a time, especially for
mobile devices in high-latency areas.

High-level teams don’t just establish hard performance numbers; they
base their definitions on statistical analysis. For example, say a video
streaming service wants to monitor scalability. Rather than set an
arbitrary number as the goal, engineers measure the scale over time
and build statistical models, then raise alarms if the real-time metrics
fall outside the prediction models. A failure can mean two things: the
model is incorrect (which teams like to know) or something is amiss
(which teams also like to know).

The kinds of characteristics that teams can now measure are evolving
rapidly, in conjunction with tools and nuanced understanding. For
example, many teams recently focused on performance budgets for
metrics such as first contentful paint and first CPU idle, both of
which speak volumes about performance issues for users of webpages
on mobile devices. As devices, targets, capabilities, and myriad other
things change, teams will find new things and ways to measure.



Structural Measures

Some objective measures are not so obvious as performance. What
about internal structural characteristics, such as well-defined
modularity? Unfortunately, comprehensive metrics for internal code
quality don’t yet exist. However, some metrics and common tools do
allow architects to address some critical aspects of code structure,
albeit along narrow dimensions.

An obvious measurable aspect of code is complexity, defined by the
cyclomatic complexity metric.



CYCLOMATIC COMPLEXITY
Cyclomatic Complexity (CC) is a code-level metric designed to provide an object measure for the
complexity of code, at the function/method, class, or application level, developed by Thomas McCabe,
Sr., in 1976.

It is computed by applying graph theory to code, specifically decision points, which cause different
execution paths. For example, if a function has no decision statements (such as if statements), then
CC = 1. If the function had a single conditional, then CC = 2 because two possible execution paths
exist.

The formula for calculating the CC for a single function or method is CC = E − N + 2, where N
represents nodes (lines of code), and E represents edges (possible decisions). Consider the C-like
code shown in Example 6-1.

Example 6-1. Sample code for cyclomatic complexity evaluation
public void decision(int c1, int c2) { 
    if (c1 < 100) 
        return 0; 
    else if (c1 + C2 > 500) 
       return 1; 
    else 
      return -1;
}

The cyclomatic complexity for Example 6-1 is 3 (=5 – 4 + 2); the graph appears in Figure 6-1.

https://oreil.ly/mAHFZ


Figure 6-1. Cyclomatic Complexity for the decision function

The number 2 appearing in the cyclomatic complexity formula represents a simplification for a single
function/method. For fan-out calls to other methods (known as connected components in graph
theory), the more general formula is CC = E − N + 2P , where P represents the number of
connected components.

Architects and developers universally agree that overly complex code
represents a code smell; it harms virtually every one of the desirable
characteristics of code bases: modularity, testability, deployability,



and so on. Yet if teams don’t keep an eye on gradually growing
complexity, that complexity will dominate the code base.

WHAT’S A GOOD VALUE FOR CYCLOMATIC COMPLEXITY?
A common question the authors receive when talking about this subject is: what’s a good threshold
value for CC? Of course, like all answers in software architecture: it depends! It depends on the
complexity of the problem domain. For example, if you have an algorithmically complex problem, the
solution will yield complex functions. Some of the key aspects of CC for architects to monitor: are
functions complex because of the problem domain or because of poor coding? Alternatively, is the
code partitioned poorly? In other words, could a large method be broken down into smaller, logical
chunks, distributing the work (and complexity) into more well-factored methods?

In general, the industry thresholds for CC suggest that a value under 10 is acceptable, barring other
considerations such as complex domains. We consider that threshold very high and would prefer code
to fall under five, indicating cohesive, well-factored code. A metrics tool in the Java world, Crap4J,
attempts to determine how poor (crappy) your code is by evaluating a combination of CC and code
coverage; if CC grows to over 50, no amount of code coverage rescues that code from crappiness.
The most terrifying professional artifact Neal ever encountered was a single C function that served as
the heart of a commercial software package whose CC was over 800! It was a single function with
over 4,000 lines of code, including the liberal use of GOTO statements (to escape impossibly deeply
nested loops).

Engineering practices like test-driven development have the accidental (but positive) side effect of
generating smaller, less complex methods on average for a given problem domain. When practicing
TDD, developers try to write a simple test, then write the smallest amount of code to pass the test.
This focus on discrete behavior and good test boundaries encourages well-factored, highly cohesive
methods that exhibit low CC.

Process Measures

Some architecture characteristics intersect with software development
processes. For example, agility often appears as a desirable feature.
However, it is a composite architecture characteristic that architects
may decompose into features such as testability, and deployability.

Testability is measurable through code coverage tools for virtually all
platforms that assess the completeness of testing. Like all software
checks, it cannot replace thinking and intent. For example, a code

http://www.crap4j.org/


base can have 100% code coverage yet poor assertions that don’t
actually provide confidence in code correctness. However, testability
is clearly an objectively measurable characteristic. Similarly, teams
can measure deployability via a variety of metrics: percentage of
successful to failed deployments, how long deployments take,
issues/bugs raised by deployments, and a host of others. Each team
bears the responsibility to arrive at a good set of measurements that
capture useful data for their organization, both in quality and quantity.
Many of these measures come down to team priorities and goals.

Agility and its related parts clearly relate to the software development
process. However, that process may impact the structure of the
architecture. For example, if ease of deployment and testability are
high priorities, then an architect would place more emphasis on good
modularity and isolation at the architecture level, an example of an
architecture characteristic driving a structural decision. Virtually
anything within the scope of a software project may rise to the level
of an architecture characteristic if it manages to meet our three
criteria, forcing an architect to make design decisions to account for
it.

Governance and Fitness Functions
Once architects have established architecture characteristics and
prioritized them, how can they make sure that developers will respect
those priorities? Modularity is a great example of an aspect of
architecture that is important but not urgent; on many software
projects, urgency dominates, yet architects still need a mechanism for
governance.



Governing Architecture Characteristics

Governance, derived from the Greek word kubernan (to steer) is an
important responsibility of the architect role. As the name implies,
the scope of architecture governance covers any aspect of the
software development process that architects (including roles like
enterprise architects) want to exert an influence upon. For example,
ensuring software quality within an organization falls under the
heading of architectural governance because it falls within the scope
of architecture, and negligence can lead to disastrous quality
problems.

Fortunately, increasingly sophisticated solutions exist to relieve this
problem from architects, a good example of the incremental growth
in capabilities within the software development ecosystem. The drive
toward automation on software projects spawned by Extreme
Programming created continuous integration, which led to further
automation into operations, which we now call DevOps, continuing
through to architectural governance. The book Building Evolutionary
Architectures (O’Reilly) describes a family of techniques, called
fitness functions, used to automate many aspects of architecture
governance.

Fitness Functions

The word “evolutionary” in Building Evolutionary Architectures
comes more from evolutionary computing than biology. One of the
authors, Dr. Rebecca Parsons, spent some time in the evolutionary
computing space, including tools like genetic algorithms. A genetic
algorithm executes and produces an answer and then undergoes

http://www.extremeprogramming.org/
http://shop.oreilly.com/product/0636920080237.do


mutation by well-known techniques defined within the evolutionary
computing world. If a developer tries to design a genetic algorithm to
produce some beneficial outcome, they often want to guide the
algorithm, providing an objective measure indicating the quality of
the outcome. That guidance mechanism is called a fitness function: an
object function used to assess how close the output comes to
achieving the aim. For example, suppose a developer needed to solve
the traveling salesperson problem, a famous problem used as a basis
for machine learning. Given a salesperson and a list of cities they
must visit, with distances between them, what is the optimum route?
If a developer designs a genetic algorithm to solve this problem, one
fitness function might evaluate the length of the route, as the shortest
possible one represents highest success. Another fitness function
might be to evaluate the overall cost associated with the route and
attempt to keep cost at a minimum. Yet another might be to evaluate
the time the traveling salesperson is away and optimize to shorten the
total travel time.

Practices in evolutionary architecture borrow this concept to create an
architecture fitness function:

Architecture fitness function

Any mechanism that provides an objective integrity assessment of
some architecture characteristic or combination of architecture
characteristics

Fitness functions are not some new framework for architects to
download, but rather a new perspective on many existing tools.
Notice in the definition the phrase any mechanism—the verification

https://oreil.ly/GApjt


techniques for architecture characteristics are as varied as the
characteristics are. Fitness functions overlap many existing
verification mechanisms, depending on the way they are used: as
metrics, monitors, unit testing libraries, chaos engineering, and so on,
illustrated in Figure 6-2.

Figure 6-2. The mechanisms of fitness functions

Many different tools may be used to implement fitness functions,
depending on the architecture characteristics. For example, in
“Coupling” we introduced metrics to allow architects to assess



modularity. Here are a couple of examples of fitness functions that
test various aspects of modularity.

CYCLIC DEPENDENCIES

Modularity is an implicit architecture characteristic that most
architects care about, because poorly maintained modularity harms
the structure of a code base; thus, architects should place a high
priority on maintaining good modularity. However, forces work
against the architect’s good intentions on many platforms. For
example, when coding in any popular Java or .NET development
environment, as soon as a developer references a class not already
imported, the IDE helpfully presents a dialog asking the developers if
they would like to auto-import the reference. This occurs so often that
most programmers develop the habit of swatting the auto-import
dialog away like a reflex action. However, arbitrarily importing
classes or components between one another spells disaster for
modularity. For example, Figure 6-3 illustrates a particularly
damaging anti-pattern that architects aspire to avoid.



Figure 6-3. Cyclic dependencies between components

In Figure 6-3, each component references something in the others.
Having a network of components such as this damages modularity
because a developer cannot reuse a single component without also
bringing the others along. And, of course, if the other components are
coupled to other components, the architecture tends more and more



toward the Big Ball of Mud anti-pattern. How can architects govern
this behavior without constantly looking over the shoulders of
trigger-happy developers? Code reviews help but happen too late in
the development cycle to be effective. If an architect allows a
development team to rampantly import across the code base for a
week until the code review, serious damage has already occurred in
the code base.

The solution to this problem is to write a fitness function to look after
cycles, as shown in Example 6-2.

Example 6-2. Fitness function to detect component cycles
public class CycleTest { 
    private JDepend jdepend; 
 
    @BeforeEach 
    void init() { 
   jdepend = new JDepend(); 
   
jdepend.addDirectory("/path/to/project/persistence/classes"); 
   
jdepend.addDirectory("/path/to/project/web/classes"); 
   
jdepend.addDirectory("/path/to/project/thirdpartyjars"); 
    } 
 
    @Test 
    void testAllPackages() { 
   Collection packages = jdepend.analyze(); 
   assertEquals("Cycles exist", false, 
jdepend.containsCycles()); 
    }
}

In the code, an architect uses the metrics tool JDepend to check the
dependencies between packages. The tool understands the structure
of Java packages and fails the test if any cycles exist. An architect
can wire this test into the continuous build on a project and stop

https://oreil.ly/usx7p
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worrying about the accidental introduction of cycles by trigger-happy
developers. This is a great example of a fitness function guarding the
important rather than urgent practices of software development: it’s
an important concern for architects yet has little impact on day-to-day
coding.

DISTANCE FROM THE MAIN SEQUENCE FITNESS
FUNCTION

In “Coupling”, we introduced the more esoteric metric of distance
from the main sequence, which architects can also verify using fitness
functions, as shown in Example 6-3.

Example 6-3. Distance from the main sequence fitness function
@Test
void AllPackages() { 
    double ideal = 0.0; 
    double tolerance = 0.5; // project-dependent 
    Collection packages = jdepend.analyze(); 
    Iterator iter = packages.iterator(); 
    while (iter.hasNext()) { 
      JavaPackage p = (JavaPackage)iter.next(); 
      assertEquals("Distance exceeded: " + p.getName(), 
     ideal, p.distance(), tolerance); 
    }
}

In the code, the architect uses JDepend to establish a threshold for
acceptable values, failing the test if a class falls outside the range.

This is both an example of an objective measure for an architecture
characteristic and the importance of collaboration between developers
and architects when designing and implementing fitness functions.
The intent is not for a group of architects to ascend to an ivory tower



and develop esoteric fitness functions that developers cannot
understand.

TIP
Architects must ensure that developers understand the purpose of the fitness
function before imposing it on them.

The sophistication of fitness function tools has increased over the last
few years, including some special purpose tools. One such tool is
ArchUnit, a Java testing framework inspired by and using several
parts of the JUnit ecosystem. ArchUnit provides a variety of
predefined governance rules codified as unit tests and allows
architects to write specific tests that address modularity. Consider the
layered architecture illustrated in Figure 6-4.

https://www.archunit.org/
https://junit.org/




Figure 6-4. Layered architecture

When designing a layered monolith such as the one in Figure 6-4, the
architect defines the layers for good reason (motivations, trade-offs,
and other aspects of the layered architecture are described in
Chapter 10). However, how can the architect ensure that developers
will respect those layers? Some developers may not understand the
importance of the patterns, while others may adopt a “better to ask
forgiveness than permission” attitude because of some overriding
local concern such as performance. But allowing implementers to
erode the reasons for the architecture hurts the long-term health of the
architecture.

ArchUnit allows architects to address this problem via a fitness
function, shown in Example 6-4.

Example 6-4. ArchUnit fitness function to govern layers
layeredArchitecture() 
    .layer("Controller").definedBy("..controller..") 
    .layer("Service").definedBy("..service..") 
    .layer("Persistence").definedBy("..persistence..") 
 
    .whereLayer("Controller").mayNotBeAccessedByAnyLayer() 
    
.whereLayer("Service").mayOnlyBeAccessedByLayers("Controller") 
    
.whereLayer("Persistence").mayOnlyBeAccessedByLayers("Service")

In Example 6-4, the architect defines the desirable relationship
between layers and writes a verification fitness function to govern it.

A similar tool in the .NET space, NetArchTest, allows similar tests
for that platform; a layer verification in C# appears in Example 6-5.

https://oreil.ly/EMXpv


Example 6-5. NetArchTest for layer dependencies
// Classes in the presentation should not directly reference 
repositories
var result = Types.InCurrentDomain() 
    .That() 
    
.ResideInNamespace("NetArchTest.SampleLibrary.Presentation") 

    .ShouldNot() 

    .HaveDependencyOn("NetArchTest.SampleLibrary.Data") 

    .GetResult() 

    .IsSuccessful;

Another example of fitness functions is Netflix’s Chaos Monkey and
the attendant Simian Army. In particular, the Conformity, Security,
and Janitor Monkeys exemplify this approach. The Conformity
Monkey allows Netflix architects to define governance rules enforced
by the monkey in production. For example, if the architects decided
that each service should respond usefully to all RESTful verbs, they
build that check into the Conformity Monkey. Similarly, the Security
Monkey checks each service for well-known security defects, like
ports that shouldn’t be active and configuration errors. Finally, the
Janitor Monkey looks for instances that no other services route to
anymore. Netflix has an evolutionary architecture, so developers
routinely migrate to newer services, leaving old services running with
no collaborators. Because services running on the cloud consume
money, the Janitor Monkey looks for orphan services and
disintegrates them out of production.

https://oreil.ly/GipHq


THE ORIGIN OF THE SIMIAN ARMY
When Netflix decided to move its operations to Amazon’s cloud, the architects worried over the fact
that they no longer had control over operations—what happens if a defect appears operationally? To
solve this problem, they spawned the discipline of Chaos Engineering with the original Chaos Monkey,
and eventually the Simian Army. The Chaos Monkey simulated general chaos within the production
environment to see how well their system would endure it. Latency was a problem with some AWS
instances, thus the Chaos Monkey would simulate high latency (which was such a problem, they
eventually created a specialized monkey for it, the Latency Monkey). Tools such as the Chaos Kong,
which simulates an entire Amazon data center failure, helped Netflix avoid such outages when they
occured for real.

Chaos engineering offers an interesting new perspective on architecture: it’s not a question of if
something will eventually break, but when. Anticipating those breakages and tests to prevent them
makes systems much more robust.

A few years ago, the influential book The Checklist Manifesto by
Atul Gawande (Picador) described how professions such as airline
pilots and surgeons use checklists (sometimes legally mandated). It’s
not because those professionals don’t know their jobs or are forgetful.
Rather, when professionals do a highly detailed job over and over, it
becomes easy for details to slip by; a succinct checklist forms an
effective reminder. This is the correct perspective on fitness functions
—rather than a heavyweight governance mechanism, fitness
functions provide a mechanism for architects to express important
architectural principles and automatically verify them. Developers
know that they shouldn’t release insecure code, but that priority
competes with dozens or hundreds of other priorities for busy
developers. Tools like the Security Monkey specifically, and fitness
functions generally, allow architects to codify important governance
checks into the substrate of the architecture.

https://oreil.ly/XNcV9


Chapter 7. Scope of
Architecture Characteristics

A prevailing axiomatic assumption in the software architecture world
had traditionally placed the scope of architecture characteristics at the
system level. For example, when architects talk about scalability, they
generally couch that discussion around the scalability of the entire
system. That was a safe assumption a decade ago, when virtually all
systems were monolithic. With the advent of modern engineering
techniques and the architecture styles they enabled, such as
microservices, the scope of architecture characteristics has narrowed
considerably. This is a prime example of an axiom slowly becoming
outdated as the software development ecosystem continues its
relentless evolution.

During the writing of the Building Evolutionary Architectures book,
the authors needed a technique to measure the structural evolvability
of particular architecture styles. None of the existing measures
offered the correct level of detail. In “Structural Measures”, we
discuss a variety of code-level metrics that allow architects to analyze
structural aspects of an architecture. However, all these metrics only
reveal low-level details about the code, and cannot evaluate
dependent components (such as databases) outside the code base that
still impact many architecture characteristics, especially operational
ones. For example, no matter how much an architect puts effort into

http://evolutionaryarchitecture.com/


designing a performant or elastic code base, if the system uses a
database that doesn’t match those characteristics, the application
won’t be successful.

When evaluating many operational architecture characteristics, an
architect must consider dependent components outside the code base
that will impact those characteristics. Thus, architects need another
method to measure these kinds of dependencies. That lead the
Building Evolutionary Architectures authors to define the term
architecture quantum. To understand the architecture quantum
definition, we must preview one key metric here, connascence.

Coupling and Connascence
Many of the code-level coupling metrics, such as afferent and efferent
coupling (described in “Structural Measures”), reveal details at a too
fine-grained level for architectural analysis. In 1996, Meilir Page-
Jones published a book titled What Every Programmer Should Know
About Object Oriented Design (Dorset House) that included several
new measures of coupling he named connascence, which is defined
as follows:

Connascence

Two components are connascent if a change in one would require
the other to be modified in order to maintain the overall
correctness of the system

He defined two types of connascence: static, discoverable via static
code analysis, and dynamic, concerning runtime behavior. To define



the architecture quantum, we needed a measure of how components
are “wired” together, which corresponds to the connascence concept.
For example, if two services in a microservices architecture share the
same class definition of some class, like address, we say they are
statically connascent with each other—changing the shared class
requires changes to both services.

For dynamic connascence, we define two types: synchronous and
asynchronous. Synchronous calls between two distributed services
have the caller wait for the response from the callee. On the other
hand, asynchronous calls allow fire-and-forget semantics in event-
driven architectures, allowing two different services to differ in
operational architecture

Architectural Quanta and Granularity
Component-level coupling isn’t the only thing that binds software
together. Many business concepts semantically bind parts of the
system together, creating functional cohesion. To successfully design,
analyze, and evolve software, developers must consider all the
coupling points that could break.

Many science-literate developers know of the concept of quantum
from physics, the minimum amount of any physical entity involved in
an interaction. The word quantum derives from Latin, meaning “how
great” or “how much.” We have adopted this notion to define an
architecture quantum:

Architecture quantum



An independently deployable artifact with high functional
cohesion and synchronous connascence

This definition contains several parts, dissected here:

Independently deployable

An architecture quantum includes all the necessary components to
function independently from other parts of the architecture. For
example, if an application uses a database, it is part of the
quantum because the system won’t function without it. This
requirement means that virtually all legacy systems deployed
using a single database by definition form a quantum of one.
However, in the microservices architecture style, each service
includes its own database (part of the bounded context driving
philosophy in microservices, described in detail in Chapter 17),
creating multiple quanta within that architecture.

High functional cohesion

Cohesion in component design refers to how well the contained
code is unified in purpose. For example, a Customer
component with properties and methods all pertaining to a
Customer entity exhibits high cohesion; whereas a Utility
component with a random collection of miscellaneous methods
would not.

High functional cohesion implies that an architecture quantum
does something purposeful. This distinction matters little in
traditional monolithic applications with a single database.
However, in microservices architectures, developers typically
design each service to match a single workflow (a bounded
context, as described in “Domain-Driven Design’s Bounded
Context”), thus exhibiting high functional cohesion.

Synchronous connascence



Synchronous connascence implies synchronous calls within an
application context or between distributed services that form this
architecture quantum. For example, if one service in a
microservices architecture calls another one synchronously, each
service cannot exhibit extreme differences in operational
architecture characteristics. If the caller is much more scalable
than the callee, timeouts and other reliability concerns will occur.
Thus, synchronous calls create dynamic connascence for the
length of the call—if one is waiting for the other, their operational
architecture characteristics must be the same for the duration of
the call.

Back in Chapter 6, we defined the relationship between traditional
coupling metrics and connascence, which didn’t include our new
communication connascence measure. We update this diagram in
Figure 7-1.



Figure 7-1. Adding quantum connascence to the unified diagram

For another example, consider a microservices architecture with a
Payment service and an Auction service. When an auction ends,
the Auction service sends payment information to the Payment
service. However, let’s say that the payment service can only handle a
payment every 500 ms—what happens when a large number of
auctions end at once? A poorly designed architecture would allow the
first call to go through and allow the others to time out. Alternatively,



an architect might design an asynchronous communication link
between Payment and Auction, allowing the message queue to
temporarily buffer differences. In this case, asynchronous
connascence creates a more flexible architecture. We cover this
subject in great detail in Chapter 14.

DOMAIN-DRIVEN DESIGN’S BOUNDED CONTEXT
Eric Evans’ book Domain-Driven Design (Addison-Wesley Professional) has deeply influenced modern
architectural thinking. Domain-driven design (DDD) is a modeling technique that allows for organized
decomposition of complex problem domains. DDD defines the bounded context, where everything
related to the domain is visible internally but opaque to other bounded contexts. Before DDD,
developers sought holistic reuse across common entities within the organization. Yet creating common
shared artifacts causes a host of problems, such as coupling, more difficult coordination, and
increased complexity. The bounded context concept recognizes that each entity works best within a
localized context. Thus, instead of creating a unified Customer class across the entire organization,
each problem domain can create its own and reconcile differences at integration points.

The architecture quantum concept provides the new scope for
architecture characteristics. In modern systems, architects define
architecture characteristics at the quantum level rather than system
level. By looking at a narrower scope for important operational
concerns, architects may identify architectural challenges early,
leading to hybrid architectures. To illustrate scoping provided by the
architecture quantum measure, consider another architecture kata,
Going, Going, Gone.

Case Study: Going, Going, Gone

In Chapter 5, we introduced the concept of an architecture kata.
Consider this one, concerning an online auction company. Here is the
description of the architecture kata:

https://dddcommunity.org/


Description

An auction company wants to take its auctions online to a
nationwide scale. Customers choose the auction to participate in,
wait until the auction begins, then bid as if they are there in the
room with the auctioneer.

Users

Scale up to hundreds of participants per auction, potentially up to
thousands of participants, and as many simultaneous auctions as
possible.

Requirements

Auctions must be as real-time as possible.

Bidders register with a credit card; the system automatically
charges the card if the bidder wins.

Participants must be tracked via a reputation index.

Bidders can see a live video stream of the auction and all
bids as they occur.

Both online and live bids must be received in the order in
which they are placed.

Additional context

Auction company is expanding aggressively by merging
with smaller competitors.

Budget is not constrained. This is a strategic direction.

Company just exited a lawsuit where it settled a suit
alleging fraud.



Just as in “Case Study: Silicon Sandwiches”, an architect must
consider each of these requirements to ascertain architecture
characteristics:

1. “Nationwide scale,” “scale up to hundreds of participants per
auction, potentially up to thousands of participants, and as
many simultaneous auctions as possible,” “auctions must be
as real-time as possible.”

Each of these requirements implies both scalability to
support the sheer number of users and elasticity to support
the bursty nature of auctions. While the requirements
explicitly call out scalability, elasticity represents an implicit
characteristics based on the problem domain. When
considering auctions, do users all politely spread themselves
out during the course of bidding, or do they become more
frantic near the end? Domain knowledge is crucial for
architects to pick up implicit architecture characteristics.
Given the real-time nature of auctions, an architect will
certainly consider performance a key architecture
characteristic.

2. “Bidders register with a credit card; the system automatically
charges the card if the bidder wins,” “company just exited a
lawsuit where it settled a suit alleging fraud.”

Both these requirements clearly point to security as an
architecture characteristic. As covered in Chapter 5, security
is an implicit architecture characteristic in virtually every
application. Thus, architects rely on the second part of the
definition of architecture characteristics, that they influence
some structural aspect of the design. Should an architect
design something special to accommodate security, or will
general design and coding hygiene suffice? Architects have
developed techniques for handling credit cards safely via



design without necessarily building special structure. For
example, as long as developers make sure not to store credit
card numbers in plain text, to encrypt while in transit, and so
on, then the architect shouldn’t have to build special
considerations for security.

However, the second phrase should make an architect pause
and ask for further clarification. Clearly, some aspect of
security (fraud) was a problem in the past, thus the architect
should ask for further input no matter what level of security
they design.

3. “Participants must be tracked via a reputation index.”

This requirement suggests some fanciful names such as
“anti-trollability,” but the track part of the requirement might
suggest some architecture characteristics such as auditability
and loggability. The deciding factor again goes back to the
defining characteristic—is this outside the scope of the
problem domain? Architects must remember that the
analysis to yield architecture characteristics represents only a
small part of the overall effort to design and implement an
application—a lot of design work happens past this phase!
During this part of architecture definition, architects look for
requirements with structural impact not already covered by
the domain.

Here’s a useful litmus test architects use to make the
determination between domain versus architecture
characteristics is: does it require domain knowledge to
implement, or is it an abstract architecture characteristic? In
the Going, Going, Gone kata, an architect upon encountering
the phrase “reputation index” would seek out a business
analyst or other subject matter expert to explain what they
had in mind. In other words, the phrase “reputation index”
isn’t a standard definition like more common architecture



characteristics. As a counter example, when architects
discuss elasticity, the ability to handle bursts of users, they
can talk about the architecture characteristic purely in the
abstract—it doesn’t matter what kind of application they
consider: banking, catalog site, streaming video, and so on.
Architects must determine whether a requirement isn’t
already encompassed by the domain and requires particular
structure, which elevates a consideration to architecture
characteristic.

4. “Auction company is expanding aggressively by merging
with smaller competitors.”

While this requirement may not have an immediate impact
on application design, it might become the determining
factor in a trade-off between several options. For example,
architects must often choose details such as communication
protocols for integration architecture: if integration with
newly merged companies isn’t a concern, it frees the
architect to choose something highly specific to the problem.
On the other hand, an architect may choose something that’s
less than perfect to accommodate some additional trade-off,
such as interoperability. Subtle implicit architecture
characteristics such as this pervade architecture, illustrating
why doing the job well presents challenges.

5. “Budget is not constrained. This is a strategic direction.”

Some architecture katas impose budget restrictions on the
solution to represent a common real-world trade-off.
However, in the Going, Going, Gone kata, it does not. This
allows the architect to choose more elaborate and/or special-
purpose architectures, which will be beneficial given the
next requirements.

6. “Bidders can see a live video stream of the auction and all
bids as they occur,” “both online and live bids must be



received in the order in which they are placed.”

This requirement presents an interesting architectural
challenge, definitely impacting the structure of the
application and exposing the futility of treating architecture
characteristics as a system-wide evaluation. Consider
availability—is that need uniform throughout the
architecture? In other words, is the availability of the one
bidder more important than availability for one of the
hundreds of bidders? Obviously, the architect desires good
measures for both, but one is clearly more critical: if the
auctioneer cannot access the site, online bids cannot occur
for anyone. Reliability commonly appears with availability;
it addresses operational aspects such as uptime, as well as
data integrity and other measures of how reliable an
application is. For example, in an auction site, the architect
must ensure that the message ordering is reliably correct,
eliminating race conditions and other problems.

This last requirement in the Going, Going, Gone kata highlights the
need for a more granular scope in architecture than the system level.
Using the architecture quantum measure, architects scope architecture
characteristics at the quantum level. For example, in Going, Going,
Gone, an architect would notice that different parts of this
architecture need different characteristics: streaming bids, online
bidders, and the auctioneer are three obvious choices. Architects use
the architecture quantum measure as a way to think about
deployment, coupling, where data should reside, and communication
styles within architectures. In this kata, an architect can analyze the
differing architecture characteristics per architecture quantum,
leading to hybrid architecture design earlier in the process.



Thus, for Going, Going, Gone, we identified the following quanta
and corresponding architecture characteristics:

Bidder feedback

Encompasses the bid stream and video stream of bids

Availability

Scalability

Performance

Auctioneer

The live auctioneer

Availability

Reliability

Scalability

Elasticity

Performance

Security

Bidder

Online bidders and bidding

Reliability

Availability

Scalability

Elasticity





Chapter 8. Component-
Based Thinking

In Chapter 3, we discussed modules as a collection of related code.
However, architects typically think in terms of components, the
physical manifestation of a module.

Developers physically package modules in different ways, sometimes
depending on their development platform. We call physical
packaging of modules components. Most languages support physical
packaging as well: jar files in Java, dll in .NET, gem in Ruby, and
so on. In this chapter, we discuss architectural considerations around
components, ranging from scope to discovery.

Component Scope
Developers find it useful to subdivide the concept of component
based on a wide host of factors, a few of which appear in Figure 8-1.

Components offer a language-specific mechanism to group artifacts
together, often nesting them to create stratification. As shown in
Figure 8-1, the simplest component wraps code at a higher level of
modularity than classes (or functions, in nonobject-oriented
languages). This simple wrapper is often called a library, which tends
to run in the same memory address as the calling code and
communicate via language function call mechanisms. Libraries are



usually compile-time dependencies (with notable exceptions like
dynamic link libraries [DLLs] that were the bane of Windows users
for many years).





Figure 8-1. Different varieties of components

Components also appear as subsystems or layers in architecture, as
the deployable unit of work for many event processors. Another type
of component, a service, tends to run in its own address space and
communicates via low-level networking protocols like TCP/IP or
higher-level formats like REST or message queues, forming stand-
alone, deployable units in architectures like microservices.

Nothing requires an architect to use components—it just so happens
that it’s often useful to have a higher level of modularity than the
lowest level offered by the language. For example, in microservices
architectures, simplicity is one of the architectural principles. Thus, a
service may consist of enough code to warrant components or may be
simple enough to just contain a small bit of code, as illustrated in
Figure 8-2.



Figure 8-2. A microservice might have so little code that components aren’t necessary



Components form the fundamental modular building block in
architecture, making them a critical consideration for architects. In
fact, one of the primary decisions an architect must make concerns
the top-level partitioning of components in the architecture.

Architect Role
Typically, the architect defines, refines, manages, and governs
components within an architecture. Software architects, in
collaboration with business analysts, subject matter experts,
developers, QA engineers, operations, and enterprise architects,
create the initial design for software, incorporating the architecture
characteristics discussed in Chapter 4 and the requirements for the
software system.

Virtually all the details we cover in this book exist independently
from whatever software development process teams use: architecture
is independent from the development process. The primary exception
to this rule entails the engineering practices pioneered in the various
flavors of Agile software development, particularly in the areas of
deployment and automating governance. However, in general,
software architecture exists separate from the process. Thus,
architects ultimately don’t care where requirements originate: a
formal Joint Application Design (JAD) process, lengthy waterfall-
style analysis and design, Agile story cards…or any hybrid variation
of those.

Generally the component is the lowest level of the software system an
architect interacts directly with, with the exception of many of the



code quality metrics discussed in Chapter 6 that affect code bases
holistically. Components consist of classes or functions (depending
on the implementation platform), whose design falls under the
responsibility of tech leads or developers. It’s not that architects
shouldn’t involve themselves in class design (particularly when
discovering or applying design patterns), but they should avoid
micromanaging each decision from top to bottom in the system. If
architects never allow other roles to make decisions of consequence,
the organization will struggle with empowering the next generation of
architects.

An architect must identify components as one of the first tasks on a
new project. But before an architect can identify components, they
must know how to partition the architecture.

Architecture Partitioning

The First Law of Software Architecture states that everything in
software is a trade-off, including how architects create components in
an architecture. Because components represent a general
containership mechanism, an architect can build any type of
partitioning they want. Several common styles exist, with different
sets of trade-offs. We discuss architecture styles in depth in Part II.
Here we discuss an important aspect of styles, the top-level
partitioning in an architecture.

Consider the two types of architecture styles shown in Figure 8-3.





Figure 8-3. Two types of top-level architecture partitioning: layered and modular

In Figure 8-3, one type of architecture familiar to many is the layered
monolith (discussed in detail in Chapter 10). The other is an
architecture style popularized by Simon Brown called a modular
monolith, a single deployment unit associated with a database and
partitioned around domains rather than technical capabilities. These
two styles represent different ways to top-level partition the
architecture. Note that in each variation, each of the top-level
components (layers or components) likely has other components
embedded within. The top-level partitioning is of particular interest to
architects because it defines the fundamental architecture style and
way of partitioning code.

Organizing architecture based on technical capabilities like the
layered architecture represents technical top-level partitioning. A
common version of this appears in Figure 8-4.

https://www.codingthearchitecture.com/




Figure 8-4. Two types of top-level partitioning in architecture

In Figure 8-4, the architect has partitioned the functionality of the
system into technical capabilities: presentation, business rules,
services, persistence, and so on. This way of organizing a code base
certainly makes sense. All the persistence code resides in one layer in
the architecture, making it easy for developers to find persistence-
related code. Even though the basic concept of layered architecture
predates it by decades, the Model-View-Controller design pattern
matches with this architectural pattern, making it easy for developers
to understand. Thus, it is often the default architecture in many
organizations.

An interesting side effect of the predominance of the layered
architecture relates to how companies seat different project roles.
When using a layered architecture, it makes some sense to have all
the backend developers sit together in one department, the DBAs in
another, the presentation team in another, and so on. Because of
Conway’s law, this makes some sense in those organizations.



CONWAY’S LAW
Back in the late 1960s, Melvin Conway made an observation that has become known as Conway’s
law:

Organizations which design systems … are constrained to produce designs which are copies of
the communication structures of these organizations.

Paraphrased, this law suggests that when a group of people designs some technical artifact, the
communication structures between the people end up replicated in the design. People at all levels of
organizations see this law in action, and they sometimes make decisions based on it. For example, it
is common for organizations to partition workers based on technical capabilities, which makes sense
from a pure organizational sense but hampers collaboration because of artificial separation of
common concerns.

A related observation coined by Jonny Leroy of ThoughtWorks is the Inverse Conway Maneuver,
which suggests evolving team and organizational structure together to promote the desired
architecture.

The other architectural variation in Figure 8-4 represents domain
partitioning, inspired by the Eric Evan book Domain-Driven Design,
which is a modeling technique for decomposing complex software
systems. In DDD, the architect identifies domains or workflows
independent and decoupled from each other. The microservices
architecture style (discussed in Chapter 17) is based on this
philosophy. In a modular monolith, the architect partitions the
architecture around domains or workflows rather than technical
capabilities. As components often nest within one another, each of the
components in Figure 8-4 in the domain partitioning (for example,
CatalogCheckout) may use a persistence library and have a separate
layer for business rules, but the top-level partitioning revolves around
domains.

One of the fundamental distinctions between different architecture
patterns is what type of top-level partitioning each supports, which
we cover for each individual pattern. It also has a huge impact on
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how an architect decides how to initially identify components—does
the architect want to partition things technically or by domain?

Architects using technical partitioning organize the components of
the system by technical capabilities: presentation, business rules,
persistence, and so on. Thus, one of the organizing principles of this
architecture is separation of technical concerns. This in turn creates
useful levels of decoupling: if the service layer is only connected to
the persistence layer below and business rules layer above, then
changes in persistence will only potentially affect those layers. This
style of partitioning provides a decoupling technique, reducing
rippling side effects on dependent components. We cover more
details of this architecture style in the layered architecture pattern in
Chapter 10. It is certainly logical to organize systems using technical
partitioning, but, like all things in software architecture, this offers
some trade-offs.

The separation enforced by technical partitioning enables developers
to find certain categories of the code base quickly, as it is organized
by capabilities. However, most realistic software systems require
workflows that cut across technical capabilities. Consider the
common business workflow of CatalogCheckout. The code to handle
CatalogCheckout in the technically layered architecture appears in all
the layers, as shown in Figure 8-5.





Figure 8-5. Where domains/workflows appear in technical- and domain-partitioned
architectures

In Figure 8-5, in the technically partitioned architecture,
CatalogCheckout appears in all the layers; the domain is smeared
across the technical layers. Contrast this with domain partitioning,
which uses a top-level partitioning that organizes components by
domain rather than technical capabilities. In Figure 8-5, architects
designing the domain-partitioned architecture build top-level
components around workflows and/or domains. Each component in
the domain partitioning may have subcomponents, including layers,
but the top-level partitioning focuses on domains, which better
reflects the kinds of changes that most often occur on projects.

Neither of these styles is more correct than the other—refer to the
First Law of Software Architecture. That said, we have observed a
decided industry trend over the last few years toward domain
partitioning for the monolithic and distributed (for example,
microservices) architectures. However, it is one of the first decisions
an architect must make.

Case Study: Silicon Sandwiches: Partitioning

Consider the case of one of our example katas, “Case Study: Silicon
Sandwiches”. When deriving components, one of the fundamental
decisions facing an architect is the top-level partitioning. Consider
the first of two different possibilities for Silicon Sandwiches, a
domain partitioning, illustrated in Figure 8-6.



Figure 8-6. A domain-partitioned design for Silicon Sandwiches

In Figure 8-6, the architect has designed around domains
(workflows), creating discrete components for Purchase,
Promotion, MakeOrder, ManageInventory, Recipes,
Delivery, and Location. Within many of these components
resides a subcomponent to handle the various types of customization
required, covering both common and local variations.



An alternative design isolates the common and local parts into
their own partition, illustrated in Figure 8-7. Common and Local
represent top-level components, with Purchase and Delivery
remaining to handle the workflow.

Which is better? It depends! Each partitioning offers different
advantages and drawbacks.





Figure 8-7. A technically partitioned design for Silicon Sandwiches

DOMAIN PARTITIONING

Domain-partitioned architectures separate top-level components by
workflows and/or domains.

Advantages

Modeled more closely toward how the business functions
rather than an implementation detail

Easier to utilize the Inverse Conway Maneuver to build
cross-functional teams around domains

Aligns more closely to the modular monolith and
microservices architecture styles

Message flow matches the problem domain

Easy to migrate data and components to distributed
architecture

Disadvantage

Customization code appears in multiple places

TECHNICAL PARTITIONING

Technically partitioned architectures separate top-level components
based on technical capabilities rather than discrete workflows. This
may manifest as layers inspired by Model-View-Controller separation
or some other ad hoc technical partitioning. Figure 8-7 separates
components based on customization.

Advantages



Clearly separates customization code.

Aligns more closely to the layered architecture pattern.

Disadvantages

Higher degree of global coupling. Changes to either the
Common or Local component will likely affect all the
other components.

Developers may have to duplication domain concepts in
both common and local layers.

Typically higher coupling at the data level. In a system like
this, the application and data architects would likely
collaborate to create a single database, including
customization and domains. That in turn creates difficulties
in untangling the data relationships if the architects later
want to migrate this architecture to a distributed system.

Many other factors contribute to an architect’s decision on what
architecture style to base their design upon, covered in Part II.

Developer Role
Developers typically take components, jointly designed with the
architect role, and further subdivide them into classes, functions, or
subcomponents. In general, class and function design is the shared
responsibility of architects, tech leads, and developers, with the lion’s
share going to developer roles.

Developers should never take components designed by architects as
the last word; all software design benefits from iteration. Rather, that



initial design should be viewed as a first draft, where implementation
will reveal more details and refinements.

Component Identification Flow
Component identification works best as an iterative process,
producing candidates and refinements through feedback, illustrated in
Figure 8-8.





Figure 8-8. Component identification cycle

This cycle describes a generic architecture exposition cycle. Certain
specialized domains may insert other steps in this process or change it
altogether. For example, in some domains, some code must undergo
security or auditing steps in this process. Descriptions of each step in
Figure 8-8 appear in the following sections.

Identifying Initial Components

Before any code exists for a software project, the architect must
somehow determine what top-level components to begin with, based
on what type of top-level partitioning they choose. Outside that, an
architect has the freedom to make up whatever components they
want, then map domain functionality to them to see where behavior
should reside. While this may sound arbitrary, it’s hard to start with
anything more concrete if an architect designs a system from scratch.
The likelihood of achieving a good design from this initial set of
components is disparagingly small, which is why architects must
iterate on component design to improve it.

Assign Requirements to Components

Once an architect has identified initial components, the next step
aligns requirements (or user stories) to those components to see how
well they fit. This may entail creating new components, consolidating
existing ones, or breaking components apart because they have too
much responsibility. This mapping doesn’t have to be exact—the
architect is attempting to find a good coarse-grained substrate to



allow further design and refinement by architects, tech leads, and/or
developers.

Analyze Roles and Responsibilities

When assigning stories to components, the architect also looks at the
roles and responsibilities elucidated during the requirements to make
sure that the granularity matches. Thinking about both the roles and
behaviors the application must support allows the architect to align
the component and domain granularity. One of the greatest challenges
for architects entails discovering the correct granularity for
components, which encourages the iterative approach described here.

Analyze Architecture Characteristics

When assigning requirements to components, the architect should
also look at the architecture characteristics discovered earlier in order
to think about how they might impact component division and
granularity. For example, while two parts of a system might deal with
user input, the part that deals with hundreds of concurrent users will
need different architecture characteristics than another part that needs
to support only a few. Thus, while a purely functional view of
component design might yield a single component to handle user
interaction, analyzing the architecture characteristics will lead to a
subdivision.

Restructure Components

Feedback is critical in software design. Thus, architects must
continually iterate on their component design with developers.



Designing software provides all kinds of unexpected difficulties—no
one can anticipate all the unknown issues that usually occur during
software projects. Thus, an iterative approach to component design is
key. First, it’s virtually impossible to account for all the different
discoveries and edge cases that will arise that encourage redesign.
Secondly, as the architecture and developers delve more deeply into
building the application, they gain a more nuanced understanding of
where behavior and roles should lie.

Component Granularity
Finding the proper granularity for components is one of an architect’s
most difficult tasks. Too fine-grained a component design leads to too
much communication between components to achieve results. Too
coarse-grained components encourage high internal coupling, which
leads to difficulties in deployability and testability, as well as
modularity-related negative side effects.

Component Design
No accepted “correct” way exists to design components. Rather, a
wide variety of techniques exist, all with various trade-offs. In all
processes, an architect takes requirements and tries to determine what
coarse-grained building blocks will make up the application. Lots of
different techniques exist, all with varying trade-offs and coupled to
the software development process used by the team and organization.
Here, we talk about a few general ways to discover components and
traps to avoid.



Discovering Components

Architects, often in collaboration with other roles such as developers,
business analysts, and subject matter experts, create an initial
component design based on general knowledge of the system and
how they choose to decompose it, based on technical or domain
partitioning. The team goal is an initial design that partitions the
problem space into coarse chunks that take into account differing
architecture characteristics.

ENTITY TRAP

While there is no one true way to ascertain components, a common
anti-pattern lurks: the entity trap. Say that an architect is working on
designing components for our kata Going, Going, Gone and ends up
with a design resembling Figure 8-9.



Figure 8-9. Building an architecture as an object-relational mapping



In Figure 8-9, the architect has basically taken each entity identified
in the requirements and made a Manager component based on that
entity. This isn’t an architecture; it’s a component-relational mapping
of a framework to a database. In other words, if a system only needs
simple database CRUD operations (create, read, update, delete), then
the architect can download a framework to create user interfaces
directly from the database.

NAKED OBJECTS AND SIMILAR FRAMEWORKS
More than a decade ago, a family of frameworks appeared that makes building simple CRUD
applications trivial, exemplified by Naked Objects (which has since split into two projects, a .NET
version still called NakedObjects, and a Java version that moved to the Apache open source
foundation under the name Isis). The premise behind these frameworks offers to build a user interface
frontend on database entities. For example, in Naked Objects, the developer points the framework to
database tables, and the framework builds a user interface based on the tables and their defined
relationships.

Several other popular frameworks exist that basically provide a default user interface based on
database table structure: the scaffolding feature of the Ruby on Rails framework provides the same
kind of default mappings from website to database (with many options to extend and add
sophistication to the resulting application).

If an architect’s needs require merely a simple mapping from a database to a user interface, full-blown
architecture isn’t necessary; one of these frameworks will suffice.

The entity trap anti-pattern arises when an architect incorrectly
identifies the database relationships as workflows in the application, a
correspondence that rarely manifests in the real world. Rather, this
anti-pattern generally indicates lack of thought about the actual
workflows of the application. Components created with the entity
trap also tend to be too coarse-grained, offering no guidance
whatsoever to the development team in terms of the packaging and
overall structuring of the source code.

https://oreil.ly/RQ8XQ
http://isis.apache.org/
https://rubyonrails.org/


ACTOR/ACTIONS APPROACH

The actor/actions approach is a popular way that architects use to
map requirements to components. In this approach, originally defined
by the Rational Unified Process, architects identify actors who
perform activities with the application and the actions those actors
may perform. It provides a technique for discovering the typical users
of the system and what kinds of things they might do with the system.

The actor/actions approach became popular in conjunction with
particular software development processes, especially more formal
processes that favor a significant portion of upfront design. It is still
popular and works well when the requirements feature distinct roles
and the kinds of actions they can perform. This style of component
decomposition works well for all types of systems, monolithic or
distributed.

EVENT STORMING

Event storming as a component discovery technique comes from
domain-driven design (DDD) and shares popularity with
microservices, also heavily influenced by DDD. In event storming,
the architect assumes the project will use messages and/or events to
communicate between the various components. To that end, the team
tries to determine which events occur in the system based on
requirements and identified roles, and build components around those
event and message handlers. This works well in distributed
architectures like microservices that use events and messages,
because it helps architects define the messages used in the eventual
system.



WORKFLOW APPROACH

An alternative to event storming offers a more generic approach for
architects not using DDD or messaging. The workflow approach
models the components around workflows, much like event storming,
but without the explicit constraints of building a message-based
system. A workflow approach identifies the key roles, determines the
kinds of workflows these roles engage in, and builds components
around the identified activities.

None of these techniques is superior to the others; all offer a different
set of trade-offs. If a team uses a waterfall approach or other older
software development processes, they might prefer the Actor/Actions
approach because it is general. When using DDD and corresponding
architectures like microservices, event storming matches the software
development process exactly.

Case Study: Going, Going, Gone:
Discovering Components
If a team has no special constraints and is looking for a good general-
purpose component decomposition, the Actor/Actions approach
works well as a generic solution. It’s the one we use in our case study
for Going, Going, Gone.

In Chapter 7, we introduced the architecture kata for Going, Going,
Gone (GGG) and discovered architecture characteristics for this
system. This system has three obvious roles: the bidder, the
auctioneer, and a frequent participant in this modeling technique, the



system, for internal actions. The roles interact with the application,
represented here by the system, which identifies when the application
initiates an event rather than one of the roles. For example, in GGG,
once the auction is complete, the system triggers the payment system
to process payments.

We can also identify a starting set of actions for each of these roles:

Bidder

View live video stream, view live bid stream, place a bid

Auctioneer

Enter live bids into system, receive online bids, mark item as sold

System

Start auction, make payment, track bidder activity

Given these actions, we can iteratively build a set of starter
components for GGG; one such solution appears in Figure 8-10.





Figure 8-10. Initial set of components for Going, Going, Gone

In Figure 8-10, each of the roles and actions maps to a component,
which in turn may need to collaborate on information. These are the
components we identified for this solution:

VideoStreamer

Streams a live auction to users.

BidStreamer

Streams bids as they occur to the users. Both Video
Streamer and Bid Streamer offer read-only views of the
auction to the bidder.

BidCapture

This component captures bids from both the auctioneer and
bidders.

BidTracker

Tracks bids and acts as the system of record.

AuctionSession

Starts and stops an auction. When the bidder ends the auction,
performs the payment and resolution steps, including notifying
bidders of ending.

Payment

Third-party payment processor for credit card payments.

Referring to the component identification flow diagram in Figure 8-8,
after the initial identification of components, the architect next
analyzes architecture characteristics to determine if that will change



the design. For this system, the architect can definitely identify
different sets of architecture characteristics. For example, the current
design features a BidCapture component to capture bids from both
bidders and the auctioneer, which makes sense functionally: capturing
bids from anyone can be handled the same. However, what about
architecture characteristics around bid capture? The auctioneer
doesn’t need the same level of scalability or elasticity as potentially
thousands of bidders. By the same token, an architect must ensure
that architecture characteristics like reliability (connections don’t
drop) and availability (the system is up) for the auctioneer could be
higher than other parts of the system. For example, while it’s bad for
business if a bidder can’t log in to the site or if they suffer from a
dropped connection, it’s disastrous to the auction if either of those
things happen to the auctioneer.

Because they have differing levels of architecture characteristics, the
architect decides to split the Bid Capture component into Bid
Capture and Auctioneer Capture so that each of the two
components can support differing architecture characteristics. The
updated design appears in Figure 8-11.





Figure 8-11. Incorporating architecture characteristics into GGG component design

In Figure 8-11, the architect creates a new component for
Auctioneer Capture and updates information links to both
Bid Streamer (so that online bidders see the live bids) and Bid
Tracker, which is managing the bid streams. Note that Bid
Tracker is now the component that will unify the two very
different information streams: the single stream of information from
the auctioneer and the multiple streams from bidders.

The design shown in Figure 8-11 isn’t likely the final design. More
requirements must be uncovered (how do people register,
administration functions around payment, and so on). However, this
example provides a good starting point to start iterating further on the
design.

This is one possible set of components to solve the GGG problem—
but it’s not necessarily correct, nor is it the only one. Few software
systems have only one way that developers can implement them;
every design has different sets of trade-offs. As an architect, don’t
obsess over finding the one true design, because many will suffice
(and less likely overengineered). Rather, try to objectively assess the
trade-offs between different design decisions, and choose the one that
has the least worst set of trade-offs.

Architecture Quantum Redux: Choosing
Between Monolithic Versus Distributed
Architectures



Recalling the discussion defining architecture quantum in
“Architectural Quanta and Granularity”, the architecture quantum
defines the scope of architecture characteristics. That in turn leads an
architect toward an important decision as they finish their initial
component design: should the architecture be monolithic or
distributed?

A monolithic architecture typically features a single deployable unit,
including all functionality of the system that runs in the process,
typically connected to a single database. Types of monolithic
architectures include the layered and modular monolith, discussed
fully in Chapter 10. A distributed architecture is the opposite—the
application consists of multiple services running in their own
ecosystem, communicating via networking protocols. Distributed
architectures may feature finer-grained deployment models, where
each service may have its own release cadence and engineering
practices, based on the development team and their priorities.

Each architecture style offers a variety of trade-offs, covered in
Part II. However, the fundamental decision rests on how many quanta
the architecture discovers during the design process. If the system can
manage with a single quantum (in other words, one set of architecture
characteristics), then a monolith architecture offers many advantages.
On the other hand, differing architecture characteristics for
components, as illustrated in the GGG component analysis, requires a
distributed architecture to accommodate differing architecture
characteristics. For example, the VideoStreamer and
BidStreamer both offer read-only views of the auction to bidders.
From a design standpoint, an architect would rather not deal with



read-only streaming mixed with high-scale updates. Along with the
aforementioned differences between bidder and auctioneer, these
differing characteristics lead an architect to choose a distributed
architecture.

The ability to determine a fundamental design characteristic of
architecture (monolith versus distributed) early in the design process
highlights one of the advantages of using the architecture quantum as
a way of analyzing architecture characteristics scope and coupling.



Part II. Architecture Styles

The difference between an architecture style and an architecture
pattern can be confusing. We define an architecture style as the
overarching structure of how the user interface and backend source
code are organized (such as within layers of a monolithic deployment
or separately deployed services) and how that source code interacts
with a datastore. Architecture patterns, on the other hand, are lower-
level design structures that help form specific solutions within an
architecture style (such as how to achieve high scalability or high
performance within a set of operations or between sets of services).

Understanding architecture styles occupies much of the time and
effort for new architects because they share importance and
abundance. Architects must understand the various styles and the
trade-offs encapsulated within each to make effective decisions; each
architecture style embodies a well-known set of trade-offs that help
an architect make the right choice for a particular business problem.



Chapter 9. Foundations

Architecture styles, sometimes called architecture patterns, describe a
named relationship of components covering a variety of architecture
characteristics. An architecture style name, similar to design patterns,
creates a single name that acts as shorthand between experienced
architects. For example, when an architect talks about a layered
monolith, their target in the conversation understands aspects of
structure, which kinds of architecture characteristics work well (and
which ones can cause problems), typical deployment models, data
strategies, and a host of other information. Thus, architects should be
familiar with the basic names of fundamental generic architecture
styles.

Each name captures a wealth of understood detail, one of the
purposes of design patterns. An architecture style describes the
topology, assumed and default architecture characteristics, both
beneficial and detrimental. We cover many common modern
architecture patterns in the remainder of this section of the book (Part
II). However, architects should be familiar with several fundamental
patterns that appear embedded within the larger patterns.

Fundamental Patterns
Several fundamental patterns appear again and again throughout the
history of software architecture because they provide a useful



perspective on organizing code, deployments, or other aspects of
architecture. For example, the concept of layers in architecture,
separating different concerns based on functionality, is as old as
software itself. Yet, the layered pattern continues to manifest in
different guises, including modern variants discussed in Chapter 10.

Big Ball of Mud

Architects refer to the absence of any discernible architecture
structure as a Big Ball of Mud, named after the eponymous anti-
pattern defined in a paper released in 1997 by Brian Foote and Joseph
Yoder:

A Big Ball of Mud is a haphazardly structured, sprawling, sloppy,
duct-tape-and-baling-wire, spaghetti-code jungle. These systems
show unmistakable signs of unregulated growth, and repeated,
expedient repair. Information is shared promiscuously among
distant elements of the system, often to the point where nearly all
the important information becomes global or duplicated.

The overall structure of the system may never have been well
defined.

If it was, it may have eroded beyond recognition. Programmers
with a shred of architectural sensibility shun these quagmires. Only
those who are unconcerned about architecture, and, perhaps, are
comfortable with the inertia of the day-to-day chore of patching the
holes in these failing dikes, are content to work on such systems.

—Brian Foote and Joseph Yoder

In modern terms, a big ball of mud might describe a simple scripting
application with event handlers wired directly to database calls, with



no real internal structure. Many trivial applications start like this then
become unwieldy as they continue to grow.

In general, architects want to avoid this type of architecture at all
costs. The lack of structure makes change increasingly difficult. This
type of architecture also suffers from problems in deployment,
testability, scalability, and performance.

Unfortunately, this architecture anti-pattern occurs quite commonly in
the real world. Few architects intend to create one, but many projects
inadvertently manage to create a mess because of lack of governance
around code quality and structure. For example, Neal worked with a
client project whose structure appears in Figure 9-1.

The client (whose name is withheld for obvious reasons) created a
Java-based web application as quickly as possible over several years.
The technical visualization  shows their architectural coupling: each
dot on the perimeter of the circle represents a class, and each line
represents connections between the classes, where bolder lines
indicate stronger connections. In this code base, any change to a class
makes it difficult to predict rippling side effects to other classes,
making change a terrifying affair.

1



Figure 9-1. A Big Ball of Mud architecture visualized from a real code base

Unitary Architecture

When software originated, there was only the computer, and software
ran on it. Through the various eras of hardware and software
evolution, the two started as a single entity, then split as the need for
more sophisticated capabilities grew. For example, mainframe
computers started as singular systems, then gradually separated data



into its own kind of system. Similarly, when personal computers first
appeared, much of the commercial development focused on single
machines. As networking PCs became common, distributed systems
(such as client/server) appeared.

Few unitary architectures exist outside embedded systems and other
highly constrained environments. Generally, software systems tend to
grow in functionality over time, requiring separation of concerns to
maintain operational architecture characteristics, such as performance
and scale.

Client/Server

Over time, various forces required partitioning away from a single
system; how to do that forms the basis for many of these styles. Many
architecture styles deal with how to efficiently separate parts of the
system.

A fundamental style in architecture separates technical functionality
between frontend and backend, called a two-tier, or client/server,
architecture. Many different flavors of this architecture exist,
depending on the era and computing capabilities.

DESKTOP + DATABASE SERVER

An early personal computer architecture encouraged developers to
write rich desktop applications in user interfaces like Windows,
separating the data into a separate database server. This architecture
coincided with the appearance of standalone database servers that
could connect via standard network protocols. It allowed presentation



logic to reside on the desktop, while the more computationally
intense action (both in volume and complexity) occurred on more
robust database servers.

BROWSER + WEB SERVER

Once modern web development arrived, the common split became
web browser connected to web server (which in turn was connected
to a database server). The separation of responsibilities was similar to
the desktop variant but with even thinner clients as browsers,
allowing a wider distribution both inside and outside firewalls. Even
though the database is separate from the web server, architects often
still consider this a two-tier architecture because the web and
database servers run on one class of machine within the operations
center and the user interface runs on the user’s browser.

THREE-TIER

An architecture that became quite popular during the late 1990s was a
three-tier architecture, which provided even more layers of
separation. As tools like application servers became popular in Java
and .NET, companies started building even more layers in their
topology: a database tier using an industrial-strength database server,
an application tier managed by an application server, frontend coded
in generated HTML, and increasingly, JavaScript, as its capabilities
expanded.

The three-tier architecture corresponded with network-level protocols
such as Common Object Request Broker Architecture (CORBA) and

https://www.corba.org/


Distributed Component Object Model (DCOM) that facilitated
building distributed architectures.

Just as developers today don’t worry about how network protocols
like TCP/IP work (they just work), most architects don’t have to
worry about this level of plumbing in distributed architectures. The
capabilities offered by such tools in that era exist today as either tools
(like message queues) or architecture patterns (such as event-driven
architecture, covered in Chapter 14).

THREE-TIER, LANGUAGE DESIGN, AND LONG-TERM
IMPLICATIONS

During the era in which the Java language was designed, three-tier computing was all the rage. Thus,
it was assumed that, in the future, all systems would be three-tier architectures. One of the common
headaches with existing languages such as C++ was how cumbersome it was to move objects over
the network in a consistent way between systems. Thus, the designers of Java decided to build this
capability into the core of the language using a mechanism called serialization. Every Object in Java
implements an interface that requires it to support serialization. The designers figured that since three-
tiered architecture would forever be the architecture style, baking it into the language would offer a
great convenience. Of course, that architectural style came and went, yet the leftovers appear in Java
to this day, greatly frustrating the language designer who wants to add modern features that, for
backward compatibility, must support serialization, which virtually no one uses today.

Understanding the long-term implications of design decisions has always eluded us, in software, as in
other engineering disciplines. The perpetual advice to favor simple designs is in many ways defense
against future consequences.

Monolithic Versus Distributed
Architectures
Architecture styles can be classified into two main types: monolithic
(single deployment unit of all code) and distributed (multiple
deployment units connected through remote access protocols). While
no classification scheme is perfect, distributed architectures all share

https://oreil.ly/1TEqv


a common set of challenges and issues not found in the monolithic
architecture styles, making this classification scheme a good
separation between the various architecture styles.

In this book we will describe in detail the following architecture
styles:

Monolithic

Layered architecture (Chapter 10)

Pipeline architecture (Chapter 11)

Microkernel architecture (Chapter 12)

Distributed

Service-based architecture (Chapter 13)

Event-driven architecture (Chapter 14)

Space-based architecture (Chapter 15)

Service-oriented architecture (Chapter 16)

Microservices architecture (Chapter 17)

Distributed architecture styles, while being much more powerful in
terms of performance, scalability, and availability than monolithic
architecture styles, have significant trade-offs for this power. The first
group of issues facing all distributed architectures are described in the
fallacies of distributed computing, first coined by L. Peter Deutsch
and other colleagues from Sun Microsystems in 1994. A fallacy is
something that is believed or assumed to be true but is not. All eight

https://oreil.ly/fVAEY


of the fallacies of distributed computing apply to distributed
architectures today. The following sections describe each fallacy.

Fallacy #1: The Network Is Reliable

Figure 9-2. The network is not reliable

Developers and architects alike assume that the network is reliable,
but it is not. While networks have become more reliable over time,
the fact of the matter is that networks still remain generally
unreliable. This is significant for all distributed architectures because
all distributed architecture styles rely on the network for
communication to and from services, as well as between services. As
illustrated in Figure 9-2, Service B may be totally healthy, but
Service A cannot reach it due to a network problem; or even
worse, Service A made a request to Service B to process some
data and does not receive a response because of a network issue. This



is why things like timeouts and circuit breakers exist between
services. The more a system relies on the network (such as
microservices architecture), the potentially less reliable it becomes.

Fallacy #2: Latency Is Zero





Figure 9-3. Latency is not zero

As Figure 9-3 shows, when a local call is made to another component
via a method or function call, that time (t_local) is measured in
nanoseconds or microseconds. However, when that same call is made
through a remote access protocol (such as REST, messaging, or
RPC), the time measured to access that service (t_remote) is
measured in milliseconds. Therefore, t_remote will always be
greater that t_local. Latency in any distributed architecture is not
zero, yet most architects ignore this fallacy, insisting that they have
fast networks. Ask yourself this question: do you know what the
average round-trip latency is for a RESTful call in your production
environment? Is it 60 milliseconds? Is it 500 milliseconds?

When using any distributed architecture, architects must know this
latency average. It is the only way of determining whether a
distributed architecture is feasible, particularly when considering
microservices (see Chapter 17) due to the fine-grained nature of the
services and the amount of communication between those services.
Assuming an average of 100 milliseconds of latency per request,
chaining together 10 service calls to perform a particular business
function adds 1,000 milliseconds to the request! Knowing the average
latency is important, but even more important is also knowing the
95th to 99th percentile. While an average latency might yield only 60
milliseconds (which is good), the 95th percentile might be 400
milliseconds! It’s usually this “long tail” latency that will kill
performance in a distributed architecture. In most cases, architects
can get latency values from a network administrator (see “Fallacy #6:
There Is Only One Administrator”).



Fallacy #3: Bandwidth Is Infinite

Figure 9-4. Bandwidth is not infinite

Bandwidth is usually not a concern in monolithic architectures,
because once processing goes into a monolith, little or no bandwidth
is required to process that business request. However, as shown in
Figure 9-4, once systems are broken apart into smaller deployment



units (services) in a distributed architecture such as microservices,
communication to and between these services significantly utilizes
bandwidth, causing networks to slow down, thus impacting latency
(fallacy #2) and reliability (fallacy #1).

To illustrate the importance of this fallacy, consider the two services
shown in Figure 9-4. Let’s say the lefthand service manages the wish
list items for the website, and the righthand service manages the
customer profile. Whenever a request for a wish list comes into the
lefthand service, it must make an interservice call to the righthand
customer profile service to get the customer name because that data is
needed in the response contract for the wish list, but the wish list
service on the lefthand side doesn’t have the name. The customer
profile service returns 45 attributes totaling 500 kb to the wish list
service, which only needs the name (200 bytes). This is a form of
coupling referred to as stamp coupling. This may not sound
significant, but requests for the wish list items happen about 2,000
times a second. This means that this interservice call from the wish
list service to the customer profile service happens 2,000 times a
second. At 500 kb for each request, the amount of bandwidth used for
that one interservice call (out of hundreds being made that second) is
1 Gb!

Stamp coupling in distributed architectures consumes significant
amounts of bandwidth. If the customer profile service were to only
pass back the data needed by the wish list service (in this case 200
bytes), the total bandwidth used to transmit the data is only 400 kb.
Stamp coupling can be resolved in the following ways:



Create private RESTful API endpoints

Use field selectors in the contract

Use GraphQL to decouple contracts

Use value-driven contracts with consumer-driven contracts
(CDCs)

Use internal messaging endpoints

Regardless of the technique used, ensuring that the minimal amount
of data is passed between services or systems in a distributed
architecture is the best way to address this fallacy.

Fallacy #4: The Network Is Secure

Figure 9-5. The network is not secure

https://graphql.org/


Most architects and developers get so comfortable using virtual
private networks (VPNs), trusted networks, and firewalls that they
tend to forget about this fallacy of distributed computing: the network
is not secure. Security becomes much more challenging in a
distributed architecture. As shown in Figure 9-5, each and every
endpoint to each distributed deployment unit must be secured so that
unknown or bad requests do not make it to that service. The surface
area for threats and attacks increases by magnitudes when moving
from a monolithic to a distributed architecture. Having to secure
every endpoint, even when doing interservice communication, is
another reason performance tends to be slower in synchronous,
highly-distributed architectures such as microservices or service-
based architecture.

Fallacy #5: The Topology Never Changes





Figure 9-6. The network topology always changes

This fallacy refers to the overall network topology, including all of
the routers, hubs, switches, firewalls, networks, and appliances used
within the overall network. Architects assume that the topology is
fixed and never changes. Of course it changes. It changes all the time.
What is the significance of this fallacy?

Suppose an architect comes into work on a Monday morning, and
everyone is running around like crazy because services keep timing
out in production. The architect works with the teams, frantically
trying to figure out why this is happening. No new services were
deployed over the weekend. What could it be? After several hours the
architect discovers that a minor network upgrade happened at 2 a.m.
that morning. This supposedly “minor” network upgrade invalidated
all of the latency assumptions, triggering timeouts and circuit
breakers.

Architects must be in constant communication with operations and
network administrators to know what is changing and when so that
they can make adjustments accordingly to reduce the type of surprise
previously described. This may seem obvious and easy, but it is not.
As a matter of fact, this fallacy leads directly to the next fallacy.

Fallacy #6: There Is Only One Administrator





Figure 9-7. There are many network administrators, not just one

Architects all the time fall into this fallacy, assuming they only need
to collaborate and communicate with one administrator. As shown in
Figure 9-7, there are dozens of network administrators in a typical
large company. Who should the architect talk to with regard to
latency (“Fallacy #2: Latency Is Zero”) or topology changes
(“Fallacy #5: The Topology Never Changes”)? This fallacy points to
the complexity of distributed architecture and the amount of
coordination that must happen to get everything working correctly.
Monolithic applications do not require this level of communication
and collaboration due to the single deployment unit characteristics of
those architecture styles.

Fallacy #7: Transport Cost Is Zero





Figure 9-8. Remote access costs money

Many software architects confuse this fallacy for latency (“Fallacy
#2: Latency Is Zero”). Transport cost here does not refer to latency,
but rather to actual cost in terms of money associated with making a
“simple RESTful call.” Architects assume (incorrectly) that the
necessary infrastructure is in place and sufficient for making a simple
RESTful call or breaking apart a monolithic application. It is usually
not. Distributed architectures cost significantly more than monolithic
architectures, primarily due to increased needs for additional
hardware, servers, gateways, firewalls, new subnets, proxies, and so
on.

Whenever embarking on a distributed architecture, we encourage
architects to analyze the current server and network topology with
regard to capacity, bandwidth, latency, and security zones to not get
caught up in the trap of surprise with this fallacy.

Fallacy #8: The Network Is Homogeneous



Figure 9-9. The network is not homogeneous

Most architects and developers assume a network is homogeneous—
made up by only one network hardware vendor. Nothing could be
farther from the truth. Most companies have multiple network
hardware vendors in their infrastructure, if not more.

So what? The significance of this fallacy is that not all of those
heterogeneous hardware vendors play together well. Most of it works,
but does Juniper hardware seamlessly integrate with Cisco hardware?
Networking standards have evolved over the years, making this less
of an issue, but the fact remains that not all situations, load, and
circumstances have been fully tested, and as such, network packets
occasionally get lost. This in turn impacts network reliability
(“Fallacy #1: The Network Is Reliable”), latency assumptions and
assertions (“Fallacy #2: Latency Is Zero”), and assumptions made
about the bandwidth (“Fallacy #3: Bandwidth Is Infinite”). In other
words, this fallacy ties back into all of the other fallacies, forming an



endless loop of confusion and frustration when dealing with networks
(which is necessary when using distributed architectures).

Other Distributed Considerations

In addition to the eight fallacies of distributed computing previously
described, there are other issues and challenges facing distributed
architecture that aren’t present in monolithic architectures. Although
the details of these other issues are out of scope for this book, we list
and summarize them in the following sections.

DISTRIBUTED LOGGING

Performing root-cause analysis to determine why a particular order
was dropped is very difficult and time-consuming in a distributed
architecture due to the distribution of application and system logs. In
a monolithic application there is typically only one log, making it
easier to trace a request and determine the issue. However, distributed
architectures contain dozens to hundreds of different logs, all located
in a different place and all with a different format, making it difficult
to track down a problem.

Logging consolidation tools such as Splunk help to consolidate
information from various sources and systems together into one
consolidated log and console, but these tools only scratch the surface
of the complexities involved with distributed logging. Detailed
solutions and patterns for distributed logging are outside the scope of
this book.

DISTRIBUTED TRANSACTIONS

https://www.splunk.com/


Architects and developers take transactions for granted in a
monolithic architecture world because they are so straightforward and
easy to manage. Standard commits and rollbacks executed from
persistence frameworks leverage ACID (atomicity, consistency,
isolation, durability) transactions to guarantee that the data is updated
in a correct way to ensure high data consistency and integrity. Such is
not the case with distributed architectures.

Distributed architectures rely on what is called eventual consistency
to ensure the data processed by separate deployment units is at some
unspecified point in time all synchronized into a consistent state. This
is one of the trade-offs of distributed architecture: high scalability,
performance, and availability at the sacrifice of data consistency and
data integrity.

Transactional sagas are one way to manage distributed transactions.
Sagas utilize either event sourcing for compensation or finite state
machines to manage the state of transaction. In addition to sagas,
BASE transactions are used. BASE stands for (B)asic availability,
(S)oft state, and (E)ventual consistency. BASE transactions are not a
piece of software, but rather a technique. Soft state in BASE refers to
the transit of data from a source to a target, as well as the
inconsistency between data sources. Based on the basic availability
of the systems or services involved, the systems will eventually
become consistent through the use of architecture patterns and
messaging.

CONTRACT MAINTENANCE AND VERSIONING

https://oreil.ly/1lLmj


Another particularly difficult challenge within distributed architecture
is contract creation, maintenance, and versioning. A contract is
behavior and data that is agreed upon by both the client and the
service. Contract maintenance is particularly difficult in distributed
architectures, primarily due to decoupled services and systems owned
by different teams and departments. Even more complex are the
communication models needed for version deprecation.

1  Made with a now-retired tool called XRay, an Eclipse plug-in.



Chapter 10. Layered
Architecture Style

The layered architecture, also known as the n-tiered architecture
style, is one of the most common architecture styles. This style of
architecture is the de facto standard for most applications, primarily
because of its simplicity, familiarity, and low cost. It is also a very
natural way to develop applications due to Conway’s law, which
states that organizations that design systems are constrained to
produce designs which are copies of the communication structures of
these organizations. In most organizations there are user interface
(UI) developers, backend developers, rules developers, and database
experts (DBAs). These organizational layers fit nicely into the tiers of
a traditional layered architecture, making it a natural choice for many
business applications. The layered architecture style also falls into
several architectural anti-patterns, including the architecture by
implication anti-pattern and the accidental architecture anti-pattern.
If a developer or architect is unsure which architecture style they are
using, or if an Agile development team “just starts coding,” chances
are good that it is the layered architecture style they are
implementing.

Topology

https://oreil.ly/Rb4uN


Components within the layered architecture style are organized into
logical horizontal layers, with each layer performing a specific role
within the application (such as presentation logic or business logic).
Although there are no specific restrictions in terms of the number and
types of layers that must exist, most layered architectures consist of
four standard layers: presentation, business, persistence, and
database, as illustrated in Figure 10-1. In some cases, the business
layer and persistence layer are combined into a single business layer,
particularly when the persistence logic (such as SQL or HSQL) is
embedded within the business layer components. Thus, smaller
applications may have only three layers, whereas larger and more
complex business applications may contain five or more layers.



Figure 10-1. Standard logical layers within the layered architecture style

Figure 10-2 illustrates the various topology variants from a physical
layering (deployment) perspective. The first variant combines the
presentation, business, and persistence layers into a single
deployment unit, with the database layer typically represented as a
separate external physical database (or filesystem). The second
variant physically separates the presentation layer into its own



deployment unit, with the business and persistence layers combined
into a second deployment unit. Again, with this variant, the database
layer is usually physically separated through an external database or
filesystem. A third variant combines all four standard layers into a
single deployment, including the database layer. This variant might
be useful for smaller applications with either an internally embedded
database or an in-memory database. Many on-premises (“on-prem”)
products are built and delivered to customers using this third variant.

Figure 10-2. Physical topology (deployment) variants

Each layer of the layered architecture style has a specific role and
responsibility within the architecture. For example, the presentation
layer would be responsible for handling all user interface and browser
communication logic, whereas the business layer would be



responsible for executing specific business rules associated with the
request. Each layer in the architecture forms an abstraction around the
work that needs to be done to satisfy a particular business request.
For example, the presentation layer doesn’t need to know or worry
about how to get customer data; it only needs to display that
information on a screen in a particular format. Similarly, the business
layer doesn’t need to be concerned about how to format customer
data for display on a screen or even where the customer data is
coming from; it only needs to get the data from the persistence layer,
perform business logic against the data (such as calculating values or
aggregating data), and pass that information up to the presentation
layer.

This separation of concerns concept within the layered architecture
style makes it easy to build effective roles and responsibility models
within the architecture. Components within a specific layer are
limited in scope, dealing only with the logic that pertains to that layer.
For example, components in the presentation layer only handle
presentation logic, whereas components residing in the business layer
only handle business logic. This allows developers to leverage their
particular technical expertise to focus on the technical aspects of the
domain (such as presentation logic or persistence logic). The trade-off
of this benefit, however, is a lack of overall agility (the ability to
respond quickly to change).

The layered architecture is a technically partitioned architecture (as
opposed to a domain-partitioned architecture). Groups of
components, rather than being grouped by domain (such as
customer), are grouped by their technical role in the architecture



(such as presentation or business). As a result, any particular business
domain is spread throughout all of the layers of the architecture. For
example, the domain of “customer” is contained in the presentation
layer, business layer, rules layer, services layer, and database layer,
making it difficult to apply changes to that domain. As a result, a
domain-driven design approach does not work as well with the
layered architecture style.

Layers of Isolation
Each layer in the layered architecture style can be either closed or
open. A closed layer means that as a request moves top-down from
layer to layer, the request cannot skip any layers, but rather must go
through the layer immediately below it to get to the next layer (see
Figure 10-3). For example, in a closed-layered architecture, a request
originating from the presentation layer must first go through the
business layer and then to the persistence layer before finally making
it to the database layer.



Figure 10-3. Closed layers within the layered architecture

Notice that in Figure 10-3 it would be much faster and easier for the
presentation layer to access the database directly for simple retrieval
requests, bypassing any unnecessary layers (what used to be known
in the early 2000s as the fast-lane reader pattern). For this to happen,
the business and persistence layers would have to be open, allowing
requests to bypass other layers. Which is better—open layers or



closed layers? The answer to this question lies in a key concept
known as layers of isolation.

The layers of isolation concept means that changes made in one layer
of the architecture generally don’t impact or affect components in
other layers, providing the contracts between those layers remain
unchanged. Each layer is independent of the other layers, thereby
having little or no knowledge of the inner workings of other layers in
the architecture. However, to support layers of isolation, layers
involved with the major flow of the request necessarily have to be
closed. If the presentation layer can directly access the persistence
layer, then changes made to the persistence layer would impact both
the business layer and the presentation layer, producing a very tightly
coupled application with layer interdependencies between
components. This type of architecture then becomes very brittle, as
well as difficult and expensive to change.

The layers of isolation concept also allows any layer in the
architecture to be replaced without impacting any other layer (again,
assuming well-defined contracts and the use of the business delegate
pattern). For example, you can leverage the layers of isolation
concept within the layered architecture style to replace your older
JavaServer Faces (JSF) presentation layer with React.js without
impacting any other layer in the application.

Adding Layers
While closed layers facilitate layers of isolation and therefore help
isolate change within the architecture, there are times when it makes

https://oreil.ly/WeKWs


sense for certain layers to be open. For example, suppose there are
shared objects within the business layer that contain common
functionality for business components (such as date and string utility
classes, auditing classes, logging classes, and so on). Suppose there is
an architecture decision stating that the presentation layer is restricted
from using these shared business objects. This constraint is illustrated
in Figure 10-4, with the dotted line going from a presentation
component to a shared business object in the business layer. This
scenario is difficult to govern and control because architecturally the
presentation layer has access to the business layer, and hence has
access to the shared objects within that layer.





Figure 10-4. Shared objects within the business layer

One way to architecturally mandate this restriction is to add to the
architecture a new services layer containing all of the shared business
objects. Adding this new layer now architecturally restricts the
presentation layer from accessing the shared business objects because
the business layer is closed (see Figure 10-5). However, the new
services layer must be marked as open; otherwise the business layer
would be forced to go through the services layer to access the
persistence layer. Marking the services layer as open allows the
business layer to either access that layer (as indicated by the solid
arrow), or bypass the layer and go to the next one down (as indicated
by the dotted arrow in Figure 10-5).





Figure 10-5. Adding a new services layer to the architecture

Leveraging the concept of open and closed layers helps define the
relationship between architecture layers and request flows. It also
provides developers with the necessary information and guidance to
understand various layer access restrictions within the architecture.
Failure to document or properly communicate which layers in the
architecture are open and closed (and why) usually results in tightly
coupled and brittle architectures that are very difficult to test,
maintain, and deploy.

Other Considerations
The layered architecture makes for a good starting point for most
applications when it is not known yet exactly which architecture style
will ultimately be used. This is a common practice for many
microservices efforts when architects are still determining whether
microservices is the right architecture choice, but development must
begin. However, when using this technique, be sure to keep reuse at a
minimum and keep object hierarchies (depth of inheritance tree)
fairly shallow so as to maintain a good level of modularity. This will
help facilitate the move to another architecture style later on.

One thing to watch out for with the layered architecture is the
architecture sinkhole anti-pattern. This anti-pattern occurs when
requests move from layer to layer as simple pass-through processing
with no business logic performed within each layer. For example,
suppose the presentation layer responds to a simple request from the
user to retrieve basic customer data (such as name and address). The



presentation layer passes the request to the business layer, which does
nothing but pass the request on to the rules layer, which in turn does
nothing but pass the request on to the persistence layer, which then
makes a simple SQL call to the database layer to retrieve the
customer data. The data is then passed all the way back up the stack
with no additional processing or logic to aggregate, calculate, apply
rules, or transform the data. This results in unnecessary object
instantiation and processing, impacting both memory consumption
and performance.

Every layered architecture will have at least some scenarios that fall
into the architecture sinkhole anti-pattern. The key to determining
whether the architecture sinkhole anti-pattern is at play is to analyze
the percentage of requests that fall into this category. The 80-20 rule
is usually a good practice to follow. For example, it is acceptable if
only 20 percent of the requests are sinkholes. However, if 80 percent
of the requests are sinkholes, it a good indicator that the layered
architecture is not the correct architecture style for the problem
domain. Another approach to solving the architecture sinkhole anti-
pattern is to make all the layers in the architecture open, realizing, of
course, that the trade-off is increased difficulty in managing change
within the architecture.

Why Use This Architecture Style
The layered architecture style is a good choice for small, simple
applications or websites. It is also a good architecture choice,
particularly as a starting point, for situations with very tight budget
and time constraints. Because of the simplicity and familiarity among



developers and architects, the layered architecture is perhaps one of
the lowest-cost architecture styles, promoting ease of development
for smaller applications. The layered architecture style is also a good
choice when an architect is still analyzing business needs and
requirements and is unsure which architecture style would be best.

As applications using the layered architecture style grow,
characteristics like maintainability, agility, testability, and
deployability are adversely affected. For this reason, large
applications and systems using the layered architecture might be
better suited for other, more modular architecture styles.

Architecture Characteristics Ratings
A one-star rating in the characteristics ratings table (shown in
Figure 10-6) means the specific architecture characteristic isn’t well
supported in the architecture, whereas a five-star rating means the
architecture characteristic is one of the strongest features in the
architecture style. The definition for each characteristic identified in
the scorecard can be found in Chapter 4.





Figure 10-6. Layered architecture characteristics ratings

Overall cost and simplicity are the primary strengths of the layered
architecture style. Being monolithic in nature, layered architectures
don’t have the complexities associated with distributed architecture
styles, are simple and easy to understand, and are relatively low cost
to build and maintain. However, as a cautionary note, these ratings
start to quickly diminish as monolithic layered architectures get
bigger and consequently more complex.

Both deployability and testability rate very low for this architecture
style. Deployability rates low due to the ceremony of deployment
(effort to deploy), high risk, and lack of frequent deployments. A
simple three-line change to a class file in the layered architecture
style requires the entire deployment unit to be redeployed, taking in
potential database changes, configuration changes, or other coding
changes sneaking in alongside the original change. Furthermore, this
simple three-line change is usually bundled with dozens of other
changes, thereby increasing deployment risk even further (as well as
increasing the frequency of deployment). The low testability rating
also reflects this scenario; with a simple three-line change, most
developers are not going to spend hours executing the entire
regression test suite (even if such a thing were to exist in the first
place), particularly along with dozens of other changes being made to
the monolithic application at the same time. We gave testability a
two-star rating (rather than one star) due to the ability to mock or stub
components (or even an entire layer), which eases the overall testing
effort.



Overall reliability rates medium (three stars) in this architecture style,
mostly due to the lack of network traffic, bandwidth, and latency
found in most distributed architectures. We only gave the layered
architecture three stars for reliability because of the nature of the
monolithic deployment, combined with the low ratings for testability
(completeness of testing) and deployment risk.

Elasticity and scalability rate very low (one star) for the layered
architecture, primarily due to monolithic deployments and the lack of
architectural modularity. Although it is possible to make certain
functions within a monolith scale more than others, this effort usually
requires very complex design techniques such as multithreading,
internal messaging, and other parallel processing practices,
techniques this architecture isn’t well suited for. However, because
the layered architecture is always a single system quantum due to the
monolithic user interface, backend processing, and monolithic
database, applications can only scale to a certain point based on the
single quantum.

Performance is always an interesting characteristic to rate for the
layered architecture. We gave it only two stars because the
architecture style simply does not lend itself to high-performance
systems due to the lack of parallel processing, closed layering, and
the sinkhole architecture anti-pattern. Like scalability, performance
can be addressed through caching, multithreading, and the like, but it
is not a natural characteristic of this architecture style; architects and
developers have to work hard to make all this happen.



Layered architectures don’t support fault tolerance due to monolithic
deployments and the lack of architectural modularity. If one small
part of a layered architecture causes an out-of-memory condition to
occur, the entire application unit is impacted and crashes.
Furthermore, overall availability is impacted due to the high mean-
time-to-recovery (MTTR) usually experienced by most monolithic
applications, with startup times ranging anywhere from 2 minutes for
smaller applications, up to 15 minutes or more for most large
applications.



Chapter 11. Pipeline
Architecture Style

One of the fundamental styles in software architecture that appears
again and again is the pipeline architecture (also known as the pipes
and filters architecture). As soon as developers and architects decided
to split functionality into discrete parts, this pattern followed. Most
developers know this architecture as this underlying principle behind
Unix terminal shell languages, such as Bash and Zsh.

Developers in many functional programming languages will see
parallels between language constructs and elements of this
architecture. In fact, many tools that utilize the MapReduce
programming model follow this basic topology. While these
examples show a low-level implementation of the pipeline
architecture style, it can also be used for higher-level business
applications.

Topology
The topology of the pipeline architecture consists of pipes and filters,
illustrated in Figure 11-1.

https://oreil.ly/uP2Bo
https://oreil.ly/40UyF
https://oreil.ly/veX6W




Figure 11-1. Basic topology for pipeline architecture

The pipes and filters coordinate in a specific fashion, with pipes
forming one-way communication between filters, usually in a point-
to-point fashion.

Pipes

Pipes in this architecture form the communication channel between
filters. Each pipe is typically unidirectional and point-to-point (rather
than broadcast) for performance reasons, accepting input from one
source and always directing output to another. The payload carried on
the pipes may be any data format, but architects favor smaller
amounts of data to enable high performance.

Filters

Filters are self-contained, independent from other filters, and
generally stateless. Filters should perform one task only. Composite
tasks should be handled by a sequence of filters rather than a single
one.

Four types of filters exist within this architecture style:

Producer

The starting point of a process, outbound only, sometimes called
the source.

Transformer

Accepts input, optionally performs a transformation on some or
all of the data, then forwards it to the outbound pipe. Functional



advocates will recognize this feature as map.

Tester

Accepts input, tests one or more criteria, then optionally produces
output, based on the test. Functional programmers will recognize
this as similar to reduce.

Consumer

The termination point for the pipeline flow. Consumers
sometimes persist the final result of the pipeline process to a
database, or they may display the final results on a user interface
screen.

The unidirectional nature and simplicity of each of the pipes and
filters encourages compositional reuse. Many developers have
discovered this ability using shells. A famous story from the blog
“More Shell, Less Egg” illustrates just how powerful these
abstractions are. Donald Knuth was asked to write a program to solve
this text handling problem: read a file of text, determine the n most
frequently used words, and print out a sorted list of those words along
with their frequencies. He wrote a program consisting of more than
10 pages of Pascal, designing (and documenting) a new algorithm
along the way. Then, Doug McIlroy demonstrated a shell script that
would easily fit within a Twitter post that solved the problem more
simply, elegantly, and understandably (if you understand shell
commands):

        tr -cs A-Za-z '\n' | 

        tr A-Z a-z | 

        sort | 

        uniq -c | 

        sort -rn | 
        sed ${1}q

https://oreil.ly/ljeb5


Even the designers of Unix shells are often surprised at the inventive
uses developers have wrought with their simple but powerfully
composite abstractions.

Example
The pipeline architecture pattern appears in a variety of applications,
especially tasks that facilitate simple, one-way processing. For
example, many Electronic Data Interchange (EDI) tools use this
pattern, building transformations from one document type to another
using pipes and filters. ETL tools (extract, transform, and load)
leverage the pipeline architecture as well for the flow and
modification of data from one database or data source to another.
Orchestrators and mediators such as Apache Camel utilize the
pipeline architecture to pass information from one step in a business
process to another.

To illustrate how the pipeline architecture can be used, consider the
following example, as illustrated in Figure 11-2, where various
service telemetry information is sent from services via streaming to
Apache Kafka.

https://camel.apache.org/
https://kafka.apache.org/


Figure 11-2. Pipeline architecture example

Notice in Figure 11-2 the use of the pipeline architecture style to
process the different kinds of data streamed to Kafka. The Service
Info Capture filter (producer filter) subscribes to the Kafka topic



and receives service information. It then sends this captured data to a
tester filter called Duration Filter to determine whether the
data captured from Kafka is related to the duration (in milliseconds)
of the service request. Notice the separation of concerns between the
filters; the Service Metrics Capture filter is only concerned
about how to connect to a Kafka topic and receive streaming data,
whereas the Duration Filter is only concerned about
qualifying the data and optionally routing it to the next pipe. If the
data is related to the duration (in milliseconds) of the service request,
then the Duration Filter passes the data on to the Duration
Calculator transformer filter. Otherwise, it passes it on to the
Uptime Filter tester filter to check if the data is related to uptime
metrics. If it is not, then the pipeline ends—the data is of no interest
to this particular processing flow. Otherwise, if it is uptime metrics, it
then passes the data along to the Uptime Calculator to
calculate the uptime metrics for the service. These transformers then
pass the modified data to the Database Output consumer, which
then persists the data in a MongoDB database.

This example shows the extensibility properties of the pipeline
architecture. For example, in Figure 11-2, a new tester filter could
easily be added after the Uptime Filter to pass the data on to
another newly gathered metric, such as the database connection wait
time.

Architecture Characteristics Ratings

https://www.mongodb.com/


A one-star rating in the characteristics ratings table Figure 11-3
means the specific architecture characteristic isn’t well supported in
the architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 11-3. Pipeline architecture characteristics ratings

The pipeline architecture style is a technically partitioned architecture
due to the partitioning of application logic into filter types (producer,
tester, transformer, and consumer). Also, because the pipeline
architecture is usually implemented as a monolithic deployment, the
architectural quantum is always one.

Overall cost and simplicity combined with modularity are the primary
strengths of the pipeline architecture style. Being monolithic in
nature, pipeline architectures don’t have the complexities associated
with distributed architecture styles, are simple and easy to
understand, and are relatively low cost to build and maintain.
Architectural modularity is achieved through the separation of
concerns between the various filter types and transformers. Any of
these filters can be modified or replaced without impacting the other
filters. For instance, in the Kafka example illustrated in Figure 11-2,
the Duration Calculator can be modified to change the
duration calculation without impacting any other filter.

Deployability and testability, while only around average, rate slightly
higher than the layered architecture due to the level of modularity
achieved through filters. That said, this architecture style is still a
monolith, and as such, ceremony, risk, frequency of deployment, and
completion of testing still impact the pipeline architecture.

Like the layered architecture, overall reliability rates medium (three
stars) in this architecture style, mostly due to the lack of network
traffic, bandwidth, and latency found in most distributed



architectures. We only gave it three stars for reliability because of the
nature of the monolithic deployment of this architecture style in
conjunction with testability and deployability issues (such as having
to test the entire monolith and deploy the entire monolith for any
given change).

Elasticity and scalability rate very low (one star) for the pipeline
architecture, primarily due to monolithic deployments. Although it is
possible to make certain functions within a monolith scale more than
others, this effort usually requires very complex design techniques
such as multithreading, internal messaging, and other parallel
processing practices, techniques this architecture isn’t well suited for.
However, because the pipeline architecture is always a single system
quantum due to the monolithic user interface, backend processing,
and monolithic database, applications can only scale to a certain point
based on the single architecture quantum.

Pipeline architectures don’t support fault tolerance due to monolithic
deployments and the lack of architectural modularity. If one small
part of a pipeline architecture causes an out-of-memory condition to
occur, the entire application unit is impacted and crashes.
Furthermore, overall availability is impacted due to the high mean
time to recovery (MTTR) usually experienced by most monolithic
applications, with startup times ranging anywhere from 2 minutes for
smaller applications, up to 15 minutes or more for most large
applications.



Chapter 12. Microkernel
Architecture Style

The microkernel architecture style (also referred to as the plug-in
architecture) was coined several decades ago and is still widely used
today. This architecture style is a natural fit for product-based
applications (packaged and made available for download and
installation as a single, monolithic deployment, typically installed on
the customer’s site as a third-party product) but is widely used in
many nonproduct custom business applications as well.

Topology
The microkernel architecture style is a relatively simple monolithic
architecture consisting of two architecture components: a core system
and plug-in components. Application logic is divided between
independent plug-in components and the basic core system, providing
extensibility, adaptability, and isolation of application features and
custom processing logic. Figure 12-1 illustrates the basic topology of
the microkernel architecture style.



Figure 12-1. Basic components of the microkernel architecture style



Core System

The core system is formally defined as the minimal functionality
required to run the system. The Eclipse IDE is a good example of
this. The core system of Eclipse is just a basic text editor: open a file,
change some text, and save the file. It’s not until you add plug-ins
that Eclipse starts becoming a usable product. However, another
definition of the core system is the happy path (general processing
flow) through the application, with little or no custom processing.
Removing the cyclomatic complexity of the core system and placing
it into separate plug-in components allows for better extensibility and
maintainability, as well as increased testability. For example, suppose
an electronic device recycling application must perform specific
custom assessment rules for each electronic device received. The
Java code for this sort of processing might look as follows:

public void assessDevice(String deviceID) { 
   if (deviceID.equals("iPhone6s")) { 
      assessiPhone6s(); 
   } else if (deviceID.equals("iPad1")) 
      assessiPad1(); 
   } else if (deviceID.equals("Galaxy5")) 
      assessGalaxy5(); 
   } else ... 
      ... 
   }
}

Rather than placing all this client-specific customization in the core
system with lots of cyclomatic complexity, it is much better to create
a separate plug-in component for each electronic device being
assessed. Not only do specific client plug-in components isolate
independent device logic from the rest of the processing flow, but
they also allow for expandability. Adding a new electronic device to



assess is simply a matter of adding a new plug-in component and
updating the registry. With the microkernel architecture style,
assessing an electronic device only requires the core system to locate
and invoke the corresponding device plug-ins as illustrated in this
revised source code:

public void assessDevice(String deviceID) { 
 String plugin = pluginRegistry.get(deviceID); 
 Class<?> theClass = Class.forName(plugin); 
 Constructor<?> constructor = 
theClass.getConstructor(); 
 DevicePlugin devicePlugin = 
  (DevicePlugin)constructor.newInstance(); 
 DevicePlugin.assess();
}

In this example all of the complex rules and instructions for assessing
a particular electronic device are self-contained in a standalone,
independent plug-in component that can be generically executed from
the core system.

Depending on the size and complexity, the core system can be
implemented as a layered architecture or a modular monolith (as
illustrated in Figure 12-2). In some cases, the core system can be split
into separately deployed domain services, with each domain service
containing specific plug-in components specific to that domain. For
example, suppose Payment Processing is the domain service
representing the core system. Each payment method (credit card,
PayPal, store credit, gift card, and purchase order) would be separate
plug-in components specific to the payment domain. In all of these
cases, it is typical for the entire monolithic application to share a
single database.



Figure 12-2. Variations of the microkernel architecture core system

The presentation layer of the core system can be embedded within the
core system or implemented as a separate user interface, with the core
system providing backend services. As a matter of fact, a separate
user interface can also be implemented as a microkernel architecture
style. Figure 12-3 illustrates these presentation layer variants in
relation to the core system.





Figure 12-3. User interface variants

Plug-In Components

Plug-in components are standalone, independent components that
contain specialized processing, additional features, and custom code
meant to enhance or extend the core system. Additionally, they can be
used to isolate highly volatile code, creating better maintainability
and testability within the application. Ideally, plug-in components
should be independent of each other and have no dependencies
between them.

The communication between the plug-in components and the core
system is generally point-to-point, meaning the “pipe” that connects
the plug-in to the core system is usually a method invocation or
function call to the entry-point class of the plug-in component. In
addition, the plug-in component can be either compile-based or
runtime-based. Runtime plug-in components can be added or
removed at runtime without having to redeploy the core system or
other plug-ins, and they are usually managed through frameworks
such as Open Service Gateway Initiative (OSGi) for Java, Penrose
(Java), Jigsaw (Java), or Prism (.NET). Compile-based plug-in
components are much simpler to manage but require the entire
monolithic application to be redeployed when modified, added, or
removed.

Point-to-point plug-in components can be implemented as shared
libraries (such as a JAR, DLL, or Gem), package names in Java, or
namespaces in C#. Continuing with the electronics recycling

https://www.osgi.org/
https://oreil.ly/J5XZw
https://oreil.ly/wv9bW
https://oreil.ly/xmrtY


assessment application example, each electronic device plug-in can
be written and implemented as a JAR, DLL, or Ruby Gem (or any
other shared library), with the name of the device matching the name
of the independent shared library, as illustrated in Figure 12-4.



Figure 12-4. Shared library plug-in implementation



Alternatively, an easier approach shown in Figure 12-5 is to
implement each plug-in component as a separate namespace or
package name within the same code base or IDE project. When
creating the namespace, we recommend the following semantics:
app.plug-in.<domain>.<context>. For example, consider
the namespace app.plugin.assessment.iphone6s. The
second node (plugin) makes it clear this component is a plug-in
and therefore should strictly adhere to the basic rules regarding plug-
in components (namely, that they are self-contained and separate
from other plug-ins). The third node describes the domain (in this
case, assessment), thereby allowing plug-in components to be
organized and grouped by a common purpose. The fourth node
(iphone6s) describes the specific context for the plug-in, making it
easy to locate the specific device plug-in for modification or testing.





Figure 12-5. Package or namespace plug-in implementation

Plug-in components do not always have to be point-to-point
communication with the core system. Other alternatives exist,
including using REST or messaging as a means to invoke plug-in
functionality, with each plug-in being a standalone service (or maybe
even a microservice implemented using a container). Although this
may sound like a good way to increase overall scalability, note that
this topology (illustrated in Figure 12-6) is still only a single
architecture quantum due to the monolithic core system. Every
request must first go through the core system to get to the plug-in
service.



Figure 12-6. Remote plug-in access using REST

The benefits of the remote access approach to accessing plug-in
components implemented as individual services is that it provides
better overall component decoupling, allows for better scalability and
throughput, and allows for runtime changes without any special
frameworks like OSGi, Jigsaw, or Prism. It also allows for
asynchronous communications to plug-ins, which, depending on the
scenario, could significantly improve overall user responsiveness.
Using the electronics recycling example, rather than having to wait
for the electronic device assessment to run, the core system could
make an asynchronous request to kick off an assessment for a



particular device. When the assessment completes, the plug-in can
notify the core system through another asynchronous messaging
channel, which in turn would notify the user that the assessment is
complete.

With these benefits comes trade-offs. Remote plug-in access turns the
microkernel architecture into a distributed architecture rather than a
monolithic one, making it difficult to implement and deploy for most
third-party on-prem products. Furthermore, it creates more overall
complexity and cost and complicates the overall deployment
topology. If a plug-in becomes unresponsive or is not running,
particularly when using REST, the request cannot be completed. This
would not be the case with a monolithic deployment. The choice of
whether to make the communication to plug-in components from the
core system point-to-point or remote should be based on specific
requirements and thus requires a careful trade-off analysis of the
benefits and drawbacks of such an approach.

It is not a common practice for plug-in components to connect
directly to a centrally shared database. Rather, the core system takes
on this responsibility, passing whatever data is needed into each plug-
in. The primary reason for this practice is decoupling. Making a
database change should only impact the core system, not the plug-in
components. That said, plug-ins can have their own separate data
stores only accessible to that plug-in. For example, each electronic
device assessment plug-in in the electronic recycling system example
can have its own simple database or rules engine containing all of the
specific assessment rules for each product. The data store owned by
the plug-in component can be external (as shown in Figure 12-7), or



it could be embedded as part of the plug-in component or monolithic
deployment (as in the case of an in-memory or embedded database).

Figure 12-7. Plug-in components can own their own data store

Registry



The core system needs to know about which plug-in modules are
available and how to get to them. One common way of implementing
this is through a plug-in registry. This registry contains information
about each plug-in module, including things like its name, data
contract, and remote access protocol details (depending on how the
plug-in is connected to the core system). For example, a plug-in for
tax software that flags high-risk tax audit items might have a registry
entry that contains the name of the service (AuditChecker), the data
contract (input data and output data), and the contract format (XML).

The registry can be as simple as an internal map structure owned by
the core system containing a key and the plug-in component
reference, or it can be as complex as a registry and discovery tool
either embedded within the core system or deployed externally (such
as Apache ZooKeeper or Consul). Using the electronics recycling
example, the following Java code implements a simple registry
within the core system, showing a point-to-point entry, a messaging
entry, and a RESTful entry example for assessing an iPhone 6S
device:

Map<String, String> registry = new HashMap<String, String>
();
static { 
  //point-to-point access example 
  registry.put("iPhone6s", "Iphone6sPlugin"); 
 
  //messaging example 
  registry.put("iPhone6s", "iphone6s.queue"); 
 
  //restful example 
  registry.put("iPhone6s", 
"https://atlas:443/assess/iphone6s");
}

https://zookeeper.apache.org/
https://www.consul.io/


Contracts
The contracts between the plug-in components and the core system
are usually standard across a domain of plug-in components and
include behavior, input data, and output data returned from the plug-
in component. Custom contracts are typically found in situations
where plug-in components are developed by a third party where you
have no control over the contract used by the plug-in. In such cases, it
is common to create an adapter between the plug-in contact and your
standard contract so that the core system doesn’t need specialized
code for each plug-in.

Plug-in contracts can be implemented in XML, JSON, or even
objects passed back and forth between the plug-in and the core
system. In keeping with the electronics recycling application, the
following contract (implemented as a standard Java interface named
AssessmentPlugin) defines the overall behavior (assess(),
register(), and deregister()), along with the corresponding
output data expected from the plug-in component
(AssessmentOutput):

public interface AssessmentPlugin { 
 public AssessmentOutput assess(); 
 public String register(); 
 public String deregister();
} 
 
public class AssessmentOutput { 
 public String assessmentReport; 
 public Boolean resell; 
 public Double value; 
 public Double resellPrice;
}



In this contract example, the device assessment plug-in is expected to
return the assessment report as a formatted string; a resell flag (true
or false) indicating whether this device can be resold on a third-party
market or safely disposed of; and finally, if it can be resold (another
form of recycling), what the calculated value is of the item and what
the recommended resell price should be.

Notice the roles and responsibility model between the core system
and the plug-in component in this example, specifically with the
assessmentReport field. It is not the responsibility of the core
system to format and understand the details of the assessment report,
only to either print it out or display it to the user.

Examples and Use Cases
Most of the tools used for developing and releasing software are
implemented using the microkernel architecture. Some examples
include the Eclipse IDE, PMD, Jira, and Jenkins, to name a few).
Internet web browsers such as Chrome and Firefox are another
common product example using the microkernel architecture: viewers
and other plug-ins add additional capabilities that are not otherwise
found in the basic browser representing the core system. The
examples are endless for product-based software, but what about
large business applications? The microkernel architecture applies to
these situations as well. To illustrate this point, consider an insurance
company example involving insurance claims processing.

Claims processing is a very complicated process. Each jurisdiction
has different rules and regulations for what is and isn’t allowed in an

https://www.eclipse.org/ide
https://pmd.github.io/
https://www.atlassian.com/software/jira
https://jenkins.io/


insurance claim. For example, some jurisdictions (e.g., states) allow
free windshield replacement if your windshield is damaged by a rock,
whereas other states do not. This creates an almost infinite set of
conditions for a standard claims process.

Most insurance claims applications leverage large and complex rules
engines to handle much of this complexity. However, these rules
engines can grow into a complex big ball of mud where changing one
rule impacts other rules, or making a simple rule change requires an
army of analysts, developers, and testers to make sure nothing is
broken by a simple change. Using the microkernel architecture
pattern can solve many of these issues.

The claims rules for each jurisdiction can be contained in separate
standalone plug-in components (implemented as source code or a
specific rules engine instance accessed by the plug-in component).
This way, rules can be added, removed, or changed for a particular
jurisdiction without impacting any other part of the system.
Furthermore, new jurisdictions can be added and removed without
impacting other parts of the system. The core system in this example
would be the standard process for filing and processing a claim,
something that doesn’t change often.

Another example of a large and complex business application that can
leverage the microkernel architecture is tax preparation software. For
example, the United States has a basic two-page tax form called the
1040 form that contains a summary of all the information needed to
calculate a person’s tax liability. Each line in the 1040 tax form has a
single number that requires many other forms and worksheets to



arrive at that single number (such as gross income). Each of these
additional forms and worksheets can be implemented as a plug-in
component, with the 1040 summary tax form being the core system
(the driver). This way, changes to tax law can be isolated to an
independent plug-in component, making changes easier and less
risky.

Architecture Characteristics Ratings
A one-star rating in the characteristics ratings in Figure 12-8 means
the specific architecture characteristic isn’t well supported in the
architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 12-8. Microkernel architecture characteristics ratings

Similar to the layered architecture style, simplicity and overall cost
are the main strengths of the microkernel architecture style, and
scalability, fault tolerance, and extensibility its main weaknesses.
These weaknesses are due to the typical monolithic deployments
found with the microkernel architecture. Also, like the layered
architecture style, the number of quanta is always singular (one)
because all requests must go through the core system to get to
independent plug-in components. That’s where the similarities end.

The microkernel architecture style is unique in that it is the only
architecture style that can be both domain partitioned and technically
partitioned. While most microkernel architectures are technically
partitioned, the domain partitioning aspect comes about mostly
through a strong domain-to-architecture isomorphism. For example,
problems that require different configurations for each location or
client match extremely well with this architecture style. Another
example is a product or application that places a strong emphasis on
user customization and feature extensibility (such as Jira or an IDE
like Eclipse).

Testability, deployability, and reliability rate a little above average
(three stars), primarily because functionality can be isolated to
independent plug-in components. If done right, this reduces the
overall testing scope of changes and also reduces overall risk of
deployment, particularly if plug-in components are deployed in a
runtime fashion.



Modularity and extensibility also rate a little above average (three
stars). With the microkernel architecture style, additional
functionality can be added, removed, and changed through
independent, self-contained plug-in components, thereby making it
relatively easy to extend and enhance applications created using this
architecture style and allowing teams to respond to changes much
faster. Consider the tax preparation software example from the
previous section. If the US tax law changes (which it does all the
time), requiring a new tax form, that new tax form can be created as a
plug-in component and added to the application without much effort.
Similarly, if a tax form or worksheet is no longer needed, that plug-in
can simply be removed from the application.

Performance is always an interesting characteristic to rate with the
microkernel architecture style. We gave it three stars (a little above
average) mostly because microkernel applications are generally small
and don’t grow as big as most layered architectures. Also, they don’t
suffer as much from the architecture sinkhole anti-pattern discussed
in Chapter 10. Finally, microkernel architectures can be streamlined
by unplugging unneeded functionality, therefore making the
application run faster. A good example of this is Wildfly (previously
the JBoss Application Server). By unplugging unnecessary
functionality like clustering, caching, and messaging, the application
server performs much faster than with these features in place.

https://wildfly.org/


Chapter 13. Service-Based
Architecture Style

Service-based architecture is a hybrid of the microservices
architecture style and is considered one of the most pragmatic
architecture styles, mostly due to its architectural flexibility.
Although service-based architecture is a distributed architecture, it
doesn’t have the same level of complexity and cost as other
distributed architectures, such as microservices or event-driven
architecture, making it a very popular choice for many business-
related applications.

Topology
The basic topology of service-based architecture follows a distributed
macro layered structure consisting of a separately deployed user
interface, separately deployed remote coarse-grained services, and a
monolithic database. This basic topology is illustrated in Figure 13-1.



Figure 13-1. Basic topology of the service-based architecture style

Services within this architecture style are typically coarse-grained
“portions of an application” (usually called domain services) that are
independent and separately deployed. Services are typically deployed



in the same manner as any monolithic application would be (such as
an EAR file, WAR file, or assembly) and as such do not require
containerization (although you could deploy a domain service in a
container such as Docker). Because the services typically share a
single monolithic database, the number of services within an
application context generally range between 4 and 12 services, with
the average being about 7 services.

In most cases there is only a single instance of each domain service
within a service-based architecture. However, based on scalability,
fault tolerance, and throughput needs, multiple instances of a domain
service can certainly exist. Multiple instances of a service usually
require some sort of load-balancing capability between the user
interface and the domain service so that the user interface can be
directed to a healthy and available service instance.

Services are accessed remotely from a user interface using a remote
access protocol. While REST is typically used to access services from
the user interface, messaging, remote procedure call (RPC), or even
SOAP could be used as well. While an API layer consisting of a
proxy or gateway can be used to access services from the user
interface (or other external requests), in most cases the user interface
accesses the services directly using a service locator pattern
embedded within the user interface, API gateway, or proxy.

One important aspect of service-based architecture is that it typically
uses a centrally shared database. This allows services to leverage
SQL queries and joins in the same way a traditional monolithic
layered architecture would. Because of the small number of services

https://oreil.ly/wYLF2


(4 to 12), database connections are not usually an issue in service-
based architecture. Database changes, however, can be an issue. The
section “Database Partitioning” describes techniques for addressing
and managing database change within a service-based architecture.

Topology Variants
Many topology variants exist within the service-based architecture
style, making this perhaps one of the most flexible architecture styles.
For example, the single monolithic user interface, as illustrated in
Figure 13-1, can be broken apart into user interface domains, even to
a level matching each domain service. These user interface variants
are illustrated in Figure 13-2.





Figure 13-2. User interface variants

Similarly, opportunities may exist to break apart a single monolithic
database into separate databases, even going as far as domain-scoped
databases matching each domain service (similar to microservices).
In these cases it is important to make sure the data in each separate
database is not needed by another domain service. This avoids
interservice communication between domain services (something to
definitely avoid with service-based architecture) and also the
duplication of data between databases. These database variants are
illustrated in Figure 13-3.



Figure 13-3. Database variants



Finally, it is also possible to add an API layer consisting of a reverse
proxy or gateway between the user interface and services, as shown
in Figure 13-4. This is a good practice when exposing domain service
functionality to external systems or when consolidating shared cross-
cutting concerns and moving them outside of the user interface (such
as metrics, security, auditing requirements, and service discovery).





Figure 13-4. Adding an API layer between the user interface and domain services

Service Design and Granularity
Because domain services in a service-based architecture are generally
coarse-grained, each domain service is typically designed using a
layered architecture style consisting of an API facade layer, a
business layer, and a persistence layer. Another popular design
approach is to domain partition each domain service using sub-
domains similar to the modular monolith architecture style. Each of
these design approaches is illustrated in Figure 13-5.





Figure 13-5. Domain service design variants

Regardless of the service design, a domain service must contain some
sort of API access facade that the user interface interacts with to
execute some sort of business functionality. The API access facade
typically takes on the responsibility of orchestrating the business
request from the user interface. For example, consider a business
request from the user interface to place an order (also known as
catalog checkout). This single request, received by the API access
facade within the OrderService domain service, internally
orchestrates the single business request: place the order, generate an
order ID, apply the payment, and update the product inventory for
each product ordered. In the microservices architecture style, this
would likely involve the orchestration of many separately deployed
remote single-purpose services to complete the request. This
difference between internal class-level orchestration and external
service orchestration points to one of the many significant differences
between service-based architecture and microservices in terms of
granularity.

Because domain services are coarse-grained, regular ACID
(atomicity, consistency, isolation, durability) database transactions
involving database commits and rollbacks are used to ensure database
integrity within a single domain service. Highly distributed
architectures like microservices, on the other hand, usually have fine-
grained services and use a distributed transaction technique known as
BASE transactions (basic availability, soft state, eventual
consistency) transactions that rely on eventual consistency and hence



do not support the same level of database integrity as ACID
transactions in a service-based architecture.

To illustrate this point, consider the example of a catalog checkout
process within a service-based architecture. Suppose the customer
places an order and the credit card used for payment has expired.
Since this is an atomic transaction within the same service,
everything added to the database can be removed using a rollback and
a notice sent to the customer stating that the payment cannot be
applied. Now consider this same process in a microservices
architecture with smaller fine-grained services. First, the
OrderPlacement service would accept the request, create the
order, generate an order ID, and insert the order into the order tables.
Once this is done, the order service would then make a remote call to
the PaymentService, which would try to apply the payment. If
the payment cannot be applied due to an expired credit card, then the
order cannot be placed and the data is in an inconsistent state (the
order information has already been inserted but has not been
approved). In this case, what about the inventory for that order?
Should it be marked as ordered and decremented? What if the
inventory is low and another customer wishes to purchase the item?
Should that new customer be allowed to buy it, or should the reserved
inventory be reserved for the customer trying to place the order with
an expired credit card? These are just a few of the questions that
would need to be addressed when orchestrating a business process
with multiple finer-grained services.

Domain services, being coarse-grained, allow for better data integrity
and consistency, but there is a trade-off. With service-based



architecture, a change made to the order placement functionality in
the OrderService would require testing the entire coarse-grained
service (including payment processing), whereas with microservices
the same change would only impact a small OrderPlacement
service (requiring no change to the PaymentService).
Furthermore, because more code is being deployed, there is more risk
with service-based architecture that something might break (including
payment processing), whereas with microservices each service has a
single responsibility, hence less chance of breaking other
functionality when being changed.

Database Partitioning
Although not required, services within a service-based architecture
usually share a single, monolithic database due to the small number
of services (4 to 12) within a given application context. This database
coupling can present an issue with respect to database table schema
changes. If not done properly, a table schema change can potentially
impact every service, making database changes a very costly task in
terms of effort and coordination.

Within a service-based architecture, the shared class files representing
the database table schemas (usually referred to as entity objects)
reside in a custom shared library used by all the domain services
(such as a JAR file or DLL). Shared libraries might also contain SQL
code. The practice of creating a single shared library of entity objects
is the least effective way of implementing service-based architecture.
Any change to the database table structures would also require a



change to the single shared library containing all of the corresponding
entity objects, thus requiring a change and redeployment to every
service, regardless of whether or not the services actually access the
changed table. Shared library versioning can help address this issue,
but nevertheless, with a single shared library it is difficult to know
which services are actually impacted by the table change without
manual, detailed analysis. This single shared library scenario is
illustrated in Figure 13-6.





Figure 13-6. Using a single shared library for database entity objects

One way to mitigate the impact and risk of database changes is to
logically partition the database and manifest the logical partitioning
through federated shared libraries. Notice in Figure 13-7 that the
database is logically partitioned into five separate domains (common,
customer, invoicing, order, and tracking). Also notice that there are
five corresponding shared libraries used by the domain services
matching the logical partitions in the database. Using this technique,
changes to a table within a particular logical domain (in this case,
invoicing) match the corresponding shared library containing the
entity objects (and possibly SQL as well), impacting only those
services using that shared library, which in this case is the invoicing
service. No other services are impacted by this change.





Figure 13-7. Using multiple shared libraries for database entity objects

Notice in Figure 13-7 the use of the common domain and the
corresponding common_entities_lib shared library used by all
services. This is a relatively common occurrence. These tables are
common to all services, and as such, changes to these tables require
coordination of all services accessing the shared database. One way
to mitigate changes to these tables (and corresponding entity objects)
is to lock the common entity objects in the version control system and
restrict change access to only the database team. This helps control
change and emphasizes the significance of changes to the common
tables used by all services.

TIP
Make the logical partitioning in the database as fine-grained as possible while
still maintaining well-defined data domains to better control database changes
within a service-based architecture.

Example Architecture
To illustrate the flexibility and power of the service-based
architecture style, consider the real-world example of an electronic
recycling system used to recycle old electronic devices (such as an
iPhone or Galaxy cell phone). The processing flow of recycling old
electronic devices works as follows: first, the customer asks the
company (via a website or kiosk) how much money they can get for
the old electronic device (called quoting). If satisfied, the customer
will send the electronic device to the recycling company, which in



turn will receive the physical device (called receiving). Once
received, the recycling company will then assess the device to
determine if the device is in good working condition or not (called
assessment). If the device is in good working condition, the company
will send the customer the money promised for the device (called
accounting). Through this process, the customer can go to the website
at any time to check on the status of the item (called item status).
Based on the assessment, the device is then recycled by either safely
destroying it or reselling it (called recycling). Finally, the company
periodically runs ad hoc and scheduled financial and operational
reports based on recycling activity (called reporting).

Figure 13-8 illustrates this system using a service-based architecture.
Notice how each domain area identified in the prior description is
implemented as a separately deployed independent domain service.
Scalability can be achieved by only scaling those services needing
higher throughput (in this case, the customer-facing Quoting
service and ItemStatus service). The other services do not need to
scale, and as such only require a single service instance.



Figure 13-8. Electronics recycling example using service-based architecture

Also notice in Figure 13-8 how the user interface applications are
federated into their respective domains: Customer Facing, Receiving,
and Recycling and Accounting. This federation allows for fault
tolerance of the user interface, scalability, and security (external
customers have no network path to internal functionality). Finally,



notice in this example that there are two separate physical databases:
one for external customer-facing operations, and one for internal
operations. This allows the internal data and operations to reside in a
separate network zone from the external operations (denoted by the
vertical line), providing much better security access restrictions and
data protection. One-way access through the firewall allows internal
services to access and update the customer-facing information, but
not vice versa. Alternatively, depending on the database being used,
internal table mirroring and table synchronization could also be used.

This example illustrates many of the benefits of the service-based
architecture approach: scalability, fault tolerance, and security (data
and functionality protection and access), in addition to agility,
testability, and deployability. For example, the Assessment service
is changed constantly to add assessment rules as new products are
received. This frequent change is isolated to a single domain service,
providing agility (the ability to respond quickly to change), as well as
testability (the ease of and completeness of testing) and deployability
(the ease, frequency, and risk of deployment).

Architecture Characteristics Ratings
A one-star rating in the characteristics ratings table in Figure 13-9
means the specific architecture characteristic isn’t well supported in
the architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 13-9. Service-based architecture characteristics ratings

Service-based architecture is a domain-partitioned architecture,
meaning that the structure is driven by the domain rather than a
technical consideration (such as presentation logic or persistence
logic). Consider the prior example of the electronic recycling
application. Each service, being a separately deployed unit of
software, is scoped to a specific domain (such as item assessment).
Changes made within this domain only impact the specific service,
the corresponding user interface, and the corresponding database.
Nothing else needs to be modified to support a specific assessment
change.

Being a distributed architecture, the number of quanta can be greater
than or equal to one. Even though there may be anywhere from 4 to
12 separately deployed services, if those services all share the same
database or user interface, that entire system would be only a single
quantum. However, as illustrated in “Topology Variants”, both the
user interface and database can be federated, resulting in multiple
quanta within the overall system. In the electronics recycling
example, the system contains two quanta, as illustrated in Figure 13-
10: one for the customer-facing portion of the application containing
a separate customer user interface, database, and set of services
(Quoting and Item Status); and one for the internal operations
of receiving, assessing, and recycling the electronic device. Notice
that even though the internal operations quantum contains separately
deployed services and two separate user interfaces, they all share the
same database, making the internal operations portion of the
application a single quantum.





Figure 13-10. Separate quanta in a service-based architecture

Although service-based architecture doesn’t contain any five-star
ratings, it nevertheless rates high (four stars) in many important and
vital areas. Breaking apart an application into separately deployed
domain services using this architecture style allows for faster change
(agility), better test coverage due to the limited scope of the domain
(testability), and the ability for more frequent deployments carrying
less risk than a large monolith (deployability). These three
characteristics lead to better time-to-market, allowing an organization
to deliver new features and bug fixes at a relatively high rate.

Fault tolerance and overall application availability also rate high for
service-based architecture. Even though domain services tend to be
coarse-grained, the four-star rating comes from the fact that with this
architecture style, services are usually self-contained and do not
leverage interservice communication due to database sharing and
code sharing. As a result, if one domain service goes down (e.g., the
Receiving service in the electronic recycling application
example), it doesn’t impact any of the other six services.

Scalability only rates three stars due to the coarse-grained nature of
the services, and correspondingly, elasticity only two stars. Although
programmatic scalability and elasticity are certainly possible with this
architecture style, more functionality is replicated than with finer-
grained services (such as microservices) and as such is not as
efficient in terms of machine resources and not as cost-effective.
Typically there are only single service instances with service-based
architecture unless there is a need for better throughput or failover. A



good example of this is the electronics recycling application example
—only the Quoting and Item Status services need to scale to
support high customer volumes, but the other operational services
only require single instances, making it easier to support such things
as single in-memory caching and database connection pooling.

Simplicity and overall cost are two other drivers that differentiate this
architecture style from other, more expensive and complex distributed
architectures, such as microservices, event-driven architecture, or
even space-based architecture. This makes service-based one of the
easiest and cost-effective distributed architectures to implement.
While this is an attractive proposition, there is a trade-off to this cost
savings and simplicity in all of the characteristics containing four-star
ratings. The higher the cost and complexity, the better these ratings
become.

Service-based architectures tend to be more reliable than other
distributed architectures due to the coarse-grained nature of the
domain services. Larger services mean less network traffic to and
between services, fewer distributed transactions, and less bandwidth
used, therefore increasing overall reliability with respect to the
network.

When to Use This Architecture Style
The flexibility of this architecture style (see “Topology Variants”)
combined with the number of three-star and four-star architecture
characteristics ratings make service-based architecture one of the
most pragmatic architecture styles available. While there are certainly



other distributed architecture styles that are much more powerful,
some companies find that power comes at too steep of a price, while
others find that they quite simply don’t need that much power. It’s
like having the power, speed, and agility of a Ferrari used only for
driving back and forth to work in rush-hour traffic at 50 kilometers
per hour—sure it looks cool, but what a waste of resources and
money!

Service-based architecture is also a natural fit when doing domain-
driven design. Because services are coarse-grained and domain-
scoped, each domain fits nicely into a separately deployed domain
service. Each service in service-based architecture encompasses a
particular domain (such as recycling in the electronic recycling
application), therefore compartmentalizing that functionality into a
single unit of software, making it easier to apply changes to that
domain.

Maintaining and coordinating database transactions is always an issue
with distributed architectures in that they typically rely on eventual
consistency rather than traditional ACID (atomicity, consistency,
isolation, and durability) transactions. However, service-based
architecture preserves ACID transactions better than any other
distributed architecture due to the coarse-grained nature of the
domain services. There are cases where the user interface or API
gateway might orchestrate two or more domain services, and in these
cases the transaction would need to rely on sagas and BASE
transactions. However, in most cases the transaction is scoped to a
particular domain service, allowing for the traditional commit and



rollback transaction functionality found in most monolithic
applications.

Lastly, service-based architecture is a good choice for achieving a
good level of architectural modularity without having to get tangled
up in the complexities and pitfalls of granularity. As services become
more fine-grained, issues surrounding orchestration and
choreography start to appear. Both orchestration and choreography
are required when multiple services must be coordinated to complete
a certain business transaction. Orchestration is the coordination of
multiple services through the use of a separate mediator service that
controls and manages the workflow of the transaction (like a
conductor in an orchestra). Choreography, on the other hand, is the
coordination of multiple services by which each service talks to one
another without the use of a central mediator (like dancers in a
dance). As services become more fine-grained, both orchestration and
choreography are necessary to tie the services together to complete
the business transaction. However, because services within a service-
based architecture tend to be more coarse-grained, they don’t require
coordination nearly as much as other distributed architectures.



Chapter 14. Event-Driven
Architecture Style

The event-driven architecture style is a popular distributed
asynchronous architecture style used to produce highly scalable and
high-performance applications. It is also highly adaptable and can be
used for small applications and as well as large, complex ones. Event-
driven architecture is made up of decoupled event processing
components that asynchronously receive and process events. It can be
used as a standalone architecture style or embedded within other
architecture styles (such as an event-driven microservices
architecture).

Most applications follow what is called a request-based model
(illustrated in Figure 14-1). In this model, requests made to the
system to perform some sort of action are send to a request
orchestrator. The request orchestrator is typically a user interface, but
it can also be implemented through an API layer or enterprise service
bus. The role of the request orchestrator is to deterministically and
synchronously direct the request to various request processors. The
request processors handle the request, either retrieving or updating
information in a database.



Figure 14-1. Request-based model



A good example of the request-based model is a request from a
customer to retrieve their order history for the past six months.
Retrieving order history information is a data-driven, deterministic
request made to the system for data within a specific context, not an
event happening that the system must react to.

An event-based model, on the other hand, reacts to a particular
situation and takes action based on that event. An example of an
event-based model is submitting a bid for a particular item within an
online auction. Submitting the bid is not a request made to the
system, but rather an event that happens after the current asking price
is announced. The system must respond to this event by comparing
the bid to others received at the same time to determine who is the
current highest bidder.

Topology
There are two primary topologies within event-driven architecture:
the mediator topology and the broker topology. The mediator
topology is commonly used when you require control over the
workflow of an event process, whereas the broker topology is used
when you require a high degree of responsiveness and dynamic
control over the processing of an event. Because the architecture
characteristics and implementation strategies differ between these
two topologies, it is important to understand each one to know which
is best suited for a particular situation.

Broker Topology



The broker topology differs from the mediator topology in that there
is no central event mediator. Rather, the message flow is distributed
across the event processor components in a chain-like broadcasting
fashion through a lightweight message broker (such as RabbitMQ,
ActiveMQ, HornetQ, and so on). This topology is useful when you
have a relatively simple event processing flow and you do not need
central event orchestration and coordination.

There are four primary architecture components within the broker
topology: an initiating event, the event broker, an event processor,
and a processing event. The initiating event is the initial event that
starts the entire event flow, whether it be a simple event like placing a
bid in an online auction or more complex events in a health benefits
system like changing a job or getting married. The initiating event is
sent to an event channel in the event broker for processing. Since
there is no mediator component in the broker topology managing and
controlling the event, a single event processor accepts the initiating
event from the event broker and begins the processing of that event.
The event processor that accepted the initiating event performs a
specific task associated with the processing of that event, then
asynchronously advertises what it did to the rest of the system by
creating what is called a processing event. This processing event is
then asynchronously sent to the event broker for further processing, if
needed. Other event processors listen to the processing event, react to
that event by doing something, then advertise through a new
processing event what they did. This process continues until no one is
interested in what a final event processor did. Figure 14-2 illustrates
this event processing flow.





Figure 14-2. Broker topology

The event broker component is usually federated (meaning multiple
domain-based clustered instances), where each federated broker
contains all of the event channels used within the event flow for that
particular domain. Because of the decoupled asynchronous fire-and-
forget broadcasting nature of the broker topology, topics (or topic
exchanges in the case of AMQP) are usually used in the broker
topology using a publish-and-subscribe messaging model.

It is always a good practice within the broker topology for each event
processor to advertise what it did to the rest of the system, regardless
of whether or not any other event processor cares about what that
action was. This practice provides architectural extensibility if
additional functionality is required for the processing of that event.
For example, suppose as part of a complex event process, as
illustrated in Figure 14-3, an email is generated and sent to a
customer notifying them of a particular action taken. The
Notification event processor would generate and send the
email, then advertise that action to the rest of the system through a
new processing event sent to a topic. However, in this case, no other
event processors are listening for events on that topic, and as such the
message simply goes away.



Figure 14-3. Notification event is sent but ignored



This is a good example of architectural extensibility. While it may
seem like a waste of resources sending messages that are ignored, it is
not. Suppose a new requirement comes along to analyze emails that
have been sent to customers. This new event processor can be added
to the overall system with minimal effort because the email
information is available via the email topic to the new analyzer
without having to add any additional infrastructure or apply any
changes to other event processors.

To illustrate how the broker topology works, consider the processing
flow in a typical retail order entry system, as illustrated in Figure 14-
4, where an order is placed for an item (say, a book like this one). In
this example, the OrderPlacement event processor receives the
initiating event (PlaceOrder), inserts the order in a database table,
and returns an order ID to the customer. It then advertises to the rest
of the system that it created an order through an order-created
processing event. Notice that three event processors are interested in
that event: the Notification event processor, the Payment
event processor, and the Inventory event processor. All three of
these event processors perform their tasks in parallel.





Figure 14-4. Example of the broker topology

The Notification event processor receives the order-
created processing event and emails the customer. It then
generates another processing event (email-sent). Notice that no
other event processors are listening to that event. This is normal and
illustrates the previous example describing architectural extensibility
—an in-place hook so that other event processors can eventually tap
into that event feed, if needed.

The Inventory event processor also listens for the order-
created processing event and decrements the corresponding
inventory for that book. It then advertises this action through an
inventory-updated processing event, which is in turn picked
up by the Warehouse event processor to manage the corresponding
inventory between warehouses, reordering items if supplies get too
low.

The Payment event processor also receives the order-created
processing event and charges the customer’s credit card for the order
that was just created. Notice in Figure 14-4 that two events are
generated as a result of the actions taken by the Payment event
processor: one to notify the rest of the system that the payment was
applied (payment-applied) and one processing event to notify
the rest of the system that the payment was denied (payment-
denied). Notice that the Notification event processor is
interested in the payment-denied processing event, because it
must, in turn, send an email to the customer informing them that they



must update their credit card information or choose a different
payment method.

The OrderFulfillment event processor listens to the
payment-applied processing event and does order picking and
packing. Once completed, it then advertises to the rest of the system
that it fulfilled the order via an order-fulfilled processing
event. Notice that both the Notification processing unit and the
Shipping processing unit listen to this processing event.
Concurrently, the Notification event notifies the customer that
the order has been fulfilled and is ready for shipment, and at the same
time the Shipping event processor selects a shipping method. The
Shipping event processor ships the order and sends out an
order-shipped processing event, which the Notification
event processor also listens for to notify the customer of the order
status change.

In analyzing the prior example, notice that all of the event processors
are highly decoupled and independent of each other. The best way to
understand the broker topology is to think about it as a relay race. In a
relay race, runners hold a baton (a wooden stick) and run for a certain
distance (say 1.5 kilometers), then hand off the baton to the next
runner, and so on down the chain until the last runner crosses the
finish line. In relay races, once a runner hands off the baton, that
runner is done with the race and moves on to other things. This is also
true with the broker topology. Once an event processor hands off the
event, it is no longer involved with the processing of that specific
event and is available to react to other initiating or processing events.



In addition, each event processor can scale independently from one
other to handle varying load conditions or backups in the processing
within that event. The topics provide the back pressure point if an
event processor comes down or slows down due to some environment
issue.

While performance, responsiveness, and scalability are all great
benefits of the broker topology, there are also some negatives about
it. First of all, there is no control over the overall workflow associated
with the initiating event (in this case, the PlaceOrder event). It is
very dynamic based on various conditions, and no one in the system
really knows when the business transaction of placing an order is
actually complete. Error handling is also a big challenge with the
broker topology. Because there is no mediator monitoring or
controlling the business transaction, if a failure occurs (such as the
Payment event processor crashing and not completing its assigned
task), no one in the system is aware of that crash. The business
process gets stuck and is unable to move without some sort of
automated or manual intervention. Furthermore, all other processes
are moving along without regard for the error. For example, the
Inventory event processor still decrements the inventory, and all
other event processors react as though everything is fine.

The ability to restart a business transaction (recoverability) is also
something not supported with the broker topology. Because other
actions have asynchronously been taken through the initial processing
of the initiating event, it is not possible to resubmit the initiating
event. No component in the broker topology is aware of the state or



even owns the state of the original business request, and therefore no
one is responsible in this topology for restarting the business
transaction (the initiating event) and knowing where it left off. The
advantages and disadvantages of the broker topology are summarized
in Table 14-1.

Table 14-1. Trade-offs of the broker topology

Advantages Disadvantages

Highly decoupled event processors Workflow control

High scalability Error handling

High responsiveness Recoverability

High performance Restart capabilities

High fault tolerance Data inconsistency

Mediator Topology
The mediator topology of event-driven architecture addresses some
of the shortcomings of the broker topology described in the previous
section. Central to this topology is an event mediator, which manages
and controls the workflow for initiating events that require the
coordination of multiple event processors. The architecture
components that make up the mediator topology are an initiating
event, an event queue, an event mediator, event channels, and event
processors.



Like in the broker topology, the initiating event is the event that starts
the whole eventing process. Unlike the broker topology, the initiating
event is sent to an initiating event queue, which is accepted by the
event mediator. The event mediator only knows the steps involved in
processing the event and therefore generates corresponding
processing events that are sent to dedicated event channels (usually
queues) in a point-to-point messaging fashion. Event processors then
listen to dedicated event channels, process the event, and usually
respond back to the mediator that they have completed their work.
Unlike the broker topology, event processors within the mediator
topology do not advertise what they did to the rest of the system. The
mediator topology is illustrated in Figure 14-5.



Figure 14-5. Mediator topology

In most implementations of the mediator topology, there are multiple
mediators, usually associated with a particular domain or grouping of



events. This reduces the single point of failure issue associated with
this topology and also increases overall throughput and performance.
For example, there might be a customer mediator that handles all
customer-related events (such as new customer registration and
profile update), and another mediator that handles order-related
activities (such as adding an item to a shopping cart and checking
out).

The event mediator can be implemented in a variety of ways,
depending on the nature and complexity of the events it is processing.
For example, for events requiring simple error handling and
orchestration, a mediator such as Apache Camel, Mule ESB, or
Spring Integration will usually suffice. Message flows and message
routes within these types of mediators are typically custom written in
programming code (such as Java or C#) to control the workflow of
the event processing.

However, if the event workflow requires lots of conditional
processing and multiple dynamic paths with complex error handling
directives, then a mediator such as Apache ODE or the Oracle BPEL
Process Manager would be a good choice. These mediators are based
on Business Process Execution Language (BPEL), an XML-like
structure that describes the steps involved in processing an event.
BPEL artifacts also contain structured elements used for error
handling, redirection, multicasting, and so on. BPEL is a powerful
but relatively complex language to learn, and as such is usually
created using graphical interface tools provided in the product’s
BPEL engine suite.

https://camel.apache.org/
https://www.mulesoft.com/
https://oreil.ly/r2e4r
https://ode.apache.org/
https://oreil.ly/jMtta
https://oreil.ly/Uu-Fo


BPEL is good for complex and dynamic workflows, but it does not
work well for those event workflows requiring long-running
transactions involving human intervention throughout the event
process. For example, suppose a trade is being placed through a
place-trade initiating event. The event mediator accepts this
event, but during the processing finds that a manual approval is
required because the trade is over a certain amount of shares. In this
case the event mediator would have to stop the event processing, send
a notification to a senior trader for the manual approval, and wait for
that approval to occur. In these cases a Business Process Management
(BPM) engine such as jBPM would be required.

It is important to know the types of events that will be processed
through the mediator in order to make the correct choice for the
implementation of the event mediator. Choosing Apache Camel for
complex and long-running events involving human interaction would
be extremely difficult to write and maintain. By the same token, using
a BPM engine for simple event flows would take months of wasted
effort when the same thing could be accomplished in Apache Camel
in a matter of days.

Given that it’s rare to have all events of one class of complexity, we
recommend classifying events as simple, hard, or complex and
having every event always go through a simple mediator (such as
Apache Camel or Mule). The simple mediator can then interrogate
the classification of the event, and based on that classification, handle
the event itself or forward it to another, more complex, event
mediator. In this manner, all types of events can be effectively

https://www.jbpm.org/


processed by the type of mediator needed for that event. This
mediator delegation model is illustrated in Figure 14-6.





Figure 14-6. Delegating the event to the appropriate type of event mediator

Notice in Figure 14-6 that the Simple Event Mediator
generates and sends a processing event when the event workflow is
simple and can be handled by the simple mediator. However, notice
that when the initiating event coming into the Simple Event
Mediator is classified as either hard or complex, it forwards the
original initiating event to the corresponding mediators (BPEL or
BMP). The Simple Event Mediator, having intercepted the
original event, may still be responsible for knowing when that event
is complete, or it simply delegates the entire workflow (including
client notification) to the other mediators.

To illustrate how the mediator topology works, consider the same
retail order entry system example described in the prior broker
topology section, but this time using the mediator topology. In this
example, the mediator knows the steps required to process this
particular event. This event flow (internal to the mediator component)
is illustrated in Figure 14-7.





Figure 14-7. Mediator steps for placing an order

In keeping with the prior example, the same initiating event
(PlaceOrder) is sent to the customer-event-queue for
processing. The Customer mediator picks up this initiating event
and begins generating processing events based on the flow in
Figure 14-7. Notice that the multiple events shown in steps 2, 3, and
4 are all done concurrently and serially between steps. In other words,
step 3 (fulfill order) must be completed and acknowledged before the
customer can be notified that the order is ready to be shipped in step
4 (ship order).

Once the initiating event has been received, the Customer mediator
generates a create-order processing event and sends this
message to the order-placement-queue (see Figure 14-8). The
OrderPlacement event processor accepts this event and validates
and creates the order, returning to the mediator an acknowledgement
along with the order ID. At this point the mediator might send that
order ID back to the customer, indicating that the order was placed, or
it might have to continue until all the steps are complete (this would
be based on specific business rules about order placement).



Figure 14-8. Step 1 of the mediator example



Now that step 1 is complete, the mediator now moves to step 2 (see
Figure 14-9) and generates three messages at the same time: email-
customer, apply-payment, and adjust-inventory. These
processing events are all sent to their respective queues. All three
event processors receive these messages, perform their respective
tasks, and notify the mediator that the processing has been completed.
Notice that the mediator must wait until it receives acknowledgement
from all three parallel processes before moving on to step 3. At this
point, if an error occurs in one of the parallel event processors, the
mediator can take corrective action to fix the problem (this is
discussed later in this section in more detail).



Figure 14-9. Step 2 of the mediator example



Once the mediator gets a successful acknowledgment from all of the
event processors in step 2, it can move on to step 3 to fulfill the order
(see Figure 14-10). Notice once again that both of these events
(fulfill-order and order-stock) can occur simultaneously.
The OrderFulfillment and Warehouse event processors
accept these events, perform their work, and return an
acknowledgement to the mediator.



Figure 14-10. Step 3 of the mediator example



Once these events are complete, the mediator then moves on to step 4
(see Figure 14-11) to ship the order. This step generates another
email-customer processing event with specific information
about what to do (in this case, notify the customer that the order is
ready to be shipped), as well as a ship-order event.



Figure 14-11. Step 4 of the mediator example



Finally, the mediator moves to step 5 (see Figure 14-12) and
generates another contextual email_customer event to notify the
customer that the order has been shipped. At this point the workflow
is done, and the mediator marks the initiating event flow complete
and removes all state associated with the initiating event.



Figure 14-12. Step 5 of the mediator example



The mediator component has knowledge and control over the
workflow, something the broker topology does not have. Because the
mediator controls the workflow, it can maintain event state and
manage error handling, recoverability, and restart capabilities. For
example, suppose in the prior example the payment was not applied
due to the credit card being expired. In this case the mediator receives
this error condition, and knowing the order cannot be fulfilled (step
3) until payment is applied, stops the workflow and records the state
of the request in its own persistent datastore. Once payment is
eventually applied, the workflow can be restarted from where it left
off (in this case, the beginning of step 3).

Another inherent difference between the broker and mediator
topology is how the processing events differ in terms of their
meaning and how they are used. In the broker topology example in
the previous section, the processing events were published as events
that had occurred in the system (such as order-created,
payment-applied, and email-sent). The event processors
took some action, and other event processors react to that action.
However, in the mediator topology, processing events such as
place-order, send-email, and fulfill-order are
commands (things that need to happen) as opposed to events (things
that have already happened). Also, in the mediator topology, a
processing event must be processed (command), whereas it can be
ignored in the broker topology (reaction).

While the mediator topology addresses the issues associated with the
broker topology, there are some negatives associated with the



mediator topology. First of all, it is very difficult to declaratively
model the dynamic processing that occurs within a complex event
flow. As a result, many workflows within the mediator only handle
the general processing, and a hybrid model combining both the
mediator and broker topologies is used to address the dynamic nature
of complex event processing (such as out-of-stock conditions or other
nontypical errors). Furthermore, although the event processors can
easily scale in the same manner as the broker topology, the mediator
must scale as well, something that occasionally produces a bottleneck
in the overall event processing flow. Finally, event processors are not
as highly decoupled in the mediator topology as with the broker
topology, and performance is not as good due to the mediator
controlling the processing of the event. These trade-offs are
summarized in Table 14-2.

Table 14-2. Trade-offs of the mediator topology

Advantages Disadvantages

Workflow control More coupling of event processors

Error handling Lower scalability

Recoverability Lower performance

Restart capabilities Lower fault tolerance

Better data consistency Modeling complex workflows

The choice between the broker and mediator topology essentially
comes down to a trade-off between workflow control and error
handling capability versus high performance and scalability.



Although performance and scalability are still good within the
mediator topology, they are not as high as with the broker topology.

Asynchronous Capabilities
The event-driven architecture style offers a unique characteristic over
other architecture styles in that it relies solely on asynchronous
communication for both fire-and-forget processing (no response
required) as well as request/reply processing (response required from
the event consumer). Asynchronous communication can be a
powerful technique for increasing the overall responsiveness of a
system.

Consider the example illustrated in Figure 14-13 where a user is
posting a comment on a website for a particular product review.
Assume the comment service in this example takes 3,000
milliseconds to post the comment because it goes through several
parsing engines: a bad word checker to check for unacceptable words,
a grammar checker to make sure that the sentence structures are not
saying something abusive, and finally a context checker to make sure
the comment is about a particular product and not just a political rant.
Notice in Figure 14-13 that the top path utilizes a synchronous
RESTful call to post the comment: 50 milliseconds in latency for the
service to receive the post, 3,000 milliseconds to post the comment,
and 50 milliseconds in network latency to respond back to the user
that the comment was posted. This creates a response time for the
user of 3,100 milliseconds to post a comment. Now look at the
bottom path and notice that with the use of asynchronous messaging,
the response time from the end user’s perspective for posting a



comment on the website is only 25 milliseconds (as opposed to 3,100
milliseconds). It still takes 3,025 milliseconds to post the comment
(25 milliseconds to receive the message and 3,000 milliseconds to
post the comment), but from the end user’s perspective it’s already
been done.



Figure 14-13. Synchronous versus asynchronous communication

This is a good example of the difference between responsiveness and
performance. When the user does not need any information back



(other than an acknowledgement or a thank you message), why make
the user wait? Responsiveness is all about notifying the user that the
action has been accepted and will be processed momentarily, whereas
performance is about making the end-to-end process faster. Notice
that nothing was done to optimize the way the comment service
processes the text—in both cases it is still taking 3,000 milliseconds.
Addressing performance would have been optimizing the comment
service to run all of the text and grammar parsing engines in parallel
with the use of caching and other similar techniques. The bottom
example in Figure 14-13 addresses the overall responsiveness of the
system but not the performance of the system.

The difference in response time between the two examples in
Figure 14-13 from 3,100 milliseconds to 25 milliseconds is
staggering. There is one caveat. On the synchronous path shown on
the top of the diagram, the end user is guaranteed that the comment
has been posted. However, on the bottom path there is only the
acknowledgement of the post, with a future promise that eventually
the comment will get posted. From the end user’s perspective, the
comment has been posted. But what happens if the user had typed a
bad word in the comment? In this case the comment would be
rejected, but there is no way to get back to the end user. Or is there?
In this example, assuming the user is registered with the website
(which to post a comment they would have to be), a message could
be sent to the user indicating a problem with the comment and some
suggestions on how to repair it. This is a simple example. What about
a more complicated example where the purchase of some stock is



taking place asynchronously (called a stock trade) and there is no way
to get back to the user?

The main issue with asynchronous communications is error handling.
While responsiveness is significantly improved, it is difficult to
address error conditions, adding to the complexity of the event-driven
system. The next section addresses this issue with a pattern of
reactive architecture called the workflow event pattern.

Error Handling
The workflow event pattern of reactive architecture is one way of
addressing the issues associated with error handling in an
asynchronous workflow. This pattern is a reactive architecture pattern
that addresses both resiliency and responsiveness. In other words, the
system can be resilient in terms of error handling without an impact
to responsiveness.

The workflow event pattern leverages delegation, containment, and
repair through the use of a workflow delegate, as illustrated in
Figure 14-14. The event producer asynchronously passes data
through a message channel to the event consumer. If the event
consumer experiences an error while processing the data, it
immediately delegates that error to the workflow processor and
moves on to the next message in the event queue. In this way, overall
responsiveness is not impacted because the next message is
immediately processed. If the event consumer were to spend the time
trying to figure out the error, then it is not reading the next message
in the queue, therefore impacting the responsiveness not only of the



next message, but all other messages waiting in the queue to be
processed.

Once the workflow processor receives an error, it tries to figure out
what is wrong with the message. This could be a static, deterministic
error, or it could leverage some machine learning algorithms to
analyze the message to see some anomaly in the data. Either way, the
workflow processor programmatically (without human intervention)
makes changes to the original data to try and repair it, and then sends
it back to the originating queue. The event consumer sees this
message as a new one and tries to process it again, hopefully this time
with some success. Of course, there are many times when the
workflow processor cannot determine what is wrong with the
message. In these cases the workflow processor sends the message
off to another queue, which is then received in what is usually called
a “dashboard,” an application that looks similar to the Microsoft’s
Outlook or Apple’s Mail. This dashboard usually resides on the
desktop of a person of importance, who then looks at the message,
applies manual fixes to it, and then resubmits it to the original queue
(usually through a reply-to message header variable).





Figure 14-14. Workflow event pattern of reactive architecture

To illustrate the workflow event pattern, suppose a trading advisor in
one part of the country accepts trade orders (instructions on what
stock to buy and for how many shares) on behalf of a large trading
firm in another part of the country. The advisor batches up the trade
orders (what is usually called a basket) and asynchronously sends
those to the large trading firm to be placed with a broker so the stock
can be purchased. To simplify the example, suppose the contract for
the trade instructions must adhere to the following:

ACCOUNT(String),SIDE(String),SYMBOL(String),SHARES(Long)

Suppose the large trading firm receives the following basket of Apple
(AAPL) trade orders from the trading advisor:

12654A87FR4,BUY,AAPL,1254 
87R54E3068U,BUY,AAPL,3122 
6R4NB7609JJ,BUY,AAPL,5433 
2WE35HF6DHF,BUY,AAPL,8756 SHARES 
764980974R2,BUY,AAPL,1211 
1533G658HD8,BUY,AAPL,2654

Notice the forth trade instruction
(2WE35HF6DHF,BUY,AAPL,8756 SHARES) has the word
SHARES after the number of shares for the trade. When these
asynchronous trade orders are processed by the large trading firm
without any error handling capabilities, the following error occurs
within the trade placement service:

Exception in thread "main" java.lang.NumberFormatException: 
 For input string: "8756 SHARES" 
 at java.lang.NumberFormatException.forInputString 
 (NumberFormatException.java:65) 



 at java.lang.Long.parseLong(Long.java:589) 
 at java.lang.Long.<init>(Long.java:965) 
 at 
trading.TradePlacement.execute(TradePlacement.java:23) 
 at 
trading.TradePlacement.main(TradePlacement.java:29)

When this exception occurs, there is nothing that the trade placement
service can do, because this was an asynchronous request, except to
possibly log the error condition. In other words, there is no user to
synchronously respond to and fix the error.

Applying the workflow event pattern can programmatically fix this
error. Because the large trading firm has no control over the trading
advisor and the corresponding trade order data it sends, it must react
to fix the error itself (as illustrated in Figure 14-15). When the same
error occurs (2WE35HF6DHF,BUY,AAPL,8756 SHARES), the
Trade Placement service immediately delegates the error via
asynchronous messaging to the Trade Placement Error
service for error handling, passing with the error information about
the exception:

Trade Placed: 12654A87FR4,BUY,AAPL,1254 
Trade Placed: 87R54E3068U,BUY,AAPL,3122 
Trade Placed: 6R4NB7609JJ,BUY,AAPL,5433 
Error Placing Trade: "2WE35HF6DHF,BUY,AAPL,8756 SHARES" 
Sending to trade error processor  <-- delegate the error 
fixing and move on 
Trade Placed: 764980974R2,BUY,AAPL,1211 
...

The Trade Placement Error service (acting as the workflow
delegate) receives the error and inspects the exception. Seeing that it
is an issue with the word SHARES in the number of shares field, the



Trade Placement Error service strips off the word SHARES
and resubmits the trade for reprocessing:

Received Trade Order Error: 2WE35HF6DHF,BUY,AAPL,8756 SHARES 
Trade fixed: 2WE35HF6DHF,BUY,AAPL,8756 
Resubmitting Trade For Re-Processing

The fixed trade is then processed successfully by the trade placement
service:

... 
trade placed: 1533G658HD8,BUY,AAPL,2654 
trade placed: 2WE35HF6DHF,BUY,AAPL,8756 <-- this was the 
original trade in error





Figure 14-15. Error handling with the workflow event pattern

One of the consequences of the workflow event pattern is that
messages in error are processed out of sequence when they are
resubmitted. In our trading example, the order of messages matters,
because all trades within a given account must be processed in order
(for example, a SELL for IBM must occur before a BUY for AAPL
within the same brokerage account). Although not impossible, it is a
complex task to maintain message order within a given context (in
this case the brokerage account number). One way this can be
addressed is by the Trade Placement service queueing and
storing the account number of the trade in error. Any trade with that
same account number would be stored in a temporary queue for later
processing (in FIFO order). Once the trade originally in error is fixed
and processed, the Trade Placement service then de-queues the
remaining trades for that same account and processes them in order.

Preventing Data Loss
Data loss is always a primary concern when dealing with
asynchronous communications. Unfortunately, there are many places
for data loss to occur within an event-driven architecture. By data
loss we mean a message getting dropped or never making it to its
final destination. Fortunately, there are basic out-of-the-box
techniques that can be leveraged to prevent data loss when using
asynchronous messaging.

To illustrate the issues associated with data loss within event-driven
architecture, suppose Event Processor A asynchronously sends a



message to a queue. Event Processor B accepts the message and
inserts the data within the message into a database. As illustrated in
Figure 14-16, three areas of data loss can occur within this typical
scenario:

1. The message never makes it to the queue from Event
Processor A; or even if it does, the broker goes down
before the next event processor can retrieve the message.

2. Event Processor B de-queues the next available
message and crashes before it can process the event.

3. Event Processor B is unable to persist the message to
the database due to some data error.



Figure 14-16. Where data loss can happen within an event-driven architecture

Each of these areas of data loss can be mitigated through basic
messaging techniques. Issue 1 (the message never makes it to the
queue) is easily solved by leveraging persisted message queues, along
with something called synchronous send. Persisted message queues
support what is known as guaranteed delivery. When the message
broker receives the message, it not only stores it in memory for fast
retrieval, but also persists the message in some sort of physical data
store (such as a filesystem or database). If the message broker goes
down, the message is physically stored on disk so that when the



message broker comes back up, the message is available for
processing. Synchronous send does a blocking wait in the message
producer until the broker has acknowledged that the message has
been persisted. With these two basic techniques there is no way to
lose a message between the event producer and the queue because the
message is either still with the message producer or persisted within
the queue.

Issue 2 (Event Processor B de-queues the next available
message and crashes before it can process the event) can also be
solved using a basic technique of messaging called client
acknowledge mode. By default, when a message is de-queued, it is
immediately removed from the queue (something called auto
acknowledge mode). Client acknowledge mode keeps the message in
the queue and attaches the client ID to the message so that no other
consumers can read the message. With this mode, if Event
Processor B crashes, the message is still preserved in the queue,
preventing message loss in this part of the message flow.

Issue 3 (Event Processor B is unable to persist the message to
the database due to some data error) is addressed through leveraging
ACID (atomicity, consistency, isolation, durability) transactions via a
database commit. Once the database commit happens, the data is
guaranteed to be persisted in the database. Leveraging something
called last participant support (LPS) removes the message from the
persisted queue by acknowledging that processing has been
completed and that the message has been persisted. This guarantees
the message is not lost during the transit from Event Processor A



all the way to the database. These techniques are illustrated in
Figure 14-17.

Figure 14-17. Preventing data loss within an event-driven architecture

Broadcast Capabilities
One of the other unique characteristics of event-driven architecture is
the capability to broadcast events without knowledge of who (if
anyone) is receiving the message and what they do with it. This
technique, which is illustrated in Figure 14-18, shows that when a
producer publishes a message, that same message is received by
multiple subscribers.





Figure 14-18. Broadcasting events to other event processors

Broadcasting is perhaps the highest level of decoupling between
event processors because the producer of the broadcast message
usually does not know which event processors will be receiving the
broadcast message and more importantly, what they will do with the
message. Broadcast capabilities are an essential part of patterns for
eventual consistency, complex event processing (CEP), and a host of
other situations. Consider frequent changes in stock prices for
instruments traded on the stock market. Every ticker (the current
price of a particular stock) might influence a number of things.
However, the service publishing the latest price simply broadcasts it
with no knowledge of how that information will be used.

Request-Reply
So far in this chapter we’ve dealt with asynchronous requests that
don’t need an immediate response from the event consumer. But what
if an order ID is needed when ordering a book? What if a
confirmation number is needed when booking a flight? These are
examples of communication between services or event processors
that require some sort of synchronous communication.

In event-driven architecture, synchronous communication is
accomplished through request-reply messaging (sometimes referred
to as pseudosynchronous communications). Each event channel
within request-reply messaging consists of two queues: a request
queue and a reply queue. The initial request for information is
asynchronously sent to the request queue, and then control is returned



to the message producer. The message producer then does a blocking
wait on the reply queue, waiting for the response. The message
consumer receives and processes the message and then sends the
response to the reply queue. The event producer then receives the
message with the response data. This basic flow is illustrated in
Figure 14-19.





Figure 14-19. Request-reply message processing

There are two primary techniques for implementing request-reply
messaging. The first (and most common) technique is to use a
correlation ID contained in the message header. A correlation ID is a
field in the reply message that is usually set to the message ID of the
original request message. This technique, as illustrated in Figure 14-
20, works as follows, with the message ID indicated with ID, and the
correlation ID indicated with CID:

1. The event producer sends a message to the request queue
and records the unique message ID (in this case ID 124).
Notice that the correlation ID (CID) in this case is null.

2. The event producer now does a blocking wait on the reply
queue with a message filter (also called a message selector),
where the correlation ID in the message header equals the
original message ID (in this case 124). Notice there are two
messages in the reply queue: message ID 855 with
correlation ID 120, and message ID 856 with correlation ID
122. Neither of these messages will be picked up because the
correlation ID does not match what the event consumer is
looking for (CID 124).

3. The event consumer receives the message (ID 124) and
processes the request.

4. The event consumer creates the reply message containing the
response and sets the correlation ID (CID) in the message
header to the original message ID (124).

5. The event consumer sends the new message (ID 857) to the
reply queue.



6. The event producer receives the message because the
correlation ID (124) matches the message selector from step
2.

Figure 14-20. Request-reply message processing using a correlation ID



The other technique used to implement request-reply messaging is to
use a temporary queue for the reply queue. A temporary queue is
dedicated to the specific request, created when the request is made
and deleted when the request ends. This technique, as illustrated in
Figure 14-21, does not require a correlation ID because the temporary
queue is a dedicated queue only known to the event producer for the
specific request. The temporary queue technique works as follows:

1. The event producer creates a temporary queue (or one is
automatically created, depending on the message broker) and
sends a message to the request queue, passing the name of
the temporary queue in the reply-to header (or some other
agreed-upon custom attribute in the message header).

2. The event producer does a blocking wait on the temporary
reply queue. No message selector is needed because any
message sent to this queue belongs solely to the event
producer that originally sent to the message.

3. The event consumer receives the message, processes the
request, and sends a response message to the reply queue
named in the reply-to header.

4. The event processor receives the message and deletes the
temporary queue.



Figure 14-21. Request-reply message processing using a temporary queue

While the temporary queue technique is much simpler, the message
broker must create a temporary queue for each request made and then
delete it immediately afterward. Large messaging volumes can
significantly slow down the message broker and impact overall
performance and responsiveness. For this reason we usually
recommend using the correlation ID technique.



Choosing Between Request-Based and
Event-Based
The request-based model and event-based model are both viable
approaches for designing software systems. However, choosing the
right model is essential to the overall success of the system. We
recommend choosing the request-based model for well-structured,
data-driven requests (such as retrieving customer profile data) when
certainty and control over the workflow is needed. We recommend
choosing the event-based model for flexible, action-based events that
require high levels of responsiveness and scale, with complex and
dynamic user processing.

Understanding the trade-offs with the event-based model also helps
decide which one is the best fit. Table 14-3 lists the advantages and
disadvantages of the event-based model of event-driven architecture.



Table 14-3. Trade-offs of the event-driven model

Advantages over request-based Trade-offs

Better response to dynamic user 
content

Only supports eventual consistency

Better scalability and elasticity Less control over processing flow

Better agility and change management Less certainty over outcome of event 
flow

Better adaptability and extensibility Difficult to test and debug

Better responsiveness and performance

Better real-time decision making

Better reaction to situational awareness

Hybrid Event-Driven Architectures
While many applications leverage the event-driven architecture style
as the primary overarching architecture, in many cases event-driven
architecture is used in conjunction with other architecture styles,
forming what is known as a hybrid architecture. Some common
architecture styles that leverage event-driven architecture as part of
another architecture style include microservices and space-based
architecture. Other hybrids that are possible include an event-driven
microkernel architecture and an event-driven pipeline architecture.

Adding event-driven architecture to any architecture style helps
remove bottlenecks, provides a back pressure point in the event
requests get backed up, and provides a level of user responsiveness



not found in other architecture styles. Both microservices and space-
based architecture leverage messaging for data pumps,
asynchronously sending data to another processor that in turn updates
data in a database. Both also leverage event-driven architecture to
provide a level of programmatic scalability to services in a
microservices architecture and processing units in a space-based
architecture when using messaging for interservice communication.

Architecture Characteristics Ratings
A one-star rating in the characteristics ratings table in Figure 14-22
means the specific architecture characteristic isn’t well supported in
the architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 14-22. Event-driven architecture characteristics ratings

Event-driven architecture is primarily a technically partitioned
architecture in that any particular domain is spread across multiple
event processors and tied together through mediators, queues, and
topics. Changes to a particular domain usually impact many event
processors, mediators, and other messaging artifacts, hence why
event-driven architecture is not domain partitioned.

The number of quanta within event-driven architecture can vary from
one to many quanta, which is usually based on the database
interactions within each event processor and request-reply
processing. Even though all communication in an event-driven
architecture is asynchronous, if multiple event processors share a
single database instance, they would all be contained within the same
architectural quantum. The same is true for request-reply processing:
even though the communication is still asynchronous between the
event processors, if a request is needed right away from the event
consumer, it ties those event processors together synchronously;
hence they belong to the same quantum.

To illustrate this point, consider the example where one event
processor sends a request to another event processor to place an
order. The first event processor must wait for an order ID from the
other event processor to continue. If the second event processor that
places the order and generates an order ID is down, the first event
processor cannot continue. Therefore, they are part of the same
architecture quantum and share the same architectural characteristics,



even though they are both sending and receiving asynchronous
messages.

Event-driven architecture gains five stars for performance, scalability,
and fault tolerance, the primary strengths of this architecture style.
High performance is achieved through asynchronous communications
combined with highly parallel processing. High scalability is realized
through the programmatic load balancing of event processors (also
called competing consumers). As the request load increases,
additional event processors can be programmatically added to handle
the additional requests. Fault tolerance is achieved through highly
decoupled and asynchronous event processors that provide eventual
consistency and eventual processing of event workflows. Providing
the user interface or an event processor making a request does not
need an immediate response, promises and futures can be leveraged
to process the event at a later time if other downstream processors are
not available.

Overall simplicity and testability rate relatively low with event-driven
architecture, mostly due to the nondeterministic and dynamic event
flows typically found within this architecture style. While
deterministic flows within the request-based model are relatively easy
to test because the paths and outcomes are generally known, such is
not the case with the event-driven model. Sometimes it is not known
how event processors will react to dynamic events, and what
messages they might produce. These “event tree diagrams” can be
extremely complex, generating hundreds to even thousands of
scenarios, making it very difficult to govern and test.



Finally, event-driven architectures are highly evolutionary, hence the
five-star rating. Adding new features through existing or new event
processors is relatively straightforward, particularly in the broker
topology. By providing hooks via published messages in the broker
topology, the data is already made available, hence no changes are
required in the infrastructure or existing event processors to add that
new functionality.



Chapter 15. Space-Based
Architecture Style

Most web-based business applications follow the same general
request flow: a request from a browser hits the web server, then an
application server, then finally the database server. While this pattern
works great for a small set of users, bottlenecks start appearing as the
user load increases, first at the web-server layer, then at the
application-server layer, and finally at the database-server layer. The
usual response to bottlenecks based on an increase in user load is to
scale out the web servers. This is relatively easy and inexpensive, and
it sometimes works to address the bottleneck issues. However, in
most cases of high user load, scaling out the web-server layer just
moves the bottleneck down to the application server. Scaling
application servers can be more complex and expensive than web
servers and usually just moves the bottleneck down to the database
server, which is even more difficult and expensive to scale. Even if
you can scale the database, what you eventually end up with is a
triangle-shaped topology, with the widest part of the triangle being
the web servers (easiest to scale) and the smallest part being the
database (hardest to scale), as illustrated in Figure 15-1.

In any high-volume application with a large concurrent user load, the
database will usually be the final limiting factor in how many
transactions you can process concurrently. While various caching



technologies and database scaling products help to address these
issues, the fact remains that scaling out a normal application for
extreme loads is a very difficult proposition.





Figure 15-1. Scalability limits within a traditional web-based topology

The space-based architecture style is specifically designed to address
problems involving high scalability, elasticity, and high concurrency
issues. It is also a useful architecture style for applications that have
variable and unpredictable concurrent user volumes. Solving the
extreme and variable scalability issue architecturally is often a better
approach than trying to scale out a database or retrofit caching
technologies into a nonscalable architecture.

General Topology
Space-based architecture gets its name from the concept of tuple
space, the technique of using multiple parallel processors
communicating through shared memory. High scalability, high
elasticity, and high performance are achieved by removing the central
database as a synchronous constraint in the system and instead
leveraging replicated in-memory data grids. Application data is kept
in-memory and replicated among all the active processing units.
When a processing unit updates data, it asynchronously sends that
data to the database, usually via messaging with persistent queues.
Processing units start up and shut down dynamically as user load
increases and decreases, thereby addressing variable scalability.
Because there is no central database involved in the standard
transactional processing of the application, the database bottleneck is
removed, thus providing near-infinite scalability within the
application.

https://oreil.ly/XVJ_D


There are several architecture components that make up a space-
based architecture: a processing unit containing the application code,
virtualized middleware used to manage and coordinate the processing
units, data pumps to asynchronously send updated data to the
database, data writers that perform the updates from the data pumps,
and data readers that read database data and deliver it to processing
units upon startup. Figure 15-2 illustrates these primary architecture
components.





Figure 15-2. Space-based architecture basic topology

Processing Unit

The processing unit (illustrated in Figure 15-3) contains the
application logic (or portions of the application logic). This usually
includes web-based components as well as backend business logic.
The contents of the processing unit vary based on the type of
application. Smaller web-based applications would likely be
deployed into a single processing unit, whereas larger applications
may split the application functionality into multiple processing units
based on the functional areas of the application. The processing unit
can also contain small, single-purpose services (as with
microservices). In addition to the application logic, the processing
unit also contains an in-memory data grid and replication engine
usually implemented through such products as Hazelcast, Apache
Ignite, and Oracle Coherence.

https://hazelcast.com/
https://ignite.apache.org/
https://oreil.ly/XOUJL




Figure 15-3. Processing unit

Virtualized Middleware

The virtualized middleware handles the infrastructure concerns
within the architecture that control various aspects of data
synchronization and request handling. The components that make up
the virtualized middleware include a messaging grid, data grid,
processing grid, and deployment manager. These components, which
are described in detail in the next sections, can be custom written or
purchased as third-party products.

MESSAGING GRID

The messaging grid, shown in Figure 15-4, manages input request
and session state. When a request comes into the virtualized
middleware, the messaging grid component determines which active
processing components are available to receive the request and
forwards the request to one of those processing units. The complexity
of the messaging grid can range from a simple round-robin algorithm
to a more complex next-available algorithm that keeps track of which
request is being processed by which processing unit. This component
is usually implemented using a typical web server with load-
balancing capabilities (such as HA Proxy and Nginx).





Figure 15-4. Messaging grid

DATA GRID

The data grid component is perhaps the most important and crucial
component in this architecture style. In most modern implementations
the data grid is implemented solely within the processing units as a
replicated cache. However, for those replicated caching
implementations that require an external controller, or when using a
distributed cache, this functionality would reside in both the
processing units as well as in the data grid component within the
virtualized middleware. Since the messaging grid can forward a
request to any of the processing units available, it is essential that
each processing unit contains exactly the same data in its in-memory
data grid. Although Figure 15-5 shows a synchronous data replication
between processing units, in reality this is done asynchronously and
very quickly, usually completing the data synchronization in less than
100 milliseconds.





Figure 15-5. Data grid

Data is synchronized between processing units that contain the same
named data grid. To illustrate this point, consider the following code
in Java using Hazelcast that creates an internal replicated data grid for
processing units containing customer profile information:

HazelcastInstance hz = Hazelcast.newHazelcastInstance();
Map<String, CustomerProfile> profileCache = 
 hz.getReplicatedMap("CustomerProfile");

All processing units needing access to the customer profile
information would contain this code. Changes made to the
CustomerProfile named cache from any of the processing units
would have that change replicated to all other processing units
containing that same named cache. A processing unit can contain as
many replicated caches as needed to complete its work. Alternatively,
one processing unit can make a remote call to another processing unit
to ask for data (choreography) or leverage the processing grid
(described in the next section) to orchestrate the request.

Data replication within the processing units also allows service
instances to come up and down without having to read data from the
database, providing there is at least one instance containing the
named replicated cache. When a processing unit instance comes up, it
connects to the cache provider (such as Hazelcast) and makes a
request to get the named cache. Once the connection is made to the
other processing units, the cache will be loaded from one of the other
instances.



Each processing unit knows about all other processing unit instances
through the use of a member list. The member list contains the IP
address and ports of all other processing units using that same named
cache. For example, suppose there is a single processing instance
containing code and replicated cached data for the customer profile.
In this case there is only one instance, so the member list for that
instance only contains itself, as illustrated in the following logging
statements generated using Hazelcast:

Instance 1: 
Members {size:1, ver:1} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 this 
]

When another processing unit starts up with the same named cache,
the member list of both services is updated to reflect the IP address
and port of each processing unit:

Instance 1: 
Members {size:2, ver:2} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 this 
 Member [172.19.248.90]:5702 - ea9e4dd5-5cb3-4b27-
8fe8-db5cc62c7316 
] 
 
Instance 2: 
Members {size:2, ver:2} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 
 Member [172.19.248.90]:5702 - ea9e4dd5-5cb3-4b27-
8fe8-db5cc62c7316 this 
]

When a third processing unit starts up, the member list of instance 1
and instance 2 are both updated to reflect the new third instance:



Instance 1: 
Members {size:3, ver:3} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 this 
 Member [172.19.248.90]:5702 - ea9e4dd5-5cb3-4b27-
8fe8-db5cc62c7316 
 Member [172.19.248.91]:5703 - 1623eadf-9cfb-4b83-
9983-d80520cef753 
] 
 
Instance 2: 
Members {size:3, ver:3} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 
 Member [172.19.248.90]:5702 - ea9e4dd5-5cb3-4b27-
8fe8-db5cc62c7316 this 
 Member [172.19.248.91]:5703 - 1623eadf-9cfb-4b83-
9983-d80520cef753 
] 
 
Instance 3: 
Members {size:3, ver:3} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 
 Member [172.19.248.90]:5702 - ea9e4dd5-5cb3-4b27-
8fe8-db5cc62c7316 
 Member [172.19.248.91]:5703 - 1623eadf-9cfb-4b83-
9983-d80520cef753 this 
]

Notice that all three instances know about each other (including
themselves). Suppose instance 1 receives a request to update the
customer profile information. When instance 1 updates the cache
with a cache.put() or similar cache update method, the data grid
(such as Hazelcast) will asynchronously update the other replicated
caches with the same update, ensuring all three customer profile
caches always remain in sync with one another.

When processing unit instances go down, all other processing units
are automatically updated to reflect the lost member. For example, if



instance 2 goes down, the member lists of instance 1 and 3 are
updated as follows:

Instance 1: 
Members {size:2, ver:4} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 this 
 Member [172.19.248.91]:5703 - 1623eadf-9cfb-4b83-
9983-d80520cef753 
] 
 
Instance 3: 
Members {size:2, ver:4} [ 
 Member [172.19.248.89]:5701 - 04a6f863-dfce-41e5-
9d51-9f4e356ef268 
 Member [172.19.248.91]:5703 - 1623eadf-9cfb-4b83-
9983-d80520cef753 this 
]

PROCESSING GRID

The processing grid, illustrated in Figure 15-6, is an optional
component within the virtualized middleware that manages
orchestrated request processing when there are multiple processing
units involved in a single business request. If a request comes in that
requires coordination between processing unit types (e.g., an order
processing unit and a payment processing unit), it is the processing
grid that mediates and orchestrates the request between those two
processing units.





Figure 15-6. Processing grid

DEPLOYMENT MANAGER

The deployment manager component manages the dynamic startup
and shutdown of processing unit instances based on load conditions.
This component continually monitors response times and user loads,
starts up new processing units when load increases, and shuts down
processing units when the load decreases. It is a critical component to
achieving variable scalability (elasticity) needs within an application.

Data Pumps

A data pump is a way of sending data to another processor which
then updates data in a database. Data pumps are a necessary
component within space-based architecture, as processing units do
not directly read from and write to a database. Data pumps within a
space-based architecture are always asynchronous, providing
eventual consistency with the in-memory cache and the database.
When a processing unit instance receives a request and updates its
cache, that processing unit becomes the owner of the update and is
therefore responsible for sending that update through the data pump
so that the database can be updated eventually.

Data pumps are usually implemented using messaging, as shown in
Figure 15-7. Messaging is a good choice for data pumps when using a
space-based architecture. Not only does messaging support
asynchronous communication, but it also supports guaranteed
delivery and preserving message order through first-in, first-out
(FIFO) queueing. Furthermore, messaging provides a decoupling



between the processing unit and the data writer so that if the data
writer is not available, uninterrupted processing can still take place
within the processing units.





Figure 15-7. Data pump used to send data to a database

In most cases there are multiple data pumps, each one usually
dedicated to a particular domain or subdomain (such as customer or
inventory). Data pumps can be dedicated to each type of cache (such
as CustomerProfile, CustomerWishlist, and so on), or
they can be dedicated to a processing unit domain (such as
Customer) containing a much larger and general cache.

Data pumps usually have associated contracts, including an action
associated with the contract data (add, delete, or update). The contract
can be a JSON schema, XML schema, an object, or even a value-
driven message (map message containing name-value pairs). For
updates, the data contained in the message of the data pump usually
only contains the new data values. For example, if a customer
changes a phone number on their profile, only the new phone number
would be sent, along with the customer ID and an action to update the
data.

Data Writers

The data writer component accepts messages from a data pump and
updates the database with the information contained in the message
of the data pump (see Figure 15-7). Data writers can be implemented
as services, applications, or data hubs (such as Ab Initio). The
granularity of the data writers can vary based on the scope of the data
pumps and processing units.

A domain-based data writer contains all of the necessary database
logic to handle all the updates within a particular domain (such as

https://www.abinitio.com/en


customer), regardless of the number of data pumps it is accepting.
Notice in Figure 15-8 that there are four different processing units
and four different data pumps representing the customer domain
(Profile, WishList, Wallet, and Preferences) but only
one data writer. The single customer data writer listens to all four data
pumps and contains the necessary database logic (such as SQL) to
update the customer-related data in the database.



Figure 15-8. Domain-based data writer

Alternatively, each class of processing unit can have its own
dedicated data writer component, as illustrated in Figure 15-9. In this



model the data writer is dedicated to each corresponding data pump
and contains only the database processing logic for that particular
processing unit (such as Wallet). While this model tends to produce
too many data writer components, it does provide better scalability
and agility due to the alignment of processing unit, data pump, and
data writer.



Figure 15-9. Dedicated data writers for each data pump

Data Readers



Whereas data writers take on the responsibility for updating the
database, data readers take on the responsibility for reading data from
the database and sending it to the processing units via a reverse data
pump. In space-based architecture, data readers are only invoked
under one of three situations: a crash of all processing unit instances
of the same named cache, a redeployment of all processing units
within the same named cache, or retrieving archive data not contained
in the replicated cache.

In the event where all instances come down (due to a system-wide
crash or redeployment of all instances), data must be read from the
database (something that is generally avoided in space-based
architecture). When instances of a class of processing unit start
coming up, each one tries to grab a lock on the cache. The first one to
get the lock becomes the temporary cache owner; the others go into a
wait state until the lock is released (this might vary based on the type
of cache implementation being used, but regardless, there is one
primary owner of the cache in this scenario). To load the cache, the
instance that gained temporary cache owner status sends a message to
a queue requesting data. The data reader component accepts the read
request and then performs the necessary database query logic to
retrieve the data needed by the processing unit. As the data reader
queries data from the database, it sends that data to a different queue
(called a reverse data pump). The temporary cache owner processing
unit receives the data from the reverse data pump and loads the cache.
Once all the data is loaded, the temporary owner releases the lock on
the cache, all other instances are then synchronized, and processing
can begin. This processing flow is illustrated in Figure 15-10.



Figure 15-10. Data reader with reverse data pump



Like data writers, data readers can also be domain-based or dedicated
to a specific class of processing unit (which is usually the case). The
implementation is also the same as the data writers—either service,
application, or data hub.

The data writers and data readers essentially form what is usually
known as a data abstraction layer (or data access layer in some
cases). The difference between the two is in the amount of detailed
knowledge the processing units have with regard to the structure of
the tables (or schema) in the database. A data access layer means that
the processing units are coupled to the underlying data structures in
the database, and only use the data readers and writers to indirectly
access the database. A data abstraction layer, on the other hand,
means that the processing unit is decoupled from the underlying
database table structures through separate contracts. Space-based
architecture generally relies on a data abstraction layer model so that
the replicated cache schema in each processing unit can be different
than the underlying database table structures. This allows for
incremental changes to the database without necessarily impacting
the processing units. To facilitate this incremental change, the data
writers and data readers contain transformation logic so that if a
column type changes or a column or table is dropped, the data readers
and data writers can buffer the database change until the necessary
changes can be made to the processing unit caches.

Data Collisions
When using replicated caching in an active/active state where updates
can occur to any service instance containing the same named cache,



there is the possibility of a data collision due to replication latency. A
data collision occurs when data is updated in one cache instance
(cache A), and during replication to another cache instance (cache B),
the same data is updated by that cache (cache B). In this scenario, the
local update to cache B will be overridden through replication by the
old data from cache A, and through replication the same data in cache
A will be overridden by the update from cache B.

To illustrate this problem, assume there are two service instances
(Service A and Service B) containing a replicated cache of product
inventory. The following flow demonstrates the data collision
problem:

The current inventory count for blue widgets is 500 units

Service A updates the inventory cache for blue widgets to
490 units (10 sold)

During replication, Service B updates the inventory cache
for blue widgets to 495 units (5 sold)

The Service B cache gets updated to 490 units due to
replication from Service A update

The Service A cache gets updates to 495 units due to
replication from Service B update

Both caches in Service A and B are incorrect and out of sync
(inventory should be 485 units)

There are several factors that influence how many data collisions
might occur: the number of processing unit instances containing the
same cache, the update rate of the cache, the cache size, and finally
the replication latency of the caching product. The formula used to



determine probabilistically how many potential data collisions might
occur based on these factors is as follows:

CollisionRate = N * * RL

where N represents the number of service instances using the same
named cache, UR represents the update rate in milliseconds
(squared), S the cache size (in terms of number of rows), and RL the
replication latency of the caching product.

This formula is useful for determining the percentage of data
collisions that will likely occur and hence the feasibility of the use of
replicated caching. For example, consider the following values for the
factors involved in this calculation:

Update rate (UR): 20 updates/second

Number of instances (N): 5

Cache size (S): 50,000 rows

Replication latency (RL): 100 milliseconds

Updates: 72,000 per hour

Collision rate: 14.4 per hour

Percentage: 0.02%

Applying these factors to the formula yields 72,000 updates and hour,
with a high probability that 14 updates to the same data may collide.

UR2

S



Given the low percentage (0.02%), replication would be a viable
option.

Varying the replication latency has a significant impact on the
consistency of data. Replication latency depends on many factors,
including the type of network and the physical distance between
processing units. For this reason replication latency values are rarely
published and must be calculated and derived from actual
measurements in a production environment. The value used in the
prior example (100 milliseconds) is a good planning number if the
actual replication latency, a value we frequently use to determine the
number of data collisions, is not available. For example, changing the
replication latency from 100 milliseconds to 1 millisecond yields the
same number of updates (72,000 per hour) but produces only the
probability of 0.1 collisions per hour! This scenario is shown in the
following table:

Update rate (UR): 20 updates/second

Number of instances (N): 5

Cache size (S): 50,000 rows

Replication latency (RL): 1 millisecond (changed from 100)

Updates: 72,000 per hour

Collision rate: 0.1 per hour

Percentage: 0.0002%



The number of processing units containing the same named cache (as
represented through the number of instances factor) also has a direct
proportional relationship to the number of data collisions possible.
For example, reducing the number of processing units from 5
instances to 2 instances yields a data collision rate of only 6 per hour
out of 72,000 updates per hour:

Update rate (UR): 20 updates/second

Number of instances (N): 2 (changed from 5)

Cache size (S): 50,000 rows

Replication latency (RL): 100 milliseconds

Updates: 72,000 per hour

Collision rate: 5.8 per hour

Percentage: 0.008%

The cache size is the only factor that is inversely proportional to the
collision rate. As the cache size decreases, collision rates increase. In
our example, reducing the cache size from 50,000 rows to 10,000
rows (and keeping everything the same as in the first example) yields
a collision rate of 72 per hour, significantly higher than with 50,000
rows:



Update rate (UR): 20 updates/second

Number of instances (N): 5

Cache size (S): 10,000 rows (changed from 50,000)

Replication latency (RL): 100 milliseconds

Updates: 72,000 per hour

Collision rate: 72.0 per hour

Percentage: 0.1%

Under normal circumstances, most systems do not have consistent
update rates over such a long period of time. As such, when using this
calculation it is helpful to understand the maximum update rate
during peak usage and calculate minimum, normal, and peak collision
rates.

Cloud Versus On-Premises
Implementations
Space-based architecture offers some unique options when it comes
to the environments in which it is deployed. The entire topology,
including the processing units, virtualized middleware, data pumps,
data readers and writers, and the database, can be deployed within
cloud-based environments on-premises (“on-prem”). However, this
architecture style can also be deployed between these environments,
offering a unique feature not found in other architecture styles.



A powerful feature of this architecture style (as illustrated in
Figure 15-11) is to deploy applications via processing units and
virtualized middleware in managed cloud-based environments while
keeping the physical databases and corresponding data on-prem. This
topology supports very effective cloud-based data synchronization
due to the asynchronous data pumps and eventual consistency model
of this architecture style. Transactional processing can occur on
dynamic and elastic cloud-based environments while preserving
physical data management, reporting, and data analytics within
secure and local on-prem environments.





Figure 15-11. Hybrid cloud-based and on-prem topology

Replicated Versus Distributed Caching
Space-based architecture relies on caching for the transactional
processing of an application. Removing the need for direct reads and
writes to a database is how space-based architecture is able to support
high scalability, high elasticity, and high performance. Space-based
architecture mostly relies on replicated caching, although distributed
caching can be used as well.

With replicated caching, as illustrated in Figure 15-12, each
processing unit contains its own in-memory data grid that is
synchronized between all processing units using that same named
cache. When an update occurs to a cache within any of the processing
units, the other processing units are automatically updated with the
new information.





Figure 15-12. Replicated caching between processing units

Replicated caching is not only extremely fast, but it also supports
high levels of fault tolerance. Since there is no central server holding
the cache, replicated caching does not have a single point of failure.
There may be exceptions to this rule, however, based on the
implementation of the caching product used. Some caching products
require the presence of an external controller to monitor and control
the replication of data between processing units, but most product
companies are moving away from this model.

While replicated caching is the standard caching model for space-
based architecture, there are some cases where it is not possible to use
replicated caching. These situations include high data volumes (size
of the cache) and high update rates to the cache data. Internal
memory caches in excess of 100 MB might start to cause issues with
regard to elasticity and high scalability due to the amount of memory
used by each processing unit. Processing units are generally deployed
within a virtual machine (or in some cases represent the virtual
machine). Each virtual machine only has a certain amount of memory
available for internal cache usage, limiting the number of processing
unit instances that can be started to process high-throughput
situations. Furthermore, as shown in “Data Collisions”, if the update
rate of the cache data is too high, the data grid might be unable to
keep up with that high update rate to ensure data consistency across
all processing unit instances. When these situations occur, distributed
caching can be used.



Distributed caching, as illustrated in Figure 15-13, requires an
external server or service dedicated to holding a centralized cache. In
this model the processing units do not store data in internal memory,
but rather use a proprietary protocol to access the data from the
central cache server. Distributed caching supports high levels of data
consistency because the data is all in one place and does not need to
be replicated. However, this model has less performance than
replicated caching because the cache data must be accessed remotely,
adding to the overall latency of the system. Fault tolerance is also an
issue with distributed caching. If the cache server containing the data
goes down, no data can be accessed or updated from any of the
processing units, rendering them nonoperational. Fault tolerance can
be mitigated by mirroring the distributed cache, but this could present
consistency issues if the primary cache server goes down
unexpectedly and the data does not make it to the mirrored cache
server.





Figure 15-13. Distributed caching between processing units

When the size of the cache is relatively small (under 100 MB) and the
update rate of the cache is low enough that the replication engine of
the caching product can keep up with the cache updates, the decision
between using a replicated cache and a distributed cache becomes
one of data consistency versus performance and fault tolerance. A
distributed cache will always offer better data consistency over a
replicated cache because the cache of data is in a single place (as
opposed to being spread across multiple processing units). However,
performance and fault tolerance will always be better when using a
replicated cache. Many times this decision comes down to the type of
data being cached in the processing units. The need for highly
consistent data (such as inventory counts of the available products)
usually warrants a distributed cache, whereas data that does not
change often (such as reference data like name/value pairs, product
codes, and product descriptions) usually warrants a replicated cache
for quick lookup. Some of the selection criteria that can be used as a
guide for choosing when to use a distributed cache versus a replicated
cache are listed in Table 15-1.



Table 15-1. Distributed versus replicated caching

Decision criteria Replicated cache Distributed cache

Optimization Performance Consistency

Cache size Small (<100 MB) Large (>500 MB)

Type of data Relatively static Highly dynamic

Update frequency Relatively low High update rate

Fault tolerance High Low

When choosing the type of caching model to use with space-based
architecture, remember that in most cases both models will be
applicable within any given application context. In other words,
neither replicated caching nor distributed caching solve every
problem. Rather than trying to seek compromises through a single
consistent caching model across the application, leverage each for its
strengths. For example, for a processing unit that maintains the
current inventory, choose a distributed caching model for data
consistency; for a processing unit that maintains the customer profile,
choose a replicated cache for performance and fault tolerance.

Near-Cache Considerations
A near-cache is a type of caching hybrid model bridging in-memory
data grids with a distributed cache. In this model (illustrated in
Figure 15-14) the distributed cache is referred to as the full backing
cache, and each in-memory data grid contained within each
processing unit is referred to as the front cache. The front cache



always contains a smaller subset of the full backing cache, and it
leverages an eviction policy to remove older items so that newer ones
can be added. The front cache can be what is known as a most
recently used (MRU) cache containing the most recently used items
or a most frequently used (MFU) cache containing the most
frequently used items. Alternatively, a random replacement eviction
policy can be used in the front cache so that items are removed in a
random manner when space is needed to add a new item. Random
replacement (RR) is a good eviction policy when there is no clear
analysis of the data with regard to keeping either the latest used
versus the most frequently used.





Figure 15-14. Near-cache topology

While the front caches are always kept in sync with the full backing
cache, the front caches contained within each processing unit are not
synchronized between other processing units sharing the same data.
This means that multiple processing units sharing the same data
context (such as a customer profile) will likely all have different data
in their front cache. This creates inconsistencies in performance and
responsiveness between processing units because each processing
unit contains different data in the front cache. For this reason we do
not recommended using a near-cache model for space-based
architecture.

Implementation Examples
Space-based architecture is well suited for applications that
experience high spikes in user or request volume and applications
that have throughput in excess of 10,000 concurrent users. Examples
of space-based architecture include applications like online concert
ticketing systems and online auction systems. Both of these examples
require high performance, high scalability, and high levels of
elasticity.

Concert Ticketing System

Concert ticketing systems have a unique problem domain in that
concurrent user volume is relatively low until a popular concert is
announced. Once concert tickets go on sale, user volumes usually
spike from several hundred concurrent users to several thousand
(possibly in the tens of thousands, depending on the concert), all



trying to acquire a ticket for the concert (hopefully, good seats!).
Tickets usually sell out in a matter of minutes, requiring the kind of
architecture characteristics supported by space-based architecture.

There are many challenges associated with this sort of system. First,
there are only a certain number of tickets available, regardless of the
seating preferences. Seating availability must continually be updated
and made available as fast as possible given the high number of
concurrent requests. Also, assuming assigned seats are an option,
seating availability must also be updated as fast as possible.
Continually accessing a central database synchronously for this sort
of system would likely not work—it would be very difficult for a
typical database to handle tens of thousands of concurrent requests
through standard database transactions at this level of scale and
update frequency.

Space-based architecture would be a good fit for a concert ticketing
system due to the high elasticity requirements required of this type of
application. An instantaneous increase in the number of concurrent
users wanting to purchase concert tickets would be immediately
recognized by the deployment manager, which in turn would start up
a large number of processing units to handle the large volume of
requests. Optimally, the deployment manager would be configured to
start up the necessary number of processing units shortly before the
tickets went on sale, therefore having those instances on standby right
before the significant increase in user load.

Online Auction System



Online auction systems (bidding on items within an auction) share the
same sort of characteristics as the online concert ticketing systems
described previously—both require high levels of performance and
elasticity, and both have unpredictable spikes in user and request
load. When an auction starts, there is no way of determining how
many people will be joining the auction, and of those people, how
many concurrent bids will occur for each asking price.

Space-based architecture is well suited for this type of problem
domain in that multiple processing units can be started as the load
increases; and as the auction winds down, unused processing units
could be destroyed. Individual processing units can be devoted to
each auction, ensuring consistency with bidding data. Also, due to the
asynchronous nature of the data pumps, bidding data can be sent to
other processing (such as bid history, bid analytics, and auditing)
without much latency, therefore increasing the overall performance of
the bidding process.

Architecture Characteristics Ratings
A one-star rating in the characteristics ratings table in Figure 15-15
means the specific architecture characteristic isn’t well supported in
the architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 15-15. Space-based architecture characteristics ratings

Notice that space-based architecture maximizes elasticity, scalability,
and performance (all five-star ratings). These are the driving
attributes and main advantages of this architecture style. High levels
of all three of these architecture characteristics are achieved by
leveraging in-memory data caching and removing the database as a
constraint. As a result, processing millions of concurrent users is
possible using this architecture style.

While high levels of elasticity, scalability, and performance are
advantages in this architecture style, there is a trade-off for this
advantage, specifically with regard to overall simplicity and
testability. Space-based architecture is a very complicated
architecture style due to the use of caching and eventual consistency
of the primary data store, which is the ultimate system of record. Care
must be taken to ensure no data is lost in the event of a crash in any
of the numerous moving parts of this architecture style (see
“Preventing Data Loss” in Chapter 14).

Testing gets a one-star rating due to the complexity involved with
simulating the high levels of scalability and elasticity supported in
this architecture style. Testing hundreds of thousands of concurrent
users at peak load is a very complicated and expensive task, and as a
result most high-volume testing occurs within production
environments with actual extreme load. This produces significant risk
for normal operations within a production environment.



Cost is another factor when choosing this architecture style. Space-
based architecture is relatively expensive, mostly due to licensing
fees for caching products and high resource utilization within cloud
and on-prem systems due to high scalability and elasticity.

It is difficult to identify the partitioning type of space-based
architecture, and as a result we have identified it as both domain
partitioned as well as technically partitioned. Space-based
architecture is domain partitioned not only because it aligns itself
with a specific type of domain (highly elastic and scalable systems),
but also because of the flexibility of the processing units. Processing
units can act as domain services in the same way services are defined
in a service-based architecture or microservices architecture. At the
same time, space-based architecture is technically partitioned in the
way it separates the concerns about transactional processing using
caching from the actual storage of the data in the database via data
pumps. The processing units, data pumps, data readers and writers,
and the database all form a technical layering in terms of how
requests are processed, very similar with regard to how a monolithic
n-tiered layered architecture is structured.

The number of quanta within space-based architecture can vary based
on how the user interface is designed and how communication
happens between processing units. Because the processing units do
not communicate synchronously with the database, the database itself
is not part of the quantum equation. As a result, quanta within a
space-based architecture are typically delineated through the
association between the various user interfaces and the processing
units. Processing units that synchronously communicate with each



other (or synchronously through the processing grid for orchestration)
would all be part of the same architectural quantum.



Chapter 16. Orchestration-
Driven Service-Oriented
Architecture

Architecture styles, like art movements, must be understood in the
context of the era in which they evolved, and this architecture
exemplifies this rule more than any other. The combination of
external forces that often influence architecture decisions, combined
with a logical but ultimately disastrous organizational philosophy,
doomed this architecture to irrelevance. However, it provides a great
example of how a particular organizational idea can make logical
sense yet hinder most important parts of the development process.

History and Philosophy
This style of service-oriented architecture appeared just as companies
were becoming enterprises in the late 1990s: merging with smaller
companies, growing at a break-neck pace, and requiring more
sophisticated IT to accommodate this growth. However, computing
resources were scarce, precious, and commercial. Distributed
computing had just become possible and necessary, and many
companies needed the variable scalability and other beneficial
characteristics.



Many external drivers forced architects in this era toward distributed
architectures with significant constraints. Before open source
operating systems were thought reliable enough for serious work,
operating systems were expensive and licensed per machine.
Similarly, commercial database servers came with Byzantine
licensing schemes, which caused application server vendors (which
offered database connection pooling) to battle with database vendors.
Thus, architects were expected to reuse as much as possible. In fact,
reuse in all forms became the dominant philosophy in this
architecture, the side effects of which we cover in “Reuse…and
Coupling”.

This style of architecture also exemplifies how far architects can push
the idea of technical partitioning, which had good motivations but
bad consequences.

Topology
The topology of this type of service-oriented architecture is shown in
Figure 16-1.



Figure 16-1. Topology of orchestration-driven service-oriented architecture

Not all examples of this style of architecture had the exact layers
illustrated in Figure 16-1, but they all followed the same idea of



establishing a taxonomy of services within the architecture, each
layer with a specific responsibility.

Service-oriented architecture is a distributed architecture; the exact
demarcation of boundaries isn’t shown in Figure 16-1 because it
varied based on organization.

Taxonomy
The architect’s driving philosophy in this architecture centered
around enterprise-level reuse. Many large companies were annoyed at
how much they had to continue to rewrite software, and they struck
on a strategy to gradually solve that problem. Each layer of the
taxonomy supported this goal.

Business Services

Business services sit at the top of this architecture and provide the
entry point. For example, services like ExecuteTrade or
PlaceOrder represent domain behavior. One litmus test common
at the time—could an architect answer affirmatively to the question
“Are we in the business of…” for each of these services?

These service definitions contained no code—just input, output, and
sometimes schema information. They were usually defined by
business users, hence the name business services.

Enterprise Services



The enterprise services contain fine-grained, shared implementations.
Typically, a team of developers is tasked with building atomic
behavior around particular business domains: CreateCustomer,
CalculateQuote, and so on. These services are the building
blocks that make up the coarse-grained business services, tied
together via the orchestration engine.

This separation of responsibility flows from the reuse goal in this
architecture. If developers can build fine-grained enterprise services
at just the correct level of granularity, the business won’t have to
rewrite that part of the business workflow again. Gradually, the
business will build up a collection of reusable assets in the form of
reusable enterprise services.

Unfortunately, the dynamic nature of reality defies these attempts.
Business components aren’t like construction materials, where
solutions last decades. Markets, technology changes, engineering
practices, and a host of other factors confound attempts to impose
stability on the software world.

Application Services

Not all services in the architecture require the same level of
granularity or reuse as the enterprise services. Application services
are one-off, single-implementation services. For example, perhaps
one application needs geo-location, but the organization doesn’t want
to take the time or effort to make that a reusable service. An
application service, typically owned by a single application team,
solves these problems.



Infrastructure Services

Infrastructure services supply the operational concerns, such as
monitoring, logging, authentication, and authorization. These services
tend to be concrete implementations, owned by a shared
infrastructure team that works closely with operations.

Orchestration Engine

The orchestration engine forms the heart of this distributed
architecture, stitching together the business service implementations
using orchestration, including features like transactional coordination
and message transformation. This architecture is typically tied to a
single relational database, or a few, rather than a database per service
as in microservices architectures. Thus, transactional behavior is
handled declaratively in the orchestration engine rather than in the
database.

The orchestration engine defines the relationship between the
business and enterprise services, how they map together, and where
transaction boundaries lie. It also acts as an integration hub, allowing
architects to integrate custom code with package and legacy software
systems.

Because this mechanism forms the heart of the architecture,
Conway’s law (see “Conway’s Law”) correctly predicts that the team
of integration architects responsible for this engine become a political
force within an organization, and eventually a bureaucratic
bottleneck.



While this approach might sound appealing, in practice it was mostly
a disaster. Off-loading transaction behavior to an orchestration tool
sounded good, but finding the correct level of granularity of
transactions became more and more difficult. While building a few
services wrapped in a distributed transaction is possible, the
architecture becomes increasingly complex as developers must figure
out where the appropriate transaction boundaries lie between
services.

Message Flow

All requests go through the orchestration engine—it is the location
within this architecture where logic resides. Thus, message flow goes
through the engine even for internal calls, as shown in Figure 16-2.





Figure 16-2. Message flow with service-oriented architecture

In Figure 16-2, the CreateQuote business-level service calls the
service bus, which defines the workflow that consists of calls to
CreateCustomer and CalculateQuote, each of which also
has calls to application services. The service bus acts as the
intermediary for all calls within this architecture, serving as both an
integration hub and orchestration engine.

Reuse…and Coupling
A major goal of this architecture is reuse at the service level—the
ability to gradually build business behavior that can be incrementally
reused over time. Architects in this architecture were instructed to
find reuse opportunities as aggressively as possible. For example,
consider the situation illustrated in Figure 16-3.



Figure 16-3. Seeking reuse opportunities in service-oriented architecture

In Figure 16-3, an architect realizes that each of these divisions
within an insurance company all contain a notion of Customer.



Therefore, the proper strategy for service-oriented architecture entails
extracting the customer parts into a reusable service and allowing the
original services to reference the canonical Customer service,
shown in Figure 16-4.



Figure 16-4. Building canonical representations in service-oriented architecture

In Figure 16-4, the architect has isolated all customer behavior into a
single Customer service, achieving obvious reuse goals.



However, architects only slowly realized the negative trade-offs of
this design. First, when a team builds a system primarily around
reuse, they also incur a huge amount of coupling between
components. For example, in Figure 16-4, a change to the
Customer service ripples out to all the other services, making
change risky. Thus, in service-oriented architecture, architects
struggled with making incremental change—each change had a
potential huge ripple effect. That in turn led to the need for
coordinated deployments, holistic testing, and other drags on
engineering efficiency.

Another negative side effect of consolidating behavior into a single
place: consider the case of auto and disability insurance in Figure 16-
4. To support a single Customer service, it must include all the
details the organization knows about customers. Auto insurance
requires a driver’s license, which is a property of the person, not the
vehicle. Therefore, the Customer service will have to include
details about driver’s licenses that the disability insurance division
cares nothing about. Yet, the team that deals with disability must deal
with the extra complexity of a single customer definition.

Perhaps the most damaging revelation from this architecture came
with the realization of the impractically of building an architecture so
focused on technical partitioning. While it makes sense from a
separation and reuse philosophy standpoint, it was a practical
nightmare. Domain concepts like CatalogCheckout were spread
so thinly throughout this architecture that they were virtually ground
to dust. Developers commonly work on tasks like “add a new address



line to CatalogCheckout.” In a service-oriented architecture, that
could entail dozens of services in several different tiers, plus changes
to a single database schema. And, if the current enterprise services
aren’t defined at the correct transactional granularity, the developers
will either have to change their design or build a new, near-identical
service to change transactional behavior. So much for reuse.

Architecture Characteristics Ratings
Many of the modern criteria we use to evaluate architecture now were
not priorities when this architecture was popular. In fact, the Agile
software movement had just started and had not penetrated into the
size of organizations likely to use this architecture.

A one-star rating in the characteristics ratings table in Figure 16-5
means the specific architecture characteristic isn’t well supported in
the architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 16-5. Ratings for service-oriented architecture

Service-oriented architecture is perhaps the most technically
partitioned general-purpose architecture ever attempted! In fact, the
backlash against the disadvantages of this structure lead to more
modern architectures such as microservices. It has a single quantum
even though it is a distributed architecture for two reasons. First, it
generally uses a single database or just a few databases, creating
coupling points within the architecture across many different
concerns. Second, and more importantly, the orchestration engine acts
as a giant coupling point—no part of the architecture can have
different architecture characteristics than the mediator that
orchestrates all behavior. Thus, this architecture manages to find the
disadvantages of both monolithic and distributed architectures.

Modern engineering goals such as deployability and testability score
disastrously in this architecture, both because they were poorly
supported and because those were not important (or even
aspirational) goals during that era.

This architecture did support some goals such as elasticity and
scalability, despite the difficulties in implementing those behaviors,
because tool vendors poured enormous effort into making these
systems scalable by building session replication across application
servers and other techniques. However, being a distributed
architecture, performance was never a highlight of this architecture
style and was extremely poor because each business request was split
across so much of the architecture.



Because of all these factors, simplicity and cost have the inverse
relationship most architects would prefer. This architecture was an
important milestone because it taught architects how difficult
distributed transactions can be in the real world and the practical
limits of technical partitioning.



Chapter 17. Microservices
Architecture

Microservices is an extremely popular architecture style that has
gained significant momentum in recent years. In this chapter, we
provide an overview of the important characteristics that set this
architecture apart, both topologically and philosophically.

History
Most architecture styles are named after the fact by architects who
notice a particular pattern that keeps reappearing—there is no secret
group of architects who decide what the next big movement will be.
Rather, it turns out that many architects end up making common
decisions as the software development ecosystem shifts and changes.
The common best ways of dealing with and profiting from those
shifts become architecture styles that others emulate.

Microservices differs in this regard—it was named fairly early in its
usage and popularized by a famous blog entry by Martin Fowler and
James Lewis entitled “Microservices,” published in March 2014.
They recognized many common characteristics in this relatively new
architectural style and delineated them. Their blog post helped define
the architecture for curious architects and helped them understand the
underlying philosophy.

https://oreil.ly/Px3Wk


Microservices is heavily inspired by the ideas in domain-driven
design (DDD), a logical design process for software projects. One
concept in particular from DDD, bounded context, decidedly inspired
microservices. The concept of bounded context represents a
decoupling style. When a developer defines a domain, that domain
includes many entities and behaviors, identified in artifacts such as
code and database schemas. For example, an application might have a
domain called CatalogCheckout, which includes notions such as
catalog items, customers, and payment. In a traditional monolithic
architecture, developers would share many of these concepts,
building reusable classes and linked databases. Within a bounded
context, the internal parts, such as code and data schemas, are
coupled together to produce work; but they are never coupled to
anything outside the bounded context, such as a database or class
definition from another bounded context. This allows each context to
define only what it needs rather than accommodating other
constituents.

While reuse is beneficial, remember the First Law of Software
Architecture regarding trade-offs. The negative trade-off of reuse is
coupling. When an architect designs a system that favors reuse, they
also favor coupling to achieve that reuse, either by inheritance or
composition.

However, if the architect’s goal requires high degrees of decoupling,
then they favor duplication over reuse. The primary goal of
microservices is high decoupling, physically modeling the logical
notion of bounded context.



Topology
The topology of microservices is shown in Figure 17-1.





Figure 17-1. The topology of the microservices architecture style

As illustrated in Figure 17-1, due to its single-purpose nature, the
service size in microservices is much smaller than other distributed
architectures, such as the orchestration-driven service-oriented
architecture. Architects expect each service to include all necessary
parts to operate independently, including databases and other
dependent components. The different characteristics appear in the
following sections.

Distributed
Microservices form a distributed architecture: each service runs in its
own process, which originally implied a physical computer but
quickly evolved to virtual machines and containers. Decoupling the
services to this degree allows for a simple solution to a common
problem in architectures that heavily feature multitenant
infrastructure for hosting applications. For example, when using an
application server to manage multiple running applications, it allows
operational reuse of network bandwidth, memory, disk space, and a
host of other benefits. However, if all the supported applications
continue to grow, eventually some resource becomes constrained on
the shared infrastructure. Another problem concerns improper
isolation between shared applications.

Separating each service into its own process solves all the problems
brought on by sharing. Before the evolutionary development of freely
available open source operating systems, combined with automated
machine provisioning, it was impractical for each domain to have its



own infrastructure. Now, however, with cloud resources and
container technology, teams can reap the benefits of extreme
decoupling, both at the domain and operational level.

Performance is often the negative side effect of the distributed nature
of microservices. Network calls take much longer than method calls,
and security verification at every endpoint adds additional processing
time, requiring architects to think carefully about the implications of
granularity when designing the system.

Because microservices is a distributed architecture, experienced
architects advise against the use of transactions across service
boundaries, making determining the granularity of services the key to
success in this architecture.

Bounded Context
The driving philosophy of microservices is the notion of bounded
context: each service models a domain or workflow. Thus, each
service includes everything necessary to operate within the
application, including classes, other subcomponents, and database
schemas. This philosophy drives many of the decisions architects
make within this architecture. For example, in a monolith, it is
common for developers to share common classes, such as Address,
between disparate parts of the application. However, microservices
try to avoid coupling, and thus an architect building this architecture
style prefers duplication to coupling.



Microservices take the concept of a domain-partitioned architecture
to the extreme. Each service is meant to represent a domain or
subdomain; in many ways, microservices is the physical embodiment
of the logical concepts in domain-driven design.

Granularity

Architects struggle to find the correct granularity for services in
microservices, and often make the mistake of making their services
too small, which requires them to build communication links back
between the services to do useful work.

The term “microservice” is a label, not a description.
—Martin Fowler

In other words, the originators of the term needed to call this new
style something, and they chose “microservices” to contrast it with
the dominant architecture style at the time, service-oriented
architecture, which could have been called “gigantic services”.
However, many developers take the term “microservices” as a
commandment, not a description, and create services that are too
fine-grained.

The purpose of service boundaries in microservices is to capture a
domain or workflow. In some applications, those natural boundaries
might be large for some parts of the system—some business
processes are more coupled than others. Here are some guidelines
architects can use to help find the appropriate boundaries:

Purpose



The most obvious boundary relies on the inspiration for the
architecture style, a domain. Ideally, each microservice should be
extremely functionally cohesive, contributing one significant
behavior on behalf of the overall application.

Transactions

Bounded contexts are business workflows, and often the entities
that need to cooperate in a transaction show architects a good
service boundary. Because transactions cause issues in distributed
architectures, if architects can design their system to avoid them,
they generate better designs.

Choreography

If an architect builds a set of services that offer excellent domain
isolation yet require extensive communication to function, the
architect may consider bundling these services back into a larger
service to avoid the communication overhead.

Iteration is the only way to ensure good service design. Architects
rarely discover the perfect granularity, data dependencies, and
communication styles on their first pass. However, after iterating over
the options, an architect has a good chance of refining their design.

Data Isolation

Another requirement of microservices, driven by the bounded context
concept, is data isolation. Many other architecture styles use a single
database for persistence. However, microservices tries to avoid all
kinds of coupling, including shared schemas and databases used as
integration points.



Data isolation is another factor an architect must consider when
looking at service granularity. Architects must be wary of the entity
trap (discussed in “Entity trap”) and not simply model their services
to resemble single entities in a database.

Architects are accustomed to using relational databases to unify
values within a system, creating a single source of truth, which is no
longer an option when distributing data across the architecture. Thus,
architects must decide how they want to handle this problem: either
identifying one domain as the source of truth for some fact and
coordinating with it to retrieve values or using database replication or
caching to distribute information.

While this level of data isolation creates headaches, it also provides
opportunities. Now that teams aren’t forced to unify around a single
database, each service can choose the most appropriate tool, based on
price, type of storage, or a host of other factors. Teams have the
advantage in a highly decoupled system to change their mind and
choose a more suitable database (or other dependency) without
affecting other teams, which aren’t allowed to couple to
implementation details.

API Layer
Most pictures of microservices include an API layer sitting between
the consumers of the system (either user interfaces or calls from other
systems), but it is optional. It is common because it offers a good
location within the architecture to perform useful tasks, either via



indirection as a proxy or a tie into operational facilities, such as a
naming service (covered in “Operational Reuse”).

While an API layer may be used for variety of things, it should not be
used as a mediator or orchestration tool if the architect wants to stay
true to the underlying philosophy of this architecture: all interesting
logic in this architecture should occur inside a bounded context, and
putting orchestration or other logic in a mediator violates that rule.
This also illustrates the difference between technical and domain
partitioning in architecture: architects typically use mediators in
technically partitioned architectures, whereas microservices is firmly
domain partitioned.

Operational Reuse
Given that microservices prefers duplication to coupling, how do
architects handle the parts of architecture that really do benefit from
coupling, such as operational concerns like monitoring, logging, and
circuit breakers? One of the philosophies in the traditional service-
oriented architecture was to reuse as much functionality as possible,
domain and operational alike. In microservices, architects try to split
these two concerns.

Once a team has built several microservices, they realize that each
has common elements that benefit from similarity. For example, if an
organization allows each service team to implement monitoring
themselves, how can they ensure that each team does so? And how do
they handle concerns like upgrades? Does it become the



responsibility of each team to handle upgrading to the new version of
the monitoring tool, and how long will that take?

The sidecar pattern offers a solution to this problem, illustrated in
Figure 17-2.



Figure 17-2. The sidecar pattern in microservices



In Figure 17-2, the common operational concerns appear within each
service as a separate component, which can be owned by either
individual teams or a shared infrastructure team. The sidecar
component handles all the operational concerns that teams benefit
from coupling together. Thus, when it comes time to upgrade the
monitoring tool, the shared infrastructure team can update the sidecar,
and each microservices receives that new functionality.

Once teams know that each service includes a common sidecar, they
can build a service mesh, allowing unified control across the
architecture for concerns like logging and monitoring. The common
sidecar components connect to form a consistent operational interface
across all microservices, as shown in Figure 17-3.



Figure 17-3. The service plane connects the sidecars in a service mesh



In Figure 17-3, each sidecar wires into the service plane, which forms
the consistent interface to each service.

The service mesh itself forms a console that allows developers
holistic access to services, which is shown in Figure 17-4.





Figure 17-4. The service mesh forms a holistic view of the operational aspect of
microservices

Each service forms a node in the overall mesh, as shown in
Figure 17-4. The service mesh forms a console that allows teams to
globally control operational coupling, such as monitoring levels,
logging, and other cross-cutting operational concerns.

Architects use service discovery as a way to build elasticity into
microservices architectures. Rather than invoke a single service, a
request goes through a service discovery tool, which can monitor the
number and frequency of requests, as well as spin up new instances
of services to handle scale or elasticity concerns. Architects often
include service discovery in the service mesh, making it part of every
microservice. The API layer is often used to host service discovery,
allowing a single place for user interfaces or other calling systems to
find and create services in an elastic, consistent way.

Frontends
Microservices favors decoupling, which would ideally encompass the
user interfaces as well as backend concerns. In fact, the original
vision for microservices included the user interface as part of the
bounded context, faithful to the principle in DDD. However,
practicalities of the partitioning required by web applications and
other external constraints make that goal difficult. Thus, two styles of
user interfaces commonly appear for microservices architectures; the
first appears in Figure 17-5.





Figure 17-5. Microservices architecture with a monolithic user interface

In Figure 17-5, the monolithic frontend features a single user
interface that calls through the API layer to satisfy user requests. The
frontend could be a rich desktop, mobile, or web application. For
example, many web applications now use a JavaScript web
framework to build a single user interface.

The second option for user interfaces uses microfrontends, shown in
Figure 17-6.





Figure 17-6. Microfrontend pattern in microservices

In Figure 17-6, this approach utilizes components at the user interface
level to create a synchronous level of granularity and isolation in the
user interface as the backend services. Each service emits the user
interface for that service, which the frontend coordinates with the
other emitted user interface components. Using this pattern, teams
can isolate service boundaries from the user interface to the backend
services, unifying the entire domain within a single team.

Developers can implement the microfrontend pattern in a variety of
ways, either using a component-based web framework such as React
or using one of several open source frameworks that support this
pattern.

Communication
In microservices, architects and developers struggle with appropriate
granularity, which affects both data isolation and communication.
Finding the correct communication style helps teams keep services
decoupled yet still coordinated in useful ways.

Fundamentally, architects must decide on synchronous or
asynchronous communication. Synchronous communication requires
the caller to wait for a response from the callee. Microservices
architectures typically utilize protocol-aware heterogeneous
interoperability. We’ll break down that term for you:

Protocol-aware

https://reactjs.org/


Because microservices usually don’t include a centralized
integration hub to avoid operational coupling, each service should
know how to call other services. Thus, architects commonly
standardize on how particular services call each other: a certain
level of REST, message queues, and so on. That means that
services must know (or discover) which protocol to use to call
other services.

Heterogeneous

Because microservices is a distributed architecture, each service
may be written in a different technology stack. Heterogeneous
suggests that microservices fully supports polyglot environments,
where different services use different platforms.

Interoperability

Describes services calling one another. While architects in
microservices try to discourage transactional method calls,
services commonly call other services via the network to
collaborate and send/receive information.

ENFORCED HETEROGENEITY
A well-known architect who was a pioneer in the microservices style was the chief architecture at a
personal information manager startup for mobile devices. Because they had a fast-moving problem
domain, the architect wanted to ensure that none of the development teams accidentally created
coupling points between each other, hindering the teams’ ability to move independently. It turned out
that this architect had a wide mix of technical skills on the teams, thus mandating that each
development team use a different technology stack. If one team was using Java and the other was
using .NET, it was impossible to accidentally share classes!

This approach is the polar opposite of most enterprise governance policies, which insist on
standardizing on a single technology stack. The goal in the microservices world isn’t to create the
most complex ecosystem possible, but rather to choose the correct scale technology for the narrow
scope of the problem. Not every service needs an industrial-strength relational database, and forcing it
on small teams slows them rather than benefitting them. This concept leverages the highly decoupled
nature of microservices.



For asynchronous communication, architects often use events and
messages, thus internally utilizing an event-driven architecture,
covered in Chapter 14; the broker and mediator patterns manifest in
microservices as choreography and orchestration.

Choreography and Orchestration

Choreography utilizes the same communication style as a broker
event-driven architecture. In other words, no central coordinator
exists in this architecture, respecting the bounded context philosophy.
Thus, architects find it natural to implement decoupled events
between services.

Domain/architecture isomorphism is one key characteristic that
architects should look for when assessing how appropriate an
architecture style is for a particular problem. This term describes how
the shape of an architecture maps to a particular architecture style.
For example, in Figure 8-7, the Silicon Sandwiches’ technically
partitioned architecture structurally supports customizability, and the
microkernal architecture style offers the same general structure.
Therefore, problems that require a high degree of customization
become easier to implement in a microkernel.

Similarly, because the architect’s goal in a microservices architecture
favors decoupling, the shape of microservices resembles the broker
EDA, making these two patterns symbiotic.

In choreography, each service calls other services as needed, without
a central mediator. For example, consider the scenario shown in



Figure 17-7.





Figure 17-7. Using choreography in microservices to manage coordination

In Figure 17-7, the user requests details about a user’s wish list.
Because the CustomerWishList service doesn’t contain all the
necessary information, it makes a call to
CustomerDemographics to retrieve the missing information,
returning the result to the user.

Because microservices architectures don’t include a global mediator
like other service-oriented architectures, if an architect needs to
coordinate across several services, they can create their own localized
mediator, as shown in Figure 17-8.





Figure 17-8. Using orchestration in microservices

In Figure 17-8, the developers create a service whose sole
responsibility is coordinating the call to get all information for a
particular customer. The user calls the
ReportCustomerInformation mediator, which calls the
necessary other services.

The First Law of Software Architecture suggests that neither of these
solutions is perfect—each has trade-offs. In choreography, the
architect preserves the highly decoupled philosophy of the
architecture style, thus reaping maximum benefits touted by the style.
However, common problems like error handling and coordination
become more complex in choreographed environments.

Consider an example with a more complex workflow, shown in
Figure 17-9.





Figure 17-9. Using choreography for a complex business process

In Figure 17-9, the first service called must coordinate across a wide
variety of other services, basically acting as a mediator in addition to
its other domain responsibilities. This pattern is called the front
controller pattern, where a nominally choreographed service becomes
a more complex mediator for some problem. The downside to this
pattern is added complexity in the service.

Alternatively, an architect may choose to use orchestration for
complex business processes, illustrated in Figure 17-10.





Figure 17-10. Using orchestration for a complex business process

In Figure 17-10, the architect builds a mediator to handle the
complexity and coordination required for the business workflow.
While this creates coupling between these services, it allows the
architect to focus coordination into a single service, leaving the others
less affected. Often, domain workflows are inherently coupled—the
architect’s job entails finding the best way to represent that coupling
in ways that support both the domain and architectural goals.

Transactions and Sagas

Architects aspire to extreme decoupling in microservices, but then
often encounter the problem of how to do transactional coordination
across services. Because the decoupling in the architecture
encourages the same level for the databases, atomicity that was trivial
in monolithic applications becomes a problem in distributed ones.

Building transactions across service boundaries violates the core
decoupling principle of the microservices architecture (and also
creates the worst kind of dynamic connascence, connascence of
value). The best advice for architects who want to do transactions
across services is: don’t! Fix the granularity components instead.
Often, architects who build microservices architectures who then find
a need to wire them together with transactions have gone too granular
in their design. Transaction boundaries is one of the common
indicators of service granularity.



TIP
Don’t do transactions in microservices—fix granularity instead!

Exceptions always exist. For example, a situation may arise where
two different services need vastly different architecture
characteristics, requiring distinct service boundaries, yet still need
transactional coordination. In those situations, patterns exist to handle
transaction orchestration, with serious trade-offs.

A popular distributed transactional pattern in microservices is the
saga pattern, illustrated in Figure 17-11.





Figure 17-11. The saga pattern in microservices architecture

In Figure 17-11, a service acts a mediator across multiple service
calls and coordinates the transaction. The mediator calls each part of
the transaction, records success or failure, and coordinates results. If
everything goes as planned, all the values in the services and their
contained databases update synchronously.

In an error condition, the mediator must ensure that no part of the
transaction succeeds if one part fails. Consider the situation shown in
Figure 17-12.





Figure 17-12. Saga pattern compensating transactions for error conditions

In Figure 17-12, if the first part of the transaction succeeds, yet the
second part fails, the mediator must send a request to all the parts of
the transaction that were successful and tell them to undo the
previous request. This style of transactional coordination is called a
compensating transaction framework. Developers implement this
pattern by usually having each request from the mediator enter a
pending state until the mediator indicates overall success.
However, this design becomes complex if asynchronous requests
must be juggled, especially if new requests appear that are contingent
on pending transactional state. This also creates a lot of coordination
traffic at the network level.

Another implementation of a compensating transaction framework
has developers build do and undo for each potentially transactional
operation. This allows less coordination during transactions, but the
undo operations tend to be significantly more complex than the do
operations, more than doubling the design, implementation, and
debugging work.

While it is possible for architects to build transactional behavior
across services, it goes against the reason for choosing the
microservices pattern. Exceptions always exist, so the best advice for
architects is to use the saga pattern sparingly.



TIP
A few transactions across services is sometimes necessary; if it’s the dominant
feature of the architecture, mistakes were made!

Architecture Characteristics Ratings
The microservices architecture style offers several extremes on our
standard ratings scale, shown in Figure 17-13. A one-star rating
means the specific architecture characteristic isn’t well supported in
the architecture, whereas a five-star rating means the architecture
characteristic is one of the strongest features in the architecture style.
The definition for each characteristic identified in the scorecard can
be found in Chapter 4.





Figure 17-13. Ratings for microservices

Notable in the ratings in Figure 17-13 is the high support for modern
engineering practices such as automated deployment, testability, and
others not listed. Microservices couldn’t exist without the DevOps
revolution and the relentless march toward automating operational
concerns.

As microservices is a distributed architecture, it suffers from many of
the deficiencies inherent in architectures made from pieces wired
together at runtime. Thus, fault tolerance and reliability are impacted
when too much interservice communication is used. However, these
ratings only point to tendencies in the architecture; developers fix
many of these problems by redundancy and scaling via service
discovery. Under normal circumstances, however, independent,
single-purpose services generally lead to high fault tolerance, hence
the high rating for this characteristic within a microservices
architecture.

The high points of this architecture are scalability, elasticity, and
evolutionary. Some of the most scalable systems yet written have
utilized this style to great success. Similarly, because the architecture
relies heavily on automation and intelligent integration with
operations, developers can also build elasticity support into the
architecture. Because the architecture favors high decoupling at an
incremental level, it supports the modern business practice of
evolutionary change, even at the architecture level. Modern business
move fast, and software development has struggled to keep apace. By
building an architecture that has extremely small deployment units



that are highly decoupled, architects have a structure that can support
a faster rate of change.

Performance is often an issue in microservices—distributed
architectures must make many network calls to complete work, which
has high performance overhead, and they must invoke security
checks to verify identity and access for each endpoint. Many patterns
exist in the microservices world to increase performance, including
intelligent data caching and replication to prevent an excess of
network calls. Performance is another reason that microservices often
use choreography rather than orchestration, as less coupling allows
for faster communication and fewer bottlenecks.

Microservices is decidedly a domain-centered architecture, where
each service boundary should correspond to domains. It also has the
most distinct quanta of any modern architecture—in many ways, it
exemplifies what the quantum measure evaluates. The driving
philosophy of extreme decoupling creates many headaches in this
architecture but yields tremendous benefits when done well. As in
any architecture, architects must understand the rules to break them
intelligently.

Additional References
While our goal in this chapter was to touch on some of the significant
aspects of this architecture style, many excellent resources exist to get
further and more detailed about this architecture style. Additional and
more detailed information can be found about microservices in the
following references:



Building Microservices by Sam Newman (O’Reilly)

Microservices vs. Service-Oriented Architecture by Mark
Richards (O’Reilly)

Microservices AntiPatterns and Pitfalls by Mark Richards
(O’Reilly)

http://shop.oreilly.com/product/0636920033158.do
https://learning.oreilly.com/library/view/microservices-vs-service-oriented/9781491975657
https://learning.oreilly.com/library/view/microservices-antipatterns-and/9781492042716


Chapter 18. Choosing the
Appropriate Architecture
Style

It depends! With all the choices available (and new ones arriving
almost daily), we would like to tell you which one to use—but we
cannot. Nothing is more contextual to a number of factors within an
organization and what software it builds. Choosing an architecture
style represents the culmination of analysis and thought about trade-
offs for architecture characteristics, domain considerations, strategic
goals, and a host of other things.

However contextual the decision is, some general advice exists
around choosing an appropriate architecture style.

Shifting “Fashion” in Architecture
Preferred architecture styles shift over time, driven by a number of
factors:

Observations from the past

New architecture styles generally arise from observations and
pain points from past experiences. Architects have experience
with systems in the past that influence their thoughts about future
systems. Architects must rely on their past experience—it is that



experience that allowed that person to become an architect in the
first place. Often, new architecture designs reflect specific
deficiencies from past architecture styles. For example, architects
seriously rethought the implications of code reuse after building
architectures that featured it and then realizing the negative trade-
offs.

Changes in the ecosystem

Constant change is a reliable feature of the software development
ecosystem—everything changes all the time. The change in our
ecosystem is particularly chaotic, making even the type of change
impossible to predict. For example, a few years ago, no one knew
what Kubernetes was, and now there are multiple conferences
around the world with thousands of developers. In a few more
years, Kubernetes may be replaced with some other tool that
hasn’t been written yet.

New capabilities

When new capabilities arise, architecture may not merely replace
one tool with another but rather shift to an entirely new paradigm.
For example, few architects or developers anticipated the tectonic
shift caused in the software development world by the advent of
containers such as Docker. While it was an evolutionary step, the
impact it had on architects, tools, engineering practices, and a
host of other factors astounded most in the industry. The constant
change in the ecosystem also delivers a new collection of tools
and capabilities on a regular basis. Architects must keep a keen
eye open to not only new tools but new paradigms. Something
may just look like a new one-of-something-we-already-have, but
it may include nuances or other changes that make it a game
changer. New capabilities don’t even have to rock the entire
development world—the new features may be a minor change
that aligns exactly with an architect’s goals.



Acceleration

Not only does the ecosystem constantly change, but the rate of
change also continues to rise. New tools create new engineering
practices, which lead to new design and capabilities. Architects
live in a constant state of flux because change is both pervasive
and constant.

Domain changes

The domain that developers write software for constantly shifts
and changes, either because the business continues to evolve or
because of factors like mergers with other companies.

Technology changes

As technology continues to evolve, organizations try to keep up
with at least some of these changes, especially those with obvious
bottom-line benefits.

External factors

Many external factors only peripherally associated with software
development may drive change within an organizations. For
example, architects and developers might be perfectly happy with
a particular tool, but the licensing cost has become prohibitive,
forcing a migration to another option.

Regardless of where an organization stands in terms of current
architecture fashion, an architect should understand current industry
trends to make intelligent decisions about when to follow and when
to make exceptions.

Decision Criteria



When choosing an architectural style, an architect must take into
account all the various factors that contribute to the structure for the
domain design. Fundamentally, an architect designs two things:
whatever domain has been specified, and all the other structural
elements required to make the system a success.

Architects should go into the design decision comfortable with the
following things:

The domain

Architects should understand many important aspects of the
domain, especially those that affect operational architecture
characteristics. Architects don’t have to be subject matter experts,
but they must have at least a good general understanding of the
major aspects of the domain under design.

Architecture characteristics that impact structure

Architects must discover and elucidate the architecture
characteristics needed to support the domain and other eternal
factors.

Data architecture

Architects and DBAs must collaborate on database, schema, and
other data-related concerns. We don’t cover much about data
architecture in this book; it is its own specialization. However,
architects must understand the impact that data design might have
on their design, particularly if the new system must interact with
an older and/or in-use data architecture.

Organizational factors

Many external factors may influence design. For example, the
cost of a particular cloud vendor may prevent the ideal design. Or



perhaps the company plans to engage in mergers and acquisitions,
which encourages an architect to gravitate toward open solutions
and integration architectures.

Knowledge of process, teams, and operational concerns

Many specific project factors influence an architect’s design, such
as the software development process, interaction (or lack of) with
operations, and the QA process. For example, if an organization
lacks maturity in Agile engineering practices, architecture styles
that rely on those practices for success will present difficulties.

Domain/architecture isomorphism

Some problem domains match the topology of the architecture.
For example, the microkernel architecture style is perfectly suited
to a system that requires customizability—the architect can
design customizations as plug-ins. Another example might be
genome analysis, which requires a large number of discrete
operations, and space-based architecture, which offers a large
number of discrete processors.

Similarly, some problem domains may be particularly ill-suited
for some architecture styles. For example, highly scalable systems
struggle with large monolithic designs because architects find it
difficult to support a large number of concurrent users in a highly
coupled code base. A problem domain that includes a huge
amount of semantic coupling matches poorly with a highly
decoupled, distributed architecture. For instance, an insurance
company application consisting of multipage forms, each of
which is based on the context of previous pages, would be
difficult to model in microservices. This is a highly coupled
problem that will present architects with design challenges in a
decoupled architecture; a less coupled architecture like service-
based architecture would suit this problem better.



Taking all these things into account, the architect must make several
determinations:

Monolith versus distributed

Using the quantum concepts discussed earlier, the architect must
determine if a single set of architecture characteristics will suffice
for the design, or do different parts of the system need differing
architecture characteristics? A single set implies that a monolith is
suitable (although other factors may drive an architect toward a
distributed architecture), whereas different architecture
characteristics imply a distributed architecture.

Where should data live?

If the architecture is monolithic, architects commonly assume a
single relational databases or a few of them. In a distributed
architecture, the architect must decide which services should
persist data, which also implies thinking about how data must
flow throughout the architecture to build workflows. Architects
must consider both structure and behavior when designing
architecture and not be fearful of iterating on the design to find
better combinations.

What communication styles between services—synchronous or
asynchronous?

Once the architect has determined data partitioning, their next
design consideration is the communication between services—
synchronous or asynchronous? Synchronous communication is
more convenient in most cases, but it can lead to scalability,
reliability, and other undesirable characteristics. Asynchronous
communication can provide unique benefits in terms of
performance and scale but can present a host of headaches: data
synchronization, deadlocks, race conditions, debugging, and so
on.



Because synchronous communication presents fewer design,
implementation, and debugging challenges, architects should default
to synchronous when possible and use asynchronous when necessary.

TIP
Use synchronous by default, asynchronous when necessary.

The output of this design process is architecture topology, taking into
account what architecture style (and hybridizations) the architect
chose, architecture decision records about the parts of the design
which required the most effort by the architect, and architecture
fitness functions to protect important principles and operational
architecture characteristics.

Monolith Case Study: Silicon
Sandwiches
In the Silicon Sandwiches architecture kata, after investigating the
architecture characteristics, we determined that a single quantum was
sufficient to implement this system. Plus, this is a simple application
without a huge budget, so the simplicity of a monolith appeals.

However, we created two different component designs for Silicon
Sandwiches: one domain partitioned and another technically
partitioned. Given the simplicity of the solution, we’ll create designs
for each and cover trade-offs.



Modular Monolith

A modular monolith builds domain-centric components with a single
database, deployed as a single quantum; the modular monolith design
for Silicon Sandwiches appears in Figure 18-1.





Figure 18-1. A modular monolith implementation of Silicon Sandwiches

In Figure 18-1, this is a monolith with a single relational database,
implemented with a single web-based user interface (with careful
design considerations for mobile devices) to keep overall cost down.
Each of the domains the architect identified earlier appear as
components. If time and resources are sufficient, the architect should
consider creating the same separation of tables and other database
assets as the domain components, allowing for this architecture to
migrate to a distributed architecture more easily if future
requirements warrant it.

Because the architecture style itself doesn’t inherently handle
customization, the architect must make sure that that feature becomes
part of domain design. In this case, the architect designs an
Override endpoint where developers can upload individual
customizations. Correspondingly, the architect must ensure that each
of the domain components references the Override component for
each customizable characteristic—this would make a perfect fitness
function.

Microkernel

One of the architecture characteristics the architect identified in
Silicon Sandwiches was customizability. Looking at
domain/architecture isomorphism, an architect may choose to
implement it using a microkernel, as illustrated in Figure 18-2.





Figure 18-2. A microkernel implementation of Silicon Sandwiches

In Figure 18-2, the core system consists of the domain components
and a single relational database. As in the previous design, careful
synchronization between domains and data design will allow future
migration of the core to a distributed architecture. Each customization
appears in a plug-in, the common ones in a single set of plug-ins
(with a corresponding database), and a series of local ones, each with
their own data. Because none of the plug-ins need to be coupled to
the other plug-ins, they can each maintain their data, leaving the plug-
ins decoupled.

The other unique design element here utilizes the Backends for
Frontends (BFF) pattern, making the API layer a thin microkernel
adaptor. It supplies general information from the backend, and the
BFF adaptors translate the generic information into the suitable
format for the frontend device. For example, the BFF for iOS will
take the generic output from the backend and customize it for what
the iOS native application expects: the data format, pagination,
latency, and other factors. Building each BFF adaptor allows for the
richest user interfaces and the ability to expand to support other
devices in the future—one of the benefits of the microkernel style.

Communication within either Silicon Sandwich architecture can be
synchronous—the architecture doesn’t require extreme performance
or elasticity requirements—and none of the operations will be
lengthy.
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Distributed Case Study: Going, Going,
Gone
The Going, Going, Gone (GGG) kata presents more interesting
architecture challenges. Based on the component analysis in “Case
Study: Going, Going, Gone: Discovering Components”, this
architecture needs differing architecture characteristics for different
parts of the architecture. For example, architecture characteristics like
availability and scalability will differ between roles like auctioneer
and bidder.

The requirements for GGG also explicitly state certain ambitious
levels of scale, elasticity, performance, and a host of other tricky
operational architecture characteristics. The architect needs to choose
a pattern that allows for a high degree of customization at a fine-
grained level within the architecture. Of the candidate distributed
architectures, either low-level event-driven or microservices match
most of the architecture characteristics. Of the two, microservices
better supports differing operational architecture characteristics—
purely event-driven architectures typically don’t separate pieces
because of these operational architecture characteristics but are rather
based on communication style, orchestrated versus choreographed.

Achieving the stated performance will provide a challenge in
microservices, but architects can often address any weak point of an
architecture by designing to accommodate it. For example, while
microservices offers a high degrees of scalability naturally, architects
commonly have to address specific performance issues caused by too
much orchestration, too aggressive data separation, and so on.
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An implementation of GGG using microservices is shown in
Figure 18-3.





Figure 18-3. A microservices implementation of Going, Going, Gone

In Figure 18-3, each identified component became services in the
architecture, matching component and service granularity. GGG has
three distinct user interfaces:

Bidder

The numerous bidders for the online auction.

Auctioneer

One per auction.

Streamer

Service responsible for streaming video and bid stream to the
bidders. Note that this is a read-only stream, allowing
optimizations not available if updates were necessary.

The following services appear in this design of the GGG architecture:

BidCapture

Captures online bidder entries and asynchronously sends them to
Bid Tracker. This service needs no persistence because it acts
as a conduit for the online bids.

BidStreamer

Streams the bids back to online participants in a high
performance, read-only stream.

BidTracker

Tracks bids from both Auctioneer Capture and Bid
Capture. This is the component that unifies the two different
information streams, ordering the bids as close to real time as



possible. Note that both inbound connections to this service are
asynchronous, allowing the developers to use message queues as
buffers to handle very different rates of message flow.

Auctioneer Capture

Captures bids for the auctioneer. The result of quanta analysis in
“Case Study: Going, Going, Gone: Discovering Components” led
the architect to separate Bid Capture and Auctioneer
Capture because they have quite different architecture
characteristics.

Auction Session

This manages the workflow of individual auctions.

Payment

Third-party payment provider that handles payment information
after the Auction Session has completed the auction.

Video Capture

Captures the video stream of the live auction.

Video Streamer

Streams the auction video to online bidders.

The architect was careful to identify both synchronous and
asynchronous communication styles in this architecture. Their choice
for asynchronous communication is primarily driven by
accommodating differing operational architecture characteristics
between services. For example, if the Payment service can only
process a new payment every 500 ms and a large number of auctions
end at the same time, synchronous communication between the
services would cause time outs and other reliability headaches. By
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using message queues, the architect can add reliability to a critical
part of the architecture that exhibits fragility.

In the final analysis, this design resolved to five quanta, identified in
Figure 18-4.





Figure 18-4. The quanta boundaries for GGG

In Figure 18-4, the design includes quanta for Payment,
Auctioneer, Bidder, Bidder Streams, and Bid
Tracker, roughly corresponding to the services. Multiple instances
are indicated by stacks of containers in the diagram. Using quantum
analysis at the component design stage allowed the architect to more
easily identify service, data, and communication boundaries.

Note that this isn’t the “correct” design for GGG, and it’s certainly
not the only one. We don’t even suggest that it’s the best possible
design, but it seems to have the least worst set of trade-offs. Choosing
microservices, then intelligently using events and messages, allows
the architecture to leverage the most out of a generic architecture
pattern while still building a foundation for future development and
expansion.



Part III. Techniques and Soft
Skills

An effective software architect must not only understand the
technical aspects of software architecture, but also the primary
techniques and soft skills necessary to think like an architect, guide
development teams, and effectively communicate the architecture to
various stakeholders. This section of the book addresses the key
techniques and soft skills necessary to become an effective software
architect.



Chapter 19. Architecture
Decisions

One of the core expectations of an architect is to make architecture
decisions. Architecture decisions usually involve the structure of the
application or system, but they may involve technology decisions as
well, particularly when those technology decisions impact
architecture characteristics. Whatever the context, a good architecture
decision is one that helps guide development teams in making the
right technical choices. Making architecture decisions involves
gathering enough relevant information, justifying the decision,
documenting the decision, and effectively communicating that
decision to the right stakeholders.

Architecture Decision Anti-Patterns
There is an art to making architecture decisions. Not surprisingly,
several architecture anti-patterns emerge when making decisions as
an architect. The programmer Andrew Koenig defines an anti-pattern
as something that seems like a good idea when you begin, but leads
you into trouble. Another definition of an anti-pattern is a repeatable
process that produces negative results. The three major architecture
anti-patterns that can (and usually do) emerge when making
architecture decisions are the Covering Your Assets anti-pattern, the
Groundhog Day anti-pattern, and the Email-Driven Architecture anti-
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pattern. These three anti-patterns usually follow a progressive flow:
overcoming the Covering Your Assets anti-pattern leads to the
Groundhog Day anti-pattern, and overcoming this anti-pattern leads
to the Email-Driven Architecture anti-pattern. Making effective and
accurate architecture decisions requires an architect to overcome all
three of these anti-patterns.

Covering Your Assets Anti-Pattern

The first anti-pattern to emerge when trying to make architecture
decisions is the Covering Your Assets anti-pattern. This anti-pattern
occurs when an architect avoids or defers making an architecture
decision out of fear of making the wrong choice.

There are two ways to overcome this anti-pattern. The first is to wait
until the last responsible moment to make an important architecture
decision. The last responsible moment means waiting until you have
enough information to justify and validate your decision, but not
waiting so long that you hold up development teams or fall into the
Analysis Paralysis anti-pattern. The second way to avoid this anti-
pattern is to continually collaborate with development teams to
ensure that the decision you made can be implemented as expected.
This is vitally important because it is not feasible as an architect to
possibly know every single detail about a particular technology and
all the associated issues. By closely collaborating with development
teams, the architect can respond quickly to a change in the
architecture decision if issues occur.



To illustrate this point, suppose an architect makes the decision that
all product-related reference data (product description, weight, and
dimensions) be cached in all service instances needing that
information using a read-only replicated cache, with the primary
replica owned by the catalog service. A replicated cache means that if
there are any changes to product information (or a new product is
added), the catalog service would update its cache, which would then
be replicated to all other services requiring that data through a
replicated (in-memory) cache product. A good justification for this
decision is to reduce coupling between the services and to effectively
share data without having to make an interservice call. However, the
development teams implementing this architecture decision find that
due to certain scalability requirements of some of the services, this
decision would require more in-process memory than is available. By
closely collaborating with the development teams, the architect can
quickly become aware of the issue and adjust the architecture
decision to accommodate these situations.

Groundhog Day Anti-Pattern

Once an architect overcomes the Covering Your Assets anti-pattern
and starts making decisions, a second anti-pattern emerges: the
Groundhog Day anti-pattern. The Groundhog Day anti-pattern occurs
when people don’t know why a decision was made, so it keeps
getting discussed over and over and over. The Groundhog Day anti-
pattern gets it name from the Bill Murray movie Groundhog Day,
where it was February 2 over and over every day.



The Groundhog Day anti-pattern occurs because once an architect
makes an architecture decision, they fail to provide a justification for
the decision (or a complete justification). When justifying
architecture decisions it is important to provide both technical and
business justifications for your decision. For example, an architect
may make the decision to break apart a monolithic application into
separate services to decouple the functional aspects of the application
so that each part of the application uses fewer virtual machine
resources and can be maintained and deployed separately. While this
is a good example of a technical justification, what is missing is the
business justification—in other words, why should the business pay
for this architectural refactoring? A good business justification for
this decision might be to deliver new business functionality faster,
therefore improving time to market. Another might be to reduce the
costs associated with the development and release of new features.

Providing the business value when justifying decisions is vitally
important for any architecture decision. It is also a good litmus test
for determining whether the architecture decision should be made in
the first place. If a particular architecture decision does not provide
any business value, then perhaps it is not a good decision and should
be reconsidered.

Four of the most common business justifications include cost, time to
market, user satisfaction, and strategic positioning. When focusing on
these common business justifications, it is important to take into
consideration what is important to the business stakeholders.
Justifying a particular decision based on cost savings alone might not



be the right decision if the business stakeholders are less concerned
about cost and more concerned about time to market.

Email-Driven Architecture Anti-Pattern

Once an architect makes decisions and fully justifies those decisions,
a third architecture anti-pattern emerges: Email-Driven Architecture.
The Email-Driven Architecture anti-pattern is where people lose,
forget, or don’t even know an architecture decision has been made
and therefore cannot possibly implement that architecture decision.
This anti-pattern is all about effectively communicating your
architecture decisions. Email is a great tool for communication, but it
makes a poor document repository system.

There are many ways to increase the effectiveness of communicating
architecture decisions, thereby avoiding the Email-Driven
Architecture anti-pattern. The first rule of communicating
architecture decisions is to not include the architecture decision in the
body of an email. Including the architecture decision in the body of
the email creates multiple systems of record for that decision. Many
times important details (including the justification) are left out of the
email, therefore creating the Groundhog Day anti-pattern all over
again. Also, if that architecture decision is ever changed or
superseded, how may people received the revised decision? A better
approach is to mention only the nature and context of the decision in
the body of the email and provide a link to the single system of
record for the actual architecture decision and corresponding details
(whether it be a link to a wiki page or a document in a filesystem).



The second rule of effectively communicating architecture decisions
is to only notify those people who really care about the architecture
decision. One effective technique is to write the body of the email as
follows:

“Hi Sandra, I’ve made an important decision regarding
communication between services that directly impacts you. Please see
the decision using the following link…”

Notice the phrasing in the first sentence: “important decision
regarding communication between services.” Here, the context of the
decision is mentioned, but not the actual decision itself. The second
part of the first sentence is even more important: “that directly
impacts you.” If an architectural decision doesn’t directly impact the
person, then why bother that person with your architecture decision?
This is a great litmus test for determining which stakeholders
(including developers) should be notified directly of an architecture
decision. The second sentence provides a link to the location of the
architecture decision so it is located in only one place, hence a single
system of record for the decision.

Architecturally Significant
Many architects believe that if the architecture decision involves any
specific technology, then it’s not an architecture decision, but rather a
technical decision. This is not always true. If an architect makes a
decision to use a particular technology because it directly supports a
particular architecture characteristic (such as performance or
scalability), then it’s an architecture decision.



Michael Nygard, a well-known software architect and author of
Release It! (Pragmatic Bookshelf), addressed the problem of what
decisions an architect should be responsible for (and hence what is an
architecture decision) by coining the term architecturally significant.
According to Michael, architecturally significant decisions are those
decisions that affect the structure, nonfunctional characteristics,
dependencies, interfaces, or construction techniques.

The structure refers to decisions that impact the patterns or styles of
architecture being used. An example of this is the decision to share
data between a set of microservices. This decision impacts the
bounded context of the microservice, and as such affects the structure
of the application.

The nonfunctional characteristics are the architecture characteristics
(“-ilities”) that are important for the application or system being
developed or maintained. If a choice of technology impacts
performance, and performance is an important aspect of the
application, then it becomes an architecture decision.

Dependencies refer to coupling points between components and/or
services within the system, which in turn impact overall scalability,
modularity, agility, testability, reliability, and so on.

Interfaces refer to how services and components are accessed and
orchestrated, usually through a gateway, integration hub, service bus,
or API proxy. Interfaces usually involve defining contracts, including
the versioning and deprecation strategy of those contracts. Interfaces
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impact others using the system and hence are architecturally
significant.

Finally, construction techniques refer to decisions about platforms,
frameworks, tools, and even processes that, although technical in
nature, might impact some aspect of the architecture.

Architecture Decision Records
One of the most effective ways of documenting architecture decisions
is through Architecture Decision Records (ADRs). ADRs were first
evangelized by Michael Nygard in a blog post and later marked as
“adopt” in the ThoughtWorks Technology Radar. An ADR consists of
a short text file (usually one to two pages long) describing a specific
architecture decision. While ADRs can be written using plain text,
they are usually written in some sort of text document format like
AsciiDoc or Markdown. Alternatively, an ADR can also be written
using a wiki page template.

Tooling is also available for managing ADRs. Nat Pryce, coauthor of
Growing Object-Oriented Software Guided by Tests (Addison-
Wesley), has written an open source tool for ADRs called ADR-tools.
ADR-tools provides a command-line interface to manage ADRs,
including the numbering schemes, locations, and superseded logic.
Micha Kops, a software engineer from Germany, has written a blog
post about using ADR-tools that provides some great examples on
how they can be used to manage architecture decision records.

Basic Structure
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The basic structure of an ADR consists of five main sections: Title,
Status, Context, Decision, and Consequences. We usually add two
additional sections as part of the basic structure: Compliance and
Notes. This basic structure (as illustrated in Figure 19-1) can be
extended to include any other section deemed needed, providing the
template is kept both consistent and concise. A good example of this
might be to add an Alternatives section if necessary to provide an
analysis of all the other possible alternative solutions.





Figure 19-1. Basic ADR structure

TITLE

The title of an ADR is usually numbered sequentially and contains a
short phase describing the architecture decisions. For example, the
decision to use asynchronous messaging between the Order Service
and the Payment Service might read: “42. Use of Asynchronous
Messaging Between Order and Payment Services.” The title should
be descriptive enough to remove any ambiguity about the nature and
context of the decision but at the same time be short and concise.

STATUS

The status of an ADR can be marked as Proposed, Accepted, or
Superseded. Proposed status means the decision must be approved by
either a higher-level decision maker or some sort of architectural
governance body (such as an architecture review board). Accepted
status means the decision has been approved and is ready for
implementation. A status of Superseded means the decision has been
changed and superseded by another ADR. Superseded status always
assumes the prior ADR status was accepted; in other words, a
proposed ADR would never be superseded by another ADR, but
rather continued to be modified until accepted.

The Superseded status is a powerful way of keeping a historical
record of what decisions were made, why they were made at that
time, and what the new decision is and why it was changed. Usually,
when an ADR has been superseded, it is marked with the decision
that superseded it. Similarly, the decision that supersedes another



ADR is marked with the ADR it superseded. For example, assume
ADR 42 (“Use of Asynchronous Messaging Between Order and
Payment Services”) was previously approved, but due to later
changes to the implementation and location of the Payment Service,
REST must now be used between the two services (ADR 68). The
status would look as follows:

ADR 42. Use of Asynchronous Messaging Between Order and
Payment Services

Status: Superseded by 68

ADR 68. Use of REST Between Order and Payment Services

Status: Accepted, supersedes 42

The link and history trail between ADRs 42 and 68 avoid the
inevitable “what about using messaging?” question regarding
ADR 68.

ADRS AND REQUEST FOR COMMENTS (RFC)
If an architect wishes to send out a draft ADR for comments (which is sometimes a good idea when
the architect wants to validate various assumptions and assertions with a larger audience of
stakeholders), we recommend creating a new status named Request for Comments (or RFC) and
specify a deadline date when that review would be complete. This practice avoids the inevitable
Analysis Paralysis anti-pattern where the decision is forever discussed but never actually made. Once
that date is reached, the architect can analyze all the comments made on the ADR, make any
necessary adjustments to the decision, make the final decision, and set the status to Proposed (unless
the architect is able to approve the decision themselves, in which case the status would then be set to
Accepted). An example of an RFC status for an ADR would look as follows:

STATUS
Request For Comments, Deadline 09 JAN 2010

Another significant aspect of the Status section of an ADR is that it
forces an architect to have necessary conversations with their boss or
lead architect about the criteria with which they can approve an



architecture decision on their own, or whether it must be approved
through a higher-level architect, an architecture review board, or
some other architecture governing body.

Three criteria that form a good start for these conversations are cost,
cross-team impact, and security. Cost can include software purchase
or licensing fees, additional hardware costs, as well as the overall
level of effort to implement the architecture decision. Level of effort
costs can be estimated by multiplying the estimated number of hours
to implement the architecture decision by the company’s standard
Full-Time Equivalency (FTE) rate. The project owner or project
manager usually has the FTE amount. If the cost of the architecture
decision exceeds a certain amount, then it must be set to Proposed
status and approved by someone else. If the architecture decision
impacts other teams or systems or has any sort of security
implication, then it cannot be self-approved by the architect and must
be approved by a higher-level governing body or lead architect.

Once the criteria and corresponding limits have been established and
agreed upon (such as “costs exceeding €5,000 must be approved by
the architecture review board”), this criteria should be well
documented so that all architects creating ADRs know when they can
and cannot approve their own architecture decisions.

CONTEXT

The context section of an ADR specifies the forces at play. In other
words, “what situation is forcing me to make this decision?” This
section of the ADR allows the architect to describe the specific
situation or issue and concisely elaborate on the possible alternatives.



If an architect is required to document the analysis of each alternative
in detail, then an additional Alternatives section can be added to the
ADR rather than adding that analysis to the Context section.

The Context section also provides a way to document the
architecture. By describing the context, the architect is also
describing the architecture. This is an effective way of documenting a
specific area of the architecture in a clear and concise manner.
Continuing with the example from the prior section, the context
might read as follows: “The order service must pass information to
the payment service to pay for an order currently being placed. This
could be done using REST or asynchronous messaging.” Notice that
this concise statement not only specified the scenario, but also the
alternatives.

DECISION

The Decision section of the ADR contains the architecture decision,
along with a full justification for the decision. Michael Nygard
introduced a great way of stating an architecture decision by using a
very affirmative, commanding voice rather than a passive one. For
example, the decision to use asynchronous messaging between
services would read “we will use asynchronous messaging between
services.” This is a much better way of stating a decision as opposed
to “I think asynchronous messaging between services would be the
best choice.” Notice here it is not clear what the decision is or even if
a decision has even been made—only the opinion of the architect is
stated.



Perhaps one of the most powerful aspects of the Decision section of
ADRs is that it allows an architect to place more emphasis on the why
rather than the how. Understanding why a decision was made is far
more important than understanding how something works. Most
architects and developers can identify how things work by looking at
context diagrams, but not why a decision was made. Knowing why a
decision was made and the corresponding justification for the
decision helps people better understand the context of the problem
and avoids possible mistakes through refactoring to another solution
that might produce issues.

To illustrate this point, consider an original architecture decision
several years ago to use Google’s Remote Procedure Call (gRPC) as a
means to communicate between two services. Without understanding
why that decision was made, another architect several years later
makes the choice to override that decision and use messaging instead
to better decouple the services. However, implementing this
refactoring suddenly causes a significant increase in latency, which in
turn ultimately causes time outs to occur in upstream systems.
Understanding that the original use of gRPC was to significantly
reduce latency (at the cost of tightly coupled services) would have
prevented the refactoring from happening in the first place.

CONSEQUENCES

The Consequences section of an ADR is another very powerful
section. This section documents the overall impact of an architecture
decision. Every architecture decision an architect makes has some
sort of impact, both good and bad. Having to specify the impact of an
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architecture decision forces the architect to think about whether those
impacts outweigh the benefits of the decision.

Another good use of this section is to document the trade-off analysis
associated with the architecture decision. These trade-offs could be
cost-based or trade-offs against other architecture characteristics (“-
ilities”). For example, consider the decision to use asynchronous
(fire-and-forget) messaging to post a review on a website. The
justification for this decision is to significantly increase the
responsiveness of the post review request from 3,100 milliseconds to
25 milliseconds because users would not need to wait for the actual
review to be posted (only for the message to be sent to a queue).
While this is a good justification, someone else might argue that this
is a bad idea due to the complexity of the error handling associated
with an asynchronous request (“what happens if someone posts a
review with some bad words?”). Unknown to the person challenging
this decision, that issue was already discussed with the business
stakeholders and other architects, and it was decided from a trade-off
perspective that it was more important to have the increase in
responsiveness and deal with the complex error handling rather than
have the wait time to synchronously provide feedback to the user that
the review was successfully posted. By leveraging ADRs, that trade-
off analysis can be included in the Consequences section, providing a
complete picture of the context (and trade-offs) of the architecture
decision and thus avoiding these situations.

COMPLIANCE



The compliance section of an ADR is not one of the standard sections
in an ADR, but it’s one we highly recommend adding. The
Compliance section forces the architect to think about how the
architecture decision will be measured and governed from a
compliance perspective. The architect must decide whether the
compliance check for this decision must be manual or if it can be
automated using a fitness function. If it can be automated using a
fitness function, the architect can then specify in this section how that
fitness function would be written and whether there are any other
changes to the code base are needed to measure this architecture
decision for compliance.

For example, consider the following architecture decision within a
traditional n-tiered layered architecture as illustrated in Figure 19-2:
“All shared objects used by business objects in the business layer will
reside in the shared services layer to isolate and contain shared
functionality.”





Figure 19-2. An example of an architecture decision

This architecture decision can be measured and governed
automatically by using either ArchUnit in Java or NetArchTest in C#.
For example, using ArchUnit in Java, the automated fitness function
test might look as follows:

@Test
public void 
shared_services_should_reside_in_services_layer() { 
    classes().that().areAnnotatedWith(SharedService.class) 
        .should().resideInAPackage("..services..") 
        .because("All shared services classes used by 
business " + 
                 "objects in the business layer should 
reside in the services " + 
                 "layer to isolate and contain shared 
logic") 
        .check(myClasses);
}

Notice that this automated fitness function would require new stories
to be written to create a new Java annotation (@SharedService)
and to then add this annotation to all shared classes. This section also
specifies what the test is, where the test can be found, and how the
test will be executed and when.

NOTES

Another section that is not part of a standard ADR but that we highly
recommend adding is the Notes section. This section includes various
metadata about the ADR, such as the following:

Original author

Approval date
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Approved by

Superseded date

Last modified date

Modified by

Last modification

Even when storing ADRs in a version control system (such as Git),
additional meta-information is useful beyond what the repository can
support, so we recommend adding this section regardless of how and
where ADRs are stored.

Storing ADRs

Once an architect creates an ADR, it must be stored somewhere.
Regardless of where ADRs are stored, each architecture decision
should have its own file or wiki page. Some architects like to keep
ADRs in the Git repository with the source code. Keeping ADRs in a
Git repository allows the ADR to be versioned and tracked as well.
However, for larger organizations we caution against this practice for
several reasons. First, everyone who needs to see the architecture
decision may not have access to the Git repository. Second, this is not
a good place to store ADRs that have a context outside of the
application Git repository (such as integration architecture decisions,
enterprise architecture decisions, or those decisions common to every
application). For these reasons we recommend storing ADRs either in
a wiki (using a wiki template) or in a shared directory on a shared file
server that can be accessed easily by a wiki or other document
rendering software. Figure 19-3 shows an example of what this



directory structure (or wiki page navigation structure) might look
like.

Figure 19-3. Example directory structure for storing ADRs



The application directory contains those architecture decisions that
are specific to some sort of application context. This directory is
subdivided into further directories. The common subdirectory is for
architecture decisions that apply to all applications, such as “All
framework-related classes will contain an annotation (@Framework
in Java) or attribute ([Framework] in C#) identifying the class as
belonging to the underlying framework code.” Subdirectories under
the application directory correspond to the specific application or
system context and contain the architecture decisions specific to that
application or system (in this example, the ATP and PSTD
applications). The integration directory contains those ADRs that
involve the communication between application, systems, or services.
Enterprise architecture ADRs are contained within the enterprise
directory, indicating that these are global architecture decisions
impacting all systems and applications. An example of an enterprise
architecture ADR would be “All access to a system database will
only be from the owning system,” thus preventing the sharing of
databases across multiple systems.

When storing ADRs in a wiki (our recommendation), the same
structure previously described applies, with each directory structure
representing a navigational landing page. Each ADR would be
represented as a single wiki page within each navigational landing
page (Application, Integration, or Enterprise).

The directory or landing page names indicated in this section are only
a recommendation. Each company can choose whatever names fit
their situation, as long as those names are consistent across teams.



ADRs as Documentation

Documenting software architecture has always been a difficult topic.
While some standards are emerging for diagramming architecture
(such as software architect Simon Brown’s C4 Model or The Open
Group ArchiMate standard), no such standard exists for documenting
software architecture. That’s where ADRs come in.

Architecture Decision Records can be used an an effective means to
document a software architecture. The Context section of an ADR
provides an excellent opportunity to describe the specific area of the
system that requires an architecture decision to be made. This section
also provides an opportunity to describe the alternatives. Perhaps
more important is that the Decision section describes the reasons why
a particular decision is made, which is by far the best form of
architecture documentation. The Consequences section adds the final
piece to the architecture documentation by describing additional
aspects of a particular decision, such as the trade-off analysis of
choosing performance over scalability.

Using ADRs for Standards

Very few people like standards. Most times standards seem to be in
place more for controlling people and the way they do things than
anything useful. Using ADRs for standards can change this bad
practice. For example, the Context section of an ADR describes the
situation that is forcing the particular standard. The Decision section
of an ADR can be used to not only indicate what the standard is, but
more importantly why the standard needs to exist. This is a wonderful
way of being able to qualify whether the particular standard should

https://c4model.com/
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even exist in the first place. If an architect cannot justify the standard,
then perhaps it is not a good standard to make and enforce.
Furthermore, the more developers understand why a particular
standard exists, the more likely they are to follow it (and
correspondingly not challenge it). The Consequences section of an
ADR is another great place an architect can qualify whether a
standard is valid and should be made. In this section the architect
must think about and document what the implications and
consequences are of a particular standard they are making. By
analyzing the consequences, the architect might decide that the
standard should not be applied after all.

Example

Many architecture decisions exist within our ongoing “Case Study:
Going, Going, Gone”. The use of event-driven microservices, the
splitting up of the bidder and auctioneer user interfaces, the use of the
Real-time Transport Protocol (RTP) for video capture, the use of a
single API layer, and the use of publish-and-subscribe messaging are
just a few of the dozens of architecture decisions that are made for
this auction system. Every architecture decision made in a system, no
matter how obvious, should be documented and justified.

Figure 19-4 illustrates one of the architecture decisions within the
Going, Going, Gone auction system, which is the use of publish-and-
subscribe (pub/sub) messaging between the bid capture, bid streamer,
and bid tracker services.





Figure 19-4. Use of pub/sub between services

The ADR for this architecture decision might look as follows:





Figure 19-5. ADR 76. Asynchronous Pub/Sub Messaging Between Bidding Services



Chapter 20. Analyzing
Architecture Risk

Every architecture has risk associated with it, whether it be risk
involving availability, scalability, or data integrity. Analyzing
architecture risk is one of the key activities of architecture. By
continually analyzing risk, the architect can address deficiencies
within the architecture and take corrective action to mitigate the risk.
In this chapter we introduce some of the key techniques and practices
for qualifying risk, creating risk assessments, and identifying risk
through an activity called risk storming.

Risk Matrix
The first issue that arises when assessing architecture risk is
determining whether the risk should be classified as low, medium, or
high. Too much subjectiveness usually enters into this classification,
creating confusion about which parts of the architecture are really
high risk versus medium risk. Fortunately, there is a risk matrix
architects can leverage to help reduce the level of subjectiveness and
qualify the risk associated with a particular area of the architecture.

The architecture risk matrix (illustrated in Figure 20-1) uses two
dimensions to qualify risk: the overall impact of the risk and the
likelihood of that risk occurring. Each dimensions has a low (1),



medium (2), and high (3) rating. These numbers are multiplied
together within each grid of the matrix, providing an objective
numerical number representing that risk. Numbers 1 and 2 are
considered low risk (green), numbers 3 and 4 are considered medium
risk (yellow), and numbers 6 through 9 are considered high risk (red).





Figure 20-1. Matrix for determining architecture risk

To see how the risk matrix can be used, suppose there is a concern
about availability with regard to a primary central database used in
the application. First, consider the impact dimension—what is the
overall impact if the database goes down or becomes unavailable?
Here, an architect might deem that high risk, making that risk either a
3 (medium), 6 (high), or 9 (high). However, after applying the second
dimension (likelihood of risk occurring), the architect realizes that the
database is on highly available servers in a clustered configuration, so
the likelihood is low that the database would become unavailable.
Therefore, the intersection between the high impact and low
likelihood gives an overall risk rating of 3 (medium risk).

TIP
When leveraging the risk matrix to qualify the risk, consider the impact
dimension first and the likelihood dimension second.

Risk Assessments
The risk matrix described in the previous section can be used to build
what is called a risk assessment. A risk assessment is a summarized
report of the overall risk of an architecture with respect to some sort
of contextual and meaningful assessment criteria.

Risk assessments can vary greatly, but in general they contain the risk
(qualified from the risk matrix) of some assessment criteria based on
services or domain areas of an application. This basic risk assessment



report format is illustrated in Figure 20-2, where light gray (1-2) is
low risk, medium gray (3-4) is medium risk, and dark gray (6-9) is
high risk. Usually these are color-coded as green (low), yellow
(medium), and red (high), but shading can be useful for black-and-
white rendering and for color blindness.





Figure 20-2. Example of a standard risk assessment

The quantified risk from the risk matrix can be accumulated by the
risk criteria and also by the service or domain area. For example,
notice in Figure 20-2 that the accumulated risk for data integrity is
the highest risk area at a total of 17, whereas the accumulated risk for
Availability is only 10 (the least amount of risk). The relative risk of
each domain area can also be determined by the example risk
assessment. Here, customer registration carries the highest area of
risk, whereas order fulfillment carries the lowest risk. These relative
numbers can then be tracked to demonstrate either improvements or
degradation of risk within a particular risk category or domain area.

Although the risk assessment example in Figure 20-2 contains all the
risk analysis results, rarely is it presented as such. Filtering is
essential for visually indicating a particular message within a given
context. For example, suppose an architect is in a meeting for the
purpose of presenting areas of the system that are high risk. Rather
than presenting the risk assessment as illustrated in Figure 20-2,
filtering can be used to only show the high risk areas (shown in
Figure 20-3), improving the overall signal-to-noise ratio and
presenting a clear picture of the state of the system (good or bad).





Figure 20-3. Filtering the risk assessment to only high risk

Another issue with Figure 20-2 is that this assessment report only
shows a snapshot in time; it does not show whether things are
improving or getting worse. In other words, Figure 20-2 does not
show the direction of risk. Rendering the direction of risk presents
somewhat of an issue. If an up or down arrow were to be used to
indicate direction, what would an up arrow mean? Are things getting
better or worse? We’ve spent years asking people if an up arrow
meant things were getting better or worse, and almost 50% of people
asked said that the up arrow meant things were progressively getting
worse, whereas almost 50% said an up arrow indicated things were
getting better. The same is true for left and right arrows. For this
reason, when using arrows to indicate direction, a key must be used.
However, we’ve also found this doesn’t work either. Once the user
scrolls beyond the key, confusion happens once again.

We usually use the universal direction symbol of a plus (+) and minus
(-) sign next to the risk rating to indicate direction, as illustrated in
Figure 20-4. Notice in Figure 20-4 that although performance for
customer registration is medium (4), the direction is a minus sign
(red), indicating that it is progressively getting worse and heading
toward high risk. On the other hand, notice that scalability of catalog
checkout is high (6) with a plus sign (green), showing that it is
improving. Risk ratings without a plus or minus sign indicate that the
risk is stable and neither getting better nor worse.





Figure 20-4. Showing direction of risk with plus and minus signs

Occasionally, even the plus and minus signs can be confusing to
some people. Another technique for indicating direction is to leverage
an arrow along with the risk rating number it is trending toward. This
technique, as illustrated in Figure 20-5, does not require a key
because the direction is clear. Furthermore, the use of colors (red
arrow for worse, green arrow for better) makes it even more clear
where the risk is heading.





Figure 20-5. Showing direction of risk with arrows and numbers

The direction of risk can be determined by using continuous
measurements through fitness functions described earlier in the book.
By objectively analyzing each risk criteria, trends can be observed,
providing the direction of each risk criteria.

Risk Storming
No architect can single-handedly determine the overall risk of a
system. The reason for this is two-fold. First, a single architect might
miss or overlook a risk area, and very few architects have full
knowledge of every part of the system. This is where risk storming
can help.

Risk storming is a collaborative exercise used to determine
architectural risk within a specific dimension. Common dimensions
(areas of risk) include unproven technology, performance, scalability,
availability (including transitive dependencies), data loss, single
points of failure, and security. While most risk storming efforts
involve multiple architects, it is wise to include senior developers and
tech leads as well. Not only will they provide an implementation
perspective to the architectural risk, but involving developers helps
them gain a better understanding of the architecture.

The risk storming effort involves both an individual part and a
collaborative part. In the individual part, all participants individually
(without collaboration) assign risk to areas of the architecture using
the risk matrix described in the previous section. This



noncollaborative part of risk storming is essential so that participants
don’t influence or direct attention away from particular areas of the
architecture. In the collaborative part of risk storming, all participants
work together to gain consensus on risk areas, discuss risk, and form
solutions for mitigating the risk.

An architecture diagram is used for both parts of the risk storming
effort. For holistic risk assessments, usually a comprehensive
architecture diagram is used, whereas risk storming within specific
areas of the application would use a contextual architecture diagram.
It is the responsibility of the architect conducting the risk storming
effort to make sure these diagrams are up to date and available to all
participants.

Figure 20-6 shows an example architecture we’ll use to illustrate the
risk storming process. In this architecture, an Elastic Load Balancer
fronts each EC2 instance containing the web servers (Nginx) and
application services. The application services make calls to a MySQL
database, a Redis cache, and a MongoDB database for logging. They
also make calls to the Push Expansion Servers. The expansion
servers, in turn, all interface with the MySQL database, Redis cache,
and MongoDB logging facility.





Figure 20-6. Architecture diagram for risk storming example

Risk storming is broken down into three primary activities:

1. Identification

2. Consensus

3. Mitigation

Identification is always an individual, noncollaborative activity,
whereas consensus and mitigation are always collaborative and
involve all participants working together in the same room (at least
virtually). Each of these primary activities is discussed in detail in the
following sections.

Identification

The identification activity of risk storming involves each participant
individually identifying areas of risk within the architecture. The
following steps describe the identification part of the risk storming
effort:

1. The architect conducting the risk storming sends out an
invitation to all participants one to two days prior to the
collaborative part of the effort. The invitation contains the
architecture diagram (or the location of where to find it), the
risk storming dimension (area of risk being analyzed for that
particular risk storming effort), the date when the
collaborative part of risk storming will take place, and the
location.

2. Using the risk matrix described in the first section of this
chapter, participants individually analyze the architecture



and classify the risk as low (1-2), medium (3-4), or high (6-
9).

3. Participants prepare small Post-it notes with corresponding
colors (green, yellow, and red) and write down the
corresponding risk number (found on the risk matrix).

Most risk storming efforts only involve analyzing one particular
dimension (such as performance), but there might be times, due to the
availability of staff or timing issues, when multiple dimensions are
analyzed within a single risk storming effort (such as performance,
scalability, and data loss). When multiple dimensions are analyzed
within a single risk storming effort, the participants write the
dimension next to the risk number on the Post-it notes so that
everyone is aware of the specific dimension. For example, suppose
three participants found risk within the central database. All three
identified the risk as high (6), but one participant found risk with
respect to availability, whereas two participants found risk with
respect to performance. These two dimensions would be discussed
separately.

TIP
Whenever possible, restrict risk storming efforts to a single dimension. This
allows participants to focus their attention to that specific dimension and avoids
confusion about multiple risk areas being identified for the same area of the
architecture.

Consensus



The consensus activity in the risk storming effort is highly
collaborative with the goal of gaining consensus among all
participants regarding the risk within the architecture. This activity is
most effective when a large, printed version of the architecture
diagram is available and posted on the wall. In lieu of a large printed
version, an electronic version can be displayed on a large screen.

Upon arrival at the risk storming session, participants begin placing
their Post-it notes on the architecture diagram in the area where they
individually found risk. If an electronic version is used, the architect
conducting the risk storming session queries every participant and
electronically places the risk on the diagram in the area of the
architecture where the risk was identified (see Figure 20-7).





Figure 20-7. Initial identification of risk areas

Once all of the Post-it notes are in place, the collaborative part of risk
storming can begin. The goal of this activity of risk storming is to
analyze the risk areas as a team and gain consensus in terms of the
risk qualification. Notice several areas of risk were identified in the
architecture, illustrated in Figure 20-7:

1. Two participants individually identified the Elastic Load
Balancer as medium risk (3), whereas one participant
identified it as high risk (6).

2. One participant individually identified the Push Expansion
Servers as high risk (9).

3. Three participants individually identified the MySQL
database as medium risk (3).

4. One participant individually identified the Redis cache as
high risk (9).

5. Three participants identified MongoDB logging as low risk
(2).

6. All other areas of the architecture were not deemed to carry
any risk, hence there are no Post-it notes on any other areas
of the architecture.

Items 3 and 5 in the prior list do not need further discussion in this
activity since all participants agreed on the level and qualification of
risk. However, notice there was a difference of opinion in item 1 in
the list, and items 2 and 4 only had a single participant identifying the
risk. These items need to be discussed during this activity.



Item 1 in the list showed that two participants individually identified
the Elastic Load Balancer as medium risk (3), whereas one
participant identified it as high risk (6). In this case the other two
participants ask the third participant why they identified the risk as
high. Suppose the third participant says that they assigned the risk as
high because if the Elastic Load Balancer goes down, the entire
system cannot be accessed. While this is true and in fact does bring
the overall impact rating to high, the other two participants convince
the third participant that there is low risk of this happening. After
much discussion, the third participant agrees, bringing that risk level
down to a medium (3). However, the first and second participants
might not have seen a particular aspect of risk in the Elastic Load
Balancer that the third did, hence the need for collaboration within
this activity of risk storming.

Case in point, consider item 2 in the prior list where one participant
individually identified the Push Expansion Servers as high risk (9),
whereas no other participant identified them as any risk at all. In this
case, all other participants ask the participant who identified the risk
why they rated it as high. That participant then says that they have
had bad experiences with the Push Expansion Servers continually
going down under high load, something this particular architecture
has. This example shows the value of risk storming—without that
participant’s involvement, no one would have seen the high risk (until
well into production of course!).

Item 4 in the list is an interesting case. One participant identified the
Redis cache as high risk (9), whereas no other participant saw that
cache as any risk in the architecture. The other participants ask what



the rationale is for the high risk in that area, and the one participant
responds with, “What is a Redis cache?” In this case, Redis was
unknown to the participant, hence the high risk in that area.

TIP
For unproven or unknown technologies, always assign the highest risk rating (9)
since the risk matrix cannot be used for this dimension.

The example of item 4 in the list illustrates why it is wise (and
important) to bring developers into risk storming sessions. Not only
can developers learn more about the architecture, but the fact that one
participant (who was in this case a developer on the team) didn’t
know a given technology provides the architect with valuable
information regarding overall risk.

This process continues until all participants agree on the risk areas
identified. Once all the Post-it notes are consolidated, this activity
ends, and the next one can begin. The final outcome of this activity is
shown in Figure 20-8.





Figure 20-8. Consensus of risk areas

MITIGATION

Once all participants agree on the qualification of the risk areas of the
architecture, the final and most important activity occurs—risk
mitigation. Mitigating risk within an architecture usually involves
changes or enhancements to certain areas of the architecture that
otherwise might have been deemed perfect the way they were.

This activity, which is also usually collaborative, seeks ways to
reduce or eliminate the risk identified in the first activity. There may
be cases where the original architecture needs to be completely
changed based on the identification of risk, whereas others might be a
straightforward architecture refactoring, such as adding a queue for
back pressure to reduce a throughput bottleneck issue.

Regardless of the changes required in the architecture, this activity
usually incurs additional cost. For that reason, key stakeholders
typically decide whether the cost outweighs the risk. For example,
suppose that through a risk storming session the central database was
identified as being medium risk (4) with regard to overall system
availability. In this case, the participants agreed that clustering the
database, combined with breaking the single database into separate
physical databases, would mitigate that risk. However, while risk
would be significantly reduced, this solution would cost $20,000. The
architect would then conduct a meeting with the key business
stakeholder to discuss this trade-off. During this negotiation, the
business owner decides that the price tag is too high and that the cost
does not outweigh the risk. Rather than giving up, the architect then



suggests a different approach—what about skipping the clustering
and splitting the database into two parts? The cost in this case is
reduced to $8,000 while still mitigating most of the risk. In this case,
the stakeholder agrees to the solution.

The previous scenario shows the impact risk storming can have not
only on the overall architecture, but also with regard to negotiations
between architects and business stakeholders. Risk storming,
combined with the risk assessments described at the start of this
chapter, provide an excellent vehicle for identifying and tracking risk,
improving the architecture, and handling negotiations between key
stakeholders.

Agile Story Risk Analysis
Risk storming can be used for other aspects of software development
besides just architecture. For example, we’ve leveraged risk storming
for determining overall risk of user story completion within a given
Agile iteration (and consequently the overall risk assessment of that
iteration) during story grooming. Using the risk matrix, user story
risk can be identified by the first dimension (the overall impact if the
story is not completed within the iteration) and the second dimension
(the likelihood that the story will not be completed). By utilizing the
same architecture risk matrix for stories, teams can identify stories of
high risk, track those carefully, and prioritize them.

Risk Storming Examples



To illustrate the power of risk storming and how it can improve the
overall architecture of a system, consider the example of a call center
system to support nurses advising patients on various health
conditions. The requirements for such a system are as follows:

The system will use a third-party diagnostics engine that
serves up questions and guides the nurses or patients
regarding their medical issues.

Patients can either call in using the call center to speak to a
nurse or choose to use a self-service website that accesses
the diagnostic engine directly, bypassing the nurses.

The system must support 250 concurrent nurses nationwide
and up to hundreds of thousands of concurrent self-service
patients nationwide.

Nurses can access patients’ medical records through a
medical records exchange, but patients cannot access their
own medical records.

The system must be HIPAA compliant with regard to the
medical records. This means that it is essential that no one
but nurses have access to medical records.

Outbreaks and high volume during cold and flu season need
to be addressed in the system.

Call routing to nurses is based on the nurse’s profile (such as
bilingual needs).

The third-party diagnostic engine can handle about 500
requests a second.

The architect of the system created the high-level architecture
illustrated in Figure 20-9. In this architecture there are three separate



web-based user interfaces: one for self-service, one for nurses
receiving calls, and one for administrative staff to add and maintain
the nursing profile and configuration settings. The call center portion
of the system consists of a call accepter which receives calls and the
call router which routes calls to the next available nurse based on
their profile (notice how the call router accesses the central database
to get nurse profile information). Central to this architecture is a
diagnostics system API gateway, which performs security checks and
directs the request to the appropriate backend service.

There are four main services in this system: a case management
service, a nurse profile management service, an interface to the
medical records exchange, and the external third-party diagnostics
engine. All communications are using REST with the exception of
proprietary protocols to the external systems and call center services.

The architect has reviewed this architecture numerous times and
believes it is ready for implementation. As a self-assessment, study
the requirements and the architecture diagram in Figure 20-9 and try
to determine the level of risk within this architecture in terms of
availability, elasticity, and security. After determining the level of
risk, then determine what changes would be needed in the
architecture to mitigate that risk. The sections that follow contain
scenarios that can be used as a comparison.



Figure 20-9. High-level architecture for nurse diagnostics system example

Availability



During the first risk storming exercise, the architect chose to focus on
availability first since system availability is critical for the success of
this system. After the risk storming identification and collaboration
activities, the participants came up with the following risk areas using
the risk matrix (as illustrated in Figure 20-10):

The use of a central database was identified as high risk (6)
due to high impact (3) and medium likelihood (2).

The diagnostics engine availability was identified as high
risk (9) due to high impact (3) and unknown likelihood (3).

The medical records exchange availability was identified as
low risk (2) since it is not a required component for the
system to run.

Other parts of the system were not deemed as risk for
availability due to multiple instances of each service and
clustering of the API gateway.



Figure 20-10. Availability risk areas

During the risk storming effort, all participants agreed that while
nurses can manually write down case notes if the database went



down, the call router could not function if the database were not
available. To mitigate the database risk, participants chose to break
apart the single physical database into two separate databases: one
clustered database containing the nurse profile information, and one
single instance database for the case notes. Not only did this
architecture change address the concerns about availability of the
database, but it also helped secure the case notes from admin access.
Another option to mitigate this risk would have been to cache the
nurse profile information in the call router. However, because the
implementation of the call router was unknown and may be a third-
party product, the participants went with the database approach.

Mitigating the risk of availability of the external systems (diagnostics
engine and medical records exchange) is much harder to manage due
to the lack of control of these systems. One way to mitigate this sort
of availability risk is to research if there is a published service-level
agreement (SLA) or service-level objective (SLO) for each of these
systems. An SLA is usually a contractual agreement and is legally
binding, whereas an SLO is usually not. Based on research, the
architect found that the SLA for the diagnostics engine is guaranteed
to be 99.99% available (that’s 52.60 minutes of downtime per year),
and the medical records exchange is guaranteed at 99.9% availability
(that’s 8.77 hours of downtime per year). Based on the relative risk,
this information was enough to remove the identified risk.

The corresponding changes to the architecture after this risk storming
session are illustrated in Figure 20-11. Notice that two databases are
now used, and also the SLAs are published on the architecture
diagram.



Figure 20-11. Architecture modifications to address availability risk



Elasticity

On the second risk storming exercise, the architect chose to focus on
elasticity—spikes in user load (otherwise known as variable
scalability). Although there are only 250 nurses (which provides an
automatic governor for most of the services), the self-service portion
of the system can access the diagnostics engine as well as nurses,
significantly increasing the number of requests to the diagnostics
interface. Participants were concerned about outbreaks and flu
season, when anticipated load on the system would significantly
increase.

During the risk storming session, the participants all identified the
diagnostics engine interface as high risk (9). With only 500 requests
per second, the participants calculated that there was no way the
diagnostics engine interface could keep up with the anticipated
throughput, particularly with the current architecture utilizing REST
as the interface protocol.

One way to mitigate this risk is to leverage asynchronous queues
(messaging) between the API gateway and the diagnostics engine
interface to provide a back-pressure point if calls to the diagnostics
engine get backed up. While this is a good practice, it still doesn’t
mitigate the risk, because nurses (as well as self-service patients)
would be waiting too long for responses from the diagnostics engine,
and those requests would likely time out. Leveraging what is known
as the Ambulance Pattern would give nurses a higher priority over
self-service. Therefore two message channels would be needed.
While this technique helps mitigate the risk, it still doesn’t address
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the wait times. The participants decided that in addition to the
queuing technique to provide back-pressure, caching the particular
diagnostics questions related to an outbreak would remove outbreak
and flu calls from ever having to reach the diagnostics engine
interface.

The corresponding architecture changes are illustrated in Figure 20-
12. Notice that in addition to two queue channels (one for the nurses
and one for self-service patients), there is a new service called the
Diagnostics Outbreak Cache Server that handles all requests related
to a particular outbreak or flu-related question. With this architecture
in place, the limiting factor was removed (calls to the diagnostics
engine), allowing for tens of thousands of concurrent requests.
Without a risk storming effort, this risk might not have been
identified until an outbreak or flu season happened.



Figure 20-12. Architecture modifications to address elasticity risk

Security



Encouraged by the results and success of the first two risk storming
efforts, the architect decides to hold a final risk storming session on
another important architecture characteristic that must be supported
in the system to ensure its success—security. Due to HIPAA
regulatory requirements, access to medical records via the medical
record exchange interface must be secure, allowing only nurses to
access medical records if needed. The architect believes this is not a
problem due to security checks in the API gateway (authentication
and authorization) but is curious whether the participants find any
other elements of security risk.

During the risk storming, the participants all identified the
Diagnostics System API gateway as a high security risk (6). The
rationale for this high rating was the high impact of admin staff or
self-service patients accessing medical records (3) combined with
medium likelihood (2). Likelihood of risk occurring was not rated
high because of the security checks for each API call, but still rated
medium because all calls (self-service, admin, and nurses) are going
through the same API gateway. The architect, who only rated the risk
as low (2), was convinced during the risk storming consensus activity
that the risk was in fact high and needed mitigation.

The participants all agreed that having separate API gateways for
each type of user (admin, self-service/diagnostics, and nurses) would
prevent calls from either the admin web user interface or the self-
service web user interface from ever reaching the medical records
exchange interface. The architect agreed, creating the final
architecture, as illustrated in Figure 20-13.



Figure 20-13. Final architecture modifications to address security risk



The prior scenario illustrates the power of risk storming. By
collaborating with other architects, developers, and key stakeholders
on dimensions of risk that are vital to the success of the system, risk
areas are identified that would otherwise have gone unnoticed.
Compare figures Figure 20-9 and Figure 20-13 and notice the
significant difference in the architecture prior to risk storming and
then after risk storming. Those significant changes address
availability concerns, elasticity concerns, and security concerns
within the architecture.

Risk storming is not a one-time process. Rather, it is a continuous
process through the life of any system to catch and mitigate risk areas
before they happen in production. How often the risk storming effort
happens depends on many factors, including frequency of change,
architecture refactoring efforts, and the incremental development of
the architecture. It is typical to undergo a risk storming effort on
some particular dimension after a major feature is added or at the end
of every iteration.



Chapter 21. Diagramming
and Presenting Architecture

Newly minted architects often comment on how surprised they are at
how varied the job is outside of technical knowledge and experience,
which enabled their move into the architect role to begin with. In
particular, effective communication becomes critical to an architect’s
success. No matter how brilliant an architect’s technical ideas, if they
can’t convince managers to fund them and developers to build them,
their brilliance will never manifest.

Diagramming and presenting architectures are two critical soft skills
for architects. While entire books exist about each topic, we’ll hit
some particular highlights for each.

These two topics appear together because they have a few similar
characteristics: each forms an important visual representation of an
architecture vision, presented using different media. However,
representational consistency is a concept that ties both together.

When visually describing an architecture, the creator often must show
different views of the architecture. For example, the architect will
likely show an overview of the entire architecture topology, then drill
into individual parts to delve into design details. However, if the
architect shows a portion without indicating where it lies within the
overall architecture, it confuses viewers. Representational



consistency is the practice of always showing the relationship
between parts of an architecture, either in diagrams or presentations,
before changing views.

For example, if an architect wanted to describe the details of how the
plug-ins relate to one another in the Silicon Sandwiches solution, the
architecture would show the entire topology, then drill into the plug-
in structure, showing the viewers the relationship between them; an
example of this appears in Figure 21-1.



Figure 21-1. Using representational consistency to indicate context in a larger diagram



Careful use of representational consistency ensures that viewers
understand the scope of items being presented, eliminating a common
source of confusion.

Diagramming
The topology of architecture is always of interest to architects and
developers because it captures how the structure fits together and
forms a valuable shared understanding across the team. Therefore,
architects should hone their diagramming skills to razor sharpness.

Tools

The current generation of diagramming tools for architects is
extremely powerful, and an architect should learn their tool of choice
deeply. However, before going to a nice tool, don’t neglect low-
fidelity artifacts, especially early in the design process. Building very
ephemeral design artifacts early prevents architects from becoming
overly attached to what they have created, an anti-pattern we named
the Irrational Artifact Attachment anti-pattern.



IRRATIONAL ARTIFACT ATTACHMENT
…is the proportional relationship between a person’s irrational attachment to some artifact and how
long it took to produce. If an architect creates a beautiful diagram using some tool like Visio that takes
two hours, they have an irrational attachment to that artifact that’s roughly proportional to the amount
of time invested, which also means they will be more attached to a four-hour diagram than a two-hour
one.

One of the benefits to the low-ritual approach used in Agile software development revolves around
creating just-in-time artifacts, with as little ceremony as possible (this helps explain the dedication of
lots of agilists to index cards and sticky notes). Using low-tech tools lets team members throw away
what’s not right, freeing them to experiment and allow the true nature of the artifact emerge through
revision, collaboration, and discussion.

An architect’s favorite variation on the cell phone photo of a
whiteboard (along with the inevitable “Do Not Erase!” imperative)
uses a tablet attached to an overhead projector rather than a
whiteboard. This offers several advantages. First, the tablet has an
unlimited canvas and can fit as many drawings that a team might
need. Second, it allows copy/paste “what if” scenarios that obscure
the original when done on a whiteboard. Third, images captured on a
tablet are already digitized and don’t have the inevitable glare
associated with cell phone photos of whiteboards.

Eventually, an architect needs to create nice diagrams in a fancy tool,
but make sure the team has iterated on the design sufficiently to
invest time in capturing something.

Powerful tools exist to create diagrams on every platform. While we
don’t necessarily advocate one over another (we quite happily used
OmniGraffle for all the diagrams in this book), architects should look
for at least this baseline of features:

https://oreil.ly/fEoKR


Layers

Drawing tools often support layers, which architects should learn
well. A layer allows the drawer to link a group of items together
logically to enable hiding/showing individual layers. Using
layers, an architect can build a comprehensive diagram but hide
overwhelming details when they aren’t necessary. Using layers
also allows architects to incrementally build pictures for
presentations later (see “Incremental Builds”).

Stencils/templates

Stencils allow an architect to build up a library of common visual
components, often composites of other basic shapes. For example,
throughout this book, readers have seen standard pictures of
things like microservices, which exist as a single item in the
authors’ stencil. Building a stencil for common patterns and
artifacts within an organization creates consistency within
architecture diagrams and allows the architect to build new
diagrams quickly.

Magnets

Many drawing tools offer assistance when drawing lines between
shapes. Magnets represent the places on those shapes where lines
snap to connect automatically, providing automatic alignment and
other visual niceties. Some tools allow the architect to add more
magnets or create their own to customize how the connections
look within their diagrams.

In addition to these specific helpful features, the tool should, of
course, support lines, colors, and other visual artifacts, as well as the
ability to export in a wide variety of formats.

Diagramming Standards: UML, C4, and ArchiMate



Several formal standards exist for technical diagrams in software.

UML

Unified Modeling Language (UML) was a standard that unified three
competing design philosophies that coexisted in the 1980s. It was
supposed to be the best of all worlds but, like many things designed
by committee, failed to create much impact outside organizations that
mandated its use.

Architects and developers still use UML class and sequence diagrams
to communicate structure and workflow, but most of the other UML
diagram types have fallen into disuse.

C4

C4 is a diagramming technique developed by Simon Brown to
address deficiencies in UML and modernize its approach. The four
C’s in C4 are as follows:

Context

Represents the entire context of the system, including the roles of
users and external dependencies.

Container

The physical (and often logical) deployment boundaries and
containers within the architecture. This view forms a good
meeting point for operations and architects.

Component

The component view of the system; this most neatly aligns with
an architect’s view of the system.



Class

C4 uses the same style of class diagrams from UML, which are
effective, so there is no need to replace them.

If a company seeks to standardize on a diagramming technique, C4
offers a good alternative. However, like all technical diagramming
tools, it suffers from an inability to express every kind of design an
architecture might undertake. C4 is best suited for monolithic
architectures where the container and component relationships may
differ, and it’s less suited to distributed architectures, such as
microservices.

ARCHIMATE

ArchiMate (an amalgam of Arch*itecture-Ani*mate) is an open
source enterprise architecture modeling language to support the
description, analysis, and visualization of architecture within and
across business domains. ArchiMate is a technical standard from The
Open Group, and it offers a lighter-weight modeling language for
enterprise ecosystems. The goal of ArchiMate is to be “as small as
possible,” not to cover every edge case scenario. As such, it has
become a popular choice among many architects.

Diagram Guidelines

Regardless of whether an architect uses their own modeling language
or one of the formal ones, they should build their own style when
creating diagrams and should feel free to borrow from representations
they think are particularly effective. Here are some general guidelines
to use when creating technical diagrams.



TITLES

Make sure all the elements of the diagram have titles or are well
known to the audience. Use rotation and other effects to make titles
“sticky” to the thing they associate with and to make efficient use of
space.

LINES

Lines should be thick enough to see well. If lines indicate information
flow, then use arrows to indicate directional or two-way traffic.
Different types of arrowheads might suggest different semantics, but
architects should be consistent.

Generally, one of the few standards that exists in architecture
diagrams is that solid lines tend to indicate synchronous
communication and dotted lines indicate asynchronous
communication.

SHAPES

While the formal modeling languages described all have standard
shapes, no pervasive standard shapes exist across the software
development world. Thus, each architect tends to make their own
standard set of shapes, sometimes spreading those across an
organization to create a standard language.

We tend to use three-dimensional boxes to indicate deployable
artifacts and rectangles to indicate containership, but we don’t have
any particular key beyond that.



LABELS

Architects should label each item in a diagram, especially if there is
any chance of ambiguity for the readers.

COLOR

Architects often don’t use color enough—for many years, books were
out of necessity printed in black and white, so architects and
developers became accustomed to monochrome drawings. While we
still favor monochrome, we use color when it helps distinguish one
artifact from another. For example, when discussing microservices
communication strategies in “Communication”, we used color to
indicate that two difference microservices participate in the
coordination, not two instances of the same service, as reproduced in
Figure 21-2.





Figure 21-2. Reproduction of microservices communication example showing different
services in unique colors

KEYS

If shapes are ambiguous for any reason, include a key on the diagram
clearly indicating what each shape represents. Nothing is worse than
a diagram that leads to misinterpretation, which is worse than no
diagram.

Presenting
The other soft skill required by modern architects is the ability to
conduct effective presentations using tools like PowerPoint and
Keynote. These tools are the lingua franca of modern organizations,
and people throughout the organization expect competent use of these
tools. Unfortunately, unlike word processors and spreadsheets, no one
seems to spend much time studying how to use these tools well.

Neal, one of the coauthors of this book, wrote a book several years
ago entitled Presentation Patterns (Addison-Wesley Professional),
about taking the patterns/anti-patterns approach common in the
software world and applying it to technical presentations.

Presentation Patterns makes an important observation about the
fundamental difference between creating a document versus a
presentation to make a case for something—time. In a presentation,
the presenter controls how quickly an idea is unfolding, whereas the
reader of a document controls that. Thus, one of the most important

https://presentationpatterns.com/


skills an architect can learn in their presentation tool of choice is how
to manipulate time.

Manipulating Time

Presentation tools offer two ways to manipulate time on slides:
transitions and animations. Transitions move from slide to slide, and
animations allow the designer to create movement within a slide.
Typically, presentation tools allow just one transition per slide but a
host of animations for each element: build in (appearance), build out
(disappearance), and actions (such as movement, scale, and other
dynamic behavior).

While tools offer a variety of splashy effects like dropping anvils,
architects use transition and animations to hide the boundaries
between slides. One common anti-pattern called out in Presentation
Patterns named Cookie-Cutter states that ideas don’t have a
predetermined word count, and accordingly, designers shouldn’t
artificially pad content to make it appear to fill a slide. Similarly,
many ideas are bigger than a single slide. Using subtle combinations
of transitions and animations such as dissolve allows presenters to
hide individual slide boundaries, stitching together a set of slides to
tell a single story. To indicate the end of a thought, presenters should
use a distinctly different transition (such as door or cube) to provide a
visual clue that they are moving to a different topic.

Incremental Builds

The Presentation Patterns book calls out the Bullet-Riddled Corpse
as a common anti-pattern of corporate presentations, where every

https://oreil.ly/_Wldy
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slide is essentially the speaker’s notes, projected for all to see. Most
readers have the excruciating experience of watching a slide full of
text appear during a presentation, then reading the entire thing
(because no one can resist reading it all as soon as it appears), only to
sit for the next 10 minutes while the presenter slowly reads the bullets
to the audience. No wonder so many corporate presentations are dull!

When presenting, the speaker has two information channels: verbal
and visual. By placing too much text on the slides and then saying
essentially the same words, the presenter is overloading one
information channel and starving the other. The better solution to this
problem is to use incremental builds for slides, building up (hopefully
graphical) information as needed rather than all at once.

For example, say that an architect creates a presentation explaining
the problems using feature branching and wants to talk about the
negative consequences of keeping branches alive too long. Consider
the graphical slide shown in Figure 21-3.



Figure 21-3. Bad version of a slide showing a negative anti-pattern

In Figure 21-3, if the presenter shows the entire slide right away, the
audience can see that something bad happens toward the end, but
they have to wait for the exposition to get to that point.

Instead, the architect should use the same image but obscure parts of
it when showing the slide (using a borderless white box) and expose a



portion at a time (by performing a build out on the covering box), as
shown in Figure 21-4.





Figure 21-4. A better, incremental version that maintains suspense

In Figure 21-4, the presenter still has a fighting chance of keeping
some suspense alive, making the talk inherently more interesting.

Using animations and transitions in conjunction with incremental
builds allows the presenter to make more compelling, entertaining
presentations.

Infodecks Versus Presentations

Some architects build slide decks in tools like PowerPoint and
Keynote but never actually present them. Rather, they are emailed
around like a magazine article, and each individual reads them at
their own pace. Infodecks are slide decks that are not meant to be
projected but rather summarize information graphically, essentially
using a presentation tool as a desktop publishing package.

The difference between these two media is comprehensiveness of
content and use of transitions and animations. If someone is going to
flip through the deck like a magazine article, the author of the slides
does not need to add any time elements. The other key difference
between infodecks and presentations is the amount of material.
Because infodecks are meant to be standalone, they contain all the
information the creator wants to convey. When doing a presentation,
the slides are (purposefully) meant to be half of the presentation, the
other half being the person standing there talking!

Slides Are Half of the Story



A common mistake that presenters make is building the entire content
of the presentation into the slides. However, if the slides are
comprehensive, the presenter should spare everyone the time of
sitting through a presentation and just email it to everyone as a deck!
Presenters make the mistake of adding too much material to slides
when they can make important points more powerfully. Remember,
presenters have two information channels, so using them strategically
can add more punch to the message. A great example of that is the
strategic use of invisibility.

Invisibility

Invisibility is a simple pattern where the presenter inserts a blank
black slide within a presentation to refocus attention solely on the
speaker. If someone has two information channels (slides and
speaker) and turns one of them off (the slides), it automatically adds
more emphasis to the speaker. Thus, if a presenter wants to make a
point, insert a blank slide—everyone in the room will focus their
attention back on the speaker because they are now the only
interesting thing in the room to look at.

Learning the basics of a presentation tool and a few techniques to
make presentations better is a great addition to the skill set of
architects. If an architect has a great idea but can’t figure out a way to
present it effectively, they will never get a chance to realize that
vision. Architecture requires collaboration; to get collaborators,
architects must convince people to sign on to their vision. The
modern corporate soapboxes are presentation tools, so it’s worth
learning to use them well.





Chapter 22. Making Teams
Effective

In addition to creating a technical architecture and making
architecture decisions, a software architect is also responsible for
guiding the development team through the implementation of the
architecture. Software architects who do this well create effective
development teams that work closely together to solve problems and
create winning solutions. While this may sound obvious, too many
times we’ve seen architects ignore development teams and work in
siloed environments to create an architecture. This architecture then
gets handed it off to a development team which then struggles to
implement the architecture correctly. Being able to make teams
productive is one of the ways effective and successful software
architects differentiate themselves from other software architects. In
this chapter we introduce some basic techniques an architect can
leverage to make development teams effective.

Team Boundaries
It’s been our experience that a software architect can significantly
influence the success or failure of a development team. Teams that
feel left out of the loop or estranged from software architects (and
also the architecture) often do not have the right level of guidance



and right level of knowledge about various constraints on the system,
and consequently do not implement the architecture correctly.

One of the roles of a software architect is to create and communicate
the constraints, or the box, in which developers can implement the
architecture. Architects can create boundaries that are too tight, too
loose, or just right. These boundaries are illustrated in Figure 22-1.
The impact of having too tight or too loose of a boundary has a direct
impact on the teams’ ability to successfully implement the
architecture.





Figure 22-1. Boundary types created by a software architect

Architects that create too many constraints form a tight box around
the development teams, preventing access to many of the tools,
libraries, and practices that are required to implement the system
effectively. This causes frustration within the team, usually resulting
in developers leaving the project for happier and healthier
environments.

The opposite can also happen. A software architect can create
constraints that are too loose (or no constraints at all), leaving all of
the important architecture decisions to the development team. In this
scenario, which is just as bad as tight constraints, the team essentially
takes on the role of a software architect, performing proof of concepts
and battling over design decisions without the proper level of
guidance, resulting in unproductiveness, confusion, and frustration.

An effective software architect strives to provide the right level of
guidance and constraints so that the team has the correct tools and
libraries in place to effectively implement the architecture. The rest of
this chapter is devoted to how to create these effective boundaries.

Architect Personalities
There are three basic types of architect personalities: a control freak
architect (Figure 22-2), an armchair architect (Figure 22-3), and an
effective architect (Figure 22-5). Each personality matches a
particular boundary type discussed in the prior section on team
boundaries: control freak architects produce tight boundaries,



armchair architects produce loose boundaries, and effective architects
produce just the right kinds of boundaries.

Control Freak



Figure 22-2. Control freak architect (iStockPhoto)

The control freak architect tries to control every detailed aspect of the
software development process. Every decision a control freak



architect makes is usually too fine-grained and too low-level,
resulting in too many constraints on the development team.

Control freak architects produce the tight boundaries discussed in the
prior section. A control freak architect might restrict the development
team from downloading any useful open source or third-party
libraries and instead insist that the teams write everything from
scratch using the language API. Control freak architects might also
place tight restrictions on naming conventions, class design, method
length, and so on. They might even go so far as to write pseudocode
for the development teams. Essentially, control freak architects steal
the art of programming away from the developers, resulting in
frustration and a lack of respect for the architect.

It is very easy to become a control freak architect, particularly when
transitioning from developer to architect. An architect’s role is to
create the building blocks of the application (the components) and
determine the interactions between those components. The
developer’s role in this effort is to then take those components and
determine how they will be implemented using class diagrams and
design patterns. However, in the transaction from developer to
architect, it is all too tempting to want to create the class diagrams
and design patterns as well since that was the newly minted
architect’s prior role.

For example, suppose an architect creates a component (building
block of the architecture) to manage reference data within the system.
Reference data consists of static name-value pair data used on the
website, as well as things like product codes and warehouse codes



(static data used throughout the system). The architect’s role is to
identify the component (in this case, Reference Manager),
determine the core set of operations for that component (for example,
GetData, SetData, ReloadCache, NotifyOnUpdate, and so
on), and which components need to interact with the Reference
Manager. The control freak architect might think that the best way
to implement this component is through a parallel loader pattern
leveraging an internal cache, with a particular data structure for that
cache. While this might be an effective design, it’s not the only
design. More importantly, it’s no longer the architect’s role to come
up with this internal design for the Reference Manager—it’s the
role of the developer.

As we’ll talk about in “How Much Control?”, sometimes an architect
needs to play the role of a control freak, depending on the complexity
of the project and the skill level on the team. However, in most cases
a control freak architect disrupts the development team, doesn’t
provide the right level of guidance, gets in the way, and is ineffective
at leading the team through the implementation of the architecture.

Armchair Architect



Figure 22-3. Armchair architect (iStockPhoto)

The armchair architect is the type of architect who hasn’t coded in a
very long time (if at all) and doesn’t take the implementation details
into account when creating an architecture. They are typically
disconnected from the development teams, never around, or simply



move from project to project once the initial architecture diagrams
are completed.

In some cases the armchair architect is simply in way over their head
in terms of the technology or business domain and therefore cannot
possibly lead or guide teams from a technical or business problem
standpoint. For example, what do developers do? Why, they code, of
course. Writing program code is really hard to fake; either a
developer writes software code, or they don’t. However, what does an
architect do? No one knows! Most architects draw lots of lines and
boxes—but how detailed should an architect be in those diagrams?
Here’s a dirty little secret about architecture—it’s really easy to fake
it as an architect!

Suppose an armchair architect is in way over their head or doesn’t
have the time to architect an appropriate solution for a stock trading
system. In that case the architecture diagram might look like the one
illustrated in Figure 22-4. There’s nothing wrong with this
architecture—it’s just too high level to be of any use to anyone.



Figure 22-4. Trading system architecture created by an armchair architect

Armchair architects create loose boundaries around development
teams, as discussed in the prior section. In this scenario, development
teams end up taking on the role of architect, essentially doing the
work an architect is supposed to be doing. Team velocity and
productivity suffer as a result, and teams get confused about how the
system should work.

Like the control freak architect, it is all too easy to become an
armchair architect. The biggest indicator that an architect might be
falling into the armchair architect personality is not having enough



time to spend with the development teams implementing the
architecture (or choosing not to spend time with the development
teams). Development teams need an architect’s support and guidance,
and they need the architect available for answering technical or
business-related questions when they arise. Other indicators of an
armchair architect are following:

Not fully understanding the business domain, business
problem, or technology used

Not enough hands-on experience developing software

Not considering the implications associated with the
implementation of the architecture solution

In some cases it is not the intention of an architect to become an
armchair architect, but rather it just “happens” by being spread too
thin between projects or development teams and loosing touch with
technology or the business domain. An architect can avoid this
personality by getting more involved in the technology being used on
the project and understanding the business problem and business
domain.

Effective Architect



Figure 22-5. Effective software architect (iStockPhoto)

An effective software architect produces the appropriate constraints
and boundaries on the team, ensuring that the team members are
working well together and have the right level of guidance on the



team. The effective architect also ensures that the team has the correct
and appropriate tools and technologies in place. In addition, they
remove any roadblocks that may be in the way of the development
teams reaching their goals.

While this sounds obvious and easy, it is not. There is an art to
becoming an effective leader on the development team. Becoming an
effective software architect requires working closely and
collaborating with the team, and gaining the respect of the team as
well. We’ll be looking at other ways of becoming an effective
software architect in later chapters in this part of the book. But for
now, we’ll introduce some guidelines for knowing how much control
an effective architect should exert on a development team.

How Much Control?
Becoming an effective software architect is knowing how much
control to exert on a given development team. This concept is known
as Elastic Leadership and is widely evangelized by author and
consultant Roy Osherove. We’re going to deviate a bit from the work
Osherove has done in this area and focus on specific factors for
software architecture.

Knowing how much an effective software architect should be a
control freak and how much they should be an armchair architect
involves five main factors. These factors also determine how many
teams (or projects) a software architect can manage at once:

Team familiarity

https://www.elasticleadership.com/


How well do the team members know each other? Have they
worked together before on a project? Generally, the better team
members know each other, the less control is needed because
team members start to become self-organizing. Conversely, the
newer the team members, the more control needed to help
facilitate collaboration among team members and reduce cliques
within the team.

Team size

How big is the team? (We consider more than 12 developers on
the same team to be a big team, and 4 or fewer to be a small
team.) The larger the team, the more control is needed. The
smaller the team, less control is needed. This is discussed in more
detail in “Team Warning Signs”.

Overall experience

How many team members are senior? How many are junior? Is it
a mixed team of junior and senior developers? How well do they
know the technology and business domain? Teams with lots of
junior developers require more control and mentoring, whereas
teams with more senior developers require less control. In the
latter cases, the architect moves from the role of a mentor to that
of a facilitator.

Project complexity

Is the project highly complex or just a simple website? Highly
complex projects require the architect to be more available to the
team and to assist with issues that arise, hence more control is
needed on the team. Relatively simple projects are
straightforward and hence do not require much control.

Project duration

Is the project short (two months), long (two years), or average
duration (six months)? The shorter the duration, the less control is



needed; conversely, the longer the project, the more control is
needed.

While most of the factors make sense with regard to more or less
control, the project duration factor may not appear to make sense. As
indicated in the prior list, the shorter the project duration, the less
control is needed; the longer the project duration, the more control is
needed. Intuitively this might seem reversed, but that is not the case.
Consider a quick two-month project. Two months is not a lot of time
to qualify requirements, experiment, develop code, test every
scenario, and release into production. In this case the architect should
act more as an armchair architect, as the development team already
has a keen sense of urgency. A control freak architect would just get
in the way and likely delay the project. Conversely, think of a project
duration of two years. In this scenario the developers are relaxed, not
thinking in terms of urgency, and likely planning vacations and taking
long lunches. More control is needed by the architect to ensure the
project moves along in a timely fashion and that complex tasks are
accomplished first.

It is typical within most projects that these factors are utilized to
determine the level of control at the start of a project; but as the
system continues to evolve, the level of control changes. Therefore,
we advise that these factors continually be analyzed throughout the
life cycle of a project to determine how much control to exert on the
development team.

To illustrate how each of these factors can be used to determine the
level of control an architect should have on a team, assume a fixed



scale of 20 points for each factor. Minus values point more toward
being an armchair architect (less control and involvement), whereas
plus values point more toward being a control freak architect (more
control and involvement). This scale is illustrated in Figure 22-6.





Figure 22-6. Scale for the amount of control

Applying this sort of scaling is not exact, of course, but it does help
in determining the relative control to exert on a team. For example,
consider the project scenario shown in Table 22-1 and Figure 22-7.
As shown in the table, the factors point to either a control freak (+20)
or an armchair architect (-20). These factors add up and to an
accumulated score of -60, indicating that the architect should play
more of an armchair architect role and not get in the team’s way.

Table 22-1. Scenario 1 example for amount of control

Factor Value Rating Personality

Team familiarity New team members +20 Control freak

Team size Small (4 members) -20 Armchair architect

Overall experience All experienced -20 Armchair architect

Project complexity Relatively simple -20 Armchair architect

Project duration 2 months -20 Armchair architect

Accumulated score -60 Armchair architect





Figure 22-7. Amount of control for scenario 1

In scenario 1, these factors are all taken into account to demonstrate
that an effective software architect should initially play the role of
facilitator and not get too involved in the day-to-day interactions with
the team. The architect will be needed for answering questions and to
make sure the team is on track, but for the most part the architect
should be largely hands-off and let the experienced team do what
they know best—develop software quickly.

Consider another type of scenario described in Table 22-2 and
illustrated in Figure 22-8, where the team members know each other
well, but the team is large (12 team members) and consists mostly of
junior (inexperienced) developers. The project is relatively complex
with a duration of six months. In this case, the accumulated score
comes out to -20, indicating that the effective architect should be
involved in the day-to-day activities within the team and take on a
mentoring and coaching role, but not so much as to disrupt the team.



Table 22-2. Scenario 2 example for amount of control

Factor Value Rating Personality

Team familiarity Know each other well -20 Armchair architect

Team size Large (12 members) +20 Control freak

Overall experience Mostly junior +20 Control freak

Project complexity High complexity +20 Control freak

Project duration 6 months -20 Armchair architect

Accumulated score -20 Control freak





Figure 22-8. Amount of control for scenario 2

It is difficult to objectify these factors, as some of them (such as the
overall team experience) might be more weighted than others. In
these cases the metrics can easily be weighted or modified to suit any
particular scenario or condition. Regardless, the primary message
here is that the amount of control and involvement a software
architect has on the team varies by these five main factors and that by
taking these factors into account, an architect can gauge what sort of
control to exert on the team and what the box in which development
teams can work in should look like (tight boundaries and constraints
or loose ones).

Team Warning Signs
As indicated in the prior section, team size is one of the factors that
influence the amount of control an architect should exert on a
development team. The larger a team, the more control needed; the
smaller the team, the less control needed. Three factors come into
play when considering the most effective development team size:

Process loss

Pluralistic ignorance

Diffusion of responsibility

Process loss, otherwise known as Brook’s law, was originally coined
by Fred Brooks in his book The Mythical Man Month (Addison-
Wesley). The basic idea of process loss is that the more people you
add to a project, the more time the project will take. As illustrated in
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Figure 22-9, the group potential is defined by the collective efforts of
everyone on the team. However, with any team, the actual
productivity will always be less than the group potential, the
difference being the process loss of the team.





Figure 22-9. Team size impacts actual productivity (Brook’s law)

An effective software architect will observe the development team
and look for process loss. Process loss is a good factor in determining
the correct team size for a particular project or effort. One indication
of process loss is frequent merge conflicts when pushing code to a
repository. This is an indication that team members are possibly
stepping on each other’s toes and working on the same code. Looking
for areas of parallelism within the team and having team members
working on separate services or areas of the application is one way to
avoid process loss. Anytime a new team member comes on board a
project, if there aren’t areas for creating parallel work streams, an
effective architect will question the reason why a new team member
was added to the team and demonstrate to the project manager the
negative impact that additional person will have on the team.

Pluralistic ignorance also occurs as the team size gets too big.
Pluralistic ignorance is when everyone agrees to (but privately
rejects) a norm because they think they are missing something
obvious. For example, suppose on a large team the majority agree
that using messaging between two remote services is the best
solution. However, one person on the team thinks this is a silly idea
because of a secure firewall between the two services. However,
rather than speak up, that person also agrees to the use of messaging
(but privately rejects the idea) because they are afraid that they are
either missing something obvious or afraid they might be seen as a
fool if they were to speak up. In this case, the person rejecting the
norm was correct—messaging would not work because of a secure
firewall between the two remote services. Had they spoken up (and



had the team size been smaller), the original solution would have
been challenged and another protocol (such as REST) used instead,
which would be a better solution in this case.

The concept of pluralistic ignorance was made famous by the Danish
children’s story “The Emperor’s New Clothes”, by Hans Christian
Andersen. In the story, the king is convinced that his new clothes are
invisible to anyone unworthy to actually see them. He struts around
totally nude, asking all of his subjects how they like his new clothes.
All the subjects, afraid of being considered stupid or unworthy,
respond to the king that his new clothes are the best thing ever. This
folly continues until a child finally calls out to the king that he isn’t
wearing any clothes at all.

An effective software architect should continually observe facial
expressions and body language during any sort of collaborative
meeting or discussion and act as a facilitator if they sense an
occurrence of pluralistic ignorance. In this case, the effective
architect might interrupt and ask the person what they think about the
proposed solution and be on their side and support them when they
speak up.

The third factor that indicates appropriate team size is called diffusion
of responsibility. Diffusion of responsibility is based on the fact that
as team size increases, it has a negative impact on communication.
Confusion about who is responsible for what on the team and things
getting dropped are good signs of a team that is too large.

Look at the picture in Figure 22-10. What do you observe?

https://oreil.ly/ROvce


Figure 22-10. Diffusion of responsibility



This picture shows someone standing next to a broken-down car on
the side of a small country road. In this scenario, how many people
might stop and ask the motorist if everything is OK? Because it’s a
small road in a small community, probably everyone who passes by.
However, how many times have motorists been stuck on the side of a
busy highway in the middle of a large city and had thousands of cars
simply drive by without anyone stopping and asking if everything is
OK? All the time. This is a good example of the diffusion of
responsibility. As cities get busier and more crowded, people assume
the motorist has already called or help is on the way due to the large
number of people witnessing the event. However, in most of these
cases help is not on the way, and the motorist is stuck with a dead or
forgotten cell phone, unable to call for help.

An effective architect not only helps guide the development team
through the implementation of the architecture, but also ensures that
the team is healthy, happy, and working together to achieve a
common goal. Looking for these three warning signs and
consequently helping to correct them helps to ensure an effective
development team.

Leveraging Checklists
Airline pilots use checklists on every flight—even the most
experienced, seasoned veteran pilots. Pilots have checklists for
takeoff, landing, and thousands of other situations, both common and
unusual edge cases. They use checklists because one missed aircraft
setting (such as setting the flaps to 10 degrees) or procedure (such as



gaining clearance into a terminal control area) can mean the
difference between a safe flight and a disastrous one.

Dr. Atul Gawande wrote an excellent book called The Checklist
Manifesto (Picador), in which he describes the power of checklists for
surgical procedures. Alarmed at the high rate of staph infections in
hospitals, Dr. Gawande created surgical checklists to attempt to
reduce this rate. In the book he demonstrates that staph infection rates
in hospitals using the checklists went down to near zero, while staph
infection rates in control hospitals not using the checklists continued
to rise.

Checklists work. They provide an excellent vehicle for making sure
everything is covered and addressed. If checklists work so well, then
why doesn’t the software development industry leverage them? We
firmly believe through personal experience that checklists make a big
difference in the effectiveness of development teams. However, there
are caveats to this claim. First, most software developers are not
flying airliners or performing open heart surgery. In other words,
software developers don’t require checklists for everything. The key
to making teams effective is knowing when to leverage checklists and
when not to.

Consider the checklist shown in Figure 22-11 for creating a new
database table.

https://oreil.ly/XNcV9




Figure 22-11. Example of a bad checklist

This is not a checklist, but a set of procedural steps, and as such
should not be in a checklist. For example, the database table cannot
be verified if the form has not yet been submitted! Any processes that
have a procedural flow of dependent tasks should not be in a
checklist. Simple, well-known processes that are executed frequently
without error also do not need a checklist.

Processes that are good candidates for checklists are those that don’t
have any procedural order or dependent tasks, as well as those that
tend to be error-prone or have steps that are frequently missed or
skipped. The key to making checklists effective is to not go
overboard making everything a checklist. Architects find that
checklists do, in fact, make development teams more effective, and as
such start to make everything a checklist, invoking what is known as
the law of diminishing returns. The more checklists an architect
creates, the less chance developers will use them. Another key
success factor when creating checklists is to make them as small as
possible while still capturing all the necessary steps within a process.
Developers generally will not follow checklists that are too big. Seek
items that can be performed through automation and remove those
from the checklist.

TIP
Don’t worry about stating the obvious in a checklist. It’s the obvious stuff that’s
usually skipped or missed.



Three key checklists that we’ve found to be most effective are a
developer code completion checklist, a unit and functional testing
checklist, and a software release checklist. Each checklist is
discussed in the following sections.

THE HAWTHORNE EFFECT
One of the issues associated with introducing checklists to a development team is making developers
actually use them. It’s all too common for some developers to run out of time and simply mark all the
items in a particular checklist as completed without having actually performed the tasks.

One of the ways of addressing this issue is by talking with the team about the importance of using
checklists and how checklists can make a difference in the team. Have team members read The
Checklist Manifesto by Atul Gawande to fully understand the power of a checklist, and make sure
each team member understands the reasoning behind each checklist and why it is being used. Having
developers collaborate on what should and shouldn’t be on a checklist also helps.

When all else fails, architects can invoke what is known as the Hawthorne effect. The Hawthorne
effect essentially means that if people know they are being observed or monitored, their behavior
changes, and generally they will do the right thing. Examples include highly visible cameras in and
around buildings that actually don’t work or aren’t really recording anything (this is very common!) and
website monitoring software (how many of those reports are actually viewed?).

The Hawthorne effect can be used to govern the use of checklists as well. An architect can let the
team know that the use of checklists is critical to the team’s effectiveness, and as a result, all
checklists will be verified to make sure the task was actually performed, when in fact the architect is
only occasionally spot-checking the checklists for correctness. By leveraging the Hawthorne effect,
developers will be much less likely to skip items or mark them as completed when in fact the task was
not done.

Developer Code Completion Checklist

The developer code completion checklist is an effective tool to use,
particularly when a software developer states that they are “done”
with the code. It also is useful for defining what is known as the
“definition of done.” If everything in the checklist is completed, then
the developer can claim they are actually done with the code.

https://oreil.ly/caGH_


Here are some of the things to include in a developer code
completion checklist:

Coding and formatting standards not included in automated
tools

Frequently overlooked items (such as absorbed exceptions)

Project-specific standards

Special team instructions or procedures

Figure 22-12 illustrates an example of a developer code completion
checklist.





Figure 22-12. Example of a developer code completion checklist

Notice the obvious tasks “Run code cleanup and code formatting”
and “Make sure there are no absorbed exceptions” in the checklist.
How may times has a developer been in a hurry either at the end of
the day or at the end of an iteration and forgotten to run code cleanup
and formatting from the IDE? Plenty of times. In The Checklist
Manifesto, Gawande found this same phenomenon with respect to
surgical procedures—the obvious ones were often the ones that were
usually missed.

Notice also the project-specific tasks in items 2, 3, 6, and 7. While
these are good items to have in a checklist, an architect should always
review the checklist to see if any items can be automated or written as
plug-in for a code validation checker. For example, while “Include
@ServiceEntrypoint on service API class” might not be able to have
an automated check, the “Verify that only public methods are calling
setFailure()” certainly can (this is a straightforward automated check
with any sort of code crawling tool). Checking for areas of
automation helps reduce both the size and the noise within a
checklist, making it more effective.

Unit and Functional Testing Checklist

Perhaps one of the most effective checklists is a unit and functional
testing checklist. This checklist contains some of the more unusual
and edge-case tests that software developers tend to forget to test.
Whenever someone from QA finds an issue with the code based on a
particular test case, that test case should be added to this checklist.



This particular checklist is usually one of the largest ones due to all
the types of tests that can be run against code. The purpose of this
checklist is to ensure the most complete coding possible so that when
the developer is done with the checklist, the code is essentially
production ready.

Here are some of the items found in a typical unit and functional
testing checklist:

Special characters in text and numeric fields

Minimum and maximum value ranges

Unusual and extreme test cases

Missing fields

Like the developer code completion checklist, any items that can be
written as automated tests should be removed from the checklist. For
example, suppose there is an item in the checklist for a stock trading
application to test for negative shares (such as a BUY for –1,000
shares of Apple [AAPL]). If this check is automated through a unit or
functional test within the test suite, then the item should be removed
from the checklist.

Developers sometimes don’t know where to start when writing unit
tests or how many unit tests to write. This checklist provides a way of
making sure general or specific test scenarios are included in the
process of developing the software. This checklist is also effective in
bridging the gap between developers and testers in environments that
have these activities performed by separate teams. The more
development teams perform complete testing, the easier the job of the



testing teams, allowing the testing teams to focus on certain business
scenarios not covered in the checklists.

Software Release Checklist

Releasing software into production is perhaps one of the most error-
prone aspects of the software development life cycle, and as such
makes for a great checklist. This checklist helps avoid failed builds
and failed deployments, and it significantly reduces the amount of
risk associated with releasing software.

The software release checklist is usually the most volatile of the
checklists in that it continually changes to address new errors and
circumstances each time a deployment fails or has issues.

Here are some of the items typically included within the software
release checklist:

Configuration changes in servers or external configuration
servers

Third-party libraries added to the project (JAR, DLL, etc.)

Database updates and corresponding database migration
scripts

Anytime a build or deployment fails, the architect should analyze the
root cause of the failure and add a corresponding entry to the
software release checklist. This way the item will be verified on the
next build or deployment, preventing that issue from happening
again.



Providing Guidance
A software architect can also make teams effective by providing
guidance through the use of design principles. This also helps form
the box (constraints), as described in the first section of this chapter,
that developers can work in to implement the architecture. Effectively
communicating these design principles is one of the keys to creating a
successful team.

To illustrate this point, consider providing guidance to a development
team regarding the use of what is typically called the layered stack—
the collection of third-party libraries (such as JAR files, and DLLs)
that make up the application. Development teams usually have lots of
questions regarding the layered stack, including whether they can
make their own decisions about various libraries, which ones are OK,
and which ones are not.

Using this example, an effective software architect can provide
guidance to the development team by first having the developer
answer the following questions:

1. Are there any overlaps between the proposed library and
existing functionality within the system?

2. What is the justification for the proposed library?

The first question guides developers to looking at the existing
libraries to see if the functionality provided by the new library can be
satisfied through an existing library or existing functionality. It has
been our experience that developers sometimes ignore this activity,



creating lots of duplicate functionality, particularly in large projects
with large teams.

The second question prompts the developer into questioning why the
new library or functionality is truly needed. Here, an effective
software architect will ask for both a technical justification as well as
a business justification as to why the additional library is needed.
This can be a powerful technique to create awareness within the
development team of the need for business justifications.

THE IMPACT OF BUSINESS JUSTIFICATIONS
One of your authors (Mark) was the lead architect on a particularly complex Java-based project with a
large development team. One of the team members was particularly obsessed with the Scala
programming language and desperately wanted to use it on the project. This desire for the use of
Scala ended up becoming so disruptive that several key team members informed Mark that they were
planning on leaving the project and moving on to other, “less toxic,” environments. Mark convinced the
two key team members to hold off on their decision for a bit and had a discussion with the Scala
enthusiast. Mark told the Scala enthusiast that he would support the use of Scala within the project,
but the Scala enthusiast would have to provide a business justification for the use of Scala because of
the training costs and rewriting effort involved. The Scala enthusiast was ecstatic and said he would
get right on it, and he left the meeting yelling, “Thank you—you’re the best!”

The next day the Scala enthusiast came into the office completely transformed. He immediately
approached Mark and asked to speak with him. They both went into the conference room, and the
Scala enthusiast immediately (and humbly) said, “Thank you.” The Scala enthusiast explained to Mark
that he could come up with all the technical reasons in the world to use Scala, but none of those
technical advantages had any sort of business value in terms of the architecture characteristics
needed (“-ilities”): cost, budget, and timeline. In fact, the Scala enthusiast realized that the increase in
cost, budget, and timeline would provide no benefit whatsoever.

Realizing what a disruption he was, the Scala enthusiast quickly transformed himself into one of the
best and most helpful members on the team, all because of being asked to provide a business
justification for something he wanted on the project. This increased awareness of justifications not only
made him a better software developer, but also made for a stronger and healthier team.

As a postscript, the two key developers stayed on the project until the very end.

Continuing with the example of governing the layered stack, another
effective technique of communicating design principles is through



graphical explanations about what the development team can make
decisions on and what they can’t. The illustration in Figure 22-13 is
an example of what this graphic (as well as the guidance) might look
like for controlling the layered stack.





Figure 22-13. Providing guidance for the layered stack

In Figure 22-13, an architect would provide examples of what each
category of the third-party library would contain and then what the
guidance is (the design principle) in terms of what the developers can
and can’t do (the box described in the first section of the chapter). For
example, here are the three categories defined for any third-party
library:

Special purpose

These are specific libraries used for things like PDF rendering,
bar code scanning, and circumstances that do not warrant writing
custom software.

General purpose

These libraries are wrappers on top of the language API, and they
include things like Apache Commons, and Guava for Java.

Framework

These libraries are used for things like persistence (such as
Hibernate) and inversion of control (such as Spring). In other
words, these libraries make up an entire layer or structure of the
application and are highly invasive.

Once categorized (the preceding categories are only an example—
there can be many more defined), the architect then creates the box
around this design principle. Notice in the example illustrated in
Figure 22-13 that for this particular application or project, the
architect has specified that for special-purpose libraries, the developer
can make the decision and does not need to consult the architect for
that library. However, notice that for general purpose, the architect



has indicated that the developer can undergo overlap analysis and
justification to make the recommendation, but that category of library
requires architect approval. Finally, for framework libraries, that is an
architect decision—in other words, the development teams shouldn’t
even undergo analysis for these types of libraries; the architect has
decided to take on that responsibility for those types of libraries.

Summary
Making development teams effective is hard work. It requires lots of
experience and practice, as well as strong people skills (which we
will discuss in subsequent chapters in this book). That said, the
simple techniques described in this chapter about elastic leadership,
leveraging checklists, and providing guidance through effectively
communicating design principles do, in fact, work, and have proven
effective in making development teams work smarter and more
effectively.

One might question the role of an architect for such activities, instead
assigning the effort of making teams effective to the development
manager or project manager. We strongly disagree with this premise.
A software architect not only provides technical guidance to the team,
but also leads the team through the implementation of the
architecture. The close collaborative relationship between a software
architect and a development team allows the architect to observe the
team dynamics and hence facilitate changes to make the team more
effective. This is exactly what differentiates a technical architect from
an effective software architect.





Chapter 23. Negotiation and
Leadership Skills

Negotiation and leadership skills are hard skills to obtain. It takes
many years of learning, practice, and “lessons learned” experiences to
gain the necessary skills to become an effective software architect.
Knowing that this book cannot make an architect an expert in
negotiation and leadership overnight, the techniques introduced in
this chapter provide a good starting point for gaining these important
skills.

Negotiation and Facilitation
In the beginning of this book, we listed the core expectations of an
architect, the last being the expectation that a software architect must
understand the political climate of the enterprise and be able to
navigate the politics. The reason for this key expectation is that
almost every decision a software architect makes will be challenged.
Decisions will be challenged by developers who think they know
more than the architect and hence have a better approach. Decisions
will be challenged by other architects within the organization who
think they have a better idea or way of approaching the problem.
Finally, decisions will be challenged by stakeholders who will argue
that the decision is too expensive or will take too much time.



Consider the decision of an architect to use database clustering and
federation (using separate physical domain-scoped database
instances) to mitigate risk with regard to overall availability within a
system. While this is a sound solution to the issue of database
availability, it is also a costly decision. In this example, the architect
must negotiate with key business stakeholders (those paying for the
system) to come to an agreement about the trade-off between
availability and cost.

Negotiation is one of the most important skills a software architect
can have. Effective software architects understand the politics of the
organization, have strong negotiation and facilitation skills, and can
overcome disagreements when they occur to create solutions that all
stakeholders agree on.

Negotiating with Business Stakeholders

Consider the following real-world scenario (scenario 1) involving a
key business stakeholder and lead architect:

Scenario 1

The senior vice president project sponsor is insistent that the new
trading system must support five nines of availability (99.999%).
However, the lead architect is convinced, based on research,
calculations, and knowledge of the business domain and
technology, that three nines of availability (99.9%) would be
sufficient. The problem is, the project sponsor does not like to be
wrong or corrected and really hates people who are
condescending. The sponsor isn’t overly technical (but thinks
they are) and as a result tends to get involved in the nonfunctional



aspects of projects. The architect must convince the project
sponsor through negotiation that three nines (99.9%) of
availability would be enough.

In this sort of negotiation, the software architect must be careful to
not be too egotistical and forceful in their analysis, but also make sure
they are not missing anything that might prove them wrong during
the negotiation. There are several key negotiation techniques an
architect can use to help with this sort of stakeholder negotiation.

TIP
Leverage the use of grammar and buzzwords to better understand the situation.

Phases such as “we must have zero downtime” and “I needed those
features yesterday” are generally meaningless but nevertheless
provide valuable information to the architect about to enter into a
negotiation. For example, when the project sponsor is asked when a
particular feature is needed and responds, “I needed it yesterday,” that
is an indication to the software architect that time to market is
important to that stakeholder. Similarly, the phrase “this system must
be lightning fast” means performance is a big concern. The phase
“zero downtime” means that availability is critical in the application.
An effective software architect will leverage this sort of nonsense
grammar to better understand the real concerns and consequently
leverage that use of grammar during a negotiation.

Consider scenario 1 described previously. Here, the key project
sponsor wants five nines of availability. Leveraging this technique



tells the architect that availability is very important. This leads to a
second negotiation technique:

TIP
Gather as much information as possible before entering into a negotiation.

The phrase “five nines” is grammar that indicates high availability.
However, what exactly is five nines of availability? Researching this
ahead of time and gathering knowledge prior to the negotiation yields
the information shown in Table 23-1.

Table 23-1. Nines of availability

Percentage 
uptime

Downtime per year 
(per day)

90.0% (one 
nine)

36 days 12 hrs (2.4 hrs)

99.0% (two 
nines)

87 hrs 46 min (14 min)

99.9% (three 
nines)

8 hrs 46 min (86 sec)

99.99% (four 
nines)

52 min 33 sec (7 sec)

99.999% (five 
nines)

5 min 35 sec (1 sec)

99.9999% (six 
nines)

31.5 sec (86 ms)



“Five nines” of availability is 5 minutes and 35 seconds of downtime
per year, or 1 second a day of unplanned downtime. Quite ambitious,
but also quite costly and unnecessary for the prior example. Putting
things in hours and minutes (or in this case, seconds) is a much better
way to have the conversation than sticking with the nines vernacular.

Negotiating scenario 1 would include validating the stakeholder’s
concerns (“I understand that availability is very important for this
system”) and then bringing the negotiation from the nines vernacular
to one of reasonable hours and minutes of unplanned downtime.
Three nines (which the architect deemed good enough) averages 86
seconds of unplanned downtime per day—certainly a reasonable
number given the context of the global trading system described in
the scenario. The architect can always resort to this tip:

TIP
When all else fails, state things in terms of cost and time.

We recommend saving this negotiation tactic for last. We’ve seen too
many negotiations start off on the wrong foot due to opening
statements such as, “That’s going to cost a lot of money” or “We
don’t have time for that.” Money and time (effort involved) are
certainly key factors in any negotiation but should be used as a last
resort so that other justifications and rationalizations that matter more
be tried first. Once an agreement is reached, then cost and time can be
considered if they are important attributes to the negotiation.



Another important negotiation technique to always remember is the
following, particularly in situations as described in scenario 1:

TIP
Leverage the “divide and conquer” rule to qualify demands or requirements.

The ancient Chinese warrior Sun Tzu wrote in The Art of War, “If his
forces are united, separate them.” This same divide-and-conquer
tactic can be applied by an architect during negotiations as well.
Consider scenario 1 previously described. In this case, the project
sponsor is insisting on five nines (99.999%) of availability for the
new trading system. However, does the entire system need five nines
of availability? Qualifying the requirement to the specific area of the
system actually requiring five nines of availability reduces the scope
of difficult (and costly) requirements and the scope of the negotiation
as well.

Negotiating with Other Architects

Consider the following actual scenario (scenario 2) between a lead
architect and another architect on the same project:

Scenario 2

The lead architect on a project believes that asynchronous
messaging would be the right approach for communication
between a group of services to increase both performance and
scalability. However, the other architect on the project once again
strongly disagrees and insists that REST would be a better choice,



because REST is always faster than messaging and can scale just
as well (“see for yourself by Googling it!”). This is not the first
heated debate between the two architects, nor will it be the last.
The lead architect must convince the other architect that
messaging is the right solution.

In this scenario, the lead architect can certainly tell the other architect
that their opinion doesn’t matter and ignore it based on the lead
architect’s seniority on the project. However, this will only lead to
further animosity between the two architects and create an unhealthy
and noncollaborative relationship, and consequently will end up
having a negative impact on the development team. The following
technique will help in these types of situations:

TIP
Always remember that demonstration defeats discussion.

Rather than arguing with another architect over the use of REST
versus messaging, the lead architect should demonstrate to the other
architect how messaging would be a better choice in their specific
environment. Every environment is different, which is why simply
Googling it will never yield the correct answer. By running a
comparison between the two options in a production-like
environment and showing the other architect the results, the argument
would likely be avoided.

Another key negotiation technique that works in these situations is as
follows:



TIP
Avoid being too argumentative or letting things get too personal in a negotiation
—calm leadership combined with clear and concise reasoning will always win a
negotiation.

This technique is a very powerful tool when dealing with adversarial
relationships like the one described in scenario 2. Once things get too
personal or argumentative, the best thing to do is stop the negotiation
and reengage at a later time when both parties have calmed down.
Arguments will happen between architects; however, approaching
these situations with calm leadership will usually force the other
person to back down when things get too heated.

Negotiating with Developers

Effective software architects don’t leverage their title as architect to
tell developers what to do. Rather, they work with development teams
to gain respect so that when a request is made of the development
team, it doesn’t end up in an argument or resentment. Working with
development teams can be difficult at times. In many cases
development teams feel disconnected from the architecture (and also
the architect), and as a result feel left out of the loop with regard to
decisions the architect makes. This is a classic example of the Ivory
Tower architecture anti-pattern. Ivory tower architects are ones who
simply dictate from on high, telling development teams what to do
without regard to their opinion or concerns. This usually leads to a
loss of respect for the architect and an eventual breakdown of the



team dynamics. One negotiation technique that can help address this
situation is to always provide a justification:

TIP
When convincing developers to adopt an architecture decision or to do a
specific task, provide a justification rather than “dictating from on high.”

By providing a reason why something needs to be done, developers
will more likely agree with the request. For example, consider the
following conversation between an architect and a developer with
regard to making a simple query within a traditional n-tiered layered
architecture:

Architect: “You must go through the business layer to make that
call.”
Developer: “No. It’s much faster just to call the database directly.”

There are several things wrong with this conversation. First, notice
the use of the words “you must.” This type of commanding voice is
not only demeaning, but is one of the worst ways to begin a
negotiation or conversation. Also notice that the developer responded
to the architect’s demand with a reason to counter the demand (going
through the business layer will be slower and take more time). Now
consider an alternative approach to this demand:



Architect: “Since change control is most important to us, we have
formed a closed-layered architecture. This means all calls to the
database need to come from the business layer.”
Developer: “OK, I get it, but in that case, how am I going to deal
with the performance issues for simple queries?”

Notice here the architect is providing the justification for the demand
that all requests need to go through the business layer of the
application. Providing the justification or reason first is always a
good approach. Most of the time, once a person hears something they
disagree with, they stop listening. By stating the reason first, the
architect is sure that the justification will be heard. Also notice the
architect removed the personal nature of this demand. By not saying
“you must” or “you need to,” the architect effectively turned the
demand into a simple statement of fact (“this means…”). Now take a
look at the developer’s response. Notice the conversation shifted from
disagreeing with the layered architecture restrictions to a question
about increasing performance for simple calls. Now the architect and
developer can engage in a collaborative conversation to find ways to
make simple queries faster while still preserving the closed layers in
the architecture.

Another effective negotiation tactic when negotiating with a
developer or trying to convince them to accept a particular design or
architecture decision they disagree with is to have the developer
arrive at the solution on their own. This creates a win-win situation
where the architect cannot lose. For example, suppose an architect is
choosing between two frameworks, Framework X and Framework Y.
The architect sees that Framework Y doesn’t satisfy the security
requirements for the system and so naturally chooses Framework X.



A developer on the team strongly disagrees and insists that
Framework Y would still be the better choice. Rather than argue the
matter, the architect tells the developer that the team will use
Framework Y if the developer can show how to address the security
requirements if Framework Y is used. One of two things will happen:

1. The developer will fail trying to demonstrate that
Framework Y will satisfy the security requirements and will
understand firsthand that the framework cannot be used. By
having the developer arrive at the solution on their own, the
architect automatically gets buy-in and agreement for the
decision to use Framework X by essentially making it the
developer’s decision. This is a win.

2. The developer finds a way to address the security
requirements with Framework Y and demonstrates this to the
architect. This is a win as well. In this case the architect
missed something in Framework Y, and it also ended up
being a better framework over the other one.

TIP
If a developer disagrees with a decision, have them arrive at the solution on
their own.

It’s really through collaboration with the development team that the
architect is able to gain the respect of the team and form better
solutions. The more developers respect an architect, the easier it will
be for the architect to negotiate with those developers.



The Software Architect as a Leader
A software architect is also a leader, one who can guide a
development team through the implementation of the architecture.
We maintain that about 50% of being an effective software architect
is having good people skills, facilitation skills, and leadership skills.
In this section we discuss several key leadership techniques that an
effective software architect can leverage to lead development teams.

The 4 C’s of Architecture

Each day things seem to be getting more and more complex, whether
it be increased complexity in business processes or increased
complexity of systems and even architecture. Complexity exists
within architecture as well as software development, and always will.
Some architectures are very complex, such as ones supporting six
nines of availability (99.9999%)—that’s equivalent to unplanned
downtime of about 86 milliseconds a day, or 31.5 seconds of
downtime per year. This sort of complexity is known as essential
complexity—in other words, “we have a hard problem.”

One of the traps many architects fall into is adding unnecessary
complexity to solutions, diagrams, and documentation. Architects (as
well as developers) seem to love complexity. To quote Neal:

Developers are drawn to complexity like moths to a flame—
frequently with the same result.

Consider the diagram in Figure 23-1 illustrating the major
information flows for the backend processing systems at a very large
global bank. Is this necessarily complex? No one knows the answer



to this question because the architect has made it complex. This sort
of complexity is called accidental complexity—in other words, “we
have made a problem hard.” Architects sometimes do this to prove
their worth when things seem too simple or to guarantee that they are
always kept in the loop on discussions and decisions that are made
regarding the business or architecture. Other architects do this to
maintain job security. Whatever the reason, introducing accidental
complexity into something that is not complex is one of the best ways
to become an ineffective leader as an architect.





Figure 23-1. Introducing accidental complexity into a problem

An effective way of avoiding accidental complexity is what we call
the 4 C’s of architecture: communication, collaboration, clarity, and
conciseness. These factors (illustrated in Figure 23-2) all work
together to create an effective communicator and collaborator on the
team.



Figure 23-2. The 4 C’s of architecture

As a leader, facilitator, and negotiator, is it vital that a software
architect be able to effectively communicate in a clear and concise
manner. It is equally important that an architect also be able to
collaborate with developers, business stakeholders, and other
architects to discuss and form solutions together. Focusing on the 4
C’s of architecture helps an architect gain the respect of the team and



become the go-to person on the project that everyone comes to not
only for questions, but also for advice, mentoring, coaching, and
leadership.

Be Pragmatic, Yet Visionary

An effective software architect must be pragmatic, yet visionary.
Doing this is not as easy as it sounds and takes a fairly high level of
maturity and significant practice to accomplish. To better understand
this statement, consider the definition of a visionary:

Visionary

Thinking about or planning the future with imagination or
wisdom.

Being a visionary means applying strategic thinking to a problem,
which is exactly what an architect is supposed to do. Architecture is
about planning for the future and making sure the architectural
vitality (how valid an architecture is) remains that way for a long
time. However, too many times, architects become too theoretical in
their planning and designs, creating solutions that become too
difficult to understand or even implement. Now consider the
definition of being pragmatic:

Pragmatic

Dealing with things sensibly and realistically in a way that is
based on practical rather than theoretical considerations.

While architects need to be visionaries, they also need to apply
practical and realistic solutions. Being pragmatic is taking all of the



following factors and constraints into account when creating an
architectural solution:

Budget constraints and other cost-based factors

Time constraints and other time-based factors

Skill set and skill level of the development team

Trade-offs and implications associated with an architecture
decision

Technical limitations of a proposed architectural design or
solution

A good software architect is one that strives to find an appropriate
balance between being pragmatic while still applying imagination
and wisdom to solving problems (see Figure 23-3). For example,
consider the situation where an architect is faced with a difficult
problem dealing with elasticity (unknown sudden and significant
increases in concurrent user load). A visionary might come up with
an elaborate way to deal with this through the use of a complex data
mesh, which is a collection of distributed, domain-based databases. In
theory this might be a good approach, but being pragmatic means
applying reason and practicality to the solution. For example, has the
company ever used a data mesh before? What are the trade-offs of
using a data mesh? Would this really solve the problem?

A pragmatic architect would first look at what the limiting factor is
when needing high levels of elasticity. Is it the database that’s the
bottleneck? Maybe it’s a bottleneck with respect to some of the
services invoked or other external sources needed. Finding and
isolating the bottleneck would be a first practical approach to the

https://oreil.ly/6HmSp


problem. In fact, even if it is the database, could some of the data
needed be cached so that the database need not be accessed at all?





Figure 23-3. Good architects find the balance between being pragmatic, yet visionary

Maintaining a good balance between being pragmatic, yet visionary,
is an excellent way of gaining respect as an architect. Business
stakeholders will appreciate visionary solutions that fit within a set of
constraints, and developers will appreciate having a practical (rather
then theoretical) solution to implement.

Leading Teams by Example

Bad software architects leverage their title to get people to do what
they want them to do. Effective software architects get people to do
things by not leveraging their title as architect, but rather by leading
through example, not by title. This is all about gaining the respect of
development teams, business stakeholders, and other people
throughout the organization (such as the head of operations,
development managers, and product owners).

The classic “lead by example, not by title” story involves a captain
and a sergeant during a military battle. The high-ranking captain, who
is largely removed from the troops, commands all of the troops to
move forward during the battle to take a particularly difficult hill.
However, rather than listen to the high-ranking captain, the soldiers,
full of doubt, look over to the lower-ranking sergeant for whether
they should take the hill or not. The sergeant looks at the situation,
nods his head slightly, and the soldiers immediately move forward
with confidence to take the hill.

The moral of this story is that rank and title mean very little when it
comes to leading people. The computer scientist Gerald Weinberg is

https://oreil.ly/6fI2m


famous for saying, “No matter what the problem is, it’s a people
problem.” Most people think that solving technical issues has nothing
to do with people skills—it has to do with technical knowledge.
While having technical knowledge is certainly necessary for solving a
problem, it’s only a part of the overall equation for solving any
problem. Suppose, for example, an architect is holding a meeting
with a team of developers to solve an issue that’s come up in
production. One of the developers makes a suggestion, and the
architect responds with, “Well, that’s a dumb idea.” Not only will that
developer not make any more suggestions, but none of the other
developers will dare say anything. The architect in this case has
effectively shut down the entire team from collaborating on the
solution.

Gaining respect and leading teams is about basic people skills.
Consider the following dialogue between an architect and a customer,
client, or development team with regard to a performance issue in the
application:

Developer: “So how are we going to solve this performance
problem?”
Architect: “What you need to do is use a cache. That would fix the
problem.”
Developer: “Don’t tell me what to do.”
Architect: “What I’m telling you is that it would fix the problem.”

By using the words “what you need to do is…” or “you must,” the
architect is forcing their opinion onto the developer and essentially
shutting down collaboration. This is a good example of using



communication, not collaboration. Now consider the revised
dialogue:

Developer: “So how are we going to solve this performance
problem?”
Architect: “Have you considered using a cache? That might fix the
problem.”
Developer: “Hmmm, no we didn’t think about that. What are your
thoughts?”
Architect: “Well, if we put a cache here…”

Notice the use of the words “have you considered…” or “what
about…” in the dialogue. By asking the question, it puts control back
on the developer or client, creating a collaborative conversation
where both the architect and developer are working together to form a
solution. The use of grammar is vitally important when trying to
build a collaborative environment. Being a leader as an architect is
not only being able to collaborate with others to create an
architecture, but also to help promote collaboration among the team
by acting as a facilitator. As an architect, try to observe team
dynamics and notice when situations like the first dialogue occurs. By
taking team members aside and coaching them on the use of grammar
as a means of collaboration, not only will this create better team
dynamics, but it will also help create respect among the team
members.

Another basic people skills technique that can help build respect and
healthy relationships between an architect and the development team
is to always try to use the person’s name during a conversation or
negotiation. Not only do people like hearing their name during a
conversation, it also helps breed familiarity. Practice remembering



people’s names, and use them frequently. Given that names are
sometimes hard to pronounce, make sure to get the pronunciation
correct, then practice that pronunciation until it is perfect. Whenever
we ask someone’s name, we repeat it to the person and ask if that’s
the correct way to pronounce it. If it’s not correct, we repeat this
process until we get it right.

If an architect meets someone for the first time or only occasionally,
always shake the person’s hand and make eye contact. A handshake
is an important people skill that goes back to medieval times. The
physical bond that occurs during a simple handshake lets both people
know they are friends, not foes, and forms a bond between the two
people. However, while very basic, it is sometimes hard to get a
simple handshake right.

When shaking someone’s hand, give a firm (but not overpowering)
handshake while looking the person in the eye. Looking away while
shaking someone’s hand is a sign of disrespect, and most people will
notice that. Also, don’t hold on to the handshake too long. A simple
two- to three-second, firm handshake is all that is needed to start off a
conversation or to greet someone. There is also the issue of going
overboard with the handshake technique and making the other person
uncomfortable enough to not want to communicate or collaborate
with you. For example, imagine a software architect who comes in
every morning and starts shaking everyone’s hand. Not only is this a
little weird, it creates an uncomfortable situation. However, imagine a
software architect who must meet with the head of operations
monthly. This is the perfect opportunity to stand up, say “Hello Ruth,
nice seeing you again,” and give a quick, firm handshake. Knowing



when to do a handshake and when not to is part of the complex art of
people skills.

A software architect as a leader, facilitator, and negotiator should be
careful to preserve the boundaries that exist between people at all
levels. The handshake, as described previously, is an effective and
professional technique of forming a physical bond with the person
you are communicating or collaborating with. However, while a
handshake is good, a hug in a professional setting, regardless of the
environment, is not. An architect might think that it exemplifies more
physical connection and bonding, but all it does is sometimes make
the other person at work more uncomfortable and, more importantly,
can lead to potential harassment issues within the workplace. Skip the
hugs all together, regardless of the professional environment, and
stick with the handshake instead (unless of course everyone in the
company hugs each other, which would just be…weird).

Sometimes it’s best to turn a request into a favor as a way of getting
someone to do something they otherwise might not want to do. In
general, people do not like to be told what to do, but for the most
part, people want to help others. This is basic human nature. Consider
the following conversation between an architect and developer
regarding an architecture refactoring effort during a busy iteration:



Architect: “I’m going to need you to split the payment service into
five different services, with each service containing the
functionality for each type of payment we accept, such as store
credit, credit card, PayPal, gift card, and reward points, to provide
better fault tolerance and scalability in the website. It shouldn’t
take too long.”
Developer: “No way, man. Way too busy this iteration for that.
Sorry, can’t do it.”
Architect: “Listen, this is important and needs to be done this
iteration.”
Developer: “Sorry, no can do. Maybe one of the other developers
can do it. I’m just too busy.”

Notice the developer’s response. It is an immediate rejection of the
task, even though the architect justified it through better fault
tolerance and scalability. In this case, notice that the architect is
telling the developer to do something they are simply too busy to do.
Also notice the demand doesn’t even include the person’s name!

Now consider the technique of turning the request into a favor:

Architect: “Hi, Sridhar. Listen, I’m in a real bind. I really need to
have the payment service split into separate services for each
payment type to get better fault tolerance and scalability, and I
waited too long to do it. Is there any way you can squeeze this into
this iteration? It would really help me out.”
Developer: “(Pause)…I’m really busy this iteration, but I guess so.
I’ll see what I can do.”
Architect: “Thanks, Sridhar, I really appreciate the help. I owe you
one.”
Developer: “No worries, I’ll see that it gets done this iteration.”

First, notice the use of the person’s name repeatedly throughout the
conversation. Using the person’s name makes the conversation more



of a personal, familiar nature rather than an impersonal professional
demand. Second, notice the architect admits they are in a “real bind”
and that splitting the services would really “help them out a lot.” This
technique does not always work, but playing off of basic human
nature of helping each other has a better probability of success over
the first conversation. Try this technique the next time you face this
sort of situation and see the results. In most cases, the results will be
much more positive than telling someone what to do.

To lead a team and become an effective leader, a software architect
should try to become the go-to person on the team—the person
developers go to for their questions and problems. An effective
software architect will seize the opportunity and take the initiative to
lead the team, regardless of their title or role on the team. When a
software architect observes someone struggling with a technical
issue, they should step in and offer help or guidance. The same is true
for nontechnical situations as well. Suppose an architect observes a
team member that comes into work looking sort of depressed and
bothered—clearly something is up. In this circumstance, an effective
software architect would notice the situation and offer to talk—
something like, “Hey, Antonio, I’m heading over to get some coffee.
Why don’t we head over together?” and then during the walk ask if
everything is OK. This at least provides an opening for more of a
personal discussion; and at it’s best, a chance to mentor and coach at
a more personal level. However, an effective leader will also
recognize times to not be too pushy and will back off by reading
various verbal signs and facial expressions.



Another technique to start gaining respect as a leader and become the
go-to person on the team is to host periodic brown-bag lunches to talk
about a specific technique or technology. Everyone reading this book
has a particular skill or knowledge that others don’t have. By hosting
a periodic brown-bag lunch session, the architect not only is able to
exhibit their technical prowess, but also practice speaking skills and
mentoring skills. For example, host a lunch session on a review of
design patterns or the latest features of the programming language
release. Not only does this provide valuable information to
developers, but it also starts identifying you as a leader and mentor on
the team.

Integrating with the Development Team
An architect’s calendar is usually filled with meetings, with most of
those meetings overlapping with other meetings, such as the calendar
shown in Figure 23-4. If this is what a software architect’s calendar
looks like, then when does the architect have the time to integrate
with the development team, help guide and mentor them, and be
available for questions or concerns when they come up?
Unfortunately, meetings are a necessary evil within the information
technology world. They happen frequently, and will always happen.





Figure 23-4. A typical calendar of a software architect

The key to being an effective software architect is making more time
for the development team, and this means controlling meetings. There
are two types of meetings an architect can be involved in: those
imposed upon (the architect is invited to a meeting), and those
imposed by (the architect is calling the meeting). These meeting types
are illustrated in Figure 23-5.





Figure 23-5. Meeting types

Imposed upon meetings are the hardest to control. Due to the number
of stakeholders a software architect must communicate and
collaborate with, architects are invited to almost every meeting that
gets scheduled. When invited to a meeting, an effective software
architect should always ask the meeting organizer why they are
needed in that meeting. Many times architects get invited to meetings
simply to keep them in the loop on the information being discussed.
That’s what meeting notes are for. By asking why, an architect can
start to qualify which meetings they should attend and which ones
they can skip. Another related technique to help reduce the number of
meetings an architect is involved in is to ask for the meeting agenda
before accepting a meeting invite. The meeting organizer may feel
that the architect is necessary, but by looking at the agenda, the
architect can qualify whether they really need to be in the meeting or
not. Also, many times it is not necessary to attend the entire meeting.
By reviewing the agenda, an architect can optimize their time by
either showing up when relevant information is being discussed or
leaving after the relevant discussion is over. Don’t waste time in a
meeting if you can be spending that time working with the
development team.

TIP
Ask for the meeting agenda ahead of time to help qualify if you are really
needed at the meeting or not.



Another effective technique to keep a development team on track and
to gain their respect is to take one for the team when developers are
invited to a meeting as well. Rather than having the tech lead attend
the meeting, go in their place, particularly if both the tech lead and
architect are invited to a meeting. This keeps a development team
focused on the task at hand rather than continually attending meetings
as well. While deflecting meetings away from useful team members
increases the time an architect is in meetings, it does increase the
development team’s productivity.

Meetings that an architect imposes upon others (the architect calls the
meeting) are also a necessity at times but should be kept to an
absolute minimum. These are the kinds of meetings an architect has
control over. An effective software architect will always ask whether
the meeting they are calling is more important than the work they are
pulling their team members away from. Many times an email is all
that is required to communicate some important information, which
saves everyone tons of wasted time. When calling a meeting as an
architect, always set an agenda and stick to it. Too often, meetings an
architect calls get derailed due to some other issue, and that other
issue may not be relevant to everyone else in the meeting. Also, as an
architect, pay close attention to developer flow and be sure not to
disrupt it by calling a meeting. Flow is a state of mind developers
frequently get into where the brain gets 100% engaged in a particular
problem, allowing full attention and maximum creativity. For
example, a developer might be working on a particularly difficult
algorithm or piece of code, and literally hours go by while it seems
only minutes have passed. When calling a meeting, an architect



should always try to schedule meetings either first thing in the
morning, right after lunch, or toward the end of the day, but not
during the day when most developers experience flow state.

Aside from managing meetings, another thing an effective software
architect can do to integrate better with the development team is to sit
with that team. Sitting in a cubicle away from the team sends the
message that the architect is special, and those physical walls
surrounding the cubicle are a distinct message that the architect is not
to be bothered or disturbed. Sitting alongside a development team
sends the message that the architect is an integral part of the team and
is available for questions or concerns as they arise. By physically
showing that they are part of the development team, the architect
gains more respect and is better able to help guide and mentor the
team.

Sometimes it is not possible for an architect to sit with a development
team. In these cases the best thing an architect can do is continually
walk around and be seen. Architects that are stuck on a different floor
or always in their offices or cubicles and never seen cannot possibly
help guide the development team through the implementation of the
architecture. Block off time in the morning, after lunch, or late in the
day and make the time to converse with the development team, help
with issues, answer questions, and do basic coaching and mentoring.
Development teams appreciate this type of communication and will
respect you for making time for them during the day. The same holds
true for other stakeholders. Stopping in to say hi to the head of
operations while on the way to get more coffee is an excellent way of



keeping communication open and available with business and other
key stakeholders.

Summary
The negotiation and leadership tips presented and discussed in this
chapter are meant to help the software architect form a better
collaborative relationship with the development team and other
stakeholders. These are necessary skills an architect must have in
order to become an effective software architect. While the tips we
presented in this chapter are good tips for starting the journey into
becoming more of an effective leader, perhaps the best tip of all is
from a quote from Theodore Roosevelt, the 26th US president:

The most important single ingredient in the formula of success is
knowing how to get along with people.

—Theodore Roosevelt

https://oreil.ly/dCN_t


Chapter 24. Developing a
Career Path

Becoming an architect takes time and effort, but based on the many
reasons we’ve outlined throughout this book, managing a career path
after becoming an architect is equally tricky. While we can’t chart a
specific career path for you, we can point you to some practices that
we have seen work well.

An architect must continue to learn throughout their career. The
technology world changes at a dizzying pace. One of Neal’s former
coworkers was a world-renowned expert in Clipper. He lamented that
he couldn’t take the enormous body of (now useless) Clipper
knowledge and replace it with something else. He also speculated
(and this is still an open question): has any group in history learned
and thrown away so much detailed knowledge within their lifetimes
as software developers?

Each architect should keep an eye out for relevant resources, both
technology and business, and add them to their personal stockpile.
Unfortunately, resources come and go all too quickly, which is why
we don’t list any in this book. Talking to colleagues or experts about
what resources they use to keep current is one good way of seeking
out the latest newsfeeds, websites, and groups that are active in a
particular area of interest. Architects should also build into their day
some time to maintain breadth utilizing those resources.



The 20-Minute Rule
As illustrated in Figure 2-7, technology breadth is more important to
architects than depth. However, maintaining breadth takes time and
effort, something architects should build into their day. But how in
the world does anyone have the time to actually go to various
websites to read articles, watch presentations, and listen to podcasts?
The answer is…not many do. Developers and architects alike
struggle with the balance of working a regular job, spending time
with the family, being available for our children, carving out personal
time for interests and hobbies, and trying to develop careers, while at
the same time trying to keep up with the latest trends and buzzwords.

One technique we use to maintain this balance is something we call
the 20-minute rule. The idea of this technique, as illustrated in
Figure 24-1, is to devote at least 20 minutes a day to your career as
an architect by learning something new or diving deeper into a
specific topic. Figure 24-1 illustrates examples of some of the types
of resources to spend 20 minutes a day on, such as InfoQ, DZone
Refcardz, and the ThoughtWorks Technology Radar. Spend that
minimum of 20 minutes to Google some unfamiliar buzzwords (“the
things you don’t know you don’t know” from Chapter 2) to learn a
little about them, promoting that knowledge into the “things you
know you don’t know.” Or maybe spend the 20 minutes going deeper
into a particular topic to gain a little more knowledge about it. The
point of this technique is to be able to carve out some time for
developing a career as an architect and continuously gaining technical
breadth.

https://www.infoq.com/
https://dzone.com/refcardz
https://www.thoughtworks.com/radar


Figure 24-1. The 20-minute rule

Many architects embrace this concept and plan to spend 20 minutes at
lunch or in the evening after work to do this. What we have
experienced is that this rarely works. Lunchtime gets shorter and
shorter, becoming more of a catch-up time at work rather than a time



to take a break and eat. Evenings are even worse—situations change,
plans get made, family time becomes more important, and the 20-
minute rule never happens.

We strongly recommend leveraging the 20-minute rule first thing in
the morning, as the day is starting. However, there is a caveat to this
advice as well. For example, what is the first thing an architect does
after getting to work in the morning? Well, the very first thing the
architect does is to get that wonderful cup of coffee or tea. OK, in that
case, what is the second thing every architect does after getting that
necessary coffee or tea—check email. Once an architect checks
email, diversion happens, email responses are written, and the day is
over. Therefore, our strong recommendation is to invoke the 20-
minute rule first thing in the morning, right after grabbing that cup of
coffee or tea and before checking email. Go in to work a little early.
Doing this will increase an architect’s technical breadth and help
develop the knowledge required to become an effective software
architect.

Developing a Personal Radar
For most of the ’90s and the beginning of the ’00s, Neal was the CTO
of a small training and consulting company. When he started there,
the primary platform was Clipper, which was a rapid-application
development tool for building DOS applications atop dBASE files.
Until one day it vanished. The company had noticed the rise of
Windows, but the business market was still DOS…until it abruptly
wasn’t. That lesson left a lasting impression: ignore the march of
technology at your peril.



It also taught an important lesson about technology bubbles. When
heavily invested in a technology, a developer lives in a memetic
bubble, which also serves as an echo chamber. Bubbles created by
vendors are particularly dangerous, because developers never hear
honest appraisals from within the bubble. But the biggest danger of
Bubble Living comes when it starts collapsing, which developers
never notice from the inside until it’s too late.

What they lacked was a technology radar: a living document to assess
the risks and rewards of existing and nascent technologies. The radar
concept comes from ThoughtWorks; first, we’ll describe how this
concept came to be and then how to use it to create a personal radar.

The ThoughtWorks Technology Radar

The ThoughtWorks Technology Advisory Board (TAB) is a group of
senior technology leaders within ThoughtWorks, created to assist the
CTO, Dr. Rebecca Parsons, in deciding technology directions and
strategies for the company and its clients. This group meets face-to-
face twice a year. One of the outcomes of the face to face meeting
was the Technology Radar. Over time, it gradually grew into the
biannual Technology Radar.

The TAB gradually settled into a twice-a-year rhythm of Radar
production. Then, as often happens, unexpected side effects occurred.
At some of the conferences Neal spoke at, attendees sought him out
and thanked him for helping produce the Radar and said that their
company had started producing their own version of it.

https://www.thoughtworks.com/radar


Neal also realized that this was the answer to a pervasive question at
conference speaker panels everywhere: “How do you (the speakers)
keep up with technology? How do you figure out what things to
pursue next?” The answer, of course, is that they all have some form
of internal radar.

PARTS

The ThoughtWorks Radar consists of four quadrants that attempt to
cover most of the software development landscape:

Tools

Tools in the software development space, everything from
developers tools like IDEs to enterprise-grade integration tools

Languages and frameworks

Computer languages, libraries, and frameworks, typically open
source

Techniques

Any practice that assists software development overall; this may
include software development processes, engineering practices,
and advice

Platforms

Technology platforms, including databases, cloud vendors, and
operating systems

RINGS

The Radar has four rings, listed here from outer to inner:



Hold

The original intent of the hold ring was “hold off for now,” to
represent technologies that were too new to reasonably assess yet
—technologies that were getting lots of buzz but weren’t yet
proven. The hold ring has evolved into indicating “don’t start
anything new with this technology.” There’s no harm in using it
on existing projects, but developers should think twice about
using it for new development.

Assess

The assess ring indicates that a technology is worth exploring
with the goal of understanding how it will affect an organization.
Architects should invest some effort (such as development spikes,
research projects, and conference sessions) to see if it will have
an impact on the organization. For example, many large
companies visibly went through this phase when formulating a
mobile strategy.

Trial

The trial ring is for technologies worth pursuing; it is important to
understand how to build up this capability. Now is the time to
pilot a low-risk project so that architects and developers can
really understand the technology.

Adopt

For technologies in the adopt ring, ThoughtWorks feels strongly
that the industry should adopt those items.

An example view of the Radar appears in Figure 24-2.



Figure 24-2. A sample ThoughtWorks Technology Radar

In Figure 24-2, each blip represents a different technology or
technique, with associated short write-ups.

While ThoughtWorks uses the radar to broadcast their opinions about
the software world, many developers and architects also use it as a
way of structuring their technology assessment process. Architects
can use the tool described in “Open Source Visualization Bits” to
build the same visuals used by ThoughtWorks as a way to organize
their thinking about what to invest time in.

When using the radar for personal use, we suggest altering the
meanings of the quadrants to the following:



Hold

An architect can include not only technologies and techniques to
avoid, but also habits they are trying to break. For example, an
architect from the .NET world may be accustomed to reading the
latest news/gossip on forums about team internals. While
entertaining, it may be a low-value information stream. Placing
that in hold forms a reminder for an architect to avoid problematic
things.

Assess

Architects should use assess for promising technologies that they
have heard good things about but haven’t had time to assess for
themselves yet—see “Using Social Media”. This ring forms a
staging area for more serious research at some time in the future.

Trial

The trial ring indicates active research and development, such as
an architect performing spike experiments within a larger code
base. This ring represents technologies worth spending time on to
understand more deeply so that an architect can perform an
effective trade-off analysis.

Adopt

The adopt ring represents the new things an architect is most
excited about and best practices for solving particular problems.

It is dangerous to adopt a laissez-faire attitude toward a technology
portfolio. Most technologists pick technologies on a more or less ad
hoc basis, based on what’s cool or what your employer is driving.
Creating a technology radar helps an architect formalize their
thinking about technology and balance opposing decision criteria
(such as the “more cool” technology factor and being less likely to



get a new job versus a huge job market but with less interesting
work). Architects should treat their technology portfolio like a
financial portfolio: in many ways, they are the same thing. What does
a financial planner tell people about their portfolio? Diversify!

Architects should choose some technologies and/or skills that are
widely in demand and track that demand. But they might also want to
try some technology gambits, like open source or mobile
development. Anecdotes abound about developers who freed
themselves from cubicle-dwelling servitude by working late at night
on open source projects that became popular, purchasable, and
eventually, career destinations. This is yet another reason to focus on
breadth rather than depth.

Architects should set aside time to broaden their technology portfolio,
and building a radar provides a good scaffolding. However, the
exercise is more important than the outcome. Creating the
visualization provides an excuse to think about these things, and, for
busy architects, finding an excuse to carve out time in a busy
schedule is the only way this kind of thinking can occur.

Open Source Visualization Bits

By popular demand, ThoughtWorks released a tool in November
2016 to assist technologists in building their own radar visualization.
When ThoughtWorks does this exercise for companies, they capture
the output of the meeting in a spreadsheet, with a page for each
quadrant. The ThoughtWorks Build Your Own Radar tool uses a
Google spreadsheet as input and generates the radar visualization



using an HTML 5 canvas. Thus, while the important part of the
exercise is the conversations it generates, it also generates useful
visualizations.

Using Social Media
Where can an architect find new technologies and techniques to put
in the assess ring of their radar? In Andrew McAfee’s book
Enterprise 2.0 (Harvard Business Review Press), he makes an
interesting observation about social media and social networks in
general.

When thinking about a person’s network of contact between people,
three categories exist, as illustrated in Figure 24-3.





Figure 24-3. Social circles of a person’s relationships

In Figure 24-3, strong links represent family members, coworkers,
and other people whom a person regularly contacts. One litmus test
for how close these connections are: they can tell you what a person
in their strong links had for lunch at least one day last week. Weak
links are casual acquaintances, distant relatives, and other people seen
only a few times a year. Before social media, it was difficult to keep
up with this circle of people. Finally, potential links represent people
you haven’t met yet.

McAfee’s most interesting observation about these connections was
that someone’s next job is more likely to come from a weak link than
a strong one. Strongly linked people know everything within the
strongly linked group—these are people who see each other all the
time. Weak links, on the other hand, offer advice from outside
someone’s normal experience, including new job offers.

Using the characteristics of social networks, architects can utilize
social media to enhance their technical breadth. Using social media
like Twitter professionally, architects should find technologists whose
advice they respect and follow them on social media. This allows an
architect to build a network on new, interesting technologies to assess
and keep up with the rapid changes in the technology world.

Parting Words of Advice
How do we get great designers? Great designers design, of course.

—Fred Brooks



So how are we supposed to get great architects, if they only get the
chance to architect fewer than a half-dozen times in their career?

—Ted Neward

Practice is the proven way to build skills and become better at
anything in life…including architecture. We encourage new and
existing architects to keep honing their skills, both for individual
technology breadth but also for the craft of designing architecture.

To that end, check out the architecture katas on the companion
website for the book. Modeled after the katas used as examples here,
we encourage architects to use these as a way to practice building
skills in architecture.

A common question we get about katas: is there an answer guide
somewhere? Unfortunately such an answer key does not exist. To
quote your author, Neal:

There are not right or wrong answers in architecture—only trade-
offs.

When we started using the architecture katas exercise during live
training classes, we initially kept the drawings the students produced
with the goal of creating an answer repository. We quickly gave up,
though, because we realized that we had incomplete artifacts. In other
words, the teams had captured the topology and explained their
decisions in class but didn’t have the time to create architecture
decision records. While how they implemented their solutions was
interesting, the why was much more interesting because it contains
the trade-offs they considered in making that decision. Keeping just
the how was only half of the story.

https://oreil.ly/EPop7


So, our last parting works of advice: always learn, always practice,
and go do some architecture!



Appendix A. Self-
Assessment Questions



Chapter 1: Introduction
1. What are the four dimensions that define software

architecture?

2. What is the difference between an architecture decision and
a design principle?

3. List the eight core expectations of a software architect.

4. What is the First Law of Software Architecture?



Chapter 2: Architectural Thinking
1. Describe the traditional approach of architecture versus

development and explain why that approach no longer
works.

2. List the three levels of knowledge in the knowledge triangle
and provide an example of each.

3. Why is it more important for an architect to focus on
technical breadth rather than technical depth?

4. What are some of the ways of maintaining your technical
depth and remaining hands-on as an architect?



Chapter 3: Modularity
1. What is meant by the term connascence?

2. What is the difference between static and dynamic
connascence?

3. What does connascence of type mean? Is it static or dynamic
connascence?

4. What is the strongest form of connascence?

5. What is the weakest form of connascence?

6. Which is preferred within a code base—static or dynamic
connascence?



Chapter 4: Architecture Characteristics
Defined

1. What three criteria must an attribute meet to be considered
an architecture characteristic?

2. What is the difference between an implicit characteristic and
an explicit one? Provide an example of each.

3. Provide an example of an operational characteristic.

4. Provide an example of a structural characteristic.

5. Provide an example of a cross-cutting characteristic.

6. Which architecture characteristic is more important to strive
for—availability or performance?



Chapter 5: Identifying Architecture
Characteristics

1. Give a reason why it is a good practice to limit the number
of characteristics (“-ilities”) an architecture should support.

2. True or false: most architecture characteristics come from
business requirements and user stories.

3. If a business stakeholder states that time-to-market (i.e.,
getting new features and bug fixes pushed out to users as fast
as possible) is the most important business concern, which
architecture characteristics would the architecture need to
support?

4. What is the difference between scalability and elasticity?

5. You find out that your company is about to undergo several
major acquisitions to significantly increase its customer
base. Which architectural characteristics should you be
worried about?



Chapter 6: Measuring and Governing
Architecture Characteristics

1. Why is cyclomatic complexity such an important metric to
analyze for architecture?

2. What is an architecture fitness function? How can they be
used to analyze an architecture?

3. Provide an example of an architecture fitness function to
measure the scalability of an architecture.

4. What is the most important criteria for an architecture
characteristic to allow architects and developers to create
fitness functions?



Chapter 7: Scope of Architecture
Characteristics

1. What is an architectural quantum, and why is it important to
architecture?

2. Assume a system consisting of a single user interface with
four independently deployed services, each containing its
own separate database. Would this system have a single
quantum or four quanta? Why?

3. Assume a system with an administration portion managing
static reference data (such as the product catalog, and
warehouse information) and a customer-facing portion
managing the placement of orders. How many quanta should
this system be and why? If you envision multiple quanta,
could the admin quantum and customer-facing quantum
share a database? If so, in which quantum would the
database need to reside?



Chapter 8: Component-Based Thinking
1. We define the term component as a building block of an

application—something the application does. A component
usually consist of a group of classes or source files. How are
components typically manifested within an application or
service?

2. What is the difference between technical partitioning and
domain partitioning? Provide an example of each.

3. What is the advantage of domain partitioning?

4. Under what circumstances would technical partitioning be a
better choice over domain partitioning?

5. What is the entity trap? Why is it not a good approach for
component identification?

6. When might you choose the workflow approach over the
Actor/Actions approach when identifying core components?



Chapter 9: Architecture Styles
1. List the eight fallacies of distributed computing.

2. Name three challenges that distributed architectures have
that monolithic architectures don’t.

3. What is stamp coupling?

4. What are some ways of addressing stamp coupling?



Chapter 10: Layered Architecture Style
1. What is the difference between an open layer and a closed

layer?

2. Describe the layers of isolation concept and what the
benefits are of this concept.

3. What is the architecture sinkhole anti-pattern?

4. What are some of the main architecture characteristics that
would drive you to use a layered architecture?

5. Why isn’t testability well supported in the layered
architecture style?

6. Why isn’t agility well supported in the layered architecture
style?



Chapter 11: Pipeline Architecture
1. Can pipes be bidirectional in a pipeline architecture?

2. Name the four types of filters and their purpose.

3. Can a filter send data out through multiple pipes?

4. Is the pipeline architecture style technically partitioned or
domain partitioned?

5. In what way does the pipeline architecture support
modularity?

6. Provide two examples of the pipeline architecture style.



Chapter 12: Microkernel Architecture
1. What is another name for the microkernel architecture style?

2. Under what situations is it OK for plug-in components to be
dependent on other plug-in components?

3. What are some of the tools and frameworks that can be used
to manage plug-ins?

4. What would you do if you had a third-party plug-in that
didn’t conform to the standard plug-in contract in the core
system?

5. Provide two examples of the microkernel architecture style.

6. Is the microkernel architecture style technically partitioned
or domain partitioned?

7. Why is the microkernel architecture always a single
architecture quantum?

8. What is domain/architecture isomorphism?



Chapter 13: Service-Based Architecture
1. How many services are there in a typical service-based

architecture?

2. Do you have to break apart a database in service-based
architecture?

3. Under what circumstances might you want to break apart a
database?

4. What technique can you use to manage database changes
within a service-based architecture?

5. Do domain services require a container (such as Docker) to
run?

6. Which architecture characteristics are well supported by the
service-based architecture style?

7. Why isn’t elasticity well supported in a service-based
architecture?

8. How can you increase the number of architecture quanta in a
service-based architecture?



Chapter 14: Event-Driven Architecture
Style

1. What are the primary differences between the broker and
mediator topologies?

2. For better workflow control, would you use the mediator or
broker topology?

3. Does the broker topology usually leverage a publish-and-
subscribe model with topics or a point-to-point model with
queues?

4. Name two primary advantage of asynchronous
communications.

5. Give an example of a typical request within the request-
based model.

6. Give an example of a typical request in an event-based
model.

7. What is the difference between an initiating event and a
processing event in event-driven architecture?

8. What are some of the techniques for preventing data loss
when sending and receiving messages from a queue?

9. What are three main driving architecture characteristics for
using event-driven architecture?

10. What are some of the architecture characteristics that are not
well supported in event-driven architecture?



Chapter 15: Space-Based Architecture
1. Where does space-based architecture get its name from?

2. What is a primary aspect of space-based architecture that
differentiates it from other architecture styles?

3. Name the four components that make up the virtualized
middleware within a space-based architecture.

4. What is the role of the messaging grid?

5. What is the role of a data writer in space-based architecture?

6. Under what conditions would a service need to access data
through the data reader?

7. Does a small cache size increase or decrease the chances for
a data collision?

8. What is the difference between a replicated cache and a
distributed cache? Which one is typically used in space-
based architecture?

9. List three of the most strongly supported architecture
characteristics in space-based architecture.

10. Why does testability rate so low for space-based
architecture?



Chapter 16: Orchestration-Driven
Service-Oriented Architecture

1. What was the main driving force behind service-oriented
architecture?

2. What are the four primary service types within a service-
oriented architecture?

3. List some of the factors that led to the downfall of service-
oriented architecture.

4. Is service-oriented architecture technically partitioned or
domain partitioned?

5. How is domain reuse addressed in SOA? How is operational
reuse addressed?



Chapter 17: Microservices Architecture
1. Why is the bounded context concept so critical for

microservices architecture?

2. What are three ways of determining if you have the right
level of granularity in a microservice?

3. What functionality might be contained within a sidecar?

4. What is the difference between orchestration and
choreography? Which does microservices support? Is one
communication style easier in microservices?

5. What is a saga in microservices?

6. Why are agility, testability, and deployability so well
supported in microservices?

7. What are two reasons performance is usually an issue in
microservices?

8. Is microservices a domain-partitioned architecture or a
technically partitioned one?

9. Describe a topology where a microservices ecosystem might
be only a single quantum.

10. How was domain reuse addressed in microservices? How
was operational reuse addressed?



Chapter 18: Choosing the Appropriate
Architecture Style

1. In what way does the data architecture (structure of the
logical and physical data models) influence the choice of
architecture style?

2. How does it influence your choice of architecture style to
use?

3. Delineate the steps an architect uses to determine style of
architecture, data partitioning, and communication styles.

4. What factor leads an architect toward a distributed
architecture?



Chapter 19: Architecture Decisions
1. What is the covering your assets anti-pattern?

2. What are some techniques for avoiding the email-driven
architecture anti-pattern?

3. What are the five factors Michael Nygard defines for
identifying something as architecturally significant?

4. What are the five basic sections of an architecture decision
record?

5. In which section of an ADR do you typically add the
justification for an architecture decision?

6. Assuming you don’t need a separate Alternatives section, in
which section of an ADR would you list the alternatives to
your proposed solution?

7. What are three basic criteria in which you would mark the
status of an ADR as Proposed?



Chapter 20: Analyzing Architecture Risk
1. What are the two dimensions of the risk assessment matrix?

2. What are some ways to show direction of particular risk
within a risk assessment? Can you think of other ways to
indicate whether risk is getting better or worse?

3. Why is it necessary for risk storming to be a collaborative
exercise?

4. Why is it necessary for the identification activity within risk
storming to be an individual activity and not a collaborative
one?

5. What would you do if three participants identified risk as
high (6) for a particular area of the architecture, but another
participant identified it as only medium (3)?

6. What risk rating (1-9) would you assign to unproven or
unknown technologies?



Chapter 21: Diagramming and Presenting
Architecture

1. What is irrational artifact attachment, and why is it
significant with respect to documenting and diagramming
architecture?

2. What do the 4 C’s refer to in the C4 modeling technique?

3. When diagramming architecture, what do dotted lines
between components mean?

4. What is the bullet-riddled corpse anti-pattern? How can you
avoid this anti-pattern when creating presentations?

5. What are the two primary information channels a presenter
has when giving a presentation?



Chapter 22: Making Teams Effective
1. What are three types of architecture personalities? What type

of boundary does each personality create?

2. What are the five factors that go into determining the level of
control you should exhibit on the team?

3. What are three warning signs you can look at to determine if
your team is getting too big?

4. List three basic checklists that would be good for a
development team.



Chapter 23: Negotiation and Leadership
Skills

1. Why is negotiation so important as an architect?

2. Name some negotiation techniques when a business
stakeholder insists on five nines of availability, but only
three nines are really needed.

3. What can you derive from a business stakeholder telling you
“I needed it yesterday”?

4. Why is it important to save a discussion about time and cost
for last in a negotiation?

5. What is the divide-and-conquer rule? How can it be applied
when negotiating architecture characteristics with a business
stakeholder? Provide an example.

6. List the 4 C’s of architecture.

7. Explain why it is important for an architect to be both
pragmatic and visionary.

8. What are some techniques for managing and reducing the
number of meetings you are invited to?



Chapter 24: Developing a Career Path
1. What is the 20-minute rule, and when is it best to apply it?

2. What are the four rings in the ThoughtWorks technology
radar, and what do they mean? How can they be applied to
your radar?

3. Describe the difference between depth and breadth of
knowledge as it applies to software architects. Which should
architects aspire to maximize?
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The animal on the cover of Fundamentals of Software Engineering is
the red-fan parrot (Deroptyus accipitrinus), a native to South America
where it is known by several names such as loro cacique in Spanish,
or anacã, papagaio-de-coleira, and vanaquiá in Portugese. This New
World bird makes its home up in the canopies and tree holes of the
Amazon rainforest, where it feeds on the fruits of the Cecropia tree,
aptly known as “snake fingers,” as well as the hard fruits of various
palm trees.

As the only member of the genus Deroptyus, the red-fan parrot is
distinguished by the deep red feathers that cover its nape. Its name
comes from the fact that those feathers will “fan” out when it feels
excited or threatened and reveal the brilliant blue that highlights each
tip. The head is topped by a white crown and yellow eyes, with
brown cheeks that are streaked in white. The parrot’s breast and belly
are covered in the same red feathers dipped in blue, in contrast with
the layered bright green feathers on its back.

Between December and January, the red-fan parrot will find its
lifelong mate and then begin laying 2-4 eggs a year. During the 28
days in which the female is incubating the eggs, the male will provide
her with care and support. After about 10 weeks, the young are ready
to start fledging in the wild and begin their 40-year life span in the
world’s largest tropical rainforest.

While the red-fan parrot’s current conservation status is designated as
of Least Concern, many of the animals on O’Reilly covers are



endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and
white engraving from Lydekker’s Royal Natural History. The cover
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