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PREFACE TO THE SECOND
EDITION

he IT landscape looks significantly different today from when we first
started work on our book ten years ago. The world is a much more con-

nected place, with computers and the Internet being a big part of many peo-
ple’s daily lives both at home and at work. This has led to an even greater
expectation among users and other stakeholders that systems should be func-
tionally rich and complete, easy to use, robust, scalable, and secure. We feel
that the architect has an important role in achieving these goals and are
heartened by the fact that this view seems to have gained fairly widespread
acceptance among software development professionals and senior business
and technology management.

We were delighted by the positive reception to the first edition of our
book from practitioners, aspiring software architects, and academia. Our
readers seemed to find it useful, comprehensive, and informative. However,
architecture is a constantly changing discipline, and the second edition
reflects what we have learned and improved upon in our own practice since
the publication of the first edition. It also incorporates a number of very use-
ful comments and suggestions for improvement from readers, for which we
are extremely grateful.

However, our fundamental messages remain the same. Our primary
focus is on architecture as a service to stakeholders and a way to ensure that
an information system meets their needs. We continue to emphasize the vital
importance of views as a way of representing an architecture’s complexity in
a way its stakeholders can understand. We are also unswerving in our belief
that architecture must define how a system will provide the required quality
properties—such as scalability, resilience, and security—as well as defining
its static and dynamic structure, and that perspectives provide an effective
way to do this.

T
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Our main audience is practicing or aspiring architects, but we hope that
other IT professionals, who may be working alongside an architect, and stu-
dents, who will one day find themselves in this position, will also find it a
useful read.

The most important changes in this edition are as follows.

� We have introduced a new viewpoint, which we call the Context viewpoint. 
This describes the relationships, dependencies, and interactions between 
the system and its environment (the people, systems, and external enti-
ties with which it interacts). It extends, formalizes, and standardizes the rel-
atively brief discussion of scope and context that used to be in Chapter 8.

� We have expanded the discussion of different aspects of the role of archi-
tecture in Part II.

� We have revised most of the viewpoint and perspective definitions, par-
ticularly the Functional and Concurrency views and the Performance and 
Scalability perspective.

� We have revised and extended the Bibliography and the Further Reading 
sections in most chapters.

� We have updated the book to align with the concepts and terminology in 
the new international architecture standard ISO 42010 (which derives 
from IEEE Standard 1471).

� We have updated our UML modeling advice and examples to reflect the 
changes introduced in version 2 of UML.

We hope that you find the second edition of the book a useful improvement and
extension of the first edition, and we invite you to visit to our Web site at
www.viewpoints-and-perspectives.info for further software architecture resources
or to contact us to provide feedback on the book.

ACKNOWLEDGMENTS FOR THE SECOND EDITION

In addition to the people we thanked for the first edition, we would also like to
thank our second-edition reviewers—Paul Clements, Tim Cull, Rich Hilliard,
Philippe Kruchten, and Tommi Mikkonen—and our diligent and thorough copy
editor, Barbara Wood. In particular, we would like to thank Paul for his thor-
ough, insightful, and challenging comments and suggestions for improvement,
which we found extremely useful.

www.viewpoints-and-perspectives
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PREFACE TO THE FIRST
EDITION

he authors of this book are both practicing software architects who have
worked in this role, together and separately, on information system devel-

opment projects for quite a few years. During that time, we have seen a sig-
nificant increase in the visibility of software architects and in the importance
with which our role has been viewed by colleagues, management, and cus-
tomers. No large software development project nowadays would expect to go
ahead without an architect—or a small architectural group—in the vanguard
of the development team.

While there may be an emerging consensus that the software architect’s
role is an important one, there seems to be little agreement on what the job
actually involves. Who are our clients? To whom are we accountable? What
are we expected to deliver? What is our involvement once the architectural
design has been completed? And, perhaps most fundamentally, where are the
boundaries between requirements, architecture, and design?

The absence of a clear definition of the role is all the more problematic
because of the seriousness of the problems that today’s software projects
(and specifically, their architects) have to resolve.

� The expectations of users and other stakeholders in terms of functionality, 
capability, time to market, and flexibility have become much more demanding.

� Long system development times result in continual scope changes and conse-
quent changes to the system’s architecture and design.

� Today’s systems are more functionally and structurally complex than ever and 
are usually constructed from a mix of off-the-shelf and custom-built 
components.

T



xviii PREFACE TO THE FIRST EDIT ION

� Few systems exist in isolation; most are expected to interoperate and exchange 
information with many other systems.

� Getting the functional structure—the design—of the system right is only part 
of the problem. How the system behaves (i.e., its quality properties) is just as 
critical to its effectiveness as what it does.

� Technology continues to change at a pace that makes it very hard for architects 
to keep their technical expertise up-to-date.

When we first started to take on the role of software architects, we looked
for some sort of software architecture handbook that would walk us through
the process of developing an architectural design. After all, other architectural
disciplines have behind them centuries of theory and established best practice.

For example, in the first century A.D., the Roman Marcus Vitruvius Pollio
wrote the first ever architectural handbook, De architectura libri decem (“Ten
Books on Architecture”), describing the building architect’s role and required
skills and providing a wealth of material on standard architectural structures.
In 1670, Anthony Deane, a friend of diarist Samuel Pepys, a former mayor of
the English town of Harwich, and later a member of Parliament, published a
groundbreaking textbook, A Doctrine of Naval Architecture, which described
in detail some of the leading methods of the time for large ship design.
Deane’s ideas and principles helped systematize the practice of naval architec-
ture for many years. And in 1901, George E. Davis, a consulting engineer in
the British chemical industry, created a new field of engineering when he
published his text A Handbook of Chemical Engineering. This text was the
first book to define the practical principles underpinning industrial chemical
processes and guided the field for many years afterward.

The existence of such best practices has a very important consequence in
terms of uniformity of approach. If you were to give several architects and
engineers a commission to design a building, a cruise liner, or a chemical
plant, the designs they produced would probably differ. However, the pro-
cesses they used, the ways they represented their designs on paper (or a com-
puter screen), and the techniques they used to ensure the soundness of their
designs would be very similar.

Sadly, our profession has yet to build any significant legacy of main-
stream industrial best practices. When we looked, we found a dearth of intro-
ductory books to guide practicing information systems architects in the details
of doing their jobs.

Admittedly, we have an abundance of books on specific technologies,
whether it’s J2EE, CORBA, or .NET, and some on broader topics such as Web
services or object orientation (although, because of the speed at which soft-
ware technology changes, many of these become out-of-date within a few
years). There are also a number of good general software architecture books,
several of which we refer to in later chapters. But many of these books aim to
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lay down principles that apply across all sorts of systems and so are written in
quite general terms, while most of the more specific texts are aimed at our col-
leagues in the real-time and embedded-systems communities.

We feel that if you are a new software architect for an information sys-
tem, the books that actually tell you how to do your job, learn the important
things you need to know, and make your architectural designs successful are
few and far between. While we don’t presume to replace the existing texts on
software architecture or place ourselves alongside the likes of Vitruvius,
Deane, and Davis, addressing these needs was the driving force behind our
decision to write this book.

Specifically, the book shows you:

� What software architecture is about and why your role is vitally important to 
successful project delivery

� How to determine who is interested in your architecture (your stakeholders),
understand what is important to them (their concerns), and design an 
architecture that reflects and balances their different needs

� How to communicate your architecture to your stakeholders in an understand-
able way that demonstrates that you have met their concerns (the architec-
tural description)

� How to focus on what is architecturally significant, safely leaving other 
aspects of the design to your designers, without neglecting issues like 
performance, resilience, and location

� What important activities you most need to undertake as an architect, 
such as identifying and engaging stakeholders, using scenarios, creating 
models, and documenting and validating your architecture

Throughout the book we primarily focus on the development of large-
scale information systems (by which we mean the computer systems used to
automate the business operations of large organizations). However, we have
tried to present our material in a way that is independent of the type of infor-
mation system you are designing, the technologies the developers will be
using, and the software development lifecycle your project is following. We
have standardized on a few things, such as the use of Unified Modeling Lan-
guage (UML) in most of our diagrams, but we’ve done that only because UML
is the most widely understood modeling language around. You don’t have to
be a UML expert to understand this book.

We didn’t set out to be the definitive guide to developing the architecture
of your information system—such a book would probably never be finished
and would require the collaboration of a huge number of experts across a
wide range of technical specializations. Also, we did not write a book of pre-
scriptive methods. Although we present some activity diagrams that explain
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how to produce your deliverables, these are designed to be compatible with
the wide range of software development approaches in use today.

What we hope we have achieved is the creation of a practical, practitioner-
oriented guide that explains how to design successful architectures for
information systems and how to see these through to their successful imple-
mentation. This is the sort of book that we wish had been available when we
started out as software architects, and one that we expect to refer to even now.

You can find further useful software architecture resources, and
contact us to provide feedback on the book’s content, via our Web page:
www.viewpoints-and-perspectives.info. We look forward to hearing from you.

ACKNOWLEDGMENTS

This book would never have appeared without the advice, assistance, and
support of a lot of people.

We are very grateful to the many reviewers who commented on the text at
various stages of its creation, including Gary Birch, Chris Britton, Kelley But-
ler, Sholom Cohen, Dan Haywood, Sallie Henry, Andy Longshaw, Robert
Nord, Dan Paulish, Martyn Thomas, and Hans van Vliet.

We’d also like to thank the team members at Addison-Wesley for all of
their work to make the book a reality, including Kim Boedigheimer, John
Fuller, Peter Gordon, Chrysta Meadowbrooke, Simon Plumtree, and Elizabeth
Ryan.

Other people who provided us with advice, encouragement, and inspiration at
various times include Felix Bachmann, Dave Borthwick, David Emery, Wolfgang
Emmerich, Rich Hilliard, Philippe Kruchten, Roland Leibundgut, Mike Mackay,
Dave Maher, Mark Maier, Lucia Rapanotti, and Gaynor Redvers-Mutton.

We would also like to thank our families for their constant love, encour-
agement, and support throughout the project.

www.viewpoints-and-perspectives.info


1

1
INTRODUCTION

oday’s large-scale software systems are among the most complex struc-
tures ever built by humans, containing millions of lines of code, thou-

sands of database tables, and hundreds of components, all running on dozens
of computers. This presents some formidable challenges to software develop-
ment teams—and if these challenges aren’t addressed early, systems are de-
livered late, over budget, or with an unacceptably poor level of quality.

Most projects nowadays recognize the importance of appointing a soft-
ware architect, or in some cases a group of software architects, to provide
technology guidance and leadership to the rest of the team. However, as an
industry, there is no generally accepted definition of what software architects
do, how they do it, or what they are expected to deliver.

STAKEHOLDERS, VIEWPOINTS, AND PERSPECTIVES

This book is intended as a practical guide for software architects, whether you
are experienced or just starting your career. It focuses on three fundamental
concepts: stakeholders, viewpoints, and perspectives. To understand why
these concepts are important to you, let’s look at an example of how the prac-
tice of software architecture often unfolds.

T

EXAMPLE Sally is a software architect who works for a large commer-
cial organization. As one of the most senior members of the IT staff, 
Sally gets involved in a lot of different activities, but her key role is lead-
ing the definition and design of the organization’s information systems. 
One of these systems is taking most of her time and attention at present.
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The architect in our example is working with a number of different people,
each with different interests in and concerns about the new system. Tradition-
ally, software developers have concentrated on the needs of end users and
sometimes developers, but as our example illustrates, this is far too narrow a
view if you want to create a system that satisfies everyone affected by it.

We call the people affected by our system its stakeholders. Because stake-
holder needs are why the system is being created in the first place, meeting

It all starts simply enough: Sally is asked to start looking at options 
for replacing the current stock management system (which is batch-
based and fairly elderly) with a more modern system that would better 
support the changing needs of the business. In particular, the business 
wants the system to be more interactive and to allow employees to pro-
cess stock movements in real time rather than entering data and seeing 
the results the next day. The time lag imposed by the current system is a 
real competitive disadvantage and also leads to mistakes because of the 
lack of immediate feedback.

At first glance, the problem doesn’t seem too complicated. Sally talks 
to a few people around the organization about the new system’s require-
ments, and soon she has some idea of how to get started. Interviewing 
the business analysts and some of the main users at the head office sug-
gests some key requirements, which seem fairly straightforward. Sally 
starts to sketch possible solutions.

However, as she discusses her ideas around the company, Sally meets 
some people with very different ideas about the key requirements for the 
system. The users at the distribution depots claim to need totally different 
information from what the staff members at the head office need. Back at 
the head office, the commercial managers say it is crucial that they have 
real-time summary reporting throughout the day. However, this would 
slow the main transaction flow significantly, which isn’t acceptable to the 
people in the logistics group that is actually paying for the system.

Sally also interviews people outside the immediate business area, and 
they all have opinions too. The IT operations group members are wor-
ried about adopting new technology and don’t think they can administer 
the application server that Sally is planning to use. The IT auditors in-
form her that they need a two-year archive of all stock release authori-
zations in case of possible fraud. Leaving aside the difficulty of 
collecting it, that’s a lot of stock movement data to keep in the system.

Sally is struggling to reconcile the conflicting requirements of many of 
the people she has interviewed. She is also worried that she may have 
left out someone important or failed to address a key requirement.
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these needs is your chief goal as an architect. To do this, you need to clearly
identify your stakeholders, work with them to understand their concerns, bal-
ance their inevitably conflicting priorities, and design an architecture that
addresses their requirements as effectively as possible.

We talk about stakeholders throughout the book. We explore the concept
in Part I, explain how to work effectively with them in Part II, and show you
how to create architectures that meet their needs in Parts III and IV. For now,
let us continue with our example.

Sally has done some work to understand and involve her stakeholders, and 
although she may not feel she can meet all of their concerns, at least she 
now feels that she has a good understanding of what those concerns are.

Based on her understanding of the important stakeholder needs, Sally 
starts her architectural design in earnest. She sketches the functional 
structure of the system, identifying the key components and planning 
how they will work together to provide the required functionality. While 
she’s thinking about this, she starts grouping components into pro-
cesses and working out where these processes will run in the data cen-
ter. In order to meet the concerns of the operations group, Sally adds 
some system management components to her design that should make it 
more manageable. She realizes she needs to think about the data in the 
system, so she adds the main data stores and annotates the data flows 
between the key components. This sidetracks her for a while, as it’s 
quite involved, but within a couple of weeks Sally has a detailed archi-
tecture model to show people.

She’s pretty unhappy about the responses she gets from the people 
who received her document. Most of them don’t reply at all, and those 
who do seem to be concerned about minor details of the system or even 
the way she formatted the document. Sally heads off to talk to some of 
the end users, developers, and IT operations staff who reviewed the 
architecture in order to find out why they didn’t provide better feedback.

The result of her stakeholder chats is a bit demoralizing—no one 
seems to have grasped the most important features of her model. The 
developers are distracted by the operational components such as servers 
and disk arrays, and they worry about the way the application will be 
deployed to the data center, which isn’t their primary responsibility. The 
IT operations people are pleased to see their system management soft-
ware in the model, but they keep asking questions about data stores and 
data flows, when it seems quite obvious to Sally that this is not their 
concern. The end users don’t really understand anything and keep asking, 
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Sally is facing a problem familiar to many architects: How can you
describe something as multifaceted as the architecture of a complex system to
the different people who need to understand it? Indeed, this has been a prob-
lem for software engineers since the early days of computing.

If you read the more recent literature on software architecture, one of the
first useful discoveries you will make is the concept of an architectural view.
An architectural view is a description of one aspect of a system’s architecture
and is an application of the timeless problem-solving principle of “divide and
conquer.” By considering a system’s architecture through a number of distinct
views, you can understand, define, and communicate a complex architecture
in a selective fashion and thus avoid overwhelming your readers with its
overall complexity. Examples of architectural views include the system’s func-
tional structure, information organization, and the deployment environment.

Although describing an architecture using views helps partition the archi-
tectural description and make it easier to understand, it still leaves you with
the problem of deciding which views to use and how to create each one.
Again, many of us have faced this problem in the past. A proven solution is to
use template views, called architectural viewpoints, to guide the process of
developing the views that describe your architecture.

Using viewpoints and views to guide the architecture definition process is
a core theme of this book. We introduce, explain, and contextualize them in
Part I, while Part III contains a complete set of viewpoint definitions you can
use directly on your own architecture projects. For now, let’s see how Sally
uses viewpoints in our example. 

“But what will it do?” Sally feels this is pretty unfair because she has 
taken great pains to make sure that everything the system could do is 
documented somewhere.

In spite of producing a detailed architectural design, Sally doesn’t 
seem to have helped anyone understand her system. It isn’t clear to her 
how she can reorganize it in order to get her messages across more 
clearly.

Sally decides to use a set of viewpoints to create a view-based architec-
tural description. Because she is working to tight deadlines, she focuses 
her attention on the system’s functionality, the important information 
flows, and its deployment environment. This results in an effective repre-
sentation of an architecture that seems to meet the majority of the needs 
that her discussions with stakeholders have revealed. Her ideas 
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The architect in our example has realized that what a system does is only
part of the story and that how the system provides its services often has a
huge impact on the perceptions that stakeholders have of it. The architecture
you choose for your system dictates how quickly it runs, how secure it is, how
available it is, how easy it is to modify, and many other nonfunctional factors,
which we collectively term quality properties. Designing a system that exhib-
its acceptable quality properties is a crucial part of your role as an architect.

are approved, and development of the first version of the system begins. 
The software development goes fairly well, but some new complications 
emerge.

Having looked at the integration test logs and talked to some of the 
system testers, Sally starts to worry about system performance. She 
didn’t think much about performance earlier because no one seemed to 
be concerned about it, but the performance she is seeing, even with test 
data volumes, seems pretty poor to her.

At the same time, some of the security and audit group members are 
raising concerns about system security. Again, they didn’t mention this 
when Sally was gathering requirements, but now that the system is start-
ing to take shape, they’re talking about protecting parts of the system from 
different users and asking how they can be sure that the system databases 
aren’t updated by support staff without authorization. This is even more 
troublesome because, although Sally feels pretty confident about sorting 
out performance problems, she’s far less sure about security.

Finally, the corporate business continuity group recently sent out a 
stern e-mail reminding everyone of the need for all systems to be recov-
erable to a physically remote disaster recovery site within eight hours of 
a major failure. Sally wasn’t aware that this group worked with IT at all; 
the mainframe applications that she normally deals with inherit their di-
saster recovery facilities automatically from the mainframe environ-
ment, and she hasn’t needed to worry about this before.

Although it looks as if the system will provide the functionality that 
people requested, Sally is concerned that they will still be unhappy with 
it because it won’t be quick enough, won’t address their security con-
cerns, or won’t be available after any major systems failure.

Having recognized these problems, Sally isn’t sure what to do about 
them. She knows about performance and availability, but she’s not clear 
about how to increase the system’s level of security. Leaving aside her 
technical knowledge, Sally doesn’t know how to redesign her system in 
a way that balances these different concerns—concerns that no one 
mentioned when she was capturing requirements.
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Achieving your quality goals is a cross-structural aspect of the architec-
ture definition process (in fact, quality properties are also often known as
cross-cutting concerns) and is likely to impact all of the different structures
that make up your architecture. This means that achieving your quality goals
is likely to affect all of the views in your architectural description.

We have found that the conventional view and viewpoint approach works
very well for the definition of architectural structures but is less helpful when
considering quality properties. We need a better way to ensure that our archi-
tecture exhibits the quality properties required of it and to organize our archi-
tectural knowledge about quality properties. In order to do this, we have
defined a new concept. The architectural perspective is analogous to a view-
point, but rather than addressing a type of architectural structure, a perspec-
tive addresses a particular quality property (such as performance, security, or
availability).

Applying perspectives to views to ensure that they exhibit the required
quality properties is another important theme of this book. We provide an over-
view of perspectives in Part I, while Part IV contains a complete set of perspec-
tive definitions you can use directly on your own architecture projects in order to
avoid the kinds of problems that troubled the architect in our example.

Recapping, the core themes of this book are stakeholders, viewpoints,
and perspectives.

� Stakeholders are the people for whom we build systems. A key part of 
your role as an architect is knowing how to work with stakeholders in 
order to create an architecture that meets their complex, overlapping, and 
often conflicting needs.

� Viewpoints (and views) are an approach to structuring the architecture 
definition process and the architectural description, based on the princi-
ple of separation of concerns. Viewpoints contain proven architectural 
knowledge to guide the creation of an architecture, described in a partic-
ular set of views (each view being the result of applying the guidance in 
a particular viewpoint).

� Perspectives are a complementary concept to viewpoints that we intro-
duce in this book. Perspectives contain proven architectural knowledge 
and help structure the architecture definition process by separating con-
cerns but focusing on cross-structural quality properties rather than ar-
chitectural structures.

In this book we introduce, explain, and explore these three concepts and de-
fine an approach for creating effective architectures for your information sys-
tems. Of course, the approach we present is a simplification; architecture
definition isn’t a linear flow that can be easily written down but is in reality an
incremental process involving an iterative cycle of information capture, model
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development, review, and refinement. What we present here is a practical,
proven framework for tackling the architecture definition process and handling
the challenges that make software architecture such a fascinating job.

THE STRUCTURE OF THIS BOOK

The book is divided into five parts.

� Part I provides an introduction to and review of the basic concepts we use 
throughout the book (e.g., stakeholder, architectural description, viewpoint, 
view, and perspective) and describes the role of the software architect.

� Part II describes the most important activities you need to undertake as 
an architect, such as agreeing on a project’s scope, identifying and en-
gaging stakeholders, using scenarios and patterns, creating models, and 
documenting and validating your architecture.

� Part III is a catalog of the seven most important viewpoints you will need 
when creating your architectural description: the Context, Functional, In-
formation, Concurrency, Development, Deployment, and Operational 
viewpoints.

� Part IV is a catalog of the most important perspectives for information 
systems, including Security, Performance and Scalability, Availability 
and Resilience, Evolution, Location, Development Resource, Internation-
alization, and a number of others.

� Part V pulls these concepts together and explains how you can start to 
put our ideas into practice.

WHO SHOULD READ THIS BOOK

This book will clearly be of interest to you if you are a software architect or
would like to become one. It presents a number of concepts with which you
will be familiar and others that may be new to you. We hope it will help ex-
plain and clarify your role, establish your boundaries, and improve the way
you do your job. For experienced architects, the reference material in Parts III
and IV is likely to be particularly helpful for day-to-day use.

Parts of the book may interest some architectural stakeholders too. Spon-
sors and senior management on system development projects who work with
architects on the demand side of the relationship will want to read Part I, the
introductory chapters of Parts III and IV (about viewpoints and perspectives,
respectively), and Part V. The same applies to users.
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Software developers (particularly designers) and support and mainte-
nance staff may also find much helpful material in this book and will proba-
bly want to focus on Parts III and IV in more detail in order to better
understand the aspects of the architecture definition process that interest
them.

CONVENTIONS USED

To help make the text easy to read and refer back to, some standard features
appear throughout the book.

� We provide clear definitions of all of the important terms we use—either 
a reiteration of the accepted definition where its use is widespread or our 
own definition where the term (or our use of it) is new.

� We define a number of principles that underpin the theoretical aspects of 
the book. A principle is a fundamental statement of belief, approach, or 
intent that forms a basis for developing our ideas.

� We present strategies and checklists that will help you successfully apply 
our principles in your day-to-day work as an architect.

� We include a number of examples to illustrate the text. These are, for the 
most part, based on real projects with which one or the other of us has 
been involved in the past (with names changed to protect the innocent).

� We summarize the most important points at the end of most chapters in 
Parts I and II.

� We provide checklists at the end of the chapters in Parts III and IV to help 
you apply our guidance effectively and make sure that you don’t miss 
anything important.

� We provide lists of further reading at the end of most chapters in the 
book.



PART I
ARCHITECTURE FUNDAMENTALS
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2
SOFTWARE ARCHITECTURE
CONCEPTS

ne of the problems when we talk about architecture for software systems
is that the terminology has been loosely borrowed from other disciplines

(such as building architecture or naval architecture) and is widely used, in-
consistently, in a variety of situations. For example, the term architecture is
used to refer to the internal structure of microprocessors, the internal struc-
ture of machines, the organization of networks, the structure of software pro-
grams, and many other things.

This chapter defines and reviews some of the core concepts that underpin
the discussion in the remainder of the book: software architecture, architec-
tural elements, stakeholders, and architectural descriptions.

SOFTWARE ARCHITECTURE

Computers can be found everywhere in modern society—not just in data centers
or on desks but also in cars, washing machines, cell phones, and credit cards.
Whether they are big or small, simple or complex, all computer systems are
made up of the same three fundamental parts: software (e.g., programs or
libraries); data, which may be either transient (in memory) or persistent (on
disk or ROM); and hardware (e.g., processors, memory, disks, network cards).

DEFINITION When we refer to a computer system, we mean the software el-
ements that you need to specify and/or design in order to meet a particular set
of requirements and the hardware that you need to run those software
elements on.

O
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When you try to understand a system, you are interested in what its individual
parts actually do, how they work together, and how they interact with the world
around them—in other words, its architecture. A widely accepted definition of soft-
ware architecture can be found in the recent international standard ISO/IEC 42010,
“Systems and Software Engineering—Architecture Description” [ISO11].

DEFINITION The architecture of a system is the set of fundamental concepts
or properties of the system in its environment, embodied in its elements, rela-
tionships, and the principles of its design and evolution.

Let’s look at three key parts of this definition in a bit more detail, namely,
a system’s elements and relationships, its fundamental properties, and the
principles of its design and evolution.

System Elements and Relationships
Any system is composed of a number of pieces, which may be called things
like module, component, partition, or subsystem. We deliberately avoid using
any of these terms because they all have connotations suggesting certain
types of implementation or deployment technology. We prefer to follow the
lead of the ISO standard and a number of others and use the less familiar but
semantically neutral term elements to refer to the pieces that constitute a sys-
tem. We’ll define the term architectural element more formally later in this
chapter, but at this stage let’s just agree that elements are the architecturally
significant pieces of a system.

The elements that constitute a system and the relationships between them de-
fine the structure of the system that contains them. There are two types of struc-
tures that are of interest to the software architect: static structure (organization of
design-time elements) and dynamic structure (organization of runtime elements).

1. The static structures of a system tell you what the design-time form of 
a system is—that is, what its elements are and how they combine to 
provide the features required of the system.

DEFINITION The static structures of a system define its internal design-
time elements and their arrangement.

Internal design-time software elements might be programs, object-
oriented classes or packages, database stored procedures, services, or 
any other self-contained code unit. Internal data elements include 
classes, relational database entities/tables, and data files. Internal 
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hardware elements include computers or their constituent parts such as 
disk or CPU and networking elements such as cables, routers, or hubs.

The static arrangement of these elements defines—depending on the 
context—the associations, relationships, or connectivity between these 
elements. For software modules, for example, there may be static rela-
tionships such as a hierarchy of elements (module A is built from mod-
ules B and C) or dependencies between elements (module A relies on the 
services of module B). For classes, relational entities, or other data ele-
ments, relationships define how one data item is linked to another one. 
For hardware, the relationships define the required physical interconnec-
tions between the various hardware elements of the system.

2. The system’s dynamic structures show how the system actually works—
that is, what happens at runtime and what the system does in response 
to external (or internal) stimulus.

DEFINITION The dynamic structures of a system define its runtime ele-
ments and their interactions.

These internal interactions may be flows of information between ele-
ments (element A sends messages to element B) or the parallel or se-
quential execution of internal tasks (element X invokes a routine on 
element Y), or they may be expressed in terms of the effect they have on 
data (data item D is created, updated many times, and finally destroyed).

Of course, a system’s static and dynamic structures are closely related to one
another. For example, without static structure elements such as programs or data-
bases, there would not be any dynamic structure elements for information to flow
between. However, the two types of structures are not the same. Consider a simple
client/server system with one client-facing element that handles all interactions
with users. This would appear once as a static structure element but would appear
many times (once per active user) in a dynamic structure model. The dynamic
structure model would also have to explain what caused the instances of the client
element to become active or inactive (e.g., a user logging in and logging off again).

Fundamental System Properties
The fundamental properties of a system manifest themselves in two different
ways: externally visible behavior (what the system does) and quality proper-
ties (how the system does it).

1. Externally visible behavior tells you what a system does from the stand-
point of an external observer.
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DEFINITION The externally visible behavior of a system defines the func-
tional interactions between the system and its environment.

These external interactions form a set similar to the ones we consid-
ered for dynamic structure. This includes flows of information in and out 
of the system, the way that the system responds to external stimuli, and 
the published “contract” or API that the architecture has with the outside 
world.

External behavior may be modeled by treating the system as a 
black box so that you don’t know anything about its internals (if you 
make request P to a system built in compliance with the architecture, 
you are returned response Q). Alternatively, it may consider changes to 
internal system state in response to external stimuli (submitting a 
request R causes the creation of an internal data item D).

2. Quality properties tell you how a system behaves from the viewpoint of an 
external observer (often referred to as its nonfunctional characteristics).

DEFINITION A quality property is an externally visible, nonfunctional prop-
erty of a system such as performance, security, or scalability.

There is a whole range of quality properties that may be of interest: 
How does the system perform under load? What is the peak throughput 
given certain hardware? How is the information in the system protected 
from malicious use? How often is it likely to break? How easy is it to man-
age, maintain, and enhance? How easily can it be used by people who are 
disabled? Which of these characteristics are relevant depends on your cir-
cumstances and on the concerns and priorities of your stakeholders.

Principles of Design and Evolution
One of the things that is immediately obvious about a well-structured and
maintainable system is that its implementation is consistent and respects a
system-wide set of structuring conventions. This allows the system to be
more easily understood and encourages extensions to the system to be made
in a consistent and logical way, fitting into the overall form of the system
without introducing unnecessary complexity.

One of the things that is necessary in order to achieve this internal imple-
mentation consistency is a clear set of principles to guide the system’s design
and evolution.
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According to the Oxford English Dictionary, the general definition of a prin-
ciple is a fundamental truth or proposition serving as the foundation for belief
or action. In the context of architectural design, we extend this definition
slightly and define an architectural principle to be a fundamental statement of
belief, approach, or intent that guides the definition of your architecture .

Defining and following architectural principles is a powerful way of estab-
lishing a decision-making framework for a consistent, well-structured archi-
tecture. Principles expose underlying assumptions and bring them out into
the cold light of day—in other words, they make the implicit explicit. They are
a great way to kick off an architecture project, especially when motivation or
scope is unclear. They are also useful if you suspect that there are significant
but unrecognized conflicts or contradictions in the requirements of a proposed
architecture. We’ll have quite a lot more to say about design principles in
Chapter 8.

System Properties and Internal Organization
Let’s explore the idea of system properties and how they are related to the
internal organization of a system by means of a simple example.

Faced with these requirements, there are a number of ways that an archi-
tect could design a system for it. Over the next few pages we outline two pos-
sible architectural approaches for this system.

EXAMPLE An airline reservation system supports a number of different 
transactions to book airline seats, update or cancel them, transfer them, 
upgrade them, and so forth. Figure 2–1 shows the context for this sys-
tem. (We have used a simplified use case notation here: The rectangle 
represents the system, the “stick man” represents customers who inter-
act with the system, and the notation boxes provide additional support-
ing information.)

The externally visible behavior of the system (what it does) is its re-
sponse to the transactions that can be submitted by customers, such as 
booking a seat, updating a reservation, or canceling a booking. The 
quality properties of the system (how it does it) include the average re-
sponse time for a transaction under a specified load; the maximum 
throughput the system can support; system availability; and the time, 
skills, and cost required to repair defects.
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FIGURE 2–1 CONTEXT DIAGRAM FOR AN AIRLINE BOOKING SYSTEM

The architect could design a solution for the airline reservation sys-
tem based around a two-tier client/server approach. (In fact, this is an 
example of the use of an architectural style, as we will see in Part II.) In 
this approach, shown in Figure 2–2, a number of clients (which present 
information to customers and accept their input) communicate with a 
central server (which stores the data in a relational database) via a 
wide-area network (WAN). An established architectural style like two-
tier client/server has widely known benefits and pitfalls, so starting like 
this with a well-understood approach helps to avoid introducing unnec-
essary risk to the design.

As the diagram illustrates, the static structure (design-time organiza-
tion) for this client/server architecture consists of the client programs 
(which in this example are further broken down into presentation, busi-
ness logic, database, and network layers), the server, and the connec-
tions between them. A related architectural diagram would show that 
the dynamic structure (runtime organization) is based on a request/re-
sponse model: Requests are submitted by a client to the server over the 
WAN, and responses are returned by the server to the client. The static 
elements of the architecture provide the mechanisms whereby the dy-
namic interactions can occur (for example, the client programs submit 
requests on behalf of the users and receive and display the results).

«system»
Airline Reservation System

Customers

System under
consideration

Users of
the system
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FIGURE 2–2 TWO-TIER CLIENT/SERVER ARCHITECTURE FOR AN AIRLINE BOOKING SYSTEM

Alternatively, the architect could take a three-tier client/server ap-
proach, where only the presentation processing is performed on the cli-
ents, with the business logic and database access performed in an 
application server, as shown in Figure 2–3.

The static structure for this architecture consists of the client pro-
grams (which in this example are further broken down into presentation 
and network layers), the application server (here, business logic, data-
base, and network layers), the database server, and the connections 
between them. The dynamic structure is based on a three-tier request/
response model: Requests are submitted by a client to the application 
server over the WAN, the application server submits requests to the 
database server if necessary, and responses are returned by the applica-
tion server to the client.

The architect might identify the two-tier approach as appropriate for 
the architecture because of its relative operational simplicity, because it 
can be developed quickly by the organization’s software developers, 
because it can be delivered at lower cost than other options, or for a 
range of other reasons.
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In this example, there are two possible solutions to the problem, based
around a two-tier approach and a three-tier approach, respectively. We call
these candidate architectures.

DEFINITION A candidate architecture for a system is a particular arrange-
ment of static and dynamic structures that has the potential to exhibit the
system’s required externally visible behaviors and quality properties.

FIGURE 2–3 THREE-TIER CLIENT/SERVER ARCHITECTURE FOR AN AIRLINE BOOKING SYSTEM

Alternatively, the architect may consider the three-tier approach to be 
right for the architecture because it provides better options for scalability 
as workload increases, because less powerful client hardware is needed, 
because it may offer better security, or for other reasons.

Whichever approach the architect considers to be more appropriate, 
she chooses it because it provides the best match between the system 
properties promised by the approach and the requirements of the 
system.
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Although the candidate architectures have different static and dynamic
structures, each must be able to meet the system’s overall requirements to
process airline bookings in a timely and efficient manner. However, although
all candidate architectures are believed to share the same important externally
visible behaviors (in this case, responses to booking transactions) and gen-
eral quality properties (such as acceptable response time, throughput, avail-
ability, and time to repair), they are likely to differ in the specific set of quality
properties that each exhibits (such as one being easier to maintain but more
expensive to build than another).

In each case, the extent to which the candidate actually exhibits these
behaviors and properties must be determined by further analysis of its static
and dynamic structures. For example, the two-tier candidate architecture
might meet the functional requirements better because it supports function-
ally richer clients; the three-tier candidate architecture might deliver better
throughput and response time because it is more loosely coupled.

It is part of the architect’s role to derive the static and dynamic structures
for each of the candidate architectures, understand the extent to which they
exhibit the required behaviors and quality properties, and select the best one.
Of course, what is meant by “best” may not always be clear; we will return to
this issue in Part II.

We can capture the relationship between the externally visible properties
of a system and its internal structure and organization as follows.

� The externally visible behavior of a system (what it does) is determined 
by the combined functional behavior of its internal elements.

� The quality properties of a system (how it does it) such as performance, 
scalability, and resilience arise from the quality properties of its internal 
elements. (Typically, a system’s overall quality property is only as good 
as the property of its worst-behaving or weakest internal element.)

Of course, it’s not really as simple as that! For example, a server that can-
not scale to process the workload submitted to it may also become function-
ally constrained (for example, users may not be able to log in to it or execute
some resource-heavy functions). However, we still find that this rather sim-
plistic distinction is a useful one that has informed much of our thinking.

The Importance of Software Architecture
Every computer system, large or small, is made up of pieces that are linked to-
gether. There may be a small number of these pieces, or perhaps only one, or
there may be dozens or hundreds; and this linkage may be trivial, or very
complicated, or somewhere in between.
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Furthermore, every system is made up of pieces that interact with each
other and the outside world in a deterministic (predictable) way. Again, the
behavior may be simple and easily understood, or it may be so convoluted
that no one person can understand every aspect of it. However, this behavior
is still there and still (in theory at least) describable.

In other words, every system has an architecture, in the same way that
every building, bridge, and battleship has an architecture—and every human
body has a physiology.

This is such an important concept that we will state it formally as a princi-
ple here.

PRINCIPLE Every system has an architecture, whether or not it is docu-
mented and understood.

The architecture of a system is an intrinsic, fundamental property that is
present whether or not it has been documented and is understood. Every sys-
tem has precisely one architecture—although, as we will see, it can be repre-
sented in a number of ways.

ARCHITECTURAL ELEMENTS

As explained previously, we standardize the term architectural element to re-
fer to the pieces from which systems are built.

DEFINITION An architectural element (or just element) is a fundamental
piece from which a system can be considered to be constructed.

The nature of an architectural element depends very much on the type of
system you are considering and the context within which you are considering
its elements. Programming libraries, subsystems, deployable software units
(e.g., Enterprise Java Beans or .NET assemblies), reusable software products
(e.g., database management systems), or entire applications may form architec-
tural elements in an information system, depending on the system being built.

An architectural element should possess the following key attributes:

� A clearly defined set of responsibilities

� A clearly defined boundary

� A set of clearly defined interfaces, which define the services that the ele-
ment provides to the other architectural elements
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Architectural elements are often known informally as components or
modules, but these terms are already widely used with established specific
meaning. In particular, the term component tends to suggest the use of a pro-
gramming-level component model (such as J2EE or .NET), while module tends
to suggest a programming language construct. Although these are valid archi-
tectural elements in some contexts, they won’t be the type of fundamental
system element used in others.

For this reason, we deliberately don’t use these terms from now on.
Instead, we use the term element throughout the book to avoid confusion (fol-
lowing the lead of others, including ISO 42010 and Bass, Clements, and
Kazman [BASS03]—see the Further Reading section at the end of this chapter
for more details).

STAKEHOLDERS

Traditional software development has been driven by the need of the deliv-
ered software to meet the requirements of users. Although the definition of
the term user varies, all software development methods are based around this
principle in one way or another.

However, the people affected by a software system are not limited to
those who use it. Software systems are not just used: They have to be built
and tested, they have to be operated, they may have to be repaired, they are
usually enhanced, and of course they have to be paid for. Each of these activ-
ities involves a number—possibly a significant number—of people in addition
to the users. Each of these groups of people has its own requirements, inter-
ests, and needs to be met by the software system.

We refer collectively to these people as stakeholders. Understanding the
role of the stakeholder is fundamental to understanding the role of the archi-
tect in the development of a software product or system. We define a stake-
holder as follows.

DEFINITION A stakeholder in the architecture of a system is an individual,
team, organization, or classes thereof, having an interest in the realization of
the system.

The definition is based on the one from ISO Standard 42010, which we
discuss in more depth in Part II. For now, let’s look at a couple of key concepts
from this definition.
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Individual, Team, or Organization
First of all, consider the phrase “individual, team, or organization.” As we
shall see in this book, those with an interest in the architecture of a system
stretch far more widely than just its developers, or even its developers and us-
ers. A much broader community than this is affected by the realization of the
architecture as a system, such as those who have to support it, deploy it, or
pay for it. 

Specifying the architecture is a key opportunity for the stakeholders to
direct its shape and direction. You will find, however, that some stakeholders
are more interested in their roles than others, for a variety of reasons that
have little to do with architecture. Part of your role, therefore, is to engage
and galvanize, to persuade people of the importance of their involvement, and
to obtain their commitment to the task.

As the definition notes, a stakeholder often represents a class of individ-
ual, such as user or developer, rather than a specific person. This presents
some problems because it may not be possible to capture and reconcile the
needs of all members of the class (all users, all developers) in the time avail-
able. Furthermore, you may not have the stakeholders at hand (e.g., when
developing a new product). In either case, you need to select some represen-
tative stakeholders who will speak for the group. We’ll come back to this in
Part II.

Interests and Concerns
Now consider the phrase “having an interest in the realization of the system.”
This criterion is—deliberately—a broad one, and its interpretation is entirely
specific to individual projects. As you will see when you start to develop your
architecture, you are engaged in a process of discovery as much as one of
capture—in other words, this early in the system development lifecycle, your
stakeholders may not yet know precisely what their requirements are.

Another way that we sometimes express this idea is to say that we are
interested in stakeholders who have concerns about the system. We find the
term concern particularly appropriate because of the broad range of possible
types of stakeholder involvement with a system.

DEFINITION A concern about an architecture is a requirement, an objective, a
constraint, an intention, or an aspiration a stakeholder has for that architecture.

Many concerns will be common among stakeholders, but some concerns
will be distinct and may even conflict. Resolving such conflicts in a way that
leaves stakeholders satisfied can be a significant challenge.
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The Importance of Stakeholders
Stakeholders (explicitly or implicitly) drive the whole shape and direction of
the architecture, which is developed solely to create a system for their bene-
fit and to serve their needs. Stakeholders ultimately make or direct the fun-
damental decisions about scope, functionality, operational characteristics,

FIGURE 2–4 THE QUALITY TRIANGLE

EXAMPLE Some of the important attributes of a software development 
project are often shown as a triangle whose corners represent cost, 
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and structure of the eventual product or system—under the guidance of the
architect, of course. Without stakeholders, there would be no point in de-
veloping the architecture because there would be no need for the system it
will turn into, nor would there be anyone to build it, deploy it, run it, or pay
for it.

PRINCIPLE Architectures are created solely to meet stakeholder needs.

It follows that if a system does not adequately meet the needs of its stake-
holders, it cannot be considered a success—no matter how well it conforms to
good architectural practice. In other words, architectures must be evaluated
with respect to stakeholder needs as well as abstract architectural and soft-
ware engineering principles.

As we’ve seen, it is not uncommon for the needs of different stakeholders
to be in conflict with one another. There is no easy answer to such a dilemma,
and it often falls to the architect to strike an effective balance in such cases
(for example, by accepting higher maintenance costs in a performance-critical
system, caused by the level of optimization and integration of system ele-
ments required in order to reduce request processing latency).

PRINCIPLE A good architecture is one that successfully addresses the con-
cerns of its stakeholders and, when those concerns are in conflict, balances
them in a way that is acceptable to the stakeholders.

Part II explores the concept of stakeholders in more detail and explains
how they can be classified, identified, selected, and engaged in the develop-
ment of the architecture.

ARCHITECTURAL DESCRIPTIONS

An architecture for a software system can be an incredibly complex thing. Part
of the architect’s role is to describe this complexity to the people who need to
understand it. The architect does this by means of an architectural description.

DEFINITION An architectural description (AD) is a set of products that
documents an architecture in a way its stakeholders can understand and dem-
onstrates that the architecture has met their concerns.
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“Products” in this context consist of a range of things—particularly archi-
tectural models, but also scope definition, constraints, and principles. We dis-
cuss each of these in more detail in Parts II and III.

A description of an architecture has to present its essence and its detail at
the same time—in other words, it must provide an overall picture that sum-
marizes the whole system, but it also must decompose into enough detail that
it can be validated and the described system can be built.

Although it is true that every system has an architecture, it is unfortu-
nately not true that every system has an AD. Even if an architecture is
documented, it may be documented only in part, or the documentation may
be out-of-date or unused.

Strictly speaking, therefore, our definition describes a good AD. However,
an AD that its stakeholders cannot understand or that doesn’t demonstrate to
them that their concerns have been met is really not worth having—in fact, it
can be more of a liability than an asset. The AD needs to contain all of (and
ideally only) the information needed to communicate the architecture effec-
tively to those stakeholders who need to understand it.

PRINCIPLE Although every system has an architecture, not every system has
an architecture that is effectively communicated via an architectural description.

Of course, the chances of your architectural ideas being implemented as
you envisaged them are far less if the AD is inadequate.

EXAMPLE The AD for the airline reservation system referred to earlier fo-
cused strongly on the static structure (the key hardware and software ele-
ments and how they are organized) and to a lesser extent on its external 
behavior (the way that those elements interact to respond to requests that 
users could make). Because most users would have a customer at a sales 
desk or on the end of a telephone, quick response time and system reliabil-
ity are paramount.

If the AD for such a system does not consider the quality properties of 
the system in any detail—in particular, if there is no clear definition of 
response-time requirements nor any performance models—it is quite likely 
that when the system is deployed, it will deliver poor performance, particu-
larly under peak load.

The solution to this is to identify a group of users who can agree on 
what the performance requirements are, and then the architect can balance 
these against what analysis and testing reveal is practically possible.
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The architect writes the AD and is also one of its major users. You use the
AD as a memory aid, a basis for analysis, a record of decisions, and so on.
However, you are only one of the users of the AD. To a lesser or greater ex-
tent, all of the other stakeholders need to understand the architecture (or at
least parts of it) as it relates to them. If the AD does not help with this, it has
failed.

PRINCIPLE A good architectural description is one that effectively and con-
sistently communicates the key aspects of the architecture to the appropriate
stakeholders.

Nowadays there is a plethora of techniques, models, architecture descrip-
tion languages, and other ways to document architectures. Choosing the right
ones for a particular system development is a significant challenge in its own
right; you need to take into account the characteristics of the system and the
skills and capabilities of its stakeholders.

Part II explores the concept of ADs in more detail, and Parts III and IV
explain the different elements of an AD and how to create them.

RELATIONSHIPS BETWEEN THE CORE CONCEPTS

The important relationships between our core concepts are illustrated in the
UML class diagram in Figure 2–5. The diagram brings out the following rela-
tionships among the concepts we have discussed so far.

� A system is built to address the needs, concerns, goals, and objectives of 
its stakeholders.

� The architecture of a system comprises a number of architectural ele-
ments and their interelement relationships.

� The architecture of a system can potentially be documented by an AD 
(fully, partly, or not at all). In fact, there are many potential ADs for a 
given architecture, some good, some bad.

� An AD documents an architecture for its stakeholders and demonstrates 
to them that it has met their needs.

This helps avoid the significant amount of enhancement and tuning inev-
itably required when performance problems emerge later in the lifecycle.
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We use standard UML conventions in Figure 2–5 and throughout the book.
Here, rectangles represent our architectural concepts, and directed lines represent
relationships from one concept to another. A filled diamond at the “from” end of a
line indicates an “is composed of” relationship. The cardinality of each relationship
(how many of one thing can be related to another) is shown at each end of each
line. The relationships are annotated to give a brief indication of what they mean.

SUMMARY

In this chapter we laid our foundations by defining and discussing some con-
cepts and terms we will be using throughout the rest of the book.

� The architecture of a system defines its static structure, its dynamic
structure, its externally visible behavior, its quality properties, and the 
principles that should guide its design and evolution . Each of these 
aspects is important although not always addressed. Every computer 
system has an architecture, even if we don’t understand it.

� A candidate architecture for a system is one that has the potential to 
exhibit the system’s required externally visible behaviors and quality 
properties. Most problems have several candidate architectures, and it 
is the job of the architect to select the best one.

� An architectural element is a clearly identifiable, architecturally mean-
ingful piece of a system.

FIGURE 2–5 CORE CONCEPT RELATIONSHIPS
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� A stakeholder is a person, group, or entity with an interest in or concerns 
about the realization of the architecture. Stakeholders include users but 
also many other people, such as developers, operators, and acquirers. 
Architectures are created solely to meet stakeholder needs.

� An architectural description is a set of products that documents an archi-
tecture in a way its stakeholders can understand and demonstrates that 
the architecture has met their concerns. Although every system has an 
architecture, not every system has an effective AD.

FURTHER READING

We have aligned our language and concepts in this chapter with the most re-
cent general standard we are aware of in the field of software architecture—
ISO/IEC Standard 42010 [ISO11] (an evolution of IEEE Standard 1471-2000
for architecture description). According to its own introduction, this standard
addresses “the creation, analysis and sustainment of architectures of systems
through the use of architecture descriptions.” Our conceptual model is based
on the one presented in the standard.

Much of our thinking on software architecture concepts is based on the
work done by the Software Architecture group of the Software Engineering
Institute. The book by Bass, Clements, and Kazman [BASS03] is a thorough
introduction to the main ideas in the field of software architecture and pro-
vides a lot more depth and background on the fundamental concepts than we
provide here.

One of the original books on software architecture is by Shaw and Garlan
[SHAW96]. This book provides a minimalist and elegant introduction to the
fundamental ideas in software architecture, including overviews of an AD, ar-
chitectural styles, and possible tool support. Even earlier than this, one of the
original papers in the software architecture field, by Perry and Wolf
[PERR92], is well worth reading for its clear focus on the important elements
of the discipline.

If you want to take a wider view of software architecture, a useful book
may be the cross-disciplinary Art of Systems Architecting [MAIE09]. This
book is novel in that it introduces and discusses the idea of architecture (and
“architecting”) as a set of principles and techniques valid across all complex
systems domains. A particular emphasis is placed on architecture heuristics,
and a set of interesting heuristics is provided. Examples are taken from build-
ings, manufacturing, social systems, IT, and collaborative systems.

A number of other good introductory books on the subject have appeared
in the years between the first and second editions of this book. In all of our
writing, we have tried to stress that it is important to focus your architecture
work on the most important aspects of the problem that you face, rather than
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trying to use every viewpoint and perspective in every case. George Fair-
banks’s book Just Enough Software Architecture [FAIR10] is a practical guide
to doing exactly this, showing you how to practice “risk-driven architecting”
in order to tailor your architecture work in response to the risks that you face.
Ian Gorton’s book Essential Software Architecture [GORT06] is a concise,
practical introduction to a number of important software architecture topics;
and Richard Taylor, Neno Medvidovic, and Eric Dashofy have created a very
comprehensive introduction to the subject in [TAYL09].

If you are interested in defining a formal process for your software archi-
tecture work, Peter Eeles and Peter Cripps’s book The Process of Software
Architecting [EELE09] will be a useful guide to achieving this.
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3
VIEWPOINTS AND VIEWS

hen you start the daunting task of designing the architecture of your
system, you will find that you have some difficult architectural ques-

tions to answer.

� What are the main functional elements of your architecture?

� How will these elements interact with one another and with the outside 
world?

� What information will be managed, stored, and presented?

� What physical hardware and software elements will be required to sup-
port these functional and information elements?

� What operational features and capabilities will be provided?

� What development, test, support, and training environments will be 
provided?

A common temptation—one you should strongly avoid—is to try to answer
all of these questions by means of a single, heavily overloaded, all-encompassing
model. This sort of model (and we’ve all seen them) will probably use a mixture
of formal and informal notations to describe a number of aspects of the system
on one huge sheet of paper: the functional structure, software layering, concur-
rency, intercomponent communication, physical deployment environment, and
so on. Let’s see what happens when we try to use an all-encompassing model in
our AD, by means of an example.

As the example shows, this sort of AD is really the worst of all worlds.
Many writers on software architecture have pointed out that it simply isn’t pos-
sible to describe a software architecture by using a single model. Such a model
is hard to understand and is unlikely to clearly identify the architecture’s most

W
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EXAMPLE Although the airline reservation system we introduced in 
Chapter 2 is conceptually fairly simple, in practice some aspects of this 
system make it very complicated indeed.

� The system’s data is distributed across a number of systems in different 
physical locations.

� A number of different types of data entry devices must be supported.

� The system must be able to present some information in different 
languages.

� The system must be able to print tickets and other documents on a wide 
range of printers.

� The plethora of international regulations complicates the picture even 
further.

After some discussion, the architect draws up a first-cut architecture for 
the system, which attempts to represent all of its important aspects in a sin-
gle diagram. This model includes the full range of data entry devices (in-
cluding various dumb terminals, desktop PCs, and wireless devices), the 
multiple physical systems on which data is stored or replicated data is 
maintained, and some of the printing devices that must be supported (the 
model does not cover remote printing because it is done at a separate facil-
ity). The model is heavily annotated with text to indicate, for example, 
where multilanguage support is required and where data must be audited, 
archived, or analyzed to support regulatory requirements.

However, no details of the network interfaces between the different 
components are included—these are abstracted out into a network icon 
because they are so complex. (In fact, the network design is probably 
the most complicated aspect of the architecture, requiring support for a 
number of different and largely incompatible network protocols, routing 
over public and private networks, synchronous and asynchronous inter-
actions, and varying levels of service reliability and availability.) Fur-
thermore, the model does not address any of the implications of having 
the same data distributed around multiple systems.

Because it is so complex and tries to address a wide mix of concerns in 
the same diagram, the model fails to engage any of the stakeholders. The 
users find it too complex and difficult to understand (particularly because of 
the large number of physical hardware components represented). The tech-
nology stakeholders, on the other hand, tend to disregard it because of the 
detail that is left out, such as the network topology. The legal team members 
can’t use it to satisfy themselves that the regulatory aspects will be ade-
quately handled, and the sponsor finds it completely incomprehensible.
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important features. It tends to poorly serve individual stakeholders because
they struggle to understand the aspects that interest them. Worst of all,
because of its complexity, a monolithic AD is often incomplete, incorrect, or
out-of-date.

PRINCIPLE It is not possible to capture the functional features and quality
properties of a complex system in a single comprehensible model that is un-
derstandable by, and of value to, its stakeholders.

We need to represent complex systems in a way that is manageable and
comprehensible by a range of business and technical stakeholders. A widely
used approach—the only successful one we have found—is to attack the
problem from different directions simultaneously. In this approach, the AD is
partitioned into a number of separate but interrelated views, each of which
describes a separate aspect of the architecture. Collectively, the views describe
the whole system.

To help you understand what we mean by a view, let’s consider the ex-
ample of an architectural drawing for one of the elevations of an office block.
This portrays the building from a particular aspect, typically a compass bear-
ing such as northeast. The drawing shows features of the building that are
visible from that vantage point but not from other directions. It doesn’t show
any details of the interior of the building (as seen by its occupants) or of its
internal systems (such as plumbing or air conditioning) that influence the en-
vironment its occupants will inhabit. Thus the blueprint is only a partial rep-
resentation of the building; you have to look at—and understand—the whole
set of blueprints to grasp the facilities and experience that the whole building
will provide.

Another way that a building architect might represent a new building
is to construct a scale model of it and its environs. This shows how the
building will look from all sides but again reveals nothing about the mech-
anisms to be used in its construction, its interior form, or its likely internal
environment.

Furthermore, the architect spends an inordinate amount of time keep-
ing it up-to-date—every time a new type of data entry device or printer is 
discussed, for example, the diagram needs to be updated and reprinted on 
a very large sheet of paper.

Because of these problems, the diagram soon becomes obsolete and is 
eventually forgotten. Unfortunately, the issues that the model fails to 
address do not disappear and thus cause many problems and delays 
during the implementation and the early stages of live operation.
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STRATEGY A complex system is much more effectively described by a set of
interrelated views, which collectively illustrate its functional features and
quality properties and demonstrate that it meets its goals, than by a single
overloaded model.

Let’s take a look at what this approach means for software architecture.

ARCHITECTURAL VIEWS

An architectural view is a way to portray those aspects or elements of the ar-
chitecture that are relevant to the concerns the view intends to address—and,
by implication, the stakeholders to whom those concerns are important.

This idea is not new, going back at least as far as the work of David
Parnas in the 1970s and more recently Dewayne Perry and Alexander Wolf
in the early 1990s. However, it wasn’t until 1995 that Philippe Kruchten of
the Rational Corporation published his widely accepted written description
of views, Architectural Blueprints—The “4 + 1” View Model of Software
Architecture. This suggested four different views of a system and the use
of a set of scenarios (use cases) to elucidate its behavior. Kruchten’s ap-
proach has since evolved to form an important part of the Rational Unified
Process (RUP).

IEEE Standard 1471 (the predecessor of ISO Standard 42010) formalized
these concepts in 2000 and brought some welcome standardization of termi-
nology. In fact, our definition of a view is based on and extends the one from
the original IEEE standard.

DEFINITION A view is a representation of one or more structural aspects of
an architecture that illustrates how the architecture addresses one or more
concerns held by one or more of its stakeholders.

When deciding what to include in a view, ask yourself the following
questions.

� View scope: What structural aspects of the architecture are you trying 
to represent? For example, are you trying to define the runtime func-
tional elements and their intercommunication, or the runtime environ-
ment and how the system is deployed into it? Do you need to 
represent the dynamic or static elements of these structures? (For 
example, in the case of the functional element structure, do you wish 
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to show the elements and the connectors between them, or the se-
quence of interactions they perform in order to process an incoming 
request, or both?)

� Element types: What type(s) of architectural element are you trying to 
categorize? For example, when considering how the system is de-
ployed, do you need to represent individual server machines, or do 
you just need to represent a service environment (like Force.com 
SiteForce or Google AppEngine) that your system elements are 
deployed into?

� Audience: What class(es) of stakeholder is the view aimed at? A view 
may be narrowly focused on one class of stakeholder or even a specific 
individual, or it may be aimed at a larger group whose members have 
varying interests and levels of expertise.

� Audience expertise: How much technical understanding do these 
stakeholders have? Acquirers and users, for example, will be experts 
in their subject areas but are unlikely to know much about hardware 
or software, while the converse may apply to developers or support 
staff.

� Scope of concerns: What stakeholder concerns is the view intended to 
address? How much do the stakeholders know about the architectural 
context and background to these concerns?

� Level of detail: How much do these stakeholders need to know about this 
aspect of the architecture? For nontechnical stakeholders such as users, 
how competent are they in understanding its technical details?

As with the AD itself, one of your main challenges is to get the right con-
tent into your views. Provide too much irrelevant detail, for example, and
your audience will be overwhelmed; too little information, and you risk your
audience being confused or making assumptions that may not be valid. There
are two key questions you should ask yourself when deciding what to include
in a view. First of all, can the stakeholders that it targets use it to determine
whether their concerns have been met? And second, can those stakeholders
use it to successfully undertake their role in building the system?

We will explore the second question in more detail in Chapter 9, but for
now we will summarize these questions as follows.

STRATEGY Only include in a view information that furthers the objectives of
your AD—that is, information that helps explain the architecture to stake-
holders or demonstrates that the goals of the system (i.e., the concerns of its
stakeholders) are being met.
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VIEWPOINTS

It would be hard work if every time you were creating a view of your architec-
ture you had to go back to first principles to define what should go into it.
Fortunately, you don’t quite have to do that.

In his introductory paper, Philippe Kruchten defined four standard views,
namely, Logical, Process, Physical, and Development. The IEEE standard
made this idea generic (and did not specify one set of views or another) by
proposing the concept of a viewpoint.

The objective of the viewpoint concept is an ambitious one—no less
than making available a library of templates and patterns that can be used
off the shelf to guide the creation of an architectural view that can be
inserted into an AD. We define a viewpoint (again after IEEE Standard
1471) as follows.

DEFINITION A viewpoint is a collection of patterns, templates, and conven-
tions for constructing one type of view. It defines the stakeholders whose
concerns are reflected in the viewpoint and the guidelines, principles, and
template models for constructing its views.

Architectural viewpoints provide a framework for capturing reusable
architectural knowledge that can be used to guide the creation of a particular
type of (partial) AD. You may find it helpful to compare the relationship
between viewpoints and views to the relationship between classes and
objects in object-oriented development.

� A class definition provides a template for the construction of an object. 
An object-oriented system will include at runtime a number of objects,
each of a specified class.

� A viewpoint provides a template for the construction of a view. A viewpoints-
and-views-based architecture definition will include a number of views, each 
conforming to a specific viewpoint.

Viewpoints are an important way of bringing much-needed structure and
consistency to what was in the past a fairly unstructured activity. By defining
a standard approach, a standard language, and even a standard metamodel
for describing different aspects of a system, stakeholders can understand any
AD that conforms to these standards once familiar with them.

In practice, of course, we haven’t fully achieved this goal yet. There are
no universally accepted ways to model software architectures, and many
ADs use their own homegrown conventions (or even worse, no particular
conventions at all). However, the widespread acceptance of techniques such
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as entity-relationship models and of modeling languages such as UML takes
us some way toward this goal.

In any case, it is extremely useful to be able to categorize views according
to the types of concerns and architectural elements they present.

STRATEGY When developing a view, whether or not you use a formally
defined viewpoint, be clear in your own mind what sorts of concerns the view
is addressing, what types of architectural elements it presents, and who the
viewpoint is aimed at. Make sure that your stakeholders understand these as
well.

RELATIONSHIPS BETWEEN THE CORE CONCEPTS

To put views and viewpoints in context, we can now extend the conceptual
model we introduced in Chapter 2 to illustrate how views and viewpoints con-
tribute to the overall picture (see Figure 3–1).

FIGURE 3–1 VIEWS AND VIEWPOINTS IN CONTEXT
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We have added the following relationships to the diagram we originally
presented as Figure 2–5.

� A viewpoint defines the aims, intended audience, and content of a 
class of views and defines the concerns that views of this class will 
address.

� A view conforms to a viewpoint and so communicates the resolution of a 
number of concerns (and a resolution of a concern may be communicated 
in a number of views).

� An AD comprises a number of views.

THE BENEFITS OF USING VIEWPOINTS AND VIEWS

Using views and viewpoints to describe the architecture of a system benefits
the architecture definition process in a number of ways.

� Separation of concerns: Describing many aspects of the system via a single 
representation can cloud communication and, more seriously, can result in 
independent aspects of the system becoming intertwined in the model. Sep-
arating different models of a system into distinct (but related) descriptions 
helps the design, analysis, and communication processes by allowing you to 
focus on each aspect separately.

� Communication with stakeholder groups: The concerns of each stake-
holder group are typically quite different (e.g., contrast the primary con-
cerns of end users, security auditors, and help-desk staff), and 
communicating effectively with the various stakeholder groups is quite a 
challenge. The viewpoint-oriented approach can help considerably with 
this problem. Different stakeholder groups can be guided quickly to dif-
ferent parts of the AD based on their particular concerns, and each view 
can be presented using language and notation appropriate to the knowl-
edge, expertise, and concerns of the intended readership.

� Management of complexity: Dealing simultaneously with all of the aspects 
of a large system can result in overwhelming complexity that no one person 
can possibly handle. By treating each significant aspect of a system sepa-
rately, the architect can focus on each in turn and so help conquer the com-
plexity resulting from their combination.

� Improved developer focus: The AD is of course particularly important for the 
developers because they use it as the foundation of the system design. By 
separating out into different views those aspects of the system that are par-
ticularly important to the development team, you help ensure that the right 
system gets built.
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VIEWPOINT PITFALLS

Of course, the use of views and viewpoints won’t solve all of your software archi-
tecture problems automatically. Although we have found that using views is really
the only way to make the problem manageable, you need to be aware of some pos-
sible pitfalls when using the view-and-viewpoint-based approach.

� Inconsistency: Using a number of views to describe a system inevitably 
brings consistency problems. It is theoretically possible to use architec-
ture description languages to create the models in your views and then 
cross-check these automatically (much as graphical modeling tools 
attempt to check structured or object-oriented methods models), but 
there are no such machine-checkable architecture description languages 
in widespread use today. This means that achieving cross-view consis-
tency within an AD is an inherently manual process. To assist with this, 
Chapter 23 includes a checklist to help you ensure consistency between 
the standard viewpoints presented in our catalog in Part III.

� Selection of the wrong set of views: It is not always obvious which set of 
views is suitable for describing a particular system. This is influenced by a 
number of factors, such as the nature and complexity of the architecture, the 
skills and experience of the stakeholders (and of the architect), and the time 
available to produce the AD. There really isn’t an easy answer to this prob-
lem, other than your own experience and skill and an analysis of the most 
important concerns that affect your architecture.

� Fragmentation: Having several views of your architecture can make 
the AD difficult to understand. Each separate view also involves a sig-
nificant amount of effort to create and maintain. To avoid fragmenta-
tion and minimize the overhead of maintaining unnecessary 
descriptions, you should eliminate views that do not address signifi-
cant concerns for the system you are building. In some cases, you may 
also consider creating hybrid views that combine models from a num-
ber of views in the viewpoint set (e.g., creating a combined deploy-
ment and concurrency view). Beware, however, of the combined views 
becoming difficult to understand and maintain because they address a 
combination of concerns.

OUR VIEWPOINT CATALOG

Part III of this book presents our catalog of seven core viewpoints for information
systems architecture: the Context, Functional, Information, Concurrency, Devel-
opment, Deployment, and Operational viewpoints. Although the viewpoints are
(largely) disjoint, we find it convenient to group them as shown in Figure 3–2.
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� The Context viewpoint describes the relationships, dependencies, and 
interactions between the system and its environment (the people, sys-
tems, and external entities with which it interacts).

� The Functional, Information, and Concurrency viewpoints characterize 
the fundamental organization of the system.

� The Development viewpoint exists to support the system’s construction.

� The Deployment and Operational viewpoints characterize the system 
once in its live environment.

You can use the shape and position of the icons in Figure 3–2 to help un-
derstand how our viewpoints are related to one another. We have put the
Context viewpoint at the top of the diagram to indicate its role as the “over-
arching” viewpoint that informs the scope and content of all the others. We
group the Functional, Information, and Concurrency viewpoints together at
the left, to highlight that between them they define how the system provides
its functionality.

The viewpoints on the right-hand side are to some extent driven by those
on the left; for example, the Development viewpoint defines standards and
models for the construction of the architecture’s functional, information, and
concurrency elements. We have further grouped the Deployment and Opera-
tional viewpoints, since between them, these views define the system’s produc-
tion environment.

Functional Viewpoint

Information Viewpoint

Concurrency Viewpoint

Deployment Viewpoint

Operational Viewpoint

Development Viewpoint

Context Viewpoint

FIGURE 3–2 VIEWPOINT GROUPINGS
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Viewpoint Overview
Table 3–1 briefly describes our viewpoints.

Of course, not all of these viewpoints may apply to your architecture, and
some will be more important than others. You may not need views of all of
these types in your AD, and in some cases there may be other viewpoints that
you need to identify and add yourself. This means that your first job is to un-
derstand the nature of your architecture, the skills and experience of the
stakeholders, and the time available and other constraints, and then to come
up with an appropriate selection of views.

FIGURE 3–2 VIEWPOINT CATALOG

Viewpoint Definition

Context Describes the relationships, dependencies, and interactions between the 
system and its environment (the people, systems, and external entities 
with which it interacts). The Context view will be of interest to many of 
the system’s stakeholders and plays an important role in helping them to 
understand its responsibilities and how it relates to their organization.

Functional Describes the system’s runtime functional elements, their responsibilities, 
interfaces, and primary interactions. A Functional view is the cornerstone 
of most ADs and is often the first part of the description that stakeholders 
try to read. It drives the shape of other system structures such as the infor-
mation structure, concurrency structure, deployment structure, and so on. 
It also has a significant impact on the system’s quality properties such as 
its ability to change, its ability to be secured, and its runtime performance.

Information Describes the way that the system stores, manipulates, manages, and dis-
tributes information. The ultimate purpose of virtually any computer sys-
tem is to manipulate information in some form, and this viewpoint develops 
a complete but high-level view of static data structure and information flow. 
The objective of this analysis is to answer the big questions around content, 
structure, ownership, latency, references, and data migration.

Concurrency Describes the concurrency structure of the system and maps functional 
elements to concurrency units to clearly identify the parts of the system 
that can execute concurrently and how this is coordinated and con-
trolled. This entails the creation of models that show the process and 
thread structures that the system will use and the interprocess commu-
nication mechanisms used to coordinate their operation.

Development Describes the architecture that supports the software development pro-
cess. Development views communicate the aspects of the architecture 
of interest to those stakeholders involved in building, testing, main-
taining, and enhancing the system.

Continued on next page



While it can be hard to generalize, and it is important to choose your set
of views for the specific context in which you find yourself, Table 3–2 lists the
relative importance that we have often found each view to have for some typ-
ical types of information systems. We suggest you use this table as a starting
point when choosing the views to include in your AD.

Viewpoint Definition

Deployment Describes the environment into which the system will be deployed and 
the dependencies that the system has on elements of it. This view cap-
tures the hardware environment that your system needs (primarily the 
processing nodes, network interconnections, and disk storage facilities 
required), the technical environment requirements for each element, 
and the mapping of the software elements to the runtime environment 
that will execute them.

Operational Describes how the system will be operated, administered, and sup-
ported when it is running in its production environment. For all but the 
simplest systems, installing, managing, and operating the system is a 
significant task that must be considered and planned at design time. 
The aim of the Operational viewpoint is to identify system-wide strate-
gies for addressing the operational concerns of the system’s stakehold-
ers and to identify solutions that address these.

FIGURE 3–2 VIEWPOINT CATALOG (CONTINUED)

TABLE 3–2 MOST IMPORTANT VIEWS FOR TYPICAL SYSTEM TYPES

OLTP 
Information
System

Calculation Service/
Middleware

DSS/MIS
System

High-Volume 
Web Site

Enterprise
Package

Context High Low High Medium Medium

Functional High High Low High High

Information Medium Low High Medium Medium

Concurrency Low High Low Medium Varies

Development High High Low High High

Deployment High High High High High

Operational Varies Low Medium Medium High
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SUMMARY

Capturing the essence and the detail of the whole architecture in a single model
is just not possible for anything other than simple systems. If you try to do this,
you will end up with a Frankenstein monster of a model that is unmanageable
and does not adequately represent the system to you or any of the stakeholders.

By far the best way of managing this complexity is to produce a number
of different representations of all or part of the architecture, each of which
focuses on certain aspects of the system, showing how it addresses some of
the stakeholder concerns. We call these views.

To help you decide what views to produce and what should go into any
particular view, you use viewpoints, which are standardized definitions of
view concepts, content, and activities.

The use of views and viewpoints brings many benefits, such as separa-
tion of concerns, improved communication with stakeholders, and manage-
ment of complexity. However, it is not without its pitfalls, such as
inconsistency and fragmentation, and you must be careful to manage these.

In this chapter, we introduced our viewpoint catalog, comprising the Con-
text, Functional, Information, Concurrency, Development, Deployment, and
Operational viewpoints, which we describe in detail in Part III.

FURTHER READING

A lot of useful guidance on creating ADs using views (including a discussion
of when and how to combine views) and thorough guidance for creating the
documentation for a wide variety of types of views can be found in Clements
et al. [CLEM10]. Other references that help to make sense of viewpoints and
views are IEEE Standard 1471 [IEEE00], ISO Standard 42010 [ISO11], and
Kruchten’s “4 + 1” approach [KRUC95]. One of the earliest explicit references
to the need for architectural views appears in Perry and Wolf [PERR92]. 

Some of the other viewpoint taxonomies that have been developed over
the last decade or so—including Kruchten’s “4 + 1,” RM-ODP, the viewpoint
set by Hofmeister et al. [HOFM00], and the set by Garland and Anthony
[GARL03]—are described in the Appendix, together with recommendations
for further reading in this area.

Part III, where we describe our viewpoint catalog in detail, contains refer-
ences for specific view-related reading.
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4
ARCHITECTURAL
PERSPECTIVES

n Chapter 3, we explained how we use viewpoints (such as the Context, Func-
tional, Information, and Deployment viewpoints) to guide the process of cap-

turing and representing the architecture as a set of views, with the development
of each view being guided by the use of a specific viewpoint. When creating a
view, your focus is on the issues, concerns, and solutions pertinent to that view.
So, for an Information view, for example, you focus on things such as informa-
tion structure, ownership, transactional integrity, data quality, and timeliness.

Many of the important concerns that are pertinent to one view are much
less important when considering the others. Data ownership, for example, is
not key to formulating the Concurrency view, nor is the development environ-
ment a major concern when considering the Functional view. (Of course, the
decisions taken in one view can have a considerable impact on the others, and
it is a big part of the architect’s job to make sure that these implications are
understood. However, the concerns addressed in different views are largely
different.)

Although the views, when combined, form a representation of the whole
architecture, we can consider them largely independent of one another—a dis-
joint partition of the whole architectural analysis. In fact, for any significant
system, you usually must partition your analysis this way because the entire
problem is too much to understand or describe in a single piece.

QUALITY PROPERTIES

Many architectural decisions address concerns that are common to many or
all views. These concerns are normally driven by the need for the system
to exhibit a certain quality property rather than to provide a particular

I
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function. In our experience, trying to address these aspects of an architec-
ture by using viewpoints doesn’t work well. Let’s look at an example to
understand why.

EXAMPLE Security is clearly a vital quality of most systems. It has 
always been important to be able to restrict access to data or functional-
ity to appropriate classes of users, and in the age of the Internet, good 
external and internal security is even more important. If some of your 
systems are exposed to the wider world, they are vulnerable to attack, 
and the consequences of a breach can be disastrous for finances or pub-
lic relations. (The large number of high-profile Internet security failures 
in Europe and North America that have occurred since the early part of 
the millennium illustrates this clearly.)

In our experience, security is often not thought through properly early 
in the project lifecycle. Part of the reason for this is that security is hard—
the means for achieving an appropriate level of security are complex and 
require sophisticated analysis. Also, it may be considered to be “someone 
else’s problem”—the responsibility of a specialist security group rather 
than of the organization as a whole. You may be surprised, therefore, that 
we have not included a Security viewpoint in our catalog to go along with 
the others (Functional, Information, Deployment, and so forth). 

We used to approach concerns such as security just like that our-
selves. We used a Security viewpoint and started to consider which 
classes of stakeholders have concerns in this area, what this viewpoint 
should consist of, and how a typical Security view might actually look.

However, experience taught us that security is an important factor 
that affects aspects of the architecture addressed by most if not all of the 
other viewpoints we presented in Chapter 3. Furthermore, which of the 
system’s security qualities are significant depends on which viewpoint 
we are considering. Here are some examples.

� From the Functional viewpoint, the system needs the ability to 
identify and authenticate its users (internal and external, human 
and mechanical). Security processes should be effective but unob-
trusive, and any external processes exposed to the outside world 
need to be resilient to attack.

� From the Information viewpoint, the system must be able to con-
trol different classes of access to information (read, insert, update, 
delete). The system may need to apply these controls at varying 
levels of granularity (e.g., defining object-level security within a 
database). 
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As the example shows, there is an inherent need to consider quality prop-
erties such as security in each architectural view. Considering a quality property
in isolation just doesn’t make sense, so using a viewpoint to guide the creation
of another view for each quality property doesn’t make sense either.

ARCHITECTURAL PERSPECTIVES

Going back to our example, although security is clearly important, represent-
ing it in our conceptual model of software architecture as another viewpoint
doesn’t really work. A comprehensive security viewpoint would have to con-
sider process security, information security, operational security, deployment
security, and so on. In other words, it would affect exactly the aspects of the
system that we have considered so far using our viewpoints.

Rather than defining another viewpoint and creating another view, we need
some way to modify and enhance our existing views to ensure that our architec-
ture exhibits the desired quality properties. This should define the activities that
we would perform to determine whether the architecture exhibits the required
quality properties, some proven architectural tactics that we would apply to
improve the architecture if we discover that it doesn’t, and some guidelines we
would follow to help us apply these tactics in the right way.

We therefore need something in our conceptual model that can be consid-
ered “orthogonal” to viewpoints, and we have coined the term architectural
perspective (which we shorten to perspective) to refer to it.

DEFINITION An architectural perspective is a collection of architectural
activities, tactics, and guidelines that are used to ensure that a system exhib-
its a particular set of related quality properties that require consideration
across a number of the system’s architectural views.

� From the Operational viewpoint, the system must be able to main-
tain and distribute secret information (e.g., keys and passwords) 
and must be up-to-date with the latest security updates and 
patches.

When we consider the system from the Development, Concurrency, 
and Deployment viewpoints, we’ll probably also find aspects of the 
architecture that will be affected by security needs.

So our overall criterion of “the system must be secure” actually breaks 
down across the viewpoints into a number of more specific criteria.
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Although our use of the term perspective is relatively new compared to the
other concepts we discuss in the book, the ideas behind it have a very established
pedigree. The issues addressed by perspectives are often referred to as cross-
cutting concerns or nonfunctional requirements of the architecture, although we
prefer not to use this latter term.1

With perspectives, we are trying to systematize what a good architect does
anyway—understand the quality properties that are required; assess and review
the architectural models to ensure that the architecture exhibits the required prop-
erties; identify, prototype, test, and select architectural tactics to address cases
when the architecture is lacking; and so on.

DEFINITION An architectural tactic is an established and proven approach
you can use to help achieve a particular quality property.

An example architectural tactic for achieving satisfactory overall system
performance might be to define different processing priorities for different
parts of the system’s workload, and to manage this by using a priority-based
process scheduler. The concept of architectural tactics was created and devel-
oped by the software architecture researchers at the Carnegie Mellon Software
Engineering Institute (SEI), and although our definition is worded slightly
differently from theirs, our approach to tactics is based directly on their work
in this area.

Don’t confuse tactics with design patterns, which we discuss in Part II.
Although tactics and patterns are both valuable sources of design knowledge,
a tactic is much more general and less constraining than a classical design
pattern because it does not mandate a particular software structure but pro-
vides general guidance on how to design a particular aspect of your system.
(See the Further Reading section at the end of this chapter for some refer-
ences on tactics.)

A perspective provides a framework to guide and formalize this process.
This means that you never work with perspectives in isolation but instead use
them with each view of your architecture to analyze and validate its qualities
and to drive further architectural decision making. We describe this as apply-
ing the perspective to the view.

1. Although it is true that the perspectives tend to address concerns that are dis-
tinct from what the system actually does, the division of concerns as functional or 
nonfunctional is often quite artificial, and we try to avoid the use of these terms. 
Perspectives can have an impact on how a system works, sometimes significantly, 
and using these terms can imply that these areas are somehow less important than 
functionality.
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Different quality properties, such as security, performance, availability, or
usability, vary in their applicability to different types of systems. Usability,
for example, is unlikely to be particularly important to an infrastructure
project with little or no functionality exposed to users. However, broad cate-
gories of systems are likely to have similar overall quality property require-
ments and common ways of meeting them, so we intend perspectives to be
defined in sets, with each set aimed at a particular category of system. In this
book we focus on large-scale information systems and have therefore defined
a set of perspectives for systems in that domain.

In our experience, the most important perspectives for large information sys-
tems include Security (ensuring controlled access to sensitive system resources),
Performance and Scalability (meeting the system’s required performance profile

EXAMPLE The ability to identify and authenticate users is a key quality 
property of almost every software system. It is very important to be able 
to confirm that users really are who they claim to be and validate that 
they are allowed to access the system.

To meet this requirement, the architecture therefore needs sound 
mechanisms to identify and authenticate its users. These features mani-
fest themselves (to a greater or lesser extent) in different architectural 
views; for example:

� The system needs access to an authentication service or to a list of 
users and their passwords or other authentication data. If authen-
tication data is held within the application, the data must be held 
in such a way that it cannot be easily obtained by others (e.g., one-
way encrypted passwords). Access to an external authentication 
service would be shown in the Context and Functional views (and 
possibly the Deployment view); if authentication information 
needs to be held securely within the system, this would be defined 
in the Information view.

� The system must protect access by means of login screens of some 
sort, which would require the user to present appropriate credentials 
before being allowed to access the system. It also requires the ability 
for operational staff to manage the list of users and to reset their pass-
words. The functional features would be defined in the Functional 
view and the operational aspects defined in the Operational view.

� In some application domains, the system might need to maintain a 
verifiably secure store of security keys and certificates, using spe-
cialized hardware in a secure physical environment. These features 
would be defined in the Deployment view. 
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and handling increasing workloads satisfactorily), Availability and Resilience
(ensuring system availability when required and coping with failures that could
affect this), and Evolution (ensuring that the system can cope with likely
changes). We define these perspectives in detail in Part IV, along with a number
of less widely applicable perspectives such as Regulation (the ability of the sys-
tem to conform to local and international laws, quasi-legal regulations, company
policies, and other rules and standards).

You will find these perspective definitions useful whether you are just
starting out as an architect or already have significant experience in the role.
You can use the definitions in a number of different ways.

� A perspective is a useful store of knowledge, helping you quickly review 
your architectural models for a particular quality property without having 
to absorb a large quantity of more detailed material.

� A perspective acts as an effective guide when you are working in an area 
that is new to you and you are not familiar with its typical concerns, 
problems, and solutions.

� A perspective is a useful memory aid when you are working in an area 
that you are more familiar with, to make sure that you don’t forget any-
thing important.

In general, you should try to apply your perspectives, even if only infor-
mally, as early as possible in the design of your architecture. This will help
prevent you from going down architectural blind alleys in which you develop
a model that is functionally correct but offers, for example, poor performance
or availability.

As with viewpoints, it is important to define perspectives in a standard
way, to make them easy to use and to ensure that they all approach a subject
area in the same general way. The perspective definitions in Part IV are all
structured in the following manner.

� Applicability: This section explains which of your views are most likely to 
be affected by applying the perspective. For example, applying the Evolu-
tion perspective might affect your Functional view more than your Oper-
ational view.

� Concerns: This information defines the quality properties that the per-
spective addresses.

� Activities: In this section, we explain the steps for applying the perspec-
tive to your views—identifying the important quality properties, analyz-
ing the views against these properties, and then making architectural 
design decisions that modify and improve the views.
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� Architectural tactics: Each perspective identifies and describes the most 
important tactics for achieving its quality properties.

� Problems and pitfalls: This section explains the most common things that 
can go wrong and gives guidance on how to recognize and avoid them.

� Checklists: The checklists provide a list of questions to help you make 
sure you have addressed the most important concerns, considered the 
most appropriate tactics, and avoided the most common pitfalls.

� Further reading: Our perspective descriptions are necessarily brief, help-
ing you understand the most important issues, problems, and proven 
practices. The Further Reading section provides a number of pointers to 
further information.

APPLYING PERSPECTIVES TO VIEWS

As we indicate in Figure 4–1, you apply each relevant perspective to some or all
of the views that you are using in order to address that perspective’s system-
wide quality property concerns. The architectural views contain the description of
the architecture, while the perspectives guide you through the process of analyz-
ing and modifying your architecture to make sure it exhibits a particular quality
property.

Although every perspective can be applied to every view (in other words,
the relationship between perspectives and views is many-to-many), in prac-
tice, because of time constraints and the risks that you need to address, you
usually apply only some of the perspectives to some of the views. An easy way
to understand this process is to think of a two-dimensional grid, with views
along one axis and perspectives along another, as shown in Figure 4–2.

Each rectangle in the grid represents the application of a perspective to a
view, and the contents of the rectangle define the important qualities and con-
cerns at that intersection. Here are some examples.

� When you apply the Security perspective to the Information view, it 
guides the design of your architecture so that, for example, it includes 
appropriate data access control and data ownership.

� When you apply the Performance perspective to the Concurrency view, it 
guides the design of your architecture so that, for example, a suitable pro-
cess structure is used, and shared resources will not lead to contention.

� When you apply the Evolution perspective to the Functional view, it 
guides the design of your architecture so that, for example, you consider 
the types of changes that will be required and build in the right level of 
flexibility.
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You can draw a grid like the one shown in Figure 4–2 to record which
perspectives you intend to apply to which views. When you are working on
a particular view, look along the rows of the grid to remind yourself of the
important non-view-specific qualities and how they manifest themselves in
that view. You may even want to add detail to your grid to record how
important each perspective is to each view for your system, as illustrated in
Table 4–1.    

FIGURE 4–1 APPLYING PERSPECTIVES TO VIEWS

etc.Usability Perspective

Accessibility PerspectiveSecurity Perspective

Location PerspectivePerformance Perspective

Regulation PerspectiveAvailability Perspective

Functional View

Information View

Concurrency View

Deployment View

Operational View

Development View

Context View



CHAPTER 4 � ARCHITECTURAL PERSPECTIVES 53

FIGURE 4–2 EXAMPLES OF APPLYING PERSPECTIVES TO VIEWS
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EXAMPLE Going back to our example of security, having decided on a 
candidate architecture for your system and captured it as a set of views, 
you would then apply the Security perspective in order to ensure that the 
system meets its security requirements.

To apply this perspective, you would perform a number of activities, 
as listed in the perspective’s definition, such as identifying the sensitive 
resources in the system, identifying the threats that the system faces, 
and deciding how to mitigate each threat by using suitable security pro-
cesses and technology. The result would typically be some changes to 
your candidate architecture such as those listed here.
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CONSEQUENCES OF APPLYING A PERSPECTIVE

Applying a perspective to a view can lead to insights, improvements, and artifacts.

� You might decide to partition the system differently in order to 
easily restrict access to parts of it. This would affect your Func-
tional view.

� Your security design might introduce new hardware and software 
elements to the system to limit access or to add additional guaran-
tees (such as encryption to ensure privacy). You would need to add 
these new elements to your Deployment view to define where they 
fit, and you might need to update the Development view to define 
how these new elements should be used.

� You might identify new operational procedures to support secure 
operation (e.g., certificate management) or modify existing proce-
dures to ensure security (e.g., handling backups of sensitive 
data). These procedural changes will modify the Operational 
view.

Applying the Security perspective has not resulted in a new security 
view but has identified a number of modifications to your existing views 
that help address your stakeholders’ security concerns.

TABLE 4–1 TYPICAL VIEW AND PERSPECTIVE APPLICABILITY

Perspectives

Views Security
Performance and 
Scalability

Availability and 
Resilience Evolution

Context Medium Low Low Medium

Functional Medium Medium Low High

Information Medium Medium Low High

Concurrency Low High Medium Medium

Development Medium Low Low High

Deployment High High High Low

Operational Medium Low Medium Low
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Insights
Applying a perspective almost always leads to the creation of something—usually
some sort of model—that provides an insight into the system’s ability to meet a
required quality property. Such a model demonstrates either that the architecture
meets its required quality properties or (more likely in the early stages of architec-
ture definition) that it is deficient in some way.

These insights normally drive further architectural design activity and
are usefully recorded in their own right as rationales for significant design
decisions.

Improvements
If applying the perspective tells you that the architecture will not meet one of its
quality properties, the architecture needs to be improved. In this case, you may
need to change an existing model in the view, create additional models to fur-
ther develop the content of the view, or perhaps do both of these.

These improvements are, of course, integral to the AD and should be
given as much prominence as your original models.

EXAMPLE Applying the Security perspective might reveal the existence 
of a number of significant security threats that are not countered by the 
system in its current form. You would then need to understand these 
threats, understand what the risks are, and understand the impact these 
risks have on your architecture.

EXAMPLE Applying the Performance and Scalability perspective to your 
Deployment view might demonstrate that you need to replicate the applica-
tion servers in order to be capable of scaling to meet expected demand. 
This could lead to a change to the Deployment model to show several serv-
ers instead of one and possible changes to the Functional or Information 
views to support this load balancing.
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Artifacts
Some of the models and other deliverables created as a result of applying a
perspective will be of only passing interest and will probably be discarded
once the insight or improvement they reveal is understood. However, other
outputs of applying a perspective are of significant lasting value and are im-
portant supporting architectural information. These outputs, which we term
artifacts, are a valuable outcome of applying a perspective and should be
preserved.

Artifacts are typically captured as documents, models, or implementa-
tions, which are referenced from the AD as supporting information. Small
documents can be integrated into the AD as appendices, but take care to avoid
creating a huge document because this can become unwieldy and difficult to
read and maintain.

RELATIONSHIPS BETWEEN THE CORE CONCEPTS

To put perspectives in context, we can now add a further piece to our concep-
tual model, as shown in Figure 4–3.

We have added the following relationships to update the similar diagram
we showed previously as Figure 3–1.

� The content of a view can be shaped by a number of perspectives, in order 
to ensure the system’s ability to exhibit the quality properties considered 
by that perspective.

� A perspective addresses a number of concerns of the system’s stakeholders.

THE BENEFITS OF USING PERSPECTIVES

Applying perspectives to a view benefits your AD in several ways.

EXAMPLE Applying the Location perspective to your Deployment 
view might result in a spreadsheet that models the physical network to 
show that there is sufficient bandwidth and capacity for the expected 
traffic. This spreadsheet is a useful artifact that is likely to be needed 
in the future to investigate the probable impact of changes to the sys-
tem or the network. You should retain and reference this artifact from 
the AD.
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� The perspective defines concerns that guide architectural decision mak-
ing to help ensure that the resulting architecture will exhibit the quality 
properties considered by the perspective. For example, the Performance 
perspective defines standard concerns such as response time, through-
put, and predictability. Understanding and prioritizing the concerns that 
a perspective addresses helps you bring a firm set of priorities to later de-
cision making.

� The perspective provides common conventions, measurements, or even a 
notation or language you can use to describe the system’s qualities. For 
example, the Performance perspective defines standardized measures 
such as response time, throughput, latency, and so forth, as well as how 
they are specified and captured.

� The perspective describes how you can validate the architecture to demon-
strate that it meets its requirements across each of the views. For example,

FIGURE 4–3 PERSPECTIVES IN CONTEXT
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the Performance perspective describes how to construct mathematical 
models or simulations to predict expected performance under a given 
load and techniques for prototyping and benchmarking.

� The perspective may offer recognized solutions to common problems, 
thus helping to share knowledge between architects. For example, the 
Performance perspective describes how hardware devices may be multi-
plexed to improve throughput.

� The perspective helps you work in a systematic way to ensure that its 
concerns are addressed by the system. This helps you organize the work 
and make sure that nothing is forgotten.

PERSPECTIVE PITFALLS

As with any technique, you should take some care when applying perspec-
tives as there are some potential pitfalls.

� Each perspective addresses a single, closely related set of quality property 
concerns. There will often be conflicts between the solutions suggested by 
different perspectives (e.g., a highly evolvable system may be less efficient, 
and thus less performant, than a less flexible one). An important part of 
your role as a software architect is to balance such competing needs.

� The stakeholder concerns and priorities are different for every system, so the 
degree to which you should consider each perspective varies considerably.

� Perspectives contain established, general advice for ensuring that a sys-
tem exhibits certain quality properties. However, every situation is dif-
ferent, and it is important that you think about the advice and its 
relevance to your situation and then apply it appropriately.

COMPARING PERSPECTIVES TO VIEWPOINTS

Since the first edition of the book was published, we’ve been asked a number
of times why we introduced the idea of architectural perspectives and didn’t
just define a set of viewpoints that addressed system qualities. So we thought
it was worth explaining in a little more detail why we introduced a new con-
cept rather than reusing an existing one.

The ISO standard for architecture definition, ISO 42010 (formerly known as
IEEE 1471), formalizes many of the concepts that we discuss in this book but
does not include the concept of a perspective. It addresses the cross-cutting na-
ture of perspectives by means of models shared across architecture views.
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� Sharing architecture models between architecture views permits an archi-
tecture description to capture distinct but related concerns without redun-
dancy or repetition of the same information in multiple views and reduces 
possibilities for inconsistency. 

� Sharing of architecture models also permits an aspect-oriented style of 
architecture description: Architecture models shared across architecture 
views can be used to express architectural perspectives. 

This approach is certainly workable and is broadly compatible with ours,
but we’ve found it valuable to treat perspectives as a distinct and separate
concept.

Both viewpoints and perspectives define concerns and the stakeholders
who have an interest in them, but the other information in viewpoints and
views, and describing the way it is used, is quite different. Viewpoints are
focused more on guiding the production of models that describe the architec-
ture, whereas perspectives are focused more on providing activities and tac-
tics to ensure that the system exhibits its required quality properties. Most
important, perspectives can be applied to one or more of the views, which
makes them fundamentally different for us.

We can compare and contrast our notions of view, viewpoint, and
perspective—probably the three most important concepts in this book—
as follows.

� A view is a representation of all (or part of) an architecture—that is, a 
way to document its architecturally significant features according to a 
related set of concerns. A view captures a description of one or more of 
the architectural structures of the system. Architects use views to explain 
the architectural structure of the system to stakeholders and to demon-
strate that the architecture will meet their concerns. A view comprises a 
set of tangible architectural products, such as principles and models; the 
complete set of views of an architecture forms the AD. 

� A viewpoint guides the process of creating a particular type of view. A 
viewpoint defines the concerns addressed by the view and the approach 
for creating and describing that aspect of the architecture. 

� A perspective guides the process of design so that the system will exhibit 
one or more important qualities. As such, a perspective can be considered 
analogous to a viewpoint, but for a related set of quality properties rather 
than a type of architectural structure. However, using a perspective usu-
ally results in changes to the architectural views (i.e., the system’s struc-
tures) rather than the creation of new structures. We also use 
perspectives as a means of capturing common problems and pitfalls and 
identifying solutions to them.
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So in summary, while it’s certainly possible to create viewpoints that address qual-
ity property concerns, we’ve found a number of advantages to handling quality
properties a little differently using a distinct concept, that of the architectural per-
spective.

OUR PERSPECTIVE CATALOG

Part IV of this book defines several perspectives (see Table 4–2) that form a
set intended for application to the architectures of large-scale information
systems.

As we have said, there are many perspectives, and it is not usually fea-
sible or even desirable to consider all perspectives in the context of all of the
views. Not every perspective is relevant to every system and view, and in
fact it is rare that you will need to consider anywhere near the complete set
of perspectives for anything other than the largest and most complex
projects.

TABLE 4–2 PERSPECTIVE CATALOG

Perspective Desired Quality

Accessibility The ability of the system to be used by people with disabilities

Availability
and Resilience

The ability of the system to be fully or partly operational as and when re-
quired and to effectively handle failures that could affect system availability

Development
Resource

The ability of the system to be designed, built, deployed, and operated 
within known constraints related to people, budget, time, and materials

Evolution The ability of the system to be flexible in the face of the inevitable change 
that all systems experience after deployment, balanced against the costs of 
providing such flexibility

Internationalization The ability of the system to be independent from any particular language, 
country, or cultural group

Location The ability of the system to overcome problems brought about by the abso-
lute location of its elements and the distances between them

Performance and 
Scalability

The ability of the system to predictably execute within its mandated performance 
profile and to handle increased processing volumes in the future if required

Regulation The ability of the system to conform to local and international laws, quasi-
legal regulations, company policies, and other rules and standards

Security The ability of the system to reliably control, monitor, and audit who can 
perform what actions on which resources and the ability to detect and 
recover from security breaches

Usability The ease with which people who interact with the system can work effectively
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As with views, it is hard to provide generally applicable advice for which
perspectives to concentrate on, but to act as a starting point when planning
your work, Table 4–3 contains a set of suggested priorities for some typical
types of information systems.

STRATEGY Apply only the most relevant perspectives to your views. Base
your selection on the needs of the stakeholders, the relative importance of the
different quality properties to them, and your own experience and judgment.

SUMMARY

Viewpoints and views are an excellent way to partition your architecture into a
set of interrelated models. However, these are often assessed for completeness
and correctness against only functional requirements, rather than against other
system qualities such as performance and scalability. This can result in a system
that is functionally correct but exhibits poor response time or is insecure or unre-
liable. A mechanism is required to make sure this doesn’t happen. It doesn’t
really make sense to use viewpoints to do this, because these system qualities
often have implications for many if not all of the other viewpoints. A separate but
related concept is required, which we call perspectives. We define a perspective as

TABLE 4–3 MOST IMPORTANT PERSPECTIVES FOR TYPICAL SYSTEM TYPES

OLTP 
Information
System

Calculation
Service/
Middleware

DSS/MIS
System

High-
Volume 
Web Site

Enterprise
Package

Accessibility Varies Low Varies High High

Availability and 
Resilience

Varies High Medium High Medium

Development
Resource

Medium High Medium High Low

Evolution Varies Low High Varies Medium

Internationalization Varies Low Varies High Varies

Location Varies Low Low High Varies

Performance and 
Scalability

Varies High Varies High Varies

Regulation Varies Low Varies Varies Varies

Security Varies Low Medium High High

Usability Medium Low Low High Medium
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a collection of activities, tactics, and guidelines you use to ensure that the system
will exhibit a particular set of related qualities, properties, or behaviors. Using
perspectives gives you a framework for the analysis and improvement of your
architectural models against the qualities the perspective addresses.

Applying a perspective to a view allows you to ensure that the architecture,
as represented in that view, is fit for its purpose as far as that perspective is con-
cerned. This is an iterative process: You create models in your views, assess
these models against criteria defined in the perspective, revise your view models
according to the outcome of this analysis, and iterate again.

We can compare and contrast our notions of view, viewpoint, and perspec-
tive as follows. A view is a representation of all (or part of) an architecture—
that is, a way to document its architecturally significant features according to a
related set of concerns; a viewpoint guides the process of creating a particular
type of view; and a perspective guides the process of designing the architecture
so that it exhibits one or more important qualities.

There are many perspectives, and it is not usually feasible or useful to apply
all perspectives to all views. 

FURTHER READING

Standard books such as Software Architecture in Practice [BASS03], Evaluat-
ing Software Architectures [CLEM02], and Design and Use of Software Archi-
tectures [BOSC00] all discuss quality properties and are well worth reading for
more background in this area.

One particularly relevant area of software architecture research is the
study of tactics being undertaken at the SEI as part of its software architec-
ture program. The original definition of an architectural tactic can be found in
an SEI technical report from 2003 [BACH03]; sets of generic tactics for vari-
ous quality properties are outlined in Chapter 5 of Bass et al. [BASS03]; and
the SEI Web site (www.sei.cmu.edu) contains links to a number of technical
reports that discuss tactics further.

www.sei.cmu.edu
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5
THE ROLE OF THE
SOFTWARE ARCHITECT

f you gathered a group of software architects in a room and asked them to
describe the jobs they do, you would probably end up with at least a dozen

different definitions. More tellingly, if you asked the people with whom the
architects work how their colleagues fill their working hours, you would prob-
ably get still more definitions.

Our own practical experience supports this. On some projects, the person
with the title of architect has a very hands-on, directional involvement in the
nuts and bolts of designing, coding, and testing. Alternatively, architecture
may be viewed as an ivory tower from which pronouncements are handed
down at intervals to the build and implementation teams. Architect is also
often used as a generic title to denote a senior technical member of staff (such
as the Java architect that a number of organizations have).

Architects may specialize in one area, such as networking, middleware, or
database design, to the exclusion of others; occasionally, the architect may
not even have a system development background at all, having entered
through another route such as business analysis. The title may also be further
qualified in various ways such as application architect, data architect, or even
enterprise architect, without being clear what these roles involve.

So before we consider how you perform your job as an architect, we need to
understand exactly what that job is—what your responsibilities are, where your
boundaries are, what areas you should delegate to others, and how you work
alongside the other members of the team to ensure a successful software delivery.

In this chapter, we establish a definition of the software architect’s role,
including what you are and are not expected to do to fulfill this role and what
qualities you need to possess in order to be a successful architect. We also
explore how this role relates to others involved in the product or system
development process.

I



64 PART I � ARCHITECTURE FUNDAMENTALS

THE ARCHITECTURE DEFINITION PROCESS

The last concept in our model of software architecture captures the process
used to design an architecture and create an AD for it. We call such a process
architecture definition.

DEFINITION Architecture definition is a process by which stakeholder
needs and concerns are captured, an architecture to meet these needs is
designed, and the architecture is clearly and unambiguously described via an
architectural description.

This process is often called architectural design, and we say this infor-
mally ourselves. However, in the book we tend to avoid this term because
of the potential confusion between its usage as a process and as an
artifact.

The goal of an architecture definition process is to design an architec-
ture that meets the needs of its stakeholders. There are a number of
aspects to this:

� Capturing stakeholder needs, that is, understanding what is important to 
stakeholders (possibly helping them reconcile conflicts such as function-
ality versus cost), and recording and agreeing on these needs

� Making a series of architectural design decisions that result in a candi-
date architecture

� Assessing the candidate architecture to determine how well it meets the 
stakeholder needs

� Refining the architecture until it is adequate

� Capturing the architectural design decisions  made and the resulting 
architectural structures of the system in some form of AD appropriate to 
the environment in which you are working

These activities form the core of the architecture definition process and are
normally performed iteratively. We talk more about this in Part II, in particular
how stakeholder needs and concerns relate to functional and architectural
requirements. For now, we’ll leave you with another principle.

PRINCIPLE A good architecture definition process is one that leads to a
good architecture, documented by an effective architectural description,
which can be realized in a way that is time-efficient and cost-effective for
the organization.
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Architecture Definition Isn’t Just Design
A common question that arises is whether architecture definition is “just” part
of design or whether there is something more to it. It’s true that architecture
definition incorporates elements of design and also of requirements analysis,
but as we shall see in this book, it is a separate activity from each of these.

� Design is an activity focused on the solution space and targeted primarily 
at one group of people—the developers. It works within a clearly defined 
set of constraints (the system’s requirements) and is essentially a pro-
cess of translating these into the specifications for a conformant system. 
Historically, design has tended not to focus as much on the needs of 
other groups such as operations or support, assuming that their needs 
have been captured in the requirements specifications (or often ignoring 
them altogether).

� Requirements analysis, on the other hand, is an activity focused on the 
problem space that (in its purest forms) ignores the needs and con-
straints of groups like developers and systems administrators because it 
defines what is desired rather than what is possible. It also works within 
a clearly defined set of constraints (the system’s required scope), 
although within these constraints it tends to have much more freedom 
than the design process does.

Architecture definition resolves this tension by bridging the gap between
the problem and solution spaces, as shown in Figure 5–1. Its focus is to
understand the needs of everyone who has an interest in the architecture, to
balance these needs, and to identify an acceptable set of tradeoffs between
these where necessary. The tradeoffs take into account the constraints that
exist (e.g., technical feasibility, timescales, resources, deployment environ-
ment, costs, and so on).

Although your role as a software architect incorporates elements of design
and of requirements capture, there are some key differences between it and the
other two roles, the most significant of which revolve around its scope.

FIGURE 5–1 ARCHITECTURE DEFINITION, REQUIREMENTS ANALYSIS, AND SOFTWARE DESIGN

SOLUTION
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PROBLEM
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Requirements
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Architecture
Definition
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� You have to take input from a much wider range of people than just the 
user community (as we have seen in our discussion of stakeholders).

� You have to consider a much wider range of concerns than just function-
ality (as we have seen in our discussion of views and perspectives).

� You have to consider the big picture as well as the details.

Architecture definition is often more a process of discovery than of just
capture. At the early stages when—with luck—you start to be involved, the
stakeholders may have only hazy ideas of their expectations of the system.
Furthermore, there may be a number of conflicting ideas about how the sys-
tem should be built, and there are likely to be big gaps in technical knowledge
and developer experience in the proposed solution elements.

Although theory says that you should not start to think about the solution
until you understand the problem—and we like this approach, as a theory—in
practice, stakeholders start to think about technology solutions from day one.
You can’t avoid this; you just have to manage it.

The Boundary between Requirements Analysis 
and Architecture Definition
Part of your role as an architect is to be involved in the process of analyzing,
understanding, and prioritizing the system’s requirements. This also allows
you to start assessing the difficulty involved in implementing each requirement.

Strictly speaking, your role does not include requirements gathering, and
ideally you will be presented with a complete, consistent, prioritized list of the
key goals and requirements for the system. However, such a list often doesn’t
exist, and even when it does, requirements analysts often struggle to trade off
requirements against each other; while part of this process involves under-
standing the relative business value of requirements, it must also take into
account the associated costs and risks.

Some of the requirements specified initially are likely to be difficult to
implement because the requirements analysts have little or no insight into the
implementation options. As an architect, you are ideally placed to provide this
insight so that the importance of each requirement can be considered in the
context of the likely cost of providing it.

STRATEGY Work with the requirements analysts to understand the system’s
requirements and their relative importance. For each important requirement,
consider the likely difficulty of implementing it and feed this back to the
requirements analysts to help them understand what can and cannot be
achieved.
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The Boundary between Architecture Definition and Design
One of the most important decisions you will have to make as an architect is
whether something is important enough for you to worry about or whether it
can safely and more appropriately be left until the detailed design phase—in
other words, whether it is architecturally significant. Philippe Kruchten neatly
captured the essence of architectural significance in his definition, which we
paraphrase here.

DEFINITION A concern, problem, or system element is architecturally
significant if it has a wide impact on the structure of the system or on its
important quality properties such as performance, scalability, security, reliability,
or evolvability.

Predicting whether or not something will prove to be architecturally sig-
nificant is difficult and requires you to use your judgment, skill, and expertise
(and that of your stakeholders) to consider the circumstances of your particu-
lar project. For example, when a new technology is involved, questions
around reliability and performance may be very significant, whereas they may
be far less so in a system where the technologies are established and well
understood by the developers.

Your job as an architect is to ensure that you focus your and your stake-
holders’ attention on the important questions and decisions, which are those
that are likely to have a significant effect on the system’s ability to meet its
goals—this is something that will become easier with practice. Beware, how-
ever, of assuming that all architectural concerns are found at the abstract
level; often, the devil is in the details. You need to consider aspects of your
architecture at all levels, from the strategy to the code. It is also important to
keep considering whether your judgment is correct and to make sure that as
your architecture develops, you continue to review whether your scope is
appropriate.

EXAMPLE It isn’t always obvious whether something is architecturally 
significant because you often don’t know what will end up having a big 
impact on the system’s qualities. For example, consider the database 
design: Beyond defining that the system will have a third-normal-form 
data model and providing some guidance as to when denormalization 
should occur, is the design of the database schema architecturally sig-
nificant? You certainly won’t be able to design the entire database 
schema yourself except on the smallest projects.
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STRATEGY As you are designing the architecture, review the areas you have
determined as being architecturally significant or not, and revise these as nec-
essary in the light of your deeper understanding of your stakeholders’ con-
cerns and of the architecture itself.

THE ROLE OF THE ARCHITECT

We can now define the role of the architect in the following principle.

PRINCIPLE The architect is responsible for designing, documenting, and lead-
ing the construction of a system that meets the needs of all its stakeholders.

We see four aspects to this role:

1. To identify and engage the stakeholders

2. To understand and capture the stakeholders’ concerns

3. To create and take ownership of the definition of an architecture that 
addresses these concerns

4. To take a leading role in the realization of the architecture into a physical 
product or system

As with many architectural decisions, this depends on the context. In 
systems with relatively simple, straightforward data access patterns, we 
would generally say that the detail of the database schema isn’t architec-
turally significant, because it won’t have a big impact on the system’s 
abilities to meet its quality goals. However, consider the situation where a 
system makes extensive and complicated use of the database with many 
very large queries, many of which are performance-critical. In this case, 
we suggest that a lot of the database design detail is architecturally signif-
icant because many of those detailed decisions could have serious ramifi-
cations for the system’s performance and stability if made wrongly.

When considering the architectural significance of a decision, try to 
look ahead and consider whether the different likely options for that 
decision are going to impact the system’s key qualities. If some of the 
options are likely to cause trouble in the future, you’ve found an archi-
tecturally significant decision. You can see why we say that this can be 
difficult to do!
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A common theme in most descriptions of what the architect does is some-
thing along the lines of “the architect owns the big picture.” We certainly sup-
port this view. One of your responsibilities as an architect is to develop and
maintain a high-level view of the main elements in the product or system,
which is subsequently used to guide detailed design, coding, testing, and
deployment.

But this isn’t all. You need to ensure that the architecture you develop is
right for your situation. As we have seen, every problem has a number of
possible architectural solutions, and every architecture has a number of pos-
sible representations. You must select an architecture that is fit for purpose
and then document that architecture in an appropriate way.

Traditionally, the architect is viewed as making primarily an up-front con-
tribution to system development—in other words, being heavily involved in the
inception stages of the project. However, your responsibility does not end there.
In fact, we find in general that the architect’s involvement during the software
development lifecycle conforms to the pattern illustrated in Figure 5–2.

This figure shows the architect’s depth of involvement during each major
development iteration of the system’s delivery. During the initial phases, your
involvement is intense. You are fully occupied in defining and agreeing on
scope, agreeing on and validating requirements, and providing the technical
leadership to make the decisions that will shape the architecture.

Your involvement typically lessens during the design, build, and test
phases, while the product or system is being built, tested, and integrated. In
practice, you may take a different role during this period, such as design
authority or designer. If so, you are likely to be involved in mentoring,

FIGURE 5–2 THE ARCHITECT’S INVOLVEMENT
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reviews, problem resolution, and technical leadership. In any case, if the
architecture needs any changes, you must lead the change process.

Your involvement peaks again prior to and during acceptance, as you pro-
vide support and guidance to help resolve the last-minute problems that inevi-
tably occur and to ensure a smooth transition into the operational environment
and beyond.

STRATEGY Stay involved with the development process beyond the creation
of the AD and through construction, acceptance, and handover (possibly at a
reduced level of involvement).

Architectural Leadership
In our experience, most organizations view “architect” as a technology lead-
ership role, although it may not always be clear in practice what this requires
you to do. 

From a system standpoint, architectural leadership means the people-
focused activities that help ensure successful implementation of the system.
This includes the following: 

� Explaining and promoting the architecture to the business and technology 
stakeholders, and justifying the principles and decisions that underpin it

� Providing input to and support for planning and estimating tasks

� Participating in change control processes

� Taking responsibility for and signing off on the completion of technical 
milestones

� Helping to resolve issues that arise during development

� Taking on more specific development roles such as design authority

� Reviewing documentation and possibly code

Many architects also help to develop and promote the practice of architec-
ture within the organization in which they work. This may include arranging
or delivering architectural training; mentoring of more junior staff, perhaps
in a design role; developing viewpoints for the organization; or developing
and overseeing architectural governance processes such as architectural
reviews.

The extent to which you take on these responsibilities yourself, oversee
someone else, or delegate them completely will depend to a major extent on
the characteristics of your project and your own skills and aspirations. We
discuss this in more detail in Chapter 30, which closes the book.



CHAPTER 5 � THE ROLE OF THE SOFTWARE ARCHITECT 71

INTERRELATIONSHIPS BETWEEN THE CORE CONCEPTS

We can now add two final pieces to our relationship diagram, namely, the
process of architecture definition and the architect, as shown in Figure 5–3.

We have added the following relationships to augment the earlier
versions of the model shown in previous chapters (e.g., Figure 4–3).

� The architect captures and consolidates the concerns of the stakeholders.

� The architect designs an architecture that meets these concerns.
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� The architect creates and owns the AD.

� An architecture definition process guides the definition of the architecture.

� The architect follows the architecture definition process to carry out all of 
these tasks.

ARCHITECTURAL SPECIALIZATIONS

So far, we have viewed the architect as a generalist who deals with all aspects
of the system under development. This isn’t always the case, especially on
large projects where a team of architects may be working together. Everything
we talk about in this book—stakeholders, views, principles, models—applies
equally to such specialists, within their scope.

You are likely to see architects take on some of the following specializations.

� Product architect: The product architect is responsible for the delivery of 
one or more releases of a software product to external customers (and 
typically would stay associated with the product over a number of release 
cycles). The product architect is a key member of a product development 
team and oversees the technical integrity of the product. One specific 
challenge faced by the product architect is identifying user stakeholders, 
especially before the first release.

� Domain architect: Domain architecture is a specialization of the general 
architectural function, focusing on a particular domain of interest, such 
as the business architecture, data architecture, network architecture, and 
so on. Domain architects are particularly valuable for working on large, 
complex, or groundbreaking systems or for filling gaps in the knowledge 
of the software architect.

� Infrastructure architect: The infrastructure architect owns the provision 
of hardware and software infrastructure to systems and often performs 
this activity at a company-wide level. On the hardware side this may 
include data centers, servers, storage and backup, desktop computers, 
wide-area and local-area networking, office peripherals such as printers, 
and specialist devices such as certificate servers. Infrastructure software 
includes areas such as enterprise security, database management sys-
tems, enterprise messaging, identity and security, and desktop tools such 
as word processing software. Information systems will often be 
mandated to use all or some of these company-wide elements.

� Solution architect: In contrast with the domain architect, the solution 
architect specifically takes a broad, high-level view of the entire solution. 
This role also focuses on wider issues than just technology, such as 
business process change, procurement, staffing, and so forth.
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� Enterprise architect: Whereas the software architect concerns herself 
with a single (albeit probably complex and important) system, the enter-
prise architect has responsibility for the cross-system information sys-
tems architecture of the whole enterprise, including sales and marketing, 
client-facing systems, products and services, purchasing and accounts, 
the supply chain, human resources, and so forth. The enterprise architect 
is also often concerned with the definition and oversight of company-
wide principles, standards, and policies and, like the solution architect, 
also concerns herself with wider issues such as business process change.

THE ORGANIZATIONAL CONTEXT

Let’s look at how your role as a software architect compares with the roles of
the other key personnel on software development projects.

Business Analysts
A business analyst is responsible for capturing and documenting detailed
business requirements, typically focusing on stakeholders from the user com-
munity, and ensuring that these are correct, complete, and consistent. You
will often draw on the specialized knowledge of the business analyst, espe-
cially when dealing with views of interest to acquirers, users, and assessors.

Project Managers
A project manager is responsible for ensuring delivery of the product or system
and meeting commercial priorities for resources, costs, and timescales. You will
often help the project manager develop plans or assess them for reasonable-
ness. You will also provide the project manager with technical information,
feedback, advice, risk assessment, and so on throughout the project lifecycle.

In our experience the most productive relationship between project man-
agers and architects follows a partnership model: The project manager
focuses on stakeholders, plans, budgets, staffing and resources, milestones,
deadlines, and deliverables; and the architect focuses on stakeholders, con-
cerns, scope, requirements, views, and models.

Design Authorities
A design authority (sometimes referred to as a technical design authority or a
technical lead) takes overall responsibility for the quality of the internal
element designs for the system. In our experience, the architect often fills this
role as the project moves into the design phase. The design authority takes the
architectural views as her input and acts as guide and leader to the software
developers who design, build, test, and integrate the product or system.
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We have found that design authority is often the role actually performed by
people who have the job title of technical architect. These key people are often
the primary technical points of contact for how the system is implemented and
how the underlying technology platform works. This role on the project is cru-
cial and must be filled by an extremely strong staff member. However, making
tradeoffs between requirements and possibilities for the system’s stakeholders
is not an inherent part of being a technical design authority, although it is a key
part of the architect’s role. Therefore we argue that the technical design author-
ity plays a design role rather than an architectural one. 

The boundary between the design authority and the architect is probably
the hardest one to define formally. One guideline we find useful when deciding
whether an issue is architecturally significant is to consider its impact on stake-
holders. If the outcome of a decision is likely to have a significant impact on
important stakeholders or requires tradeoffs between stakeholder needs, the
architect should probably be responsible for the decision. If the decision is visi-
ble only within the development team, it is probably a design authority i ssue.

Of course, it is not always possible to make this assessment up front, and
it is essential that the two roles cooperate fully. Let’s consider a couple of
examples to see how this might work in practice.

EXAMPLE Architecture definition for a new system has identified the 
need for a relational database, from the industry-leading supplier, for 
persistent storage of transaction data. The imminent new release of the 
database server will provide some significant new technology features 
and potential improvements in performance.

Functionally, the system would look identical whether it were built on 
the current or new version of the relational database management sys-
tem. However, taking on the new version presents some commercial risk 
related to availability of skills, confidence in the new platform, and the 
potential problems associated with any point-zero release.

Because of the possible commercial impact, we would tend to involve 
the architect in this decision.

EXAMPLE In integration tests, some end-user queries have been falling 
far short of their performance requirements, taking a minute or more to 
complete under peak load. Monitoring and analysis have suggested that 
some database tables need to be internally restructured, indexes 
modified, and objects spread more evenly across physical disks. Access 
to data, which occurs via stored procedures, will not be affected (other 
than being much faster).
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Technology Specialists
A technology specialist provides detailed expertise in one specific area. Where
the architect provides breadth, the technology specialist provides depth, and
the combination of the two can be extremely powerful.

Broadly speaking, it is the technology specialist’s responsibility to provide
detailed facts, to assess the architecture for technical feasibility, and to spot
pitfalls early. You should be able to take the information provided by the tech-
nology specialist and apply it to addressing the problems you need to solve.

You should always make the best use of the skills and knowledge of your
colleagues in the organization. It’s not possible to know everything about
everything, and as an architect you aren’t expected to. 

PRINCIPLE The architect provides and oversees the architectural breadth and
works closely with both business-focused and technology-focused specialists
who provide the specialist depth.

Developers
The architect’s involvement doesn’t end with handing over the completed and
accepted AD. Although your level of participation may decrease during the
build and test phases, you will still maintain a technology leadership role to
ensure that the team adheres to the spirit and the letter of the AD.

This may involve mentoring staff through the detailed design process,
reviewing designs as they are completed to ensure conformance to the sys-
tem’s architectural principles, arbitrating technology disputes, or even devel-
oping pieces of the implementation if required. You are likely to get involved
in integration and system testing to ensure that the tests exercise an appro-
priate selection of functional and operational characteristics.

You will also need to lead the change process if (as is likely) the AD
requires any modifications during development.

The nature of your interactions with your development team will depend
to some extent on the lifecycle model the team is following. An architect for a
large “waterfall” development program will interact very differently with her
developers than will an architect on a smaller iterative or agile development
project. We address this issue in Chapter 7.

Because these changes have no visible stakeholder impact (other 
than to make the system compliant), it seems reasonable not to involve 
the architect in what are essentially internal systems decisions and to 
instead make this the responsibility of the design authority.
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THE ARCHITECT’S SKILLS

Although the job of the architect traditionally has a technology focus, and in
nearly all cases the architect herself has a strong technology background, we
have seen that the role is much broader than merely drawing up technical
plans and designs.

You must have an across-the-board understanding of technology at a
high level and of the real-world issues and problems the system is required to
solve. You should have real experience with designing and building systems,
although it may not always be possible to have direct, practical knowledge of
the specific technologies you plan to use. (This is an example of when you
must draw on the experience of technology specialists.)

Typically you will also have one or more areas of deeper technical exper-
tise; this may not apply to your current project but will give you the ability to
recognize a good design when you see one.

As well as technology knowledge, you also need to have a good understand-
ing of the business domain in which you are working. While you don’t need to
understand every detail of every process, you do need to understand the main
business processes and main types of information that are found in the business
area and the dependencies, importance, and criticality of each. This knowledge
will allow you to communicate more effectively with your business-oriented
stakeholders and will allow you to make more informed prioritization and
tradeoff decisions, as you will understand their likely impact on the business.

It is also very important that you have good “soft skills” as well, more so
than for many other IT roles, with the possible exception of the project man-
ager. These skills include:

� Information capture: As we will see, you have to capture many types of 
information, from a wide variety of different stakeholders, with different 
interests in your architecture and different levels of business and techni-
cal expertise. You need to keep your stakeholders on track in interviews, 
to get them to focus on the important architectural concerns, and to “drill 
down” into detail where appropriate. You also need to be able to listen to 
their answers and take notes at the same time!

� Facilitation: Workshops and meetings can be a very effective way of cap-
turing information and mapping out potential solutions. However, man-
aging such a gathering can be quite a challenge, especially when you 
have a mix of senior and more junior stakeholders, or when there is hid-
den (or explicit) conflict.

� Negotiation: Reaching consensus among a wide variety of stakeholders 
with often conflicting or incompatible concerns can also be a challenge. 
Negotiation skills help you to understand and act on what is truly of 
value to people and what they can afford to give away.
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� Communication: You may have the best architecture ever, but unless you 
can communicate it effectively to all of your different stakeholders, and 
get their buy-in, it is unlikely to be built. Different stakeholders have dif-
ferent interests and need to be communicated to in different ways—in 
person or through documents, concisely or in great detail. 

� Flexibility: You need to be able to rapidly learn about unfamiliar business 
areas and technologies, to make quick changes of direction where appro-
priate, and to be ready to discard your preconceived ideas about the prob-
lem or its solution. You also need to know when to hold your ground. 

Above all, you must earn and maintain the confidence of all of your
stakeholders, from senior management and users to developers, third parties,
and operational staff.

THE ARCHITECT’S RESPONSIBILITIES

A pro forma list of responsibilities for an architect would include the following
items.

� Ensure that the scope, context, and constraints are documented and 
accepted.

� Identify, engage, and enfranchise your stakeholders.

� Facilitate the making of system-level decisions, ensuring that they are 
made on the basis of the best information and are aligned with stake-
holder needs.

� Arbitrate and ensure that consensus is reached when stakeholder needs 
are in conflict or are incompatible.

� Arbitrate and ensure that consensus is reached when architectural com-
promises need to be made (for example, performance against flexibility 
or security against ease of use).

� Capture and interpret input from technical and domain specialists (and 
represent this accurately to stakeholders as needed).

� Define and document the architecture of the system.

� Define and document strategies, standards, and guidelines to direct the 
build and deployment of the system.

� Ensure that the architecture meets the system quality attributes.

� Develop and own the AD (i.e., manage all changes to it).

� Help ensure that agreed-upon architectural principles and standards are 
applied to the finished system or product.

� Provide technical leadership.
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It is rare, in our experience, for such a role definition to exist in many
organizations. If you find yourself without one, you may find it helpful to cre-
ate one (use our list as a template) and get it agreed to and publicized with
your stakeholders. It should be a simple document that defines your architec-
tural scope (the tasks you will perform), your deliverables (the documents
and other material you will produce), and possibly the way you will work (for
example, that you will conduct architectural reviews with key stakeholders to
ensure that you are addressing their concerns).

STRATEGY Ensure that you have clear terms of reference for your role on
any project in which you are significantly involved. If this does not already
exist, draw up a brief terms of reference document, and review and agree on it
with your stakeholders.

In many cases, you may also have some responsibilities for developing
and promoting the role of architecture in your organization, outside of your
involvement on specific projects. An obvious area of focus is the definition of
viewpoints; you may also find yourself involved in (or responsible for) the
development of architectural processes, tools, templates, and other materials. 

SUMMARY

We have discussed two distinct concepts in this chapter, the final chapter of
Part I.

� Architecture definition is a process whereby stakeholder needs and con-
cerns are captured, an architecture to meet these needs is designed, and 
the architecture is fully and unambiguously described via an AD.

� The architect is the person (or group) responsible for designing, docu-
menting, and leading the construction of an architecture that meets the 
needs of all its stakeholders.

There is no single commonly accepted definition of the software archi-
tect’s role. The role of the architect includes elements of requirements capture
and high-level design but is more than either of these. In this chapter, we
defined the four main responsibilities of the architect: to identify and engage
the stakeholders, to understand and capture their concerns, to create and take
ownership of the AD, and to take a leading role in the realization of the archi-
tecture.

We presented some architectural specializations that you may encounter
(or even choose to take on) such as product architects, domain architects,
infrastructure architects, solution architects, and enterprise architects. We also
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compared and contrasted the role of the architect with other key project roles
such as business analysts, project managers, design authorities, technology
specialists, and developers. We considered when the architect is important: pri-
marily during the early stages of system development and during acceptance,
with a lesser role during the build and test phases.

Finally, we discussed the skills that a good architect should possess and
presented the architect’s responsibilities.

FURTHER READING

Most of the architecture books we mentioned earlier in Part I contain some
discussion of the architect’s role, for example, [CLEM10]. In addition, McGov-
ern et al. [MCGO04] contains a good discussion of roles related to software
and enterprise architecture.

Many books are available that can help you develop good soft skills, such
as information capture and communication skills, good examples being
[FISH03], [PELL09], and [BREN10]. These books will help you to identify
your weaknesses in these areas and give you a lot of practical ideas for im-
proving your skills, although in our experience the best way to learn soft
skills is through training, mentoring, and experience.

The definition of architecturally significant that we paraphrased earlier in
this chapter can be found in Kruchten [KRUC03].
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6
INTRODUCTION
TO THE SOFTWARE
ARCHITECTURE PROCESS

t is not our aim in this book to define another software development
method or to radically change existing models of the software development

lifecycle. However, many software development methods fail to clearly define
the role of software architecture in the development lifecycle. If they discuss it
at all, they usually view architecture definition as merely the first part of soft-
ware design—and we hope this book will show you that this view is far too
simplistic.

As we have seen, architecture definition is a broad, creative, dynamic
activity that is much more about discovering stakeholder concerns, evaluating
options, and making tradeoffs than simply capturing information. At the out-
set, your stakeholders may have some fundamental disagreements about
scope, objectives, and priorities. It may be necessary to change direction, pos-
sibly even significantly, partway through the exercise as a result of informa-
tion you have uncovered through your work.

Although every situation is different, there is a core set of activities you
will usually need to perform as part of architecture definition for any project.
We describe these activities in the following chapters. You may need to do
other things during architecture definition too, but you will probably need to
perform most of the activities we describe in Part II to avoid creating future
problems.

Part II begins by presenting a generic and straightforward process for
architecture definition, which you can use to help plan your own architecture
definition work and to align your plans with those for the other parts of the

I
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development. The subsequent chapters look at each of the key activities of the
process, namely:

� Agreeing on scope and context, constraints, and baseline architectural 
principles

� Identifying and engaging stakeholders

� Identifying and using architectural scenarios

� Using architectural styles and patterns

� Producing architectural models

� Documenting the architecture

� Validating the architecture

For each of these activities, we provide practical advice and guidance,
including checklists to help make sure you haven’t forgotten anything and
pointers to further reading.
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7
THE ARCHITECTURE
DEFINITION PROCESS

rchitecture definition starts early in the project lifecycle, when scope and
requirements are often still unclear and the current view of the system may

differ substantially from what is eventually built. For this reason, architecture
definition tends to be a more fluid activity than later tasks such as designing,
building, and testing, when the problem you are solving is better understood.
When you start, you don’t fully know the size and extent of your system, where
the complexity is, what the most significant risks are, or where you will encoun-
ter conflict among your stakeholders.

In this chapter, we outline a simple process of architecture definition that
applies (in some way) to most software development projects, irrespective of
the development approaches used. You can use the process we describe with
most forms of the software development lifecycle—from the very structured
and formal to those founded on iterative or agile principles.

The material in this chapter will help you plan your own architecture
definition work and align your plans with those for the other parts of the devel-
opment. Of course, the way you do this will vary according to the needs of your
project, the method you are following, the time available, and your skills and
those of your team. You will be most successful if you use this chapter as a
framework or starting point for developing your own personalized architecture
definition process.

GUIDING PRINCIPLES

For an architecture definition process to be successful, it must adhere to the
following principles.

� It must be driven by stakeholder concerns, as we discussed in Part I. As we will 
see, stakeholder concerns are the core—but by no means the only—inputs to 
the process. Furthermore, the process must balance these concerns effectively 
where they conflict or have incompatible implications.

A
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� It must encourage the effective communication of architectural decisions, 
principles, and the solution itself to stakeholders.

� It must ensure, on an ongoing basis, that the architectural decisions and 
principles are adhered to throughout the lifecycle up to the final deployment.

� It must (as much as possible, given the fluid nature of architecture defi-
nition) be structured. In other words, it must comprise a series of one or 
more steps or tasks, with a clear definition of the objectives, inputs, and 
outputs of each step. Typically, the outputs from one step are the inputs 
to subsequent steps.

� It must be pragmatic—that is, it must consider real-world issues such as 
lack of time or money, shortage of specific technical skills, unclear or 
changing requirements, the existing context, and organizational consid-
erations.

� It must be flexible so that it can be tailored to particular circumstances. (This 
is sometimes referred to as a toolkit or framework approach, with the idea 
that you use those elements of the toolkit you need and ignore the rest.)

� It must be technology-agnostic. That is, the process must not mandate 
that the architecture be based around any specific technology, architec-
tural pattern, or development style, nor should it dictate any particular 
modeling, diagramming, or documentation style.

� It must integrate with the chosen software development lifecycle.

� It must align with good software engineering practices and quality man-
agement standards (such as ISO 9001) so that it can integrate easily 
with existing approaches.

Having set out our ground rules, let’s consider the context in which archi-
tecture definition operates, starting with where we want to end—its outcomes.

PROCESS OUTCOMES

Clearly, the main goal of architecture definition is to develop a sound architec-
ture and to manage the production and maintenance of all of the elements of
an AD that captures it. However, there are some desirable secondary out-
comes or consequences of architecture definition, such as the following.

� Clarification of requirements and of other inputs to the process : Your 
stakeholders may not be absolutely clear about what they want, and it 
may take some time to pin them down.

� Management of stakeholders’ expectations : Your architecture will inevi-
tably need to make compromises around your stakeholders’ concerns. It 
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is far better to make these compromises visible and clearly understood 
early in the life of the project than to let them emerge later.

� Identification and evaluation of architectural options: There is rarely just 
one solution to a problem. When there are several potential solutions, 
your analysis will reveal the strengths and weaknesses of each and jus-
tify the chosen solution.

� Description of architectural acceptance criteria (indirectly): Architecture 
definition should lead to a clear understanding of the conditions that must 
be met before the stakeholders will accept the architecture as conforming 
to their requirements (e.g., it must provide a particular function, achieve 
certain response times, or restart in less than a given time period).

� Creation of a set of design inputs (ideally): Such information as guidance 
for and constraints on the software design process will help ensure the 
integrity of your architecture.

Having defined the goals that our architecture definition process must
meet, let us continue by considering the context within which the process
must work. 

THE PROCESS CONTEXT

Architecture forms the bridge between requirements and design, performing
the tradeoffs necessary to satisfy the demands of both. In process terms, this
means that architecture definition sits between requirements analysis and
software construction (design, code, and test). A good model for the
interaction between requirements, architecture, and construction is the
Three Peaks model (see Figure 7–1), an extension of Bashar Nuseibeh’s
Twin Peaks model.

The three triangles (the peaks) in the diagram represent the major soft-
ware evelopment activities of requirements analysis, architecture definition,
and construction; the widening of the shapes at their bases represents an
increasing amount of elaboration as time goes on while the system is devel-
oped. The curling arrows show how requirements and architecture as well as
architecture and construction are intertwined to a progressively increasing
degree during system development. Although the specification, architecture,
andimplementation of the system are quite distinct, as the Three Peaks model
illustrates, they have profound effects on each other and so cannot be consid-
ered in isolation.

The following key relationships exist between software architecture and
the requirements and construction activities of the software lifecycle.
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� Requirements analysis provides the context for architecture definition by 
defining the scope and the system’s desired functionality and quality 
properties.

� Architecture definition often reveals inconsistent and missing require-
ments and also helps stakeholders understand the relative costs and 
complexities of meeting their concerns. This feeds back into require-
ments analysis to clarify and add requirements and to prioritize these 
when tradeoffs are made between stakeholders’ aspirations and what 
can be achieved given time and budget constraints.

� When architecture definition has resulted in an architecture that appears 
to meet an acceptable set of user requirements, the construction of the 
system can be planned.

� Construction is often organized as a set of incremental deliveries, each of 
which aims to provide a useful set of functions and to leave the system in 
a stable, usable state (albeit an incomplete one). The construction of 
each increment provides further feedback to architecture definition, vali-
dating or indicating problems with the architecture as currently specified; 
hence, there is architecture definition activity throughout the lifecycle.

Requirements analysis, architecture definition, and software construction
have a strong, interconnected set of relationships. Requirements analysis pro-
vides an initial context for architecture definition but is then itself affected by
architecture definition as requirements are understood more fully. In turn,

FIGURE 7–1 ARCHITECTURE DEFINITION CONTEXT—THE THREE PEAKS MODEL (BASED ON NUSEIBEH

[NUSE01])
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architecture definition drives the implementation process, but each piece of
construction performed provides feedback about the effectiveness and utility
of the architecture in use.

SUPPORTING ACTIVITIES

Our architecture definition process assumes that the following will be available
to you and accepted by the sponsor and other stakeholders before you start:

� A definition of the system’s baseline scope and context

� A definition of key stakeholder concerns

Our process also assumes that the right stakeholders have been identified and
engaged.

In reality, it is rare for the baseline scope and concerns to be captured to an
appropriate level of detail at this early stage, and it is unlikely that any stake-
holders (other than perhaps developers and occasionally users) will have been
brought on board and engaged in the process. It can be a big challenge to dis-
cover and consolidate these inputs and then to gain agreement on them from an
engaged stakeholder community before you can even think about a solution.
We present a number of techniques for doing this in Chapters 8 and 9.

At the other end of the process, once you have an AD, you will often want to
deliver a skeleton system implementation as the first development increment.
Such an implementation can be very valuable because it offers a practical vali-
dation of the architecture, acts as a credibility test for the system’s stakeholders,
and provides a framework in which the development team can work.

The slightly extended UML activity diagram in Figure 7–2 shows how
architecture definition relates to the following supporting activities. The square
boxes with underlined names represent key inputs to and outputs from the
process. The activities are as follows.

� Define the initial scope and context.

� Engage the stakeholders.

� Capture first-cut concerns.

� Define the architecture.

� Optionally, create a skeleton system.

Having defined the initial scope and context for your system with the acquiring
stakeholders, you can then identify and engage the other important stakeholders
whose concerns need to be addressed by the architecture. Capturing their concerns
provides a primary input, along with the scope and context, to architecture defini-
tion. (As we will see, both the scope and the concerns as defined at this point may
change, subject to stakeholder agreement, during architecture definition.)
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Architecture definition results in an AD and normally a set of guidelines
and constraints to guide the system construction. Once you have an AD, you
can (if you have the time and resources) create a skeleton system that will act
as an evolvable prototype of the system you want to build.

We describe each of these supporting activities in Tables 7–1 through 7–5.

TABLE 7–1  DEFINE THE INITIAL SCOPE AND CONTEXT

Aims To clearly define the boundaries of the system’s behavior and responsi-
bilities and the operational and organizational context within which the 
system exists.

Inputs Acquirer needs and vision; organizational strategy; enterprise IT 
architecture.

INPUTS

Scope and 
Context

Define Initial Scope
and Context

Engage
Stakeholders

Capture First-Cut
Concerns

Stakeholder
Concerns

Define Architecture

Architectural
Description

Guidelines and 
Constraints

OUTPUTS

Create Skeleton 
System

[ skeleton required ]

skeleton 
system

[ skeleton not required ]

FIGURE 7–2 ACTIVITIES SUPPORTING ARCHITECTURE DEFINITION
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Outputs Initial statements of the goals of the system and what is included and 
excluded from its responsibilities, along with an initial system context 
definition. These can be captured in a draft Context view.

Comments This step is primarily a process of understanding strategic and organiza-
tional objectives and how the system helps meet them, along with some 
analysis to understand which other systems need to interact with this 
one. We talk about this activity in Chapter 16.

Note that the scope as defined here may change (subject to stake-
holder agreement) during architecture definition.

TABLE 7–2 ENGAGE THE STAKEHOLDERS

Aims To identify the system’s important stakeholders and to create a working 
relationship with them.

Inputs Scope and context from the draft Context view; organizational 
structure.

Outputs Definition of each of the stakeholder groups, with one or more named, 
engaged people who will represent the group.

Comments This step involves understanding the organizational context you are 
working in and identifying the key people who will be affected by the sys-
tem. You can then start to get to know their representatives and begin 
building a working relationship with them. We talk more about this activ-
ity in Chapter 9.

TABLE 7–3 CAPTURE FIRST-CUT CONCERNS

Aims To clearly understand the concerns that each stakeholder group has about 
the system and the priorities they place on each concern.

Inputs Stakeholder list; scope and context.

Outputs Initial definition of a set of prioritized concerns for each stakeholder 
group.

Comments This step often starts with your initial stakeholder meetings. It normally 
involves a series of presentations and meetings with representatives of 
each stakeholder group that allow you to explain what you aim to achieve 
and allow the stakeholders to explain their interests in the system. We 
talk more about this activity in Chapter 9.

Note that the concerns as defined here may change (subject to stake-
holder agreement) during architecture definition.

TABLE 7–1  DEFINE THE INITIAL SCOPE AND CONTEXT (CONTINUED)
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ARCHITECTURE DEFINITION ACTIVITIES

Your biggest difficulty as an architect is the amount of uncertainty and change
you face as you bring your stakeholders together. Although you will be work-
ing from an agreed-upon scope—or if not, you will produce one as a matter of
urgency—this is likely to change as the implications of including or excluding
certain features emerge and as the stakeholders better understand the signifi-
cance of what they are requesting. Functional and quality property require-
ments are also likely to evolve, perhaps significantly.

For this reason, our architecture definition process is an iterative one. In
other words, you need to repeat the main steps several times before you pro-
duce a finished AD. Of course, for a small or simple architecture, you may
produce the completed AD after the first iteration, but for anything complex,
unfamiliar, or contentious, a single iteration is unlikely to suffice. Also, the
architecture will keep evolving as the system is developed, so you will return
to this cycle of activities throughout the project.

The UML activity diagram in Figure 7–3 illustrates our process, which involves
the following steps.

TABLE 7–4 DEFINE THE ARCHITECTURE

Aims To create the AD for the system.

Inputs Stakeholder list; scope and context.

Outputs AD; guidelines and constraints.

Comments We describe this step in detail in the Architecture Definition Activities 
section of this chapter.

TABLE 7–5 CREATE THE SKELETON SYSTEM

Aims Optional step to create a working (albeit limited) implementation of your 
architecture that can evolve into a delivered system during the system con-
struction phase of the lifecycle.

Inputs AD; associated guidelines and constraints.

Outputs A limited working system that illustrates that the system can address at 
least one of your scenarios.

Comments If you have the time and resources available to allow the creation of a skel-
eton system, it forms an effective bridge between architecture definition 
and software construction. This step allows the architect and the develop-
ers to build a working system that can execute at least a simple functional 
scenario the system is meant to address. The skeleton system acts as a 
validation of your architecture (and an important proof point for many 
stakeholders) as well as a framework for the software construction phase. 
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1. Consolidate the inputs.

2. Identify scenarios.

3. Identify the relevant architectural styles.

4. Produce a candidate architecture.

5. Explore the architectural options.

FIGURE 7–3 DETAILS OF ARCHITECTURE DEFINITION

1. Consolidate Inputs

3. Identify Relevant 
Architectural Styles

5. Explore 
Architectural Options 

6. Evaluate 
Architecture with 

Stakeholders

[not acceptable]

[acceptable]

2. Identify
Scenarios

4. Produce Candidate 
Architecture

7A. Rework 
Architecture

7B. Revisit 
Requirements



94 PART I I � THE PROCESS OF SOFTWARE ARCHITECTURE

6. Evaluate the architecture with the stakeholders.

7A. Rework the architecture

7B. Revisit the requirements.

Although it is obviously a simplification of the reality of architecture defini-
tion, you may find our model useful in discussions with management,
colleagues, and stakeholders.

The curved arrows between steps 7A and 7B in the figure indicate that
these steps are not done in isolation: There is often a heavy interaction
between them as reworking the architecture may suggest changes to require-
ments and vice versa. For example, simplifying the concurrency model may
necessitate changes to the order in which the system performs some tasks. Of
course, all such changes should be reviewed and ratified with stakeholders.

The individual steps in this process are described in Tables 7–6 through 7–13.

TABLE 7–6 STEP 1: CONSOLIDATE THE INPUTS

Aims To understand, validate, and refine the initial inputs.

Inputs Raw process inputs (scope and context definition from draft Context view, stake-
holder concerns).

Outputs Consolidated inputs, with major inconsistencies removed, open questions 
answered, and (at a minimum) areas requiring further exploration identified.

Activities Take the raw process inputs, resolve inconsistencies between them, answer open 
questions, and delve deeper where necessary, to produce a solid baseline.

Comments It is rare for you to be provided with a consistent, accurate, and agreed-upon set of 
process inputs. During this step you take the information available, fill in gaps, 
resolve inconsistencies, and obtain formal agreement from the key stakeholders. 

TABLE 7–7 STEP 2: IDENTIFY SCENARIOS

Aims To identify a set of scenarios that illustrates the system’s most important 
requirements.

Inputs Consolidated inputs (as currently defined).

Outputs Architectural scenarios.

Activities Produce a set of scenarios that characterize the most important attributes required 
of the architecture and can be used to evaluate how well a proposed architecture will 
meet the underlying functional and quality property requirements. 

Comments A scenario is a description of a situation that the system is likely to encounter, 
which allows assessment of the effectiveness of the architecture in that situation. 
Scenarios can be identified for required functional behavior (“How does the system 
do X?”) and for desired quality properties (“How does the system cope with load 
Y?” or “How can the architecture support change Z?”). We explain how to approach 
this step in Chapter 10.
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TABLE 7–8 STEP 3: IDENTIFY THE RELEVANT ARCHITECTURAL STYLES

Aims To identify one or more proven architectural styles that could be used as a basis for 
the overall organization of the system.

Inputs Consolidated inputs (as currently defined); architectural scenarios.

Outputs Architectural styles to consider as the basis for the system’s main architectural structures.

Activities Review existing catalogs of architectural styles, and consider system organizations 
that have worked well for you before. Identify those that appear to be relevant to 
the architecture as you currently understand it.

Comments Using an architectural style is a way to reuse architectural knowledge that has 
proved effective in previous situations. This can help you arrive at a suitable sys-
tem organization without having to design it from scratch and so reduces the risks 
involved in using new, unproven ideas. We talk more about using architectural 
styles in Chapter 11.

TABLE 7–9 PRODUCE A CANDIDATE ARCHITECTURE

Aims To create a first-cut architecture for the system that reflects its primary architectural 
concerns and that can act as a basis for further architectural evaluation and refinement.

Inputs Consolidated inputs (as currently defined); relevant architectural styles, view-
points, and perspectives.

Outputs Draft architectural views.

Activities Produce an initial set of architectural views to define your initial architectural 
ideas, using guidance from the viewpoints and perspectives and any relevant 
architectural styles.

Comments Although they may contain gaps, inconsistencies, or errors, the draft views form a 
starting point for the more detailed architecture work later.

TABLE 7–10 EXPLORE THE ARCHITECTURAL OPTIONS

Aims To explore the various architectural possibilities for the system and make the key 
architectural decisions to choose among them.

Inputs Consolidated inputs; draft architectural views; architectural scenarios, viewpoints, 
and perspectives.

Outputs More detailed or accurate architectural views for some parts of the architecture.

Activities Apply scenarios to the draft models to demonstrate that they are workable, that 
they meet requirements, and that there are no hidden problems. Take any areas of 
risk, concern, or uncertainty that are revealed and further explore the require-
ments, problems, and issues. Where there is more than one possible solution, eval-
uate the strengths and weaknesses of each (refer to Chapter 14 for guidance on 
how to do this) and select the best one.

Comments The aim of this step is to fill in gaps, remove inconsistencies in the models, and 
provide extra detail where needed.
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TABLE 7–11 STEP 4: EVALUATE THE ARCHITECTURE WITH THE STAKEHOLDERS

Aims To work through an evaluation of the architecture with your key stakeholders, cap-
ture any problems or deficiencies, and gain the stakeholders’ acceptance of the 
architecture.

Inputs Consolidated inputs; architectural views and perspective outputs.

Outputs Architectural review comments.

Activities Evaluate your architecture with a representative collection of stakeholders. Capture 
and agree on any improvements to or comments on the models.

Comments Although each group of stakeholders will have different interests, the overall ob-
jective is to confirm that stakeholder concerns are met and that the architecture is 
of good quality. You may have to work hard to obtain consensus if the concerns of 
different stakeholders conflict with one another. We talk about this activity in 
Chapter 14.

TABLE 7–12 REWORK THE ARCHITECTURE

Aims To address any concerns that have emerged during the evaluation task. 

Inputs Architectural views; architectural review comments; relevant architectural styles, 
viewpoints, and perspectives.

Outputs Reworked architectural views; areas for further investigation (optional).

Activities Take the results of the architectural evaluation and address them in order to 
produce an architecture that better meets its objectives. This step normally 
involves functional analysis, the use of viewpoints and perspectives, and 
prototyping.

Comments This step is done concurrently and often quite collaboratively with step 7B (Revisit 
the requirements). The two steps feed back into step 5 (Explore the architectural 
options).

TABLE 7–13 REVISIT THE REQUIREMENTS

Aims To consider any changes to the system’s original requirements that may have to be 
made in light of architectural evaluation.

Inputs Architectural views; architectural review comments.

Outputs Revised requirements (if any).

Activities The work done so far may reveal inadequacies or inconsistencies in requirements 
or requirements that are infeasible or expensive to implement. In this case, you 
may need to revisit these requirements with stakeholders and obtain their agree-
ment to the necessary revisions.

Comments This step is done concurrently and often quite collaboratively with step 7A 
(Rework the architecture). The two steps feed back into step 5 (Explore architec-
tural options).
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PROCESS EXIT CRITERIA

In some other ideal world, architecture definition would continue until the
architecture was complete, correct, and fully documented in the AD. However,
the problem with this approach is that it takes a great deal of effort that,
depending on the project, might be better spent elsewhere. It’s also very hard to
fully validate an architectural design until it’s been at least partially implemented,
and so trying to nail down every detail before a line of code has been written can
be quite counterproductive.

The key to deciding when enough architecture work has been completed
is to consider the risks your project is facing. If you have unresolved risks
that are likely to endanger project success, you need to do more architecture
work. If you have addressed the material risks to a sufficient level, you are
likely to have performed enough architecture work.

A good indication of whether you have addressed your risks is when there
are no comments, questions, or concerns outstanding from your architectural
evaluation. This means that your stakeholders (including yourself) believe that
the proposed system will meet their concerns, and that they believe that the
risks that they are aware of have been mitigated.

Different projects will require different amounts of architecture work,
depending on their scale, complexity, criticality, and technical characteristics.
For example, large package implementation projects will require a lot more
architecture work up front than departmental software development projects, as
there is little opportunity for iteration, feedback, and correction in a large pack-
age implementation project. A midsize software development project is often
less risky and more flexible, meaning that it can evolve to mitigate many of
problems that may be discovered as construction progresses.

PRINCIPLE Architecture definition (or an iteration of it) can be considered
complete once the material risks that the system faces have been mitigated,
which can be judged by the absence of significant comments or actions after
stakeholder evaluation of the architecture.

In practice, you are unlikely to achieve complete agreement, particularly when
the stakeholder group is large or diverse or when requirements are complex. Usu-
ally you will finish architecture definition when most of the concerns of the more
important stakeholders have been addressed and when you feel confident that the
project can proceed with an acceptable level of risk. In some cases, however, you
will find that some important stakeholder concerns are still outstanding when the
allocated time for architecture definition ends. This is an unfortunate situation,
but when time is limited, it may be unavoidable. It is essential in such cases that
you prioritize your work to focus on the riskiest or most contentious areas so that
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at least these are resolved before you move into construction. In this way you can
be relatively confident that your architecture is adequate to meet its most impor-
tant challenges.

Don’t forget to include yourself in the list of AD reviewers. Even if your
stakeholders are happy with the architecture, if you are not, you should not
consider it complete. You may have knowledge or understanding of the sys-
tem that they don’t, and it is your responsibility to ensure that this is reflected
in the architecture.

STRATEGY Include yourself in the reviewers of the architectural description,
and do not finish initial architecture definition until you are satisfied that
there are no significant issues with the architecture.

It is not hard to find yourself descending into a repeating cycle of further
and deeper refinement and enlargement of your AD, with the result that you
never build the system or that development goes ahead without you. This worst
possible outcome is to be strongly resisted. In our experience, on all but the
largest projects, you should aim to complete the production of the AD in one to
three months.

STRATEGY Aim to produce an architectural description that is good enough
to meet the needs of its users, rather than strive for a perfect version that will
take significantly more resources to complete without providing any real ben-
efit to the system’s stakeholders.

Of course, completion of the AD does not mean that you are no longer
working as an architect. You’ll be involved throughout, advising, leading,
overseeing, resolving problems, revising the architecture as new knowledge
emerges, and so on. This means that once the AD is baselined and placed
under configuration control, it should continue to be a living document, kept
up-to-date throughout the construction steps and into deployment.

ARCHITECTURE DEFINITION IN THE SOFTWARE
DEVELOPMENT LIFECYCLE

Architecture definition does not replace the normal software development life-
cycle but should be thought of as an integral part of it. In this section, we dis-
cuss how architecture definition fits into the common approaches to designing
and building systems.
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Waterfall Approaches
In the classic waterfall model, software development is viewed as a linear sequence
of tasks, with each task using the outputs of the previous one as its inputs, and
feeding into the next task in turn, as shown in Figure 7–4. So, for example, the
functional specification provides the inputs to the design stage, the design pro-
vides the inputs to the build and unit test stage, and so on. When changes are re-
quired to the system, these feed backward to the preceding stage and possibly
further up the waterfall. Although somewhat discredited as a development ap-
proach for large systems, due to its late feedback and inflexibility, the waterfall
approach is still a useful and widely used mental model for the fundamental steps
needed in a software development project.

FIGURE 7–4 THE WATERFALL MODEL OF DEVELOPMENT
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Architecture definition is easy to integrate with such a linear approach: It is
usually viewed as a separate task early in the lifecycle (before, after, or sometimes
alongside requirements definition).

Iterative Approaches
The motivation behind iterative approaches (such as Feature Driven Develop-
ment and the Rational Unified Process) is to reduce risk by means of early deliv-
ery of partial functionality, as shown in Figure 7–5. Each iteration usually
focuses on one area that presents significant risk because its requirements are
unclear, for example, or because it is a complex or leading-edge element of the
system. In most iterative approaches, the individual iterations are run as acceler-
ated development projects in their own right, broken down into structured tasks
with defined inputs and deliverables.

Typically, architecture definition would form part of the analysis phase, or it
could alternatively run alongside the other tasks as an ongoing activity. Our
architecture definition process is itself iterative, which dovetails quite nicely with
such methods. (For the Rational Unified Process in particular, our approach fits
well in its Elaboration phase.)

Agile Methods
Agile methods are lightweight methods that focus on the rapid and continuous
delivery of software to end users, encourage constant interaction between the
customer and the software developers, and attempt to minimize the management

FIGURE 7–5 ITERATIVE DEVELOPMENT
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overhead of the development process (in particular, a dramatic reduction in the
amount of development documentation produced). The aim of agile methods is to
allow a team (or a larger organization) to react and adapt to change in its environ-
ment quickly enough to deal with the change and not become overwhelmed by it.
Three of the best-known agile methods for software development are Extreme Pro-
gramming (XP), Scrum, and Lean Software Development.

In our experience, it can sometimes be difficult to get software architects
and agile development teams to work well together. Agile developers may
take little account of the architecture description, dismissing it as “big design
up front,” while software architects may struggle to deliver their ideas and de-
signs in ways that agile teams are interested in and can use. This is a regret-
table state of affairs, since both approaches can offer significant benefits to a
system development project, and the priorities and beliefs of the two groups
are much closer together than might initially appear to be the case.

Agile teams use flexible, adaptive software development approaches based
on the philosophy of the Agile Manifesto. Typical practices include the use of
short, regular development cycles, customer prioritization of work, and auto-
mated testing and retrospectives, with the aim of delivering useful working
software frequently. The focus is on intensive user involvement in specifying
and prioritizing requirements, and building “the simplest thing possible,” and
there is little for the software architect to disagree with in any of these ideas.

Well-run agile projects do a tremendous job of delivering useful software in
a timely and user-focused manner, particularly when requirements are unclear
or volatile. But the same teams can encounter problems as their systems become
larger or more complicated and they have to cope with factors such as perfor-
mance, availability, security, or systems monitoring that are of little direct
interest to the end user. A good software architecture can help meet many of
these challenges and ensure that agile teams don’t become overwhelmed by the
amount of refactoring required to meet complicated nonfunctional requirements.

When you are acting as the software architect on a project using an agile
approach, there are a number of things you can do to help ensure its success.

� Deliver your architecture work incrementally. Define the basic architectural
structures in the early stages, and refine this using a demand-based approach.

� Work collaboratively with the team to agree on a clear set of design prin-
ciples, and ensure that they are understood and used to ensure consis-
tency throughout the system’s implementation.

� Define your components clearly and unambiguously, and document their 
responsibilities and interfaces to avoid confusion and rework as new 
functions need to be added to the system.

� Share information widely using simple tools such as wikis and presenta-
tions rather than relying on sophisticated modeling and information 
management tools.
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� Make sure every deliverable has a customer (else why are you doing it?) and 
that the customers understand and agree with the value it is bringing them.

� Aim to create “good enough” documents that you can deliver as soon as they 
are usable rather than waiting for them to be polished to the point of perfection.

� If practicable, work with the team to create working examples or prototypes 
to prove ideas and guide critical or risky parts of the development work.

� Focus on cross-cutting concerns. Your position and experience as an 
architect give you a unique position to identify these concerns and define 
appropriate system-wide strategies and solutions. You can use perspectives 
to help you here.

� When you need to work with a number of teams simultaneously, you 
won’t be able to spend all of your time working in one team. So make 
sure that you still work closely with each team to encourage a two-way 
flow of ideas and to make sure that they understand the architecture.

� Focus on areas of architectural significance, and leave the more detailed 
design to the developers. 

SUMMARY

In this chapter, we outlined a simple process of architecture definition, appli-
cable to most software development projects, which you can use to help
formulate your plans and schedules.

We started the chapter by defining the principles that our process should
adhere to. It should be stakeholder-driven (of course), structured, pragmatic, flexi-
ble, and technology-neutral. It must also integrate with your existing software
development lifecycle and with established best practices of software engineering.

We explained the context of the process and defined its outcomes; these
obviously include specifying the architecture and producing the AD but often
extend into other areas, such as better understanding of the problem being
solved and management of stakeholder expectations.

We defined the essential inputs to the process: a baseline definition and
stakeholder concerns. The baseline definition, which includes scope and context,
must be determined and accepted at the start of the process. Stakeholder
concerns, which include high-level functional and technical requirements and
architectural constraints, are more likely to be discovered, elaborated, and re-
fined as your analysis progresses.

We defined a simple, iterative process of architecture definition based on
drawing up a set of architectural models, exploring some of their features in more
detail, reviewing these with stakeholders, and reworking the models. Finally, we
explained how this process aligns with existing development lifecycles such as
the waterfall, iterative, and agile models.
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FURTHER READING

Most books on software architecture include a description of some form of archi-
tecture definition process. Three books listed in the Bibliography include repre-
sentative examples of different processes [GARL03, BASS03, BOSC00]. The first
of these also discusses how architecture can coexist with agile processes.

A number of texts discuss the various modern software development pro-
cesses, including XP [BECK00], Lean Software Development [POPP03], Scrum
[BEED02], Feature Driven Development [PALM02], and the Rational Unified
Process [KRUC03]. The Coding the Architecture Web site (www.codingthearchi-
tecture.com), run by the independent consultant Simon Brown, has a lot of use-
ful material about working as a software architect with agile teams. If you’d like
to see what the Agile Manifesto really says, you can find it at www.agilemani-
festo.org.

The Twin Peaks model (on which we based our Three Peaks model) is
described in an article in IEEE Computer [NUSE01].

www.codingthearchitecture.com
www.codingthearchitecture.com
www.agilemanifesto.org
www.agilemanifesto.org
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8
CONCERNS,
PRINCIPLES,
AND DECISIONS

rchitecture definition can often be a voyage of discovery for both the ar-
chitect and the stakeholders. At the early stages of any software develop-

ment project, you will find that while the project’s overall goals and objectives
are probably accepted and communicated, the detail is still vague. Indeed, one
of your objectives as an architect is to take this detail and make it firm and
ratified. As we explained in Chapter 7, there are a number of different inputs
that you use to shape and define your architectural solution, and these inputs
come from different places and vary in their importance and significance.

Of course, the most obvious things that shape and define your architectural
solution are the scope and requirements of the system. This is so important that
it is part of one of our viewpoints, the Context viewpoint, which we describe in
Chapter 16. However, other things can be just as important as inputs to your
architectural decision making.

� Business and IT strategies set the long-term business and technology 
priorities and direction for the organization and may also include a 
roadmap to get from today to the “target state.”

� Goals and drivers are the fundamental issues and problems that 
prompted your stakeholders, especially the acquirers and users, to 
initiate the project.

� Standards and policies mandate certain aspects of how the organization 
does business or operates internally.

� There are also many other real-world constraints that you need to take 
into account, such as time and money, availability of skills, or technology 
pitfalls and limitations.

A
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We collectively refer to these inputs as concerns. Let’s remind ourselves of the
definition of concern that we introduced in Part I.

DEFINITION A concern about an architecture is a requirement, an objective, a
constraint, an intention, or an aspiration a stakeholder has for that architecture.

Our definition of concern is deliberately broad and wide-ranging. A con-
cern may be specific, unambiguous, and measurable, in which case we call it
a “requirement” and can use the techniques of traditional systems analysis to
capture it, document it, and use it to shape the architecture. On the other
hand, a concern may be vague and loosely stated but nonetheless important
to your stakeholders. Indeed, such a concern may be more important to them
than the specific requirements.

EXAMPLE A retailer has a strong reputation for quality of service and 
customer responsiveness, which must be reflected in every interaction 
with the customer. This translates into a number of goals and aspira-
tions for a new online store that the retailer wants to build.

� The values, ethos, and reputation of the retailer must be reflected 
in the appearance and operation of the online store and its sup-
porting processes.

� At all times, the Web site should try to present a “human” face 
to the customer (even those portions of it that are fully 
automated).

� The online store must be easy to use by customers who have 
limited experience with computers and e-commerce.

� The online store must be responsive (quick to load and respond to 
customer actions) whether or not the customer has a fast Internet 
connection.

� The online store must cover all aspects of the shopping experience, 
including an up-to-date, browseable catalog; a secure online 
purchasing system; order tracking; and returns handling.

Apart from the last item, none of these can be considered formal and 
measurable requirements, and the last one is really a statement of scope. 
However, if the system does not meet these goals and aspirations, it will 
probably be viewed as a failure.
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As we can see, there is a broad range of concerns that shape or influence
your architecture. We find it useful to group these into two categories: problem-
focused concerns, which influence or constrain the problem that the system is
trying to solve; and solution-focused concerns, which influence or constrain the
possible solutions to that problem.

Solution-focused concerns are often (though not always) derived, directly or
indirectly, from problem-focused concerns—for example, an organization’s IT
strategy is usually driven pretty explicitly from its business strategy. In some
instances, there is also a flow in the other direction, with technology driving a
change in business behavior or priorities (these are sometimes referred to as
“technology opportunities”). For example, the prevalence of smartphones and
other mobile devices significantly changed the way that retailers interacted with
their customers.

This arrangement is nicely summarized in methodologies like Capgemini’s
IAF (see the Appendix) as “why, what, how, with what.” As we shall see, the
problem-focused concerns answer the “why” and “what” questions about the
architecture, and the solution-focused concerns answer the “how” and “with
what” questions.

We show this breakdown in Figure 8–1 along with the most important types
of concerns you might have to deal with. As you can see, we have further
grouped the concerns into ones that have influence and drive decision making in
a certain direction (for example, a business or technology goal), and ones that
impose constraints and therefore restrict the decisions you can make (such as a
standard or policy that you have to follow).

FIGURE 8–1 PROBLEM-FOCUSED AND SOLUTION-FOCUSED CONCERNS
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This taxonomy isn’t perfect, of course, and it’s not always possible to place
a concern cleanly into one of the four quadrants in our diagram. But under-
standing whether a concern is problem- or solution-focused, and whether it is
an influencer or a constraint, should help you ensure that it is appropriately
addressed in your architecture.

PROBLEM-FOCUSED CONCERNS

Problem-focused concerns are those concerns that influence or constrain the
problem that the system is trying to solve. A problem-focused concern may
influence the architecture by suggesting or mandating a capability of the sys-
tem, or by shaping or clarifying the nature and specific details of that capability.
It may constrain the architecture by allowing the system to behave only in cer-
tain ways in certain circumstances, or by prohibiting the system from doing
something altogether.

Problem-focused concerns address the “why” and “what” questions about
the system: Why does it need to do something, or what does it need to do? They
include business strategy, business goals and drivers, system scope and require-
ments, and business standards and policies.

Business Strategy
A business strategy defines the direction for the business as a whole or for
some part of it. It looks at questions such as what goods and services it pro-
vides, who its customers are, how the organization differentiates itself from
its competitors, and how it structures and organizes itself. It may also include
a roadmap that describes how the business is planning to transform itself into
the desired future state.

While you are unlikely to have to refer to it directly, understanding the main
tenets of the business strategy is a useful way of understanding the concerns of
your more business-focused stakeholders and ensuring that your architectural
decisions are aligned with the priorities of the organization. In particular, the
business strategy will have driven at least some of your requirements, so under-
standing the strategy will help you understand why these requirements are
important.

You may also find that the business strategy is a useful way of justifying
some of your architectural decisions or priorities. For example, if the business
strategy is to move toward a customer self-service model (whether in-store or
on the Internet), the customer-facing aspects of your architecture become very
significant.
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Business Goals and Drivers
The business goals and drivers set the business context for the project and
are the fundamental reason it exists. These goals and drivers are typically
defined quite informally, and in language that relates to one or more specific
problems or potential opportunities facing the organization that has commis-
sioned the system.

DEFINITION A business goal is a specific aim the organization has, while a
business driver is some force acting on the organization that requires it to
behave in a particular way in order to protect and grow its business.

Unfortunately, goals and drivers typically exhibit a number of characteris-
tics that make them hard to translate into specific architectural features or
capabilities.

� They are often expressed using imprecise language—indeed, the stake-
holders may not really be clear about what they mean.

� They are unlikely to be quantifiable or measurable in any useful way, 
which means that there are no objective criteria for judging whether or 
not they have been met. It all comes down to gut feelings and the subjec-
tive assessments of the stakeholders.

� Since they have a strong business focus, it is often unclear how they 
might translate into an architectural solution.

You cannot afford to ignore goals and drivers, since they have a major
influence on the nature of the architecture and what it is supposed to
achieve. However, there are a number of tactics for successfully dealing with
them.

� Try to turn them into requirements. For example, a goal about growing 
market share might translate into some sizing and performance 
requirements.

EXAMPLE A retailer may have a specific business goal to achieve 15% of 
its sales via online purchases made through its Web site. A business driver
acting on the organization could be the fact that it is losing market share to 
a competitor with a much better and easier-to-use shopping Web site.
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� Manage your stakeholders’ expectations of success, especially when 
goals are vague or unachievable. For example, a system developed 
under tight budgetary constraints that has ambitious goals for 24/7 
availability is unlikely to succeed. You need to make the stakeholders 
understand why this is the case and work with them to develop more 
realistic goals.

� Develop architectural principles that translate the goals into physical fea-
tures and qualities of your architecture. For example, a goal related to 
ease of use might be translated into principles around a common look 
and feel, exception handling, and interfaces between automated and 
manual processes. (We will talk about principles shortly.) 

In some cases, you may be given a formal statement of business goals
and drivers, probably written on behalf of the acquirers of the system. In
other cases, you will need to investigate the underlying need for the system
and work closely with your acquirers in order to understand their goals.
Either way, it is up to you to satisfy yourself that you understand what moti-
vates the need for your system and that the system you intend to build will
meet these underlying needs.

This normally involves asking your key stakeholders a large number of
pertinent questions to help them and you understand the goals, the drivers,
and their implications. This sort of activity may well be something that you
have not done before, or that you don’t feel confident you can do well. In this
case, you should try to involve someone (a requirements analyst, for example)
who understands the business domain well and can help you translate this into
implications for your architecture.

System Scope and Requirements
The system scope defines the main responsibilities of the system, that is, the im-
portant capabilities that it will be required to provide. For clarity, it may also
identify some specific exclusions, although by definition, anything not listed in
the scope is excluded. As we said earlier, system scope is so important that it
forms part of the Context viewpoint, which we describe in Chapter 16.

Requirements define in more detail what the system is required to do.
They are usually broken down into functional requirements and quality prop-
erties (these are often referred to as “nonfunctional requirements,” but as we
said in Chapter 2, we are not big fans of this terminology).

In our experience, it is unusual for the architect to get involved in the
specification of detailed functional requirements. You will probably need some
sort of elaboration of the system’s responsibilities (defined in the system
scope) in order to understand the implications for your architecture. However,
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because it is uncommon for detailed functional requirements to significantly
impact the architectural solution, you are unlikely to have the need (or the
time) to capture any further detail for the purposes of your AD. Of course, it is
valuable to be involved in the review of detailed functional requirements as
they develop, to make sure that your design can support them.

You may well not be involved in the specification of required quality prop-
erties either. However, it is rare in our experience for there to be much in the
way of consensus about or even consideration of system qualities at this early
stage in the system development lifecycle, and so it will often fall to you to
clarify and define these. Indeed, in many areas—internationalization, usabil-
ity, accessibility—there may be little consensus as to how such requirements
can even be expressed or translated into system features.

You will probably have to work hard to extract this information from your
stakeholders, but using architectural perspectives can help with this process,
as we discuss in detail in Part IV of the book.

Business Standards and Policies
Business standards and policies mandate certain aspects of how the organiza-
tion does business or operates internally. They may be driven by regulation, by
accepted best practices, or by the organization’s ethos and ways of working.

You may need to refer to some business standards and policies directly,
but even when this isn’t the case, you may need to have an awareness of
them as they may constrain some aspects of your architecture in significant
ways. For example, most businesses have a data retention policy that defines
in what circumstances data on their customers can be retained, for how long,
and how the data must be protected from unauthorized access. These will
ultimately translate into architectural features such as archiving capabilities
and security controls.

Ideally you should find that business standards and policies are reflected in
the system’s requirements. However, this may not always be the case—in partic-
ular, things like data retention policies are often forgotten—and so standards
and policies can be a useful source of information. As with business strategy,
you can also use them to help justify your architectural decisions.

SOLUTION-FOCUSED CONCERNS

Solution-focused concerns are those that influence or constrain the solution
to the problems defined in the problem-focused concerns. A solution-focused
concern may influence the architecture by suggesting or mandating a specific
approach to building the system, or by shaping and clarifying how it is built.
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It may constrain the architecture by requiring that the system be constructed
in a certain way.

Solution-focused concerns address the “how” and “with what” ques-
tions about the system: How should it be built to make sure it works in the
right way, and with what components and technologies? They include IT
strategy, technology goals and drivers, and technology standards and
policies.

IT Strategy
In a comparable way to the business strategy, an organization’s IT strategy
defines its long-term direction for IT. It can be viewed as the “business strategy
for IT,” which considers IT to be a business unit in its own right, providing
services to the rest of the organization, and possibly to customers and third
parties as well.

As with the business strategy, you may not need to have to refer to the IT
strategy directly, but it is important that you understand its main concepts
and ideas so that you are aware of any implications for your architecture. It
may drive some technology requirements or constraints (for example, to build
systems in a loosely coupled, multitier way, or to use central services or data
stores).

Technology Goals and Drivers
Technology goals and drivers set out the relevant technology objectives, inten-
tions, or aspirations of the project. As with business goals and drivers, a tech-
nology goal is a specific aim the IT department has, while a technology driver is
some force acting on the project or IT department that requires people to behave
in a particular way.

As with business goals, technology goals and drivers are often expressed
in an imprecise way, and you may find it hard to turn these into more quanti-
tative influences or constraints. The tactics we described earlier will also be
useful here.

EXAMPLE The retailer mentioned previously may have a specific tech-
nology goal to be able to scale its customer-facing systems at short no-
tice to meet fluctuating spikes in demand. A technology driver might be 
the unpredictable and volatile usage patterns of its Internet systems.
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Technology Standards and Policies
Technology standards may have a very strong technology focus, such as those
that define the physical mechanisms for linking computers together; or they
may have more of a business focus, such as those that define the syntax and
semantics of a certain class of business messages. Adopting standards can
ease the design and development process and make it easier to integrate the
system with others, now and in the future.

Technology policies define processes that must be followed in order to
meet stakeholder needs. You may need to comply with preexisting policies
(security policies are a common example), or alternatively your architectural
analysis may identify the need to produce some policies of your own.

A large number of off-the-shelf technology standards are available to you.

� Open standards are defined and ratified by bodies such as the Interna-
tional Organization for Standardization (ISO), the Institute of Electrical 
and Electronics Engineers (IEEE), and the World Wide Web Consortium 
(W3C). They are generally accepted by the community at large and typi-
cally apply across a range of hardware and software environments.

� Proprietary standards are created and managed by commercial compa-
nies or other large organizations. These usually apply only to a particular 
manufacturer’s products but often gain wider acceptance because of the 
supplier’s market dominance.

� De facto standards have not (yet) been ratified by an independent stan-
dards body but are widely followed. It is not always obvious which of 
several competing standards will ultimately be successful; in such a situ-
ation, you may want to try to isolate those parts of the architecture into a 
separate layer or module that can be more easily changed to comply with 
another standard.

� Organizational standards are developed for use by your organization. 
These may mandate the use of certain hardware or software suppliers or 
define standard ways to use infrastructure components such as messaging 
frameworks or data warehouses.

You may also have to comply with legal, statutory, or regulatory standards.
Your stakeholders will be able to advise you on these, or it may be appropriate to
bring in experts if the issues are complex or the consequences of noncompliance
severe. We talk more about this when we discuss the Regulation perspective in
Chapter 29.

You and your stakeholders may also define local technology standards,
which are aimed at the specific problems you are trying to solve. Although these
may involve extra work up front, they will usually save you time in the long run.
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You should focus on architectural-level standards while developing your
AD. Coding and unit-testing standards, for example, are probably not of con-
cern to you at this point (although they clearly are important, and you may
need to lead their formulation later as you create the Development view).

You should ensure that compliance with standards can be tested in some
way. Some standards are accompanied by programs or test suites that will
demonstrate a system’s compliance; if not, you may want to derive tests of
your own. Again, this is not primarily your concern, but you may want to
work with your developers and testers to ensure that such tests are put in
place, particularly if there are legal or regulatory requirements for compliance.

OTHER REAL-WORLD CONSTRAINTS

In addition to requirements, standards, and the other documentation we have
already described, you will have to deal with numerous real-world constraints
of one sort or another. It is very unusual for you to be given a completely free
hand when making choices about your architecture—in reality, you are often
constrained in various ways, although these constraints are often not written
down. You need to understand these constraints up front, document the key
ones in your AD, and ratify them with your stakeholders.

Real-world constraints can have important implications for your architec-
ture. For example, a limitation in the ability of a key technical component to
scale beyond a certain level means that your architecture is likewise con-
strained, or that you need to find another way of dealing with heavy workload
(e.g., scaling out rather than scaling up).

Constraints often force you to make compromises in your architecture as
well. This requires careful thought and may also require some skillful negoti-
ation with stakeholders to explain why the compromises are necessary and to
ensure that they do not fundamentally undermine your solution.

EXAMPLE Online retailers usually use third parties to validate credit 
cards and take payments from customers. However, this process can 
sometimes be slow, especially at peak periods. The implication of this 
constraint is that customers may be faced with unacceptably long wait 
times while making a purchase, which may lead to their attempting to 
pay twice or even abandoning their purchase. You need to ensure that 
the Web site delivers a positive customer experience without being vul-
nerable to accidental or willful misuse.

Rather than make a customer wait for a payment to be authorized, 
many retailers perform the authorization in the background after the 
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The types of constraints you should consider include the following.

� Technical constraints: All technologies have limitations of one form or 
another, around functionality, the ability to scale, or security, for example. 
You can use the Perspective Catalog (see Part IV) to help uncover the key 
constraints of the technologies you are using to build your solutions, and 
to understand their implications for your architecture.

� Time: Almost all software development projects have deadlines for their 
completion, often ambitious ones. These deadlines will constrain your 
ability to build complex solutions and to have long test cycles or deploy-
ment windows, and they may well constrain the time you have to design 
your architecture.

� Cost: Similarly, cost constraints will limit your ability to use expensive 
tools, deploy on expensive hardware, hire expensive staff, or build 
complex solutions.

� Skills: New or niche technologies, unusual development approaches, or 
specialized business domains may place constraints on the ability of the 
project to find appropriately skilled staff. At a minimum it may be 
necessary to spend time and money on training them, which will take 
budget from development activities. You may also have to take the 
skills of users into consideration, particularly for systems used by 
members of the public.

� Operational constraints: These include, for example, the need to provide 
service at particular times, the need to operate the system in compliance 
with particular organizational standards, or the need to fit into existing 
operational schedules such as backup cycles or regular planned network 
maintenance.

� Physical constraints: These include, for example, the distance between 
architectural clients and servers or the constraints imposed by time zones 
and calendars.

purchase has completed. The customer is presented with a message saying 
that the purchase has gone through and may then receive an e-mail a few 
minutes later confirming the payment. If payment is declined, the purchase 
is put on hold and the customer is given the opportunity to pay using some 
other means.

This approach might be encapsulated in a general statement to the 
effect that customers should not be left waiting while slow background 
processes complete. Such a statement affects the system’s functionality, 
the way it stores and manages data, and various operational processes 
and so should probably be documented separately from any view.
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� Organizational or cultural constraints: For example, there may be pre-
ferred development approaches such as offshoring or outsourcing, or 
“political” reasons why you need to make certain architectural choices. 
(You may need to be careful about documenting some of these, but you 
have to understand them!)

WHAT MAKES A GOOD CONCERN

The AD is primarily intended to document your architecture. However, it is of-
ten valuable to use it as a vehicle for recording stakeholder concerns and the
other factors that led to your architectural decisions. This approach helps you
explicitly demonstrate that your solution meets the needs of the stakeholders
and shows where you had to make compromises because of conflicting con-
cerns or other real-world constraints.

Concerns should be clearly stated and avoid jargon that is not understood.
They are usually numbered or otherwise uniquely identified. A well-expressed
concern also has the following characteristics (although they are often hard to
achieve, especially at the vaguer end of the spectrum).

� It is (as far as practicable) quantified and measurable. Avoid statements 
like “The system must respond quickly” or “The interface must be easy 
to use.” 

� It is testable in a way that objectively demonstrates whether it has been 
achieved. 

� It is traceable, both forward and backward. In other words, it can be 
justified backward to strategy or goals, for example, and can be traced 
forward into architectural or design features. (We explain how to do this 
in the next section.) 

Depending on circumstances—and timescales—it may be useful to explic-
itly cross-reference concerns against the key features of your architecture. For
example, when there is a need for high system availability, you may choose to
implement hardware redundancy in parts of your architecture.

You may choose to document concerns as part of the main AD, as an
appendix, or in a separate document. Remember, however, that the primary
purpose of the AD is to document the architecture—it’s not intended to be a
requirements specification. You probably don’t want to go into much detail
about concerns in the AD; you can do this later as part of functional specification
and design.

As with the scope, you need to get the balance right—providing too much
detail will obscure the big picture, and too little detail will lead to ambiguity.
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System Scope and 
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ARCHITECTURAL PRINCIPLES

As we explained in Chapter 2, your architecture exists solely to meet your
stakeholders’ concerns. If you have a large and varied group of stakeholders,
as you usually do, understanding and reconciling all of their various concerns
can be difficult. The concerns will often vary in importance, visibility, and
clarity—some may have broad support and be widely understood, while oth-
ers may be obscure, complicated, or of interest to only a few stakeholders—
and some concerns may be in conflict with one another or even completely
incompatible.

Not only that, but concerns can affect the requirements and architecture—
and each other—in different ways. We have seen that solution-focused con-
cerns influence or constrain the architecture directly, by defining or restricting
the candidate architectures you can use. Problem-focused concerns generally
influence or constrain the architecture more indirectly, by defining require-
ments or mandating behaviors that suggest suitable candidate architectures
that meet those requirements.

Sometimes the influences and constraints work in the other direction—that
is, from the solution space back to the problem space. For example, an IT depart-
ment might mandate certain security features to protect the confidentiality and
integrity of its information, which could significantly change the business inter-
actions that users and customers have with the company’s systems.

We illustrate the multifaceted interrelationships between concerns in
Figure 8–2. The boxes in the diagram represent the types of concerns that
you may need to address; the solid arrows represent the relationships from
the problem space toward the solution space; and the dashed arrows repre-
sent the reverse relationships, from the solution space back toward the
problem space.

FIGURE 8–2 RELATIONSHIPS BETWEEN CONCERNS, REQUIREMENTS, AND ARCHITECTURE
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A useful technique for dealing with such a jumble of cause and effect is to
establish some principles about the construction of the architecture, and to
use these to help drive answers to the important decisions you have to make.
Principles are statements of approach or intent that can provide a decision-
making framework for the architecture, defining rules that should be followed
in its design, and are derived according to the specific needs and priorities of
the stakeholders.

EXAMPLE An international organization that monitors weather condi-
tions around the world wants to make this information available to 
developers of applications for smartphones and other mobile devices. 
Most data is captured automatically from weather stations, augmented 
by physical observations by meteorologists. The data will be published 
over the Internet in real time using standard XML- and HTTP-based 
protocols. After some initial investigation the architect comes up with 
several different approaches to managing and distributing the captured 
data. All solutions meet the functional requirements as expressed by 
the users but are architecturally very different and make architectural 
tradeoffs (such as scalability as opposed to consistency) in different 
ways.

Her first architecture, which she called Option A, has data collected 
locally and transferred to a single, central database that would manage 
all of the weather data and respond to all requests. This solution is 
architecturally simple and cheapest and quickest to implement and run. 
However, the architect realizes that it has some limitations: It has a 
single point of failure, for example, and has limited scalability. She 
therefore comes up with two more candidate architectures.

Option B involves having a copy of all of the data at three different 
locations around the world: a site in North America, a site in Europe, 
and one in the Far East. All data would be distributed to all locations, 
and requesters would be directed to the one that is physically nearest 
to them. In Option C, there would still be three locations, but each loca-
tion would host data only for that region. Requests would be routed to 
the location that holds the data requested.

Each of these options meets the functional requirements but has 
advantages and disadvantages in terms of flexibility, performance and 
scalability, time to market, and cost. They also have some rather subtle 
but important implications for users, such as timeliness, consistency, 
and completeness of data. The architect is stuck: How should she pick 
the right one?

After further discussion, the architect agrees on a principle with key 
stakeholders, which states that data required for processing a user’s 
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Defining a clear set of principles for your system is one of the ways that
you can provide some transparency into the involved process of analyzing,
rationalizing, and addressing (or indeed rejecting) the varied concerns of your
stakeholders. Some principles might be mandated by the organization—which
would also make them constraints—or you might conclude that they are the
right thing to do specifically for this architecture (we’ll see how you would
come to a conclusion like that shortly).

An appropriate use of principles is invaluable in establishing a baseline or
framework for architecture definition. Principles expose stakeholders’ under-
lying assumptions and bring them out into the cold light of day—in other
words, they make the implicit explicit. They are a great way to kick off an
architecture project, especially when motivation or scope is unclear. They are
also useful if you suspect that there are significant but unrecognized conflicts
among your stakeholders.

You have seen examples of principles throughout Part I and Part II, and
we hope that you are beginning to appreciate their usefulness. Let’s formally
define them now.

DEFINITION An architectural principle is a fundamental statement of belief,
approach, or intent that guides the definition of an architecture. It may refer to
current circumstances or to a desired future state.

Principles can be a great way of ensuring that concerns are addressed
consistently throughout the architecture and explaining why the architecture
needs to be built in a certain way. If you search on the Internet, you will
quickly discover that there are a great many principles of good architectural
design that are available to you “off the shelf.” However, you should avoid
the temptation to just download a set of best-practice principles and try to
blithely apply them to the problem at hand. You must ensure that any principle
you select is right for your specific situation and for the needs and priorities of
your stakeholders.

request should be held as “close” to that user as possible, even if this 
means it has to be replicated or redistributed. The rationale for this 
principle is that users might be interested in weather forecasts for any-
where in the world, not just their own area, and that the data needs to be 
easily available near the point at which it is accessed to achieve a good 
user experience (by minimizing latency) and to improve availability. This 
principle rules out Options A and C and also provides a rationale for 
choosing Option B.
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What Makes a Good Principle
A good principle has the following characteristics.

� It is constructive. It helps highlight issues, drive architectural decisions, 
and establish the right architectural framework.

� It is reasoned. It is strongly motivated by business drivers, goals, and 
other principles. (Indeed, we illustrate in the section Using Principles to 
Link Concerns and Decisions how you can use principles to justify archi-
tectural decisions from business drivers.)

� It is well articulated. More than for any other artifact, it is important that 
your principles can be understood by all stakeholders and are not open to 
misinterpretation (accidental or willful).

� It is testable. Principles are (usually) valid over the entire lifetime of the 
architecture, and it must be possible to determine objectively whether 
they are being adhered to.

� It is significant. A principle that is a truism has little value. A good test of 
significance is to ask whether the opposite statement could ever be true. If 

EXAMPLE A retailer wants to develop a new contact center system to 
deal with postal, telephone, and e-mail inquiries from its customers. 
However, when the hardware-sizing exercise is completed, it is discovered 
that the cost is way over budget because high-availability technologies 
such as clustering, hardware replication, and high-speed online backup 
have been used to provide a very high level of system availability.

Discussion with the sponsor and users reveals that, in fact, different 
parts of the system are considered to be of varying levels of importance 
to the business, and this can be taken into account when planning the 
high-availability design. This is encapsulated in the following principle:

While the availability of the contact center system is of paramount 
importance to the operation of the business, the parts of the system that 
support the customer-facing staff should be prioritized over other parts 
of the system (such as workflow monitoring and management reporting). 
If tradeoffs need to be made relating to the performance, availability,  or 
resilience of different parts of the system, the parts that support the cus-
tomer-facing workflow should always take precedence.

This principle is discussed extensively with a range of stakeholders, 
and as a result, the hardware architecture is considerably simplified by 
focusing the high-availability technology on the parts of the system that 
support customer interactions and reducing the amount of such technology 
used in other parts of the system.
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the statement opposing the principle is still meaningful (although obvi-
ously wrong for your circumstances), the principle is probably significant.

Let’s look at an example of how a little analysis can turn a poor principle
into a more useful one.

Principles are typically expressed in one or a few sentences in the present
tense (or sometimes in the future tense if they express a desired state) in
plain, jargon-free language.

EXAMPLE An early workshop for a retailer’s online store translated the 
goal “The online store must be easy to use by customers who have 
limited experience with computers and e-commerce” pretty much word 
for word into an architectural principle. However, applying the test for 
significance, it is clear that the opposite statement, “The online store will 
be hard to use,” is not one that would ever make sense. As it stands, 
this first attempt at a principle is a truism and not of much value.

Ease of use is clearly important to the stakeholders, and further 
discussion reveals that this is particularly important for new customers 
because it is so easy for potential customers to click away to another site 
if they are having problems. The principle is broken down into several 
more specific ones, including “We should minimize the amount of data 
that is collected from customers, particularly during early interactions 
such as sign-up for the site. Rationale: This minimizes data protection 
concerns and avoids slowing down the customer’s browsing and prod-
uct selection experience.” This principle is now more reasoned (because 
it is supported by the rationale to avoid inconveniencing customers and 
to avoid data protection concerns around personal data) and more con-
structive because it highlights the specific need for ease of use in initial 
customer interactions. It is also more significant because requiring a 
sign-up process that captures a lot of data might be necessary in some 
other situations.

However, it is still not particularly testable: How do the stakeholders 
know whether they have achieved their objectives for ease of use? Some 
more work produces a final version of the principle: “We should minimize 
the amount of data that is collected from customers, particularly during 
early interactions such as sign-up for the site, aiming to collect less than 
our competitors’ sites. Rationale: This minimizes data protection concerns 
and avoids slowing down the customer’s browsing and product selection 
experience.” The principle now provides a clearer target for analysts and 
developers.



122 PART I I � THE PROCESS OF SOFTWARE ARCHITECTURE

Defining Your Own Principles
Although there may be some high-level principles you can pick up “off the
shelf,” you will likely need to develop more specific principles of your own as
you explore issues in more depth. You will soon find this to be an invaluable
technique in shaping and refining the architectural design.

When you first start to use them, principles may come across to you and
your stakeholders as an overblown way to state the obvious, but you will rec-
ognize their usefulness the first time you start having trouble reaching consen-
sus over one. Because principles reach right down to core beliefs, disagreement
over the wording or meaning of a principle is a sure sign of some fundamental
differences among your stakeholders. It is good to get these differences out in
the open and resolve them early in the process.

It can take a lot of effort to obtain consensus on your principles, so try to
get them right the first time. Revising a principle later consumes valuable time
and can lead to a significant amount of architectural rework. Don’t make your
principles too specific: Your aim at this point is to capture the spirit and motiva-
tion of your stakeholders, rather than the details (which you will capture later).

Architects often ask, “How many principles should we define?” There is,
of course, no right answer to this question; you should define as many as the
stakeholders need. Don’t go overboard, though—if you have hundreds of
principles, no one will remember them.

ARCHITECTURAL DECISIONS

It has been argued that the architecture of a system is the accumulation of the
significant decisions made in its definition—indeed, this forms the basis of
the definition of architecture used by IBM’s Rational Unified Process (“Soft-
ware architecture encompasses the set of significant decisions about the orga-
nization of a software system”). While we don’t go as far as incorporating
this in our own definition, there can be no doubt that as an architect you need
to make a number of decisions about how the system should be built that will
have a fundamental effect on its eventual success.

Getting the big “architectural” decisions right is vitally important because
they are usually difficult, expensive, and time-consuming to change later. For
example:

� If a system’s architecture follows a certain architectural pattern, and this 
pattern subsequently proves to be inappropriate, refactoring to use another 
one may require that every element be redesigned. 

� If the architecture prioritizes one quality property over another, such 
as performance over flexibility, it can be very hard, if not impossible, 
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to redress this balance once a significant amount of software has been 
written.

� If the system is constructed using a specific programming language or 
technology platform that subsequently proves to not meet some key 
stakeholder goals, a complete rewrite may be required. 

It’s not only the explicit decisions—those that have been discussed, agreed
upon, and written down—that you have to worry about. In our experience,
many architectural decisions are implicit, that is to say, they are not docu-
mented anywhere or even discussed. This may happen because the decision is
so “obvious” that no one thinks to question it, because it gets lost in the detail,
or because you don’t have time to think about it. Implicit decisions are even
harder to deal with, because you often don’t realize that they have been made
until it is far too late to change them.

EXAMPLE A government department with offices in every town decides 
to replace its legacy human resources system because it is inflexible, 
does not scale, and is implemented using very old technology. The 
department has strong business drivers for local autonomy and account-
ability, and this leads to an architecture that has an autonomous in-
stance of the new system in each local office. After lengthy discussions, 
an architectural decision is made to master the data for each member of 
staff in the office in which that staff member works. There would be a 
weekly upload of key data to a central management reporting database, 
which could be used to give a high-level consolidated view. 

Development of the new system begins. After a few months, the 
department runs a disaster recovery exercise and as part of this gives 
formal consideration to the new HR system. The exercise explores a 
disaster scenario of a fire taking place in one of the offices and some 
staff being unaccounted for. 

The project team realizes that the HR data on the missing staff, 
including their contact details and contact details for their next of kin, 
could be lost in such a fire. This is unacceptable, since the data would 
have to be restored from an off-site backup and there would be a delay 
before concerned relatives could be contacted.

This realization means that a major re-architecting of the system is 
required, so that updates to key staff data—including next-of-kin 
information—are replicated from each local office to a central consoli-
dated database. The project suffers significant delays and cost over-
runs before it is deployed.
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Making your architectural decisions explicit is a good way of engaging
stakeholders who might not otherwise have the time or inclination to participate
in architectural definition. In our HR example, publicizing the key decisions
about the information architecture would have led to the realization that it did
not meet the department’s business continuity concerns.

This open approach ensures that your stakeholders are aware of the deci-
sions that have shaped your architecture and can validate that they are sensible
and meet their specific concerns. It also helps to “embed” the fundamentals of
the architecture into everyone’s thinking, so that decisions are not reversed
later without due consideration of the consequences. 

As we shall see shortly, it also provides traceability of decisions back
to fundamental business drivers, which helps you get stakeholder buy-in
to the key features and capabilities of your architecture and gives early
visibility of the implications of your decisions so that these can be acted
upon.

Architecturally Significant Decisions
Obviously you can’t document and review every decision you make about your
architecture—indeed, it would make no sense to do this. However, you can
apply the idea of architectural significance, which we explained in Chapter 2, to
help you determine which decisions need wider stakeholder review and
oversight.

Architecturally significant decisions usually answer the important “what,”
“how,” and “with what” questions about the architecture and are the decisions
that are critical to ensuring that the system achieves its key goals. (The impor-
tant “why” questions are answered by the concerns, constraints, and princi-
ples, of course.) 

Architecturally significant “what” decisions help to map out the functional
components of the architecture, its data stores, concurrency mechanisms,
deployment platforms, and operational tools, and the ways that these elements
work together to address stakeholder concerns. “What” decisions often have
significant stakeholder impact and therefore need to be made in consultation
with key stakeholders and usually require their ratification.

Architecturally significant “how” decisions drive the way that elements of
the architecture will be constructed. They often make use of standard patterns
or approaches, such as a decision to design a multithreaded server using
pools of stateless components, or a reporting database using a star schema
database. “How” questions usually have more impact on the solution space
than on the problem space.

Architecturally significant “with what” decisions usually define what
software (and sometimes hardware) technologies will be used to build the
system. These almost always are aimed at the solution space.
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In this example, a “how” decision might be that “credit card payments
will be authorized using the payment authorization service of XYZ Card Ser-
vices.” A “with what” decision might be that “messages will be sent to XYZ
Card Services using their standard gateway connected to their servers over a
private VPN using their proprietary protocol.”

When deciding whether an architectural decision is architecturally signifi-
cant, and therefore needs stakeholder involvement and ratification, ask yourself
the following questions.

� Does it have a significant impact on the system’s functionality or quality 
properties?

� Does it address a significant risk that the project is facing?

� Does it have implications in terms of the time or cost to build the system?

� Is the decision or its rationale or implications complex or unexpected?

� Has a significant amount of time or effort been spent reaching the decision?

� Is the decision contentious or politically important, perhaps relating to an 
approach, technology, or vendor that is favored (or deprecated) in the 
organization?

USING PRINCIPLES TO LINK CONCERNS AND DECISIONS

One of the most powerful uses of principles is to provide traceability for your
architectural decisions. In other words, you can use principles to help justify
and explain particular elements or features of your architecture.

This approach relies on associating two additional pieces of information
with each of your principles: its rationale (why it is an appropriate and valuable
principle for your architecture) and its implications (what needs to happen in
order for the principle to become reality).

EXAMPLE An events-booking service accepts bookings from customers 
over the Internet. However, concern has been expressed that card 
authorization could be unacceptably slow, especially at peak times. A 
“what” architectural decision is therefore made that “the order-
processing system will include a service to collect payment after the 
order has been accepted and will notify the customer at some later point 
that payment has been successful (or otherwise).” The implications of 
this decision are that in some cases, a customer who thought her order 
had been accepted would need to be notified that an alternative means 
of payment was required.
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Traceability comes about by linking principles together using implications
and rationales. You do this as follows.

� Start with the business drivers and goals for the architecture.

� Use the business drivers to develop a set of business principles, many of 
which have as their rationale one or more business drivers (i.e., the busi-
ness driver has as an implication for the business principle). A business 
principle generally focuses on the “why” and “what” questions rather than 
on how the architecture will be built or deployed.

� Use the business principles in a similar way to develop a set of technology
principles, many of which have as their rationale one or more business 
principles. Technology principles usually focus on the “how” and “with 
what” questions.

� Finally, use the technology principles to develop a set of architectural
decisions, many of which have as their rationale one or more technology 
principles.

Following the business drivers through to architectural decisions, via ration-
ales and implications, helps you explain the reasoning behind your architectural
decisions, as shown in Figure 8–3.

Let’s illustrate this by means of a rather simplistic example.

EXAMPLE Because the retailer described previously has grown by 
acquisition, it now has a number of separate online catalogs in its 
portfolio. Each catalog fronts a separate shopping system, with its own 
ways of ordering goods and managing accounts. This makes life 

BUSINESS
PRINCIPLES

Rationale

Implications TECHNOLOGY
PRINCIPLES

Rationale

Implications

ARCHITECTURAL
DECISIONS

DRIVERS
AND GOALS

FIGURE 8–3 USING PRINCIPLES TO DEMONSTRATE TRACEABILITY
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difficult for enthusiastic shoppers, who need to pay separate bills and 
keep each account up-to-date with changes in personal details.

The company’s business strategy therefore includes the following 
business goal:

G1. To interact with customers in a “joined-up” manner that places 
them at the heart of the contact process, making it easy and enjoy-
able for them to browse our entire portfolio and shop with us.

As a result of this, a number of business principles are accepted, in-
cluding the following.

B1. All customers will gain access to any information, service, or 
catalog via a single point of entry (the company portal).

B2. Certain customer data items (name, address, e-mail address) are 
viewed as core information, and it should be necessary for a 
customer to update these only once for the changes to be imme-
diately visible everywhere.

Each of these principles has goal G1 as a rationale. 
After some discussion, these are driven down into the following set of 

technology principles.

T1. Each item of core customer data will be held only once, updated 
in real time, and used as the authoritative source of the truth.

T2. Any system that requires access to a core data item will retrieve 
it from the central data store at the time of use.

T3. Noncore data (i.e., data that applies only to a specific service or 
catalog) will be managed by the system to which it pertains.

The rationales for these principles are business principles B1 and B2.
An architecture is developed from these principles and includes the 

following elements:

D1. A central consolidated data store that manages all core customer 
data

D2. A messaging framework used to synchronously retrieve or 
update all core data

The rationales for these design decisions are technology principles 
T1, T2, and T3.
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You can see from this simple example that the decision to deploy a central
data store can be justified from business goal G1, through business principles
B1 and B2, and through technology principles T1, T2, and T3.

CHECKLIST

� Have you consulted all stakeholders who may be able to mandate or suggest 
important concerns?

� Have you captured and documented the important influencing concerns—
the goals and drivers that have caused the key stakeholders to initiate the 
project?

� Have you captured and documented the important constraining concerns—
the standards and policies that may restrict your architectural choices?

� Have you also understood the “real-world” constraints that you need to 
comply with but may not necessarily want to write down?

� Have you documented all concerns, using simple, clear language that 
stakeholders can understand?

� Are all principles supported by rationales and implications? Do these ulti-
mately tie back (via rationales) to business goals and forward (via impli-
cations) to architectural decisions?

� Have the stakeholders reviewed and ratified your concerns and principles?

SUMMARY

A wide range of factors guide and shape your architecture, including business
and IT strategy, goals and drivers, scope and requirements, standards and poli-
cies, and real-world constraints such as time or skills. We call these concerns
and group them into problem-focused concerns, which guide the problem that
the system is trying to solve, and solution-focused concerns, which guide the
possible solutions to that problem. You need to understand and document these
to make sure that you make the right architectural decisions.

Some concerns have influence and drive decision making in a certain direc-
tion (for example, a business or technology goal), while others impose con-
straints and therefore restrict the decisions you can make (such as a standard
or policy that you have to follow).

Stakeholder concerns may be specific and measurable (in which case we
call them requirements) or may be vague and loosely stated but nonetheless
important to your stakeholders. We described how to effectively document
your stakeholders’ concerns.
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We defined an architectural principle as a fundamental statement of belief,
approach, or intent that guides the definition of an architecture. We explained
how principles are extremely useful in creating a framework for architecture
definition and showed how you can use principles to capture the relationships
between your architectural decisions and the concerns that shaped them.

FURTHER READING

One of the reasons that we devote quite a lot of space to these ideas is that
while concepts like goals, drivers, principles, and concerns are talked about a
lot, few books discuss them in the context of software architecture.

However, one book that places software architecture firmly in the context
of business drivers is [BASS03], the early chapters of which describe the rela-
tionship by reference to the “Architecture Business Cycle” (ABC). While
approaching the subject from an enterprise architecture perspective, another
reference that discusses business strategy, goals, and principles and how they
relate to technology drivers is [PERK03].

One of the early articles that discusses the importance of capturing archi-
tectural decisions is [TYRE05]; and a thorough discussion of architectural
decisions, including templates and a decision-making process, can be found
in [CLEM10].

You can find out more about Capgemini’s IAF methodology in [WOUT10] .
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9
IDENTIFYING AND ENGAGING
STAKEHOLDERS

s we saw in Part I, the people affected by a system are not limited to
those who use it. Systems are not just used: They have to be designed

and built; they have to be operated; they may have to be repaired; they are
usually enhanced; and, of course, they have to be paid for.

Each of these activities involves a number—possibly a significant num-
ber—of people distinct from the users. Each of these groups of people has its
own requirements, its own interests, and its own needs from the system. We
refer collectively to these people as stakeholders. In Part I we defined a stake-
holder as follows.

DEFINITION A stakeholder in the architecture of a system is an individual,
team, organization, or classes thereof, having an interest in the realization of
the system.

Correctly identifying stakeholders and gaining their commitment are
among the most important (yet underrated) tasks in software development.
The concept of architectural stakeholder is clearly explained in the ISO
standard ([ISO11]), and our discussion builds on theirs.

SELECTION OF STAKEHOLDERS

Although a large number of people may have some level of interest in your
architecture, you almost certainly do not have time to consider everyone’s
concerns. Your first challenge, therefore, is to work out whose opinions and

A
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priorities it is most important to take into account and focus on them. Your
high-priority stakeholders will fall into one or more of the following groups:

� Stakeholders who are most affected by your architectural decisions, for 
example, those who have to use the system, operate and manage it, or 
pay for it

� Stakeholders who have influence over the shape and eventual success of 
the development, for example, those who will have to pay for it

� Stakeholders who have specialist knowledge of the business or technology 
domain and can provide you with useful advice or even review your 
architecture

� Stakeholders who need to be included for organizational or political rea-
sons, such as compliance officers, a central architectural governance 
team, or a respected opinion former within the organization

It is, in our experience, a subjective choice whom you select to populate
your community of stakeholders. We have found, however, that casting your
net more widely at the beginning is important in the long term (although in
the short term, it may make your life more difficult because you will have
more potentially conflicting requirements to reconcile). If you don’t take
stakeholders’ concerns into consideration at the beginning of your develop-
ment project, you can be sure that they will complain at the end, when
making changes is much harder—and making architectural changes may be
practically impossible.

STRATEGY The selection of stakeholders with whom you will engage is a
subjective activity, but in general, the wider the stakeholder community, the
better your chances of delivering a successful product or system.

Unfortunately, there are no purely objective criteria for determining
whether you have correctly identified your stakeholders. Whom you select
depends on a range of factors, including the goals of the system, organiza-
tional and political considerations, availability of resources, and cost and
timescale constraints.

(We sometimes find, for example, that stakeholders are consulted in a
spirit of openness, to demonstrate a desire to reflect a wide range of concerns,
rather than an absolute need to take account of their views. There is abso-
lutely nothing wrong with this, as long as it contributes to the success of the
architecture.)

Drawing up your list of stakeholders, therefore, is a collaborative activity
that sets the tone for the future direction of the project, and it is essential that
you get this right. As well as ensuring that your stakeholder list is complete
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(we explore this issue further in the next section), there are four criteria to
help make sure your list is right.

PRINCIPLE A useful stakeholder in an architecture is informed, committed,
authorized, and representative.

We explain each of these criteria in Table 9–1.

CLASSES OF STAKEHOLDERS

In Table 9–2, we classify stakeholders according to their roles and concerns.

TABLE 9–1 CRITERIA FOR A GOOD STAKEHOLDER

Criterion Description

Informed Do your stakeholders have the information, the experience, 
and the understanding needed to make the right decisions?

Committed Are your stakeholders willing and able to make themselves 
available to participate in the process, and are they prepared 
to make some possibly difficult decisions?

Authorized Can you be sure that decisions made now by your stakeholders 
will not be reversed later (at potentially high cost)?

Representative If a stakeholder is a group rather than a person, have suitable 
representatives been selected from the group? Do those repre-
sentatives meet the criteria for individual stakeholders?

TABLE 9–2 STAKEHOLDER ROLES

Stakeholder Class Description

Acquirers Oversee the procurement of the system or product

Assessors Oversee the system’s conformance to standards and legal regulation

Communicators Explain the system to other stakeholders via its documentation 
and training materials

Developers Construct and deploy the system from specifications (or lead 
the teams that do this)

Maintainers Manage the evolution of the system once it is operational

Production engineers Design, deploy, and manage the hardware and software environ-
ments in which the system will be built, tested, and run

Continued on next page



134 PART I I � THE PROCESS OF SOFTWARE ARCHITECTURE

Most system development projects include representatives from most if
not all of these stakeholder groups, although their relative importance will ob-
viously vary from project to project. However, if you do not at least consider
each class, you will have problems in the future.

Widening your set of stakeholders leads to a tradeoff—the larger the
group, the more difficult it will be to reach a consensus. Part of the architect’s
role is to ensure that large stakeholder communities do not become an obstacle
to making progress. This requires you to actively manage the decision-making
process and have a clear understanding of the relative importance of the needs
of each stakeholder group. Doing this will help you defend your architectural
decisions when challenged by stakeholders who feel that their needs have been
ignored.

STRATEGY If you have a large stakeholder group, you need to actively man-
age it to ensure that its size does not impede progress. In particular, you need
to balance and prioritize the needs of the different stakeholder groups, so that
when conflicts occur, you can make sound, well-reasoned decisions.

It is also worth noting that, although we don’t consider the architect’s
needs explicitly, when acting in that role you are also an architectural stake-
holder. (We assume that you can represent yourself adequately to ensure that
your views are taken into account!)

PRINCIPLE The architect must ensure that there is adequate stakeholder rep-
resentation across the board, including nontechnology stakeholders (such as
acquirers and users) and technology-focused ones (such as developers, sys-
tem administrators, and maintainers).

Let’s define the stakeholder classes in a little more detail.

Stakeholder Class Description

Suppliers Build and/or supply the hardware, software, or infrastructure 
on which the system will run

Support staff Provide support to users for the product or system when it is running

System administrators Run the system once it has been deployed

Testers Test the system to ensure that it is suitable for use

Users Define the system’s functionality and ultimately make use of it

TABLE 9–2 STAKEHOLDER ROLES (CONTINUED)
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Acquirers
Acquirers oversee the procurement of the system or product. Acquirers typi-
cally include senior management, which provides or authorizes funding for
product or system development, and may also include the purchasing and legal
departments, which represent the commercial interests of users in negotiations
with third-party suppliers.

In a system development project, acquirers are often referred to as busi-
ness sponsors, and for product development, acquirers are likely to be senior
executives from the sales, marketing, and technology groups. There may also
be investor representation in this group if specific external investment is re-
quired to fund the project. In seniority terms, acquirers are usually your most
important stakeholders.

Acquirers’ concerns typically center around issues such as alignment with
strategic objectives, return on investment, and the costs, timescales, plans,
and resources involved in building and running the system. Their goals are
usually value for money and efficient expenditure of resources during deliv-
ery and operation. 

Assessors
Assessors oversee the system’s conformance to standards and legal regula-
tions. Assessors may come from the organization’s own internal quality con-
trol or conformance departments, or they may be external legal entities.

Assessors’ concerns are focused around testing (to demonstrate conform-
ance to requirements) and on formal, demonstrable compliance.

Communicators
Communicators explain the system to other stakeholders. Internal or public
trainers provide training for support staff, developers, maintainers, and so on,
and technical authors create manuals for the users and administrators of the
product or system. In the case of a product, the marketing department needs to
communicate its key features, strengths, and benefits to potential customers.

Communicators’ interests lie in understanding the rationale behind and
the details of the architecture and explaining it to technical and lay audiences.

Developers
Developers construct and deploy the system from specifications; in other words,
they take it through the software development lifecycle from design, code, and
test to acceptance. Developers need to understand the overall architecture bu t
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also have specific concerns that focus on development issues such as build
standards, choice of platform, language, and tools as well as other issues such
as maintainability, flexibility, and the preservation of knowledge over time.

This category also includes development managers, who plan the development
activities and lead the teams that do the work.

Maintainers
Maintainers manage the evolution of the system once it is operational. Main-
tainers’ concerns focus on issues such as development documentation, instru-
mentation (facilities for operational system monitoring), debug environments,
production change control, and the preservation of knowledge over time.

Production Engineers
Production engineers design, deploy, and manage the hardware and software
environments in which the system will be built, tested, and run. They are
responsible for server and desktop computers; networking infrastructure;
special-purpose appliances such as search engines or communications gate-
ways; peripherals such as printers, cell phones, and other handheld devices;
and in most cases infrastructure software such as operating systems, systems
management, messaging middleware, and relational databases.

Most large organizations run their computing environments in data centers,
which provide a safe, secure, and highly available environment with sophisti-
cated features such as redundant power supplies, redundant high-bandwidth
data communications, and environmental controls such as air conditioning and
fire prevention. As well as the main production environments, data centers usu-
ally also house environments for disaster recovery, acceptance testing, and in
some cases development. These represent a substantial financial asset, and the
production engineers control them carefully and rigorously.

Production engineers have significant input to the deployment architec-
ture of any system, and their approval is usually required before any compo-
nent is installed into the data center.

Suppliers
Suppliers build and/or supply the hardware, software, or infrastructure on
which the system will run, or possibly they provide specialized staff for sys-
tem development or operation.

Suppliers are a slightly special class of stakeholder: They are not usually
involved in building, running, or using the system, but they may impose con-
straints due to the limitations or requirements of the products they supply.
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For example, a software application may mandate a particular version of the
operating system to run, or may run only on certain hardware configurations,
or may impose limitations on the number of concurrent connections or maxi-
mum data size. It is essential that you factor such constraints into the design
of the architecture.

Support Staff
Support staff (help desk, technical support, customer service departments, and
so on) provide support to users of the product or system when it is running.
Support staff concerns revolve around having the information required to solve
problems with users who may be communicating via telephone, e-mail, or the
Internet—or in person.

System Administrators
System administrators run the system once it has been deployed. In large-scale
commercial environments, system administrators play a key role because opera-
tion of the system is essential to the continuity of the business. In some scenarios,
such as products aimed at the domestic PC market, the system administrators may
also be the users.

System administrators may focus on a wide range of concerns, such as
system monitoring and management, business continuity, disaster recovery,
availability, resilience, and scalability.

Testers
Testers act as the conscience of the system development team. They systematically
test the system in order to establish whether or not it is suitable for deployment
and use. Although developers also perform testing, testers should be independent
and do not have the same sense of ownership of the system’s implementation.
This, along with their specialist knowledge and experience, means that they can
perform a more thorough and objective job of evaluating the system than the other
stakeholders can.

Testers may be part of the same team as the developers or may be in a
separate organizational unit or even a distinct organization (e.g., independent
testing may be subcontracted to a specialist testing company). Wherever they
are found organizationally, testers are concerned with establishing require-
ments, designing tests to prove whether requirements have been met, and
building systems on which to run their tests.
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Users
Users define the system’s functionality and will ultimately make use of it. In the
case of internal systems, users are internal staff who may be dealing with
customers or performing back-office functions. In the case of a software product,
users are the eventual purchasers of the product; here it is necessary for the
product manager to represent their interests in some way, for example, by
market testing. In some scenarios (e.g., e-commerce or other customer-facing
systems), users may be members of the public; again, it is necessary to represent
their interests secondhand. 

Users’ concerns obviously center around scope and functionality; how-
ever, they have operational concerns too, such as performance and security,
although the architect may need to bring these to the users’ attention.

EXAMPLES

We can illustrate the characteristics of these stakeholder classes by means of
some examples.

An Off-the-Shelf Deployment Project
An off-the-shelf deployment project involves the selection, tailoring, and imple-
mentation of an existing software package and so involves the development of
less software than a traditional system development project. However, the role
of stakeholders is still vital, and many of the stakeholders from a traditional
software development project are still relevant to an off-the-shelf deployment
project.

EXAMPLE Company A, a manufacturer of computer hardware, wants 
an enterprise resource planning (ERP) system to better manage all 
aspects of its supply chain from ordering through delivery. Management 
anticipates the system being constructed from a custom off-the-shelf 
(COTS) package combined with some in-house development for special-
ized aspects of functionality. The new system must be deployed within 
one year, in time for a meeting where shareholders will consider future 
funding for the company.

Acquirers of the system include the business sponsor (senior man-
agement), who will authorize funding for the project, along with the 
purchasing department and representatives of IT, who will evaluate a 
number of potential ERP packages.
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A Software Product Development Project
A software product is usually developed by a specialist supplier, with the development
often partially funded by external investors. The intended users of the product will
be in other organizations that, it is hoped, will purchase the product once it is
complete. The stakeholders for such projects are often spread across a number
of organizations.

The users of the system cover a wide range of internal staff, including 
those who work in order entry, purchasing, finance, manufacturing, and 
distribution.

Developers, system administrators, production engineers, and main-
tainers are staff members of the internal IT department, and assessors 
are taken from the internal acceptance test team. Communicators include 
internal trainers, and support is to be provided by an internal help desk 
(possibly in conjunction with the COTS supplier).

EXAMPLE Company B, an educational software supplier, wants to 
develop a product that will be used by college lecturers to manage their 
schedules of classes. Company B has formed a partnership with a local 
college and has obtained some venture capital funding for the product. 
The system will run on PCs and will be inexpensive and easy to operate.

Acquirers in this case include senior management and product man-
agers at Company B, the educational partner, and representatives from 
the venture capitalists.

Users of the system are college lecturers and administrative staff; 
note that these users do not actually exist as such because no one has 
yet bought the product. User representation will have to be obtained in 
some other way (e.g., by talking to some potential users of the product).

Developers and maintainers are product development staff from Com-
pany B, and assessors are taken from the three partner organizations. 
There are no real system administrator stakeholders in this example 
(this needs to be factored into the architecture, for example, by making 
the system self-managing). Support staff might be provided by Company 
B and/or colleges that buy the product.

Communicators include technical authors from Company B who write 
the user guide.
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A Partnered Development
A partnered development project involves one organization using the services
of another to provide systems or services it would normally provide with its
own internal resources. These projects result in stakeholders who would typi-
cally be found within the acquiring organization actually being found within
the external service organization. This can make it more difficult to identify
and interact with these stakeholders.

PROXY STAKEHOLDERS

We can see from the examples in the previous section that it may not be possible to
identify all stakeholders until the system is developed. While some stakeholders
will almost always be identifiable—particularly the acquirers and probably the
users—others may not physically exist as a group. In these situations, you must

Production engineers provision the development and test environ-
ments for Company B. They also provide and manage the infrastructure 
for manufacturing product CDs and for distributing software updates to 
users over the Internet.

EXAMPLE Company C, an established financial organization, wishes to 
expand its presence on the Internet with the ability to market a range of 
financial services to members of the public. These services are aimed at 
residents of the country where Company C is based, as well as some 
international customers. Company C plans to contract out the development 
and operation of the system to an established Web developer.

Acquirers include senior managers who will authorize funding for the 
project. Users include ordinary members of the public, who will access 
the public-facing Web site (as in the previous example, these don’t exist 
yet), along with internal administrative staff, who will carry out its 
back-office functions.

Developers and system administrators are staff from the Web development 
company. Assessors include Company C’s internal accounting and legal staff, 
as well as external financial regulators from any country in which Company C 
wants to trade.

Communicators, production engineers, and support staff are provided 
by Company C and/or the Web development company.
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identify proxy stakeholders. The proxy is an individual or group who speaks for
the concerns of the real stakeholders and ensures that they are given as much
weight as other concerns.

For a new product, for example, the user stakeholders are potential cus-
tomers. Your proxy user stakeholders might be the product managers from
the marketing group, armed with the results of market testing, or members of
the target user population willing to be involved in the product’s inception.

STRATEGY When real stakeholders cannot be identified (e.g., when a user com-
munity does not yet exist), or when there are too many to consult individually, the
architect should identify proxy stakeholders to represent their interests. As much
as possible, the proxy stakeholders should meet the same criteria as their real
counterparts.

STAKEHOLDER GROUPS

Another possible complication occurs when a stakeholder actually represents
a class of person, such as user or developer, rather than an individual. It may
be impossible to capture and reconcile the needs of all members of the class in
the time you have available, or you may not have the stakeholders at hand
(e.g., in the case of potential users of a new product in development).

A stakeholder can also be a more external group, such as a professional
standards body, the company’s quality assurance department, or external
legal regulators. The same principle applies in this case—you need to select
representative stakeholders authorized to stand in for the whole group.

STRATEGY When a stakeholder comprises a group, team, or organization, it
is necessary to select and authorize one or more stakeholder representatives
to speak for the group.

STAKEHOLDERS’ RESPONSIBILITIES

Effective stakeholders fulfill the following responsibilities.

� They ensure that all of their concerns are clearly communicated to the 
architect.

� Representative or proxy stakeholders clearly convey to the architect all of 
the concerns of the people they represent.
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� They make decisions in a timely and authoritative manner and stick to 
them.

� If the stakeholders do not have the authority to make a decision, they 
escalate it appropriately and obtain a decision from someone who has 
that power.

� They review the AD to ensure that the system meets their concerns and 
is—as far as they can ascertain—functionally correct.

CHECKLIST

� Have you identified at least one stakeholder of each class? If not, is the 
omission justified?

� Have you informed the stakeholders of their responsibilities (e.g., as 
defined in the previous section), and have they agreed to these?

� In particular, does each stakeholder understand the level of commitment 
involved, in terms of attending meetings, reviewing documents, and 
making decisions?

� Is each stakeholder aware of the particular role to fulfill (acquirer, user, 
and so on)?

� For each group of stakeholders, have you identified and engaged a suit-
able representative? Does this proxy have the knowledge and authority 
to speak on behalf of the group?

� For each stakeholder group that does not yet exist (e.g., customers for a 
new software product), have you identified and engaged a suitable 
proxy?

� If suppliers are to be included as stakeholders, are their responsibilities and 
(if appropriate) contractual obligations clearly understood by both sides?

SUMMARY

Understanding the role of the stakeholder is fundamental to understanding the
role of architecture in the development of a software product or system. In this
chapter, we showed how to select good stakeholders—those who are informed,
committed, authorized, and representative—and defined a set of stakeholder
classes, including the following:

� Acquirers, who oversee the procurement of the system or product

� Assessors, who oversee the system’s conformance to standards and legal 
regulation
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� Communicators, who explain the system to other stakeholders

� Developers, who construct and deploy the system from specifications

� Maintainers, who manage the evolution of the system once it is operational

� Production engineers, who design, deploy, and manage the hardware and 
software environments in which the system will be built, tested, and run

� Suppliers, a special class of stakeholders who may impose constraints on 
the architecture due to characteristics of their products

� Support staff, who provide support to users for the product or system 
when it is running

� System administrators, who run the system once it has been deployed

� Testers, who test the system to ensure that it is fit for use

� Users, who define the system’s functionality and will ultimately make 
use of it

We also discussed proxy stakeholders, who represent the interests of
temporarily nonexistent stakeholders (such as the users of a new product),
and explained the responsibilities of stakeholders in general.

FURTHER READING

As mentioned at the beginning of this chapter, we based our definition of
stakeholder on that presented by the IEEE standard Recommended Practice
for Architectural Description [IEEE00], which defines stakeholders in terms
of an architecture definition process.

A number of software architecture books [BASS03, CLEM02, GARL03,
TAYL09] have useful discussions of the idea of an architectural stakeholder.
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10
IDENTIFYING
AND USING SCENARIOS

he most important goal of your software architecture is that it meets the
needs of your stakeholders. In practical terms, this means that the system

built based on your architectural design must be able to perform certain tasks
while exhibiting specific properties that are important to the stakeholders
(such as its performance or security).

Architecture definition is inevitably a process of complex tradeoffs between
competing needs. In the midst of this, it is very easy for you to lose sight of a
particular system’s key priorities and for these tradeoffs to start being driven
by personal preferences or imagination, rather than stakeholder needs.

A good way to stay grounded when developing your architecture is to
continually consider how the ideas you are developing will actually work in
practice. One of the most powerful techniques we have come across is to
define and apply scenarios to your architecture.

The idea of an architectural scenario is simple but worth defining formally
nonetheless.

DEFINITION An architectural scenario is a well-defined description of an
interaction betwmeen an external entity and the system. It defines the event
that triggers the scenario, the interaction initiated by the external entity, and
the response required of the system.

Architectural scenarios can be used to capture a wide range of architec-
tural requirements, such as:

� A particular set of interactions with its users to which the system must 
be able to respond

T
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� The processing that must happen automatically at a particular point in 
time, such as month end

� A particular peak load situation that could occur

� A demand that an external regulator might make of a system

� How the system must respond to a particular type of failure

� A change that a maintainer might need to be made to the system

� Any other situation with which the design of the system must be able 
to cope

TYPES OF SCENARIOS

We can divide the possible scenarios for a system into two groups: those
concerned with what the system does and those concerned with how it does
it. In other words, just as with requirements, scenarios can be divided into
functional scenarios and system quality scenarios.

� Functional scenarios are nearly always defined in terms of a sequence of 
external events (normally derived from a system use case) to which the 
system must respond in a particular way. Examples include users initiat-
ing transactions, data arriving at external interfaces, temporal events 
(such as the end of the day) occurring, and so on. (These scenarios form 
the “+1” part of Philippe Kruchten’s original “4+1” viewpoint approach 
on which we based our viewpoint set.)

� In contrast, system quality scenarios are defined in terms of how the sys-
tem should react to a change in its environment in order to exhibit one or 
more quality properties. There are as many types of system quality sce-
narios as there are quality properties, but the more important ones tend 
to include security, performance, availability, and evolution (which, not 
coincidentally, are also our primary architectural perspectives). Examples 
of system quality scenarios include the ability of the system to be modi-
fied to provide a new function, to cope with a particular type of peak 
load, to protect critical information even if some of the security infra-
structure is compromised, and so on.

Functional scenarios are often documented in the form of use cases. This
technique was originally formulated by Ivar Jacobson, and the use case dia-
gram subsequently became part of UML. A use case views the system as a
“black box,” describing what it should do in order to perform a task for a
specified actor (external entity in our terminology—see Chapter 16). While
they are widely used for capturing functional specifications, capturing system
quality scenarios with use cases can be difficult.
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USES FOR SCENARIOS

You can use scenarios in a number of ways within the architecture definition
process.

� Providing input to architecture definition: Inspiration and ideas can come 
from many places. Scenarios can provide part of this input and keep the 
process grounded in reality by challenging you to design solutions to the 
specific problems the scenarios pose.

� Defining and validating the system scope: As we discuss in Chapter 16, it 
is common for scope and requirements to be ill defined in the early 
stages of systems development projects, and it often falls to the architect 
to make them more precise. Scenarios can be a useful way of exploring 
aspects of the scope with your stakeholders and gaining their agreement 
to what is included and excluded.

� Evaluating the architecture: Scenarios are a primary input into almost any pro-
cess of architectural evaluation, which can range from simple credibility checks 
you perform in your head to heavyweight reviews using a formal process like 
the Architecture Tradeoff Analysis Method (ATAM). (We describe ATAM as an 
evaluation approach later in Chapter 14.) However, irrespective of the degree of 
formality you employ, scenarios drive the whole process by forcing you to con-
sider how well the system can respond to a specific situation.

� Communicating with stakeholders: We have found that the discussion of 
a scenario, and how the system will respond to the situation described in 
it, is a very useful vehicle for communicating with all types of stakehold-
ers and is often much more effective than using traditional design docu-
mentation, particularly for less technical stakeholders. Indeed, for 
nontechnical stakeholders, scenarios may be the only way to communi-
cate the implications of the proposed architecture in a way that they 
really understand. 

� Finding missing requirements: Another benefit of creating scenarios is that 
they often reveal what is missing as well as the suitability of what already ex-
ists. Considering how the system behaves in one scenario often leads stake-
holders to realize that another situation they hadn’t previously considered 
was omitted from the requirements analysis. Finding these missing require-
ments early can be an invaluable side effect of applying scenarios.

� Driving the testing process: Scenarios help highlight the things that are 
important to your stakeholders, thus providing a tremendously useful 
guide for where to focus testing activity. After identifying your scenarios, 
use them to plan the sort of testing you will require, and make sure that 
the system’s testers have a copy of the scenarios as a basis for their 
initial test plans.
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Stakeholders often find the process of actively walking through and ana-
lyzing scenarios much more interesting and engaging than reading a design
document or attending a presentation. It often helps them to understand the
proposed system much more deeply and allows them to analyze the proposal
and find flaws in it much more effectively than with other forms of design
documentation. This alternative view means that a scenario tends to uncover
details that formal requirements and designs have often glossed over, by
bringing proposals to life and challenging the stakeholders to think them
through more thoroughly.

Reviewing how a system will settle a particular set of financial transactions
with a requirements analyst, or how it will behave under a specific peak load
condition with a technology specialist, is often much more productive than just
asking them to review the requirements or designs (which are often simplified,
generalized, and abstracted in order to make them easy to understand).

IDENTIFYING AND PRIORITIZING SCENARIOS

In order to work effectively with scenarios, you need to capture a useful set
and prioritize them to know where to focus your efforts for greatest effect.
You can derive this information from a number of different sources.

� Requirements: Each functional requirement will suggest a functional 
scenario (that probably needs to be fleshed out with more specific 
detail), while your system quality requirements are likely to suggest 
behaviors (such as performance under load) that your system must 
exhibit.

� Stakeholders: Your stakeholders are a rich source of possible scenarios. 
Depending on the type and number of stakeholders, you could run a 
workshop to brainstorm possible scenarios, or simply meet with repre-
sentatives of each stakeholder group to solicit ideas. Some stakeholder 
groups (such as acquirers, testers, system administrators, and maintain-
ers) are particularly valuable sources of system quality scenarios, which 
are often harder to derive directly from requirements documents. 
Eliciting scenarios from stakeholders will also result in their thinking 
much more deeply about what the system should do and how it will 
affect its environment, often leading to the discovery of undiscovered 
requirements, constraints, or goals.

� Experience: There is no substitute for experience, and your own experi-
ence may well be one of the most valuable sources of possible scenarios. 
If you have experience in a similar domain, with similar technology, or 
with systems that share important characteristics with the current one, 
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you know what was difficult and caused problems, and these situations 
point to useful scenarios.

Having identified a set of scenarios, you need to prioritize them, particu-
larly if you have more than 5 or 10. With a large scenario set, it is easy to lose
track of which are the most important ones to focus on. If this happens, the
scenarios frequently become a hindrance to decision making because their
conflicting demands simply confuse the situation.

There are a number of possible ways to do this. In our experience, the two
key criteria for scenario classification are the importance that the systems’
stakeholders attach to the scenario, and the likely risk that you consider the
implementation of the scenario will involve. You need to pay significantly
more attention to scenarios that key stakeholders consider crucial and that
are also risky to implement than to relatively straightforward scenarios that
stakeholders don’t feel are that important. Scenarios that have straightfor-
ward implementations but are important to stakeholders, or those that are
risky to implement but have less stakeholder value, fall somewhere between
these two extremes.

Your stakeholders should be involved in scenario prioritization because you
are creating the architecture for them and they probably understand the problem
that the system is trying to solve better than you do. However, as with require-
ments, your stakeholders normally have overlapping and conflicting interests
and opinions, so the priorities they place on different scenarios will vary. You
may be able to gather stakeholder representatives in a meeting to vote on sce-
nario importance, with those getting the most votes being considered the most
important. In many cases, though, this won’t work, and you will need to balance
the views of the different stakeholders yourself, in the same way that you often
need to balance the relative priority of different requirements.

You should also consider how risky you think it would be not to address
some of your scenarios. (You will normally do this yourself, rather than ask-
ing stakeholders to do it.) When assessing this, consider whether the overall
effectiveness of the system is likely to be significantly affected by the missing
scenarios. If the omission of any of your scenarios is likely to cause an appre-
ciable difference in stakeholder satisfaction, ensure that they are prioritized
accordingly.

Finally, rank your scenarios in terms of both priority and risk, so that you
can focus your efforts on the high-priority, high-risk ones and spend less
time worrying about the rest.

CAPTURING SCENARIOS

When capturing the scenarios for a system, we describe the functional and
quality-based scenarios slightly differently.
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For a functional scenario, you usually need to define five pieces of information:

1. Overview: a brief description of what the scenario is meant to illustrate .

2. System state: the state of the system before the scenario occurs (if sig-
nificant). This is usually an explanation of any information that should 
already be stored in the system for the scenario to be meaningful.

3. System environment: any significant observations about the environment 
that the system is running in, such as the unavailability of external 
systems, particular infrastructure behavior, time-based constraints, and 
so on.

4. External stimulus: a definition of what causes the scenario to occur, such 
as data arriving at an interface, user input, the passage of time, or any 
other event of significance to the system.

5. Required system response: an explanation, from an external observer’s 
point of view, of how the system should respond to the scenario.

It is also important to give the scenario a short unique identifier and a
concise, unique, and descriptive title.

EXAMPLE A functional scenario for a system that summarizes incom-
ing data might be captured as follows.

Incremental Statistics Update

� Overview: How the system deals with a change to some of the 
existing base data.

� System state: Summary statistics already exist for the sales quarter 
that the incremental statistics refer to. The system’s databases 
have enough space to cope with the processing required for this 
update.

� System environment: The deployment environment is operating 
normally, without problems.

� External stimulus: An update to a subset of the sales transactions 
for the previous quarter arrives via the Bulk Data Load external 
interface.

� Required system response: The incoming data should automatically 
trigger background statistical processing to update the summary 
statistics for the affected quarter to reflect the updated sales trans-
action data. The old summary statistics should stay available until 
the new ones are ready.
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We have found that this stimulus–response approach works less well
when trying to capture system quality scenarios. These scenarios try to illus-
trate characteristics that vary widely; in general, they try to show how the
system responds to a change it its environment. Sometimes this change can
be seen as a stimulus (e.g., being attacked), whereas in other cases (e.g., an
external system slowing down or data volume increasing), we have found
that viewing the change as a stimulus is rather artificial.

You usually need to define five pieces of information for a system quality
scenario.

1. Overview: a brief description of what the scenario is meant to illustrate.

2. System state: the state of the system before the scenario occurs, if the 
behavior specified in the scenario depends on it. For quality scenarios, this 
may need to define aspects of the system-wide state (such as a level of load 
across the system) rather than the information stored in the system.

3. System environment: any significant observations about the environ-
ment that the system is running in, such as the unavailability of 
external systems, particular infrastructure behavior, time-based 
situations, and so on.

4. Environment changes: an explanation of what has changed in the 
system’s environment that causes the scenario to occur. This could be 
infrastructure changes or failures, changes in external system behavior, 
security attacks, required modifications, or any of the other environment 
changes that require the system to possess a particular quality property 
in order to deal with them.

5. Required system behavior: a definition of how the system must behave in 
response to the change in its environment (e.g., how the system should 
respond, from a quantifiable performance point of view, to a defined 
increase in the number of requests arriving per minute).

As with functional scenarios, a system quality scenario needs a unique
identifier and a good name.

EXAMPLE Some system quality scenarios for the system that summa-
rizes incoming data might be captured as follows.

Daily Data Update Trebles in Size

� Overview: How the system’s end-of-day processing behaves when 
regular data volumes are suddenly greatly exceeded. 
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� System state: The system has summary statistics in its database 
for data that has already been processed, and the system’s pro-
cessing elements are lightly loaded at the current rate of system load.

� System environment: The deployment environment is working correctly, 
and data is arriving at a steady rate of 1,000 to 1,500 items per hour.

� Environment changes: The data update rate on a particular day 
suddenly increases to 4,000 items per hour.

� Required system behavior: When the end-of-day processing starts, 
the system should process that day’s data set for a period until the 
processing time exceeds a system-configurable limit. At that point, 
the system should stop processing the data set, discard work in 
process, leave the previous set of summary statistics in place, and 
log a diagnostic message (including cause and action taken) to the 
operational console monitoring system.

Failure in Summary Database Instance

� Overview: How the system behaves when the database it is trying 
to write to fails.

� System environment: The deployment environment is working correctly.

� Environment changes: While writing summary statistics to the da-
tabase, the system receives an exception indicating that the write 
failed (e.g., the database is full).

� Required system behavior: The system should immediately stop 
processing the statistics set it is working on and leave any work in 
progress behind. The system should log a fatal message to the 
operational console monitoring system and shut down.

Additional Summary Dimension Required

� Overview: How the system can cope with the need to extend the 
statistical processing provided.

� System environment: The deployment environment is operating 
normally, as initially delivered.

� Environment changes: The need arises to support a new statistical 
dimension in the summary statistics to summarize sales by type of 
payment option used.

� Required system behavior: The development team should be able to 
add the required processing to provide the new statistical dimen-
sion without making any changes to the overall system structure 
(i.e., changing any interelement interfaces or interactions) and 
with a total effort of fewer than 4 person-weeks.
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A point worth noting from these examples is that a scenario doesn’t al-
ways indicate good news, and when you create a scenario you may not
have all the answers. The required failure behavior outlined in the exam-
ples isn’t particularly robust, and this may not be acceptable. However, by
writing this scenario, you now have a concrete case to discuss with stake-
holders to help you learn what the phrase “must cope with failure condi-
tions” in the requirements document actually means. Similarly, it isn’t clear
yet how the architecture would cope with the need for a new summary di-
mension, but you can now discuss the need for different types of evolution
in a more concrete way.

WHAT MAKES A GOOD SCENARIO?
We have found scenarios to be a very useful architectural technique that can
be used in a wide range of situations, including stakeholder communication,
architectural evaluation and analysis, and as specifications for live testing. So
assuming we want to create scenarios, what qualities should we aim for? We
have found the key ones to be as follows.

� Credible: A scenario should describe a realistic situation that could 
credibly occur, and it should include enough realistic detail for the 
reader to accept the scenario as a valid situation that the system could 
encounter.

� Valuable: While it seems self-evident, a scenario should be of direct use 
somewhere in the architectural process, whether that is explaining the 
architecture to a stakeholder, convincing an assessor that the architec-
ture is sound, or illustrating how the architecture works to a develop-
ment team. It is easy to get carried away with defining scenarios that 
don’t really address the concerns of any stakeholder, so consider this 
when creating new scenarios.

� Specific: A good scenario is quite specific and describes a particular situa-
tion accurately, rather than trying to generalize the system’s behavior over 
a whole class of situations. The danger in trying to generalize scenarios 
beyond fairly specific situations is that it becomes difficult to describe 
them succinctly, so they are difficult to use since they address so many 
different concrete situations, each with its own variations.

� Precise: The definition of the scenario should be precise enough for the 
intended user of the scenario to be quite clear about what situation the 
scenario is describing and the required response of the system.

� Comprehensible: Like all architectural deliverables, scenarios should be 
comprehensible by those stakeholders who need to use them. This 
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means writing them clearly, using widely understood terms, and avoid-
ing acronyms and jargon that stakeholders are likely to misunderstand 
or find confusing.

APPLYING SCENARIOS

Having defined the scenarios for your system, you can apply them in a num-
ber of ways that vary greatly in their likely cost and also in the benefits you
can expect to gain. This section briefly discusses the most common ways in
which scenarios are applied.

Paper Models
The simplest and most common way to apply a scenario is to use it to cre-
ate a paper-based model of how the system responds to the scenario. By
“paper-based” we mean models like UML and data flow, whether they’re
created on paper, on whiteboards, in computer-based drawing tools, or in
purpose-built software packages (e.g., modeling tools). The key thing
about these models is that they are inert and thus can’t be tested as such,
only reviewed by one or more stakeholders. Their strength is that they are
simple to understand and inexpensive to create, but their weakness is that
they are only as reliable as the process used to construct and analyze
them. The most common notation used for this sort of work is the UML
sequence diagram.

EXAMPLE Figure 10–1 shows how the functional scenario presented 
earlier might be illustrated with a UML sequence diagram.

You’ve probably seen and used these diagrams in a number of places 
in the software development lifecycle. The boxes represent system ele-
ments that are interacting, the vertical lines represent the lifetimes of the 
elements (with time increasing down the page), and the horizontal 
arrows indicate interelement interactions and (optionally) what is 
returned from an interaction.

UML sequence diagrams are normally used in conjunction with an 
object-oriented development approach to indicate interobject interac-
tions. However, this notation can usefully illustrate architectural scenar-
ios for any kind of system—not just those built with object-oriented 
technology. The only requirement is that you have well-defined ele-
ments and interfaces.
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Walkthroughs
An effective way to validate a paper-based model is to review it with a num-
ber of stakeholders by using it to bring the system to life with a walkthrough.
A walkthrough illustrates how the system responds to one or more scenarios
by explaining each step in the process to an interested stakeholder who can
ask questions.

This can be a powerful technique because the very process of walking
through the system’s operation with stakeholders often helps you spot flaws
in your design or missing requirements for the system. A problem with this
technique can be the need for the audience to understand the system and the
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FIGURE 10–1 UML SEQUENCE DIAGRAM FOR THE INCREMENTAL STATISTICS UPDATE SCENARIO
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scenario in some detail, requiring some commitment on the part of the stake-
holders. On the other hand, walking through a system scenario is much more
engaging than simply discussing the design, and stakeholders are far more
likely to spend time doing this than just reading a document or listening to a
presentation.

Simulations
A more sophisticated use of a scenario is to guide the development of a
computer-based simulation. In complex cases, this may be cheaper or quicker
than building a full-blown prototype but is usually more expensive than
walking through a paper-based model. There are a number of technical
options for creating simulations: spreadsheets for purely mathematical mod-
els (e.g., some performance or calculation models); certain graphical modeling
tools that allow a detailed UML model to be animated; and purpose-designed
simulation packages, which are often well suited to analyzing functional pro-
cesses and deployment environments.

The problem with simulations tends to be that the creation of the simula-
tion is itself a reasonably complex and costly task, yet one that often can’t be
directly reused later in the development process (as a prototype could, even if
only as a template). There is also the question of how realistic the simulation
is and how much reliance you can place on its results. On the other hand, for
large-scale systems, a sophisticated simulation can be a lot cheaper than get-
ting the architecture wrong.

Prototype Implementation Testing
A more involved way to apply a scenario is to use it to guide prototyping work
so that you can satisfy yourself that your architecture will be able to meet cer-
tain goals. Building a prototype can provide you with a much higher degree of
confidence that one or more aspects of your architecture will succeed. How-
ever, building prototypes is expensive and time-consuming, so you can afford
to do only a limited amount of it. The scenarios you identify can provide a
way to focus your prototyping efforts on the high-risk areas of particular im-
portance to stakeholders.

Full-Scale Live Testing
Finally, scenarios can provide a basis for planning real system-level tests.
Because the scenarios define situations that the stakeholders have identified
as particularly important to them, it often makes sense for the most important
scenarios to be used as specifications of the initial system tests. These system
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tests often provide valuable proof for your key stakeholders that can hugely
increase their confidence in the early versions of the system.

An important final point about applying scenarios is that it almost never
makes sense to investigate all of your scenarios equally deeply—or at all. You
may create paper models for some of them, simulate a few more, and create
prototypes to investigate a couple of high-risk ones. Some of your scenarios
may never be used except as a personal reality check for you and as a com-
munication vehicle with a stakeholder or two. Focus the majority of your
effort on the high-risk scenarios that stakeholders have indicated are particu-
larly important.

EFFECTIVE USE OF SCENARIOS

Scenarios are a straightforward technique, and we are confident that you will
be able to apply them without any great difficulty. However, we have found
the following general practices helpful in applying scenarios effectively.

Identify a Focused Scenario Set
Although scenarios are very effective, it isn’t often useful to end up with doz-
ens and dozens of them. If you consider too many at once, the net result is a
lack of focus that prevents them from providing clear guidance for decision
making. It is difficult to be prescriptive about the precise number of scenarios
you need because it depends very much on the scale and complexity of the
system. However, more than 15 or 20 important scenarios is likely to be too
many to use effectively for most systems, so work with your stakeholders to
prioritize the set you end up with and focus on the riskiest and most impor-
tant ones to guide decision making.

Use Distinct Scenarios
It is easy to create a number of scenarios that, although they seem different
initially, are really very similar in terms of the requirements they place on
the system. This leads to a situation where the cost of applying the tech-
nique increases (due to the number of scenarios that need to be created and
considered) with only a marginal corresponding increase in benefits, thus
reducing the effectiveness of the technique. In order to avoid this situation,
revisit the scenarios you identify and consider what demands each places on
the system. Where you find duplicates using this criterion, remove them;
they are unlikely to provide additional significant insights into your
architecture.
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Use Scenarios Early
Although scenarios can be used throughout the software development lifecy-
cle, they have the most impact when applied early, when the architecture of
the system is taking shape. If you don’t consider scenarios at an early stage
but leave them until, say, they are needed for system testing, much of their
potential benefit is likely to be lost. Of course, you may identify additional
scenarios as development progresses (perhaps for testing or architectural
evaluation), but do not ignore the potential benefits of applying scenarios
earlier in the architectural design process. As outlined in the architecture pro-
cess introduced at the start of Part II, identify the scenarios for your system as
early as possible, and use them to help you focus the architecture and design
activities on the most important aspects of the system.

Include the Use of System Quality Scenarios
Scenarios are often thought of in terms of input, process, and output, focusing
on functional scenarios derived from the use cases in the functional require-
ments. However, this ignores the potential that scenarios have for investigat-
ing, validating, and understanding the quality properties of the system. As
you identify the scenarios you are to work with, ensure that all of the sys-
tem’s critical quality properties are reflected in them. You will often need to
augment the scenarios obtained from your stakeholders with suitable scenar-
ios reflecting the system’s required quality properties.

Include the Use of Failure Scenarios
A common pitfall is that all of the scenarios you identify are positive ones that
do not consider problems like missing information, overload situations, secu-
rity failures, and so on. This has the undesirable effect of focusing attention
on situations where everything is working and ignoring cases where things
go wrong. This is often particularly dangerous when considering quality prop-
erties, where system behavior is particularly critical in failure situations.
When identifying your scenarios, ensure that you consider the important fail-
ure cases and that corresponding scenarios are identified to address these.

Involve Stakeholders Closely
As the architect for your system, you are in a very good position to identify
representative scenarios for the system yourself. This is very tempting to do
because it is so much simpler than involving all of your stakeholders who,
while providing lots of input, will complicate the process immensely. However,
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excluding your stakeholders from scenario identification is a dangerous decision.
Although you can undoubtedly identify many scenarios yourself, the ones your
stakeholders provide and the priorities they place on each may surprise you,
revealing aspects of the system of which you were unaware or whose importance
you hadn’t realized. Make sure that stakeholders are asked to identify candidate
scenarios for your system and that they have the final say (as a group) in their
prioritization.

CHECKLIST

� Have you defined a wide enough range of system quality scenarios (such 
as security, performance, availability, and evolution)?

� Have you defined and applied a wide enough range of failure and excep-
tion scenarios?

� Have you prioritized your scenarios by stakeholder importance and risk?

� Have you kept the number of scenarios down to a manageably small 
level, at most 15 to 20?

� Have you reviewed and agreed on the required responses and behaviors 
with the appropriate stakeholders or subject matter experts?

� Have you included some scenarios that you think will be valuable (based 
on your previous experience) as well as those nominated by your stake-
holders?

� Are all of your scenarios cataloged and named?

� If defining a scenario helps indicate a gap or mistake in the require-
ments, have you made sure that this is addressed?

� If applying a scenario indicates a mismatch between required and 
actual response or behavior, have you revised the architectural design 
appropriately?

SUMMARY

Defining and applying scenarios is a powerful way to ensure that your archi-
tecture will exhibit the functionality and behavior required of it. It can also
help reveal omissions and errors in the requirements and is useful when it
comes to testing the system.

We defined two classes of scenarios: functional scenarios, which are
nearly always defined in terms of a sequence of external events the system
must respond to in a particular way; and system quality scenarios, which
are defined in terms of how the system should react to a change in its
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environment, as a consequence of one of the quality properties it is meant
to exhibit.

Scenarios are normally derived from an inspection of the system’s
requirements. You should also work with stakeholders to identify others (espe-
cially quality scenarios and ones that address failure situations), and you may
want to identify some scenarios of your own based on your experience.

The specification of a scenario should include the initial system state and
environment, external stimulus or environment changes, and the required
system response or behavior.

Applying the scenario is a matter of comparing the actual, or likely,
response and behavior with the requirement and addressing any gaps or mis-
matches. You can do this by using a paper model, a simulation, or a system
prototype, or by testing the system, depending on the lifecycle stage you are in.

FURTHER READING

In the architectural context, most architecture books talk about scenarios
somewhere, at least as a way to illustrate how the system is meant to work.

Much of our thinking and practice around scenarios has been influenced
by a couple of books that clearly explain the idea of using scenarios for archi-
tecture work, in particular Clements et al. [CLEM02], where they form a key
part of the evaluation approaches explained; Bass et al. [BASS03], where sce-
narios are used extensively to characterize quality attribute requirements; and
Bosch [BOSC00], where scenarios are used to drive the architectural design
process. More depth on the ideas and techniques we outlined here can be
found in all of these books. Philippe Kruchten’s “4+1” approach, where the
“+1” refers to use case scenarios, was originally defined in an article in IEEE
Software [KRUC95], which is still well worth reading today.

Use cases were first described by Ivar Jacobson in [JACO92], and Cock-
burn [COCK00] contains much useful and practical advice on creating and
using them.

A Web search will reveal a number of vendors that can supply simulation
tools and UML modeling tools that can animate a UML model, to help you
investigate scenarios without building full prototypes.
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11
USING STYLES AND PATTERNS

istorically, the software industry hasn’t had a very good record of learning
from experience. Software designers often ignore existing, proven design

solutions and instead develop their own solutions to complex problems. The
same can also be said of software architects, who can end up creating new
system designs for very familiar challenges.

One of the reasons for this state of affairs used to be the lack of easily
accessible, standard solutions for common software architecture and design
problems. However, during the 1990s, the design patterns movement emerged
with the aim of addressing this problem. Proponents of software patterns,
inspired by Christopher Alexander’s work on patterns for building architecture, 1

started identifying and cataloging widely used solutions to common design prob-
lems. Today, this work has culminated in an ever-growing number of patterns
being available for general use.

INTRODUCING DESIGN PATTERNS

The purpose of a design pattern is to share a proven, widely applicable solution
to a particular design problem in a standard form that allows it to be easily
reused. Many types of patterns have been identified (including organizational
and process patterns as well as design patterns), but for our purposes we are
interested in three types of design patterns: the architectural style, which
captures system-level structures; the software design pattern, which captures a
more detailed software design solution; and the language idiom, which provides
a solution for a recurring programming-language-specific design problem.
These are all types of design patterns. Design patterns are usually described using

1.  Pattern Language: Towns, Buildings, Construction, by Christopher Alexander, Sara 
Ishikawa, and Murray Silverstein (Oxford: Oxford University Press, 1977). Alexander is a 
building architect, and his books look at building architecture, but his ideas have inspired 
virtually everyone in the design patterns community.

H
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one of a number of standard forms, but they all aim to provide the following five
important pieces of information.

1. Name: A pattern needs a memorable and meaningful name to allow us to 
clearly identify and discuss the pattern and, more important, to use its 
name as part of our design language when discussing possible solutions 
to design problems.

2. Context: This sets the stage for the pattern, explains its motivation and 
rationale, and describes the situations in which the pattern may apply.

3. Problem: Each pattern is a solution to a particular problem, so part of the 
pattern’s definition must be a clear statement of the problem that the 
pattern solves and any conditions that need to be met in order for the pat-
tern to be effectively applied. A common way to describe the problem is to 
describe the design forces it aims to resolve, each force being a goal, re-
quirement, or constraint that informs or influences the solution. Examples 
of forces might be the need to provide a specific sort of flexibility (such as 
the ability to change the algorithm used for a particular operation) or 
achieve a particular sort of efficiency that is important in the system (such 
as minimizing memory usage for a particular data structure).

4. Solution: The core of the pattern is a description of the solution to the 
problem that the pattern is proposing. This is usually some form of design 
model, explaining the elements of the design and how they work together 
to solve the problem, along with an example of the pattern’s use where 
possible.

5. Consequences: The definition of a software pattern should include a clear 
statement of the results and tradeoffs that will result from its application, 
to allow you to decide whether it is a suitable solution to the problem. 
This should include both positive consequences (benefits) and negative 
consequences (costs). 

Let’s look at a simple example of a software design pattern. 

EXAMPLE The widely used Adapter pattern is so named because it 
adapts the interface of a system element to a form needed by one of its 
clients. An outline definition of the pattern could be as follows.

The context of the Adapter pattern is a number of heterogeneous 
elements that need to be connected. The pattern solves the problem that 
arises when one system element (the client) wishes to use the services of 
another system element (the target) but cannot use the interface offered 
by the target element for some reason. An example could be a system 
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with a .NET client that wishes to access a calculation service offered by
a Java-based target. The calculation service is perfectly suitable for the 
client’s requirements, but the client cannot call a Java-based interface 
and thus cannot use the service.

The forces include the following.

� Service interfaces should be decoupled from the underlying physi-
cal data structures and implementation algorithms.

� Services should be exposed in a way that is independent of their 
implementation technology.

� The adapter should provide translation only and should not perform 
any functional processing (this is the responsibility of the invoked 
service).

� Use of the adapter must not adversely affect the quality properties of 
the underlying service (security, resilience, performance, scalability, 
and so on).

The solution to the problem is to introduce a third system element, the 
adapter, sitting between the client and the target, such that it is called by the 
client and calls the target. The role of the adapter is simply to interpret the 
request from the client, transform it into the form required by the target, call 
the target, and transform the response into the form expected by the client.
A real-world example of an adapter is an international power-plug adapter 
that allows, for example, electrical equipment with French plugs to be used 
in the United Kingdom with British power sockets.

The consequences of using this pattern include the following.

� Decoupling of the client and target implementations allows each 
implementation to be varied without impacting the other. (+)

� The target can be used by different types of clients simultaneously 
(possibly via different adapters). (+)

� A reduction in efficiency could result due to the additional level of 
indirection between the client and target. (–)

� An increase in maintenance overhead could occur if the services 
provided and used change because the adapter must be changed as 
well as the client and target. (–)

You can find a much fuller definition of this pattern in the well-
known “Gang of Four” book referenced in the Further Reading section at 
the end of this chapter.
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STYLES, PATTERNS, AND IDIOMS

As we said earlier, patterns are generally organized into three groups according
to the level of design problem that they address: architectural styles that record
solutions for system-level organization, design patterns that record solutions to
detailed software design problems, and language idioms that capture useful
solutions to language-specific problems. All three types of patterns can be
valuable to you as a software architect, although you use them in different
places in the lifecycle. However, before considering how to use styles, patterns,
or idioms, let’s define these three terms more formally. The definitions we
present are all based on those defined by Frank Buschmann and his colleagues
in their book Pattern-Oriented Software Architecture.

Architectural Styles
Architectural styles are probably the type of software pattern that will be of the
most interest to you when designing a system because they define system-level
structures.

DEFINITION An architectural style expresses a fundamental structural
organization schema for software systems. It provides a set of predefined
element types, specifies their responsibilities, and includes rules and guide-
lines for organizing the relationships between them.

The key point about an architectural style is that it provides a set of organiza-
tional principles for the system as a whole, rather than for the details of one piece
of the system. The solution described by an architectural style is usually defined
in terms of types of architectural elements and their interfaces, types of connec-
tors, and constraints on how the elements and connectors should be combined.

For example, an architectural style might state that a system will comprise
GUI clients, processing servers, and batch jobs and that the clients connect to the
servers using messaging and the batch jobs communicate only via the database.
If the benefits of the style were attractive for the system you were designing, the
style could guide you to design a system with a specific set of processing servers,
a specific GUI client, and a specific set of batch jobs. The style has defined the
type of components to use and how to connect them, while you as the user of the
style have defined specific components of those types for your system.

Note that the terms architectural style and architectural pattern are both
commonly used, with no widely accepted definition of whether they’re the same
thing or not. Section P4 at the start of [CLEM10] has a very good discussion of
both terms and whether they are the same or different. We haven’t found it
very useful in practice to separate these possibly different, but rather similar,
concepts, and so for our purposes, while we may not be entirely correct, con-
sider the two terms to be synonyms. 



CHAPTER 11 � USING STYLES AND PATTERNS 165

Software Design Patterns
A software design pattern is a solution to a much more specific problem related
to the structure of one or more specific parts of a system. 

DEFINITION A design pattern documents a commonly recurring and proven
structure of interconnected design elements that solves a general design prob-
lem within a particular context.

A design pattern forms an input to the detailed software design of the system
and guides a software designer to organize her software design units (such as
classes and procedures) appropriately. The solution presented by a design pattern
is defined in terms of design-level elements (such as procedures, classes, and
data structures) and the structure they form when combined.

Language Idioms
Language idioms are the most specific type of software pattern, applying to
situations where a particular programming language is in use.

DEFINITION A language idiom is a pattern specific to a programming language.
An idiom describes how to implement particular aspects of elements or the
relationships between them by using the features of a given language.

A language idiom provides guidance to the programmer when implement-
ing software in a specific language and is normally written to help prevent a
common pitfall with the language or to illustrate a unique feature that needs
to be learned. The solutions presented by language idioms are defined in
terms of programming language constructs.

Using Styles, Patterns, and Idioms
Patterns of all three varieties can play several helpful roles, including the following. 

� A store of knowledge: Patterns are a store of knowledge about solving a 
particular type of problem in a particular domain. Documenting this knowl-
edge allows it to be shared among people solving similar problems. People
can move between specialist areas more easily and work more effectively 
within a particular area by sharing knowledge about success and failure.

� Examples of proven practices: A set of patterns provides examples of 
proven design practices. Indeed, a common test for accepting a new design 
pattern is that it has been used successfully at least three times in different 
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situations. You can use these design practices directly, but they can also 
act as a guide and provide inspiration when you’re solving somewhat 
different design problems.

� A language: Patterns allow designers to create and share a common language 
for discussing design problems. This common language helps designers relate 
ideas to each other easily and analyze alternative solutions to a problem. This
allows for more effective communication among participants in the design 
process.

� An aid to standardization: The use of patterns encourages designers to 
choose standard solutions to recurring problems rather than searching 
for novel solutions in each case. This has obvious efficiency benefits for 
the design, build, and support processes, and reliability is also likely 
to increase because of the reuse that results from the application of an 
already proven solution. 

� A source of constant improvement: Because patterns are generally in 
the public domain, you can quickly learn from a lot of experience that 
others have had in using them. This allows rapid feedback into the 
pattern definition and promotes improvement over time, reflecting the
experiences of users.

� Encouragement of generality: Good patterns are usually generic, flexible, 
and reusable in a number of situations. Providing flexible and generic 
solutions to problems is often a goal for architects as well. Using patterns 
as inputs to the design process and thinking in terms of identifying 
design patterns within the design process can help you create flexible, 
generic solutions to the problems within your system.

From our point of view as architects, the real utility of design patterns in
software development can be summarized in a single phrase: reduction of risk.
The use of patterns (and ideally reusable pattern implementations) has the po-
tential to increase productivity, standardization, and quality while reducing risk
and repetition.

PATTERNS AND ARCHITECTURAL TACTICS

Having introduced the idea of design patterns and discussed the three types
that we’re interested in, let’s consider the relationship between them and
architectural tactics. As we said in Chapter 4, design patterns and architec-
tural tactics are both types of architectural design guidance, but they are quite
different. A tactic is much more general and broader than a design pattern.
While a tactic provides you with advice on how to address a general issue, a
design pattern is a specific solution to a specific problem, in context. Indeed,
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a tactic could involve the application of one or more design patterns, but it
need not, and it could provide much more general advice.

For example, an architectural tactic that is often cited is to “partition and
parallelize” in order to split large tasks into independent pieces that can be
executed simultaneously. Applying this tactic might involve using the Pipes
and Filters architectural style, but that is only one possible way to apply the
tactic, and it might be only part of the solution. The way that we like to think of
it is that architectural tactics give us a set of strategies to use to solve particular
general types of problems, while patterns provide us with specific, proven solu-
tions for particular constrained design problems.

AN EXAMPLE OF AN ARCHITECTURAL STYLE

Let’s consider an example of a specific architectural style.  

EXAMPLE Here is a summary of the Pipes and Filters architectural 
style. (This is just a summary; you can find a much fuller definition in 
Pattern-Oriented Software Architecture [BUSC96].)

The context of the Pipes and Filters style is a system that needs to 
process data streams.

The style solves the problem of implementing a system that must 
process data in a sequence of steps, where using a single process is not 
possible and where the requirements for the processing steps may change 
over time.

The problem has the following primary forces.

� Future changes should be possible by changing, reordering, or 
recombining steps.

� Small processing steps are easier to reuse than large ones.

� Nonadjacent steps in the process do not share information.

� Different possible sources of input data exist.

� Explicit storage of intermediate results should be avoided.

� Multiprocessing between steps should not be ruled out.

The solution to this problem is to divide the task into a number of 
sequential steps and to connect the steps by the system’s data flow.

The processing is performed by filter components, which consume and 
process data incrementally. The input data to the system is provided by a 
data source while the output flows into a data sink. The data source,
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data sink, and filter components are connected by pipes. The pipe imple-
ments data flow between two adjacent components. The pipe is the only 
permitted way to connect the components, and it defines a simple, stan-
dard format for data that passes through it, allowing filters to be com-
bined without prior knowledge of each other’s existence.

The sequence of filters combined by pipes is called a processing
pipeline. An example of a processing pipeline appears in the informal 
diagram in Figure 11–1, which shows how the pieces of the Pipes and 
Filters style are combined. As indicated by the UML-style comments, the 
boxes represent the filters and the arrows represent unidirectional pipes 
linking the filters. Each filter performs a single task—for example, the 
NPV filter calculates the net present value of each of the investments 
passed to it, writing the result to its output.

The consequences of using this style are as follows.

� No intermediate files are necessary, but they are possible. (+)

� Filter implementation can be easily changed without affecting 
other system elements. (+)

� Filter recombination makes creating new pipelines from existing 
filters easy. (+)

� Filters can be easily reused in different situations. (+)

� Parallel processing can be supported with multiple filters running 
concurrently. (+)

FIGURE 11–1 PROCESSING PIPELINE
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An architectural style tells us what sort of structure a system based on it will
have, in terms of the types of system elements and the structure they combine to
form. The style also explains the design concerns (or forces) that led to its
development and the positive and negative implications to be considered when
using it.

� Parallel processing can be supported with multiple filters running 
concurrently. (+)

� Sharing state information is difficult. (–)

� The data transformation required for a common interfilter data for-
mat adds overhead. (–)

� Error handling is difficult and needs to be implemented consis-
tently. (–)

You are almost certainly familiar with this architectural style from 
the UNIX operating system. However, it has been applied in a lot of 
other software systems, such as Enterprise Application Integration 
(EAI) systems, signal- and image-processing applications, and Internet 
“mashup” systems like Yahoo! Pipes,2 so it is proving to be a useful 
system organization for a problem that may occur across a number of 
application domains.

What conclusions can we draw if we encounter a system based on 
this architectural style? Some of the important points are listed here.

� The system processes streams of data, rather than transactions.

� The processing can be broken into a series of independent steps.

� There is just one sort of architectural element (the filter) and one 
type of unidirectional connector (the pipe), and the filters must 
form a continuous path through the system, connected by pipes, 
without any cycles.

� The system doesn’t need a central persistent data store.

� It should be easy to replace and reuse the system’s filter elements.

� It is likely to be difficult to modify the system to address a situa-
tion where elements need to maintain or share state.

� The architect of the system will need to define and enforce an 
error-handling strategy because the style makes this something 
of a challenge.

2. See http://pipes.yahoo.com.

../../../../../pipes.yahoo.com/default.htm
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THE BENEFITS OF USING ARCHITECTURAL STYLES

Basing your architecture on a recognizable style can have two immediate bene-
fits. First, using a style allows you to select a proven, well-understood solution to
your problems and defines the organizing principles for the system. Second, if
people know that the architecture is based on a familiar style, it helps them under-
stand its important characteristics.

In our experience, most architects do reuse good ideas they’ve seen before
and do match previously successful solutions to the characteristics of the current
problem. It’s simply that we do this with varying degrees of formality and may
not consider ourselves to be using architectural styles as we do it.

Most of the books documenting architectural styles assume that the styles will
be used directly as generic blueprints to guide the design process. However, styles
can be used during the architecture definition process in a number of ways.

� Solution for a system design: One of the styles you encounter may be a 
good solution to the particular problems you are trying to solve. In this 
case, you can simply adopt the style as one of the core structures of your 
architecture and enjoy the benefits of understanding its likely strengths 
and weaknesses immediately.

� Basis for adaptation: When considering existing styles, you may find 
that none of them really solve your problem, but they partially address it 
or address it with some limitations. In these situations, the style forms a 
starting point for the design process but acts as a base to be adapted to 
the particular constraints of the current situation. This identifies a candi-
date variant of the original style.

� Inspiration for a related solution: You may also find that none of the 
styles actually address the problem you are trying to solve. However,
simply reading about previously identified styles and the problems they 
address often helps you understand the current problem in more depth so 
you can find a solution related in some way to the existing styles. This
identifies a related candidate style.

� Motivation for a new style: Sometimes you are faced with a problem that 
does not seem to be addressed by any of the styles you have found. In
this case, perhaps you are solving a problem that hasn’t been widely 
solved before, or if it has, its solution hasn’t been documented as a style.
These situations often act as a spur to solve the problem in a general way 
and to define a new candidate architectural style capturing the resulting 
design knowledge.

Having talked about styles individually, we should point out that you
rarely use one architectural style in isolation. Like other types of design pat-
terns, most styles focus on solving one particular design problem, but in reality
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most systems involve solving a number of design problems simultaneously.
This means that, in all but the simplest systems, you usually need to combine a
number of styles to meet the varied design problems that you face.

Situations in which we need to combine styles present us with a twofold
problem. First, how do we use a number of styles together and retain overall
coherence in our architecture? Second, how do we know that the styles will
work together and not conflict with each other?

With this problem, as with so many others in software architecture,
there really is no substitute for the blend of experience, knowledge, and
sound judgment that you bring to the project. Our experience with system
architectures has taught us that combining styles can be difficult and needs
to be done carefully. We have found that the key to success is to choose one
of the styles as the dominant organizing style for the system and to struc-
ture the architecture around it, introducing the other styles as subsidiary
styles where they are needed to solve particular problems that the primary
style cannot address by itself. Such an approach helps retain overall coher-
ence and prompts you to consider the compatibility of the styles as you try
to add the elements of the subsidiary styles to the structure imposed by the
overall system organization defined by the primary style.

EXAMPLE Consider a financial trading system that needs to allow users 
to perform transactions but also needs to broadcast information (such as 
news or prices) across the system. At least two architectural styles 
immediately suggest themselves: the Client/Server style to allow transac-
tion processing via central servers and the Publisher/Subscriber style to 
allow news and price information to be broadcast throughout the system. 
Another style may be needed, too, such as Layered Implementation, in 
order to achieve portability and common use of the underlying platform.
In this example, each style is needed for a distinct reason.

� The Client/Server style is present to allow secure, scalable, avail-
able transaction processing that performs well.

� The Publisher/Subscriber style is present to allow efficient, flexi-
ble, asynchronous distribution of information.

� The Layered Implementation style is present to ensure portability 
across deployment platforms, to ensure a common approach to the 
use of underlying technology, and to achieve a good level of devel-
opment productivity by hiding low-level details of the underlying 
technology from most of the system developers.
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STYLES AND THE ARCHITECTURAL DESCRIPTION

You are likely to adopt a number of specific architectural styles for your system
because you want the system to exhibit certain qualities that the styles claim to
provide. Once you’ve chosen the styles to use, it is easy to forge ahead and cre-
ate an architectural design based on them while forgetting to explain how
you’ve used them in the AD. When this happens, the knowledge about the
styles used and why they were selected gets lost, so it is likely that, over time,
the architecture will diverge from the structure suggested by the style.

In addition, many architectural styles focus on the overall functional struc-
ture of the system and will primarily affect the Functional view in the AD. How-
ever, in principle, a style could affect any of the architectural views, so explaining
the styles you’ve used can be important to allow readers of the AD to understand
the impact a style has had across the different aspects of your architecture. For
these reasons, it is useful to explicitly explain the styles you have used in the AD.

We’ve found that there are a couple of effective ways to do this: textual
commentary and model annotation. Textual commentary simply involves
adding to the AD document a brief discussion of the styles you’ve used and
why you used them, probably as an early subsection to help set the scene for
the reader. Annotating your models takes this a step further and draws the
reader’s attention to the relationship between the generic style in use and the
specific elements in the architecture. If you are using UML as your modeling
notation, you can achieve this by using stereotypes to mark model elements as
corresponding to particular abstract elements of the style in use. However, you
need to avoid cluttering the models with a lot of extra notation, which prevents
people from understanding them easily. If this starts to happen, remove the
annotation from the model diagrams and just add textual notes in your expla-
nation of the model.

APPLYING DESIGN PATTERNS AND LANGUAGE IDIOMS

Although it’s fairly clear how you can use architectural styles because they act as
a source of proven architectural design ideas, it’s not necessarily as clear how de-
sign patterns and language idioms fit into the architectural design process. Given
that detailed design and coding aren’t your key focus, how do design patterns
and language idioms contribute to your main area of work?

The answer is that design patterns and language idioms are a very important
communication mechanism between architects and software developers. It’s cru-
cial to communicate directly by leading the team and talking face-to-face, but
there are also many situations when it’s important to get design constraints and
guidelines on paper so that everyone can understand and consider them thor-
oughly. Design patterns and language idioms are perfect mechanisms for com-
municating design advice and constraints to a development team.
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EXAMPLE Here are some typical examples of using design patterns and 
language idioms.

Examples of Using Design Patterns

� If you are developing a system that requires internationalization, 
this is an important system-wide design constraint. In order to 
ensure a common approach across the system’s modules, adopt 
or define a design pattern that illustrates how a module should 
be internationalized.

� Many database applications need to use specific approaches to lock-
ing (e.g., the choice of using optimistic or pessimistic locks depending 
on data integrity and concurrency needs). The locking approach to 
use in certain situations may be an important design constraint 
resulting from the architectural design. When this is the case, use a 
design pattern to define how database locking must be implemented.

� The evolutionary needs of the system may require that new code can 
be easily introduced to handle new types of data. In order to guide 
the design process to achieve the required flexibility, you could sug-
gest the use of relevant design patterns like Chain of Responsibility, 
Reflection, or Visitor to help developers to understand the type of 
flexibility you need.

Examples of Using Language Idioms

� Many modern programming languages such as Java, C++, and C# 
include exception-handling facilities. These facilities can be used 
in a number of ways, so an important architectural constraint is to 
define how the programming language’s exception-handling facili-
ties should be used and ensure that the idiom is used throughout 
the system

To allow a system to be easily instrumented, it can be very useful 
for each element to be able to return a string containing its state so 
that this can be written to a debug log. This is possible in most 
programming languages, but the mechanism available and the best 
way to use it vary. You can standardize this across your system by 
defining or adopting an idiom to be used when implementing each 
system element.

� Many languages have features that need careful use to avoid sub-
tle problems creeping in later (such as the advice to override either 
both or neither of Java’s equals() and hashCode() methods or the
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The identification and definition of patterns and idioms for your system
would normally be part of the activity of creating the Development view. However,
because pattern and idiom documentation can be quite large, it usually makes
sense to create it as part of a development standards document referenced from
the AD, rather than in the Development view itself.

CHECKLIST

� Have you considered existing architectural styles as solutions for your 
architectural design problems?

� Have you clearly indicated in your AD where you have used architectural 
styles?

� Have you reviewed likely sources for possible new styles, patterns, and 
idioms that may be relevant to your system?

� Do you understand the design forces addressed by the patterns you use 
and the strengths and weaknesses of each pattern?

� Have you defined patterns and idioms to document all important design 
constraints for your system?

� Have you considered using design patterns and idioms to provide design 
guidance where relevant?

SUMMARY

Architectural styles, design patterns, and language idioms (collectively known
as patterns) are all ways to reuse proven software design knowledge, and all
three are valuable during the architectural design process. Patterns provide a
reusable store of knowledge, help to develop a language for discussing design,
and encourage standardization and generality in the design of your system.

Becoming familiar with a range of architectural styles helps you build your
design vocabulary and provides you with a library of options to consider when
you meet new architectural design problems. Styles can also form the basis for
further refinement and the inspiration for entirely new solutions, as well as
simply being design blueprints. A good selection of relevant architectural styles

need to define a copy constructor in C++ to avoid problems when 
using object assignment). You can help to avoid such language-
specific problems by working with your senior developers to define 
or adopt language idioms to provide guidance where needed.
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for information systems already exists, and part of an architect’s training is
getting to know these styles and the strengths and weaknesses of each.

Patterns and idioms also help to expand your knowledge of proven design
solutions for more detailed problems, but they also are a valuable mechanism
for recording the design constraints and guidelines that are important to
achieving architectural integrity in the system’s implementation.

FURTHER READING

A great deal of literature exists on the subject of design patterns, and we can’t
provide a thorough overview of it all (for example, at the time of writing, there
are about 400 books being sold by Amazon.com with the phrase “design
patterns” in their titles). However, there are some important texts and resources
for design patterns that are worth being familiar with.

The original book on design patterns is Design Patterns [GAMM95], often
referred to as the “Gang of Four” or “GoF” book, which is still a definitive
source of basic design patterns. A good place to start reading about patterns
from the perspective of an architect is Buschmann et al., Pattern-Oriented Soft-
ware Architecture [BUSC96] (generally known as “POSA1”). Our definitions of
style, pattern, and idiom come from this book. Shaw and Garlan [SHAW96] is
one of the original descriptions of architectural styles.

As its name suggests, POSA1 was the first book in a series of pattern collec-
tions, and since it was published, further volumes have appeared on concurrency
design [SCHM00], resource management [KIRC04], distributed computing
[BUSC07a], and pattern languages [BUSC07b]. All of these books are high-quality
collections of proven patterns, authored by well-known figures in the patterns
community such as Frank Buschmann, Kevlin Henney, Doug Schmidt, and
Michael Stal.

The Pattern Languages of Program Design conference series [PLOP95–99,
PLOP06] has produced a large number of design patterns of all sorts during the
years it has been running. The books we reference here present some of the
notable results of the pattern-writing workshops at the conferences, and they
are a rich source of useful design patterns. The Web site www.hillside.net also
contains a complete history of the conference series and all of the related con-
ferences (such as the German conference, EuroPLOP). For most of the confer-
ences, all of the submitted pattern papers are available on the Web site, which
makes for a comprehensive, if somewhat overwhelming, patterns resource.  

The well-known software writer Martin Fowler is the lead author of a book
[FOWL03b] containing a large number of patterns found in enterprise information
systems that are likely to be of use to most information systems architects. A some-
what related book that contains a valuable set of patterns that focus on the deploy-
ment aspects of large information systems is Dyson and Longshaw [DYSO04].

www.hillside.net
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Many technology-specific patterns books have been written, too many for us
to list here, and in any case their usefulness obviously depends on which tech-
nologies you plan to use in your systems. For the Enterprise Java environment,
one of the better-known sets of patterns is [ALUR03]. For .NET, Microsoft has
made a similar set of patterns available via the “Patterns and Practices” section
of its MSDN Web site (http://msdn.microsoft.com/en-us/practice), and [ESPO08]
also contains patterns relevant to .NET application development.

Similarly, there are too many books of language idioms to list here, but one
of the originals is Coplien’s book of C++ idioms [COPL91], and a well-known set
of idioms for Java is presented by Josh Bloch in [BLOC08]; a similar set has been
written for C# by Bill Wagner [WAGN10]. There are also books of patterns for
other popular technologies such as Ruby, Perl, Python, JavaScript, PHP, and
many more. The search function of a good Internet book retailer will provide you
with many to choose from.

A fair number of Web sites have appeared that contain design patterns, but
the speed of evolution of Web-based information sources makes it futile to
attempt to present a list here. Two of the original pattern Web sites are the Hillside
Group (www.hillside.net) that we mentioned previously and the patterns area of
Ward Cunningham’s C2 Wiki site (www.c2.com/cgi-bin/wiki?PatternIndex).

www.hillside.net
www.c2.com/cgi-bin/wiki?PatternIndex
../../../../../msdn.microsoft.com/en-us/practice
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12
PRODUCING ARCHITECTURAL
MODELS

s an architect, you face the twin challenges of developing an architectural
solution that effectively balances the needs of stakeholders and commu-

nicating the important details of that solution to them. Because we can’t build
the real computer system as part of the architecture definition process—just
as a building architect can’t construct a real office block while designing the
building—we have to find ways to represent and analyze the system’s impor-
tant features so that our different classes of stakeholders can understand
them. We call these representations models.

DEFINITION In this context, a model is an abstract, simplified, or partial
representation of some aspects of an architecture, the purpose of which is to
communicate those aspects of the system to one or more stakeholders.

We use models to help us cope with our inherent difficulty in coming to
grips with complex concepts or ideas. An effective model, as we shall see,
brings out the important aspects of an architecture while hiding less impor-
tant distractions.

To help us put models in context within the architecture definition pro-
cess, let’s remind ourselves of the relationships between the main elements of
the process.

� An architecture is documented in an architectural description (AD).

� The AD consists of one or more views of the architecture. (It may also 
include other elements, such as principles, standards, and glossaries, 

A
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which lay the architectural foundations.) For example, an AD may 
include a Functional view, a Concurrency view, and a Deployment view.

� The contents of each view are based on a viewpoint. For example, the 
contents of an Operational view are based on the templates, patterns, and 
guidelines in the Operational viewpoint.

� Each view consists of one or more models. A model is a way to represent 
some of the salient features of an architecture that pertain to the view. 
For example, an Information view may include an entity-relationship 
model, a data ownership model, and a state transition model.

� Applying a perspective may lead to changes to existing models or to the 
creation of one or more secondary architectural models that allow a 
better understanding of the architecture’s ability to exhibit a particular 
quality property (i.e., models that do not define one of the system’s 
structures). For example, applying the Security perspective usually in-
volves the creation of a threat model in order to understand the security 
threats the system faces.

We can see from these relationships that models are central to the archi-
tecture definition process because they describe the key aspects of the system
being designed. With this in mind, let’s explore how architects use models
during architecture definition.

WHY MODELS ARE IMPORTANT

Although modeling isn’t necessarily the most important thing that architects
do, the models we create are probably the most important elements of our
ADs. There are four primary reasons why we build models as part of the soft-
ware development process.

1. Models help us understand the situations we are modeling. Building a 
model brings precision to our description and focuses us on the most 
important elements of the situation.

2. Models act as a medium for communication, helping us explain our thinking 
to others. Models reduce the amount of information the reader needs to 
understand, and their structure guides the reader through the information.

3. Models help us analyze situations by allowing us to isolate key elements 
and understand their interrelationships. Then we can reason about some 
aspect of the situation being modeled and draw conclusions about its 
properties.

4. Models help us organize our processes, teams, and deliverables as a 
result of the structures they reveal in the situation being modeled.
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The key skill the model builder uses to achieve these benefits is abstrac-
tion, the process of suppressing unnecessary detail. By removing such detail
from our models, we allow our stakeholders and ourselves to focus on the
most important aspects of our architecture. A good model can help stakehold-
ers understand an architecture they might not understand otherwise.

While models are certainly important to software architects, the idea of mod-
eling isn’t a new one and in fact has been with us since classical times. The
ancient Greek astronomer Ptolemy taught that a central Earth was orbited by the
sun, moon, planets, and stars. We now know that Ptolemy’s model was wrong,
but it was good enough to predict the motion of heavenly bodies to reasonable
accuracy. In Renaissance times, the Polish astronomer Copernicus created the
more accurate heliocentric model, in which the Earth revolved around the sun.
One hundred fifty years later, Sir Isaac Newton set forth his laws of gravity and
motion in Principia Mathematica. Newtonian mathematics survived unchal-
lenged until Einstein published his general theory of relativity in 1916.

Ptolemy, Copernicus, Newton, and Einstein were all trying to describe the
same phenomenon—the apparent motion of the sun, planets, and stars. None
of their models were entirely correct, but each of their models could be consid-
ered good enough for the purposes to which it was put.1 Indeed, Newtonian
mechanics is still adequate for all but the most specialized applications even to-
day. The lesson from these famous attempts at modeling the physical world is
that no model is perfect, but even an imperfect model can provide us with use-
ful information about the reality it is modeling. Martin Fowler captures this
succinctly in his book Analysis Patterns when he says, “Models are not right or
wrong, they are more or less useful.”2 We express this principle as follows.

PRINCIPLE Every architectural model is an approximation of reality, since it
abstracts away unnecessary detail in order to focus attention on the most
important aspects of the situation being modeled.

The trick with a successful model is to make it good enough to achieve the
purpose for which you have created it, whether this is communicating important
information to your stakeholders, analyzing a system quality, or understanding
an architectural structure. This is often difficult to achieve because you often
don’t have much time to do it—the process of architecture definition is not usu-
ally allocated much time in development projects—and the situation you are try-
ing to model may be complex, difficult, or new to you or your stakeholders.

1. We’ll stick our necks out here and say that someone will eventually successfully 
challenge Einstein, although probably not in our lifetimes!
2. [FOWL97], p. 2.
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However, remember that your models will be refined as part of the speci-
fication and design process. A rough-and-ready model that is produced early
in the project and becomes established and familiar to the team will be more
useful than something considered more fully that appears too late to be used.

STRATEGY Match the complexity and detail of your architectural models to
the interests and skill level of your audience, the time you have to produce the
models, and (most important) the way in which the models will be used.

As a general rule, simple models are more useful in presentations to non-
technical stakeholders or early in the architectural analysis to bring out some
key features, while more sophisticated models are more useful as analysis,
communication, and comprehension tools for you and other technical stake-
holders, such as software developers.

Although producing quick back-of-an-envelope models can be helpful,
you shouldn’t use this strategy as an excuse for compromising the validity,
consistency, and correctness of your important models—particularly ones that

EXAMPLE An insurance company that has grown by acquisition has, as 
a consequence, a large number of systems that are connected using a 
jumble of hard-to-maintain point-to-point interfaces. Although a long-
term goal of the company is to replace these systems, budget constraints 
mean that this may not be done for a number of years. In the meantime, 
someone has proposed replacing the point-to-point interfaces with a 
hub-and-spoke messaging infrastructure.

The architect develops some fairly sophisticated architectural models 
that include technology and application adapters, a message-switching 
hub, heterogeneous interconnectivity, and data-driven conversion rules. 
This has allowed her to analyze and understand the necessarily complex 
candidate architecture; however, she is having a hard time explaining the 
benefits of the proposed new architecture to the business stakeholders.

The problem is that the mass of technical detail hides the essential 
simplicity of the concept. The architect develops another model that fits 
on a single page and illustrates graphically how the current tangle of 
interfaces will be replaced by an architecture that is cheaper to manage, 
more easily adapted, and more reliable and is likely to suffer from fewer 
data quality problems. This model is far more successful with the busi-
ness stakeholders.
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will be used later as a basis for the system design. Omitting details from mod-
els can lead to the dangerous situation where stakeholders believe that prob-
lems have been resolved, but in fact they are just hidden.

STRATEGY Ensure that your audience is aware of any simplifications and
approximations in your model and the impact of these on their understanding
of the solution.

TYPES OF MODELS

When we think of an architectural model, most of us picture in our minds
some sort of diagram supported by definitions of the elements it contains.
However, there are many other types of models, and it is useful to broadly
classify them as formal qualitative or quantitative models or informal qualita-
tive models that we term sketches.

Qualitative Models
Qualitative models are analogous to the scale models and blueprints produced
by building architects and structural engineers to define the structure of a new
building and show how it will look in its environment. They aim to present the
essence of the thing being modeled—its form and features—rather than to pre-
dict its measurable qualities. Qualitative models are extremely important to the
architect and are used throughout the system lifecycle, from the early stages of
architecture definition while ideas are being crystallized to late in the lifecycle
when detailed aspects of the system’s design need to be clarified.

DEFINITION Qualitative models illustrate the key structural or behavioral
elements, features, or attributes of the architecture being modeled.

Qualitative models form the main content of the views within the AD and
are also important outputs of some perspectives (such as the Security per-
spective mentioned earlier).

In our context, the most common forms of qualitative models are the var-
ious sorts of diagrammatic architecture models, such as a functional structure
model or an information model, although we group other types under this
classification, such as mock-ups, prototypes, and simulations. These all, to
some extent, try to show the stakeholders how the system will look when it is
built.
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Historically, qualitative models tended to be less formal than quantitative
ones—in other words, they adhered less strictly to rules of representation and
layout—largely because the accepted rules for presenting such models (the
modeling languages) were on the whole weak or nonexistent. However, this
is no longer really the case, as widely used modeling languages, in particular
UML, provide a standard way to represent many types of static and dynamic
modeling elements. (We’ll discuss this further in the Modeling Languages
section.)

To get the best out of your models you should aim for rigor, clarity, and
consistency. If the modeling language you are using is insufficient for your
needs, you should establish your own conventions, such as the standardized
use of shape or color to represent different types of architectural element in
diagrams; define them clearly; and stick to them faithfully in your models. 

STRATEGY Select a modeling language for your qualitative models, extend it
if necessary, and follow it strictly. Make sure to provide a key or other expla-
nation so that your audience understands the notation and conventions you
are following.

Some of your models, particularly early or overview models, may be
aimed at a mixed audience of business and technology stakeholders. Some-
times models are produced in response to a specific political need within an
organization, such as support for a business case, in which case the models
will need to fulfill a very specific set of objectives (such as accentuating the
financial benefits of a new architecture in the insurance company example
presented earlier).

Creating a model for both business and technology stakeholders is proba-
bly the hardest situation to deal with. Such mixed models usually need to be
less formal and rigorous than the ones aimed at more specialized groups of
stakeholders. They may need to use a range of notations or none at all, and
they may have to omit details the audience finds confusing—or conversely,
drill down into details at certain points to highlight particular features. You
can often deal with these situations by using a less formal type of qualitative
model, a sketch, which we’ll discuss shortly.

Quantitative Models
Quantitative models are analogous to the mathematical models of a building
produced by structural and building services engineers to establish the physi-
cal characteristics of its structure, such as the required thickness of its struc-
tural elements or the number of people who will be able to comfortably enter
or exit the building at peak times. The output of quantitative models is a se t
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of metrics that predicts the behavior or other characteristics of the system.
Quantitative models usually have a mathematical or statistical basis. 

DEFINITION Quantitative models make statements about the measurable
properties of an architecture, such as performance, resilience, and capacity.

Because they deal with system qualities instead of structures, quantita-
tive models are usually created by applying a perspective, rather than by fol-
lowing the guidance in a viewpoint.

Quantitative analysis such as capacity planning usually requires either
sophisticated mathematical ability or the use of mathematical modeling tools.
We return to this subject in Chapter 26 when we discuss the Performance and
Scalability perspective.

Effective quantitative models are often time-consuming to create and vali-
date, so unless you have the luxury of a lengthy architecture definition phase,
your quantitative models, if you produce any at all, may have to be rough
approximations. In the worst case, you may not have time to do any more than
to establish confidence that your architecture will work and to understand its
characteristics at a high level. However, this confidence-building work can be
valuable, especially when there is uncertainty or you are breaking new ground,
and such models produced early in the lifecycle can provide a useful basis on
which to build more complete and accurate models later, if required.

In some cases, of course, critical quality requirements for a system make
quantitative models essential. For example, if you are designing some sort of
server or service-providing system for which good throughput and scalability
are crucial, the creation of a performance model will be a key architectural
task. In such cases, the priority of the important quantitative modeling tasks
will need to be raised to a level such that sufficient time is allocated for them.

EXAMPLE A mathematical model of the capacity of a system to respond 
under load would represent the utilization of a hardware component 
with this formula:

utilization = transaction throughput × busy time per transaction

By analyzing the utilization of hardware components, we can identify 
potential bottlenecks—heavily used components that slow system 
response—and see the effect of system changes on performance. (In 
fact, more sophisticated mathematical models such as queuing theory 
can often be used to predict system response times to a reasonable 
degree of accuracy.)
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Sketches
A third kind of commonly used architectural model is a sketch, which is an
informal qualitative diagrammatic model. Sketches are analogous to the art-
ist’s impressions created to help people imagine the impact of a new building
without them having to understand all of the details of its structure. Sketches
are inherently informal, by which we mean that they often incorporate dia-
gramming elements from a range of modeling languages and methodologies—
UML, entity-relationship modeling, and so on—while strictly adhering to the
rules and conventions of none of them. Sketches often make use of icons,
graphics, and pictures to convey their meaning. We separate sketches from
formal qualitative models to avoid any confusion between an erroneous or
partially completed formal model and a deliberately informal sketch.

DEFINITION A sketch is a deliberately informal graphical model, created in
order to communicate the most important aspects of an architecture to a non-
technical audience. It may combine elements of a number of modeling nota-
tions as well as pictures and icons.

Although they sound rather frivolous, sketches are a useful way to help
your stakeholders, particularly nontechnical ones, understand the essence of
your architecture. Sketches are often used during the inception phases of a
system development project to explain the key features to the wider commu-
nity. (This process is variously known as evangelizing or socializing the
architecture.) You can also use sketches later in the development process to
provide accessible, easily comprehensible overview models for less technical
stakeholders in situations where the primary architectural models would be
difficult for them to understand.

The inherent danger when using sketches is that their informal nature can
easily introduce ambiguity into an AD and lead to confusion and misunderstand-
ing. If a primary architectural model starts life as a sketch, you should aim to
replace or reinforce it with more formally specified models as soon as you can.

MODELING LANGUAGES

Architecture Description Languages
An architecture description language (ADL) is a special-purpose notation
for the sorts of models used to define the architecture of a computer sys-
tem. The benefit of using an ADL is that it has been specifically designed
for the creation of models at an architectural level of detail. By contrast,
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most general-purpose modeling notations are designed to represent much
more detailed programming language structures. The architectural focus of an
ADL means that you can use it to explain the architecturally significant
aspects of your architecture without getting bogged down in details that are
more appropriate to design work.

A number of ADLs have been proposed by groups working in the area,
some of the better-known being Acme from Carnegie Mellon University;
AADL, which is standardized by the SAE; Rapide from Stanford University;
and ArchiMate, which is standardized by the Open Group and is a little differ-
ent from the others in that it is aimed at enterprise architecture rather than
software or systems architecture. However, in practice it is rare to find an
ADL in use on an industrial enterprise system development project, and most
ADLs are still being experimented with in the research domain rather than
used in the mainstream. This means there is a shortage of familiar, function-
ally rich tools that support the use of ADLs, and your stakeholders are un-
likely to understand the notation and the significance of the language
elements.

The Unified Modeling Language
An alternative to using an ADL is to use a general-purpose modeling lan-
guage, adapting and specializing it to suit your needs. Of the many possible
notations that can be used in an AD, the most prevalent is probably UML.

As defined in the standard, the goal of UML is to “provide system archi-
tects, software engineers, and software developers with tools for analysis,
design, and implementation of software based systems as well as for model-
ing business and similar processes.”3 The language tries to encapsulate
proven practices in software design into a standard yet extensible notation.
UML provides a number of standard diagramming notations, such as use
cases, class diagrams, sequence diagrams, and activity diagrams. In addition,
UML has a number of mechanisms, such as stereotypes and profiles, that
allow modelers to tailor or extend the language to suit their circumstances.

UML has some specific advantages, including the sophistication of some of
its notations and its flexibility and extensibility. It is widely used, and most likely
your technical stakeholders will have no trouble understanding it (although
some of the more complex notations may be hard for your business stakeholders
to follow). Many people are working to apply UML to ADs and to improve its
ability to be used as an ADL.

While we have often jokingly referred to UML as “a pretty poor ADL, but the
best we’ve used” (and in fact one of us can be found in print criticizing UML’s

3. [OMG10a].
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abilities as an ADL!4), we actually use UML extensively for real modeling work
and have found it to be a useful tool for architectural description. As you will
see later, particularly in our viewpoint definitions, we use it as the primary
modeling notation throughout this book, and we wouldn’t do this if we had
significant reservations about its practical utility.

The qualities that we believe make UML effective for architectural models
are its ubiquity, its extensibility, and its strong, consistent underlying seman-
tics. The ubiquity of the language means that many technical stakeholders rec-
ognize and understand it and has led to the development of mature and
powerful tools to help create, check, and maintain models. The extensibility of
UML means that it is quite easy to create a “mini ADL” for the problem at hand,
by defining a set of stereotypes to specialize the rather limited and generic set of
concepts in the base language (for example, by defining a number of specific
component types relevant to your architecture models). Finally, the well-defined
semantics mean that it is possible to communicate quite precisely using UML
models, and tool support can be quite specific to the type of model being created.

So, in summary, while we still have plenty of criticisms of UML for archi-
tecture modeling, we do find that it’s a useful tool and the best match we’re
aware of for the modeling tasks we work on. 

Executable Domain-Specific Languages
A limitation of most modeling languages is that they are not directly execut-
able and the model isn’t used as part of the system’s implementation. This
inevitably leads to a gap between the information shown in the model and
how the system actually works.

A possible solution to this is to use a domain-specific language (DSL) to
define some of your architectural description. A DSL is a computer language
that has been designed to solve a specific problem, and there are many exist-
ing examples in computing, such as build script languages, CSS, SQL, regular
expressions, and so on. Recently, a couple of factors have encouraged more
widespread interest in DSLs, including the widespread use of dynamic lan-
guages (such as Groovy, Ruby, and Python) and Microsoft’s DSL tooling in
Visual Studio, added as part of its Software Factories project.

Using a dynamic language (for example, Groovy if you’re working in
Java) offers the possibility of creating a DSL that allows you to specify parts
of your architectural structure in executable form, allowing them to be exe-
cuted, tested, and even possibly used in the implementation. The drawbacks
of an executable DSL for architectural description are the relatively small

4. Eoin coauthored an opinion piece with Dave Emery on UML’s capabilities for 
architectural description in the November/December 2010 issue of IEEE Software’s
“Point-Counterpoint” column.
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number of stakeholders who are likely to understand it (probably just the
development team), the effort required to define the DSL (which you’ll proba-
bly have to do yourself), and the fact that such a language is likely to be capa-
ble of describing only one narrow aspect of your architecture.

Other Modeling Languages
There are a number of domain-specific modeling languages, such as entity-
relationship models for modeling data. We discuss some of these in more
detail in Parts III and IV.

GUIDELINES FOR CREATING EFFECTIVE MODELS

Models can be expensive artifacts to produce, and it is easy to spend a great
deal of time and effort creating and maintaining them. You need to be sure
that your models serve a definite purpose in your AD and are effective for the
uses you intend. Some helpful guidelines to follow when creating models are
outlined in this section.

Model Purposefully
Make sure that every model you create has a well-defined purpose; if you’re
not sure what the goals of a particular model are, don’t create it. Without a
clear purpose for a model, it is unclear what level of detail, completeness, and
formality the model should exhibit.

EXAMPLE Let us imagine that you need to consider the possible 
deployment options for your system. An initial deployment model cre-
ated to explore deployment candidates is likely to be incomplete and at a 
relatively shallow level of detail. The goal of the model is simply to allow 
you and a few key developers to consider the options and tradeoffs 
involved in running your system across a number of different machines.

In contrast, if the goal is to form a basis for deployment planning and 
software dependency analysis, your deployment model will need to be 
much more detailed and reasonably complete in order for it to meet 
those goals. Otherwise, important aspects of deployment or software 
platform dependencies are likely to be overlooked. A much more 
thorough modeling exercise will be required to complete this model 
compared with the previous one because, although both models are 
modeling system deployment, they have quite different goals.
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As you create and refine a model, continually consider its intended use
so that you can create a model that will be effective at meeting its particular
goals.

Address an Audience
Because different audiences often need quite different types of models or dif-
ferent presentations of the same model, you must also be clear about who the
model’s intended audience is. Without a specific audience it is also difficult to
know if the effort required to create a model will be worthwhile because you
don’t know how it will be used.

If a model is not targeted to a well-defined audience, there is a real danger
that it will simply not be reviewed and analyzed because its readers do not
feel it is relevant to them. In the example just presented, if you give a detailed
data model to acquirers and assessors, they may dismiss it as “irrelevant
technical detail,” while users and developers may ignore a summary model
because they consider it to be “too high-level.”

When you have identified your audience, consider the interest they have
in the model, the level of detail they are likely to want, and the kinds of nota-
tion they are capable of understanding easily. This will help you develop a
model that its intended audience will find useful and accessible.

The most challenging situations occur when you need to create models
that are of interest to a number of different audiences (such as functional
models that often have value for both software developers and the system’s
acquirers). In these cases, you will need to consider whether it is possible to
create a single model that will be of use to all of the members of the potential
audience. Often this simply isn’t possible, and you will be forced to create a

EXAMPLE The information structure of a system could be represented 
at two different levels of detail, depending on the audience.

The system’s acquirers and assessors will be interested in the infor-
mation stored and processed by the system, but at a summary level 
where they are considering types of information rather than individual 
business entities.

The system’s users and developers will be interested in the information 
stored and processed, but they will also want to know the details of the 
individual business entities and their attributes. The users want to be 
sure that the information they need is present, and the software develop-
ers need to have this level of information in order to build the system.
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number of different but closely related models in order to address your differ-
ent audiences (e.g., using sketches of more complex models for less technical
audiences). In such cases, clearly define which model is the primary source of
information and which one is derived so that you know how to resolve any
inconsistencies that may occur.

Abstract Carefully and Precisely
As we described at the beginning of the chapter, abstraction is the technique
of selecting only significant concepts for inclusion in a model, while omitting
insignificant detail, in order to better communicate its important ideas. A key
skill of modelers is achieving an appropriate and effective level of abstraction
in their models.

As Ptolemy and the Greek philosophers understood, the real world is
extremely complicated, and it is all too easy to be distracted from our analysis
by masses of irrelevant detail. However, the Greeks also realized that we can
exclude such detail from consideration without significantly affecting the
accuracy of our conclusions. Indeed, it is not possible, even with the sophisti-
cated science of the twenty-first century, to include everything in our models
of the world around us.

The dictionary definition of abstraction is “the act of taking away,” which
gives us a clear lead for how we should go about doing it. In particular, we
should be clear that abstract does not mean “woolly” or “vague”—if any-
thing, an abstract model may be more precise and rigorous than a more con-
crete one, because the reduction in detail allows an increased focus on and
fuller definition of the essential elements of the problem.

The key to achieving the right level of abstraction in a model is the ability
to spot the essential elements as opposed to irrelevant detail. What is rele-
vant, of course, varies hugely according to circumstances, the purpose of the
model, and the needs and abilities of any interested stakeholders, so deter-
mining what to include in a model can be a pretty subjective decision.

Focus Your Efforts According to Your Risks
When modeling and analyzing your architectural design, it can be difficult to know
where to focus your efforts. Ideally, you would model every aspect of your archi-
tecture very thoroughly and think out every detail. However, you never really have
time to do this, and in fact, it’s a level of architectural design effort that is rarely
warranted except on the most critical systems. Given that you can’t model every
detail of your architecture, how do you decide where to focus your efforts?

Like many other software architecture authors, we advocate a risk-driven
approach to deciding where to focus your efforts, working to understand and
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mitigate your most important risks first. If you don’t use risks to prioritize
your work, there is always a danger that you’ll do the most interesting or the
easiest parts of the architecture work first, when in fact these may be the least
important, depending on the system.

Understanding and prioritizing your risks (in terms of impact and likeli-
hood) will allow you to focus your architecture work in the areas where it is
most important. We discuss this approach further in Chapter 13.

Choose Descriptive Names
The names of elements in a model can have a significant impact on its effec-
tiveness for communication. Your stakeholders’ understanding of a model
will be colored by the names of the model elements because of assumptions
they make based on particular words. It is also important to choose good
names because names tend to be very “sticky”: Once a name has been under-
stood and discussed, it becomes part of the common language for a project
and so is very difficult to change, even if it isn’t a very good name.

When initially creating a model, it is easy to give elements misleading
or ambiguous names because you are still trying to understand the role
and responsibilities of each element. This makes it important to keep
revisiting names as you develop the model to ensure that the element
names you finally choose are accurate and meaningful, helping readers of
the model to easily grasp its fundamental structure and the role of each
element within it.

EXAMPLE If you’re a security expert, it seems sensible to use that 
knowledge and experience to thoroughly analyze and model the sys-
tem’s security early on. After all, this is likely to be useful, you know 
how to do it, and it allows you to get something significant out of the 
way immediately.

While on the face of it this seems to be a sensible approach, when you 
think about it objectively, it’s clear that this isn’t necessarily the best 
way to work. If you prioritize your work according to your preferences, 
rather than thinking explicitly about risk, human nature means that 
you’re likely to choose things that you’re interested in or relatively low-
risk areas that allow you to deliver “quick wins” to show progress. In 
actual fact, the highest risks your system is facing could be in different 
areas such as performance or something relatively obscure and awk-
ward such as regulatory compliance.
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Define Your Terms
A particular problem with graphical modeling notations is the tendency to
draw the diagram that represents the structure of the model and then consider
the model complete. Of course, the model isn’t complete because none of the
symbols on the diagram have really been defined, and the model is wide open
to misinterpretation. This problem isn’t limited just to models created with
graphical notations; it is quite common to encounter quantitative models
(e.g., spreadsheet-based performance models) that are very difficult to inter-
pret due to missing definitions of the various elements and relationships
captured in the model.

As you develop a model, be sure to spend enough time carefully defining
all of its elements so that their meanings, roles, and mappings to the real
world are all clear and not open to different interpretations.

Aim for Simplicity
The simpler a model is, the easier it will be to use and the more likely it is
that its audience will find it effective. However, if a model is too simple, it
will also fail because it no longer represents the essential features that
interest the audience. You must aim for a balance somewhere between
simplifying a model so far that it is no longer a valid and effective descrip-
tion and overcomplicating it to the point that the model is difficult to use
and maintain.

Most models start out being simple and well structured, but as more detail
is added and more special cases are considered, their complexity often
increases significantly. Increasing a model’s complexity quickly reduces its
effectiveness for communication and analysis.

As your model develops and becomes more detailed and complex, contin-
ually review it yourself and ask others to do the same in order to assess its ef-
fectiveness. If a model becomes too complex to use easily, consider replacing
it with a number of simpler, related models that contain the same information
but in a more accessible form.

Use a Defined Notation
Nearly all models use some form of notation to represent their content,
whether it be a graphical notation, a symbolic or mathematical notation, or
even program code—you have many choices. Most notations can be used in
different ways, yet none of them will match your exact needs, so you will
often have to extend them. The result of this is that when your stakeholders
read a new model, it can be difficult to be sure what notation it is written in
and what the notation means.
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Without a clearly defined notation, the readers of your model must rely on
their intuition and your explanation and commentary to interpret the model.
The difficulty of interpreting the notation can easily become a barrier to
understanding.

For every model you create, be sure to define the notation you use care-
fully, so that stakeholders have no doubts about its meaning and can focus
on the content of the model, rather than struggling with its representation.
Even with informal models like sketches, define your notation so that the
sketch can be interpreted even when you are not available to explain it.

Beware of Implied Semantics
Diagrams provide rich semantics that you can use to impart many shades of
meaning to the reader. For example, a layered architecture is usually repre-
sented in a diagram with the layers positioned vertically above one another,
with the most important layer at the top. We are all familiar with such dia-
grams, and it is not usually necessary to explain what this notation means.

This is a valuable time-saver, but it also means that any diagram that
looks like a set of layers may be interpreted as one, whether the architecture
is layered or not. If this is not your intention, this can lead to confusion or
worse. In such a case, you should either note somewhere that vertical position
does not imply layering, or even better, reorganize your diagram so that your
readers do not get the wrong impression.

There are many types of implied semantics that may require you to
redraw your diagrams.

� Vertical positioning of similarly sized objects on the page can be miscon-
strued as implying layering or some other hierarchy.

� Left-to-right positioning may be interpreted as a flow of control or a 
sequence of events.

� Putting one element inside another may imply ownership or 
containment.

� The sizes of diagram elements can suggest their relative importance.

� Coloring of diagram elements or text may suggest importance (or otherwise). 
Similarly colored elements may be assumed to be related in some way. 

� Using certain icons for your elements, such as a stick person or a graphic 
of a computer or a disk, may mislead your readers about the nature of 
those elements.

These diagrammatic conventions can be very useful, but you should
ensure that you use them with care to impart the meaning that you intend.
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Validate Models
Models are an approximation of reality. This is what makes them valuable,
allowing us to focus on important details to understand, communicate, or an-
alyze, but it is also a potential weakness because you can never be sure
whether the approximations you made have rendered the model invalid.

This aspect of models means that it is important that you continually val-
idate your structural models for consistency and practicality and your analyti-
cal models for correspondence to the real world. You can do this via expert
review, technical prototyping, and checks of your model against the real
world. The important point is to validate your models often enough and thor-
oughly enough to be confident that they will be useful in their intended roles.

Keep Models Alive
Things change during a software development project: Requirements come
and go, new constraints emerge, and priorities change. This potential for con-
tinual change is something you have to deal with in order to deliver effective
systems that meet the real needs of your stakeholders.

The need to absorb changes means that you cannot expect a model devel-
oped at the start of a project and left unchanged to still reflect reality by the
time the system is delivered. The challenge you face is that if your models
stop reflecting reality, they soon stop being used and “die.”

In order to avoid the premature demise of your models, it is important to
regularly update them so they will continue to be relevant. Although you do
not want the maintenance of models to become a major burden that slows the
project, you need to get the balance right by investing enough time and effort
to keep them current. Scheduling a small amount of routine model mainte-
nance activity into your weekly plans can be a useful aid for achieving this.

Keeping models up-to-date is also much easier if you keep them as simple as
possible, by focusing on those core concepts that really need to be modeled to aid
analysis and communication. We have often found that the main architectural
structures of a system do not change very quickly when compared to the details
of the system built upon them. These key structures are also the things you need
to model in order to understand the system (it is very difficult to re-create these
models from the code later). Keeping such models current is much less difficult
than maintaining comprehensive models of every aspect of the system.

MODELING WITH AGILE TEAMS

With the emergence of agile development as a mainstream approach, it has
become a common situation for software architects to be working with agile
teams. Common wisdom is that architects and agile teams mix like oil and water
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because of concerns on the part of the agile team about big up-front design and
unnecessary documentation. However, our experience is that working in and
with good agile teams isn’t difficult, and there’s a lot to be gained from it, but it is
necessary to be flexible with respect to the approach that the team wants to use.

We’ve found that working with an agile team involves an intelligent
application of many of the points that we’ve already made in this chapter, in
particular:

� Work iteratively; rather than trying to produce complete models in one go, 
deliver incrementally developed and refined ones.

� Share information via simple tools rather than assuming that everyone 
will be happy to use a complicated modeling tool that works well for you 
(agile developers probably won’t).

� Ensure that there are customers for all of your models  and you know 
what they’ll use them for (even if you’re the customer); otherwise you’re 
not modeling with a definite purpose.

� Create models that are good enough rather than aiming for perfection, 
which is both unattainable and probably less useful given the time it will 
take (although make sure that they are good enough!).

� Focus on architectural concerns that solve problems  that the team is hav-
ing or will have to clearly differentiate the architecture work from the 
core development work (unless, of course, the team is clearly struggling, 
in which case you’ll need to step into the detailed design too).

� Create executable deliverables such as prototypes or executable models to 
help validate ideas, communicate with the development team, and bring 
your work alive for them.

To help place modeling in context for agile teams, consider introducing them
to the ideas of agile modeling (AM), which is a set of values, principles, and
practices aimed at ensuring the effectiveness of modeling activities, with particu-
lar reference to the values of the agile approach. AM embraces and extends many
of the points we’ve already made in this chapter, being based on the recognition
that models are only ever an approximation of reality and as such must always
be developed with an explicit aim to be useful in a particular situation .

CHECKLIST

For each model you have produced, ask yourself the following questions.

� Does the model have a clear purpose and audience?

� Is the model going to be understood by its audience (business and tech-
nical stakeholders, as appropriate)?
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� Is the model complete enough to be useful?

� Is the model as simple as possible while still being detailed enough for its 
purpose and audience?

� Have you clearly defined the notation(s) used in the model?

� Is the model well formed; that is, does it conform to the rules of the mod-
eling language you are using?

� Do model elements have meaningful names and definitions?

� Is the model internally consistent and consistent with other models?

� Does the model have a level of abstraction appropriate to the problem to 
be solved and the expertise of the stakeholders?

� Does the model have the right level of detail? Is it sufficiently high-level 
to bring out the key features of the architecture? Does it present enough 
detail for a specialist audience?

� Have you provided a definition of the terminology and conventions used 
in the model?

� Does your model have appropriate scope? Are the boundaries clear?

� Is the model accompanied by an appropriate level of supporting docu-
mentation?

� For quantitative models, does the model have sufficient rigor (mathemat-
ical basis) and an appropriate degree of complexity?

SUMMARY

The most important parts of any AD—and sometimes the only things that are
actually produced—are its models. Models are a way to represent the salient fea-
tures of the system and to communicate these to stakeholders. A good model can
make all the difference when helping stakeholders understand your architecture.
The AD consists of a collection of views, and each view consists of a collection of
models (plus other elements such as principles, standards, and glossaries).

There are three broad classes of models, two formal and one informal.
The two classes of formal models are qualitative models (which illustrate the
key structural or behavioral elements of the system) and quantitative models
(which make statements about measurable aspects of the system). Both are
useful, although architects typically focus on qualitative models because there
often isn’t enough detailed information available to do any reliable quantita-
tive analysis. We refer to the informal models as sketches, and they are used
primarily for communication with less technical stakeholders.

A model is only an approximation of reality, and the architect must always
be aware of its simplifications and approximations (and make stakeholders
aware of these also).
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FURTHER READING

Numerous books cover specific modeling languages, particularly UML, and
more general topics such as entity-relationship modeling, object-oriented
modeling, security modeling, and performance modeling. We cite several rele-
vant books in Parts III and IV.

You can obtain information on agile modeling from the Agile Modeling
Web site (www.agilemodeling.com), in the “Resources” section of the Agile
Alliance’s site (www.agilealliance.org), and in Scott Ambler’s book on the
topic [AMBL02].

You can obtain the most up-to-date information on ADLs by searching
the Internet. This is largely true of DSLs, too, but a number of DSL books
have recently been published, such as [FOWL10] and [GHOS10], both of
which cover the topic from a language-independent perspective. There are
also quite a number of books explaining how to create DSLs in particular lan-
guages, which can be found by searching any major online bookseller.

www.agilemodeling.com
www.agilemodeling.com
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13
CREATING THE
ARCHITECTURAL DESCRIPTION

f you follow the architecture definition process that we describe in this book,
you will end up with a wide collection of material that shapes, informs, and

describes your architecture: constraints, principles, decisions, requirements,
scenarios, and, most important, a set of architectural views, each comprising
one or more architectural models. Some of this material will be vitally impor-
tant to the proper understanding of your architecture, some of it will provide
useful details, and some of it may be more appropriate for other software
development documentation such as the requirements definition or design
documents.

Your challenge is to gather and organize the relevant material into a
coherent, consistent, and complete description of the architecture, its essential
features and benefits, and its underlying philosophy in a way your stakehold-
ers can understand and accept. Let’s revisit a definition we first presented in
Part I.

DEFINITION An architectural description (AD) is a set of products that docu-
ments an architecture in a way its stakeholders can understand and demonstrates
that the architecture has met their concerns.

The purpose of the AD is to communicate the architecture to all stakehold-
ers, throughout the system’s lifetime from conception to decommissioning.
The AD establishes a common understanding of the required functionality and
quality properties of the entire system and ensures that the right choices are
made about aspects such as scope, performance, resilience, and security.

Most important of all, the AD is often a selling document. It may have to
present, explain, and justify ideas that are unfamiliar to its readership;

I
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convince a skeptical audience that your architectural choices are the correct
ones; and persuade stakeholders that the risks your solution brings are out-
weighed by its benefits.

Given all of the things you have to address in your AD, there is a tempta-
tion to bury your stakeholders under a mountain of detail. This is a mistake—
the AD must capture the key architectural structures and decisions for your
system, which are usually those that need to be widely communicated, or
those that address high-risk concerns, or those that will be difficult to change
later. The AD should be crisp, concise, and to the point. Otherwise, you will
end up with an unwieldy document that doesn’t help your stakeholders to
understand the rationale behind or the implications of your key architectural
decisions.

For example, UML use cases are one way to capture and annotate
interactions between a computer system and its environment. Diagrams
and text represent the participants (known as actors), the functional units,
and the interactions among them. Of all the UML notations, use cases are
probably the most easily understood by both technical and business stake-
holders.

However, use cases are by their nature fairly local or atomic—in other
words, they typically address a single interaction or a small group of related
interactions. Because many architectures are so complex, an architectural
model could comprise hundreds or even thousands of use cases. Although each
individual use case is easy to understand, it is not possible to draw an overall
picture from such a large number of individual models. Important or funda-
mental aspects of the system get lost in this mass of detail.

Architecturally, use cases are more effectively used to elaborate specific
aspects of the system’s functionality or to present a small selection of key
interactions, rather than to represent the entire system.

PROPERTIES OF AN EFFECTIVE ARCHITECTURAL
DESCRIPTION

An effective AD must balance seven desirable properties: correctness,
sufficiency, timeliness, conciseness, clarity, currency, and precision. We
discuss each of these in the following subsections.

Correctness
The most important quality of your AD is that it be right. Right is, of course, a
subjective term, but we can define two correctness criteria that your AD must
meet.
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1. It must correctly represent the needs and concerns of your stakeholders.
You can do this explicitly, by reflecting some of these needs back to 
stakeholders in the form of architectural principles, and implicitly, by 
presenting the features of your chosen solution. (In the latter case, you 
need to highlight these features in some way so that the stakeholders 
can recognize them.)

2. It must also correctly define an architecture that will meet those needs  so 
that a system can be built, based on the architecture, that will satisfy the 
stakeholders.

Achieving this objective is, in theory anyway, straightforward—present
the AD to your stakeholders and ask them, “Is this what you need?” In prac-
tice it is often significantly more difficult than that, and we talk about this in
more detail in Chapter 14.

Sufficiency
Your AD must contain enough information to allow your stakeholders to
understand the key architectural decisions you have made, which are usu-
ally those that mitigate significant risks or those that will be difficult to
change once the system has been built. In our experience, this is where
most ADs tend to fall short. The structural and functional aspects of the
architecture are usually addressed, but other issues may not be consid-
ered—at least not explicitly. If you haven’t communicated something im-
portant about your architecture because “everybody knows that,” you do
not have a complete AD.

If you don’t include enough information in your AD, you are effectively
postponing architectural decisions until later in the system development life-
cycle. While it’s important to avoid premature decision making, we also want
to avoid architectural decisions being made in an ad hoc and localized way. It
is difficult to make good architectural decisions without a system-wide per-
spective, because people won’t have the right information and the decisions
(or their impact) won’t become apparent until it’s too late to do anything
about them.

Of all the properties that make an effective AD, sufficiency can be the
most difficult to judge. Your challenge is to work out when the AD contains
enough information to make a compelling argument that the architecture is
going to meet its requirements and the system will be successful, but doesn’ t
try to define every detail of how the system will work. Achieving this balance
allows you to focus on making and capturing the architecturally significant
decisions, leaving the rest to the skill and judgment of the development
teams.
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STRATEGY Clearly document your key architectural decisions in the archi-
tectural description, and provide the rationale for any decisions that are con-
tentious or had substantial alternatives. For significant decisions this involves
capturing the alternatives that you considered, any assumptions you made
that underpin your decision, and a brief summary of why you made the choice
you did and rejected the others.

If you have worked hard to identify and engage your stakeholders and
have captured and agreed with all of their requirements, ensuring sufficiency
should be almost automatic. If a stakeholder need is not explicitly or implicitly
reflected in some element of the architecture or has not been documented in
the AD, you may have a gap.

A good way to ensure sufficiency is to select appropriate viewpoints, create
views, and apply appropriate perspectives, as we discuss in Parts III and IV.

Timeliness
Most of us have a tendency to want to complete deliverables “perfectly”
before letting other people start to work with them. For many sorts of engi-
neering work products this is a mistake, and this is definitely the case with
architectural descriptions.

An architecture definition exists to guide the design and construction of a
system and so must be available in time to meet the project’s milestones. There
is no point in delivering the “perfect” AD a month late when the delivery pro-
cess has had to move on without it. A minimal and perhaps partial AD that fits
in with the time constraints of the project is of much more use than an ideal one
delivered too late to be of use. It is also important to deliver drafts of your AD
as early as possible in order to get feedback on your architectural ideas and
allow them to be socialized, understood, refined, and validated.

The challenge inherent in achieving timeliness is to produce something that
is still of value in the inevitably limited time available. While there is no point
in delivering an AD too late to be used, there is also little point in delivering one
that is so shallow or poorly thought out that it can’t be used as an effective
guide when building the system. This means that it is important to limit the
scope of your architecture work, based on the risks that the project faces, so
that you can produce something solid and useful.

All that being said, if you can’t do enough architecture work to address
the project’s risks, it is incumbent on you to point this out to the project’s
sponsors and key stakeholders. If they decide to press ahead while leaving
risks unaddressed, that is their choice. However, if they don’t know what
risks they face, they can hardly be expected to invest in architecture work to
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mitigate them. You are in an ideal position to work with the system’s stake-
holders to help them understand their key risks and what can be done to
mitigate them.

STRATEGY In order to deliver a useful AD in a limited time, first focus on the
key risks that the project faces, and second, deliver the work incrementally.

Focusing your architecture work on the riskiest aspects of the system will
ensure that you spend the limited time you have on the most important con-
cerns and that you maximize the return on your investment. There are many
architecturally significant concerns on which you can spend time, so it is
important to prioritize your work so that the highest risks that the project
faces are understood and mitigated first.

Delivering the AD in an incremental manner has a number of advantages,
not least of which is that you are learning about the problem and your solution
throughout the development process. Deferring architectural decisions until
they are needed allows you to make more informed (and therefore better)
decisions. Incremental development of your architecture also allows you to
work with the project’s milestones and fit more architecture work into the
project than you could at the start of the lifecycle. You can create a minimal AD
right at the start to guide prototyping or proof-of-concept work, fleshing it out
to capture the important architectural structures as decisions are made, and
then refining the architecture as the project progresses.

The trick with deferring decisions is knowing when the “last responsible
moment” to make a decision (as the agile community puts it) really is. Making
uninformed decisions in a panic without any time for investigation, re search,
or reflection isn’t being agile; it’s just being sloppy. It is important that you
look far enough ahead in the project to see when decisions will be needed so
that you have enough time to formulate good solutions for them as they
emerge.

Finally, don’t leave things out of your AD just because they are hard. It is
tempting to defer decisions until later with the expectation that solving a diffi-
cult problem will somehow be easier in the future. You are almost always build-
ing up trouble for yourself if you do this, and you may find that a decision ends
up being made for you by default. You should defer a decision only when you
don’t yet need to make it.

Conciseness
To help stakeholders grasp the key features of your architecture, your AD
should focus on its important elements—in other words, the things that are
architecturally significant—and not spend too much time on other details.
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Unfortunately, the distinction between what is and isn’t architecturally
significant can be difficult to judge. For most systems, a single context dia-
gram with a couple of pages of description won’t be sufficient; similarly, most
systems don’t need a 200-page physical data model as part of their architec-
tural description. You need to create an architectural description that is as
concise as possible but still has enough detail to capture and communicate the
architecturally significant aspects. How much you need to capture will depend
on a number of factors.

� The extent to which you are mandating new or unfamiliar technology : If 
you are facing significant technology risk due to the use of unproven 
technology, you will need to spend more time explaining in your AD what 
the new technology does, how it works, and how the system will use it.

� The difficulty or criticality of the problem you are trying to solve : If you 
are facing significant functional risk because your system is functionally 
complex or has very great significance for the organization implementing 
it, you will need to explain how your architecture will mitigate these risks.

� The scale of the quality property requirements: If you are facing significant 
risk in meeting your system quality property goals because you have 
demanding or ambitious requirements for qualities such as performance, 
scalability, or resilience, you may need a comprehensive explanation of how 
these requirements will be achieved.

� How much time and resources you have available to produce and gain 
acceptance for the AD: If you have 6 months to define and build your 
system, it is pointless to spend 5 months producing a perfect AD.

If you don’t keep your AD concise, by focusing on architecturally significant
information, your stakeholders will find it difficult to understand the implica-
tions of your decisions, and you risk having them miss something important. A
lengthy AD is also much harder to maintain and keep current (see the discus-
sion in the Currency subsection).

STRATEGY Restrict your architectural description to things that are architec-
turally significant, and tailor the level of detail to the skills and experience of
your readership, the complexity of the problem and your solution, and the
time you have available to produce the architectural description.

Striking the right balance between conciseness and depth largely comes
down to the experience and judgment of the architect. However, one thing is
certain—a well-focused document has a better chance of being read and
understood than a long, rambling one that contains a lot of information that
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isn’t of interest to your readers (such as a lengthy description of the software
development process being used by the software development team).

Clarity
The most challenging quality to achieve in your AD is its ability to be under-
stood by all classes of stakeholders. At a minimum, each stakeholder group
should be able to understand those parts that are relevant to them.

Remember the dual purposes of the AD: to document the architecture in a
way that each stakeholder group can understand and to demonstrate that the
architecture has met their concerns. For technical stakeholders such as develop-
ment teams, this is fairly straightforward: They understand technology and are
probably familiar with the notation (such as UML) you are using to represent it.

However, for nontechnical stakeholders, providing clarity in your AD is
more of a challenge. Although most people have a basic, if vague, under-
standing of computing, many will not appreciate the subtle ramifications of
your architectural decisions without your help.

The good news is that nontechnical stakeholders require less of your AD
in terms of depth and detail: just enough to grasp the main functional compo-
nents and their high-level interactions. Nontechnical stakeholder concerns, as
we have seen, focus more on the user experience and (indirectly) on system
qualities such as response and availability.

STRATEGY Always consider your intended readership when writing parts of
an architectural description, and tailor its content and presentation toward
their skills, their knowledge, and the time they have available to read it.

In practice, you will aim different parts of your AD at different classes of
stakeholders (indeed, that’s part of what viewpoints are about). Your challenge
is to make sure that these parts are all compatible with one another and with
the overall design.

The physical presentation of your AD plays a big role in ensuring that
stakeholders understand the aspects of the architecture that are relevant to
them, grasp the significance of the architectural decisions that have been
made, and are won over to its merits. 

Different audiences may prefer different types of presentations, and
different parts of the AD will be communicated more effectively if presented in
different ways. A lot depends on the situation in which you find yourself. We
have found that documents, models in modeling tools, code, wiki pages, and
slide presentations all have their place in communicating an architecture
clearly. Frequently a combination of them will provide the clearest presentation
of the architecture to your various stakeholder groups. One word of warning,
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though: If you do decide to use a number of separate representations for the
AD, make sure that they stay consistent with each other and that everything
that needs to be captured is captured somewhere, ideally only once.

Finally, it is also important to remember that presentation is never a sub-
stitute for content, and some people are suspicious of documentation that
comes across as too polished or glossy. However, good layout, clear use of
language, and correct spelling and grammar will make your job of imparting
architectural knowledge that much easier.

Currency
It is inevitable that your architecture will evolve over time. During develop-
ment, you will find problems with your design or ways to improve it, or you
may need to take on new technologies or provide new features. These may
result in changes to the architecture that must be reflected in the AD.

Once the architecture diverges from the AD, the AD starts to become worthless.
It is no longer trusted and is no longer used as the definitive source of information
about the architecture. However, you can’t gauge the important properties and quali-
ties of your architecture by inspecting source code. Your high-level, system-wide
view would be lost among the detail.

The architecture will continue to evolve once your system goes live,
although usually at a slower pace. The AD, which should be kept up-to-date
with these changes as well, can play an important part later in assessing and
evaluating proposed changes.

A smaller, more concise AD will, of course, be easier to keep current, so this
is another reason to limit your AD to the essential information that it needs to
contain. An AD that tries to define every detail of the system will be in a constant
state of change, while an AD that defines only the architecturally significant
aspects of the system will be easier to keep current and relevant.

STRATEGY Think early in development about how the architectural descrip-
tion will be kept up-to-date throughout the life of the system, and try to
ensure that development, operation, and support plans take this need into
account.

Also consider whether all of your architectural documentation needs to be
kept at the same level of currency, or whether some of it can safely be updated
less frequently once some aspects of the architecture have stabilized. If you find
that some of it is not regularly referred to, you can allow it to become out-of-
date. However, you must make sure that any part of the AD that becomes out-
of-date is clearly marked as such, so that people understand the relative currency
of the different types of information that the AD contains.
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Precision

As we’ve said already, an AD must contain sufficient information to allow the
system’s architecture to be understood, but it must also be precise in order to
provide a solid basis for analysis, design, and implementation. We have seen
many architectural descriptions that attempted to define the right information
but the information provided was ambiguous or poorly written, meaning that
it was difficult to be sure what the architect intended.

On the other hand, being precise doesn’t mean adding a lot of unneces-
sary information, such as the fine detail of implementation options that aren’t
architecturally significant. In fact, if you’re not careful, precision can become
the converse of conciseness: It is easier to concentrate on the precision and
quality of a smaller set of key architectural structures than to be precise about
a large number of varied concerns. A number of techniques can help you here.

� Make use of abstraction and layering so that you describe things once 
rather than many times. (Refer to Chapter 12 for a discussion of these 
concepts.)

� Focus on the system’s key architectural structures and decisions, and 
exclude anything that is not needed to demonstrate that the architecture 
will address stakeholder concerns.

� Present detailed information in tables or lists rather than in ordinary text.

� Number requirements, principles, and other elements of the AD and refer 
to them by number.

� If you need to specify lower-level details, put them in appendices or separate 
documents rather than in the main body of the AD.

� Make plentiful use of diagrams to explain difficult concepts.

� Break down very large documents into several smaller ones by topic or 
by audience.

If your AD becomes too large, this can be a good reason to divide your
document by view—having one physical document for your Functional view,
another for your Information view, and so on—or (more likely) by the type of
stakeholder who will read it. In this case, you might have the following as
parts of your AD:

� The benefits of the architecture extolled in an overview document aimed 
at the sponsor and senior management

� More functional detail in a document aimed at users

� The bulk of technical detail in one or more documents aimed at develop-
ment teams and other technical stakeholders
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STRATEGY Aim for precision in your architectural description, but when this
necessitates a large amount of detail, physically break the document into several
smaller ones or put the details into appendices, so that the main document does
not become too large.

GLOSSARIES

As an architect, your skills and experience—particularly of the business
domain—tend to be, with exceptions, broad rather than deep. This means that
you often end up asking your stakeholders what may seem like “obvious”
questions: “What is an account?” “How does a bill of materials work?” “Why
do you need to clear all your transactions at the end of the day?”

You may sometimes be surprised by the answers, and your stakeholders
may find themselves thinking afresh about concepts they have taken for
granted for years. You may find it valuable to capture your understanding in a
glossary of terms (sometimes called a dictionary) to ensure that everyone is
using the same definitions.

STRATEGY Include a glossary in your architectural description if terminology
may be unclear or ambiguous to some readers. If possible, base the definitions
on standard ones used in your organization or industry.

Glossaries have a more concrete benefit, too. As your analysis proceeds,
they will feed directly into your models. Nouns translate easily into classes or
entities, and verbs often translate into processes.

THE ISO STANDARD

ISO/IEC Standard 42010, Systems and Software Engineering—Recommended
Practice for Architectural Description of Software-Intensive Systems , is one of
the few formal standards covering the practice of software systems architec-
ture. In its own words, it “addresses the creation, analysis and sustainment of
architectures of systems through the use of architecture descriptions.” 1

Clause 5 of the standard defines six recommended practices for docu-
menting an architecture. An AD that conforms to these requirements (which
include more detail than we present here) can be considered compliant with
Standard 42010.

1. [ISO11], Abstract.
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1. Architecture description identification and overview : The AD must 
include standard control and context information, such as issue date and 
version, change history, and scope.

2. Identification of stakeholders and concerns : The AD must identify the 
stakeholders and their concerns (such as purpose, appropriateness, fea-
sibility, and risks).

3. Selection of architecture viewpoints: The AD must identify the view-
points used, explain the rationale for their selection, and define which 
viewpoint addresses each concern.

4. Architecture views: The AD must contain one or more views, each con-
forming to its corresponding viewpoint, with each view containing one or 
more models.

5. Consistency and correspondences among architectural views : The AD 
must analyze consistency across views and record known inconsistencies 
as well as clearly identify required relationships (“correspondences”) 
that should exist between elements of the AD (such as ensuring that 
each executable in a system has a target runtime machine).

6. Architectural rationale: The AD must include the rationale for each view 
used in the description and can capture key decisions made, the rationale 
for them, and the alternatives considered.

The aim of the standard is that it “enables the expression, communication
and review of architectures of systems and thereby lays a foundation for
quality and cost improvements through standardization of conventions for
architecture description.”2 If the architecture function in your organization
would benefit from formalizing its approach, you should adopt the ideas from
ISO Standard 42010—and if you follow the recommendations of this book,
that should not be too difficult.

CONTENTS OF THE ARCHITECTURAL DESCRIPTION

Because the experience and concerns of your stakeholders, the type and
complexity of the problems you are trying to solve, and the time you have
available for architecture definition vary from project to project, no two ADs
are ever structured in the same way. It is difficult, therefore, to present a
generic template for an AD. The contents listed in this section, while incor-
porating the documentation elements we discuss in this book and complying

2. [ISO11], p. 1.
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with ISO Standard 42010, are a superset of what you are likely to produce in
practice. Real-world ADs will differ from this template for a number of
reasons.

� You may refer to other material (such as scope or requirements definitions) 
rather than summarizing it in the AD.

� You may not capture all views or apply all perspectives (you probably 
don’t have time to do this even if you’d like to).

� You may choose to document some perspective enhancements and in-
sights, such as more detailed security models, separately from the main 
document.

� Your AD may be produced by more than one person (especially if the sys-
tem is large or has some complex features), which may necessitate some 
changes to the structure presented here.

With these caveats in mind, let’s explore the different sections you may
include in your ADs.

Document Control
The Document Control section clearly identifies individual versions of the AD.
If there is more than one version (which will be the case on all but the sim-
plest systems), effective document control is essential to ensure that everyone
is working from the most up-to-date copy.

For the current version of the AD, Document Control normally contains
the document version number, the document issue date, the document status,
an overview of the changes since the previous version, document authoriza-
tion, and commentary.

It is also common to include a version history (which summarizes the
changes in each version, authorization, and so on) and any details on
planned future versions of the AD. It may also be appropriate to include copy-
right, ownership, and confidentiality statements here.

Table of Contents
You can use the automated capabilities of your word processing software to
generate the Table of Contents. You may want to briefly introduce the purpose
and content of each main chapter, especially if your stakeholders are not
familiar with this type of document.
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Introduction and Management Summary
This section (which may also be called Executive Summary, Abstract, and so
on) introduces the AD by doing some or all of the following:

� Describing the objectives of the AD

� Summarizing the goals of the system described

� Summarizing the scope and key requirements

� Presenting a high-level overview of the solution

� Highlighting the benefits of the solution, the risks in its implementation, 
and mitigation strategies

� Identifying the key decisions that have shaped the architecture

� Highlighting any outstanding issues still awaiting resolution

It is good practice to acknowledge your stakeholders and other sources of
information here.

Depending on your audience, you may want to give an overview of the pro-
cess you went through to produce the AD, particularly if there were a number
of iterations, and describe the next steps (e.g., formal review of the AD).

Stakeholders
This section of the AD should define the system’s stakeholder groups and the
primary concerns of each. This allows you to review whether you have the
right set of stakeholders, spot any that are missing, consider how the con-
cerns of each group will shape your architecture, and consider the likely inter-
action of different concerns and how this will affect your work.

General Architectural Principles
In this section, present the architectural principles that inform the architecture
but don’t fit naturally into any of the views—for example, “We buy and con-
figure off-the-shelf software rather than build our own whenever possible.”

Each principle should be numbered and should include rationale and
implications. Whenever possible, tie the principles back to business drivers
and forward to architectural decisions.

Architectural Design Decisions
One of the most valuable things that you can communicate to those involved
in building and evolving the system is an explanation of its key architectural
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decisions. They need to know what decisions were made, their rationale, the
alternatives you considered, and why they were rejected. Documenting the
decisions as they are made also helps to ensure that they are captured accu-
rately and provides context and background for the system’s stakeholders as
they try to understand the architecture.

In this section, describe the key decisions that have shaped the architec-
ture and that someone will need to understand in order to grasp the design of
the system as a whole. If there are architectural decisions that are very spe-
cific to a particular view, consider documenting them in that view, as they will
make more sense to the reader in that context.

This section of the AD has the potential to grow quite large, depending on the
number of decisions that you think are important and the level of detail needed to
clearly explain each one. Therefore, it may be better to limit this section to a short
summary of the more important decisions and to defer a full explanation of the
decisions made and the alternatives rejected to an appendix.

Viewpoints
Users of the AD need to understand the views you have selected, the scope of
each, and how they fit together to document the architecture, so it is important
to define the viewpoints that the views are based upon. You should be able to
do this by reference to an external set of viewpoint definitions, but it can still be
useful to include a short recap of the role and content of each viewpoint here.

Views
Your AD can include sections on each of the views associated with the seven
viewpoints we describe in Part III. For example, the section on the Functional
view could contain the following information.

� View-specific architectural principles: Present the architectural principles 
that inform the models in this view. Each principle should be numbered 
and should include rationale and implications, and wherever possible the 
principle should be tied back to business drivers and forward to architec-
tural decisions.

� View model(s): Present the models that make up the view. This includes 
enhanced and new models created as a result of applying perspectives. 
Models should be named and a brief description given of the notation and 
documentation conventions used (especially if these are nonstandard or 
extended).

� Perspective improvements: It may be appropriate to highlight some of the 
outcomes of applying perspectives to the view, namely:
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• Enhancements to view models (including new models created as a 
result of applying the perspective)

• Perspective insights demonstrating that the architecture will meet its 
quality properties

Alternatively, you may refer readers to an appendix for some or all of 
this information. 

� Application of scenarios: Document the key scenarios that have informed 
the view models, here or in an appendix.

� View-specific architectural decisions: If architectural decisions have 
been made that are specific to this view, capture them here if they have 
not already been described elsewhere. Describe the decisions made, 
their rationale, any alternatives considered, and why they were 
rejected.

� Commentary: Include here any other general commentary appropriate to 
the view (e.g., advice and guidance to development teams).

If included in the AD, sections for the Context view, the Information view,
the Concurrency view, the Development view, the Deployment view, and the
Operational view would contain the same type of content as described here for
the Functional view.

Quality Property Summary
As we described in Part I, applying a perspective leads to insights, improve-
ments, and artifacts. Improvements (changes to view models) are docu-
mented in the section for the appropriate view. Include in this section the
following:

� General insights that provide a better understanding of the system’s ability 
to meet a required quality property

� Non-view-specific artifacts, that is, models and analyses that may be of 
lasting interest

It may be appropriate to provide an overview here and refer readers to an
appendix for more details.

Important Scenarios
For each important scenario, record the initial system state and environment,
the external stimulus, and the required and actual system behavior. Again, it
may be appropriate to provide an overview here and refer readers to an
appendix for more details.
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Issues Awaiting Resolution
We often find it is useful to publish early versions of the AD to share knowl-
edge, assumptions, and decisions made and to obtain early informal feedback. It
will aid understanding in this case to list any issues or questions that have not
yet been resolved—for example, there may not yet be consensus on the purpose
or functionality of a particular component, or the choice of implementation tech-
nology may not have been finalized. Doing this will highlight the fact that more
work is required in these areas and ideally prevent you from being bombarded
with questions you are not yet able to answer.

In some cases you may even need to include this section in the final ver-
sion of the AD. While it is clearly undesirable—and possibly even fatal—to
have unresolved architectural issues when you start work on detailed design
and build, this is sometimes unavoidable. For example, there might be a sub-
system or component that is going to be further defined (and built) in a sub-
sequent project phase.

If you do have unresolved issues, it is essential that you highlight them to
management for action and resolution. You can do this in the Management
Summary section of the AD and also feed them into your development
project’s risk and issue register.

Appendices
It is generally preferable to move detailed content into an appendix, which
may be part of the main AD or even a separate document. This makes the
important parts of the AD easier to digest but ensures that the details are not
forgotten.

Almost anything can go into an appendix; here are some of the topics you
may want to cover:

� References to other documents or sources of information

� A glossary of terms and abbreviations

� A stakeholder map (defining the key stakeholders, their areas of interest, 
key concerns, and so on)

� More detailed specification of scope, functional requirements, or quality 
properties

� A map between requirements and architectural features

� A description of architectural design decisions that you have made, if 
they are not captured elsewhere in the document, along with their ratio-
nale, any alternatives considered, and why they were rejected

� Explanation of any architectural styles, design patterns, and so on that 
you have used
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� More detailed view models

� More detailed perspective models and insights

� More details on the application of scenarios

� Policies, standards, and guidelines

� Output from formal reviews of the AD

� Output from consistency checks between views (see Chapter 23)

� Other supporting documentation

Consider the needs of your readership when writing the appendices. As
with the rest of the AD, don’t overburden them with a mass of detail that may
be of little value. 

PRESENTING THE ARCHITECTURAL DESCRIPTION

A common problem that we all face as software architects is how best to
present the AD to stakeholders. Given the breadth of information that an AD
may contain, and the different styles of presentation that may be needed for
different stakeholder groups, it often isn’t clear how best to do this. As we
said earlier, over the years we have used documents, spreadsheets, drawing
tools, code, wikis, UML modeling tools, presentations, and more to capture
and present our architectural descriptions.

In short, we would suggest that each of these approaches has its place,
and a lot depends on the situation in which you find yourself, the scale of the
architectural description, the stakeholders who are interested in it, and the
skills and resources you have available to you.

� Formal documents are useful when the architecture forms part of a for-
mal agreement, such as a supplier contract; when the AD is to be 
distributed for review; or when stakeholders want a holistic view of the 
architecture in a single place. Formal documents are also the best option 
when the AD is very complicated and there is a lot of information to 
present (although it needs to be presented carefully—possibly as a num-
ber of related documents—in order to avoid overwhelming people with its 
sheer size). Formal documents are harder to put together when informa-
tion changes frequently, or when more than a few people want to 
collaborate in the development and maintenance of the AD.

� Wiki documents excel when you wish to make the information in the AD 
very accessible, you want to change it frequently, or you want other people 
to be able to collaborate in developing and maintaining it. Where wikis are 
less strong are situations requiring complicated formatting, a large number 
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of diagrams, or very large documents, which can become confusing forests 
of pages that are difficult to navigate around clearly.

� Presentations are probably one of the most widely used approaches to 
architectural description and do have the benefit of being accessible and 
ubiquitous. On the other hand, frankly, we’ve rarely seen a good AD 
presented solely in slide form, and the format of a presentation encour-
ages rather sketchy and incomplete definitions of the architecture. Of 
course, presentations do have their place as communication tools, but 
we shudder when we encounter them being used as definitive architec-
tural documentation.

� UML models, as we explain in our viewpoints, are a good way to repre-
sent many kinds of architectural structure, although the base notation 
often needs to be tailored and extended in order to support the key ele-
ments of architectural models. As we said in Chapter 12, UML’s ubiquity 
has made it a de facto as well as a de jure standard for creating software 
models. With the right approach and right tool for the situation (be that a 
whiteboard or a sophisticated modeling tool), we have found it to be a 
useful part of our architectural definition process. Where UML is of less 
value is in situations where a lot of communication is with nontechnical 
stakeholders who find the notation offputting, or simply in situations 
where for some reason precise graphical models are not perceived as 
valuable (wrongly in our view).

� Drawing tools are also very popular for architectural description in prac-
tice, with the widely used Visio tool probably being the most common. 
Many drawing tools are very powerful and allow clear diagrams to be 
created and maintained easily. The problem we observe is usually what 
the tools are used to draw rather than the tools themselves. If they are 
used to draw diagrams using a well-defined notation (perhaps using a 
UML stencil or a homegrown architectural definition notation), they can 
be useful, efficient, lightweight modeling tools (provided that the model 
elements are defined somewhere else). However, if no defined notation
is used, then as we said in Chapter 12, the result is usually a pretty 
confusing diagram.

� Code can be useful for certain aspects of the AD, particularly those aimed 
at software developers. A skeleton system is in effect an executable 
architectural description, and the definition of some aspects of the archi-
tecture, such as interelement interfaces, is often best done directly using 
code rather than some woolly intermediate notation such as pseudo-code 
that leaves everyone guessing what it really means. We have also found 
that documenting key architectural patterns and conventions as executable 
examples is a very effective way of communicating them to software 
development teams.
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� Spreadsheets are very useful when creating quantitative models (such as 
those used to predict performance and scalability characteristics of a sys-
tem) and can also be useful lightweight databases for the tabular data 
that many projects need to manage (for example, lists of inbound and 
outbound system data feed characteristics).

In short, our advice is to consider what you need to represent, who needs
to work on it, and who needs to access it when deciding how to capture and
present your AD. You will usually use some combination of the technologies
we have listed and frequently more besides.

CHECKLIST

� Are all key architectural decisions documented in the AD?

� Are there any key architectural decisions that you feel have yet to be 
made, and if so, what is your strategy for dealing with these?

� Does the AD strike an appropriate balance between conciseness and the 
other desirable properties (correctness, sufficiency, timeliness, clarity, 
currency, and precision), especially given the skills and experience of 
your stakeholders?

� Do the sections of the AD aimed at a nontechnical audience (acquirers, 
users, and so on) avoid the overuse of technical jargon and define it 
wherever it appears?

� Do you know how the AD will be maintained once it has been accepted 
(during the development process and into live operation)?

� Have you reviewed the AD content suggested in this chapter (Table of 
Contents, Introduction and Management Summary, and so on) and 
included all of it that is appropriate?

� Does the presentation of the document conform to your corporate stan-
dards (if any) for such documents?

� Have you provided an accurate glossary of business or technical terms 
that may be unfamiliar to your readers?

� If there are any issues requiring management attention or resolution, 
have you clearly highlighted these in the AD and in the project’s risk and 
issue register?

� Have you considered following the recommendations of ISO Standard 
42010 on your project or in your organization?

� Have you presented your architecture description using formats and tools 
that are appropriate to your audience and to the information you want to 
communicate to them?
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SUMMARY

Although every system has an architecture, not every system has an AD that
effectively communicates the essence of the architecture to all of its stake-
holders. A good AD will lay a solid foundation for the remaining system
development work, while a poor AD may fail to address key concerns or may
be ignored altogether. In this chapter, we described how you can ensure that
your AD meets its goals.

An effective AD has seven desirable properties: correctness, sufficiency,
timeliness, conciseness, clarity, currency, and precision. These properties can
sometimes conflict with one another, so (as always) you have to achieve an
effective balance.

Producing an AD that all stakeholders can understand is one of the greatest
challenges you face. We reminded you to always consider the needs and capabilities
of your readership when writing the AD. Glossaries are useful as aids for under-
standing and as input to more detailed modeling.

We presented a generic template for an AD that is a superset of what you
are likely to produce in practice. Whichever sections you decide to include in
your AD, it’s important to keep the AD up-to-date during its lifetime.

Finally, in this chapter we explained the key features of ISO Standard
42010, Systems and Software Engineering—Recommended Practice for Archi-
tectural Description of Software-Intensive Systems , and outlined its benefits.

FURTHER READING

Documenting Software Architectures [CLEM10], written by a team from the
SEI and now in its second edition, is a practitioner-oriented book that pro-
vides a great deal of well-presented, useful information on writing ADs.

When considering how to document architectural design decisions, and
indeed why this is important, start with [TYRE05], which is an article written
by two practicing software architects that explains this very clearly.
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14
EVALUATING
THE ARCHITECTURE

here is always a great sense of achievement as your architectural ideas
start to gel into a coherent design for your system. Getting to the point

where you have made most of your key architectural decisions means that
you have identified possible solutions to most of the major challenges your
system faces and that you have designed the key architectural structures for
your system. However, at this point you don’t actually know whether or not
you have a workable architecture. Just as you don’t know whether your soft-
ware works correctly just because it compiles cleanly, you don’t know
whether your candidate architecture is sound until it has been tested, too. We
term the process of testing possible architectures for a system architectural
evaluation.

In the architectural evaluation process, you check whether you made the
right architectural decisions during architecture definition and, in particular,
whether you made appropriate tradeoffs between competing needs. The evalua-
tion process should begin as soon as architectural decisions start to be made,
and it doesn’t end until a system that the stakeholders deem to be acceptable is
delivered (which is the final, ultimate validation of the architecture). 

Of course, conventional ADs aren’t executable (in the way that a program
is) and so can’t be directly tested like a piece of software. However, there are a
number of other useful techniques for “testing” an architecture that vary in
cost, complexity, and formality, and each has its place and is appropriate in dif-
ferent situations and during different lifecycle stages. You will nearly always
need to use a number of techniques during the system lifecycle in order to eval-
uate your architecture effectively.

Remember that although your opinion is important, you aren’t the ulti-
mate arbiter of whether or not the architecture is right. You have created the
architecture to meet the needs of your stakeholders, and it is their endorse-
ment you need. Also keep in mind as you read this chapter that architectural

T
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evaluation isn’t a one-shot activity to be done at any one point in the lif ecycle;
it should be approached as a continual process.

WHY EVALUATE THE ARCHITECTURE?
Let’s start by considering in a little more detail why we should evaluate a can-
didate architecture as we create it. First, architectural evaluation is valuable
because of the inevitable limitations of an AD.

� Validating abstractions: An AD (of the sort we talk about in this book) is 
an abstraction of reality. Many details aren’t captured in the AD; if this 
weren’t the case, the AD would lose the characteristics of conciseness 
and minimalism that we try hard to achieve. Evaluation will make sure 
that the abstractions you have made are reasonable and appropriate.

� Checking technical correctness: An AD is also static and can’t be directly 
executed by a computer—it can’t be tested in the same way that a piece 
of software can. As Bertrand Meyer has dryly noted, “Bubbles don’t 
crash,” meaning that it is easy to create models of software that look per-
fectly credible until someone tries to implement and test them. Only then 
may errors and inconsistencies become obvious, when the software fails.

Evaluation is also a useful process from a communication point of view.

� Selling the architecture: An architectural evaluation process can help sell 
your architecture to key stakeholders by showing them how it will meet 
their needs. Involving the stakeholders in the evaluation process can also 
help them understand the main tradeoffs that need to be made to meet 
the requirements and satisfy themselves that the right tradeoffs were 
chosen. For more technical stakeholders (such as system administrators, 
testers, and developers), the evaluation process can act as a valuable 
communication vehicle, allowing them to thoroughly understand the 
architecture and feel some ownership of its development.

� Explaining the architecture: An interactive architectural evaluation pro-
cess can often be the most effective way to engage many of the less tech-
nical system stakeholders, who may not want to read detailed ADs but 
need to have the key features of the architecture explained to them.

Finally, the software development process also benefits from architectural
evaluation in a number of ways.

� Validating assumptions: The architectural design process involves making 
a lot of assumptions about a wide variety of subjects (such as priorities, 
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speeds, space, the system’s external environment, and so on). Each of the 
perspectives that guides design for a particular quality property aims to val-
idate key assumptions as part of its process, but some assumptions may 
slip through the net. Architectural evaluation can guide this process and 
help ensure that key assumptions are tested before it is too late to change 
the resulting decisions.

� Providing management decision points: From a project management per-
spective, architectural evaluation can provide a natural framework for 
the key go/no-go decision points in the system development lifecycle, 
allowing important decisions about the system’s viability to be made 
before too much money is spent. These project management decision 
points form a management decision framework that complements the 
technical design decision framework that results from using viewpoints 
and perspectives to guide architectural design.

� Offering a basis for formal agreement: Architectural evaluation can also 
provide the basis for formal agreement about the form of the system to 
be built. Using an evaluated AD as the basis for, say, a contract to create 
the software may be more effective than trying to use an initial require-
ments document for this purpose, because of the deeper level of under-
standing that architecture definition and evaluation require.

� Ensuring technical integrity: Part of the architectural evaluation process 
involves ensuring compliance between the system that is built and the 
AD. This is an important check of the system’s technical integrity and 
helps make sure that the right system is delivered.

In summary, architectural evaluation can be a valuable addition to the
software development process right through the lifecycle, and in particular it
can provide early insights into the strengths and weaknesses of various
architectural options. Let’s continue by considering the different types of
techniques we can use for architectural evaluation.

EVALUATION TECHNIQUES

A number of approaches exist for evaluating a software architecture. They differ
significantly in the cost, depth, and complexity of the evaluation performed, so
it is important to choose the correct techniques for your particular situation.

Presentations
The simplest form of architectural evaluation is to present an informal explana-
tion of the proposed architecture to stakeholders. However, simply present ing a
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candidate architecture to a group of stakeholders doesn’t actually achieve any
evaluation. For any degree of evaluation to occur, the people to whom you are
presenting must be really engaged and be thinking critically about the options
and decisions that you are describing. This requires you to structure the pre-
sentation carefully so that it engages the audience throughout and forces
them to think deeply about the implications of what you are explaining.

In practice, we have never really seen a presentation act as an effective
architectural evaluation exercise. At best, presentations can act as a useful
communication and selling aid for the architecture and, at the same time, start
the stakeholders thinking about the important issues. Early on in the archi-
tecture definition process they can be useful to help validate some of your
fundamental assumptions. However, given the limited amount of analysis
that a presentation usually allows, you should ensure that as your architecture
takes shape, you use them in conjunction with more sophisticated, rigorous
techniques to achieve an effective evaluation.

ADVANTAGES

� Presentations are fairly quick to create and can be easily tailored to dif-
ferent audiences.

� A presentation is cheap and easy to do, with little or no attendee prepara-
tion required.

� You can gather feedback immediately from audience reaction and questions.

LIMITATIONS

� You get a shallow level of analysis at best during a presentation meeting. 
In fact, our experience is that you usually get little or no real evaluation 
and the best the presentation can be is a communication vehicle.

� The effectiveness of the approach relies heavily on the engagement and 
commitment of the attendees, and this is affected by the quality of the 
presentation materials. It is easy to gain a false sense of security from a 
presentation that simply didn’t engage the audience and make them ana-
lyze what they were hearing.

� The lack of attendee preparation usually results in a lack of time to reflect 
on the architecture and its strengths and weaknesses, which may result 
in the loss of valuable insights.

Formal Reviews and Structured Walkthroughs
Formal reviews can be an effective way to evaluate your AD with stakehold-
ers, thus confirming that your understanding of their concerns is correct and
allowing you to improve the design or the documentation based on their input.
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The formal review involves gathering a group of people to go through a docu-
ment page by page, raise comments about it, discuss the concerns as a group,
and agree on what actions need to be taken, if any. Formal reviews can be used
for specifications or other written documents, as well as source code and other
such material.

You should give each of the attendees a role before the review meeting.

� The moderator runs the meeting, records the actions accepted by the 
group, and arbitrates any disputes or disagreements.

� The presenter, usually the author of the work being reviewed, presents 
and explains it to the group. If possible, the presenter and the moderator 
should be different people.

� The reviewers provide comments on the work being reviewed. Reviewers 
are sometimes given specific areas to consider, especially when the item 
under review is large or complex.

Send the item being reviewed to the reviewers a few days before the
meeting, together with pointers to any background reading and instructions
for the review. The moderator captures brief comments in a review record that
is passed to the author after the review. The author makes the appropriate
changes and returns the document to the moderator, who checks it, decides
whether a second review is necessary, and signs off the review comments as
having been implemented.

Minor comments (such as spelling or typographical errors) can usually be
captured separately (e.g., on a marked-up copy of the document).

Structured walkthroughs are another way for a group of people to assess
in detail a specification, design, or piece of code for correctness and conform-
ance to requirements. As with formal reviews, this technique is an extremely
useful method for validating a design and exposing potential weaknesses or
gaps. A walkthrough usually involves stepping through one or more scenarios,
exploring system behavior, and confirming that this behavior is as expected.
When problems are discovered, possible solutions can be explored by the group
or put to one side for later discussion.

ADVANTAGES

� A formal review or walkthrough involves the participants much more 
deeply than a presentation and is likely to result in much more valuable 
insights.

LIMITATIONS

� A formal review or walkthrough requires a significant amount of prepara-
tion before the meeting. This preparation is essential because the results of 
the exercise are highly dependent on the quality of the preparation.
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� For the meeting to be effective, preparation for a review or walkthrough 
must be undertaken by both the leader or presenter and the participants, 
and it can be difficult to get people to commit the time required to prepare 
thoroughly.

Evaluation by Using Scenarios
Scenario-based architectural evaluation is a structured approach to evaluating
how well an architecture meets stakeholder needs, in terms of the attributes
(or qualities) that the architecture exhibits. The best-known scenario-based
evaluation method is probably the Architecture Tradeoff Analysis Method
(ATAM), developed by the Software Engineering Institute (SEI). We describe
ATAM in more detail later in this chapter.

The key concept underpinning these methods is a set of scenarios (i.e.,
particular situations that the system is likely to face during operation) that
are important to the system’s stakeholders and allow the system’s properties
to be estimated. Scenario-based approaches to evaluation contain five funda-
mental steps.

1. Understand the requirements: Review the requirements of the system, if 
you have them, or gather some key requirements if you don’t, to make 
sure that they are well understood. Evaluation needs to be performed 
against the stakeholder requirements, and because people from outside 
the project usually perform an evaluation, it is important that they 
understand the key requirements thoroughly.

2. Understand the proposed architecture: As well as understanding the 
requirements, the evaluators need to understand the proposed architec-
ture in enough detail to evaluate it thoroughly. They normally gain this 
knowledge by reading the AD and having the architecture presented to 
them by the architect responsible for the project.

3. Identify prioritized scenarios: A scenario-based evaluation method works 
by considering how well an architecture meets the needs of a particular 
scenario. Some scenarios are functional (such as “Web-site customer 
wishes to obtain duplicate receipt for transaction more than 6 months 
ago”), while others focus on a system quality (such as “During weekly 
consolidation processing, 400 online transactions per minute are received”). 
In order to ensure that the evaluation process is valid, the scenarios must 
reflect the interests and priorities of the stakeholders (rather than the 
interests of the evaluators), so the set should normally be developed in 
direct consultation with stakeholder representatives. The scenarios are 
usually prioritized (e.g., as high, medium, or low priority) to help focus 
attention on the more important ones during evaluation.
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4. Analyze the architecture: The core of a scenario-based technique is the 
consideration of each high-priority scenario in turn, analyzing how well 
the architecture meets the needs of that particular situation. Doing this 
usually reveals possible weaknesses in the architecture, where the needs 
of important scenarios can’t be met, and also tends to highlight places 
where there is conflict between different scenarios that could be comfort-
ably met in isolation but cause problems when both need to be handled 
by the same system.

5. Draw conclusions: Having analyzed the architecture against the set of 
scenarios, the evaluators capture the results of the exercise in a report 
and draw some specific conclusions about the suitability of the architec-
ture. If the proposed architecture cannot deal with particular scenarios or 
groups of scenarios, you must draw up a plan of action to address the 
problems.

Scenario-based techniques are not particularly difficult to apply, and pro-
vided that the system is not too large or complex, the overall approach can be
used effectively in an informal way. However, in more complex situations,
you should use a more structured approach to keep control of the process and
to ensure that the results are valid. Methods such as ATAM and SAAM (Soft-
ware Architecture Assessment Method) are very valuable in these situations
because they are based on a lot of existing experience and contain a lot of advice
on managing the process.

ADVANTAGES

� Scenario-based approaches can provide a deep, sophisticated analysis of 
the strengths and weaknesses of a particular architectural approach.

� These methods lead to a more explicit understanding of the tradeoffs made 
in the architecture and can help explain the rationale to stakeholders.

� Scenario-based techniques help architecture teams understand the deci-
sions they have made, why they made them, and their implications.

LIMITATIONS

� These approaches are considerably more complex and expensive to apply 
than simple reviews or walkthroughs.

� Because the approaches are reasonably sophisticated, training or signifi-
cant preparation is required for those leading them.

� Approaches like ATAM assume that all stakeholders will be prepared to 
participate reasonably deeply in order to (at least) identify, understand, 
validate, and prioritize the scenarios to be used for the evaluation exer-
cise. If this isn’t the case, the process may be of relatively little benefit.
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Prototypes and Proof-of-Concept Systems
Prototypes and proofs-of-concept are most often used to mitigate technical risk
(when a new or unfamiliar technology is under consideration) or to help design
the user interface. For our purposes, we define a prototype as a temporary
implementation of some functional subset of the system, often presented to us-
ers for feedback and validation, which is then discarded when the validation ex-
ercise is complete. We define a proof-of-concept as some code designed to prove
that a risky element of the proposed architecture is feasible and to highlight any
problems and pitfalls. A proof-of-concept is also a temporary implementation,
which is discarded when it has served its purpose and the risk under investiga-
tion is understood. (Some people also talk about “evolutionary prototypes,” but
we have found that there is a great danger of confusion about the future plans
for a prototype if this term is used. We refer to such evolving partial implemen-
tations as “skeleton systems”; see the following section.)

One problem with prototyping is that the risks that need to be mitigated can
be quite complex. For example, a prototype may be suggested to demonstrate
that an architecture can handle a large volume of transactions. In order to do
this, you may have to set up a large amount of dummy data and a sophisticated
simulation environment that can apply large numbers of transactions to the pro-
totype and monitor performance. In addition, the prototype needs to be fairly
sophisticated in its ability to scale in order for its results to be meaningful.

Prototyping is therefore the most expensive and time-consuming way to
assess an architecture and needs careful justification. However, proving that
something works by actually building it is a powerful risk-reduction mechanism.

The downstream risk with building a prototype is that the stakeholders
view it as a finished system. A prototype typically has limited functionality,
particularly related to error and exception handling as well as resilience, and
you should normally discard it after it has served its purpose. You must clearly
manage your stakeholders’ expectations in this area.

ADVANTAGES

� Prototypes and proofs-of-concept can provide concrete evaluation of 
technical decisions at the point in the lifecycle when they can still be 
changed easily.

� Building a prototype or proof-of-concept provides an opportunity to learn 
about and understand the system’s implementation technology, in a safe 
environment, before you need to use it to implement the system.

� Prototypes and proofs-of-concept can provide useful demonstrations to 
stakeholders to increase their confidence in the people, technology, and 
processes in use.
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LIMITATIONS

� Prototypes and proofs-of-concept can be quite expensive and time-con-
suming to create, so you should use them only if a decision is important 
enough to justify the cost.

� Prototypes and proofs-of-concept all too often end up being hijacked and 
evolved to be the production system. However, they are usually (and 
quite correctly) built in a very “quick and dirty” manner and are a very 
poor basis for a real system. If you build a prototype, discard it once it 
has served its purpose. If you want something to evolve into a production 
system, use a skeleton system.

Skeleton System
The ultimate form of architectural evaluation is to build the system. The
architectural form of this is to create a first version of the system, known as
a skeleton, that implements the system’s main architectural structures but
contains only a minimal subset of the system’s functionality. The minimal
subset of functionality chosen should allow a small amount of end-to-end
processing to occur, so it can prove that the system’s overall structure is
sound.

Unlike a prototype or proof-of-concept, a skeleton system is retained rather
than discarded and becomes the basis for the construction phase, which fleshes
out the skeleton with the implementation of all the required functions.

ADVANTAGES

� Skeleton systems are often the most thorough and convincing type of 
architectural evaluation possible.

� The delivery of a successful skeleton system is a major morale boost for 
the system development team.

� The skeleton system created is a tangible deliverable that can be used 
beyond the evaluation activity.

LIMITATIONS

� Skeleton systems are probably the most expensive form of architectural 
evaluation.

� The skeleton system needs to be created with the same software engineer-
ing discipline as your production system—after all, it is the first version of 
it. This is a much more time-consuming and involved exercise than pro-
ducing a quick prototype, requiring different skills.
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SCENARIO-BASED EVALUATION METHODS

SAAM and ATAM are well-known examples of scenario-based architectural evalu-
ation methods. Both of these methods were created at the SEI; SAAM is the origi-
nal, simpler method, while ATAM is a more sophisticated approach developed
later.

The key concept underpinning both of these methods is a set of system
usage scenarios that are of importance to the system’s stakeholders and allow
assessment of the system’s properties. SAAM uses functional scenarios to eval-
uate how well a system will provide its key functionality and how easily it could
be modified to meet likely changes. ATAM broadens this focus by using a set of
quality property scenarios to test the ability of the system to exhibit its impor-
tant quality properties (performance, security, availability, and so on).

We don’t have space here to describe these methods in detail (although
references mentioned in the Further Reading section at the end of this chapter
do provide more information). Here we will briefly describe ATAM to give you
an overview of the approach.

The UML activity diagram in Figure 14–1 illustrates the main steps in an
ATAM architecture evaluation process. ATAM recognizes that there are two
important but distinct aspects to architectural evaluation:

1. Architecture-centric evaluation, performed by the key project decision mak-
ers (those who created and own the architecture as well as key customer 
representatives—acquirers and user stakeholders, in our terminology)

2. Stakeholder-centric evaluation, performed by representatives from the 
wider stakeholder community (all those affected by the architecture)

The first half of the ATAM process (shown on the left in Figure 14–1) fo-
cuses on understanding the architecture and the decisions made to define it,
while the second half (shown on the right) tests the results of the first part by di-
rectly involving representatives of the entire stakeholder community.

Architecture-Centric Activities
The steps in the architecture-centric half of the process are as follows.

� Present the business drivers: The members of the architecture review 
team (probably made up of architects, lead designers, key customer rep-
resentatives, and possibly external consultants) examine the business 
drivers that underlie the system’s existence and make sure they under-
stand them. This step normally consists of a business expert (perhaps 
the project sponsor or a business analyst) presenting the context for the 
system and the key business drivers to the group. Ideally this will be a 
process of confirming your knowledge of the business drivers, but it may 
result in new insights gained from the presenter.
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� Present the architecture: The owner of the architecture (probably you) 
should now present the architecture to the rest of the group. The form 
of the presentation varies between assessments; the key is to communi-
cate the entire architecture to the group evaluating it, in a way that they 
can understand it, in sufficient detail for them to analyze it. Due to 
specialization of roles, this is often the first time that many of those 
involved in developing the architecture will actually see and try to 
understand all of it. The focus of this step should be communicating 
and understanding, rather than analyzing and evaluating, which will 
come later.

� Identify the architectural approaches used : When developing any soft-
ware architecture, you make a number of architectural decisions to 
ensure that the architecture meets certain critical goals. For example, 
perhaps you chose a client/server structure to allow hardware to be 

FIGURE 14–1 THE ATAM PROCESS
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upgraded easily, a pipe-and-filter structure so that processing steps 
could easily be replaced and reused, or a cluster of machines in the 
deployment environment to provide resilience. ATAM terms such deci-
sions architectural approaches, and this step in the process focuses on 
identifying the approaches used in architecture definition. Again, the 
point of this step is not to analyze whether or not the right approaches 
are being used, but simply to identify those in use and the reasons 
for each.

� Generate a quality attribute tree for the architecture : Having understood the 
drivers and the architecture, you’re ready to establish the critical quality 
properties the system will have to exhibit and to identify scenarios to char-
acterize each one. The output of the process is a tree of attributes, similar to 
the one shown in Figure 14–2.

To create the quality attribute tree, start by listing the quality prop-
erties you think are important for your system. These are normally 
derived from the business drivers identified in the first step, but you 
may need to take into account other requirements as well. Then, for 
each high-level attribute you’ve listed, break it down to specific impor-
tant areas. In Figure 14–2, the important aspect of security for this sys-
tem is controlling access to its operations. For each detailed quality 
attribute, define at least one specific scenario that illustrates the attribute 
being met. Assess the scenario for its importance to the system and its 
difficulty of implementation, given the architecture presented in the pre-
vious steps. In the example shown in Figure 14–2, the difficulty (D) and 
importance (I) of each scenario are represented as high (H), medium 
(M), or low (L).

FIGURE 14–2 QUALITY ATTRIBUTE TREE
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The result of this process is a quality attribute tree that provides a 
set of scenarios with which to evaluate the architecture. The importance 
rating of each scenario helps focus attention on the most important as-
pects of the system, while the difficulty rating helps draw attention to 
areas where the architecture may need modification and improvement. 
Obviously, the high-importance, high-difficulty scenarios need the most 
attention during the rest of the evaluation process, while the low-impor-
tance, low-difficulty scenarios need the least.

� Analyze the architectural approaches used: In this step, the review team an-
alyzes the architecture in more detail, in light of the quality goals, in order to 
establish how well it supports its required quality properties. The analysis 
can take a number of forms, and the authors of the ATAM process provide a 
fairly detailed process description for this step. Whatever approach you use, 
it needs to work systematically through the quality property scenarios and 
help you understand how the architecture supports the scenario and which
architectural decisions are important to achieving it. While you do this, take 
special care to identify critical architectural decisions of the following types:

• Decisions that are critical to meeting a particular quality property 
(termed sensitivity points in ATAM), such as a decision to use clus-
tered servers to meet high-availability targets

• Decisions that require a tradeoff between the needs of two competing 
quality properties (termed tradeoff points in ATAM), such as a deci-
sion to denormalize a database to achieve acceptable performance at 
the cost of more complex evolution

This process should result in a thorough understanding (with reason-
ing) as to how the architecture supports (or does not support) each quality
attribute scenario. This allows the creation of a list of the sensitivity and
tradeoff points in the current architecture and for the risks where the
architecture does not support particular quality attribute scenarios (and the
nonrisks where it does) to be understood and recorded.

Stakeholder-Centric Activities
This first half of the evaluation process has, in fact, performed an architectural eval-
uation, and the architects should now understand their architecture better and feel
confident that it suits its intended purpose. However, in order to test the results of
this evaluation, it is important to ensure that the criteria match the priorities of the
stakeholders. The second half of the ATAM process does this by using stakeholder
scenarios to test the architecture. The steps in this half of the process are as follows.

� Brainstorm and prioritize scenarios: Having gathered representatives of 
the interested stakeholder groups, explained ATAM, and summarized the 
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steps performed so far, you can now work with the stakeholders to create 
a list of scenarios that they believe are important, both immediately and 
in the longer term. Have the stakeholders prioritize the scenarios to focus 
attention on the more important ones (a vote is often the most effective 
way to do this). Once the scenarios have been identified and prioritized, 
you can merge them into the quality attribute tree.

� Analyze the architectural approaches used : This step is analogous to the 
same step on the architecture-centric side but considers how the archi-
tectural approaches support (or don’t support) the new scenarios the 
stakeholders have identified. Ideally, these new scenarios will be similar 
to the set identified by the architecture team, and this step will simply be 
a confirmation of the previous analysis. In reality, this step quite often 
sets “a cat among the pigeons” as the architecture team realizes that the 
architecture won’t be able to meet some scenarios that are important to 
stakeholders. As in the corresponding architecture-centric step, you 
should identify sensitivity and tradeoff points.

� Present the results to the stakeholders : Finally, you present the results 
of the evaluation back to the stakeholders so that they understand how 
the architecture is going to support their scenarios. Your presentation 
should also highlight sensitivity and tradeoff points to help stakehold-
ers understand how important, say, the new clustered server environ-
ment is in meeting their scenarios and, similarly, why meeting, say, a 
security requirement means that a usability requirement will have to be 
compromised. This step is an important communication and selling ac-
tivity, helping the stakeholders feel ownership of their architecture and 
ideally gaining their confidence in and support for the architecture 
team’s work.

Although this is no more than a thumbnail sketch of the ATAM process,
we hope it is enough to give you a flavor of what it is and how it works.

EVALUATION DURING THE SOFTWARE LIFECYCLE

Evaluation shouldn’t be thought of as a single activity, performed at a particular
point in the development lifecycle, but should be treated as an ongoing task that
continually assesses the system’s architecture as it is being developed. Having
said this, not all evaluation activities work equally well at each lifecycle stage, so
you need to choose carefully the approaches used. Figure 14–3 illustrates where
the different evaluation approaches typically fit into the software lifecycle.

When you are defining scope and exploring options for the architecture,
the emphasis is on the following evaluation techniques, which help you make
sound architectural decisions.
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� Presentations: The proposed architecture should be widely presented as early 
as possible. Presenting the architecture to different stakeholders is cheap and 
easy to do and helps you validate the fundamental assumptions you’re mak-
ing about the role and nature of the system. However, as we’ve already said, 
don’t expect much real evaluation from this stage in the process, as presenta-
tions are more successful at sharing ideas than analyzing them.

� Reviews and walkthroughs: As the architecture starts to emerge, orga-
nize more formal reviews of parts of it with stakeholders particularly 
affected by the decisions being made. For example, as soon as the sys-
tem’s deployment platform is designed, have a formal review of it with 
the groups in the organization that are responsible for providing the IT 
infrastructure on which you plan to rely. As soon as the system structure 
starts to emerge, review it with the testers to make sure that they under-
stand the scale and scope of testing required and that the proposed archi-
tecture actually is testable. The key point here is to start holding reviews 
as soon as there is anything to review, rather than waiting until the com-
plete “perfect” AD has been completed. It’s best to get the bad news as 
early as possible, and formal reviews can provide some confidence that 
the major decisions you’re making are valid.

� Prototypes: Build prototypes of parts of the system in order to support 
technical decision making and to better understand the technologies 
included in the architecture.

During the detailed architecture definition process, the focus of evaluation
moves to understanding the strengths and weaknesses of the proposed architecture

FIGURE 14–3 EVALUATION APPROACHES AT DIFFERENT POINTS OF THE LIFECYCLE
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and ensuring that it is suitable for the system being built. The techniques used in
this phase include the following.

� Reviews and walkthroughs: From the point when you start to have some 
of the AD available, you can perform formal reviews and walkthroughs 
to gain general consensus that the architecture is feasible, suitable for 
the proposed system, and free of major problems (as far as people can 
tell). The completion of these reviews is a suitable point to get formal 
agreement (possibly in the form of a sign-off) that the architecture is 
acceptable to the system’s important stakeholders.

� Prototypes: Build prototypes in order to resolve technical concerns that 
emerge during the architecture definition process and to evaluate partic-
ular architectural decisions.

� Scenario-based evaluation: In order to provide a deeper understanding of 
the system’s attributes (such as performance, security, maintainability, 
and functionality), you can apply a scenario-based evaluation technique 
once your architecture is taking shape. Such an evaluation allows a more 
sophisticated level of analysis than a simple review or walkthrough, while 
still being achievable within a short time frame and at a reasonable cost.

� Skeleton system: When your key architectural decisions have been made, 
the architecture team, working with the lead designers, can create a skel-
eton implementation of the system to demonstrate how it will work and 
also to provide a development environment in which the full develop-
ment of the system can take place. A skeleton system implementation 
can be a powerful proof point for many stakeholders, proving that the 
architecture really can provide the facilities needed, as well as demon-
strating some directly useful deliverables as early as possible.

Another good point for evaluation comes later in the development lifecycle,
when most of the important parts of the system are being or have been devel-
oped, with the focus now on the consistency of the AD and the architecture as
realized in the system. The techniques of most use during system construction
are as follows.

� Reviews and walkthroughs: Work closely with the development team to 
review the implementation as it is taking shape, acting as consultant and 
mentor and advising how best the architecture should be interpreted. Ide-
ally, you will be able to work as part of the development team, but you 
might work externally to it. In either case, it is important to perform contin-
ual reviews so that the implementation actually reflects the architecture. 
Then when problems are found, you can modify the architecture to address 
them, rather than just letting the implementation drift away from the archi-
tecture described in the AD.
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� Skeleton system: As development progresses, the skeleton system will be 
fleshed out with the implementation of the system and so over time become 
a full implementation. Ensure that every development iteration adds work-
ing, useful functionality to the system.

VALIDATING THE ARCHITECTURE OF AN
EXISTING SYSTEM

Another situation in which we have often found ourselves is when a system
exists already and you are asked for your opinion of the “quality” of its design
(with the definition of quality usually being left open). In principle in such situa-
tions, you can use the techniques we have outlined to assess the architectural
qualities that the system exhibits, maybe with some practical testing to evaluate
that your assessment reflects the reality of the system in production. However,
our experience is that if you try to apply something like ATAM in these situa-
tions, you will not get very far, because the commitment of time and resources
needed is too high and people do not understand what the investment will buy
them. What is needed in these situations is a simple, lightweight approach that
you can perform yourself, without a large team, in days rather than weeks. We
call our approach the Tiny Architectural Review Approach, or TARA.

The essence of TARA is a lightweight, flexible approach that does not
make any assumptions about existing design documentation, needs relatively
few resources in order to use it, can be performed largely by the architect her-
self, and produces a set of deliverables that are easily comprehensible. The
tradeoff is that a TARA review is nowhere near as thorough as one performed
with an approach like ATAM, and it is much more vulnerable to the biases
and strengths and weaknesses of the person performing it.

We have probably never used TARA in quite the same way twice, so in
this section we outline our general approach in the hope that you will find it
useful. The general steps that we include in a TARA-style architectural review
of a system are as follows.

� Goals and target audience: The first step is always to understand the con-
text of the review being requested. Who is requesting it? Why are they 
requesting it? Who is the output for? What will be done with the output? 
Answering these questions helps to scope and focus the whole exercise and 
is key to making sure that the effort you put into the review is well spent 
and you know what a successful outcome from the requestors’ point of 
view is likely to look like. It is often at this stage that you may realize that 
there are a number of vested interests at play; people do not always request 
system reviews for entirely positive reasons, and it is useful to understand 
up front what the underlying motivation for the request is!
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� Context diagram and requirements summary : It is possible that the sys-
tem you have been asked to review has good documentation associated 
with it, in the form of documents, models, requirements scenarios, 
checklists, and so on. If so, that’s great. However, in our experience we 
are rarely asked to review those systems; we usually get asked to review 
the ones that got off to a bad start because their scope was not clearly 
defined and their requirements were not understood. So for you to per-
form a meaningful review, you will need to do enough investigation to 
understand the system’s scope, context, and key requirements. You can 
then present a summary of these in the review report, and they will form 
a useful record of the assumptions that you made. The idea here is not to 
go into a lot of detail, but rather to be able to understand the main exter-
nal systems and other actors with which the system interacts, the types 
of interactions that take place, and the key functional and nonfunctional 
requirements that the system is meant to provide. This sets the scene for 
the remainder of the review and provides you with something against 
which to review the system.

� Functional and Deployment view sketches: Again, if there is good archi-
tectural design documentation, you can use it as the basis of your 
assessment. However, you may well need to do enough design recovery 
to be able to draw up the main structures of the system for yourself in 
order to review and understand them. We have found that a Functional 
view (the main components, interfaces, connectors, and interactions) 
and a Deployment view (showing the overall deployment structure used 
to run the system) usually suffice if there is not enough time to do more. 
For some sorts of systems (e.g., data warehouses or ETL systems) you 
might alternatively choose to create an Information view and a Deploy-
ment view if the functional structure is very simple. Again, if you are cre-
ating these views for yourself, the aim is to produce accurate but abstract 
descriptions that provide useful sketches of the architecture, rather than 
trying to capture every detail. The goal is to have something to review, 
analyze, and assess, rather than to define the level of detail needed to 
build the system.

� System implementation quality: The great advantage of an existing sys-
tem is that the code is available to you, so as well as reviewing the Devel-
opment view, you can analyze the code to find out whether it is well 
structured, clearly supports the main architectural structures, has been 
developed with a good level of basic craftsmanship, and other qualities. 
At this stage we review the structure of the codeline in the source control 
system; use static analysis tools to derive the structure, dependencies, 
key metrics, and so on; and then perform detailed reviews of a few code 
modules from different parts of the system. If the system is well structured, 
you will be able to generate module and layer diagrams fairly automatically
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and include these in your report. This is also the stage where we look at 
the software engineering approaches used, looking for version control, 
automated build, continuous integration, good automated tests, use of 
static analysis tools, sensible use of third-party technologies, and so on.

� Requirements fit: You now have to get to the most important assessment 
criterion, which is whether this system is fit for the purpose for which it 
has been designed. This involves understanding whether the functions 
provided by the system provide good functional coverage and assessing 
whether the key qualities of the system are acceptable for its intended 
use. Given that these lightweight review exercises are usually carried out 
under time pressure, with few resources, it is often difficult to perform a 
thorough evaluation of the system against its requirements. It is nor-
mally necessary to involve the expert judgment of others, focus on the 
most important areas, and perform the evaluation at a relatively high 
level, rather than investigating every detail. Some of the techniques we 
have found useful for this include:

• Sitting with expert users of the system to watch them work, asking their 
opinions of the system and what they would improve or change, as well 
as seeing whether they ever have to work “outside” the system (on 
paper, in spreadsheets, copying information to other systems, and so on)

• Talking to the IT administration and operations groups to obtain impres-
sions, or better data, on the system’s reliability, performance, and reputa-
tion in its production environment

• Comparing the functions that the system provides to other systems or 
packaged solutions that you have seen in the same or similar domains

• Talking to the system’s development and support team frankly about 
the system’s strengths and weaknesses 

� Recommendations: Once you have reviewed the system and its imple-
mentation, you will have gathered and analyzed quite a lot of informa-
tion. We have found it very valuable to deliver a report at the end of an 
architecture review that contains all of the information gathered. This 
forms a useful deliverable in its own right, particularly if the system is 
short of good documentation. The rest of the review report will then be 
the findings of your analysis and recommendations for improvement, if 
you have some and they were requested as part of the exercise.

We should stress that these steps and deliverables are just a representative
example of how we approach a TARA review. We do alter the approach if the sit-
uation requires it, and in particular we find that the presentation of the results
often requires significant tailoring to the needs, sensitivities, and desires of the
target audience. You should always bear in mind that when you are assessing
someone else’s system, you are in constant danger of “calling their baby ugly.”
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In order to be effective, the results of the exercise usually have to be presented
carefully and tactfully, even if in essence they are quite critical. We have found
clarity, conciseness, and tact to be three key attributes of good recommendations!

RECORDING THE RESULTS OF EVALUATION

It’s important to clearly and formally record the evaluation results to avoid
misunderstandings about the problems found and the resulting decisions or
changes. Failing to do this can lead to useful architectural improvements
being ignored or getting lost, and in turn, this can often lead to a significant
reduction of the stakeholders’ confidence in the architecture and the architect.

There are many ways to record evaluation results, each with advantages
and limitations. We find the following approaches useful.

� Meeting minutes: Recording the progress of meetings is a standard 
business technique that, if done accurately, can provide a definitive 
record of discussions and their results. The problem with meeting min-
utes is that they are hard to take properly, and often the important 
points are swamped by details that are not that significant. The diffi-
culty in taking good minutes can also lead to different groups of people 
writing a number of subtly different sets of minutes, which people use 
later as ammunition to win arguments. Given these problems, it’s not 
very surprising that many people view meeting minutes with a certain 
amount of suspicion.

� Decision logs: A more focused approach to recording evaluation results is 
to use a decision log, which records decisions as they are made, along 
with their rationale and an identification of who made and agreed on 
them. A decision log can be kept in a spreadsheet, a word processor 
document, a collaborative Web site, or even a purpose-built software 
tool. Their great advantage is simplicity, although they do need to be 
carefully maintained and can suffer from a lack of context, which is often 
important later when you’re trying to remember why a particular decision 
was made.

� Review records: Using a well-defined approach to reviews or walk-
throughs should result in problems and possible resolutions being docu-
mented in a reasonably standard form.

� Evaluation reports: Evaluation reports document the outcomes of archi-
tectural evaluation exercises in a standard, structured way to make them 
useful to the architect and stakeholders. This ensures that you won’t lose 
the benefits of the exercises and lessons learned.
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� Document sign-off: The normal way to record agreement with a particular 
decision or architecture is to gain a formal sign-off of a document, 
recording the agreement with its content. This can often be necessary if 
there is some form of contractual agreement required or if the agreement 
of certain key stakeholders is needed to progress past a particular project 
checkpoint. For you as the architect, it can also be quite reassuring to 
have a signature to approve a particular course of action. However, bear 
in mind the limitations of relying on document sign-off to prove stake-
holder satisfaction—it really doesn’t prove that the signer understood the 
content and is unlikely to guarantee that building the system will result 
in happy stakeholders.

CHOOSING AN EVALUATION APPROACH

In this chapter we have introduced a number of approaches for evaluating the
suitability of a software architecture, from very informal approaches like pre-
sentations to very involved techniques like building skeleton systems. Given
this range of possible approaches, the question is often how to choose among
them. In Table 14–1 we summarize our advice on choosing among these tech-
niques in different situations. 

TABLE 14–1 CHOOSING AN EVALUATION APPROACH

Project Environments Suggested Evaluation Approaches

Small-scale, low-risk 
system

• Structured walkthrough with key stakeholders
• Skeleton system that evolves into production

Large-scale, low-risk 
system

• Presentations to key stakeholders to gain buy-in
• Scenario-based evaluation to ensure soundness of architecture
• Skeleton system that evolves into production

Small-scale, high-risk 
system

• Scenario-based evaluation to ensure that key scenarios can be 
achieved

• Proofs-of-concept to address specific technical risks (or prototypes 
to address functional or scope risks)

• Skeleton system that evolves into production

Large-scale, high-risk 
system

• Presentation to key stakeholders to explain scope, risks, and 
benefits and obtain buy-in

• Scenario-based evaluation to ensure suitability of architecture for 
the scale and challenges of the system

• Proofs-of-concept to address specific technical risks and proto-
types to address functional scope and risk

• Skeleton system that evolves into production

Continued on next page
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CHECKLIST

� Have you planned how your software architecture will be evaluated 
throughout its development?

� Have you identified suitable evaluation techniques for use at each stage 
of the lifecycle? Do you know when you will use each?

� Have you allocated time and resources for evaluation and rework?

� Are the system’s stakeholders ready and willing to engage in the evalua-
tion process? If not, have you started to try to persuade them to participate?

� Are the architects suitably trained to perform architectural evaluation 
(e.g., presentation skills; soft skills for stakeholder interaction; specific 
technique skills such as inspections, ATAM, or SAAM)?

� Have you considered using experts from outside the immediate project 
team (perhaps other architects elsewhere in your organization) to pro-
vide independent evaluation?

� Have you defined a mechanism whereby decisions arising from reviews 
can be tracked and monitored to ensure that the appropriate changes are 
made to the architecture?

SUMMARY

Software architecture can’t be executed like a piece of software, so we need to
find other ways to test it. Architectural evaluation is the process of testing a
software architecture for its fitness for purpose and for the presence of possi-
ble defects. This evaluation uses different techniques to test different aspects
of the architecture at different stages during the lifecycle.

Project Environments Suggested Evaluation Approaches

Package implementation • Presentation to key stakeholders to explain approach and gain buy-in
• Scenario-based evaluation to ensure the suitability of the proposed 

product and deployment
• Proof-of-concept deployments to test assumptions about the 

product and planned deployment

Assessment of small 
existing system

• TARA-style lightweight architectural assessment

Assessment of large 
existing system

• Scenario-based evaluation to assess the suitability of the system’s 
existing architecture for the key scenarios it must face now and in 
the future

TABLE 14–1 CHOOSING AN EVALUATION APPROACH (CONTINUED)
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Some of the more important techniques for architectural evaluation include
presenting the architecture to stakeholders, performing reviews and walk-
throughs, using more formal scenario-based architectural evaluation techniques,
building throwaway prototypes and proofs-of-concept, and creating early skeleton
versions of the real system. Each of these techniques applies to different stages of
the lifecycle, and they all come with different advantages and limitations.

You should treat the activity as a continual process of evaluation and
improvement, running alongside architectural design, rather than as a one-shot
review that the architecture must pass.

FURTHER READING

Not many books or articles about architectural evaluation are aimed at practi-
tioners. A couple of notable exceptions are Clements et al. [CLEM02], which is
a thorough and practical guide to applying the SEI’s scenario-based techniques,
particularly ATAM; and Gilb and Graham [GILB93], which is a comprehensive
guide to running formal reviews (“inspections”). The practitioner-oriented
TARA approach that we describe in this chapter is described more thoroughly
in a paper from the WICSA 2011 conference [WOOD11].

Another useful practitioner-oriented resource is the “Software Architecture
Review and Assessment Report,” published by the SARA Industry Working
Group [SARA02]. This is a short technical report written by a number of practi-
tioners and experienced researchers that provides a very practical and accessible
introduction to architectural review processes and a lot of information on how to
go about performing architectural reviews. Another useful technical report,
which is available from SEI, discusses how to perform structured reviews of
architecture documentation [NORD09].

Two useful academic articles on architectural evaluation are Dobrica and
Niemela [DOBR02] and Babar and Gorton [BABA04], both of which review a
number of approaches to architectural evaluation and analysis (including
SAAM and ATAM), explaining the similarities and differences between them.
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15
INTRODUCTION TO THE
VIEWPOINT CATALOG

art III is a catalog of our seven core viewpoints: Context, Functional, Infor-
mation, Concurrency, Development, Deployment, and Operational. There

are many options for structuring an architectural description, but we believe
that this set of viewpoints does a good job of partitioning the AD into a man-
ageable number of sections, while ensuring widespread coverage of concerns.

Figure 15–1 shows the relationships between views created using these
viewpoints.

P

FIGURE 15–1 VIEW RELATIONSHIPS
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For convenience, in Table 15–1 we reiterate the viewpoint taxonomy we
presented originally in Part I.

For each viewpoint, we present the following details:

� The most important concerns addressed by the viewpoint, with an identi-
fication of the stakeholders who are most likely to be interested in its 
views

� The most important models you might build to present the views, together 
with the notations used and the activities for building them

� Some problems and pitfalls to be aware of and risk-reduction techniques 
for mitigating these

� A checklist of things to consider when developing the viewpoint and when 
reviewing it to help ensure correctness, completeness, and accuracy

Because of space limitations, we can present only an overview of some
complex and detailed topics. Most of the chapters in Part III could easily expand
into entire books in their own right. Our objective is to get you started, and to
that end, each viewpoint chapter includes a number of references to sources of
further information.

TABLE 15–1 VIEWPOINT CATALOG

Viewpoint Definition

Context Describes the relationships, dependencies, and interactions between the 
system and its environment (the people, systems, and external entities 
with which it interacts). The Context view will be of interest to many of 
the system’s stakeholders and plays an important role in helping them to 
understand its responsibilities and how it relates to their organization.

Functional Describes the system’s runtime functional elements, their responsibilities, 
interfaces, and primary interactions. A Functional view is the cornerstone 
of most ADs and is often the first part of the description that stakeholders 
try to read. It drives the shape of other system structures such as the infor-
mation structure, concurrency structure, deployment structure, and so on. It 
also has a significant impact on the system’s quality properties such as its 
ability to change, its ability to be secured, and its runtime performance.

Information Describes the way that the architecture stores, manipulates, manages, 
and distributes information. The ultimate purpose of virtually any 
computer system is to manipulate information in some form, and this 
viewpoint develops a complete but high-level view of static data structure 
and information flow. The objective of this analysis is to answer the big 
questions around content, structure, ownership, latency, references, and 
data migration.
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Viewpoint Definition

Concurrency Describes the concurrency structure of the system and maps functional ele-
ments to concurrency units to clearly identify the parts of the system that 
can execute concurrently and how this is coordinated and controlled. This 
entails the creation of models that show the process and thread structures 
that the system will use and the interprocess communication mechanisms 
used to coordinate their operation.

Development Describes the architecture that supports the software development process. 
Development views communicate the aspects of the architecture of interest 
to those stakeholders involved in building, testing, maintaining, and en-
hancing the system.

Deployment Describes the environment into which the system will be deployed and the 
dependencies that the system has on elements of it. This view captures the 
hardware environment that your system needs (primarily the processing 
nodes, network interconnections, and disk storage facilities required), the 
technical environment requirements for each element, and the mapping of 
the software elements to the runtime environment that will execute them.

Operational Describes how the system will be operated, administered, and supported 
when it is running in its production environment. For all but the simplest 
systems, installing, managing, and operating the system is a significant 
task that must be considered and planned at design time. The aim of the 
Operational viewpoint is to identify system-wide strategies for addressing 
the operational concerns of the system’s stakeholders and to identify solu-
tions that address these.

TABLE 15–1 VIEWPOINT CATALOG (CONTINUED)
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16
THE CONTEXT VIEWPOINT

Many architecture descriptions we’ve seen focus on views that model the sys-
tem’s internal structures, data elements, interactions, and operation. Archi-
tects tend to assume that the “outward-facing” information—the system’s
runtime context, its scope and requirements, and so forth—is clearly and un-
ambiguously defined elsewhere. In fact, in the first edition of this book, we
didn’t have a viewpoint for the system’s context for this very reason. How-
ever, we have decided that we were wrong! In practice, it often isn’t realistic
to delegate all of these concerns elsewhere, and you frequently need to in-
clude a definition of the system’s context as part of your architectural descrip-
tion. This can be for a number of reasons, including the following.

Definition Describes the relationships, dependencies, and interactions between the 
system and its environment (the people, systems, and external entities 
with which it interacts)

Concerns System scope and responsibilities, identity of external entities and services 
and data used, nature and characteristics of external entities, identity and 
responsibilities of external interfaces, nature and characteristics of external 
interfaces, other external interdependencies, impact of the system on its 
environment, and overall completeness, consistency, and coherence

Models Context model, interaction scenarios

Problems and 
Pitfalls

Missing or incorrect external entities, missing implicit dependencies, 
loose or inaccurate interface descriptions, inappropriate level of detail, 
scope creep, implicit or assumed context or scope, overcomplicated 
interactions, overuse of jargon

Stakeholders All stakeholders, but especially acquirers, users, and developers

Applicability All systems
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� The system context is often implicit rather than being explicitly defined 
as part of project initiation or requirements capture.

� The system context may be loosely defined during requirements analysis, 
but at a level of detail that means that you need to add signi ficantly to it. 

� You need to refer to elements of the system context elsewhere in your 
architectural description, which makes it desirable for this information 
to be part of the architectural description and so under your control. 

In practice, most of the architectural descriptions we have created have
included a “context diagram,” which is essentially a view but without an associated
viewpoint definition to guide its structure and content. We therefore decided that
we should formalize the definition of context as we have for the other views.

The Context view of a system defines the relationships, dependencies,
and interactions between the system and its environment—the people, sys-
tems, and external entities with which it interacts. It defines what the system
does and does not do; where the boundaries are between it and the outside
world; and how the system interacts with other systems, organizations, and
people across these boundaries.

The Context view focuses on the outside world and usually represents the
system itself as a “black box,” hiding all details of its functional elements,
data, implementation, and so forth, since these are documented in one of the
other views.

CONCERNS

System Scope and Responsibilities
This concern considers the main responsibilities of the system, that is,
what, in broad terms, it is required to do. For clarity, it may also identify
some specific exclusions, although by definition, anything not listed here
is excluded.

Note that this concern does not extend to a complete definition of the
system’s requirements, which is the responsibility of requirements analysis.
Scope definition should be brief, succinct, and easily understood by all stakehold-
ers without going into a lot of detail. It is usually defined in the form of a high-
level list of the system’s key capabilities or requirements, and it may also be use-
ful to highlight some functional exclusions explicitly for the avoidance of doubt.

Clear definition and agreement of scope are vital early milestones of any
system development project. Ideally the scope has already been defined for
you, in which case you may limit yourself to summarizing it in the Context
view and ratifying it with stakeholders as the AD develops. If the scope is not
defined, you may need to do this yourself, again based on input from your
stakeholders.
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Identity of External Entities and Services and Data Used

An external entity is any system, organization, or person with which this
system interacts in some way, for example:

� Another system that runs in the same organization as the system being 
modeled (we refer to these as “internal systems”)

� Another system that runs in another organization (we refer to these as 
“external systems”)

� A gateway or other implementation component that has the effect of 
hiding other systems (which may themselves be internal or external)

� A data store that is external to the system (for example, a shared database 
or data warehouse)

� A peripheral or other physical device that is external to the system (such 
as a shared messaging appliance or enterprise search engine)

� A user, a class of user, or some other person or role, such as operational 
or support staff

EXAMPLE The scope definition for a simple online retailer might 
include the following capabilities.

� Present the retailer’s catalog to the user, including pictures and 
product specifications

� Provide a flexible search facility (search on product name, type, 
keyword, size, and so on)

� Accept orders for goods

� Accept payment by credit card (with asynchronous approval and 
notification to the customer)

� Provide automated interfaces into back-end systems for 
fulfillment

The exclusions for the first version of such a system might be:

� The ability to amend or cancel orders (this will need to be done 
over the telephone but is planned to be automated in a subsequent 
release)

� The ability to make payments by means other than credit card

� Display of live stock levels and the ability to reserve out-of-stock 
items
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Each external entity will implement and offer some services, and manage
and provide some data, that are used by this system. Similarly, each external
entity will use some services and/or data offered by this one. External entities
that do none of these things are not normally of interest.

Note that in this chapter we use the term services to refer to functionality
that systems provide for each other. This important concept is relevant
whether it is implemented by a formal service-oriented architecture (SOA), or
some other, more traditional means such as messaging or file transfer.

Nature and Characteristics of External Entities
The quality properties of external entities, such as system stability and availability,
performance and throughput capabilities, physical location, or data quality, may
significantly affect the architecture of the system.

The quality properties to be considered are exactly those properties that
are defined in Part IV of the book, The Perspective Catalog.

However, it is only the “externally visible” properties that need to be
considered—it is not normally necessary to consider the internal properties of
external systems. For example, an external system may have some unreliable
internal components but mask this to the outside world using load distribution
techniques to give a high level of external availability. Similarly, you need only
consider those interfaces that you will need to use—it is not necessary to
understand or document every interface of each of your external entities.

It may be necessary to consider the “nature” of external entities that are
not systems. For example, a user may not speak the primary language of the
system, or a peripheral such as a shared fax gateway may have performance
characteristics that need to be taken into consideration.

EXAMPLE A travel booking system exchanges information with many 
other systems located around the world. Some of these systems in more 
exotic locations may be only intermittently available, because of time 
zone differences or because they are more liable to failure. However, a 
failed communication with such a system might result in a customer’s 
booking being lost, which is highly undesirable.

The travel system’s interfaces with external systems will therefore need 
to be carefully designed. All failed interactions should be automatically re-
tried a configurable number of times, and these retry attempts should be 
logged to a database so that operational staff can monitor trends. Interac-
tions will need to be designed so that they can potentially be submitted 
multiple times without error (this is known as “idempotence”). It should 
be possible to restart very large transfers that fail partway through from 
the point of failure rather than having to retransmit the whole file.
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Identity and Responsibilities of External Interfaces
For each external entity, the nature of all interfaces between it and this sys-
tem should be identified. Such an interface may serve one of the following
purposes.

� Data provider or consumer: The external system supplies data directly to 
this system or receives data directly from it.

� Service provider or consumer: The external system is requested to per-
form some action by this system or requests some action of this system 
(e.g., a service call), and the service may return data and/or status infor-
mation in response to the request.

� Event provider or consumer: The external system publishes events that 
this system wishes to be notified of, or this system publishes events that 
the external system wishes to be notified of.

For data provider and consumer interfaces, the concern identi fies the content,
scope, and meaning of the data to be transferred.

For service interactions, the concern identifies the semantics of the request
(the nature of what is being requested and any parameters); the actions to be
taken by the system fulfilling the request; any data to be returned; any acknowl-
edgment, status, or error information that may be returned; and any exception
actions to be taken by either side.

For event provider and consumer interfaces, the concern identi fies the
events of interest, their meaning and content, and the volume and likely timing
of their occurrence.

It may be appropriate to go into more detail for more complex interactions
between this system and external entities, such as a payment authorization
which must be followed by a payment request.

Nature and Characteristics of External Interfaces
The quality properties of external interfaces may differ significantly from the
quality properties of the systems at the other end. For example, there may be
a low-bandwidth, relatively unreliable data link to a highly resilient system in
another country. The interface is the constraining factor in this case and
again will have a significant effect on the architecture of the system.

System characteristics include the following:

� The expected volumes—number of requests or transfers, size of data, 
seasonal fluctuations, and expected growth over time

� Whether interactions are scheduled (occurring at predefined times), oc-
cur in response to events, or are ad hoc
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� Whether interactions are completely automated, completely manual (e.g., 
a user saves a file or sends an e-mail), or somewhere in between

� Whether interactions are transactional—that is, they are required to com-
plete fully or not at all

� Criticality and timeliness—for example, a particular interaction that may 
be required to complete before the end of the business day in order to be 
captured by an auditing or accounting system

� Whether interactions are batch (large data sets transferred as a “unit”), 
message-based, or streaming in nature

� What level of security is required (authentication, authorization, 
confidentiality, and so on)

� The service level that can be expected of the interface (in terms of 
response time, latency, scalability, availability, and so on)

� The technical nature of the interface and what protocols are used (open 
standards or proprietary)

� Data and file formats

Again, you can use the material in Part IV (The Perspective Catalog) to
frame your analysis.

Other External Interdependencies
There may be interdependencies between this system and external entities
other than data flows or function invocations. These interdependencies may
act in either direction—the system may be dependent on an external entity or
vice versa. Such dependencies can be subtle and are sometimes hard to find.

This concern identifies the nature of the dependency and may also articulate
its architectural impact—that is, what capabilities or features need to be built into
the architecture in order for the dependency to be observed. 

EXAMPLE An online retailer accepts orders for goods over the Internet 
through its main e-commerce system. However, to fulfill an order, this 
system has to interact with a separate payment system to collect 
payments, a customer account details system to make any updates to 
the customer’s account (such as shipping addresses), and a ful fillment 
system that dispatches the goods.

From the perspective of the e-Commerce System, it is dealing with three 
separate independent systems and can treat them as such. However, as can 
be seen in Figure 16–1 there is a data dependency between two of them that 
in certain situations must be taken into account. The Fulfillment system
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Impact of the System on Its Environment
This concern addresses the impact of the system’s deployment on its environ-
ment, both within the organization in which it is deployed and externally.
This includes the following:

in this organization contains its own list of verified dispatch addresses for 
each customer, and it will reject orders that are not being sent to these 
addresses. However, this list is maintained by data replication from the 
Customer Accounts System. When the workflow for a customer order 
involves updating dispatch addresses, the e-Commerce System must take 
this dependency, and the latency of the replication, into account. Otherwise, 
orders may be rejected by the Fulfillment System because their dispatch 
addresses are not listed in its database.

The architectural impact in the case of this system might be to allow 
for resubmission to the Fulfillment System after a delay if a fulfillment 
request is rejected or to delay orders that have associated address up-
dates to allow data replication to occur. (Interestingly, having talked 
about the need to understand the details of external interfaces, this is an 
example that bears this out: The tactic of resubmitting failed orders can 
be made much more efficient if the interface to the Fulfillment System 
allows the reason for failure to be reliably discerned from the dispatch 
status returned by that system.)

FIGURE 16–1 ONLINE RETAIL SYSTEM DEPENDENCIES
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� Any systems that are dependencies and so may require functional 
changes, interface changes, or performance or security improvements

� Any systems that will be decommissioned (switched off) as a result of 
this system’s deployment

� Any data that will be migrated into this system

Although these changes may be someone else’s responsibility, they
should still be itemized to ensure that they are being addressed by someone
and their progress tracked. (We return to this issue in our discussion of func-
tional migration and data migration in Chapter 21.)

Overall Completeness, Consistency, and Coherence
In most cases this system will be part of something much larger: the overall
“application landscape.” This may even extend to systems distributed across
multiple organizations and linked together over private or public networks. Such
application landscapes can be very complex and are often poorly understood.

A key concern of your stakeholders (particular users) is that the overall end-
to-end solution provides them with the functionality that they need in a sensible
way, irrespective of which system provides a specific piece of functionality or
manages a specific piece of data. 

EXAMPLE In the early days of Internet shopping, retailers worked hard to 
get their catalogs onto the Internet in a pleasing and visually compelling 
way. The overriding concern was to get shoppers to visit their site rather 
than a competitor’s. However, many of these retailers did not put nearly as 
much effort into the behind-the-scenes processes for accepting payment, 
fulfilling orders, or dealing with exceptions. As a result, they lost customer 
goodwill and gained a reputation for poor customer service, and in the 
most extreme cases they went out of business.

TABLE 16–1 STAKEHOLDER CONCERNS FOR THE CONTEXT VIEWPOINT

Stakeholder Class Concerns

Acquirers System scope and responsibilities, identity of external entities and ser-
vices and data used, impact of the system on its environment

Assessors All concerns

Communicators System scope and responsibilities, identity and responsibilities of 
external entities, identity and responsibilities of external interfaces
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While this concern is more the responsibility of the enterprise architect than
of the application architect (see Chapter 5), giving it some consideration will
improve your likelihood of success, possibly significantly. An overall solution that
hangs together in a consistent and coherent way is much more likely to delight
your users than one that is fragmented and misaligned.

At a minimum you should ensure that the main business processes appear to
have adequate coverage, with either systems or defined manual processes. Simi-
larly, all of the data required for these processes should be stored somewhere (in
this system or externally) and be accessible by those systems that need it.

Stakeholder Concerns
Typical stakeholder concerns for the Context viewpoint include those listed
in Table 16–1. 

MODELS

Context Model
The context model is the main architectural model within the Context view and
often the only one produced. It places the system clearly in its environment and
relates it to the external entities with which it interacts, via explicit relation-
ships that represent the interfaces to and from it.

The purpose of the context model is to explain what the system does and
does not do, to present an overall picture of the system’s interactions with the
outside world, and to summarize the roles and responsibilities of the partici-
pants in these interactions. This understanding is essential in order to make
sure that all who are involved in the development of the system (and in mak-
ing any necessary changes outside of it) know what they are responsible for
and exactly where the boundaries are. This avoids potential duplication of de-
velopment effort or, even worse, gaps or inconsistencies in the solution.

Stakeholder Class Concerns

Developers All concerns

Production engineers Nature and characteristics of external interfaces, impact of the system 
on its environment

System administrators All concerns

Testers All concerns

Users System scope and responsibilities; identity of external entities and ser-
vices and data used; overall completeness, consistency, and coherence

TABLE 16–1 STAKEHOLDER CONCERNS FOR THE CONTEXT VIEWPOINT (CONTINUED)
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The context model has a wide audience, being of significant interest to all
of the system’s stakeholders. For this reason it should use simple, familiar
terms, avoid business or technology jargon, and aim for simplicity without
abstracting away so much information as to be worthless. It often uses busi-
ness language to name and describe the elements within it and typically
focuses on overall functionality and information flow, rather than the tech-
nologies used to implement them.

The context model is usually fairly high-level and abstract, answering the
important “why” and “what” questions about the architecture. It does not specify
in any detail how the system or its interfaces will be built; these questions are
answered in the other architectural views.

The context model presents an overall picture of the system in its environment
and typically includes the following types of elements:

� The system itself, represented as a black box, with its internal structure hid-
den, since the Context view is not concerned with how the system is built.

� The external entities, represented as black boxes for the same reason. 
(Indeed, it is likely that the internal details of external entities are not 
visible or known.) For each external entity, it is important to capture 
some key information, namely, the name of the entity, the nature of the 
entity (e.g., system, data store, person, group), the owner of the entity, 
and the responsibilities of the entity from the perspective of this system 
(the services, functions, and data upon which this system relies).

� The interfaces between the system and the external entities, presented at a 
summary level, highlighting the key data items or function invocations 
across the interface. Often all of the individual interfaces between the 
system and each external entity are “rolled up” into a single interface, to 
make the diagram easier to follow. For each external interface it is impor-
tant to capture an overview of the interactions expected over the interface, 
the semantics of the interface (i.e., the data exchanged and its meaning), 
the exception processing approach that will be used when unexpected 
things happen, and the key quality properties of the interface upon which 
this system is relying. In many cases, you will just capture a short sum-
mary of this information in the context model and reference external 
sources of information for fuller descriptions.

The context model is a vital communication tool with a wide range of
stakeholders from business and technology. It is often used to summarize
“what the project is about,” identify who the external partners are, and ex-
plain the interactions with them. Since it has a wide audience of varying de-
grees of business and technical expertise, it should be kept relatively simple,
and the context diagram should fit on a single page if possible.
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NOTATION The two notations that we commonly see used for context models
are UML and “boxes–and–lines.”

Unfortunately, the UML standard doesn’t define a context diagram. The
assumption seems to be that the context of the system will be captured using
a “use case” diagram, with the boundary of the system being represented by a
classifier (class, component, or package) that contains the use cases, or sim-
ply by a diagrammatic annotation such as a rectangle drawn around the use
cases. However, there are a number of practical difficulties with this ap-
proach, including the complexity of the resulting diagram, the fact that the
use case list may not be available when the context diagram is created, and
the convention that the external interfaces are made to specific use cases. In
the context diagram, we really want to abstract this detail away and treat the
system as a black box.

The solution to these difficulties is to create a UML diagram of the form
shown in Figure 16–2.

This sort of UML diagram can be created using the “use case” or “class
diagram” diagram editors of many mainstream UML modeling tools, although
in fact it doesn’t share a lot of similarity with either standard diagram. The
key points about it are as follows:
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� The system is represented as a UML component, stereotyped as a subsystem, 
a stereotype found in the UML standard profile, or with a more specific 
stereotype that you create yourself.

� External entities that cause human interactions with the system are 
represented as UML actors.

� External entities that are systems are represented as either further subsystem 
components or actors, possibly with their icons changed via stereotyping to 
be more representative of the entities that they represent (as suggested by the 
UML standard).

� Interfaces between the external entities and the system being designed can 
be represented as UML information flows, UML dependencies, or UML as-
sociations, optionally augmented with UML “conveyed information” icons 
that define the information flowing over the interface (which we don’t 
show in the example but would be represented as small black arrowheads 
on the associations).1

While UML can be used to create a context diagram, it would be fair to say
that the language does not provide particularly strong support for this type of
model. For this reason, we often use informal boxes–and–lines notation
instead, drawing something more akin to a “rich picture” of the system’s
context using a simple, ad hoc notation (and it’s obviously important to de fine
the notation clearly). Figure 16–3 shows the same system represented in
boxes-and-lines notation.

The advantage of this style of diagram is that it can be much more expressive
than plain UML, and it’s probably easier for most people to create and understand
than one created in strict accordance with UML. One of the major disadvantages,
apart from your having to design and explain the notation, is that this model (or
picture) is separate from the rest of your architectural models, assuming they’re in
UML. However, a number of UML modeling tools can now draw this sort of infor-
mal picture, which largely addresses this concern.

ACTIVITIES Definition of context takes place very early in the project
lifecycle and is often rather ad hoc and unstructured as a result. It is also
rarely under the control of the architect—you will be a participant and will
provide input and feedback, but key decisions will probably be made by the
senior stakeholders (typically the acquirer and some senior users).

It is possible to put some level of formality in place, however. At a mini-
mum, a single document should be maintained and lodged in a place where
everyone who needs access has it. It may be necessary to restrict access to the

1. Information flows and conveyed information annotations were introduced as part of UML 
2. They are supported at differing levels of fidelity by different modeling tools, but they are 
a valid part of the metamodel, defined in the “Superstructure” specification [OMG10b].
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document to key personnel if the project is sensitive (for example, if it will
lead to the retirement of existing systems or has contractual implications with
suppliers). If possible, historical versions of the document should be retained
along with a log of who changed what.

You will typically go through the following steps when preparing a
context model.

� Review the goals of the system: Briefly review and capture the business 
and technology goals of the system—for example, “Reduce cost per 
transaction by 15%,” “Streamline the ordering and fulfillment process, 
enabling better customer service,” “Replace the current architecture with 
one that is more performant, resilient, and amenable to change,” and so 
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on. The goals should make the motivation for the project clear, illustrat-
ing how its implementation will improve the current situation, in terms 
that the acquirer and other key stakeholders can understand.

� Review the key functional requirements: Briefly review and summarize 
the key requirements that characterize what the system must do, 
grouped by subject area. Use the scope definition for this.

� Identify the external entities: Itemize all internal and external systems, 
gateways, services, external data stores, devices, appliances, and users 
and roles that may interact with the system. You will need to use your 
own and others’ knowledge of the business area, and any existing docu-
mentation such as system diagrams or organizational charts. At this 
stage, if there is any doubt as to whether an entity should be included, 
include it—you can always take it out later.

� Define responsibilities of external entities: Use your and your stakehold-
ers’ knowledge of the entities to map out their expected responsibilities. If 
there are any responsibilities that you find you can’t assign to the system 
or an external entity, you have missed something in the system’s context.

� Identify the interfaces between this system and each external entity : Use 
your and your stakeholders’ knowledge of the processes the system will 
implement to identify the data flows and service invocations (in either 
direction) that these will require. Again, the scope definition will help 
make sure you don’t miss anything.

� Identify and validate the interface definitions: Make sure that each inter-
face is defined (perhaps in the AD but probably elsewhere) and that it is 
compatible with the use to which it will be put. If the interface is docu-
mented elsewhere, make sure you reference it in the AD.

� Walk through key requirements: Follow the flow of control and flow of 
information between the system and the external entities. As you do this, 
add all the external interfaces that are needed to implement these flows.

� Walk through scenarios or use cases: If you have more detailed scenario 
definitions or use cases, walk through these to validate the model. Add 
or update any external entities or interfaces required.

Interaction Scenarios
It is often useful to model some of the expected interactions between your system
and the external entities in more detail than is provided in a context diagram.
This sort of model helps to uncover implicit requirements and constraints (such
as ordering, volume, or timing constraints) and helps to provide a further, more
detailed level of validation. While you are unlikely to have time to model all the
scenarios in which your system will participate, it can be useful to model some of
the more complicated, contentious, or less well-understood ones, especially when
system usage is unclear or there is disagreement among your stakeholders.
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An interaction scenario represents two or more participants (usually the
system and one or more external entities), and a sequence of interactions
between them, where an interaction is a flow of information and/or a request
to perform an action. The interactions should collectively serve a specific pur-
pose or implement a specific function. Refer to Chapter 10 (Identifying and
Using Scenarios) for more detail.

NOTATION Interaction scenarios are usually captured using simple tex-
tual interaction lists (rather like those used for use case definitions) or UML
sequence diagrams that illustrate the interactions via a graphical notation.
More detail is given in Chapter 10.

ACTIVITIES Refer to the discussion of scenarios in Chapter 10.

PROBLEMS AND PITFALLS

Missing or Incorrect External Entities

Most systems development projects tend to be relatively chaotic in their early
stages (their teams are in their “forming” or “storming” stages in Tuckman’s
model of group development). Roles, even senior roles, may not be formally
defined, and as a result context is often unclear and subject to frequent
change. It is therefore easier than you might think to accidentally leave some-
thing out of the context model, include something that is not needed, or put
the system boundaries in the wrong place.

Getting the context wrong can have a huge impact later on: Either the
project will have to undergo significant change at a late point in the lifecycle,
which adds considerably to its cost, duration, and complexity; or the delivered
system will be incomplete or provide unnecessary functionality.

RISK REDUCTION

� Work with a wide range of stakeholders to ensure that their concerns are 
adequately reflected in the context model and interaction scenarios. For 
example, you should ensure that any functionality they require either is 
part of the system scope, is provided by an external entity, or is excluded 
entirely with the agreement of the people who need it.

� Involve a domain expert in this analysis as early as you can, and make 
sure that person is involved in review and sign-off of this part of the AD.

� Ensure that once the context model has stabilized, it is change-managed 
and subsequent changes to it are reviewed and agreed upon.
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Missing Implicit Dependencies
It is easy to miss the subtle dependencies between external entities. For exam-
ple, you may assume that a particular business entity or data item is instanta-
neously available in two external systems, when there is actually a signi ficant
latency due to the mechanics of data transfer. Or you could assume that the
availability of an external system will affect only one part of your system,
whereas in fact other systems you rely on are also dependent on it, making its
nonavailability much more important to you. Such implicit dependencies can be
hard to understand yet may have significant implications for the architecture.
They should therefore be captured early and documented clearly.

RISK REDUCTION

� Assume nothing, work with your stakeholders to uncover and under-
stand implicit dependencies, and ensure that they are documented in the 
Context view.

Loose or Inaccurate Interface Descriptions
It’s tempting to get the basic idea of an external interface and leave it at that,
hoping that the design process will elicit the details. In fact, you always have to
do this to some extent as you can’t understand every detail of every inter face.
However, it is important that you capture enough detail so that the architec-
tural implications can be understood.

RISK REDUCTION

� Ensure that you understand your external interfaces in suf ficient 
detail to use them confidently, and capture enough information about 
them in the Context view to characterize the effect they have on your 
architecture.

� Avoid the temptation to gloss over things that are complex in the expectation 
that problems will be resolved later.

Inappropriate Level of Detail
Getting the level of detail right is a challenge everywhere in the AD but is
especially important in the Context view. If you provide too much detail,
stakeholders, especially senior stakeholders like the acquirer, may become
overwhelmed and fail to understand the big picture. Conversely, if you gloss
over some aspects of the context or scope, expecting them to be fleshed out
later, you may miss something important, mislead your stakeholders, or allow
incorrect assumptions to be made.
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RISK REDUCTION

� Look out for scope or requirements that appear vague because 
nobody understands what they mean (or people assume different 
meanings) and explore them further in order to ensure that they are 
understood.

� If the Context view becomes too detailed, move some of the information 
either into appendices in the document or into another view in the AD 
(typically the Functional or Information view).

� Consider applying some rules of thumb to determine whether your Context 
view is becoming too detailed. Although every situation varies, we have 
found the following rules to be useful in practice:

• A context diagram should usually fit on a single sheet of paper.
• A scope definition should not usually be more than 2 to 3 pages.
• If there are a lot of requirements, they should be grouped by functional 

area, organizational responsibility, or some other logical category.
• If there are more than, say, 10 to 20 external entities, consider 

whether they can be grouped by type (for example, a large number of 
suppliers of the same type of goods), or whether you really have a 
single system at all, rather than a collection of systems.

Scope Creep
Scope creep is the phenomenon of uncontrolled changes to system scope, which
often occur gradually without being particularly visible to stakeholders. These
changes usually have the effect of increasing what the system is expected to do,
often without due consideration of whether this is sensible or achievable. For ex-
ample, when interviewing users about required functionality, it is easy for each
user to add a few more requirements to the mix that really are “nice-to-haves”
rather than truly essential. By the time this process is completed, the system is
significantly larger and more ambitious, possibly fatally so.

Scope creep can also occur once the scope has stabilized if it is not subject
to well-managed change control.

RISK REDUCTION

� Challenge additions or changes to scope to confirm that they really are 
necessary and make sure their implications are understood. 

� Work to help stakeholders understand the consequences of adding 
requirements, such as increased time to market, development and 
operational cost, or system complexity and stability.

� Ensure that scope changes are change-managed once the scope has 
stabilized.
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Implicit or Assumed Context or Scope
More than in any other part of the AD, the scope definition is where you
should state the obvious when there is any chance of misunderstanding.
Don’t be tempted to leave things out because “everybody knows that”—the
odds are that there are some stakeholders who don’t, or that some of these
nuggets of information will get lost along the way.

RISK REDUCTION

� Don’t be afraid to state the obvious in the Context view. You will be glad 
you did later on!

Overcomplicated Interactions
Interactions with some external entities (particularly older systems) can be a lot
more complicated than expected, so it’s easy to end up with unexpected prob-
lems when you come to build the interfaces. For example, some of the problems
we have encountered when dealing with interfaces to long-established systems
have included the need for unusual data encodings, poorly understood (yet
complicated) conversational protocols, and complex and proprietary interface
technologies that can cause difficulties for development, testing, and opera-
tional activities.

RISK REDUCTION

� Take the time to understand interfaces to external systems early in the 
architectural design process, and don’t assume that they’re necessarily 
the same as the interfaces you’ve met before. 

� Find expertise in the interfaces that you need to use, prototype interac-
tions with them, and test them thoroughly in order to understand how 
they behave in different situations.

Overuse of Jargon
Inputs to the Context view come from a wide variety of sources. It is easy, there-
fore, to make careless use of business and technology terminology that may not
be well understood by the majority of your stakeholders. Since people are often
reluctant to question things they do not understand, you risk confusion and
misunderstanding.

RISK REDUCTION

� Try to avoid any terminology that is not widely understood. If you need 
to use jargon and there is any risk of confusion, provide a glossary.
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CHECKLIST

� Have you consulted with all of the stakeholders who are interested in the 
Context view (which is probably all of them)?

� Have you identified all of the external entities with which the system 
needs to interact and their relevant responsibilities?

� Do you have a good understanding of the nature of every interface with 
each external entity, and is this documented to an appropriate level of 
detail?

� Have you considered possible dependencies between the external entities 
with which you have to interact? Are these implicit dependencies documented 
in the AD?

� Does the context diagram adequately illustrate all of the interfaces from 
the system to its environment, with sufficient definition underpinning 
the diagram?

� Have all key stakeholders formally agreed to the content of the context 
model? Is this documented somewhere?

� Has the context model been placed under formal change control?
� Is the change control process being followed? Are stakeholders being 

consulted on changes and their consent obtained?
� Is the context model placed somewhere where everyone can easily find it, 

such as a public shared folder or wiki page?
� Have you identified all of the key capabilities or requirements of the 

system, and are they documented to an appropriate level of detail?
� Is the scope definition internally consistent?
� Does the scope identify any important technology constraints, such as 

mandated platforms?
� Is the scope specified at an appropriate level of detail, balancing brevity 

with clarity and completeness?
� Have you explored a set of realistic scenarios for external interactions 

between your system and external actors?
� Are other teams with which you interact clear on the context and scope 

and any implications for them?
� Have you checked the context model to see if there are any “obvious” 

statements that should be explicitly stated but have been omitted?
� Do the main business processes appear to have adequate coverage, by 

either systems or defined manual processes?
� Does all the data needed to support the main business processes appear 

to be stored somewhere, on-site or externally?

� Does the overall solution hang together in a coherent way?
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FURTHER READING

Many software architecture books discuss the process of setting the context of
the system; examples include Garland and Anthony [GARL03], which describes
a Context viewpoint, and Bosch [BOSC00], which describes how to define the
system context at the start of the architectural design process.

A number of requirements engineering books also discuss scoping systems.
A particularly good example is Sommerville and Sawyer [SOMM97], which
presents a clear set of guidelines around requirements capture, presentation,
and ratification. Each guideline is accompanied by a cost/benefit analysis and
practical suggestions for how it can be implemented.

Information on Tuckman’s model of group development can be found in
[TUCK65] and elsewhere.
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17
THE FUNCTIONAL VIEWPOINT

The Functional view of a system defines the architectural elements that deliver
the functions of the system being described. This view documents the system’s
functional structure—including the key functional elements, their responsibili-
ties, the interfaces they expose, and the interactions between them. Taken
together, this demonstrates how the system will perform the functions
required of it.

The Functional view is the cornerstone of most ADs and is often the first
part of the description that stakeholders try to read. (Too often, it is also the
only view of the architecture produced.) It is probably the easiest view for
stakeholders to understand. The Functional view usually drives the definition
of many of the other architectural views (particularly Information, Concurrency,
Development, and Deployment). You will almost always create a Func tional

Definition Describes the system’s runtime functional elements and their respon-
sibilities, interfaces, and primary interactions

Concerns Functional capabilities, external interfaces, internal structure, and 
functional design philosophy

Models Functional structure model

Problems and 
Pitfalls

Poorly defined interfaces, poorly understood responsibilities, infra-
structure modeled as functional elements, overloaded view, diagrams 
without element definitions, difficulty in reconciling the needs of mul-
tiple stakeholders, wrong level of detail, “God elements,” and too 
many dependencies 

Stakeholders All stakeholders

Applicability All systems
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view and will often spend a lot of time refining the functional structure that it
defines.

A major challenge when defining the Functional view is to include an
appropriate level of detail. Focus on what is architecturally significant—in
other words, what has a visible impact on stakeholders—and leave the rest to
your designers. Avoid documenting physical implementation details such as
servers or infrastructure in your Functional view, as this will overcomplicate
your models and confuse your stakeholders. (You will document these
elements in your Deployment view.)

CONCERNS

Functional Capabilities
Functional capabilities define what the system is required to do—and, explic-
itly or implicitly, what it is not required to do (either because this functional-
ity is outside the scope of consideration or because it is provided elsewhere).

On some projects, you will have an agreed-upon set of requirements at
the start of architecture definition, and you can focus in the Functional view
on showing how your architectural elements work together to provide this
functionality. However, in many projects this isn’t the case, and as we dis-
cussed in Chapter 8 and Chapter 16, the onus will be on you in this case to
ensure that there is a clear definition of what the system will (and won’t) be
required to do.

External Interfaces
External interfaces are the data, event, and control flows between your sys-
tem and others.

Data can flow inward (usually resulting in an internal change of system
state) and/or outward (usually as a result of internal changes of system
state). Events can be consumed by your system (notifying your system that
something has occurred) or may be emitted by your system (acting as notifi-
cations for other systems). A control flow may be inbound (a request by an
external system to yours to perform a task) or outbound (a request by your
system to another to perform a task).

Interface definitions need to consider both the interface syntax (the struc-
ture of the data or request) and semantics (its meaning or effect).

Internal Structure
In most cases, you can design a system in a number of different ways to meet
its requirements. It can be built as a single monolithic entity or a collection of
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loosely coupled components; it can be constructed from a number of standard
packages, linked together using commodity middleware, or written from
scratch; or its functional needs can be met by using network-accessible ser-
vices provided by systems external to this one or even to the organization.
Your challenge is to choose among these many options in order to create an
architecture that meets the requirements, exhibits the required quality proper-
ties, and is fit for purpose.

The internal structure of the system is defined by its internal elements, what
they do (i.e., how they map onto the requirements), and how they interact with
each other. This internal organization can have a big impact on the system’s
quality properties, such as its availability, resilience, ability to scale, and security
(e.g., a complex system that crosses organizational boundaries is generally
harder to secure than a simple one running on a couple of collocated machines).

Functional Design Philosophy
Many of your stakeholders will be interested only in what the system does and
the interfaces it presents to users and to other systems. However, some stake-
holders will be interested in how well the architecture adheres to established
principles of sound design. Technical stakeholders, in particular the development
and test teams, want a sound architecture, because a well-designed system is
easier to build, test, operate, and enhance. Other stakeholders—particularly
acquirers—implicitly want a well-designed system because it is faster, cheaper,
and easier to get such a system into production.

The design philosophy will be underpinned by a number of design char-
acteristics such as the examples listed in Table 17–1.

TABLE 17–1 DESIGN CHARACTERISTICS

Design
Characteristic Description Significance

Coherence Does the architecture have a 
logical structure, with the 
elements working together
to form a whole?

If the architecture doesn’t look coherent, this 
may indicate that the element decomposition 
is wrong, and it may make it hard for stake-
holders to understand.

Cohesion To what extent are the functions 
provided by an element strongly 
related to each other?

In a highly cohesive system, related func-
tions are grouped together, resulting in sim-
pler, less error-prone designs.

Consistency Are mechanisms and design 
decisions applied consistently 
throughout the architecture?

A consistently designed and implemented 
system is much easier to build, test, operate, 
and evolve than one with a lot of accidental 
inconsistency.

Continued on next page
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In general, these design characteristics have a positive effect on a number of
system qualities, particularly those relating to evolution, such as flexibility and
maintainability. They also usually have a positive effect on other system qualities
such as performance and security (e.g., separation of concerns and simplicity can
make security easier to achieve, while consistency is likely to make performance

Design
Characteristic Description Significance

Coupling How strong are the element 
interrelationships To what extent 
do changes in one module affect
others?

Loosely coupled systems are often easier to 
build, support, and enhance but may suffer
from poor efficiency compared with a mono-
lithic approach.

Extensibility Will the architecture be easy to 
extend to allow the system to per-
form new functions in the future?

Extensibility is often the result of other proper-
ties such as coherence, low coupling, simplicity, 
and consistency, but it is worth bearing in 
mind explicitly when considering your designs.

Functional
flexibility

How amenable is the system to 
supporting changes to the 
functions already provided?

Systems that are designed to be easy to 
change are usually harder to build and typi-
cally are less efficient than systems that are 
less adaptable.

Generality Are the mechanisms and decisions 
in the architecture as general as is 
practicable?

If the solutions embodied in the architecture 
are generic, the architecture will be amenable 
to extension and change. However, this must 
be balanced against any resulting increase in 
cost and complexity.

Interdepen-
dency

What proportion of processing 
steps involves interactions 
between elements as opposed to 
within an element?

Communicating between certain types of ele-
ments can be an order of magnitude more 
expensive (in terms of processing time and 
elapsed time), and significantly less reliable, 
than performing an operation within a func-
tional element.

Separation of 
concerns

To what extent is each internal 
element responsible for a distinct 
part of the system’s operation? To 
what extent is common processing 
performed in only one place?

High separation results in a system that is 
easier to build, support, and enhance but 
may adversely impact performance and scal-
ability compared with a monolithic approach.

Simplicity Are the design solutions used 
within the system the simplest 
ones that would be suitable?

Complexity makes systems difficult and 
expensive to build, comprehend, operate, and 
evolve, but a simplistic approach may well not 
meet the requirements of a sophisticated sys-
tem.

TABLE 17–1 DESIGN CHARACTERISTICS (CONTINUED)
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and scalability easier to achieve). In some cases, though, you need to consider
the possibility of a negative relationship between “good” design and other system
qualities (e.g., very loosely coupled systems can be less performant than more
tightly coupled ones); in some cases this can mean the need to compromise over
the design characteristics that can be achieved (we note the need for occasional
design compromises in some of the perspectives in Part IV).

Principles and patterns are good techniques for defining how you want the
design of the system to embody these design characteristics, as they can guide
the system’s designers to make design decisions that support the characteristics
that you are most interested in achieving. We discuss this further in Chapter 8.

Stakeholder Concerns
Typical stakeholder concerns for the Functional viewpoint include those listed
in Table 17–2. 

MODELS

Functional Structure Model
The functional structure model typically contains the following elements.

� Functional elements: A functional element is a well-defined runtime 
(as opposed to design-time) part of the system that has particular 
responsibilities and exposes well-defined interfaces that allow it to be 
connected to other elements. At its simplest level, an element is a 

TABLE 17–2 STAKEHOLDER CONCERNS FOR THE FUNCTIONAL VIEWPOINT

Stakeholder Class Concerns

Acquirers Primarily functional capabilities and external interfaces

Assessors All concerns

Communicators Potentially all concerns, to some extent, depending on context

Developers Primarily design quality and internal structure, but also 
functional capabilities and external interfaces

System administrators Primarily functional design philosophy, external interfaces, 
and possibly internal structure

Testers Primarily design quality and internal structure, but also 
functional capabilities and external interfaces

Users Primarily functional capabilities and external interfaces
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software code module, but in other contexts it could be an application 
package, a data store, or even a complete system.

� Interfaces: An interface is a well-defined mechanism by which the func-
tions of an element can be accessed by other elements. An interface is 
defined by the inputs, outputs, and semantics of each operation offered 
and the nature of the interaction needed to invoke the operation. Common 
types of interfaces found in information systems are remote procedure calls 
(RPCs) of various types, messaging, events, and in some cases interrupts.

� Connectors: Connectors are the pieces of your architecture that link the 
elements together to allow them to interact. A connector defines the 
interaction between the elements that use it and allows the nature of the 
interaction to be considered separately from the semantics of the opera-
tion being invoked. The nature of the interactions between elements can 
be intimately bound up in how they are connected.

The amount of consideration you need to give connectors depends on 
your circumstances. At one extreme—for example, when one element 
calls another via a simple procedure call—you can just note that one ele-
ment connects to another. At the other extreme, such as a message-
based interface, a connector can be defined as a type of element in its 
own right as it provides capabilities to the interactions that occur across 
it. As always, the focus needs to be on what is architecturally significant
in the context in which you are working.

� External entities: As we defined in Chapter 16, external entities are other 
systems, software programs, hardware devices, or any other entity with 
which your system interacts. They are obtained from your system’s Con-
text view, and each appears in the functional model at the far end of an 
interface, external to your system.

The functional structure model does not define how code is packaged and
executed in processes and on threads, so this view doesn’t constrain element
packaging or deployment—this is the domain of the Concurrency and Deploy-
ment views.

Similarly, it is generally not a good idea to model underlying infrastruc-
ture as functional elements, unless that infrastructure performs a functionally
significant task, independent of the other functional elements, without which
the view doesn’t make sense. Infrastructure that simply supports the opera-
tion of the functional elements should normally not be shown in the Func-
tional view; it is best considered in the Deployment view.

For example, you might well want to show message queues, as they are
important interelement connectors and so the view doesn’t make sense with-
out them, but you probably don’t need to show the message broker that pro-
vides the queues, which doesn’t add anything in this context. The message
broker would be shown in the Deployment view.
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NOTATION You can use a number of techniques to represent the Functional
view in a model.

� UML component diagrams: Using UML for a Functional view has a num-
ber of advantages, including its widespread comprehension and its flexi-
bility. The main UML diagram you will use for the Functional view is a 
component diagram, which shows a system’s elements, interfaces, and 
interelement connections.

You represent each of the system’s elements and external entities 
with a UML component icon, annotated with its name and any stereo-
type needed to make the nature of the element clear. (Stereotypes allow 
you to extend the semantics of standard UML in a logical and consistent 
way to meet your individual circumstances.) One particularly useful ste-
reotype is <<external>>, which indicates that the icon refers to an exter-
nal entity, rather than a system element. Another is <<infrastructure>>, 

EXAMPLE Figure 17–1 shows the typical elements in a UML component 
diagram. The system consists of two internal elements, Variable Capture 
and Alarm Initiator, interacting with one external element, Temperature 
Monitor. Variable Capture exposes one interface, VariableReporting, 
which is invoked by Temperature Monitor, and Alarm Initiator exposes 
one interface, LimitCondition, which is invoked by Variable Capture. 
VariableReporting is tagged with information that tells us it is an XML 
remote procedure call, over the HTTP protocol, and that, at most, 10 
concurrent invocations can exist at one time.

FIGURE 17–1 EXAMPLE OF A FUNCTIONAL STRUCTURE IN UML
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which indicates an infrastructure element of the system that has a 
distinct functional role.

UML interface icons attached to a system element represent the inter-
faces it exposes. We have found that the small “lollipop” interface icon is 
more effective in the Functional view than the larger stereotyped class 
icon. In order to differentiate between types of interfaces, stereotypes 
may be defined with associated sets of tagged values that allow the char-
acteristics of particular interfaces to be captured (such as “transport”). 
Using tagged values to capture the type of interface, the protocol used to 
access it (if any), and the number of concurrent users or connections al-
lowed provides a good basis for interface classification.

Once you have identified elements and interfaces, you can show the 
connectors between the interfaces with UML dependencies and informa-
tion flows, as described in the following example.

EXAMPLE The UML component diagram shown in Figure 17–2 is an 
example of using UML to document the functional structure of a simple 
system. The system under consideration provides a Web storefront 
(called the Web Shop) for customers to use when purchasing items from 
an online catalog that fits into an existing enterprise software environ-
ment. (To save space, we have omitted the detailed descriptions of the 
system components and their interfaces, but obviously these would be 
crucial information for a real model.)

The model shows that the system communicates with four external 
entities: the Web browsers of the three main user types (customers, cus-
tomer care representatives, and catalog administrators) and an external 
system (the order fulfillment system). Our system is composed of five 
main functional components linked via a number of connector types 
(including HTML over HTTP and publish/subscribe messaging, with an 
LU 6.2 external interface).

Customers order from the Web Shop, which interacts with the Product 
Catalog, the Order Processor, and the Customer Information System. The 
catalog administrators maintain the product catalog via their Web-based 
interface, and the customer care representatives maintain the customer 
information via a dedicated interface client program (the Customer Care 
Interface). When the stock level of a particular item in the catalog is 
needed, the Product Catalog accesses this information from the Stock 
Inventory (which already exists).

We also have some insights into the nature of the intercomponent 
interactions. We know that up to 1,000 customers, 80 customer care 
representatives, and 15 catalog administrators may access the system 
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simultaneously. We also note that the interaction between the Product 
Catalog and the Stock Inventory components takes place using a specific
protocol (presumably due to preexisting technology). We can assume for 
this example that the unadorned intercomponent communication takes 
place via some form of standard remote procedure call (which we will 
assume has been clearly defined elsewhere).

Having said this, one of the interesting points to note about this 
model is how much is not obvious from the diagram. The responsibili-
ties of the components aren’t clear, the details of their interfaces aren’t 
clear, and the details of how the components interact aren’t clear. This 
impresses on us the need to complete the textual descriptions that 
underpin the diagram and the need to understand the system via a 
number of models rather than just one (e.g., intercomponent interac-
tions can be shown via system scenario modeling, as we described in 
Chapter 10).

FIGURE 17–2  EXAMPLE OF A UML COMPONENT DIAGRAM
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� Other formal design notations: UML is not the only well-defined design 
notation suitable for software development. A number of older structured 
notations (such as Yourdon, Jackson System Development, and the 
Object Modeling Technique of James Rumbaugh) have been successfully 
applied to software development problems for many years. The problem 
with using any of the notations developed for software design is that 
they tend to be fairly weak at describing the concepts (such as large-
scale elements, interfaces, deployment options, and so on) that are 
important to architects. The older methods also aren’t widely taught or 
used today, and so tool support may be difficult to come by, and they 
lack the general familiarity of UML for most people.

� Architecture description languages (ADLs) : Languages that do directly 
support the concepts that software architects are concerned with are gen-
erally known as ADLs. A large number of ADLs have been created 
(including Unicon, Wright, xADL, Darwin, C2, and AADL). The great 
attraction of ADLs is that they provide native support for some of the 
things that we need to capture and reason about in our architectural 
designs (such as components and connectors). However, nearly all ADLs 
have been developed in the research environment and tend to suffer
from a number of practical drawbacks, including lack of stakeholder fa-
miliarity with them, relatively narrow scope (often only allowing “com-
ponents” and “connectors” to be represented), and an inevitable lack of 
mature tool support. For these reasons, despite a number of years of 
searching, we still haven’t found an ADL that we’ve been happy to adopt 
on a day-to-day basis.

� Boxes-and-lines diagrams: Many architects use a functional structure 
diagram drawn by using a custom boxes-and-lines notation. Such a dia-
gram should show just the functional elements and their interfaces and 
should link the elements to the interfaces they use with a clear graphical 
device (typically an arrow, possibly with some annotation) that indicates 
the use of a connector. As with any custom notation, be sure to define 
the meaning of the notation clearly to avoid confusion.

EXAMPLE The boxes-and-lines diagram shown in Figure 17–3 gives an 
alternative, less formal, and possibly more user-friendly representation 
of the system described in the previous example.

In this model, we have defined our own notation. Functional elements 
are represented by rectangles and the links between them by lines, with 
arrows indicating the direction(s) of information flow. External user-
facing interfaces are represented by an icon meant to look like a computer 
monitor, and external back-end systems are represented by rectangles 
with rounded corners. Data stores are represented by an icon that looks
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The benefit of the boxes-and-lines diagram is that nontechnical 
stakeholders, particularly business users and sponsors, may find it eas-
ier to understand. Such a model can be an invaluable tool in selling the 
features and benefits of the system to these stakeholders without getting 
bogged down in technical detail. Often you may use the boxes-and-lines 
diagram as a front for more detailed, rigorous UML models.

Although the boxes-and-lines diagram can be used less formally 
than a UML model, you shouldn’t use this as an excuse for being less 
rigorous. In particular, early in architecture definition, you should define
a standard notation for your diagrams—and make sure you stick to it. 
Try to develop icons that give an indication of the underlying purpose of 
the elements modeled (e.g., the disk-drum icon shown in Figure 17–3 is 
often used to model data stores).

You should always support any such model with a definition of its 
elements and the interfaces between them, presented in a standardized way.

� Sketches: You can create a less formal feel for the view by using a sketch, 
that is, by introducing an ad hoc notation as required to represent each of 
the aspects of the view that are significant for your system. The use of a 
sketch is often required to effectively communicate essential aspects of 
the view to nontechnical stakeholders. The problem with this approach is 
that it can lead to a poorly defined view and confusion among stakehold-
ers. As with the boxes-and-lines diagram, you can get around this by 
using a sketch to augment a more formal view notation (such as UML) 
and using different notations for different stakeholder groups.

Representing procedure-oriented element interactions is relatively
straightforward, but modeling message-oriented interactions (such as those
found where elements are connected via publish/subscribe messaging sys-
tems) can be significantly harder.

We used to model message-oriented interfaces by showing the message
distribution mechanism (typically a piece of message-oriented middleware)
as a functional element and connecting the various message source and
destination elements to it. This does get the point across, but it’s difficult to
discern the overall message flow in the system. A better approach, origi-
nally suggested by Garland and Anthony [GARL03], is to use ports and
information flows to model message-oriented interactions between system
elements.

like a disk drum, and functional interfaces (the Internet, the message 
bus) are represented by a cloud icon. The scope of the system is those 
elements within the dotted rectangle.
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FIGURE 17–3 EXAMPLE OF A BOXES-AND-LINES DIAGRAM
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The notion of ports comes originally from the real-time systems community,
where a port is an abstract representation of the source or destination of mes-
sages. A more general notion of ports was integrated into version 2 of UML, and
one of their uses can be to clearly show the messaging within a system.  

When the message-oriented interactions are illustrated by using a sepa-
rate notation, they can be combined with procedure-oriented element interac-
tions on a single diagram without fear of confusion. You can also use such a
technique to model higher-level messaging systems, such as those that imple-
ment EAI architectures.

Remember that as we said earlier, a Functional view should describe only
the system’s functional elements. If you need notational items to represent
deployment, concurrency, or other aspects of the system, your Functional
view has become overloaded.

Note: When talking about system design notations, it’s also worth men-
tioning the existence of SysML, a design language for systems engineering,
which is based on UML 2 (SysML is actually defined as a UML 2 profile).
We’ve been following the development of SysML over a number of years, and
while it’s undoubtedly a useful tool for people working in systems engineer-
ing, we haven’t found it to be a better alternative to UML 2 for information
systems design. SysML is aimed at situations where systems engineers need
to integrate hardware, software, personnel, facilities, and other varied aspects
of very large systems, rather than the more focused problem of the design of
an information system. The sysml.org, omgsysml.org, and sysmlforum.com
Web sites are good places to find out more about SysML and to track its
evolution.

EXAMPLE An example of using ports and information flows for mes-
saging is shown in the UML model in Figure 17–4.

This diagram illustrates part of a notional system in a financial insti-
tution where prices are calculated by one system element (the Price Cal-
culator) and distributed to the other system elements via asynchronous 
messages. The small boxes attached to the system elements represent 
ports. The one attached to the Price Calculator is an output port (it cre-
ates messages), and the ones attached to the other elements are input 
ports (they receive messages). A UML 2 information flow connector is 
used to indicate the message flow between elements, with a stereotype 
to indicate the type of messaging in use and the “information conveyed” 
annotation capturing the message type (publish/subscribe messaging 
and “Prices” in the example).
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ACTIVITIES

Identify the Elements. You can identify the functional elements by following
these steps.

1. Work through the functional requirements, deriving key system-level 
responsibilities.

2. Identify the functional elements that will perform those responsibilities.

3. Assess the identified set against the desirable design criteria.

4. Iterate back to refine the functional structure until you judge it to be 
sound.

Of course, some elements may be defined for you already (e.g., software
libraries, software packages, preexisting systems or subsystems), in which
case the process for these elements is one of understanding rather than iden-
tifying and designing.

Refining the set of functional elements involves applying one or more
refinements to the functional structure.
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Processor
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Calculator

«pub/sub topic» 
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� Generalization: identifying some common responsibilities across a number 
of elements and introducing a number of more general elements that can 
be reused across the system to perform these tasks. Generalization is par-
ticularly important as part of a larger enterprise or product-line architec-
ture to allow reuse of software assets across a number of similar products 
or systems.

� Decomposition: breaking a large, complex element into a number of 
smaller subelements. For large systems, you will often need to break the 
top-level functional elements into more manageable subsystem-level ele-
ments to allow them to be designed and built.

� Amalgamation: replacing a number of small functional elements with a 
larger element that includes all of the functions of the smaller ones. 
Amalgamation is typically used when a large number of small but similar 
functional elements have been identified. In such cases, it often makes 
sense from an architectural perspective to replace the smaller elements 
with a single large element that can factor out the commonality between 
the smaller ones and reduce the amount of interactions the system 
requires.

� Replication: replicating either a system element or a piece of processing. 
An example is data validation, where you identify a validation element 
for incoming data and then replicate it across a number of the system’s 
external interfaces. Replication can bring performance benefits, but care 
must be taken to keep the replicated components consistent.

If you are using an architectural style to guide your design process, the
process is slightly different because it will involve creating an instantiation of
the style such that the system-level responsibilities are assigned to elements
of the style. This activity is closely related to the next step—assigning respon-
sibilities to the elements.

We don’t talk about the element identification process in a lot of detail in
this book because there are many ways to do it, and the correct method to use
depends on the type of system and the software development approach you
are using. (Procedural, object-oriented, and component-based approaches all
influence component identification in different ways.) See the Further Read-
ing section at the end of this chapter for some sources that discuss element
identification.

Assign Responsibilities to the Elements . Once you have identified candi-
date elements, your next activity is to assign clear responsibilities to them—
that is, the information managed by the element, the services it offers to other
parts of the system, and the activities it initiates. You may have done this in
the previous step; if not, complete it here.
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Design the Interfaces. The services offered by your elements need to be
accessed via well-defined interfaces. The definition of an interface must
include the operations that the interface offers; the input, outputs, precondi-
tions, and effects of each operation; and the nature of the interface (messag-
ing, remote procedure call, Web service, and so on).

A good approach to consider when developing element interfaces is
Design by Contract, an interface design method originally created by Bertrand
Meyer for developing interfaces in object-oriented systems. This approach
involves defining interfaces via “contracts” that use preconditions, postcondi-
tions, and invariants to precisely define operation behavior and relationships.

The appropriate notation for interface definition depends on the type of
interface and who needs to understand this information (considering factors
such as the likely implementation technology, the background of the develop-
ment team, and the kinds of interfaces that need to be described). The follow-
ing are some common interface definition notations.

� Programming languages: Interfaces can be defined directly by using a 
programming language to define the operation signatures along with text 
and/or language assertions to define the operation semantics. This 
approach is simple but ties you to the style, assumptions, and limitations 
of the particular programming language. This may not be ideal, particularly 
if you’re using multiple technologies. This approach works particularly  well 
for programming libraries or in other situations where the system is really 

EXAMPLE Table 17–3 shows the responsibilities assigned to two of the 
elements for the e-commerce system described in earlier examples.

TABLE 17–3 EXAMPLES OF ELEMENT RESPONSIBILITIES

Element Class Responsibilities

Web Shop • Present customers with an HTML-based user interface they can access 
with a Web browser.

• Manage all state related to the customer interface session.
• Interact with other parts of the system to allow customers to view the cat-

alog and stock levels, buy goods, and view their customer information.

Customer Information 
System

• Manage all persistent information about customers of the system.
• Provide a query-only interface that can be used to retrieve information 

held on a particular customer that should be visible to that customer.
• Provide an information management programmatic interface that can 

be used to create customer information management applications.
• Provide an event-driven message-handling interface to accept details of 

orders placed by customers and the state changes of those orders.
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a single, large programming artifact or where a single programming lan-
guage is used to implement the entire system.

� Interface definition languages (IDLs): Specialist IDLs have been devel-
oped to support mixed-language distributed systems technology (so 
there is an IDL for CORBA, an IDL for .NET, WSDL for Web services, and 
so on). These languages are independent of implementation technology 
and tend to offer simpler facilities than programming languages do, more 
suitable for defining architectural interfaces. Provided that your inter-
ested stakeholders can read (or be taught to read) them, these languages 
offer a good option for defining operation signatures. 

� Data-oriented approaches: Interfaces can also be described purely in 
terms of messages that are exchanged. Examples of this type of interface 
definition include interfaces accessed via messaging systems and inter-
faces defined in terms of structured document exchange (e.g., document-
oriented, Web-service-based interfaces with messages defined using 
XML Schema). This approach works particularly well for event-based 
interfaces that are defined in terms of the exchange of business events 
rather than the invocation of operations.

Whatever notation you use to describe interfaces, remember that an interface
is significantly more than just a simple definition of how you call the
operations. Unfortunately, none of the approaches we have described offer
facilities for defining interface semantics, and so a clear definition of an inter-
face will involve the use of natural language or specialist languages like Object
Constraint Language (OCL) to achieve this. An interface definition must accu-
rately communicate the pre- and postconditions of each operation and how the
operations should be combined in order to perform a useful function (preferably
with examples). Anything less than this is likely to cause significant problems
when the interfaces come to be used.

Design the Connectors. The elements of your system need to communi-
cate in order to achieve the system’s goals, and as you identified your ele-
ment responsibilities, you probably noted the need for elements to interact in
order to implement their responsibilities. The interactions take place across
connectors of some sort that link delegating elements to the interfaces
offered by the elements to which they wish to delegate. Sometimes the type
of connector required is self-evident (such as a simple procedure call),
whereas in other cases you’ll need to think carefully about whether you need
synchronous or asynchronous communication, the resiliency required of the
connector, the acceptable latency of interactions across it, and so on. For
each required interelement communication path in your architecture, add a
connector to the model to support it (be that RPC, messaging, file transfer, or
other mechanisms).
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Check the Functional Traceability. The requirements documentation for
your system will have defined a number of functions that the system has to of-
fer. You should carry out a traceability check to ensure that all functional
requirements have been met by the proposed functional structure. Such an anal-
ysis often reveals missing or incomplete functions in the functional structure
model. If it needs to be captured formally, the traceability analysis is usually pre-
sented as a table of functional requirements cross-referenced against the func-
tional model elements with responsibilities relating to those requirements.

Walk through Common Scenarios. It can be extremely valuable and illu-
minating to walk through common system usage scenarios with your stake-
holders, using the Functional view to illustrate how the system will behave in
each case; doing this with the testers, the development team, and the system
administrators can be particularly useful. In such a walkthrough, you should
explain how the system’s elements would interact in order to implement the
scenario. Often, architectural weaknesses or misunderstandings as well as
missing elements are identified as part of such a process. Such a walkthrough
can form part of a larger architectural assessment exercise such as that intro-
duced in Chapter 14.

Analyze the Interactions. Given the impact that excessive interelement
interactions can have, it is useful to analyze the chosen structure from the
point of view of the number of interelement interactions taken during com-
mon processing scenarios. Refining the functional structure to reduce inter-
element interactions to a minimum set without distorting the coherence of the
functional components usually results in a well-structured system with cohe-
sive, loosely coupled elements. It is typically an important step toward an effi-
cient and reliable system. When performing interaction analysis, you need to
make tradeoffs to ensure that reducing interelement interactions does not
result in a distorted system structure with undesirable redundancy or inap-
propriate element partitioning.

Analyze for Flexibility. Successful systems are always under pressure to 
change. Given this reality, you should consider how flexible your architecture 
is in the face of change, as early in the project as you can. The functional 
structure of a system is often one of the primary factors affecting the flexibil-
ity of information systems. It’s useful to work through some “what if” scenar-
ios that reveal the impact of possible future changes on your system. A common 
problem at this point is that the changes implied by the change analysis conflict
with those suggested by the interaction analysis. Therefore, it is important that 
you trade off these two factors during architectural evaluation in order to find the 
right balance for your system, and that you avoid burdening your design with 
complexity that will never be used. Again, assessing this can be part of your 
architectural evaluation activities; we talk more about this aspect of design in 
Chapter 28.
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PROBLEMS AND PITFALLS

Poorly Defined Interfaces
Many architects define their elements, responsibilities, and interelement rela-
tionships well, yet totally neglect their connectors and interface definitions. De-
fining interelement interfaces clearly can often be something of a chore.
However, it is one of the most important tasks you can perform for the system.
Without good interface definitions, major misunderstandings will occur between
subsystem development teams, leading to a range of problems from build errors
to obviously incorrect behavior to subtle, occasional system unreliability.

RISK REDUCTION

� Define your interfaces and interelement connectors clearly and as early 
as possible. 

� Review interfaces and connectors frequently to ensure that they are 
clearly understood. 

� Do not consider element definition complete until interfaces have been 
designed.

� Make sure that interface definitions include the operations, their seman-
tics, and examples where possible.

Poorly Understood Responsibilities
It is easy to become very focused on a couple of key scenarios and to consider
the functional elements only in this context. If you don’t define all of the
responsibilities of the elements (and don’t perform traceability analysis), a lot
of confusion can remain over exactly what each functional element is meant
to do. This often leads to problems later: Either functionality is missing
because it fell between the gaps, or functionality is duplicated because two
subsystem development teams both thought that a piece of functionality was
their responsibility.

RISK REDUCTION

� Ensure that element responsibilities are formally defined as early as possible.

� Do not allow the development process to drift into element design without el-
ement responsibilities being formally defined and agreed upon. 

� Make sure that all implementers understand where their boundaries are 
(and why they are there).

� Make sure that all requirements have been mapped to the elements that 
implement them.
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Infrastructure Modeled as Functional Elements
In general, you should not model underlying infrastructure as functional ele-
ments. Adding infrastructure elements to the Functional view simply makes it
more confusing without adding useful information. Infrastructure can nor-
mally be hidden inside the functional elements; the Deployment view defines
the infrastructure in more detail. Include infrastructure elements only if their
role is important to understanding how the Functional view works (e.g., you
might want to include a messaging gateway that performs some functional
processing for you, but it’s very rarely the case that including the application
server you are using adds anything).

RISK REDUCTION

� Avoid modeling underlying infrastructure elements as you develop your 
initial element model. Focus on functional elements that solve part of the 
problem the system is going to address. 

� Question the need for any elements that do not have names related to the 
domain of the problem being addressed. 

� Address specific infrastructure concerns in another view (typically, a 
Deployment view).

Overloaded View
The Functional view is the cornerstone of the AD and is often the primary
structuring device. However, beware of letting it become all of the views
rather than just the central view. It is often tempting to overload the Func-
tional view with the intent to make things clearer by adding deployment or
concurrency information or other aspects of the architecture to this view. If
you decide to use a compound view, make this an explicit decision. Don’t al-
low the Functional view to simply creep into being an overloaded description
of many aspects of the system. Such a description is very unlikely to be easy
to understand and therefore is of limited use.

EXAMPLE Figure 17–5 shows an example of what we mean by view 
overloading.

This model has a number of problems (even assuming that good 
textual descriptions are used to back up the diagram to form a complete 
model). It’s obviously related to UML 2, but various bits and pieces of ad 
hoc notation have been added: the dashed line from the Socket Library 
box to the Web Server box, the dashed lines within the Server Node(s) 
box, and so on. This means that we don’t really know what the diagram
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RISK REDUCTION

� Remove everything from your Functional view except for items related to 
the functional elements and their interfaces and connectors. 

� Create other views, based on the other viewpoints we define in this book, 
to describe the other aspects of your architecture. 

� Develop the other views in parallel and cross-reference between views to 
illustrate other aspects of the architecture. (We talk about this in 
Chapter 23.)

means and will have to ask the architect who drew it. We can probably dis-
cern enough for ourselves to continue, although some problems remain.

� The system provides a salesperson with an interface to allow 
something (perhaps a holiday or flight) to be booked.

� A number of server-side components (presumably Enterprise Java 
Beans, given the name used) implement something on a server 
computer. However, we don’t know what components exist, just 
that (presumably) there is a group of them.

� The server components appear to be implemented by using a utility 
library that in turn uses a calendar library (presumably for special-
ist calendar processing for dates). This implies that a layered 
model is planned for the component design.

� A number of processes run on the server computers: one for the 
Web server, one for the application server, and one for the Oracle 
database management server. (We’re interpreting the dashed lines 
as operating system processes.)

We can discern this sort of information from the model (and presum-
ably could untangle the notation if we could talk with the architect); the 
real problem is the overloading of the diagram. Even in our initial un-
derstanding of it, we need to consider functional structure, deployment 
across machines, concurrency, software design constraints, and so on. 
These are separate concerns, at different abstraction levels, of interest 
to different stakeholders. The result is that none of the concerns are 
addressed very clearly, and this model probably can’t be used with any 
of our stakeholders apart from developers and testers (and even they 
will probably need more detail about each of their concerns).

The overloading of the model is probably also one of the reasons that 
the notation is confusing. It is very hard to overload a diagram’s func-
tion and not end up with notational confusion because of the need to 
represent a number of unrelated concepts together on one diagram.
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Diagrams without Element Definitions
When developing models that are inherently structural in nature (such as the
functional structure model), there is a tendency to draw the diagram repre-
senting the model’s structure and then to move on to something else without
really defining the entities shown in the model. Defining each of the model
elements carefully can be a tedious process, but unless this is done well, the
model is meaningless.

RISK REDUCTION

� Define each element as it is added to the model, and review the defini-
tions with your stakeholders to check that the definitions are clear and 
accurate.

� Do not consider the model complete until every element has a good definition.

Difficulty in Reconciling the Needs of Multiple 
Stakeholders
The central role of the Functional view means that most stakeholders are
interested in it. This can cause you significant problems when formulating

FIGURE 17–5 VIEW OVERLOADING
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the view—how do you create a view description that means something to all
of these different types of stakeholders? End users, developers, system
administrators, and all of the other groups have specific interests and needs,
and you often need to communicate with each in a different way. It is often
difficult to identify a single model or notation suitable for use with all of
these parties.

RISK REDUCTION

� Use different modeling languages with different stakeholders. In gen-
eral, stakeholders break into two major groups—technical stakeholders 
and nontechnical (business) stakeholders.

� You can communicate effectively with the technical stakeholders by 
using your primary architectural models (such as the functional structure 
model). Some explanation of notation may be required, but on the whole 
a technical stakeholder will understand these models.

� The nontechnical stakeholders are unlikely to understand your primary ar-
chitectural models, so you’ll need to create simplified models for them, 
derived from the primary models. We have found that a less technical 
notation (such as the sketches we described in Chapter 12) with brief 
textual annotation is often a more effective communication medium here.

Wrong Level of Detail
A common question when creating the Functional view is when to stop. If the
process of functional analysis becomes too detailed and ends up defining too
many layers of elements, you are starting to design all of the software, rather
than just the architecturally significant parts. This can cause real problems,
not least of which is the lack of input from the development team. Conversely,
if you don’t include enough detail, there is a risk that people will misinterpret
your ideas and the system won’t be able to deliver the qualities that you need
it to. Obviously, there is no simple solution to this problem—it depends on the
context.

RISK REDUCTION

� Our experience suggests that if you have to define more than two or 
three levels of elements, assuming a limit of about eight to ten functional 
elements at the top level, you may have a problem. So, if possible, keep 
your level of detail below this limit.

� Another danger sign can be the inclusion in the Functional view’s models 
of details about the workings or internal structure of functional elements. 
If your system is very large, modeling it as a group of systems rather than 
working down into the elements would make the problem tractable.
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“God Elements”
Software designers often see object-oriented designs that have a single huge
object in the center, with lots of small objects attached to it. This situation is often
dubbed the “God object” problem. The underlying problem in such cases is usu-
ally an inappropriate partitioning of responsibilities among design elements—the
large object (often called “Manager”) is really the entire program, and the small
objects are often just data structures that this object uses. A very similar problem
can exist in ADs, particularly if you consolidate too zealously (perhaps as a result
of interaction analysis).

This problem leads to a situation where the system is hard to maintain
because the God element is terribly complex and difficult to understand. It
also results in this one component’s characteristics dominating the quality
properties that the system exhibits. It becomes difficult to solve related prob-
lems like performance, reliability, or scalability because they all involve
changing this one system element.

RISK REDUCTION

� Aim for a broadly even distribution of system-level responsibilities 
among your major elements. As a guideline, if you find more than 50% 
of your system’s responsibilities concentrated in less than 25% of your 
functional elements, you may be heading toward a number of large ele-
ments and your system will lack cohesion, be difficult to develop, and be 
resistant to change.

Too Many Dependencies
The converse to the God object problem is static object diagrams that look like a
number of spiders fighting for control. Complex interactions between el ements

EXAMPLE The UML element diagram in Figure 17–6 illustrates the sort 
of structure that often suggests the presence of a God element in your 
system.

In this situation, the Customer Management system element appears 
to exhibit the major characteristic of a God element, namely, nearly all 
interelement interactions involve it. From this structure, it is likely that 
the Customer Management element contains too much of the system’s 
functionality and has dependencies with too many of the system’s ele-
ments. Repartitioning the system into a set of elements with more 
evenly distributed functionality would make sense.



CHAPTER 17 � THE FUNCTIONAL VIEWPOINT 291

make the system harder to design and build and may lead to a solution that is
hard to change and performs poorly.

RISK REDUCTION

� This problem can often be the symptom of too many small elements in 
the system; practicing some judicious compression may help you resolve 
it.

� In general, a system element should need to be aware of the existence of 
only a couple of other elements in order to perform its functions. If any of 
your elements need to use services from more than 50% of the other ele-
ments in the system, consider revising your functional structure.

CHECKLIST

� Do you have fewer than 15 to 20 top-level elements?

� Do all elements have a name, clear responsibilities, and clearly defined 
interfaces?

� Do all element interactions take place via well-defined interfaces and 
connectors that link the interfaces?

� Do your elements exhibit an appropriate level of cohesion?

� Do your elements exhibit an appropriate level of coupling?

� Have you identified the important usage scenarios and used these to 
validate the system’s functional structure?

FIGURE 17–6 A GOD ELEMENT
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� Have you checked the functional coverage of your architecture to ensure 
that it meets its functional requirements?

� Have you defined and documented an appropriate set of architectural 
design principles, and does your architecture comply with these principles?

� Have you considered how the architecture is likely to cope with possible 
change scenarios in the future?

� Does the presentation of the view take into account the concerns and 
capabilities of all interested stakeholder groups? Will the view act as an 
effective communication vehicle for all of these groups?

FURTHER READING

Many software architecture books focus on the functional aspects of architec-
ture, and the subject is (rightly) central to those that take a broader view. In
addition to the many books we mentioned in Parts I and II, the following are
relevant to the concepts we introduced in this chapter.

Clements et al. [CLEM03] is a detailed, thorough, and practical guide to
documenting various architectural styles. In the context of this chapter, the
discussions of overloading views and documenting the various styles of inter-
faces are particularly pertinent. Garland and Anthony [GARL03] describes
how to go about designing the software architecture for large-scale informa-
tion systems; the approach we suggest for modeling message-oriented ele-
ment interactions comes from this book. The techniques we outline for
element identification are based on the architectural “unit operations”
described in Bass et al. [BASS03], where they are described more fully.

Many good books explain UML in a tutorial style [FOWL03a, MILE06],
and there are a number that focus on how to use it to produce rigorous archi-
tectural descriptions [CHEE01, DSOU99]. Another timeless book that explains
how to produce rigorous models is [COOK94], now out of print but freely
available in PDF form (www.syntropy.co.uk/syntropy). Checkland [CHEC99]
presents an approach to understanding real user requirements, using an
informal diagrammatic approach called the “rich picture” (analogous to our
description of sketches) to help communicate with end users.

Meyer [MEYE00] is the definitive reference on Design by Contract (and
much more related to object orientation), and Mitchell and McKim [MITC02]
provides a nice, concise, practitioner-oriented introduction to the approach.
Wirfs-Brock et al. [WIRF90] is one of the original books on responsibility-
driven design, and a refinement to the approach by the same lead author can
be found in [WIRF02]. Finally, Shaw [SHAW94] is one of the first written
attempts to explain why connectors between elements are just as important to
models as the elements themselves.

www.syntropy.co.uk/syntropy
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18
THE INFORMATION
VIEWPOINT

The ultimate purpose of any information system is to manipulate data in
some form. This data may be stored persistently in a database management
system, in ordinary files, or in some other storage medium such as flash
memory; or it may be transiently manipulated in memory while a program
executes.

Definition Describes the way that the system stores, manipulates, manages, 
and distributes information

Concerns Information structure and content; information purpose and usage; 
information ownership; enterprise-owned information; identifiers
and mappings; volatility of information semantics; information stor-
age models; information flow; information consistency; information 
quality; timeliness, latency, and age; and archiving and information 
retention

Models Static information structure models, information flow models, infor-
mation lifecycle models, information ownership models, information 
quality analysis, metadata models, and volumetric models

Problems and 
Pitfalls

Representation incompatibilities, unavoidable multiple updaters, 
key-matching deficiencies, interface complexity, overloaded central 
database, inconsistent distributed databases, poor information qual-
ity, excessive information latency, and inadequate volumetrics

Stakeholders Primarily users, acquirers, developers, testers, and maintainers, but 
most stakeholders have some level of interest

Applicability Any system that has more than trivial information management 
needs
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Nowadays, many organizations possess massive amounts of information
on their customers, their products or services, their own internal processes, and
their competitors. Although some of this information may be hard to access,
inconsistent, and inaccurate, it still represents a substantial asset—one that, if
correctly used, can bring substantial benefits. We see this often in large sys-
tems integration projects that attempt to bring together information from a vari-
ety of sources to produce a consolidated customer view, an integrated view of
the supply chain, or an accurate financial picture.

Formal data modeling and design can be a long and complex process. As an
architect, you can do data modeling only at an architecturally significant level of
detail. You need to focus on those aspects of the data model where getting it wrong
would affect the system as a whole rather than just a part of it. Your task is to
develop a summary view of static information structure and dynamic information
flow, with the objective of answering the architecturally significant questions
around ownership, latency, relationships and identifiers, and so forth.

You use the Information view to answer, at an architectural level, questions
about how your system will store, manipulate, manage, and distribute information.

CONCERNS

Information Structure and Content
The structure and content of the information that your system manages are
clearly significant concerns. Your challenge as an architect is to focus on the
most important aspects of information structure, those that have system-wide
impact, and to leave most of the modeling and decision making to the data
modelers and data designers.

You should focus on a relatively small number of data items (entities,
classes, and so on) and the relationships among them. Deciding which data
items are important depends on the problems you are trying to solve and the
concerns of your stakeholders. However, you should bear the following in
mind when selecting the data items of interest.

� Focus on a small number of data items that are core to the primary 
responsibilities of your system or that your stakeholders view as particu-
larly significant or meaningful. When considering the interests of the 
stakeholders, primarily consider your users, but also take into account the 
concerns of other stakeholder types such as maintainers.

� Focus on information-rich data items, rather than ones that have few 
attributes (e.g., type entities are typically less important in architectural 
information models). Choose data items that:

• Are fundamental to the nature of the concerns being addressed
• Are significant to the users or other stakeholders
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• Have a complex or poorly understood internal structure
• Can have a significant impact on the system’s quality properties, 

depending on how they are represented
• Are heavily used or volatile (the contents are expected to change 

frequently)

� In the early stages of developing your models, try to focus on abstract 
rather than physical information, and keep the models simple. Don’t 
worry too much about formal modeling techniques such as relational 
normalization at this point.

� Your early models should typically align with and be driven by your 
system’s functionality, and you should be concerned less with physical 
considerations such as location or ownership (although we address these 
issues and others in this chapter).

Information Purpose and Usage
Information can be used in different ways—to support operational processes,
such as taking an order or making a payment; to present current operational sta-
tus, such as stock levels or production rates; or to analyze historical information
and uncover trends and patterns. While it is the same information in each case,
the distinction is important in the design of information systems, since the dif-
ferent usage patterns often have significantly different information ownership
rules and may require significantly different architectural solutions.

� Most information systems have at their heart a transaction store or 
online transactional processing (OLTP) database. The transaction store 
manages the information required to support day-to-day operational 
business processes. This information is highly volatile, and the system 
needs to be able to process a large number of concurrent read and write 
operations with short latency and high reliability. 

� If the system has significant reporting requirements, this can put a severe 
strain on the transaction store. A long-running or complex query can dis-
rupt access by operational users, leading to increased response times and 
lower throughput. For this reason, some systems implement a separate 
reporting database to service these large queries, which is fed in batch or 
real time from the transaction store. The reporting database is essentially 
read-only (apart from the incoming information feeds) and is optimized 
for complex ad hoc queries rather than updates, with many indexes and 
significant denormalization.

� The transaction store and reporting database usually store only information 
related to current activity, such as open orders, current stock levels, or today’s 
prices. Some users require access to historical information, to look at individ-
ual transactions or to analyze and summarize the information in different
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ways. Historical information is usually managed in a separate data ware-
house, sometimes called an online analytical processing (OLAP) data store. 
The data warehouse may in turn feed into more specialized data marts, which 
manage information from a specific domain or time period. The data ware-
house holds a record of all activity going back many years and can be used to 
retrieve specific historical information or to analyze trends over time. 

� Most systems rely heavily on reference data (sometimes known as static,
master, or lookup data), which is the information on people, places, and 
things that categorizes or classifies the system’s transactional informa-
tion. It includes a wide range of business entities, such as calendars, 
customers, products, parts and supplies, prices, locations, employees, and 
external organizations. It also includes the “type” information (such as 
product type or employee role) that characterizes other information. Every 
organization has its own definition of what it classes as reference data, 
but it is almost always fairly static, changing relatively infrequently, and 
there is usually much less of it compared with transactional and opera-
tional information. As we will see shortly, reference data may not be 
owned by your system, which can be a significant architectural challenge.

While the distinction here may not be important in the early days of an infor-
mation system, over time the system will amass larger and larger volumes of data.
It will be much easier to hive off a separate reporting database, data warehouse,
or enterprise data store in the future if the initial architectural design has taken
this possibility into account and allowed for the impact of partitioning, speeds of
different stores, data duplication between stores, and so on.

Information Ownership
In many architectures, particularly those that involve the integration of new
and/or existing systems, information is physically distributed across multiple
data stores and accessed in different ways. This situation, while often un-
avoidable, creates all sorts of problems.

� Which copy of a particular data item is the most up-to-date one?

� How do you keep synchronized any information held in multiple places?

� How do you deal with information that is derived from information 
managed and owned elsewhere, such as account balances derived from 
account activity?

� What validation and business logic should be applied to the modification
of data items, and what assumptions can be made about data items that 
have been validated elsewhere?

� If the same data item can be modified in several places, how are conflicts
reconciled?
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A useful way to analyze these problems and develop architectural strategies
to handle them is to develop a model of information ownership. The information
owner (or master) of a data item is the system or data store that contains the
definitive, up-to-date, validated value of that data item. The information owner
always has the correct value for that information and can act as the final arbiter
when any disputes over accuracy occur.

By defining the owner of each data item, you can ensure that your infor-
mation consumers are always working with the right information and that
your information producers write it only to the correct place. When this is not
possible in practice, you can analyze potential conflicts and inconsistencies
and then develop strategies to deal with them.

EXAMPLE An insurance company employs a large number of workers 
who visit customers at home to sell them financial products. The com-
pany maintains a central database of customers and prospects, an ex-
tract of which is downloaded to each salesperson’s laptop when visiting 
the office. Whenever a sale is closed at a customer’s home, the informa-
tion is stored in a holding area on that laptop until it can be uploaded to 
the central database later.

The company opens a call center that allows customers to update their 
details and also offers limited capabilities to sell products. This leads to 
an increase in the number of complaints for various reasons. Some-
times, details stored on laptops overwrite more recent data on the central 
database, and vice versa. In other cases, updates to the central database 
are rejected because they fail the central system’s more stringent valida-
tion.

In order to address these problems, the architect first has to agree 
with the business stakeholders on some general rules about how to deal 
with update conflicts and failures (e.g., recent updates always override 
older ones). These rules are then coded into the central system and 
laptop applications.

EXAMPLE A national system for registering motor vehicles operates 
from a number of semiautonomous regional centers. Each center is re-
sponsible for registering vehicles purchased in that region. Each vehicle 
must be allocated a unique number, but conflicts could arise because 
there is no real-time communication between the regional centers. (In 
information ownership terms, each center is a creator of the vehicle reg-
istration number data item.)
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A by-product, incidentally, of your information ownership analysis will
be a high-level definition of some of your system’s interfaces. Where one sys-
tem is an information owner and another is an information consumer (or
maintains a copy of that information), some sort of interface is required be-
tween them. You can use the interface definitions to cross-check the models
in your Information view against the models in your Functional view. Any in-
terface derived from information ownership rules should also exist as a pro-
cess flow between the two participants.

Enterprise-Owned Information
Nowadays many large organizations maintain “enterprise” sources of important
information, and you are usually required to use them rather than owning and
managing such information yourself. Enterprise information is usually highly
valuable to the organization, and the consequences (to you, and to the organiza-
tion as a whole) of it being incorrect or out-of-date are severe.

The most common form of enterprise information is enterprise reference
data. (As we described earlier, reference data is the information on people,
places, and things that categorizes or classifies your system’s transactional in-
formation.) This may be general-purpose information, such as country codes or
currencies, or it may be specific to your organization, such as products, suppli-
ers, or customers. You may also need to make use of more volatile enterprise
information, such as end-of-day stock levels or account balances.

Your system may be expected to access enterprise information directly
from the source system when it needs it, or it may be required to maintain
its own copy that is refreshed regularly in real time or batch. In some cases
your system may also need to update the enterprise information itself, using
standard mechanisms and business processes defined by the information
owner.

In any case, the enterprise information your system uses must be
accurate, up-to-date, consistent, and complete. There are several ways this
can be achieved, each of which has implications for users as well as for the
architecture.

The problem is resolved by partitioning the information ownership, 
that is, by allocating to each center a separate, distinct range of numbers 
to assign to vehicles purchased in its area. Care must be taken to ensure 
that the ranges will never overlap. This is done by making each range far 
larger than the anticipated number of cars to be registered: The North 
center is given the range 1 to 100 million, the West center 101 million to 
200 million, and so on. 
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As discussed elsewhere in this chapter, each of these different access mod-
els has its advantages but also may lead to problems. Data that is refreshed on
an overnight batch schedule may be out-of-date when it is used. Obtaining data
in real time mitigates this problem but is more complicated to implement and
manage. Accessing a single central repository ensures that data is always up-to-
date, but the repository becomes a bottleneck and a single point of failure, and it
may not be feasible to do this for systems that are geographically dispersed.

We address some of these concerns further in our discussion of the Location
perspective in Chapter 29.

Identifiers and Mappings
Whether information is managed by using relational entities or objects and
classes, each data item needs a unique identifier or key that distinguishes it
from others of similar type (e.g., customer number, machine serial number, or
ISBN). In relational database terminology, this is called a primary key; in object-
oriented programming, the term object ID is often used; a more useful general
term (which does not assume any underlying information model) is identifier.

EXAMPLE A travel agency has branches across the country and also 
sells directly to customers over the Internet and from a call center. The 
travel agency has started a customer affinity program and wants to 
build a system to make holiday recommendations to select customers 
based on their preferences, budgets, and travel history. The system will 
make use of various types of enterprise reference information, including 
details of holiday destinations, tour operators, airlines, and hotels. In 
addition, it will use more volatile enterprise information on standard 
pricing plans and special offers.

All of this enterprise reference information is held in central data 
repositories but needs to be managed in different ways. Information on 
holiday destinations, airlines, and tour operators changes rarely, and a 
copy can be downloaded to the system’s own database weekly. Hotel 
information and list prices are more volatile, and an overnight extract is 
required. Special offers arise at short notice, and a “semi-real-time” feed 
of these is needed (in reality, a small batch extract that runs at regular 
intervals during the day).

Affinity customers sometimes like to suggest hotels they have used 
in the past but are not on the travel agency’s database. In this case the 
system needs to be able to upload the hotel details to the enterprise 
store, and after some validation these should be added so that they are 
available for other systems to use.
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When information is spread over multiple repositories, identifiers often
become an issue. Different systems may use different mechanisms to identify
the same data item, and these mechanisms will need to be reconciled at points
where data exchanges occur. Because key assignment can be a volatile activ-
ity (consider a sales system where many new orders are created per second),
you will need to keep this reconciliation process up-to-date with new infor-
mation as it arrives.

Problems like these can often be only partially addressed by architectural ca-
pabilities and features. Defining standard identifiers for teams and players in
this example will help, but business process changes will also be required to en-
sure that users of the system carefully map names to their correct identifier—
perhaps by being required to pick names from a drop-down list rather than type
them in directly. However, imposing rules like these can make a system awkward
to use, and you should collaborate carefully with your business stakeholders to
come up with a solution that is both usable and effective (perhaps using an ex-
ception workflow to confirm the correctness of automatically matched identifi-
ers, allowing partial automation with manual input to ensure data quality).

There are many other architectural challenges associated with the use of
identifiers. For example, identifiers are normally invariant, that is, they never
change over the lifetime of the data entity that they identify. However, it is
not always possible to enforce this rule. In such cases, the mechanisms (and
business processes) for creating and changing identifiers must be very care-
fully specified and designed.

There can also be some subtleties around the question of whether two
data entities actually represent the same thing and should therefore have the
same identifier. For example, every book is allocated an ISBN (International
Standard Book Number) when it is published. A second edition of the  book

EXAMPLE A newspaper captures sports information submitted by jour-
nalists along with results and scores that arrive electronically. The paper 
collates the information and publishes daily league tables for individual 
competitors and teams. Although the paper’s own central database allo-
cates identifiers to each competitor and team, most of the information 
sources refer to them only by name—and in the case of foreign competi-
tors, these names are not always spelled correctly.

The database is suffering some significant information quality issues. 
Scores and results are sometimes allocated to the wrong player or team, 
phantom teams with spellings similar to real ones are created regularly, 
siblings’ results are often allocated to the wrong person, and some results 
fail to be loaded at all.
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may contain only minor revisions and corrections, or may be substantially
different, with a new structure and a substantial amount of new content.
Should such a major revision be allocated a new ISBN? If so, how can it be
linked to the ISBN of the first edition? If not, how are the two editions distin-
guished from one another? In this example, there are agreed-upon rules
about allocating ISBNs, but in many cases it will be down to the architect to
decide (or at least capture and agree on the requirements from users).

Another important consideration is whether your identifiers are going to be
user-visible or not. For example, every debit and credit card has a unique 16-digit
card number that the cardholder uses when making a purchase online or over the
telephone. On the other hand, although each individual purchase on a credit card
statement has its own identifier, this is not usually printed. If a transaction needs
to be queried or confirmed, it is identified by the transaction date, the merchant
name, and the amount (which is usually unique enough for this purpose).

Volatility of Information Semantics
It is common nowadays for the syntax, semantics, and interrelationships of busi-
ness information to undergo frequent and unpredictable change. New fields may
need to be added to existing entities, new constraints and relationships may
arise, or new types of entities may be needed to meet changing business needs.

Although there are mitigation strategies to make such changes less pain-
ful (including abstract database access libraries, tools for impact analysis, and

EXAMPLE Derivatives are financial products whose value is derived 
from the value of some other underlying asset. For example, a share
option gives the purchaser the right, but not the obligation, to buy an 
agreed-upon number of shares at an agreed-upon price at an agreed-
upon date in the future. The derivatives market is constantly changing, 
with new and more complex products being introduced all the time.

When a new derivative product is created, it goes through an approval 
process to ensure that it is sound, that it is compliant with regulations, and 
that its financial parameters are clear. This process can take a relatively 
long time, and in the interim it is common for the product to be allocated a 
temporary identifier so that a provisional price can be quoted and measures 
of value and risk can be calculated. Once the product is formally approved, 
it is given a permanent identifier, which may be different from the tempo-
rary one since it is allocated by a different part of the organization.

A link must be established between the two identifiers, so that the 
provisional quote can be turned into a firm quote and a sale made with a 
clear audit trail.
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designing interfaces to allow for variation and change), even small changes to
an information model can have wide-ranging implications for the systems
that use that information. For example, if a new mandatory field is added to a
database table, every process that creates or updates rows in that table needs
to be changed so that it can provide a value for that field. This process needs
some form of control, traditionally managed through a formal process of data
model change control: The impact of a change on every module in the system
is assessed, and only when all parties have implemented the required func-
tional changes is the database change rolled out.

This approach is established and effective, but it drastically slows down the
rate at which systems can be changed, and in practice change control often ends
up being subverted or bypassed altogether. An alternative approach, which is
more flexible while still retaining a level of control, is to decouple the information
semantics from the physical structures used to store it. A common way of doing
this is to store complex information structures in structured text forms such as
XML, JSON, or YAML, either within a database or in external data files. With a
disciplined approach, and the possibilities that exist today for automation, you
can also take a more dynamic and flexible approach to changing a database
schema, as proposed by the Evolutionary Database Design technique (see Fur-
ther Reading for more details).

The XML family of data management standards includes mature mecha-
nisms for defining the schemas of XML documents and accessing their con-
tents. While changes to the schema still need management and oversight, they
can often be implemented more quickly with less effort. The downside of this
approach is that XML-based systems tend to be less performant and scalable,
due to the XML management overhead and the fact that most database optimiz-
ers don’t work very well with XML data.

Information Storage Models
The third-normal-form relational database is so dominant in enterprise infor-
mation systems that it can be easy to forget that there are other approaches
available for storing information. The following four major types of informa-
tion stores are all in wide use today.

� Relational databases dominate the enterprise information systems land-
scape and need little introduction. A typical relational database contains 
a largely third-normal-form schema and is usually used as some form of 
transactional or operational data store. Relational databases are usually 
implemented using a third-party database management system and allow 
data retrieval and manipulation operations to be expressed in a declarative 
form using the SQL language. They typically enforce data integrity via an 
ACID transaction model (meaning that database transactions are used to 
ensure that updates are Atomic, Consistent, Isolated, and Durable—hence 
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ACID). Well-designed relational databases avoid data duplication (via nor-
malization), are flexible (due to the ability to write queries in an uncon-
strained manner across the data model), can provide good performance 
and scalability characteristics, and are relatively easy to use for small and 
midsize problems. The limitations of a relational database tend to be the 
difficulty of scaling them to very large problems and the complexity of the 
schema and queries that often results when implementing a large enter-
prise application.

� Dimensional databases are another storage model based on the relational 
storage model and can be implemented using standard relational data-
base engines, although specialized column-based or dimensional stores 
are often used instead. Rather than using a third-normal-form schema, a 
dimensional store is based around a multidimensional (or “star”) 
schema model, with large “fact” tables containing the primary data in the 
database, linked to small “dimension” tables that contain classification
data that can be used to group and summarize the fact data. (We de-
scribe multidimensional schemas in the Static Information Structure 
Models section later in this chapter). Dimensional databases are particu-
larly well suited for complicated reporting problems, and so this storage 
model is often used for reporting databases rather than transactional da-
tabases. The major limitation of a dimensional model is the relative diffi-
culty of updating information after it has been added to the database.

� NoSQL databases are a relatively recent development and at the time of 
writing are still fairly rare in mainstream enterprise systems, but they 
have proved their usefulness in many very large-scale Internet services 
for e-commerce, Internet search, and social networking.1 There are many 
data storage technologies that classify themselves as “NoSQL” products, 
and each one has its own unique characteristics, strengths, and weak-
nesses. What is common among the NoSQL products is the fundamental 
tradeoff they have made, which is to abandon the traditional RDBMS 
characteristics of strict tabular data storage and SQL-query-based data 
access (and in some cases ACID transaction semantics) in order to 
achieve simplicity and very high scalability and performance. Most of 
these databases are accessed via a simple “map”-based interface that 
allows records to be stored and retrieved by key, sometimes also offering
simple query facilities based on the attributes of the records being 

1. In fact, the very first commercial database management systems were network and hier-
archical databases, which also didn’t use SQL. Since then, object-oriented databases, which 
also don’t use SQL, have come and gone too. Here we’re referring to the more recent data-
base technologies aimed at solving very large, distributed data management problems that 
have been developed primarily to meet the demands of Internet-scale systems.
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retrieved. This simpler model of data storage allows the database engine 
to be distributed across a very large number of servers, a configuration
that provides good performance and a high degree of scalability. Of 
course, if you decide that you need a rich strongly typed database, or a 
powerful query-processing engine, these technologies are less suitable.

� File-based stores shouldn’t be forgotten either, and even today, a surpris-
ing amount of enterprise data can usually be found stored in flat files. 
Files have the benefits of simplicity and ubiquity and, for some situations, 
the best performance too. They are particularly well suited to “write-once” 
requirements such as logging and auditing. Nearly every technology can 
read and write files directly, and there are a number of simple query 
engines that can be used with flat files to simulate a database. Of course, 
the simplicity of flat files can also make them unsuitable for many 
demanding tasks, where complicated queries, reliable transactional 
updates, or complicated data structures make the use of files difficult.

As an architect, you need a good awareness of the different information
storage models available to you, and you should carefully consider the needs
of your system so that you can match the right sort of storage model to your
data storage requirements.

Information Flow
Just as important as the static information structure is the way that informa-
tion moves around the system and is accessed and modified by its elements.
The important questions here include the following.

� Where is data created and destroyed?

� Where is data accessed, modified, and enriched?

� How do individual data items change as they move around the system?

As with information structure, it is usually necessary to consider only the
most important information flows as part of architecture definition, that is,
those that are crucial to the system’s primary responsibilities or those that
will have a material impact on its quality properties. In any case, because you
will have only a high-level data model to work with, you won’t be able to drill
down into too much detail here.

Because the main purpose of most systems is to process information, in-
formation flow is often analyzed within Functional rather than Information
views. This works well as long as you don’t end up with a small number of
complex, overloaded models that are hard to understand—and as long as you
make sure that the data-specific concerns discussed in this chapter are also
addressed.
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Information Consistency
Information consistency means that information held in different parts of the
system, or in different but related data items, should be compatible, congruent,
and not in conflict. This may be as simple as a referential integrity constraint
(e.g., if a customer is recorded as owning several products of specific types,
these products should all exist) or may be more subtle and complex (e.g., a
summary financial position should always match the underlying data used to
calculate it). Most businesses have sophisticated rules for information consis-
tency, although it is rare in our experience for these to be written down anywhere.

Information consistency is so fundamental to the operation of modern
relational databases that its significance in the architectural context can
easily be forgotten. A classic example, which we repeat here, illustrates its
importance.

EXAMPLE A bank customer uses an automated teller machine to trans-
fer $500 from her checking account to her savings account.

The bank uses two data stores, CHECKING and DEPOSIT, to manage 
these two different types of accounts. The transfer is implemented as 
two updates: a withdrawal of $500 from CHECKING, and a corresponding 
deposit of $500 into DEPOSIT, as shown in Figure 18–1.

It’s essential that either both of these updates complete successfully 
or neither of them do. For example, the transaction might not go ahead 
if the customer doesn’t have sufficient funds in her checking account. If 
only one of the transactions completes, either the customer or the bank 
would lose money.

FIGURE 18–1 TRANSACTION MANAGEMENT FOR FUNDS TRANSFER

ATM

CHECKING
Old Balance: $1100
New Balance: $600

DEPOSIT

Old Balance: $400
New Balance: $900

Withdraw $500

Deposit $500
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A transaction is a sequence of data updates that occur as an atomic unit—
that is, either all updates are accepted and written to permanent storage or
none of them are. Transaction management ensures the right outcome by
committing updates (writing them permanently to disk) only if all updates can
be successfully applied. Transaction management will roll back (undo) all of
the updates if one of them fails.

Transaction management features are provided by all modern relational
database systems, and their use is nowadays almost automatic (although care
must be taken to avoid pitfalls such as heavy contention or deadlocking).
Transaction management across multiple systems is much more complicated
to design, build, and operate, requiring complex techniques such as two-
phase commit. Such techniques can impose a heavy burden on processing
power, leading to increasing latency and response time, and you should use
them only when absolutely necessary.

An alternative approach that avoids some of the difficulties with distrib-
uted transactions is to use compensating transactions to maintain data
integrity. In this model, each data update is committed individually, and if a
later update fails, each committed update is reversed by a transaction with an
equal and opposite effect to the original one. In the preceding example, if the
withdrawal was successful but the deposit failed, a compensating deposit of
$500 to the checking account could be applied to bring everything back to a
consistent state.

Compensating transactions often work better in practice than two-phase
commit since they do not require database locks to be held over separate data
stores at the same time. However, they have problems of their own, particu-
larly if changes cannot easily be reversed or if a compensating transaction
itself fails.

Another approach is known as eventual consistency. In this model, distrib-
uted applications favor high availability over consistency and are designed to
be able to cope with data that is out of synch for a period of time. Such a system
guarantees that after an update, all instances of the same data will eventually
be updated to this value, without guaranteeing how long this will take.

Eventual consistency is used for infrastructure software such as DNS (the
Internet’s Domain Name Service) and for some Internet-scale applications such
as global search engines, e-commerce sites, and social networking sites, but the
principles may also be useful to smaller-scale applications. The model is some-
times referred to as following BASE principles (Basically Available, Soft state,
Eventual consistency) in contrast to traditional transaction management, which
is referred to as ACID (because, as we noted previously, the transactions are
Atomic, Durable, Isolated, and ensure that data is Consistent).

We also discuss the application of this technique as a way of scaling to
very large data volumes in Chapter 26 and its relevance to achieving high sys-
tem availability in Chapter 27.
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Information Quality
The quality of a particular data item is the extent to which the current value
of that data item agrees with the correct value in the real world. Poor-quality
information can have a significant impact on an organization’s ability to
carry out its operations. If you don’t have accurate information about your
customers, for example, you risk annoying them, losing them, or even being
sued by them. (Given all this, it is still a surprise how many systems man-
age to survive on information that is incomplete, incorrect, or outdated,
proving the old adage that something is often better than nothing, even if it
is imperfect.)

Information quality becomes an issue for you as an architect in cases where
the system makes use of information from a variety of sources, particularly
when some of these are external to your sphere of influence. If your information
quality is variable, you must consider such issues as the following.

� How will information quality be assessed and monitored (especially 
when information is frequently updated)?

� What minimum information quality criteria must be met?

� How will these criteria be enforced?

� How will poor-quality information be improved? Will this be done in an 
automated way, or will it require manual intervention?

EXAMPLE A mail-order furniture company has created a marketing 
database from customer orders and requests for brochures or quota-
tions. It uses this customer database to phone customers about special 
offers and to try to persuade them to buy more of the company’s 
products.

Unfortunately, the data in the marketing database has been cobbled 
together from a number of sources and is therefore outdated and inaccu-
rate. Moreover, a number of customers have asked not to be cold-called, 
but these requests have not always been transferred from the spread-
sheet where they’re managed into the marketing database.

As a result, many customers receive cold calls who do not want them, 
or are offered products they already own, or are offered unsuitable 
products (e.g., those that are too expensive). This creates a significant
amount of dissatisfaction among existing and potential customers, lead-
ing to bad publicity and possibly to lost sales.
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� Can good-quality information be corrupted by information of lesser qual-
ity? (For example, a customer address is updated, but the postal code is 
omitted.) If so, should this be prevented or checked?

� Is it possible for information quality to degrade as it flows around the 
system?

The answers to these questions are likely to have implications for your
architecture. For example, it may be necessary to develop or deploy automated
tools for monitoring or assessing information quality or for repairing poor-
quality data. If repairing data needs some human intervention, you may have
to set up a holding area where data can sit until it has been manually repaired.

It is becoming more common to use workflow to address information
quality problems when repair processes cannot easily be automated. In this
model, a list of tasks, such as correcting a customer’s name or address or
dealing with a suspect transaction, is managed in a central database. Tasks
are assigned to users and the system tracks their status to completion. Tasks
can either be standardized (defined at design time) or, in the most sophisti-
cated workflow systems, ad hoc (created by someone at runtime). Service lev-
els may be defined that commit the company to fixing problems within a
certain time or at a certain rate.

If well designed, this approach can be an effective way of improving in-
formation quality and customer satisfaction.

Timeliness, Latency, and Age
If your information is held in a single data store and always accessed synchro-
nously in real time, timeliness, latency, and age may not be significant issues.
Unfortunately, many systems do not work this way, and it is inevitable that
some scenarios involve information that is old or out-of-date, if only by a few
minutes.

EXAMPLE A commodity brokerage accepts a number of feeds from 
information sources that provide up-to-date pricing and volume informa-
tion, as well as news stories relevant to the commodities being traded. The 
feeds are all channeled through a single gateway application that sorts, fil-
ters, and distributes the information to appropriate subscribers.

A catastrophic hardware failure renders the gateway unavailable for 
several days. When it comes back online, the subscribers are flooded 
with several thousand cached price messages that, because they are 
several days old, are of no interest to the recipients.
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In this example we have separate information providers (the external
systems that provide pricing and volume information) and information consum-
ers (the internal users who make use of it). Because the process of information
transfer from provider to consumer takes a finite (and possibly long) time,
discrepancies can occur. If the time lag cannot be reduced to close to zero, you
need to work with stakeholders to develop solutions to the problems that may
arise from inconsistent information.

The time lag between the visibility of information to providers and to con-
sumers is expressed by means of latency, the length of time between a data
item being updated at the data source and the updated value being available
to all parts of the system.

You may also need to take into account the age of some data items (the
time since the data item was last updated by its data source). A system that
disseminates information on volatile stock prices, or the physical location of
trucks, for example, may not be interested in information that is hours or
even minutes old. You may be able to discard this information because it is no
longer needed.

You should identify key points where time-based inconsistencies can
arise and, with the help of your stakeholders, develop strategies to handle
them, such as the following.

� Tag important data items with a “last updated” date and time.

� Define “currency windows” for significant data items.

� Warn users when information may be outdated.

� Hide or discard information that may be too old.

� Reduce latency by means of faster interfaces or direct access to data 
sources.

Archiving and Information Retention
In many systems, it is becoming rare for information to be deleted; it may be
kept for legal reasons or for historical analysis. Although disk storage is now
relatively inexpensive, managing large databases is a complex process and
even enterprise disk architectures cannot expand indefinitely, so sooner or
later your information will grow to a point where it is not desirable to keep it

The gateway is modified so that after a failure, it discards cached 
price messages that are older than a certain configurable age. Another 
failure occurs (a change of hardware supplier is called for), and recovery 
is much faster.
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all online. Then you will need to archive older, less useful information to
some other storage medium such as high-capacity offline storage.

You must define carefully the scope of information to archive. It obviously
can’t be information that is still needed to support any production activities,
nor should it be information that is likely to be useful for regular analysis. In-
formation is usually selected on the basis of age combined with business
rules to determine its usefulness.

Your archiving strategy can have a significant impact on your architecture.

� Archiving large volumes of information may make some systems fully or 
partly unavailable for significant periods of time.

� Your physical disk sizing needs to take into account the length of time 
that information will be retained.

� You may need to define the processes that move production information 
to archive media.

� You may need to take special actions to ensure the integrity and consis-
tency of the production and archive storage.

� There may be an impact on the network infrastructure if archive storage 
is remote.

Don’t try to add archival capabilities as an afterthought. Design your
architecture from the beginning in such a way that archiving is a natural part
of the information lifecycle.

Stakeholder Concerns
Typical stakeholder concerns for the Information viewpoint include those
listed in Table 18–1.

TABLE 18–1 STAKEHOLDER CONCERNS FOR THE INFORMATION VIEWPOINT

Stakeholder Class Concerns

Acquirers Concerned with preserving and safeguarding the value of the organiza-
tion’s information assets, so the following are key (although not always 
recognized as such):
• Information quality and archiving
• Reference data
• Information retention 

Assessors Interested in all aspects, with a focus on information structure and flow, 
identifiers and mappings, and information quality

Communicators Rarely focus on detail on the information architecture, but may find a 
background understanding of the key principles and strategies helpful
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MODELS

Data modeling is probably the best-served area of information systems in
terms of established, rigorous, and generally understood analysis and model-
ing techniques. The three most important types of models are the following:

1. Static information structure models, which analyze the static structure of 
the information

2. Information flow models, which analyze the dynamic movement of infor-
mation between elements of the system and the outside world

3. Information lifecycle models, which analyze the way information changes 
over time

We discuss these models in this section—particularly how they are used in
the architectural context—and briefly describe some other types of models
you may find useful, such as information ownership models, information
quality analyses, metadata models, and volumetrics models.

Static Information Structure Models
Static information structure models analyze the static structure of the infor-
mation: the important data elements and the relationships among them.

Entity-relationship modeling is an established technique of data analysis
that is based on a solid underlying mathematical model. Data items of interest

Stakeholder Class Concerns

Developers and main-
tainers

Interested in how the architect’s models will translate into real databases 
and (real-time, batch) information interfaces, and implementation details 
such as how the data structures will support the required processing and 
how consistency will be guaranteed

System administrators Interested in how these real-world system components will be managed 
and supported

Testers Interested in the main database structures, how they are affected by the 
operation of the system, the data flow through the system, and how to 
create realistic test data sets

Users Concerned with functional aspects of the information architecture (e.g., 
information ownership and regulation) and user-visible qualities such 
as timeliness, latency, and age; and information quality

TABLE 18–1 STAKEHOLDER CONCERNS FOR THE INFORMATION VIEWPOINT (CONTINUED)
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are referred to as entities, and their constituent parts are called attributes. The
information semantics defines the static relationships among entities. Each
relationship has a cardinality, which defines how many instances of one of
the entities can be related to an instance of the other.

Class models perform a role similar to that of entity-relationship models but
for the object-oriented world. They model data items (classes), their constituent
data parts (attributes), and the static relationships among them (associations).
It is possible to use class model notation to model relational entities by omitting
the behavioral aspects from the model and limiting the association types (e.g.,
no generalization or composition).

Class models can also document the behavioral aspects of a system, such
as interfaces and methods, and features specific to object-oriented analysis,
such as inheritance. 

NOTATION There are a number of similar notation styles for documenting
entity-relationship models. Figure 18–2 shows an entity-relationship diagram
in the crow’s foot style for the library example.

A UML class model for the same example would look something like
Figure 18–3.

Data warehouses and data marts are usually modeled using more spe-
cialized semantics called a star schema (also known as a multidimensional
schema or cube). A star schema consists of fact tables, which contain nu-
merical data or other “facts” aggregated at many different levels and have
large compound keys. Clustered around each fact table are a number of
dimension tables, which model the different levels at which information can
be aggregated. The chief advantage of using a star schema is that an aggre-

EXAMPLE A library stores a number of books for its members. Mem-
bers check out books for a period of time, after which they are renewed 
or returned. Each book has one or more authors, who receive a fee 
each time a book is checked out. The fee is paid to the author via the 
book’s publisher.

Each of the italicized terms in this description is represented as an 
entity in the entity-relationship model. Attributes of the model include 
book title, author name, ISBN number, and publisher name and address.

EXAMPLE In the previous example, classes would be modeled for 
books, members, authors, and publishers. Methods would provide the 
necessary functionality for checking out books.
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gated value can be retrieved in a single database read, rather than querying
and summing all the underlying transactions. A snowflake schema extends
this model by normalizing the dimension tables into a hierarchical structure.

An example star schema for the library system is given in Figure 18–4
(although in practice a library management system is unlikely to need to
manage the sort of volumes that would necessitate a data warehouse). 

Author

Checkout

Publisher

Book Member

FIGURE 18–2 ENTITY-RELATIONSHIP DIAGRAM FOR THE LIBRARY EXAMPLE

1..*

title: string
isbnNumber: string

Book

checkOut()
checkIn()

name: string
address: string

Publisher

publishBook

name: string
bankAccount: string

Author

publishBook()
payRoyalty()

1..*1..*
name: string

memberNum: int

Member

checkOut()
checkIn()

1..*1..*

FIGURE 18–3 UML CLASS MODEL FOR THE LIBRARY EXAMPLE
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ACTIVITIES Formal information modeling includes a wide range of activities.

� The first step is to identify the important data entities. This is usually 
done by inspecting the business processes and use cases for nouns such 
as customer, product, payment, or event. In an architectural description, 
you should focus on a small number of important entities (for example, 
anything with a “type” in its name can usually be ignored).

� A process called normalization reduces the model to its purest form, in 
which there is no repeated, redundant, or duplicated information. It is 
rare for relational models to be taken beyond third-normal form, and 
from the architect’s perspective it is often more useful (although less 
rigorous) to model some information unnormalized.

� Domain analysis looks at attributes (fields) of data items and the rules 
that define their permissible values. For example, a customer number 
may always be a ten-digit integer with the last digit being a check digit, 
or a telephone number is always a country code followed by a dialing 
code and a number. Domain analysis is important in schema design but 
is usually too detailed for an AD.

� Techniques such as structural decomposition or aggregation are used to 
derive class models. Structural decomposition involves breaking an 

checkout

member

publisher

author

book

date

FIGURE 18–4 STAR SCHEMA ENTITY-RELATIONSHIP DIAGRAM FOR THE LIBRARY EXAMPLE
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element into smaller coherent pieces, while aggregation is the reverse 
process—creating a new element by combining other, similar elements.

Unfortunately, static information structure models are not easily decomposed
into levels of detail—for entity-relationship diagrams in particular, it is, in theory,
“all or nothing.” In practice, you do not have time to produce a hundred- or
maybe thousand-entity information model as part of your architecture. The way
to approach this is to focus on a small number of the most important entities/
classes and the relationships among them.

You can usually omit from your model detail such as intersection entities
(replace these with nonnormalized, many-to-many relationships, as we did in
the entity-relationship diagram shown in Figure 18–3 between author and
book) and type entities (such as product type).

As a very general guideline, if you have more than about 20 to 30
entities, or if your entity-relationship diagram won’t easily fit on a single
page, you have probably presented too much detail. In this case, you need to
either remove some less important entities from the model or use partitioning
and/or decomposition to simplify the overall picture.

Information Flow Models
Information flow models analyze dynamic movement of information between
elements of the system and the outside world.

These models identify the main architectural elements and the informa-
tion flows between them. Each flow represents some information transferred
from one component to another—in other words, an information interface.
Associated with each flow is a direction, the scope of the information trans-
ferred, volumetric information, and (in a physical model) the means whereby
information is exchanged, whether it is a transfer of  flat files or a real-time
exchange of XML messages.

EXAMPLE A publisher supplies lists of newly published books to librar-
ies in a PDF document that is mailed to librarians monthly. When a 
library receives a book, it is accompanied by an electronic delivery note
in the form of an XML file, which is imported directly into the library’s 
book management system. When books are checked out and back in, 
the new state is recorded by means of bar-code readers. When a book is 
disposed of, it is manually marked as deleted in the system by a PC 
application that accesses the database directly.

Each italicized term represents an information flow into, out of, or 
around the system.
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As with static information modeling, you should aim to keep your informa-
tion flow models high-level and simple. It is not necessary to provide much de-
tail at the architectural stage. Fortunately, most notations support this naturally
through decomposition.

Information flow modeling is most useful for data-intensive systems, and
it complements the modeling of interfaces and function invocations in the
Functional view (see Chapter 17), which is often more appropriate to process-
ing-intensive systems. In practice, you usually do only one or the other, de-
pending on the nature of the system, the skills of the architect, and the
interests of the key stakeholders.

NOTATIONThere are a number of information flow notations from classic sys-
tems analysis, such as Gane and Sarson or SSADM data flow diagrams,
although these are as much about process as about information flow.
Figure 18–5 shows an example of a data flow diagram.

The following notation is used in the diagram.

� Large rectangles represent processes that manipulate information.

� Narrow open rectangles represent data stores (logical or physical 
collections of information).

� Arrows represent information flows.

librarian

dispose ofacquire book

librarianbookseller

check out return

member

BOOKS

FIGURE 18–5 DATA FLOW DIAGRAM FOR THE LIBRARY EXAMPLE
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� Ellipses represent external entities (people or other systems that interact 
with this system).

The diagram conveys several pieces of information.

� Members and the librarian provide information to the checkout and 
return processes.

� A bookseller provides information to the acquire book process. 

� The librarian provides information to the dispose of process.

� All this information is written to the BOOKS data store.

Information flow is usually represented in UML using activity diagrams,
which include the same sort of elements as shown in Figure 18–5. 

ACTIVITIES Information flow models are typically created through a process
of stepwise refinement, with the most important flows being considered first
and then broken into further detail where necessary.

You can use your information ownership model, if you have one, to cross-
check against the information flows required to maintain information integrity
where ownership is distributed (as discussed earlier).

Information Lifecycle Models
Lifecycle models analyze the way information values change over time.

Entity life histories model the transitions that data items undergo in response
to external events, from creation through one or more updates to final deletion. A
life history can be a useful cross-check to ensure that there is processing to deal
with all of the life events associated with an entity. In particular, it can help you
ensure that entities are created in a controlled manner and that all entities have a
means of deletion.

State transition models (or statecharts in UML terminology) model the
overall changes in a system element’s state in response to external stimuli.
This is a useful way to model systems whose interactions with the outside

EXAMPLE A book is created when it is published (as far as the library 
system is concerned, anyway). The book is then acquired by the library 
and repeatedly checked out and returned until it is finally disposed of.

Each italicized verb in this description is an event in an entity life 
history for a book.
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world cause their internal state to go through many transitions in seemingly
unpredictable ways. A statechart models a system element as a finite state
machine (FSM). An FSM always has a current state, which is the sum total of
the information it holds. When an external event occurs, the FSM changes
deterministically to another state and may also instigate some special pro-
cessing as a result of the change.

NOTATION An entity life history is usually represented by using some sort
of tree structure, with nodes for each event and branches to represent itera tion,
selection, and so forth, as shown in Figure 18–6.

A UML state diagram uses railroad tracks to represent the possible state
transitions of a book, as shown in Figure 18–7.

EXAMPLE A book is initially published; it is then acquired by the 
library, and once on the shelves it alternates between being available
for loan and checked out, until it is disposed of.

Each italicized term represents a state of a book.

published acquired

checked out returned

disposed of

*

FIGURE 18–6 ENTITY LIFE HISTORY FOR THE LIBRARY EXAMPLE

Published Acquired Available for Loan

Checked Out

  Disposed

FIGURE 18–7 UML STATE DIAGRAM FOR A BOOK IN THE LIBRARY EXAMPLE
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ACTIVITIES Lifecycle models are derived through an understanding of the
system’s functional requirements, by identifying all of the significant events
and understanding the information impact of each.

Other Types of Information Models

INFORMATION OWNERSHIP MODELSInformation ownership models define
the owner for each data item in the architecture. In this context, “data item”
typically means entity (table) or, occasionally, attribute (field), although more
complex partitions can be modeled. Of course, in practice, life is never this
simple, and you may have to model a number of different classes of
information ownership, such as:

� Owner or master, which holds the definitive value for that data item

� Creator, which creates new instances of that data item

� Updater, which modifies existing instances of that data item

� Deleter, which deletes existing instances of that data item

� Reader, which can read but not change instances of that data item

� Copy, which holds a read-only copy of that data item

� Validater, which performs validation on the data item to ensure that it 
meets business rules

� A combination of these

At its simplest level, information ownership can be modeled by using a
grid, with systems and data stores along one axis and data items along the
other. Each cell in the grid defines the ownership class of that data item, as
shown in Table 18–2.

It may be useful to develop a trust and permissions model to define which
systems, under which circumstances, are allowed to modify which data items.
For example, an external system that provides data updates in a weekly batch
might be trusted less than one managed and monitored internally, might require
further validation before updates are accepted, or might be constrained to updat-

TABLE 18–2 EXAMPLE OF AN INFORMATION OWNERSHIP GRID

System Customer Product Order Fulfillment

Catalog None Owner None None

Purchasing Reader Updater Owner Creator

Delivery Copy Reader Reader Updater

Customer Owner Reader Reader Reader
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ing only noncritical data values. As well as being useful here, the definition of in-
formation ownership will be an important input to the process of securing the
system, as explained with regard to the Security perspective in Chapter 25.

In practice, you may not be able to avoid having more than one creator/
updater/deleter for a data item (although it is useful to try to define a single in-
formation owner). This particularly occurs when valuable information is held in
legacy systems. When two systems can modify the same piece of data, you need
to develop conflict resolution strategies, such as the following, to ensure that
business rules are followed and that information is left in a consistent state.

� Always accept the latest update.

� Maintain multiple copies of the same data item, tagged with their sources.

� Maintain a history of data changes rather than just the latest version of 
the data.

� Trust one system more than another, so that system’s updates take priority.

� Create more complex rules depending on the data changed and the nature 
of the change.

� Record multiple values and require manual intervention to fix the conflict.

� Reject conflicting updates altogether.

� Use a combination of these strategies.

With multiple updaters a particular problem is detecting that a conflict has
occurred. This can be addressed by stamping each record with an incrementing
version number and the date and time that the record was last updated.

Although you are unlikely to define detailed rules as part of your AD, it is
important to provide sufficient advice and guidance for your designers.

INFORMATION QUALITY ANALYSIS From the architectural perspective, your
information quality analysis will focus on defining sources of poor-quality
information and principles and strategies for dealing with this information.
Possible strategies include the following.

� Accept poor-quality information: This approach is suitable when poor-
quality information is not an issue or when the cost of repairing informa-
tion far outweighs the benefit of improving it.

EXAMPLE An Internet search engine manages a database of many hun-
dreds of millions of URLs. At any one time, a small proportion of these 
will no longer be valid because pages have been renamed or Web sites 
removed. However, it is not cost-effective for the search engine to regu-
larly clean up its database to remove these links.
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� Automatically fix poor-quality information: There are a number of tools 
available to do this, depending on the type of information.

� Discard poor-quality information: This may be the best approach when 
the cost of bad information far outweighs the cost of not having the 
information at all.

� Repair poor-quality information manually (in other words, get users to 
fix it): This is a very costly approach, however, and you must consider 
how poor-quality information will be identified and how it will be 
forwarded to users for correction. 

Be aware that there may be legislative requirements for information qual-
ity (e.g., some countries charge penalties for maintaining or using incorrect
information on members of the public). We consider this point further in our
discussion of the Regulation perspective in Chapter 29.

METADATA MODELSMetadata is “data about data.” Metadata consists of
rules that describe and prescribe data items of interest—entities, attributes,
relationships, and so forth. Metadata originated in the study of geospatial
data and has had an increased profile in recent years following the growth of
the World Wide Web and various initiatives around business-to-business
communication.

ISO Standard 11197-3 defines metadata as “the information and documen-
tation which makes data sets understandable and sharable for users.” 2 Meta-
data may address a number of aspects of the information it describes, such as:

EXAMPLE You can use tools that will repair or complete addresses or 
telephone numbers, based on databases of postal codes or telephone 
dialing rules.

EXAMPLE A company receives bulk mailing lists of variable quality from 
an external supplier, which it uses to send out marketing material to 
potential customers. For about 10% of the data, postal codes are missing, 
invalid, or do not correspond to the mailing address. Such records are dis-
carded because the company is penalized by the postal service if too much 
of its outgoing mail is incorrectly or incompletely addressed, and material 
sent to these addresses is unlikely to arrive anyway.

2. [ISO96], p. vii.
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� Data format (syntax)

� Data meaning (semantics)

� Data structure

� Data context (the relationships among data items)

� Data quality

Many organizations are beginning to develop enterprise-wide metadata
models; if these are available to you, they can form an extremely valuable
input to your Information view. In addition, a number of cross-industry meta-
data models are being developed under the auspices of groups like the Dublin
Core Metadata Initiative.

Metadata models are closely allied to the other types of information
models we have described, particularly information structure models that
include some elements of metadata (field attributes, relationships, and so
on). Most metadata models take the form of structured (or unstructured)
text, but some more formal notations are available, in particular those based
around XML. 

Some automated tools can extract metadata from large databases. Al-
though these are to some extent in their infancy, they can be extremely use-
ful, especially when dealing with legacy systems whose data internals may
not be well understood.

There are some industry standard data models that may be of use in your
metadata analysis, such as the ARTS Standard Relational Data Model for
retail, or the ISO 20022 standard for financial services messaging.

VOLUMETRIC MODELS Volumetric models look at current and predicted data
volumes. These can range from a few simple calculations on a scrap of paper to
sophisticated statistical models to complete online simulations of systems. At
the architectural level, they are usually kept fairly simple because the execution
details of the system aren’t yet known to any degree of accuracy.

PROBLEMS AND PITFALLS

Representation Incompatibilities
At their simplest, data incompatibilities arise because different systems repre-
sent field-level information in different ways, either by using different models
for the information (e.g., polar versus Cartesian coordinates) or simply differ-
ent encoding schemes (e.g., metric or imperial lengths). For example:

� One system may use Y and N for Boolean values, while another uses 1 
and 0, or hex FF and 00.
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� One system may use standard ISO abbreviations such as FR or DE for 
countries, while another has its own numeric encoding.

� One system may record monetary amounts in euros, while another uses 
the local currency in which the transaction took place.

� One system may record amounts by volume, another by weight.

� One system might keep running totals, and another system might just 
deal in deltas.

These sorts of problems are usually fairly easy to resolve. Much more
problematic, however, are incompatibilities between business models.

Incompatible business models can usually be reconciled only by using
what may turn out to be fairly complex processing. In the example, you would
probably have to develop a subsystem or service that was responsible for
maintaining the links between customers and their accounts. This service
would have to be updated (possibly in real time) when customers or accounts
were created, deleted, or updated, or when the links between them were
changed. It would own and manage the information itself and provide that
data on demand to any other architectural element that required it.

Such a service would sit at the core of the architecture, being accessed by
many other architectural elements, with ambitious targets for performance,
scalability, and availability. This service would need to be very carefully
designed, built, and tested.

EXAMPLE An architecture is required to integrate a telephone billing 
system with another system used to manage prospects, sales, and mar-
keting promotions. A telephone customer may have several phone lines 
or may charge calls on a single line to different charge codes; for this 
reason, the billing system is based on the concept of a telephone 
account. Even worse, some accounts may be held jointly by several cus-
tomers (especially business accounts), and some others (such as public 
emergency phone lines) have no real customer at all.

The sales system is concerned solely with customers (and, more 
important, prospective customers). However, the system needs to know 
about these customers’ existing accounts, as well as other details such 
as payment history and usage, in order to avoid trying to sell customers 
something they already have.

The business models for these systems are fundamentally incompati-
ble, and a lot of work is going to be needed to develop an architecture 
that successfully brings them together.
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RISK REDUCTION

� Develop a common, high-level model of the data structure, the key data 
attributes, and their domains, and validate it against all parts of the sys-
tem (internal and external).

� Review your model with the business to ensure that it reflects reality.

� Focus on a small number of critically important attributes, rather than 
trying to model everything.

� Don’t forget to include external entities in your model (e.g., if you 
exchange data with other organizations).

� Consider developing a data abstraction layer on top of data sources to 
hide the incompatibilities from other parts of the architecture.

Unavoidable Multiple Updaters
When creating distributed architectures, we all strive to achieve models whereby
each data item is updated in one place and one place only. Unfortunately, in the
real world this ambition cannot always be realized, for a number of reasons: Leg-
acy systems cannot easily be changed, information may be sourced from outside
the organization, or there may be limitations imposed by geography or politics.

As we have seen, multiple creators or updaters can have a significant im-
pact on the architecture, and resolving such problems is not always easy.
From the architectural perspective, you need to be aware of where this can
happen so that you can take suitable measures to mitigate the risks.

RISK REDUCTION

� Ensure that your information ownership model is complete and accurate 
and that all data items with multiple updaters are identified.

� Determine with your stakeholders (primarily your users) which of these 
multiple updaters are important, and focus on these.

� Understand where inconsistencies through multiple updaters can arise 
and locate the crunch points where incompatible data items meet.

� Develop strategies for resolving these, such as always overriding old up-
dates with newer ones, or maintaining two copies of data and resolving 
problems manually.

Key-Matching Deficiencies
When you are bringing together information from multiple systems, key-match-
ing problems almost inevitably arise, as we saw earlier. These may not become
apparent until you get into detailed design—by which time it is very expensive to
change the architecture—or, even worse, once the system is running.
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RISK REDUCTION

� Make sure that you have identified keys for all entities, and satisfy your-
self that these keys are compatible across the architecture.

� At all points where information from different systems comes together, 
ensure that you have the means to map keys from one system to the 
other.

� Sample real data and run consistency checks on it.

� Whenever possible, go for common keys and standardized ways of mod-
eling information.

Interface Complexity
If two systems need to transfer information between themselves, one bidirec-
tional interface needs to be built. For three systems, three interfaces are
needed; for four systems, six. In the worst-case situation, if your architecture
comprises n systems, each of which needs to exchange information with
every other, you need to build n(n – 1)/2 interfaces, as shown in Figure 18–8.

Even though it is unlikely that every system in your architecture needs to
exchange information with every other, once you have more than a handful of
systems, the number of interfaces required becomes unmanageable. Change
the interface definition for any one of your n systems, and n – 1 interfaces
need to be redesigned, recoded, tested, and deployed. This represents a signif-
icant burden for developers and often acts as a barrier to change.

System 1

System 2

System 3

System n

etc.

FIGURE 18–8 INTERFACE COMPLEXITY
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RISK REDUCTION

� When interface requirements are complex, consider applying an architec-
tural style called the integration hub. In this model, all systems are linked 
once via a specialized adapter to one central integration hub. The adapter 
performs system-specific translation, and the hub handles message rout-
ing, resilience, and more specialized functions such as publish and sub-
scribe, acknowledgment, and guaranteed delivery. An example is shown 
in Figure 18–9.

The advantage of this approach is that if a system changes, often only 
the adapter for that system needs to be modified. Furthermore, specialized 
code for routing, resilience, and so forth has to be implemented only once, 
in the central hub. (Of course, central hubs also have disadvantages in 
that they are often a single point of failure, can be a scalability bottleneck, 
and ironically can slow down change due to the difficulty of scheduling 
and prioritizing changes to such a critical shared component.) A third-
party product is typically used to implement an integration hub. A large 
number of such off-the-shelf, highly configurable integration hubs are 
available as both commercial and open source products.

Integration hubs and similar architectures (such as a message bus) form 
part of the wider topic of Enterprise Application Integration, a full consider-
ation of which is outside the scope of this book. We provide some references 
on this subject in the Further Reading section at the end of this chapter.

Adapter

System 3

System n

INTEGRATION
HUB

System 1

System 2

A
d

a
p

te
r

A
d

a
p

te
r

A
d

a
p

te
r

FIGURE 18–9 EXAMPLE OF AN INTEGRATION HUB
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Overloaded Central Database
Many of the problems described in this chapter can be eliminated by storing
all information in a single central database. This approach is much simpler
and cleaner, since there is no need for key mappings, update reconciliation, or
complex interfaces, and all data is immediately available.

However, a single central database is a single point of failure and will
eventually become a performance bottleneck. For geographically distributed
systems, a central database will give poor latency for remote users, and they
may find that system availability is constrained due to limitations of the glo-
bal network. Managing all data in a single central database can cause the data
model to become overloaded or unworkable and can cause design-time and
runtime contention. For these reasons, care must be taken when designing a
system based on a single central database.

RISK REDUCTION

� Carefully consider the likely growth of your system in terms of data 
volumes, numbers of users, and their locations. (We discuss this issue in 
Chapter 28 on the Evolution perspective.)

� Consider the deployment (now or in the future) of a reporting database, 
separate from the main operational data store, and design your architec-
ture with this possibility in mind.

� Be aware of the need to partition data in the future and design a strategy 
for it now (even if it is not yet implemented).

� If you do opt for a single central database, make sure that there are some 
scalability options available in case the system is more successful than 
expected.

� Look into the use of database clustering technologies and other mechanisms  
for improving availability and performance.

Inconsistent Distributed Databases
Conversely, some of the problems described in this chapter can be eliminated by
replicating information between multiple databases in different locations or
even geographical regions. This approach brings data near to where it is
needed, with a consequent reduction in latency and improvement in availability.

However, distributed information architectures are harder to design and
build and often lead to information inconsistency due to the replication delay.
Furthermore, updates are harder to manage in cases where replicate copies
are not read-only. While these problems are not insurmountable, they require
careful design and a solid implementation.
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RISK REDUCTION

� Carefully consider the need for a distributed information architecture, 
balancing the benefits this brings against the cost in complexity and data 
inconsistency.

� If you adopt a distributed model, ensure that you have effective strate-
gies in place for dealing with inconsistency and that these are agreed 
upon with your key stakeholders, especially users.

� Ensure that there are effective operational tools and processes in place for 
detecting and dealing with problems that can’t be dealt with automatically.

Poor Information Quality
If the actual data is inconsistent, inaccurate, or incomplete, it doesn’t matter
how good your information model is—you will face big problems when your
system goes into operation.

In fact, the real problem is not necessarily poor information quality but
unexpectedly poor information quality. If you know that some information
will be inadequate, you can develop strategies early to deal with it and suc-
cessfully manage the expectations of your stakeholders in this area.

RISK REDUCTION

� Validate your key assumptions about information quality early (e.g., “All 
products can be uniquely identified globally by using an immutable com-
mon key”).

� Make sure that you understand what information is important and what 
is less important (your stakeholders, primarily users, can tell you this), 
then focus on the important information.

� Make use of commercially available information quality tools to analyze 
the quality of existing information.

� Identify the places where poor-quality information can appear, and 
develop strategies for dealing with it, such as rejecting poor-quality 
information, marking it as suspect, or attempting to fix it.

Excessive Information Latency
Excessive latency typically arises from overly complex architectures or archi-
tectures that are not designed to handle the volumes of information they are
presented with. You may also have latency issues that are outside your con-
trol. For example, information may arrive from an external source only once a
week, or updates may need to be applied in batches overnight because of the
limitations of a legacy system.
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As with information quality, poor latency becomes an issue only if it is
unexpectedly poor. By identifying expected latency early, you can identify
problem areas and develop strategies to deal with them.

RISK REDUCTION

� When there is distance or complexity between information providers and 
information consumers, ensure that you predict, as best you can, what 
the information latency will be.

� When latency is significant, review this with your stakeholders to deter-
mine whether it is a concern.

� Better still, obtain agreement on realistic latency requirements for all 
data items up front, and validate your model against these.

Inadequate Volumetrics
A system designed to handle a thousand updates per day is unlikely to cope
well when faced with a million updates per day. Unless you are clear about
the volumes of information the system is expected to handle, you have little
chance of designing an appropriate architecture. (We address the issue of vol-
umetrics in more detail in Chapter 26.)

RISK REDUCTION

� Make sure that data volumes are captured, reviewed, and approved by 
your stakeholders. You may want to separately capture “business” 
volumes (such as numbers of orders) from acquirers and users, and 
“technical” volumes (such as numbers of database updates) from 
technical stakeholders.

� Make sure that volumes are realistic. If the stakeholders convey doubt or 
vagueness about this, pursue the issue, and if in doubt, increase them to 
allow for the margin of error.

� Make sure that your data volumes cover all scenarios—not just the 
online day, for example, but also the overnight processing and peak peri-
ods such as the end of the year or holiday processing.

� Make sure that there is an effective translation of business volumes into 
physical ones. For example, a single business transaction, such as plac-
ing an order, may result in several physical transactions, such as decre-
menting stock levels, posting account records, assigning compensation to 
sales staff, and arranging delivery of the ordered item.

� Make sure that your volumes take future expansion into account.

� Prototype your data stores and the access to them for the expected 
volumes you do have.
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CHECKLIST

� Do you have an appropriate level of detail in your data models (e.g., no 
more than about 20–30 entities)?

� Does the data model support the processing requirements now and those 
likely in the future?

� Are keys clearly identified for all important entities?

� When an entity is distributed across multiple systems or locations with 
different keys, are the mappings between these keys defined? Do you have 
processes for maintaining these mappings when data items are created?

� Have you taken account of data in one place that is derived from data 
managed and owned elsewhere, such as account balances derived from 
account activity?

� Have you defined strategies for resolving data ownership conflicts, 
particularly when there are multiple creators or updaters?

� Are latency requirements clearly identified, and are mechanisms in place 
to ensure that these are achieved?

� Do you have clear strategies for transactional consistency across distrib-
uted data stores, and do these balance this need with the cost in terms of 
performance and complexity?

� Have you considered which data storage models to use for the various 
data stores in your system, taking into account the strengths and weak-
nesses of each?

� Do you have mechanisms in place for validating migrated data and deal-
ing appropriately with errors?

� Do you have the right sort of data stores (operational data store, report-
ing databases, data warehouses, and data marts) for the expected 
volumes and performance requirements? 

� Have you defined sufficient storage and processing capacity for 
archiving? For restoring archived data? 

� Has a data quality assessment been done? Have you created strategies 
for dealing with poor-quality data? 

� Have you confirmed which entities in your information model should be 
obtained from shared enterprise sources, and if so, does your architec-
ture make use of these appropriately?

FURTHER READING

The literature on information architecture per se (as opposed to data design
techniques or specific data management technologies) is sparse.
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Fortunately, data modeling, and particularly relational modeling, which un-
derpins much that we do, has a strong theoretical grounding, so there is a
plethora of books on the subject. The classic of the genre, which is still being
updated, is probably Date [DATE03]. Other good general books include
Elmasri and Navathe [ELMA99] and Kroenke [KROE02].

Kim [KIMW99] looks at some of the newer techniques such as object-ori-
ented databases. Redman [REDM97] provides a detailed discussion of the issues
around data quality and how to develop strategies for data quality analysis and
improvement.

Enterprise Application Integration architectures are covered in a large
number of books, such as Linthicum [LINT03] and Ruh et al. [RUHW00].

You can find further information on metadata modeling in ISO Standard
11197-3 [ISO96] and books such as [MARC00]. Information on specific meta-
data models such as the ARTS Standard Relational Data Model or the ISO
20022 standard for financial services messaging can be found on the Web sites
for those organizations.

If you are interested in ideas on how to flexibly evolve a database schema
as part of the software development process, Scott Ambler and Pramod Sad-
alage’s book on database refactoring [AMBL06], which introduces the Evolu-
tionary Database Design technique, will be of interest.

There are many books on data warehousing, from the two pioneers of this
approach, William Inmon (e.g., [INMO05]) and Ralph Kimball (e.g.,
[KIMB02]), and many others.

Alec Sharp and Patrick McDermott’s book [SHAR08] provides a good
description of the subject and the techniques used. A vast number of books
(too numerous to mention here) cover specific relational database products
(e.g., Oracle, SQL Server, DB2, Sybase, MySQL) and tools and technologies for
application development, systems management, and integration.

The best place to obtain information on nonrelational database technolo-
gies, such as the NoSQL movement, is the Internet.

The Data Management Association (DAMA) has much useful informa-
tion, runs conferences and seminars, provides training and certification, and
has chapters worldwide. They can be found at www.dama.org. 

www.dama.org
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19
THE CONCURRENCY
VIEWPOINT

Historically, information systems were designed to operate with little or no
concurrency, running via batch mode on large central computers. However,
a number of factors (including distributed systems, increasing workloads,
and cheap multiprocessor hardware) have combined so that today’s infor-
mation systems often have little or no batch processing and are inherently
concurrent.

In contrast, control systems have always been inherently concurrent and
event-driven, given their need to react to external events in order to perform

Definition Describes the concurrency structure of the system and maps func-
tional elements to concurrency units to clearly identify the parts of 
the system that can execute concurrently and how this is coordi-
nated and controlled

Concerns Task structure, mapping of functional elements to tasks, interpro-
cess communication, state management, synchronization and integ-
rity, supporting scalability, startup and shutdown, task failure, and 
reentrancy

Models System-level concurrency models and state models

Problems and 
Pitfalls

Modeling the wrong concurrency, modeling the concurrency 
wrongly, excessive complexity, resource contention, deadlock, and 
race conditions

Stakeholders Communicators, developers, testers, and some administrators

Applicability All information systems with a number of concurrent threads of 
execution
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control operations. It is natural, then, that as information systems become
more concurrent and event-driven, they start to take on a number of charac-
teristics traditionally associated with control systems. In order to deal with
this concurrency, the information systems community has naturally adopted
and adapted proven techniques from the control systems community. Many of
these techniques form the basis of the Concurrency viewpoint.

The Concurrency view is used to describe the system’s concurrency and
state-related structure and constraints. This involves defining the parts of the
system that execute at the same time and how this is controlled (e.g., defining
how the system’s functional elements are packaged into operating system
processes and how the processes coordinate their execution). To do this, you
need to create a process model and a state model: The process model shows
the planned process, thread, and interprocess communication structure; the
state model describes the set of states that runtime elements can be in and the
valid transitions between those states.

Once you have created process and state models, you can use a number of
analysis techniques to ensure that the planned concurrency scheme is sound.
The use of such techniques is typically part of creating a Concurrency view, too.

It’s worth noting that not all information-based systems really benefit
from a Concurrency view. Some information systems have little concurrency.
Others, while exhibiting concurrent behavior, use the facilities of underlying
frameworks and containers (e.g., application servers and databases) to hide
the concurrency model in use.

In contrast, however, many of today’s information systems are inher-
ently event-driven, reactive, concurrent systems. This is particularly the
case when considering infrastructure such as middleware products. Systems
of this type typically sit idle until an external event occurs and then process
the event. Given that many external events can occur simultaneously and

EXAMPLE Data warehouse systems tend to be batch-loaded overnight 
and accessed from a number of desktop machines. These systems do 
exhibit concurrent behavior—multiple clients can request information 
from the data warehouse concurrently. However, such a system will 
typically rely on the underlying database management system to handle 
all of the concurrency for it (in any way it chooses). Therefore, the pro-
cess model used is of little architectural significance, and you have little 
or no control over it. The interesting aspects of concurrency relate much 
more to the design of the physical data model and should be handled 
there.
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that the interarrival time of such events may be lower than the time taken to
process them, this kind of information-based system is inherently concur-
rent, with many operations being executed at once.

The Concurrency viewpoint is extremely relevant to systems that exhibit
this kind of behavior. Creating a Concurrency view allows the concurrency
design of such systems to be made explicit and helps interested stakeholders
understand concurrency constraints and requirements. It also allows you to
analyze the system to avoid common concurrency problems such as deadlocks
or bottlenecks.

CONCERNS

Task Structure
The most important aspect of creating a Concurrency view is establishing the
system’s process structure, which identifies the overall strategy for using
concurrency in the system. It defines the set of processes across which the
system’s workload is partitioned and how the functions of the system are dis-
tributed across them. It is also usually necessary to consider the use of
operating system threads within processes or to abstract away from individ-
ual processes and consider groups of similar processes instead.

Note: Throughout this chapter, we use the word task as a generic term to
describe a processing thread—whether it is a single operating system process,
one thread within a multithreaded process, or some other software execution
unit. When the difference is significant, we specifically use the terms process
or thread as appropriate.

EXAMPLE Consider an e-commerce system that uses a message-based 
approach to processing transaction requests. In such a system, when a 
request arrives, it is translated into a message that is queued for the 
appropriate functional element that can process it. In order to prevent 
message queues from growing too long and to make efficient use of pro-
cessing resources, the processing element will need to process a number 
of messages concurrently. In this case, there may be a large number of 
concurrent operations within the functional element, each one needing 
access to shared resources.
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The aspects of the system’s task structure that this view needs to address
depend very much on the kind of system you are dealing with.

Mapping of Functional Elements to Tasks 
The mapping of functional elements to tasks can have a significant effect on
the performance, efficiency, resilience, reliability, and flexibility of your ar-
chitecture, so this needs careful consideration. The key question to address is
which functional elements need to be isolated from each other (and so placed
in separate processes) and which need to cooperate closely (and so need to
run within the same process).

Interprocess Communication
When functional elements reside within a single operating system process,
communication among them is relatively simple because of their shared
address space. While some coordination may be required (see the Synchroni-
zation and Integrity concern), you can use any number of data structures to
pass information among them. Similarly, a number of easily used control
mechanisms (such as the procedure call and variants of it) can transfer con-
trol among elements as needed.

In contrast, when elements reside in different operating system pro-
cesses, communication among them becomes more complex. This complexity
increases if the processes also reside on different physical machines.

A number of interprocess communication mechanisms can be used to link ele-
ments in different processes, including remote procedure calls, messaging, shared
memory, pipes, queues, and so on. Each has its own strengths, weaknesses, and
constraints, and inappropriate use of these mechanisms can cause problems at the
system level (e.g., message queue latency between processes causing scalability or
throughput problems). In order to deliver a system with an acceptable set of quality

EXAMPLE A complex, small-footprint system may have only one or two 
operating system tasks but may need to use a very complex thread 
model to meet its efficiency and responsiveness goals. In this case, the 
focus of the task structure activity needs to be at the thread level.

A large enterprise system may be composed of literally hundreds of 
concurrent processes, many containing dozens of threads. In this sort of 
system, the task structure activity needs to be at the level of groups 
of similar processes in order to focus on the architecturally significant
aspects of the concurrency.
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properties, the Concurrency view needs to consider and identify the set of interpro-
cess communication mechanisms that will be used to provide the interelement
communication required by the system’s functional structure.

State Management
In many systems, the runtime state of system elements is important to the
correct operation of the system. This is particularly the case for event-driven
systems that exhibit a high degree of concurrency, where business operations
tend to be processed via state machine implementations.

In such systems, a concern of the Concurrency view is to clearly define
the set of states that each functional element of the system can be in at runt-
ime, the set of valid transitions between those states, and the causes and ef-
fects of the interstate transitions. Such careful state management is a major
factor in ensuring reliability and correct behavior for most concurrent sys-
tems. Again, if you are using a formal architectural style, it may define how
the system’s runtime state should be handled.

Note that this concern refers to the state of the runtime elements of the
system (which could be termed the technical state of the system). Another
type of state management important to many information systems is the set
of valid states and transitions for their core persistent information (business
objects—the business state of the system). However, this is a distinct concept
of state, and we refer to persistent object state models as lifecycles to avoid
any confusion between the two. Object lifecycles are discussed in Chapter 18
as part of the Information viewpoint.

Having said this, it is also quite reasonable to consider state management
in the Functional view—after all, the state of functional elements is what
we’re considering. However, our experience is that the design of the system’s
state management usually fits better in the Concurrency view. Those systems
where state is important are usually those where concurrency is important
too, and considering system-level state usually involves the consideration of
the concurrency around it as well.

Synchronization and Integrity
As soon as more than one thread of control exists in the system, it is important
to ensure that concurrent execution cannot result in corruption of information
within the system. This concern applies at a number of levels in the system,
from a shared variable within a multithreaded module at one end of the scale to
critical corporate transaction data in shared data stores at the other.

An important concern for the Concurrency view to address is how concur-
rent activity will be coordinated so that the system operates correctly and
maintains the integrity of the data within it.
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Supporting Scalability
In any highly concurrent system, the approach taken to concurrency, synchro-
nization, and state management can have a profound effect on the scalability
that the system can achieve. Too much or too little concurrency can slow a
system down and prevent it from handling heavy workloads efficiently, while
excessive or simply naïve synchronization can result in a system that per-
forms very well for light workloads but grinds to a halt when heavy work-
loads are applied. The problem is that designing high-performance, highly
concurrent systems is difficult and can be an error-prone process. An impor-
tant concern for this view to address is how the concurrency approach used
will support the performance and scalability required while being simple
enough to implement cost-effectively and reliably. We discuss an approach to
achieving this in Chapter 26 on the Performance and Scalability perspective.

Startup and Shutdown
When you have more than one operating system process in your system, star-
tup and shutdown of the system can become more complicated to manage.
Intertask dependencies may mean that tasks need to be started and stopped in
very specific orders so that if some tasks fail to start, others will not be
started. The system startup and shutdown dependencies are an important part
of your concurrency design and need to be clearly understood by developers,
testers, and administrators.

Task Failure
When functional elements reside in different processes or run on different
threads, dealing with element failure can be complex. This is because an
element in one task cannot rely on another task being available when it
needs to communicate with it, whereas when an element calls another one
in the same task, it knows it will be there. Your concurrency design needs
to take into account this added possibility of failure and ensure that the
failure of one task doesn’t bring the entire system to a halt. In order to
address this concern, you need a system-wide strategy for recognizing and
recovering from task failure.

Reentrancy
Reentrancy refers to the ability of a software element to operate correctly
when used concurrently by more than one processing thread. This is primarily
a concern for software developers when designing their software elements.
From an architectural perspective, reentrancy is an important constraint for
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certain elements, so the architecture must clearly define which modules need
to be reentrant and which do not. 

The reentrancy needs of your architecture can also affect which third-party
software elements you can use within the system and where you can use them.

Stakeholder Concerns
Typical stakeholder concerns for the Concurrency viewpoint include those
shown in Table 19–1.

EXAMPLE If you are developing an e-mail server, the ability to support 
a great deal of concurrency is likely to be a key concern. Without this, it 
will be hard to use the e-mail server for large user populations who will 
want to send and receive e-mail simultaneously. You can take a number 
of approaches to achieve such concurrency, but for the sake of argu-
ment, let’s assume that you have decided to implement the server by 
using a single operating system process and many (perhaps hundreds 
of) concurrent operating system threads running within it: some send-
ing e-mail, some receiving e-mail, and some managing the server’s 
internal state.

In this sort of environment, it is crucial to decide which of the ele-
ments of your system have to be reentrant and which do not. Any ele-
ment involved in sending and receiving e-mail (e.g., a name resolution 
library that translates e-mail domains to network addresses) will need to 
be reentrant to ensure that it can be used simultaneously by many send-
ing and receiving threads. Without such a guarantee, the name resolu-
tion library could be the source of many subtle problems later if its 
internal state could be corrupted by concurrent access.

TABLE 19–1 STAKEHOLDER CONCERNS FOR THE CONCURRENCY VIEWPOINT

Stakeholder Class Concerns

Administrators Task structure, startup and shutdown, and task failure

Communicators Task structure, startup and shutdown, and task failure

Developers All concerns

Testers Task structure, mapping of functional elements to tasks, startup 
and shutdown, task failure, and reentrancy
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MODELS

System-Level Concurrency Models
The Concurrency view maps the functional elements onto runtime execution
entities via a concurrency model. The concurrency model typically contains
the following items.

� Processes: In this context, the term process refers to an operating system 
process, that is, an address space that provides an execution environ-
ment for one or more independent threads of execution. The process is 
the basic unit of concurrency in the design of the system. At the architec-
ture level, the processes are normally assumed to be isolated from each 
other so that if one process wants to affect the execution of another, it 
must use an interprocess communication mechanism.

� Process groups: At the architecture level, it can often be useful to group in-
dividual processes so that a collection of closely related processes can be 
considered as a single entity at the system level. This can provide a useful 
abstraction that allows less important concurrency concerns to be deferred 
until subsystem design. An example is a database management system 
(DBMS). The important point from the system level is that the DBMS is a 
functional unit, accessed via well-defined interfaces, that runs in its own 
process or group of processes. However, the details of the exact number of 
processes it uses (e.g., how many logging processes run within the DBMS) 
and the function of each are almost certainly irrelevant to the architec-
ture—indeed, this will probably be decided by a technical specialist later in 
the design process. Using a process group in this situation makes it clear 
that a group of related processes will be used but defers the details of the 
set until later. The other common use for process groups is simply as a hi-
erarchical structuring technique for large or complex systems that contain 
many processes. All of the processes may need description, but the use of 
process groups can make the process model easier to comprehend.

� Threads: In this context, the term thread refers to an operating system 
thread, that is, a thread of execution that can be independently scheduled 
within an operating system process. Threads are known as lightweight
processes by some operating systems. At the level of system architecture, 
threads can often be ignored, with the details of their use being the 
responsibility of subsystem designers (perhaps with you guiding their 
use via design patterns in the Development view). However, for some 
systems you do want to model the use of threads in at least some parts of 
the system. Threads are normally represented in process models via a 
decomposition of a process.
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� Interprocess communication: When processes are running, they are 
assumed to be isolated from each other so that one process cannot 
change anything in another process. However, in most concurrent sys-
tems, processes do need to interact in order to coordinate their execution, 
request services from each other, and pass information among them-
selves. They achieve these interactions via a number of interprocess 
communication mechanisms (“IPC mechanisms”), which are the connec-
tors in the system’s runtime architecture.

The mechanisms available vary depending on the underlying tech-
nology platforms in use. However, interprocess communication mecha-
nisms generally fall into one of these groups.

• Procedure call mechanisms are all some variation on an interprocess 
function call and are usually based on some form of remote procedure 
call or some sort of message-passing operation.

• Execution coordination mechanisms allow two or more processes (or 
threads) to signal to each other when certain events occur. 
Coordination mechanisms include semaphores and mutexes and are 
typically limited to coordination between processes or threads running 
on the same physical machine. 

• Data-sharing mechanisms allow a number of processes to share one or 
more data structures and access them concurrently (possibly 
coordinating this access via coordination mechanisms). Data-sharing 
mechanisms include shared memory, distributed tuple spaces (such as 
Linda and more recent implementations such as GigaSpaces), and 
simple, traditional mechanisms such as client/server databases and 
shared file storage.

• Messaging mechanisms are related to data-sharing mechanisms, but 
rather than placing data structures in a shared space for concurrent 
access, they transmit data structures from one task to another. 
Messaging systems normally implement one or both of two well-
defined messaging models: queuing and publish/subscribe. Queuing 
introduces a “first in, first out” queue structure between producers 
and consumers where consumers destructively read messages from 
the queue (i.e., a message is delivered to only one consumer). 
Publish/subscribe introduces a “topic” or “bus” between producers 
and consumers where the consumers indicate the types of messages 
that they are interested in and a message is consumed by all 
consumers interested in it.

As the architect, you need to choose the interprocess communication
mechanisms carefully because of the impact that they can have on the quality
properties that the system exhibits (such as its performance, scalability, and
reliability). The IPC mechanisms also impose significant constraints on the
functional elements that use them, and so it is important to choose them early
so that these constraints can be taken into account.
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NOTATION You can represent the Concurrency view in a number of ways. Some
of the more common notational approaches include UML and other formal nota-
tions, along with less formal notations, which we describe briefly here.

� UML: UML’s concurrency modeling facilities are rather simple but do 
include the notion of an active object (i.e., an object with a thread of con-
trol). There are a number of ways that concurrency structures can be rep-
resented in UML, including stereotyped packages, components, and 
classes, but unfortunately no approach has become a standard. We have 
used a number of conventions in our models and have found that stereo-
typed active components are a good place to start when modeling pro-
cesses and threads. We sometimes also add a process group stereotype to 
represent a group of related processes (such as a database engine) if this 
is a useful abstraction for the system we are working on.

Simple examples of interprocess communication, like remote proce-
dure calls, can be represented by using standard UML intercomponent 
associations, with arrowheads indicating the direction of communication 
(and possibly using tagged values on the association to make the com-
munication mechanism clear). More complex forms of interprocess com-
munication (shared memory, semaphores, and so on) can be represented 
quite effectively by introducing further stereotypes and showing associa-
tions between the components in the tasks and the interprocess commu-
nication mechanisms they use.

Figure 19–1 shows an example of UML being used for a concurrency 
model.

This model shows how the system is implemented by using three 
processes (a client, a statistics service, and a statistics calculator) along 
with a process group to implement the Oracle DBMS instance. The con-
current activity between the Statistics Accessor and Statistics Calculator 
components needs to be coordinated because they are in different pro-
cesses; a mutex is used to achieve this. The illustrated scenario is very 
simple, and there is little or no architecturally significant thread design 
in this model. Figure 19–2 shows a more involved model with more ar-
chitecturally significant threading.

The concurrency model shown in Figure 19–2 illustrates a case 
where the process structure is very simple, namely, two processes that 
communicate via a socket stream. However, the thread structure in the 
DBMS Process instance is architecturally significant, and its structure 
and interthread coordination strategy need to be documented and 
explained. The model shows that there is a single thread containing the 
Network Listener component, which communicates with between 1 and 
40 threads that contain the four main query-processing components via 
an interprocess communication queue. The Disk I/O Manager component 
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is hosted on its own thread, and there may be up to 10 instances of this 
running. The Data Access Engine component communicates with the 
Disk I/O Manager instances via the shared memory mechanism.

� Formal notations: The real-time and control systems research community has 
created a number of concurrency modeling languages that allow the creation 
and analysis of process models. A number of these languages, such as LOTOS, 
Communicating Sequential Processes (CSP), and the Calculus of Communicat-
ing Systems (CCS), are formal and represented textually. Most of these lan-
guages are mathematical and fairly abstract, and they aren’t widely used in 
information systems development. While this doesn’t mean they can’t be use-
ful, we have yet to come across a large-scale industrial application of them to 
information systems. The problem with using these languages in practice is 
often the need to teach them to the interested stakeholders, and there is always 
a need to ensure that the representation and analysis that they allow will be 
useful for the specific situation to which you are trying to apply them.

� Informal notations: In our experience, by far the most common notation 
used to represent process models is an informal one, created by the 
author of the model. Given the relatively small number of object types in 
a process model, an informal notation invented for the problem at hand 

FIGURE 19–1 CONCURRENCY MODEL DOCUMENTED BY USING UML
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often works very effectively as a communication tool as long as it is 
explained clearly. The notation needs to capture processes, process 
groups, threads, and the interprocess communication mechanisms in 
use. As long as the notation to represent each of these concepts is well 
defined, an informal notation often has much to recommend it. In partic-
ular, the notation can be kept simple and avoids the potentially awkward 
process of bending a general-purpose notation like UML to represent the 
model being described. The risk with informal notations is that they are 
never clearly defined and so lead to ambiguous descriptions.

ACTIVITIES

Map the Elements to the Tasks. The first step when creating your process
model is to work out how many processes you need and to decide which func-
tional elements will run in which processes. In some cases, this is a straight-
forward job—each functional element ends up being a process (or perhaps a
process group), or all of the elements end up in a single process. In other

FIGURE 19–2 THREAD-BASED CONCURRENCY MODEL
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cases, there is a complex N:M mapping between functional elements and pro-
cesses, with some elements partitioned between processes and other elements
running in shared processes. The important point about this mapping is that
you should introduce concurrency only where it is actually required. Concur-
rency adds complexity to the system and adds significant overhead to inter-
element communication when it must cross process boundaries. Therefore,
add more processes to your system only if you need them for distribution,
scalability, isolation, or other reasons guided by the requirements for your
system.

Determine the Threading Design. The term threading design refers to the
process of deciding on the number of threads to include in each system pro-
cess and how those threads are to be allocated and used. In most cases,
threading design is not something that the architect needs to get directly
involved in—this is usually the job of the subsystem designers. However, you
may get involved in designing and specifying general threading approaches or
patterns that should be used at various points in the system in order to meet
the system’s required quality properties or to ensure consistency across the
implementation.

Define Mechanisms for Resource Sharing . As soon as concurrency is
introduced into the system, you must carefully consider how to share
resources between concurrent threads of execution. Resource sharing is
considered in some other parts of the architecture, too (notably, the Infor-
mation view), and the two activities might be best tackled as a single task.
This isn’t a book on concurrent computing, so we don’t have space to dis-
cuss all of the options and potential pitfalls to consider when sharing
resources. The simplistic advice is simply that whenever a resource (such as
a piece of data in memory, a file, a database object, or a piece of shared
memory) is shared among two or more concurrent threads of execution, it
must be protected from corruption. This is usually achieved with some form
of locking protocol. As with threading design, the details of resource sharing
are rarely architecturally significant. Your role in relation to this is to ensure
that suitable resource-sharing approaches are used where necessary and
that the approach used is suitable in the overall context of the system and
does not produce unacceptable side effects for the system as a whole.

Define the IPC Mechanisms to Use. In most concurrent systems the tasks
need to communicate frequently, and so, along with deciding how to share re-
sources between tasks, you will need to consider what communication is
needed between them and which interprocess communication mechanisms
you will use to enable it. Again, we don’t have space here to discuss all of the
options and the tradeoffs that they imply, but as is usually the case, a simple
and regular scheme that minimizes the amount of intertask communication is
likely to be the best choice. Better still is using a library or framework (such
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as an implementation of the Actor pattern) to avoid having to deal with a lot
of this complexity yourself. While this sounds like simplistic advice, imple-
menting complex intertask communication correctly is a very difficult job best
left to specialists. As with other architectural concerns, your focus needs to be
on defining a common system-wide approach and on reducing the risk in-
volved in its implementation.

Assign Priorities to Threads and Processes. Some tasks in your system may
be more important than others. If you have tasks of different importance run-
ning on one machine, you need to control their execution so that the more
important work gets done before the less important work. The normal method
for achieving this is to use the facilities of the underlying operating system to
assign priority levels to the different threads and processes. All modern operat-
ing systems provide this feature in roughly the same way. Tasks are explicitly
or implicitly given runtime priorities. When the operating system’s thread
scheduler is choosing tasks to run, it considers the higher-priority tasks before
the lower-priority ones, thus getting the important work done first. If you can
avoid assigning explicit priorities to threads, in general do so—processing pri-
orities can add a lot of complexity to your process model and can introduce sub-
tle but serious problems such as priority inversion. However, sometimes you
can’t avoid it. In these cases, keep the assignment of priorities as simple and as
regular as possible, and analyze and prototype your approach to make sure that
you aren’t introducing problems worse than the one you’re trying to solve.

Analyze Deadlocks. Having introduced concurrency into the system, you
have also introduced the risk of the entire system grinding to a halt in unex-
pected ways. Whenever you have concurrency in the presence of shared
resources, you always have the possibility of deadlock. You can use a number
of modeling and analysis techniques to try to spot potential deadlocks. An
example of such a technique is Petri Net Analysis, which allows you to create
a model of your processing threads and shared resources and then analyze
the model to catch potential deadlock situations. With experience, it is also
usually possible to perform effective deadlock analysis through careful, infor-
mal consideration of your concurrency model.

Analyze Contention. Whenever you have a number of tasks and shared
resources, you almost always find contention. Contention occurs between
tasks when more than one task requires a shared resource concurrently. The
introduction of coordination mechanisms (such as mutexes) inevitably intro-
duces contention when workloads are high. If contention rises beyond a cer-
tain point, the system will slow dramatically, and little useful work will get
done. In order to avoid this during normal operation, you need to analyze
your shared resources from this point of view. The basis of the technique is to
identify each of your possible contention points. Then, for each, estimate the
likely number of concurrent tasks contending for the resource and for how
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long each will need the resource. This allows you to establish the likely wait
times that each task experiences at each point and then to estimate how such
contention will affect your processing times and throughput. Repeating the
exercise for different workloads allows you to estimate the maximum theoret-
ical workloads your system can possibly support. Once you understand the
potential for the system becoming overloaded, you can design mechanisms
into your software to handle such conditions gracefully (such as implement-
ing the Circuit Breaker pattern).

State Models
A state model is used to describe the set of states that a system’s runtime elements
can be in and the valid transitions between the states. The set of states and transi-
tions for one runtime element is known as a state machine, and the collection of all
of the interesting state machines for your system forms the overall state model.

Usually, you will find that each system task identified in the concurrency
model will have one or at most a few functional units mapped to it that are
effectively in control of the task. These functional units normally have the
system’s interesting state models associated with them. If you create a state
model, be sure to focus on these system elements so that the state model
describes only architecturally significant information. You don’t need to cap-
ture all of the state machines inside all of the system’s elements; the AD
needs to describe only state that is visible at the system level, not state that is
hidden inside the system’s elements.

An important decision to make before you start creating the state model is
the set of semantics you want to use in your state machines. Modern state
modeling notations (in particular, UML’s statechart, discussed later) allow
you to introduce a mind-boggling degree of complexity. You need to use such
notations carefully if you want to produce a comprehensible model.

A basic state machine in the state model would normally contain the fol-
lowing types of entities.

� State: A state is an identifiable, named, stable condition during a runtime 
functional element’s lifetime. States are normally associated with waiting 
for something (an event) to occur or performing some sort of operation.

� Transition: A state transition defines an allowable change in state, from 
one state to another, following the occurrence of an event. From a model-
ing point of view, transitions are normally considered to occur in zero 
time and so cannot be interrupted.

� Event: An event is an indication that something of interest has happened 
in the system (and is normally recognized by an operation being invoked 
on an element or a time period ending). Events are the triggers that 
cause transitions between states to occur.
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� Actions: Actions are atomic (noninterruptible) pieces of processing that 
can be associated with a transition (so an event causes the transition to 
occur, and then an action is executed as part of the state transition).

More sophisticated state modeling notations allow additional modeling
elements such as guards (Boolean conditions governing state transitions),
activities (long, interruptible items of processing that can be associated with
states), and hierarchical states.

NOTATION State models are typically represented by a graphical notation
derived in some way from the classic state transition diagram. The most popular
variant in use today is probably the UML notation for representing state, the
statechart. At the end of this subsection we briefly discuss other graphical nota-
tions as well as some nongraphical ones, but first we focus on UML’s statechart.

� UML: A statechart is a flexible notation that can be used in a number of 
different ways at differing levels of sophistication. Deciding which parts 
of the notation to use is an important step before getting too far into the 
modeling process. Figure 19–3 shows a UML statechart that represents 
the state model for a calculation engine.

This statechart shows much of the important notation for a UML 
statechart, with a composite primary state, concurrent state management, 
and the use of start and end pseudo states to indicate how the element’s 
lifecycle begins and ends. The single top-level state (Running) is entered 
when the element is started and exited when a shutdown event is 
received (the reset() action is performed as part of that transition).

The Running state has been decomposed into four substates that 
comprise the business of running this element: Waiting for Data, Cali-
brating Metrics, Calculating, and Distributing Results. The transition 
arrows indicate the possible transitions between states (along with the 
events that cause the transitions and the actions that will be executed).

The Calculating state is interesting because it is a concurrent state, as 
you can see from the dashed line that bisects it. This means that while in 
the Calculating state, the element is actually in two concurrent substates 
(Calculating Values and Calculating Risk). When the activity associated 
with these states completes, the transition from the states is taken, and 
when both are complete, the element can leave the Calculating state.

There are two architecturally significant aspects to this state machine.

• If new input data becomes ready when the element is in the 
Calculation state, in-progress results are discarded (by executing the 
reset() action), and calculation starts again. In contrast, if this 
occurs while results are being distributed, the distribution process is 
not interrupted.
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• No matter the state of the element, if a shutdown event is received, all 
processing immediately stops, the state is reset, and the element exits.

Of course, whether or not these facts are architecturally significant 
depends on the situation. However, we can make a reasonable argument 
that these facts are visible at the system level and thus can affect or be 
relied on by other system elements, and therefore, these facts need to be 
captured as part of the architecture.

An interesting point to note about the UML statechart is that its abil-
ity to show hierarchical state composition allows you to express architec-
tural constraints on state models without needing to define the entire 
model. The statechart in Figure 19–4 illustrates this point.

This statechart distills one of the architecturally significant features 
from the statechart in Figure 19–3, namely, that a shutdown event must 
be immediately responded to in any running state and a reset of the ele-
ment performed as part of shutdown. In effect, this documents an architec-
tural constraint that the designer of the corresponding part of the system 

FIGURE 19–3 EXAMPLE STATECHART FOR A CALCULATION ENGINE
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must respect; but while clearly defining this constraint, the statechart 
leaves the details of the lower-level states to the subsystem designer.

� Other graphical notations: In addition to UML, many other graphical 
notations exist for modeling state. Some of the better-known ones 
include simple state transition diagrams, Petri Nets, SDL, and David 
Harel’s original Statecharts. All of these notations have strengths and 
weaknesses when compared to each other and to UML statecharts, and 
they are worth considering if UML statecharts cause you problems. How-
ever, the standardization of and wide familiarity with UML statecharts 
means that in general they should probably be your first choice. The Fur-
ther Reading section at the end of this chapter contains some references 
to information about these alternative notations.

� Nongraphical notations: In principle, all of the graphical notations can be 
represented in a textual form (and indeed many graphical state modeling 
notations do define an equivalent textual form). Similarly, a number of 
primarily textual formalisms for modeling and analyzing state can be 
represented in a graphical form (for an accessible example, look at the 
Finite State Processes language). A textual state model can be useful 
when the model needs to be processed in some way by machine, but for 
human readers it is almost always better to use a graphical notation 
where possible.

ACTIVITIES

Define the Notation. Before starting to create your state model, spend some
time working out your needs for the modeling notation and defining how you
will use it.

Identify the States. The primary activity when creating a state model is to
work out what states your system elements can be in and the processing (if
any) associated with each state. Beware of accidentally modeling activities as

FIGURE 19–4 ARCHITECTURAL CONSTRAINT STATECHART

Running

shutdown/reset()
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states; this is a common modeling mistake. If in doubt, try considering your
state machine as a UML activity diagram. If you can do this, you have proba-
bly modeled activities rather than states. When performing state identification
at the architectural level, focus on the states that are visible from outside the
element and thus have a system-wide effect.

Design the State Transitions. Once you know what states your elements
can be in, design a set of transitions that allows them to move between the
states correctly. For each transition, clearly identify how the transition is
triggered and any (atomic) actions that must be performed as a side effect of
traversing it. Make sure that the events and actions you identify can be sup-
ported by the operations and state of the element for which you are
designing a state machine.

PROBLEMS AND PITFALLS

Modeling the Wrong Concurrency
When considering the concurrency design of a system, it is easy to get
bogged down in the details of the internal concurrency and state design of
each element. It’s not part of your job as an architect to design detailed
thread models that define how individual threads in a server will be allo-
cated, used, and freed, along with all of the coordination between them.
Remember that your role is to concentrate on the system as a whole rather
than all of the details of each element. The concurrency with which you
should be concerned is the architecturally significant concurrency, that is,
the overall concurrency structure, the mapping of functional elements to that
structure, and the system-level state model. You may also be involved in
specifying common approaches such as design patterns that need to be used
for the concurrency within elements, but in general you should not need to
design all of the details—this will only distract you from the system-level
problems (which are often quite enough to worry about).

RISK REDUCTION

� Focus on architecturally significant aspects of concurrency.

� Involve the lead software developers as early as possible so they can 
work on the more detailed aspects of this problem.

Modeling the Concurrency Wrongly
Meaningful concurrency models can be quite difficult to create, so it is impor-
tant to spend the time and effort required to create a good model. To be use-
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ful, the models you create should use your notation correctly and be a valid
representation of the situation you are representing. The following are some
of the common modeling mistakes to be aware of.

� Modeling activities from your system as states in your state model and so 
accidentally creating an activity diagram rather than a state model. This 
is a common confusion when people are new to state modeling.

� Having a model with nonterminal states that can’t be exited because the 
required events will never occur. This indicates that some conditions 
haven’t been thought through.

� Having transitions that cannot be traversed due to an invalid combina-
tion of events and conditions. This can indicate a misunderstanding or 
that something is missing.

� The existence of a large number of transitions with just trigger events or 
just actions. Such transitions are sometimes required, but having a large 
number of them often indicates that there are too many states in the 
state model.

RISK REDUCTION

� Before you start, take the time to understand your concurrency modeling 
notation (and the way that your tool implements the notation, if you’re 
using a modeling tool).

� Watch out for states, transitions, or actions that are difficult to name or 
that seem to need the wrong sort of name (such as a verb for a state). 
These suggest that there is something wrong with the model.

� Walk through your models, “playing computer” in order to validate them 
and check for missing or incorrect elements. If your tool offers model 
animation facilities, these are a more reliable way of achieving this.

Excessive Complexity
Simplicity should always be an aim when designing a system. Simple designs
are easier to create, analyze, build, deliver, and support. However, this is par-
ticularly important when considering concurrency because it is fundamentally
difficult to understand. As we have seen, the price of complex concurrency
can be very high at design time, implementation time, and beyond. More soft-
ware engineering hours have probably been wasted on reworking problematic
concurrency than on almost anything else. Simplicity in your concurrency
approach will have a major positive impact on the amount of effort required to
deliver and support your system.
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RISK REDUCTION

� Be sure that all of the concurrency you introduce is justified in terms of 
stakeholder benefits.

� When designing state models, use the simplest subset of notation possible 
to capture your state machines in order to encourage a simple state model.

Resource Contention
Resource contention usually manifests itself as long wait times for shared
resources or excessive activity in small, specific parts of the system (colloqui-
ally known as hot spots). Careful and early analysis of the concurrency model
for potential contention can help you avoid such problems, but in reality, as
soon as one resource contention point is eliminated, the next one will emerge.
Therefore, tackling resource contention is normally a process of reducing the
contention to an acceptable level. 

RISK REDUCTION

� Analyze your system as it is being designed to spot resource contention 
as early as possible, and design around it. Use your usage scenarios to 
predict which parts of the system are likely to encounter high levels of 
concurrency, and focus your attention in these regions.

� Reduce contention by decomposing locks on large resources into a number 
of finer-grained locks, thus reducing the amount of time locks are held.

� Consider alternative locking techniques such as optimistic locking that 
reduce the time locks are held.

� Eliminate shared resources where you can, or consider making them 
immutable to avoid the need to lock them when accessed by multiple 
tasks.

� If possible, reduce the amount of concurrency you need around problem-
atic contention points.

� Consider whether it is possible to avoid locking by using approximately cor-
rect results that may be in the process of being updated or whether it would 
be possible to allow copies of data to be loosely rather than tightly consis-
tent, to avoid locking them all simultaneously during the update process.

Deadlock
Deadlock occurs when one task, A, requires access to a resource that has
already been locked by another task, B, and task B is also waiting for access
to a resource that has been locked by task A. We describe these two tasks as
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“deadlocked,” and neither of them will make progress until the deadlock is
broken by one of the tasks releasing one of the locks (possibly by the task
being terminated by a supervisor task). As with resource contention, you can
often avoid deadlock through early and thorough analysis of the system.
Danger points are those parts of the system where different types of process-
ing tasks need access to a number of the same resources. When you find
potential deadlock points, you will probably need to redesign the system to
avoid the problem.

RISK REDUCTION

� Where possible, ensure that resources are always allocated to tasks and 
locked in a fixed order.

� Attempt to isolate parallel tasks in such a way that deadlock between 
them is impossible.

� Reduce the number, scope, and duration of locks held where possible 
(or even use immutable data structures if possible, to completely avoid 
locking).

� Certain commercial products that use locks (such as database manage-
ment systems) provide significant assistance with handling deadlock—in 
most cases, recognizing it and breaking it by terminating one or more of 
the problematic transactions. These technologies can be very useful 
when dealing with deadlock, but their use often needs to be carefully 
designed into the system so that such deadlock recovery actions are han-
dled correctly.

Race Conditions
A race condition is problematic behavior that results from unexpected depen-
dence on the relative timing of events. It usually occurs when two or more
tasks are attempting to perform the same action concurrently. The tasks race
for the resource, and the first one to reach the appropriate point in the pro-
gram code wins and performs the action.

Race conditions are problematic only when they are unplanned because the
system has not been designed to cope with more than one task performing the
action concurrently. In these cases, information can be corrupted or lost, and
the system can behave in unpredictable ways. A classic example is a system-
wide data structure in an operating system process that a number of threads
can update. If multiple tasks try to update the data structure concurrently
(e.g., to increment a counter indicating the number of requests accepted), the
resulting value will be undefined and very likely incorrect.
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RISK REDUCTION

� Ensure that there are no unprotected, shared system-level resources that 
can cause race conditions.

� Use immutable data structures where possible to avoid the possibility of 
race conditions.

� Automatically introduce protection mechanisms for all potentially shared 
resources.

� Ensure that the definition of each element interface clearly states 
whether or not the interface is reentrant.

CHECKLIST

� Is there a clear system-level concurrency model?

� Are your models at the right level of abstraction? Have you focused on 
the architecturally significant aspects?

� Can you simplify your concurrency design?

� Do all interested parties understand the overall concurrency strategy?

� Have you mapped all functional elements to a process (and thread if 
necessary)?

� Do you have a state model for at least one functional element in each 
process and thread? If not, are you sure the processes and threads will 
interact safely?

� Have you defined a suitable set of interprocess communication mecha-
nisms to support the interelement interactions defined in the Functional 
view?

� Are all shared resources protected from corruption?

� Have you minimized the intertask communication and synchronization 
required?

� Do you have any resource hot spots in your system? If so, have you esti-
mated the likely throughput, and is it high enough? Do you know how 
you would reduce contention at these points if forced to later?

� Can the system possibly deadlock? If so, do you have a strategy for rec-
ognizing and dealing with this when it occurs?

FURTHER READING

The area of concurrency has been studied and written about widely, although
not many books consider it from an architect’s perspective.
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A good overview of concurrency (albeit with a Java-specific slant) and a
good introduction to (fairly formal) modeling and analysis appear in Magee
and Kramer [MAGE06]; this book also introduces the Finite State Processes
language mentioned earlier. Unfortunately, Cook and Daniels [COOK94] is
out of print; however, it has recently made a welcome reappearance as a freely
available online book at www.syntropy.co.uk/syntropy, as it contains a lot of
good advice on modeling and a particularly good discussion of using state-
charts to model object state. You can find a lot of good UML-specific advice
about state modeling in Rumbaugh et al. [RUMB99], which is organized as a
reference so it’s easy to find definitions of the various UML elements
involved.

Each of the visual formalisms has its own following and literature.
Girauld and Valk [GIRA02] is a relatively academic text that explains how to
apply Petri Nets to the analysis of concurrency characteristics, while the SDL
Forum Society Web site [SDL02] is a good starting point for finding out more
about SDL. A fairly recent reference on CSP is Roscoe [ROSC97]; the defini-
tive book on CCS is still Milner [MILN89]; and the original reference for state-
charts was Harel’s paper [HARE87].

We reference it elsewhere too, but Michael Nygard’s book [NYGA07] has
much to say on the topic of safely introducing concurrency into systems. A
rich collection of design patterns for creating concurrent systems is docu-
mented in [SCHM00], and a thorough programming-level “nuts and bolts”
introduction to concurrency practice can be found in [BRES09]

www.syntropy.co.uk/syntropy
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20
THE DEVELOPMENT
VIEWPOINT

A considerable amount of planning and design of the software development
environment is often required to support the design, build, and testing of
software for complex systems. Things to think about include code structure
and dependencies, build and configuration management of deliverables,
system-wide design constraints, and system-wide standards to ensure techni-
cal integrity. It is the role of the Development view to address these aspects of
the system development process, as it is this view that addresses the specific
concerns of the software developers and testers.

This viewpoint is relevant to nearly all large information system projects
because almost all of them have some element of software development,
whether it is configuring and scripting off-the-shelf software, writing a
system from scratch, or something between these extremes. The importance of
this view depends on the complexity of the system being built, the expertise of

Definition Describes the architecture that supports the software development 
process

Concerns Module organization, common processing, standardization of 
design, standardization of testing, instrumentation, and codeline 
organization

Models Module structure models, common design models, and codeline 
models

Problems and 
Pitfalls

Too much detail, overburdened architectural description, uneven 
focus, lack of developer focus, lack of precision, and problems with 
the specified environment

Stakeholders Production engineers, software developers and testers

Applicability All systems with significant software development involved in their 
creation
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the software developers, the maturity of the technologies used, and the
familiarity that the whole team has with these technologies.

In this view you need to focus on concerns that are architecturally signif-
icant. You should view your work as providing a stable environment for the
more detailed design work that will be performed as part of the software
development activity.

CONCERNS

Module Organization
The large systems you are likely to encounter as an architect may be built
from hundreds of thousands of lines of source code spread over thousands of
files. Source files are normally organized into larger units called modules that
contain related code (such as the code to implement a library or a functional
element). Arranging code in a logical structure like this helps to manage
dependencies and helps developers to understand it and work on it without
affecting other modules in unexpected ways.

When working with a complex module structure, you need to identify and
thoroughly understand and manage the dependencies between the modules to
avoid ending up with a system that is difficult and error-prone to maintain,
build, and release.

Common Processing
Any large system will benefit from identifying and isolating common process-
ing into separate code modules. For example, standardizing how the system
logs messages and handles configuration parameters can significantly sim-
plify its administration.

The Development view helps ensure that the areas of common processing
are identified and clearly specified. You will typically do this only in outline
form, adding further refinement and detail as development progresses.

Standardization of Design
Most systems are developed by teams of software developers rather than indi-
viduals. Standardizing key aspects of design provides critical benefits to the
maintainability, reliability, and technical cohesion of the system (and saves
time, too). You can achieve design standardization by using design patterns
and off-the-shelf software elements.
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Standardization of Testing
Standardization of test approaches, technologies, and conventions helps
ensure a consistent approach to testing and speeds up the testing process.
Key concerns include test tools and infrastructure, standard test data, stan-
dard test approaches, and test automation.

Instrumentation
Instrumentation is the practice of inserting special code for logging informa-
tion about step execution, system state, resource usage, and so on that is
used to aid monitoring and debugging. Because instrumentation can have an
adverse impact on performance, it should be possible to switch off this capa-
bility, alter the level of detail at which messages are logged, and possibly even
use build tools to remove the instrumentation code altogether.

System messages can be logged to a system console, a file, or a message
service, and metrics on system usage can be logged to a file or a database for
later analysis.

Codeline Organization
The system’s source code needs to be stored in a directory structure, man-
aged via a configuration management system, built and tested regularly
(ideally every time the software changes—“continuous integration”), and
released as tested binaries for further testing and use. The way that all of
this is achieved is normally termed the codeline organization for a system.
The codeline is a particular version of a set of source code files with a well-
defined organizational structure, usually with an associated automated
system to build, test, and release a specified version or variant of the
system.

Ensuring that the system’s code can be managed, built, tested, and
released is crucial to achieving a reliable system—particularly when you’re
using iterative development and many releases are necessary. As an architect,
you may wish to specify, in outline form at least, how this is to be done, or
better still, work with the development team to define the approach and
design its implementation.

Stakeholder Concerns
Typical stakeholder concerns for the Development viewpoint include those
shown in Table 20–1.
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MODELS

Module Structure Models
The module structure model defines the organization of the system’s source
code, in terms of the modules into which the individual source files are col-
lected and the dependencies among these modules. It is also common to
impose some degree of higher-level organization on the modules themselves
to avoid having to enumerate many individual dependencies.

Once you have identified a set of modules into which you can organize
the source files, you can use the common architectural approach of grouping
modules at similar abstraction levels into layers. You can then organize these
layers into a dependency stack from the most abstract or highly functional
(conceptually at the top) down to the least (at the bottom). You can then
define interlayer dependency rules to avoid unwanted dependencies between
modules at very different abstraction levels. Typically, software in a module
communicates only with other modules at the same layer or in the layers
directly above and below it (although there are often exceptions to this rule
for performance or efficiency reasons).

In some situations (e.g., when separate module structures are needed for
client and server elements), you may need a number of such models. In other
cases (e.g., when developing an extension to a monolithic application pack-
age), a module structure model is less useful.

NOTATIONA module structure model is often represented as a UML compo-
nent diagram, using the package icon to represent a code module and depen-
dency arrows to show intermodule dependencies. If you require higher-level
module organization, you can show module grouping by enclosing packages
annotated with suitable stereotypes.

Another common alternative is a simple boxes-and-lines diagram that
shows the layers, their relative ordering, and the components within them.

TABLE 20–1 STAKEHOLDER CONCERNS FOR THE DEVELOPMENT VIEWPOINT

Stakeholder Class Concerns

Developers All concerns

Production engineers May be involved in or have responsibility for provisioning development 
and test environments, and mechanisms and controls over the system’s 
transition into production

Testers Common processing, instrumentation, test standardization, and possibly 
codeline organization
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EXAMPLE Figure 20–1 shows an example of using UML to document a 
module structure model.

This layer model shows a module organization with three layers, each 
layer being represented by a stereotyped package. The system’s modules 
are shown as UML packages within the layers.

The model shows that the domain layer depends on the utility layer, 
which in turn depends on the platform layer (i.e., the domain-layer com-
ponents can access only the utility-layer components, and so on).

However, you can also see that nonstrict layering has been used in this 
system because all of the domain-layer components depend on facilities 
provided by the Java Standard Library component rather than accessing its 
facilities via intermediate utility components. (In contrast, the domain-level 
components cannot access the JDBC Driver component.)

«layer»
utility

Servlet
Container

Logging Library
Message

Handling Library
DB Access 

Library

A software module 
residing within a layer

Stereotyped package used to 
represent a layer within the 
software module structure«layer»

domain

Date Scheduler Quote Pricer

«layer»
platform

Java Standard 
Library

JDBC Driver

Interlayer dependency 
relationships showing allowed 
dependencies between modules 
in the layers

Explicit intermodule dependency 
showing allowable dependency between 
two specific modules

FIGURE 20–1 EXAMPLE OF A UML MODULE STRUCTURE MODEL
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ACTIVITIES

Identify and Classify the Modules. Group the source code for the system
into a set of modules, and (optionally) classify them—by abstraction or other
criteria—into a higher-level organization.

Identify the Module Dependencies. Identify a clear set of dependencies
between the modules (or the higher-level groups) so that everyone involved
in the design and construction of the system can understand the impact of
making changes.

Identify the Layering Rules. If a layered approach is to be used, you need to
design a set of rules to be followed with respect to the layers. Can modules
call modules only in their own layer and the one above or below, or do you
want a less rigid rule in order to meet system quality properties such as per-
formance and flexibility?

Common Design Models
To maximize commonality across element implementations, it is desirable to
define a set of design constraints that apply when designing the system’s soft-
ware elements. Such design constraints are valuable for two principal reasons.

� You can reduce risk and duplication of effort by identifying standard 
approaches to be used when solving certain types of problems.

� Commonality among system elements helps increase the system’s overall 
technical coherence and makes it easier to understand, operate, and 
maintain.

A common design model has the following three important pieces.

1. A definition of the common processing required across elements, such as:

• Initialization and recovery
• Termination and restart of operation
• Message logging and instrumentation
• Internationalization
• Use of third-party libraries
• Processing configuration parameters (at startup or while running)
• Security (e.g., authentication or encryption)
• Transaction management
• Database interaction
• Internal and external interfacing 

These aspects of your software element designs can benefit greatly 
from using a standard approach across all system elements. Identifying 
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and defining common processing is a key architectural task that directly 
contributes to the overall technical coherence of the system.

2. A definition of standard design approaches that should be used when 
designing the system’s elements. These start to emerge when (having 
defined the functional structure) you think ahead a little about how 
the subsystems might be implemented. When you see situations 
where the same sort of processing is performed by different elements, 
or where you know that the implementation of a certain aspect of an 
element will have a system-wide impact, you should consider whether 
you need a standard design approach. When identifying such an 
approach, you must define what the approach is, where it should be 
used, and why it should be used. In other words, it is a special sort of 
design pattern.

3. A definition of what common software should be used and how it should 
be used. This may be the result of making other higher-level decisions 
(e.g., selecting an access library for your chosen database) or identifying 
a reusable component (e.g., a third-party message-logging library or a 
locally developed graphical user interface element) that can save you 
development time and reduce risk. In either case, your common design 
model needs to clearly identify what common elements should be used, 
where they should be used, and how they should be used.

As with the module structure model, you may need to define different de-
sign constraints for different parts of the system. In any case, as an architect,
you are only starting a task that will continue throughout the design and build.

NOTATION The common design model is a partial design document, and as
such, the notations it uses are those of software design—usually a combina-
tion of text and more formal notation such as UML.

The following example shows some possible design constraints from a
common design model. 

EXAMPLE Here is an example of a common design model.

Common Processing Required
1. Message logging

• All components must log human-readable messages that clearly 
state what has occurred and any corrective action that is expected in 
response.
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• Messages must be logged at one of the following levels: Fatal, Error, 
Warning, Information, Debug. Fatal should be used to indicate an 
unrecoverable error, where the component will stop immediately; 
Error indicates an unrecoverable error, where the component can 
reset itself and continue execution; Warning indicates a possible 
error or unexpected condition that may need operator intervention to 
review and address; Information is used to report conditions that 
occur during normal operation and require no operator intervention; 
Debug should be used to indicate internal details of the component’s 
operation.

• Components should log messages at all five possible logging levels.
• Logging should be achieved via a standard library (as defined later) 

to standardize destination, format, configuration, and so on.

[. . .]

2. Internationalization

• All user- and administrator-visible strings must be stored in 
message catalogs so that hard-coded strings are not present in 
source code.

• Parameters must be inserted into internationalized strings using 
position-independent placeholders to avoid problems with ordering 
across languages.

• Locale-sensitive information (dates, times, currency strings, and so 
on) must be formatted according to the current locale in force, and 
default formats should not be used.

• Strings logged at Debug level or for other purely internal use should 
not be internationalized but should be hard-coded in the source 
code.

[. . .]

Standard Design
1. Internationalization

• For internationalization of locale-sensitive resources (primarily 
strings), use an external resource catalog to store resources outside 
the source code files. This means that all strings must be extracted 
from a message catalog before they can be used in a program 
(e.g., to write a log message).

• As the server software is being written entirely in Java, the interna-
tionalization implementation will use the Java Platform’s native 
internationalization facilities: the resource bundle, the formatting 
classes in the java.text package, and the Locale class.
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ACTIVITIES

Identify Common Processing. Identify what common processing is required,
where the processing is required (in all elements or just some?), and how the
common processing should be performed.

Identify the Required Design Constraints . Establish whether any common
processing should be standardized and whether critical aspects of subsystem
design will have a negative system-wide impact if not designed in a certain
way. If you find such situations, consider whether you can impose a design
constraint that will resolve the problem, and, if so, add it to the list.

Identify and Define the Design Patterns. Document a set of mini design
patterns that clearly define the constraints. The constraints are defined in
terms of the software design that needs to be followed, the applicability of the
constraint (i.e., where to use it), and the rationale for the constraint (to allow
those following it to understand its role).

Define the Role of Standard Elements. Consider whether you have any standard
software elements that can be shared among subsystems. You will often identify
such standard elements when considering the system’s common processing. If you
find standard elements, clearly define their roles and how they should be used.

Codeline Models
Although you certainly don’t want to be dictating the minutiae of the software
developers’ lives, you do need to ensure that there is order rather than chaos
when it comes to the organization of the system’s code.

• The relationships between these different elements of the interna-
tionalization technology are as follows. [. . .]

• [You would place a definition of a design pattern for using the 
Java internationalization facilities here.]

[. . .]

Standard Software Components
1. Message logging

• All message logging must be performed using the standard CCJLog
package, which is part of the standard build environment.

• The CCJLog package must be used in a standard way, which is doc-
umented as a code sample in the src/server/sample
/logging/CCJLog source directory.

[. . .]
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The key things to define are the overall structure of the codeline; how the
code is controlled (usually via configuration management); where different
types of source code live in that structure; how it should be maintained and
extended over time (in particular, how any concurrent development of differ-
ent releases should work); and the automated tools that will be used to build,
test, release, and deploy the software. A codeline model normally needs to
capture the following essential facts:

� How code will be organized into source files

� How the files will be grouped into modules

� What directory structure will be used to hold the files

� How the source will be automatically built and tested to form candidate 
releasable binaries

� What type and scope of tests will need to be run regularly and when they 
should be run

� How the binaries will be released into a test or production environment 
for testing and use, again ideally via an automated process

� How the source will be controlled using configuration management 
(including any use of branching, change sets, and so on) to coordinate 
multiple developers working on it concurrently

� What automated tools will be used for the build, test, and release process 
and how they will work together in order to form a complete continuous 
integration and delivery system

Defining these aspects of the development environment is an important
part of achieving reliable, repeatable build and release processes. The infor-
mation you provide through your model will help prevent confusion and frus-
tration as developers work together. 

In situations where development of the system will be distributed among
different teams or among members of teams working at different locations,
addressing this concern becomes even more important. You may have to take
into account factors such as different time zones or even the different lan-
guages spoken by development staff.

Depending on the skill and experience of the developers, you may be
comfortable leaving the majority of this work to your design team; at the
other extreme, you may want to specify this in some detail.

NOTATION In principle, you can represent the codeline model by using struc-
tured notations such as UML. However, our experience of trying this suggests
that it often isn’t worth the bother. A simple approach based on text and tables
with a few clear diagrams to explain the conventions used should suffice.
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ACTIVITIES

Design the Source Code Structure. Design the overall structure of the direc-
tory hierarchy to be used to store your system’s source code. This must be
flexible enough to provide easy maintenance but simple enough that develop-
ers know where their source files should live.

Define the Build, Integration, and Test Approach. To achieve a reliable
system build process, you need to mandate a common approach across the
system. A build and release specialist may do this for you, but the approach
used for automating the build, integration, and testing does need careful de-
sign. Whatever approach you use, it must make it possible to easily build the
system automatically and also allow developers to use central or local copies
of the latest build.

Define the Release Process. Having completed a clean build of the system,
you need to release the resulting work products (binaries, libraries, gener-
ated documentation, and so on) for testing and use. To ensure that this pro-
cess is reliable and repeatable, you must design a clear process, again
preferably automated. As before, specialists may do the design for you, or
you may need to do it yourself. It is particularly important to be clear about
the build validation (such as automated test suite execution) that needs
completion before release. This process will need to use any deployment
tools that are required in your environment, whether internal to your orga-
nization or supplied by a third party if you are deploying software to an
external hosting environment, such as externally hosted servers or a public
cloud computing service.

Define the Configuration Management. To ensure repeatability and techni-
cal integrity, you must use a common approach to configuration manage-
ment. Its definition should encompass the tools to be used, the configuration
structures (such as variants, branches, and labels) to be used, and the pro-
cess for managing the deliverables under configuration control.

PROBLEMS AND PITFALLS

Too Much Detail
Most software architects are experienced software designers, which means
that you probably have a lot of background knowledge related to the process
of software design and implementation. The danger that stems from this is
the temptation to use the Development view to define low-level details about
the system’s implementation that are really the concern of the designers and
implementers.
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RISK REDUCTION

� Minimize the number of design constraints you identify. Identifying too 
many is often counterproductive and causes problems as developers try 
to shoehorn their elements into the space left by a number of different
constraints (or simply ignore them).

� Carefully review everything you describe in the Development view, and 
question whether it is architecturally significant. If not, eliminate that 
detail from the Development view.

Overburdened Architectural Description
A problem related to having too much detail is the question of where to put
the contents of the Development view (particularly in the common design
model). For a complex system, the common design model can require a signif-
icant amount of text, and given that it is aimed at a specialized group of
stakeholders, it can seem out of place in the main AD document.

RISK REDUCTION

� Capture the details of the system-wide design constraints in a separate 
document specifically aimed at the software developers, and then sum-
marize the constraints required and their rationale in a short section of 
the AD. This allows interested stakeholders to satisfy themselves that the 
design constraints have been considered, without needing to understand 
the details of these constraints.

Uneven Focus
We all have a tendency to focus on things that we understand and find inter-
esting. This can lead to a situation where, for example, the design patterns to
be used for network request handling are discussed in minute detail, but the
initialization processing required of each element is hardly considered at all.

RISK REDUCTION

� Try to step back from the system and consider all of the aspects of soft-
ware development that need to be defined at an architectural level.

� Find specialist expertise to advise you in areas you aren’t familiar with.

Lack of Developer Focus
Always remember that the primary (and often only) customers of the Devel-
opment view are the software developers and testers working on your project.
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The Development view must answer their questions and be relevant to their
concerns. If it isn’t, it will almost certainly be ignored.

RISK REDUCTION

� Involve the developers and testers in defining the Development view. 

� Delegate aspects of the view’s development to senior software developers 
when possible, to give the software development team ownership of the 
aspects of the architecture that affect them.

Lack of Precision
Because the Development view has to cover many aspects of the software
development, and because you are unlikely to have expertise in all of them,
lack of precision is a risk. Developers might misinterpret imprecise descriptions
or, if they cannot understand the descriptions, might ignore them altogether.

RISK REDUCTION

� This problem often occurs when an architect knows that it is important to 
define some aspect of the system but knows little about it and thus simply 
states that it needs to be performed. When defining the Development view, 
make sure to review its contents early with the software developers and 
testers to check that the view’s definitions are precise enough. 

� Do not be afraid to make use of the knowledge of subject matter experts 
where your experience is limited—you are not expected to be an expert in 
everything!

Problems with the Specified Environment
Keeping up-to-date with new and emerging technologies takes a lot of time. It
is particularly hard to get reliable information on how mature those technolo-
gies are and how appropriate they might be for your architecture.

This imposes the risk of specifying aspects of the Development view
based on out-of-date (or perhaps just incorrect) knowledge and assumptions,
which can lead to later problems in development or live operation and damage
your credibility with developers. 

The other related mistake that is easy to make is to try to impose ap-
proaches that have worked well before but that are simply wrong for the
project teams in the environment in which you’re currently working. Short-
lived stand-alone systems require a different development environment from
huge long-lived product lines that will be used for many years by external
customers. Make sure you understand the needs and constraints of the
project environment before trying to define the Development view.
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RISK REDUCTION

� Make sure you specify technology and techniques you really know about, 
or get trusted, expert advice from subject matter experts to help make the 
relevant decisions. 

� Understand what is needed in the current project environment and make 
sure that your Development view reflects these needs and doesn’t over-
complicate or oversimplify the development environment.

� Delegating the research and design of aspects of the Development view to 
members of the software development team can help alleviate this prob-
lem while having other positive side effects, such as giving the software 
developers a heightened sense of ownership of the system.

CHECKLIST

� Have you defined a clear strategy for organizing the source code modules 
in your system?

� Have you defined a general set of rules governing the dependencies that 
can exist between code modules at different abstraction levels?

� Have you identified all of the aspects of element implementation that 
need to be standardized across the system?

� Have you clearly defined how any standard processing should be 
performed?

� Have you identified any standard approaches to design that you need all 
element designers and implementers to follow? If so, do your software 
developers accept and understand these approaches?

� Will a clear set of standard third-party software elements be used across 
all element implementations? Have you defined the way they should be 
used?

� Will the development and test environments that have been defined work 
reliably and be usable and efficient for developers and testers to work in?

� Have you or someone else defined a suitable set of tools to reliably auto-
mate the end-to-end build, integration, test, and release processes? Does 
the set of tools include any internal or third-party tools that you require 
to deploy to the internal or external test and production environments 
that you are using?

� Is this view as minimal as possible?

� Is the presentation of this view in the AD appropriate?
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FURTHER READING

Many books discuss the use of design patterns in software development, the
original book being, of course, Gamma et al. [GAMM95]. This topic is
explored further in Coplien et al. [PLOP05–99, PLOP06].

There are a number of good books covering relevant topics such as con-
figuration management, continuous integration, automated testing, release
processes, and so forth. [AIEL10] is a fairly high-level overview of the entire
area, focusing on configuration management and release control, and
[BERC03] is a very thorough guide to software configuration management,
illustrated using a set of patterns. [DUVA07] is a thorough and practical
guide to continuous integration, and [HUMB10] is a detailed guide to auto-
mating the processes involved in building, testing, and releasing software. Fi-
nally, there are a large number of books on automated testing, but we
particularly like [FREE09], which provides lots of practical advice on automa-
tion but also gets behind the mechanisms to show how and why to put auto-
mated testing at the heart of the development process.
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21
THE DEPLOYMENT
VIEWPOINT

The Deployment view focuses on aspects of the system that are important
after the system has been built and needs to be validation tested and transi-
tioned to live operation. This view defines the physical environment in which
the system is intended to run, including the hardware or hosting environment
(e.g., processing nodes, network interconnections, and disk storage facilities),
the technical environment requirements for each type of processing node in
the system, and the mapping of your software elements to the runtime envi-
ronment that will execute them.

Definition Describes the environment into which the system will be deployed and 
the dependencies that the system has on elements of it

Concerns Runtime platform required, specification and quantity of hardware or 
hosting required, third-party software requirements, technology 
compatibility, network requirements, network capacity required, and 
physical constraints

Models Runtime platform models, network models, technology dependency 
models, and intermodel relationships.

Problems and 
Pitfalls

Unclear or inaccurate dependencies, unproven technology, unsuitable 
or missing service-level agreements, lack of specialist technical knowl-
edge, late consideration of the deployment environment, ignoring 
intersite complexities, inappropriate headroom provision, and not 
specifying a disaster recovery environment

Stakeholders System administrators, developers, testers, communicators, and assessors

Applicability Systems with complex or unfamiliar deployment environments
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A Deployment view is useful for any information system with a required
deployment environment that is not immediately obvious to all of the inter-
ested stakeholders. This includes the following situations:

� Systems with complex runtime dependencies (e.g., specific third-party 
software packages or particular network services are needed to support 
the system)

� Systems with complex runtime environments (e.g., elements are distrib-
uted over a large number of machines)

� Systems hosted in third-party environments, such as hosting services or 
public clouds, in order to allow a clear definition of the environment 
required and how the system will deploy into it

� Situations where the system may be deployed into a number of different
environments and the essential characteristics of the required environ-
ments need to be clearly illustrated (which is typically the case with 
packaged software products)

� Systems that need specialist or unfamiliar hardware or software in order to run

In our experience, most large information systems fall into one of these
groups, so you will almost always need to create a Deployment view.

CONCERNS

Runtime Platform Required
The Deployment view must clearly identify the type of runtime platform that
the system needs and the role that each part of it plays. This includes general-
purpose compute nodes to host servers and computational logic, special-
purpose compute nodes to host database engines, storage for databases and
file systems, devices that allow users to access the system or print informa-
tion, network services required to meet certain quality properties (such as
firewalls for security), specialist hardware (such as cryptographic accelera-
tors), and so on. The manner in which the platform is provided, whether it be
physical hardware commissioned in-house, virtual servers and storage pro-
vided by a third-party hosting company, the use of a public cloud computing
environment, or some other option, needs to be clearly defined too, as does
the location of each part of the platform.

Defining the runtime platform involves identifying the general types of
processing elements required (such as compute server node, application
server node, storage array, and so on), defining the dependencies between
them, and mapping each of your functional elements to one of these types. In
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effect, this is a logical model of the runtime platform that your system re-
quires. Then, when you have defined what each piece of the platform is used
for, you can think about the details of exactly what hardware elements you
need to provide it.

Specification and Quantity of Hardware 
or Hosting Required
This concern, which follows from the previous one, addresses the specific
details of the hardware that will need to be procured and commissioned in order
to deploy the system—in effect, a physical model of the hardware your system
needs. This hardware may need to be ordered and commissioned in-house or
via a third party or may be specifications for a virtual computing environment,
such as ordering capacity from a cloud computing supplier.

This is a separate concern from the previous one because it is much more
specific and of interest to different stakeholders. For example, developers are
interested in whether the deployment platform will use Intel or Sun SPARC serv-
ers; whether the servers will run Linux, HP-UX, or Windows; and what general
processing resources will be available to them. However, system administrators
are interested in the detailed specification and quantity of the hardware ele-
ments or specification of the hosting environment that needs to be acquired to
create your runtime environment. The service-level agreements (SLAs) for each
part of the runtime environment will also need to be agreed to and validated as
acceptable for the level of service your system needs to provide.

Be specific when considering the specification, quantity, and service level
of the hardware and services that you need. If specific models of equipment or
specifications of hosted environment services are required, you need to
clearly identify and record them for easy reference. If specific models or ser-
vices aren’t required, you should still be precise where needed.

Third-Party Software Requirements
All information systems make use of third-party software as part of their
deployment environment—even if only an operating system. Many informa-
tion systems make use of dozens of third-party software products, including
operating systems, programming libraries, messaging systems, application
servers, databases, data movement products, Web servers, and so on. If you
are deploying your system to a platform-as-a-service environment, there is
probably a specific set of platform services and options that you need in order
for your system to run successfully.

Your Deployment view should make clear all of the dependencies between
your system and any third-party software products. This ensures that the
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developers know what software will be available for them to use and that the
system administrators know exactly what needs to be installed and managed
on each piece of hardware. It also helps you to spot any gaps in your analysis
as early as possible.

Technology Compatibility
Each software and hardware element in your system may impose require-
ments on other technology elements. For example, a database interface library
may require a particular operating system network library in order to function
correctly, or a disk array may require a particular type of interface in the
machines that will access it.

Furthermore, if you use a number of pieces of third-party technology
together, there is always the danger of uncovering incompatible requirements.
For example, your database interface library may require a certain version of
the operating system, but a graphics library you want to use isn’t supported
on that version. Such incompatibilities have a habit of emerging late in the
testing cycle and causing a lot of disruption—so if you consider them early,
you will avoid problems later.

Network Requirements
Your Functional and Concurrency views define the functional structure of
your architecture and make it clear how its elements interact. Part of the pro-
cess of creating the Deployment view is to decide which hardware elements
host each of these functional elements. Because elements that need to com-
municate often end up on different machines, some of the interelement inter-
actions can be identified as network interactions.

One of the concerns the Deployment view addresses is the set of services
that the system requires of its underlying network as a result of these network
interactions. This view needs to clearly identify the required links between
machines; the required capacity, latency, and reliability of the links; the com-
munications protocols used; and any special network functions the system
requires (load balancing, firewalls, encryption, and so on).

Network Capacity Required
In our experience, software architects need to get less involved in specifying
network configuration than in identifying the processing and storage hard-
ware because the network is normally provided by a group of specialists who
design, implement, and operate the network for an entire organization.



CHAPTER 21 � THE DEPLOYMENT VIEWPOINT 377

However, this group needs to know how much network capacity your system
requires and the type of traffic you need to carry over the network. In order to
provide this information, you must estimate and record the amount and type
of network traffic that needs to be carried over each intermachine link in the
proposed network topology.

Physical Constraints
As software engineers we are lucky when compared to our colleagues work-
ing in other engineering disciplines. Normally, we don’t have to worry that
much about physical constraints because software has no weight, has no phys-
ical size, and occupies no physical space. However, when taking a sys tem-level
view, physical constraints suddenly become important again.

Considerations such as desk space for client workstations, floor space for
servers, power, temperature control, cabling distances, and so on may seem
relatively mundane. However, if someone doesn’t consider them, your system
simply won’t be deployed. There is no point in specifying four monitors for
each workstation if your users have desk space for only two. Similarly, if
there isn’t enough floor space in your data center for your servers, they won’t
be installed.

Stakeholder Concerns
Typical stakeholder concerns for the Deployment viewpoint include those
shown in Table 21–1.

TABLE 21–1  STAKEHOLDER CONCERNS FOR THE DEPLOYMENT VIEWPOINT

Stakeholder Class Concerns

Assessors Types of hardware or hosting required, technology compatibility, and 
network requirements

Communicators Types and specification of hardware or hosting required, third-party soft-
ware requirements, and network requirements (particularly topology)

Developers Types and (general) specification of hardware or hosting required, 
third-party software requirements, technology compatibility, and net-
work requirements (particularly topology)

System administrators Types, specification, and quantity of hardware or hosting required; 
third-party software requirements; technology compatibility; network 
requirements; network capacity required; and physical constraints

Testers Types, specification, and quantity of hardware or hosting required; 
third-party software requirements; and network requirements
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MODELS

Runtime Platform Models
The runtime platform model is the core of this view. This description defines
the set of hardware nodes that are required, which nodes need to be con-
nected to which other nodes via network (or other) interfaces, and which
software elements are hosted on which hardware nodes.

A runtime platform model has the following main elements.

� Processing nodes: Each computer in your system is represented by one 
processing node in the runtime platform model. This allows you and 
other stakeholders to see what processing resources are required for 
the system. For situations where many similar machines are required 
(e.g., Web server farms), you can use a summary notation (such as 
UML’s shadow notation) to simplify the diagram, but make sure that the 
number of nodes required is still clear.

� Client nodes: You also need to represent client hardware, but probably in 
less detail than the main processing hardware. You may have less control 
over client hardware than server hardware, and if this is the case, you 
need only represent the types and quantities of client machines required 
rather than the precise details of each. If you have special needs for pre-
sentation or user interaction hardware (e.g., touch screens, printers), 
this is specified as part of the client hardware.

� Runtime containers: Client and server nodes may need to provide a 
runtime container (such as a software application server or a client 
virtual machine) to provide a suitable runtime environment for the 
functional elements deployed onto them.

� Online storage hardware: This defines how much storage is needed, of 
what type, how it is partitioned, what it is used for, the assumptions you 
are making about its reliability and speed, and whether or not processing 
takes place close to its associated stored data. The storage hardware 
could be disk devices within a processing node or dedicated storage 
nodes such as disk arrays. Make the distinction between the two types 
clear so that the physical impact of separate storage nodes on the deploy-
ment environment is understood. You need to include the capacity (and 
possibly speed) of each type of storage hardware in the model.

� Offline storage hardware: Despite the ever-growing capacity of online 
storage hardware, many systems that deal with a lot of information still 
require offline storage (archives) as well. Somehow the problems always 
grow faster than the hardware capacity. Offline storage will also probably 
be required to allow backup of information held online. You need to 
ensure that there is sufficient capacity, that the hardware is fast enough 
to complete archive and retrieval in an acceptable time, and that there is 
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sufficient network bandwidth between it and the online storage. The 
requirements for the type, capacity, speed, and location of your offline
storage hardware all need to be defined here.

� Network links: Your model needs to capture the essential connections 
required by your system (rather than your ideas on how the network will 
be built from specific network elements). It is sufficient at this point to 
show the links between your hardware nodes; you’ll capture more details 
about the network, such as internode bandwidth requirements, in the 
network model (described next in this chapter).

� Other hardware components: You may need to consider specialist hard-
ware for network security, user authentication, special interfacing to other 
systems, or specialist processing (e.g., for automated teller machines).

� Runtime element-to-node mapping: The final element of this model is a 
mapping of the system’s functional elements to the processing nodes 
where they execute. How to go about defining this mapping depends on 
how complex your concurrency structure is. If you have a Concurrency 
view, you can map the operating system processes identified in that view 
to the processing nodes. If you don’t have a Concurrency view, you can 
map functional elements from the Functional view directly to processing 
nodes (and in this case, presumably the details of the operating system 
processes in use aren’t architecturally significant).

This runtime platform model is typically captured as a network node dia-
gram that shows nodes, storage, the interconnections required between the
nodes, and the allocation of the software elements between the nodes.

NOTATION Common notations used for capturing the runtime platform model
include the use of UML, traditional boxes-and-lines diagrams, and textual
notations. Each of these options is outlined in this subsection.

� UML deployment diagram: You can use a UML deployment diagram to doc-
ument a runtime platform model. This diagram shows computing “nodes,” 
and optionally “execution environments” (such as runtime containers), 
with “artifacts” representing the software elements deployed to them and 
the “communication paths” between the nodes (the communication path 
being a specialization of a UML association). Interelement dependencies can 
also be indicated on the diagram using regular or stereotyped UML depen-
dencies. Figure 21–1 shows an example of using a UML deployment dia-
gram as a simple runtime platform model that maps functional elements to 
processing nodes, in some cases with execution environments.

When using the UML “artifact” to represent the software being deployed, it 
may be useful to show the actual binary files that are deployed. Artifacts can 
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also be used to represent entire system elements from the Functional view, 
which can be clearer and simpler. We show both styles of artifact in the dia-
gram (e.g., the “OpsPlanner.jar” artifact is a deployed binary file, whereas the 
“Data Capture Service” is a system element, which is probably composed of a 
number of files). If you are using a UML tool to create your models, and the re-
lationships between system elements and deployed artifacts aren’t obvious, 
you may wish to use the «deploy» dependency to record these relationships.

UML does not provide very specific semantics for the nodes and 
communication paths and does not provide a library of predefined types 

FIGURE 21–1 EXAMPLE OF A RUNTIME PLATFORM MODEL

«processingNode»
Database Server 
{model = ‘HP SD2-8’ 
os = ‘OraLinux6’ 
cpu = ‘4 x 1.6GHz’ 
memory = ‘512GB’}

«executionEnvironment»
Oracle 11.1 DBMS

«artifact»
CalcDB Schema

«disk»
Disk Array 
{size = ‘3TB’ 

type = ‘L1 storage’}

«processingNode»
Primary Server 
{model = ‘HP BL870ci2’ 
os = ‘RHEL5’ 
cpu = ‘4 x 1.73GHz’ 
memory = ‘128GB’}

«artifact»
Data Capture Service

«artifact»
Data Access Service

«processingNode»
Calculation Server 
{model = ‘HP NB54000c’ 
os = ‘RHEL5’ 
cpu = ‘8 x 1.6GHz’ 
memory = ‘128GB’}

«executionEnvironment»
Tomcat 7.0

«artifact»
Predictive
Calculator

«processingNode»
Prod’n Line 
Operator PC 
{memory = ‘2GB+’ 
cpu = ‘2GHz+’}

«artifact»
OperatorClient.exe

«processingNode»
Production Planner PC 
{memory = ‘4GB’ 
cpu = ‘2 x 3GHz+’}

«executionEnvironment»
JRE 1.6.0_20

«artifact»
OpsPlanner.jar

Production Line 
Interface

UML nodes 
used to represent 
hardware elements 
in the deployment 
environment

Artifacts used to 
represent the 
software items 
being deployed

UML “communication path”
associations used to show required 
intermachine connections

Custom stereotypes 
with tagged values 
used to indicate 
required types or 
characteristics
of hardware

UML “execution
environments”
used to show 
runtime containers 
where required
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to choose from. Therefore, effective use of this diagram type usually 
relies on the use of stereotypes, tagged values, and comments in order 
to distinguish between different types of nodes and links. A runtime 
platform model also needs to be augmented by plain-text descriptions 
of the major elements, clearly defining the role and important charac-
teristics of each.

� Boxes-and-lines diagram: Given the basic nature of the UML deployment 
diagram, many architects choose a simple boxes-and-lines notation for 
Deployment views. Boxes are used to represent nodes and elements, with 
arrows for interconnection; the diagram is annotated as required in 
order to make the meaning of each diagram element clear. With such an 
approach, you need to carefully define the diagrammatic elements used 
to avoid causing any confusion for the reader. This notation is easier to 
draw with drawing tools that don’t support UML, and it may be more 
comprehensible to nontechnical stakeholders.

� Text and tables: Reference information such as required hardware speci-
fications is best represented by text that is organized into tables for easy, 
unambiguous reference.

ACTIVITIES

Design the Deployment Environment. You typically start by identifying the key
servers in the system, any important client hardware requirements, and the net-
work links necessary between the nodes. With this done, you have the backbone
of your deployment environment. The rest of the process is normally elaboration,
adding any special-purpose hardware required (e.g., cryptographic accelerators,
or nodes for redundant capacity) and specifying the hardware and software con-
figurations for each node along with any interconnections.

Map the Elements to the Hardware. Once you have a proposed deployment
environment, you need to find a home in it for each of your functional (soft-
ware) elements. In reality, this is an iterative process where mapping the soft-
ware elements to hardware resources may suggest changes in the deployment
environment design (or newly identified deployment environment options
may suggest new alternatives for software element locations). The main chal-
lenges here relate to managing dependencies, ensuring that enough machine
capacity is available, and trading off the advantages of separated versus colo-
cated elements (e.g., security versus performance). Refer to Chapters 25 and
26 for more depth on these topics.

Estimate the Hardware Requirements. This activity normally starts with
some initial estimation before initial deployment environment design, followed
by an iterative process of refinement as architecture and design progress. The
resources you need to estimate include processing power, memory, disk space,
and I/O bandwidth for each processing node.
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Conduct a Technical Evaluation. In order to design and estimate the deploy-
ment environment, you may need to perform a number of technical evaluation
exercises such as prototype element development, benchmarks, and compatibil-
ity tests. For example, you may wish to create a representative prototype sys-
tem to ensure that your application server, object persistence library, and
database all work smoothly together and to check the transaction throughput
you can achieve.

To ensure a representative test, identify the key attributes of your application
(size, type of processing, and so on) and make sure you include all of this in
your technical evaluation. Involve experts in the test to gain the benefit of their
experience and ensure that you do not overlook anything important.

Obtaining time and resources for technical evaluation is often a problem.
We have found that arguing for evaluation resources in terms of risk manage-
ment is often the most effective way to deal with this.

Assess the Constraints. It is rare for architects to be left to define a Deploy-
ment view without any external constraints. The constraints you encounter may
be formal standards, informal guidelines, or simply implicit constraints that you
know exist. However the constraints are expressed, you need to review your
proposed deployment environment design to ensure that they are met.

Network Models
In the interests of simplicity, the runtime platform description does not usu-
ally define the network in any detail. If the underlying network is complex, it
is usually described in a separate network model.

In our experience, the network is usually designed and implemented by
networking specialists rather than the software architect. However, it is impor-
tant that you provide the networking specialists with a clear specification of the
capabilities of the network you are expecting. This description must indicate
which nodes need to be connected, any specific network services that you re-
quire (such as firewalls or compression), and the bandwidth requirements and
quality properties required from each part of the network. This model is nor-
mally a logical or service-based view of what you require of the network, rather
than a physical view that specifies its individual elements. In the case of soft-
ware product development, such a model is a valuable specification for custom-
ers planning the deployment of your software.

The primary elements of a network model are as follows.

� Processing nodes: The processing nodes represent your system elements 
that use the network to transport data. This set of nodes should match 
the set from the runtime platform model, but here they are abstracted to 
simple elements with network interfaces.
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� Network nodes: Additional network nodes can be added to represent net-
work services that you expect to be available (such as firewall security, 
load balancing, or encryption).

� Network connections: The network connections are the links between the 
network and processing nodes. They are elaborated to include the char-
acteristics of the service you expect the link to provide (most typically 
bandwidth and latency, but perhaps also quality of service, reliability, or 
other network qualities).

This description is typically represented as an annotated network dia-
gram, which is really a network-oriented specialization of the runtime envi-
ronment diagram. In cases where your network requirements are very simple,
you can describe the network sufficiently by elaborating the runtime platform
model, rather than creating a separate network model. However, given the
critical dependency that most of today’s systems have on the underlying net-
work, a separate network model is a useful tool to focus attention on this
aspect of the system.

Figure 21–2 shows a simple example of a network model for the runtime
platform we depicted earlier in Figure 21–1. This diagram would be aug-
mented with textual descriptions for each of the major elements.

FIGURE 21–2 EXAMPLE OF A NETWORK MODEL

«networkNode»
Primary Server 
{network = ‘3 x 1GB’ 
network = ‘leased lines’}

«networkNode»
Production
Planner PC

Firewall

«networkNode»
Production
Operator PC

Production
Line
Interface

Corporate
WAN

Firewall

«networkNode»
Database Server 
{network = ‘2 x 1GB’}

«networkLink»
{type = ‘ethernet 

100MB’}

«networkLink»
{type = ‘dedicated 

ethernet’}

«networkNode»
Calculation
Server

Traffic from 
WAN filtered 
by host address 
at this point

UML nodes used 
to show logical 
network structure 
and services

Custom stereotypes 
with tagged values 
used to make required 
network node and 
link characteristics clear

Embedded comments 
used to define required 
network services

UML communication 
paths used to show 
required network links
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NOTATION Common notations used for capturing the network model include
the use of UML and traditional boxes-and-lines diagrams.

� UML deployment diagram: UML’s deployment diagram is a useful base 
notation for a network model. However, as with the runtime platform 
description, you will probably need to annotate it with stereotypes, 
tagged values, and comments in order to make your intentions clear.

� Boxes-and-lines diagram: For reasons similar to those discussed earlier, 
the network model is often drawn using an informal notation.

ACTIVITIES

Design the Network. The network design is typically handled separately from
that of the computer hardware because different specialists are involved. From
your point of view, this is a process of sketching what you need from the net-
work (in terms of connections, capacity, quality of service, and security). This re-
sults in what is effectively a logical rather than a physical network design, which
then becomes a specification for a specialist network designer to take further.

Estimate the Capacity and Latency. Part of designing your logical network
is to estimate the capacity and latency that you are expecting between each
node. Precision isn’t that important at this stage, but a realistic estimation of
the magnitude of the traffic to be carried and expected round-trip time is
important. You can estimate the capacity figures by combining peak transac-
tion throughput and a rough approximation of the size of messages required
to carry the transaction’s information. The latency is normally estimated
using a combination of standard metrics for the type of network in use (com-
bined with the distance between nodes) and some measurement of the exist-
ing network. Both results are normally combined with judicious scaling
factors to allow for inevitable overheads and prediction inaccuracies.

Technology Dependency Models
In some cases, you can manage the dependencies within your development or
test environment by bundling your software and its dependencies into one
deployment unit. However, in many cases this simply won’t be possible for
reasons such as efficiency, cost, licensing, or flexibility. If this is the case, you
need to manage the dependencies in your deployment environment.

Technology dependencies are usually captured on a node-by-node basis
in simple tabular form. The software dependencies are typically derived from
the Development view, where you define the environment used by the soft-
ware developers. You can also derive hardware dependencies from test or
development environments, but in many cases you have to rely on manufac-
turer specifications and some judicious testing to confirm them.
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In simple cases, it may be possible to use the Development view contents
rather than list dependencies in this view. However, in more complex cases, it
is unlikely that the Development view contains the detail required to fully
define the software dependencies for each node type in the system.

NOTATION A technology dependency model is often best captured by using
a simple text-based approach, but it can sometimes benefit from the use of
some simple graphical notations. 

� Graphical notations: One way to capture software dependencies is to 
extend your runtime platform model to add an indication of the software 
stack required on each machine to support the system elements execut-
ing there. In simple cases, this can be a useful elaboration of the runtime 
platform model. The problem with this is that complete and accurate soft-
ware dependency stacks on each node can clutter the runtime platform 
model to the point where it is no longer usable—in this case, you should 
record this information separately.

TABLE 21–2  SOFTWARE DEPENDENCIES FOR THE PRIMARY SERVER NODE

Component Requires

Data Access Service HP-UX 64-bit 11.23 + patch bundle B.11.23.0703
HP aCC C++ runtime A.03.73

Data Capture Service HP-UX 64-bit 11.23 + patch bundle B.11.23.0703

HP aCC C++ runtime A.03.73

Oracle OCI libraries 11.1.0.7

HP aCC C++ Compiler & Runtime HP patch PHSS_35102

HP patch PHSS_35103

Oracle OCI 11.1.0.7 HP-UX optional package X11MotifDevKit.MOTIF21

HP-UX patch PHSS_37958

EXAMPLE Table 21–2 shows an example of software dependencies for 
the Primary Server node in our example from Figure 21–1.

From this table it is possible to see that this node in the system needs 
a particular version of HP-UX with a patch bundle, a couple of specific
operating system patches, a set of C++ libraries, and one optional mod-
ule installed, as well as a particular version of an Oracle product.
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� Text and tables: Dependencies are almost always captured as simple text 
tables. It is important to capture the exact requirements for third-party 
software (e.g., detailed version numbers, option names, and patch levels).

ACTIVITIES

Analyze the Runtime Dependency. This is usually a manual exercise to work
through your system elements, identifying the dependencies they have and
then repeating this process for each of the third-party elements. You normally
derive the runtime dependencies from documentation supplied with each piece
of third-party technology you are using and your own build and test environ-
ment requirements. With this done, you can clearly define the third-party ele-
ments you need for each processing node in the system.

Conduct a Technical Evaluation. In order to correctly document dependen-
cies, you may need to do some prototyping or technical investigation.

Intermodel Relationships
For complex systems, a Deployment view contains two or three closely related
models rather than a single model. We have found that the three models
described earlier tend to be used by different stakeholders at different times.
People in the groups responsible for deployment refer to the runtime platform
model early in the project, a specialist networking group consults the network
model, and system administrators use the technology dependency model dur-
ing more detailed installation planning close to deployment. For this reason,
we’ve found it valuable to present each separately.

A good way to think about these models is as a set of informal layers,
with the core of the view being the runtime platform model. You can think of
the network model as a lower layer supporting the runtime platform by defin-
ing details of the network required. The technology dependency model can be
thought of as a more detailed layer on top of the runtime platform that defines
the software and hardware installation requirements on each machine in the
deployment environment.

In an ideal world, a software architecture tool would allow you to create a
single model for yourself and then extract different aspects of it automatically as
required. However, we aren’t aware of the existence of any such tool today, and
so you’ll probably have to work with separate models for the foreseeable future.

Figure 21–3 illustrates this relationship between the models within the
Deployment view. The runtime platform model is the core of the view, with
the network model providing more details of the network underpinning the
system and the technology dependency model providing more detail about
the hardware and software installed on each node to provide the runtime
environment.
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PROBLEMS AND PITFALLS

Unclear or Inaccurate Dependencies
Large-scale computing technology tends to be fairly complex, and it often has
many explicit and implicit dependencies on its runtime environment that will
cause problems if not satisfied. This difficulty is compounded by the fact that
most of these dependencies are invisible and can’t be checked easily—you
may not discover that you have the wrong version of a utility library until
your database server fails to start.

“You need Oracle and Linux” or “It uses Intel hardware” are pretty com-
mon dependency statements. For all but the smallest systems, these are too
vague to allow safe deployment of the system. You should specify which ver-
sions are required, whether any optional parts of the products are needed,
whether any patches are required, and so on. With the complexity and flexi-
bility of enterprise software products today, you need to be very clear about
what is required and what isn’t.

RISK REDUCTION

� Capture clear, accurate, detailed dependencies between your software 
elements and the runtime environment in the Deployment view. 

� Capture dependencies between third-party software and the runtime 
environment it needs.

FIGURE 21–3 MODELS IN DEPLOYMENT VIEW

Technology
Dependency

Runtime Platform

Network

EF5 0.4
FRT 4.0
ABC 3.1
XYZ 8.1

AFF 3.1
XYZ 8.1

AFF 3.1
XYZ 8.1

AFF 3.1
XYZ 8.1
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� Perform compatibility testing to ensure that the dependencies between 
the elements are correct.

� Use existing, proven combinations of technologies where the dependencies  
are well understood.

Unproven Technology
Everyone wants to use the newest and coolest technology—and understand-
ably so, as it often has the potential to bring great benefits. However, because
its characteristics are unknown, using technology with which you don’t have
experience brings significant risks: functional shortcomings, for example, or
inadequate performance, availability, or security.

RISK REDUCTION

� As much as possible, use existing software and hardware that you can 
test before committing to its use.

� When you must use new technology (or technology new to you), get 
advice from people who have used the technology before, or if this is not 
possible, test it thoroughly.

� Create realistic, practical prototypes and benchmarks to make sure that 
technologies work as advertised.

� Perform compatibility testing to ensure that new technologies work well 
with existing technologies.

Unsuitable or Missing Service-Level Agreements
The runtime environment for your system is usually provided by other people,
whether they are a separate part of your organization or are a completely sep-
arate organization. When providing services such as hardware, data storage,
networking, and so on, it is usual to specify an SLA to define the service that
you can expect from the provider. This will cover aspects of the service such
as cost, expected performance and reliability, recovery time guarantees in
case of failure, data backup service, and so on. You need to check the SLAs
carefully to make sure that the guarantees that they provide will allow you to
meet the goals of your system.

RISK REDUCTION

� Obtain a reliable SLA for the runtime environment elements that are 
provided by third parties (and estimate your own SLA if providing 
elements yourself).
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� Attempt to test the guarantees that the SLAs provide.

� Analyze the SLAs to understand how they combine and the implications 
of their combination.

Lack of Specialist Technical Knowledge
Designing a large information system is a complex undertaking that requires
a huge amount of specialist knowledge about many different subjects. No
one person can possibly be an expert on all of the technologies you may
need to use. This is why we use teams of people to develop systems and why
some people specialize in particular technologies, allowing them to advise
others.

Given the number of technologies used in many systems, it can be diffi-
cult to assemble a project team with expertise in all of the technologies
required. This can lead to a situation where you end up relying on vendor
claims for products rather than proven knowledge and experience.

RISK REDUCTION

� Bring specialist knowledge into your team so that you have mastery of 
all of the key technologies you need to use to deliver your system. If you 
don’t need the knowledge full-time, hire trusted and experienced part-
time experts.

� Obtain external expert review of your architecture to validate your 
assumptions and decisions.

� Obtain binding contractual commitments from your technology suppliers 
when possible.

Late Consideration of the Deployment Environment
The deployment environment is where your system hits reality. We’ve seen
problems in some projects when the system is designed from a purely soft-
ware-oriented perspective and the deployment environment is considered
only when the software is complete. Remember that an inappropriate
deployment environment can make an otherwise good system totally
unusable.

The deployment environment also often affects how the software is
designed and implemented, and this can be expensive to change. For exam-
ple, if plans change and you need to use a group of small machines rather
than a single large machine to host your server elements, this could have a
significant impact on the architecture of your server software, a change that
would be expensive to make late in a project.
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RISK REDUCTION

� Design your deployment environment as part of architecture definition
rather than as part of a separate exercise performed after the system has 
been developed.

� Obtain external expert review of your architecture to get early feedback 
before you spend too much time or money.

Ignoring Intersite Complexities
Many systems are deployed to an environment involving more than one phys-
ical site, and this is becoming ever more prevalent as organizations move to
use third-party hosting providers and cloud computing environments to aug-
ment their own data centers. Even when the entire environment is hosted in-
house, concerns such as resiliency, disaster recovery, geographical location of
the business, and data movement restrictions can result in systems being
hosted across a number of geographically distant sites.

If you do have a multisite deployment environment, it is important to con-
sider the impact of this quite early in your architectural design work as it can
have a major impact on the quality properties of the system, particularly its secu-
rity, performance, and scalability. Network latency between sites is the most ob-
vious problem (meaning that interelement interactions across these links need to
be considered carefully), but the need to keep the system secure across multiple
sites and the possible scalability limitations of needing to synchronize informa-
tion across sites are some of the other areas of concern that need to be addressed.

RISK REDUCTION

� Understand any requirements for multisite deployment as early as pos-
sible in your design work, and if it looks likely that multisite deploy-
ment is going to be required, consider its impact on all of your system 
qualities.

� Work with your infrastructure teams to understand the implications of 
distributing your system to multiple sites and the restrictions that the 
infrastructure may impose on this.

� Try to test various representative aspects of multisite deployment as soon 
as you can so that you are confident that you understand its implications.

Inappropriate Headroom Provision
Headroom is additional capacity (CPU power, memory, disk space, network
bandwidth, and so on) that you include in your hardware specifications to
accommodate spikes in demand or future growth in volumes. You usually add
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some headroom to your sizing estimates so that your system can cope with
additional demand without incurring hardware upgrade costs.

Specifying headroom involves a delicate balance between optimism
about future growth and spending restraint. If you get it wrong, you end up
deploying either expensive hardware that is insufficiently used or a system
that fails to meet its performance requirements. We discuss this further in
Chapter 26.

RISK REDUCTION

� Make sure your hardware specifications include an appropriate amount 
of headroom. Refer to the Performance and Scalability perspective, dis-
cussed in Chapter 26, for a discussion of how to model this effectively.

Not Specifying a Disaster Recovery Environment
Disaster recovery is the means whereby systems can be kept operational in
the event of a significant failure, such as loss of electric power, widespread
storage failure, or a natural disaster such as fire or flood.

Many disaster recovery strategies require the deployment of a separate
operational environment at a different location (for example, a standby or al-
ternate data center). To keep costs down, the standby environment may have a
lower specification than the production environment. In any case, as it is usu-
ally the responsibility of a development project to specify, implement, and pay
for the standby hardware, this must form part of your architectural description.

We discuss this further in Chapter 27.

RISK REDUCTION

� Make sure your Deployment view includes a specification of any disaster 
recovery hardware required.

CHECKLIST

� Have you mapped all of the system’s functional elements to a type of ele-
ment in your runtime platform? Have you mapped them to specific hard-
ware devices if appropriate?

� Is the role of each piece of your runtime platform fully understood? Is the 
specified hardware or service suitable for the role?

� Have you established detailed specifications for the system’s hardware 
devices or the hosted services that you require? Do you know exactly 
how many of each device or how much of each service is required?

� Do you have service-level agreements for the elements of the runtime 
environment that are supplied by third parties? Are the guarantees in the 
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agreements suitable for your system? Can you test whether the guaran-
tees are credible or not?

� Have you identified all required third-party software and documented all 
the dependencies between system elements and third-party software?

� Are the network topology and services required by the system understood  
and documented?

� Have you estimated and validated the required network capacity? Can 
the proposed network topology be built to support this capacity?

� Have network specialists validated that the required network can be built?

� Have you performed compatibility testing when evaluating your architec-
tural options to ensure that the elements of the proposed deployment 
environment can be combined as desired?

� Have you used enough prototypes, benchmarks, and other practical tests 
when evaluating your architectural options to validate the critical aspects 
of the proposed deployment environment?

� Can you create a realistic test environment that is representative of the 
proposed deployment environment?

� Are you confident that the deployment environment will work as 
designed? Have you obtained external review to validate this opinion?

� Are the assessors satisfied that the deployment environment meets their 
requirements in terms of standards, risks, and costs?

� Have you checked that the physical constraints (such as floor space, 
power, cooling, and so on) implied by your required deployment environ-
ment can be met?

� Do your hardware and service specifications include an appropriate 
amount of headroom?

� Does your Deployment view include a specification of a disaster recovery 
environment, if required?

FURTHER READING

A great deal of literature describes specific deployment technologies; unfortu-
nately, little of it discusses how to design an entire realistic and reliable system
deployment environment. Some other software architecture books [CLEM10,
GARL03, HOFM00] contain useful explanations of how to document deployment
views. Dyson and Longshaw’s book on designing large-scale applications
[DYSO04] includes a number of patterns relating to the Deployment view. Some
of the further reading we recommend in the perspectives in Part IV also contains
principles and patterns relevant to the design of a deployment environment.



393

22
THE OPERATIONAL
VIEWPOINT

Considerable effort is spent defining the architecture and design of today’s
large systems. However, it is rare in our experience to find a system for which
comparable consideration is given to how the system will be controlled, man-
aged, and monitored. The aim of the Operational viewpoint is to identify a
system-wide strategy for addressing the operational concerns of the system’s
stakeholders and to identify solutions that address these.

For a large information system, the Operational view focuses on concerns that
help ensure that the system is a reliable and effective part of the commissioning

Definition Describes how the system will be operated, administered, and 
supported when it is running in its production environment

Concerns Installation and upgrade, functional migration, data migration, opera-
tional monitoring and control, alerting, configuration management, 
performance monitoring, support, backup and restore, and operation 
in third-party environments

Models Installation models, migration models, configuration management 
models, administration models, and support models

Problems
and Pitfalls

Lack of engagement with the operational staff, lack of backout 
planning, lack of migration planning, insufficient migration window, 
missing management tools, production environment constraints, lack 
of integration into the production environment, inadequate backup 
models, and unsuitable alerting

Stakeholders System administrators, production engineers, developers, testers, 
communicators, and assessors

Applicability Any system being deployed into a complex or critical operational 
environment
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enterprise’s information technology environment, whether it is hosted within
the organization or externally by a third-party provider. For a product devel-
opment project, the Operational view is more generic and illustrates the types
of operational concerns that customers of the product are likely to encounter,
rather than the concerns of a specific site. This view also identifies the solu-
tions to be applied throughout the product implementation to resolve these
concerns.

Of all of the views you create for your AD, the Operational view is often the
one that is least well defined and needs the most refinement and elaboration
during the system’s construction. This is simply because many of the details
that the Operational view considers are not fully defined until design and con-
struction are well under way. However, considering the issues described in this
chapter as early as possible will save you a lot of time and effort later.

CONCERNS

Installation and Upgrade
Installation and upgrade can range from the development team installing and
configuring software elements on customer-specific hardware; to the ultimate
users of the system obtaining hardware and software from a number of
sources and performing installation, integration, and configuration them-
selves; to allocating resources in a public cloud computing environment and
uploading software to it. In many organizations, software installation is per-
formed by a separate team whose members are specially authorized to make
changes to the production environment. This team may well expect that the
installation process has been carefully preplanned and is largely automated. 

The other major area of variability is whether this is a pure installation or
whether a previous version of your system is already installed, making the
installation of the current version actually an upgrade. Upgrade can be signifi-
cantly more complex than installation, due to the need to respect existing data,
configuration settings, the state of running elements, and so on, and in some
cases to keep the system in operation during the upgrade. However, the use of
iterative development approaches means that upgrade, rather than installation,
is the norm, so you need to master it.

As an architectural concern, installation is less about the design of
detailed procedures and plans and more about ensuring that the system can
be installed or upgraded in a way that is acceptable to stakeholders. This
involves working with technical specialists to understand the installation pro-
cesses, software developers to ensure that their elements can be easily and re-
liably installed, and production engineers to assure a practical, low-risk
installation approach.
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Functional Migration
Functional migration is the process of replacing existing capabilities with the
ones provided by your system. This usually means migrating users of an
older system to use your new system. Your migration approach may comprise
one or more of the following:

� A big bang where the migration occurs in a single step at a single point 
in time (often over a weekend)

� A parallel run where new and old versions of a system are used side by 
side until confidence in the new system is high enough to allow switch-
ing off the old one

� A staged migration where parts of a process or an organization are 
moved to a new system, one by one, to manage the risk and cost of the 
migration activity

Like many architectural concerns, migration is centered on two issues—
risk and cost. The big bang approach, for example, can be the cheapest
because it requires no replication of resources, but it can be extremely risky
because there is no easy recovery route if the migration goes wrong. Other
approaches can be much more expensive (because they require duplication of
resources and the implementation of costly processes to ensure that systems
run together in lockstep) but reduce risk.

Data Migration
Most if not all system development involves some element of data migration—that
is, loading data from existing systems into the new one(s). A goal of a data migra-
tion exercise is almost always to automate as much as possible, particularly when
large volumes of data are involved. When migrated data is very old, of variable
quality, or poorly modeled, data migration may be extremely complex. If you need
to migrate data between geographical locations (for example, into a data center in a
different region of the world, or into an externally hosted location), additional
security and performance concerns can complicate things further.

Data migration software is typically viewed as utility software with a lim-
ited life, rather than as a system requiring long-term support. This does not
mean that it is of any lesser quality, but it may consist of a collection of auto-
mated software, semiautomated procedures, and manual intervention to deal
with exceptions (such as missing data or data in unexpected formats). This
also adds to the complexity of the process.

Nowadays, systems that manage hundreds of gigabytes or terabytes of
data are not uncommon, and this presents its own migration challenges.
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Massive data stores are far more likely to include data that does not conform
to business rules and therefore requires exceptional processing (possibly
manual intervention). It can take days or weeks to extract data from or load
data into massive data stores, and it is important that you do not underesti-
mate the time required to reorganize databases, create indexes, and so on.

Fortunately, you can also make use of a wide range of Extraction, Transfor-
mation, and Load (ETL) tools that will help you automate this process. Many
ETL tools allow you to define transformation rules visually and provide facilities
for accessing a wide range of different physical formats, performing standard
transformations, and monitoring and analyzing the results. Database replication
facilities can also be used for data migration and are useful in situations where
you need to keep a number of databases synchronized for a period of time.

Another frequently overlooked problem occurs when you are migrating
data from a live system that is continuing to be updated while you migrate
from it, as discussed in this example.

In short, data migration may be a significant piece of work in its own
right, and you should manage it the same way as any other development
project, with requirements, design, build and test, and acceptance—and, of
course, architecture. Many of the architectural principles described in this
book apply equally well to such a migration subproject, although the success
criteria are different. In a migration project, it is the successfully migrated
data that has to be accepted, rather than the migration software, which will be
discarded once migration is complete.

EXAMPLE A government tax office has a very large database of taxpay-
ers that it is migrating into a new system. The database is updated 
through end-user screens in tax offices throughout the country.

The architect predicts that extracting all of the data from the 
database will take between three and five days. The data must be 
sorted, which will take another day, and will then be loaded into the 
new system, which will take ten days. Finally, indexes must be cre-
ated on the new system, which will take another day. The overall 
elapsed time to migrate is over two weeks, during which time the 
original system is estimated to have received 100,000 updates, as 
shown in Figure 22–1.

It will not be possible to halt the country’s tax-collection activities for 
two weeks while the data is migrated. Special code therefore has to be 
written to capture these updates as they occur and to apply them to the 
new system once the bulk of the data has been migrated into it, so that 
the extract is complete.
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Operational Monitoring and Control
Once a system is running in its production environment, it will require some
amount of routine monitoring, to ensure that it is working correctly, and some
routine control operations, to keep it working that way (startup, shutdown,
transaction resubmission, and so on).

Some systems need little monitoring or control—for example, a file server
that needs only direct operational control when it fails or fills up. Others may
need quite a lot—for example, a large financial reconciliation system that accepts
data feeds from a variety of sources and may need routine monitoring and con-
trol to identify and rectify communication link and data reconciliation failures.

The amount of monitoring and control needed depends on the likely
number and variety of unexpected operational conditions the system is
likely to encounter in production. However, the development and integration
of monitoring and control facilities can be a major effort in itself, so you
may have to balance stakeholder needs in this area against cost and time.
You also need to consider the system’s deployment environment to make
sure that the solutions you identify are appropriate.

Alerting
An alert is a notification from the system that an event has occurred, usually
that something has gone wrong that requires human intervention in order to
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FIGURE 22–1 DATA MIGRATION FROM A LIVE SYSTEM
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fix. This may be a technical alert, such as the system is unable to connect to
a database server, or a business alert, such as bad data has been received on
an automated input. Some significant nonfailure events, such as startup or
shutdown of a service, also should be alerted (for information rather than
action).

Unlike operational monitoring (in which systems are largely passive),
alerting is an active system function. The system sends alerts to a central
console or alert management tool, where they are displayed to support staff
so they can take appropriate action. For example, a server may need to be
restarted or reset, a batch job may need to be resubmitted, or in some cases
the alert may need to be handed over to development teams for diagnosis
and repair.

Many large organizations have corporate standards for alerting that must
be followed. These define things such as which events must be alerted, the
information that should be included in the alert, and where the alert should
go. They also often contain advice and guidance to avoid alert flooding (see
the Pitfalls section later in this chapter). If your system is deployed to a third-
party hosting environment, the hosting provider will almost certainly provide
its own proprietary mechanisms for raising and monitoring alerts, and you
will need to consider how to use and integrate into them.

Configuration Management
Many of the elements that make up your deployment environment will have
their own configuration parameters. Databases, operating systems, middle-
ware products, and of course your own software elements may all require
detailed, specific configuration for the system to operate correctly. You may
also need to make coordinated sets of changes to these configurations on a
regular basis (the canonical example being a switch from online to batch
mode and back again every 24 hours). Managing a number of separate ele-
ment configurations can rapidly become complex enough to be a major source
of operational risk for the system.

The discipline of configuration management aims to address this prob-
lem. Configuration management encompasses the processes and technologies
to group, modify, and track element configuration parameters in a reliable
and predictable manner.

The process of operational configuration management tends to be a fairly
specialized job, handled by the system administration and production engi-
neering groups that run the production systems. From the architectural per-
spective, addressing this concern involves understanding the operational
configuration your system requires and ensuring that it is possible to achieve
it in a way that will be accepted by the interested stakeholders.
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Performance Monitoring
The process of understanding and improving system performance is known as
performance engineering, which we discuss in Chapter 26. However, the basis
of all performance engineering work is measurement, so performance monitor-
ing is an important concern for most systems. Your system needs to be able to
capture, present, and store accurate quantitative performance information.

Production system administrators are often the first people who need to recog-
nize and respond to a performance problem. You need to involve them in this pro-
cess as early as possible to make sure they can work with the proposed solution.

In Chapter 26, we discuss in more detail the kinds of metrics needed for
performance engineering and how you can capture and report them.

Support
End users, support staff, and maintainers have an interest in the type and level
of support needed, who will provide that support, and the channels through
which it will be delivered. As well as the system itself, support may be needed for
the associated hardware infrastructure (computers, printers, and the network).

Backup and Restore
As we saw in our description of the Information viewpoint in Chapter 18, data
is an extremely valuable asset to any organization and should be protected
and “insured” the same way that its other assets are. Processes to do this
should be carefully designed, built, and executed and should also be regularly
tested to ensure that they are still working correctly.

You shouldn’t forget the restore side of the equation, either. At a minimum,
restoring data should leave it in a transactionally consistent state (i.e., with all

EXAMPLE One of us visited a trade organization many years ago that ran 
its membership database on a stand-alone UNIX system. The system 
administrator faithfully backed up the database to tape every night, but 
unfortunately, because the output of the process was not captured to a log 
file, nobody realized that the tape drive was broken and no data was  being 
written. Only when the inevitable happened and a disk failed did the soon-
to-be-unemployed system administrator realize that he had a shelf full of 
blank tapes. The organization had to re-create its membership database 
from paper records, which was a slow, painful, and costly process.
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updates entirely committed to the restored database or not recovered at all).
You will need to consider the amount of data lost as a result of the restore; at a
minimum, this will be any transactions that are active at the time of failure but
may include a lot more, particularly if backups can be done only when the
system is offline.

If your data is distributed, this problem becomes much harder to solve.
Although a failure in any one program will affect only that program’s data, the
data may then become inconsistent with the rest of the system; you need to
develop strategies to deal with this. Typically, the solution involves recovering or
re-creating the lost data, either manually or (preferably) automatically. In some
cases, it may be more appropriate to revert the rest of the system to the older state.

A significant complication for backup and restore planning is the fact
that, in many situations, transactional consistency must extend across a
system’s entire distributed data set, as shown in the next example.

EXAMPLE A university maintains academic records for all of its stu-
dents in a number of databases. The main database stores results for 
each exam taken by each student, and a consolidated database turns 
these into an overall score for each student based on exam success, as 
shown in Figure 22–2.

A database corruption means that the Exam Results Database has to 
be restored from its latest clean backup, which is almost three months 
old, and the results for the last three months rekeyed into it. Although 
the Student Scores Database is unaffected by the corruption, special 
actions must be taken to prevent this manually recovered data from 
filtering into the Student Scores Database and corrupting its data. As a 
result, it could take several weeks to repair the damage due to the 
corruption of one database.

Exam Results
Database

         ...
Smith, Jane   : Chemistry   : 93%
Smith, John   : Mathematics : 81%
Smith, John   : Physics     : 90%
Smith, John   : English     : 72%
Smith, Leslie : French      : 68%
         ...

Student
Scores

Database

     ...
Smith, Jane   : A
Smith, John   : A-
Smith, Leslie : B-

Results Consolidation

Database
Failure

     ...

FIGURE 22–2 EXAMPLE OF BACKUP AND RECOVERY
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If your system contains data distributed over a number of data stores, you
must ensure that your Operational view takes this into account when consid-
ering backup and recovery.

Operation in Third-Party Environments
An increasingly popular option for application hosting is to use external host-
ing facilities such as external server hosting or cloud computing environments.
External hosting can be a simpler, more flexible, and more cost-effective option
than traditional internal hosting for some types of organizations and applica-
tions, and it seems to be a trend that is likely to increase.

If external hosting is a likely option for some or all of your application, it is
important to start considering how you would operate your system in such an en-
vironment well before you need to do so. Any external hosting option will bring
operational complications, so it is important to understand the particular facilities
and constraints of the service to which your application may be deployed.

Some of the aspects of the operational environment that can be affected by
the use of third-party hosting environments include the need to integrate into
whatever monitoring, alerting, and management tools the service provides; the
need to migrate data into the environment in order to support processing there;
the need to work with the provider’s support channels for problem escalation;
and the need to understand and test the backup and restore facilities provided.
You are unlikely to be able to gain physical access to your servers in any cir-
cumstances—indeed, you may not even know where they are located—and
therefore need to be able to perform all operational actions remotely.

Stakeholder Concerns
Typical stakeholder concerns for the Operational viewpoint include those
listed in Table 22–1.

TABLE 22–1 STAKEHOLDER CONCERNS FOR THE OPERATIONAL VIEWPOINT

Stakeholder Class Concerns

Assessors Functional migration, data migration, support, and operation 
in third-party environments

Communicators Installation and upgrade, functional migration, operational moni-
toring and control, and operation in third-party environments

Developers Operational monitoring and control, performance monitoring, 
and operation in third-party environments

Continued on next page
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MODELS

The Operational view consists of models that illustrate how the system will be
put into production and kept running effectively once it is there.

Bear in mind that for most enterprise systems, each of these models can
be quite large and involved. When this is the case, it is sensible to summarize
the model in the AD and reference a fuller model in another document, to
avoid making the AD too large and unwieldy.

Installation Models
Moving a system from its development environment to its production envi-
ronment is a critical part of the system’s lifecycle. Your AD needs to demon-
strate that it is possible for a system built using this architecture to be
installed (and upgraded) in a practical way.

The installation model should discuss installation and/or upgrade as
needed for your system. This model needs to help the reader understand:

� What needs to be installed or upgraded to move the system into production

� What dependencies exist between the various groups of items to be 
installed and upgraded

� What constraints exist on the process to perform the installation and/or 
upgrade for the system

� What would need to be done to abandon and undo the installation and/or 
upgrade if something goes seriously wrong

Stakeholder Class Concerns

Production engineers Installation and upgrade, operational monitoring and control, 
configuration management, performance monitoring, and 
operation in third-party environments

Support staff Functional migration, data migration, alerting, support, and 
operation in third-party environments

System administrators All concerns

Testers Installation and upgrade, functional migration, data migration, 
monitoring and control, performance monitoring, and opera-
tion in third-party environments

Users Support

TABLE 22–1 STAKEHOLDER CONCERNS FOR THE OPERATIONAL VIEWPOINT (CONTINUED)
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The AD doesn’t need to include a complete installation and upgrade
plan—that information goes into a different document produced when
needed. Instead, the installation model provides your view of the require-
ments and constraints the architecture imposes on installation and
upgrade. The installation model in your initial AD is likely to contain only
an overview of your installation strategy (because the details of what
needs to be installed aren’t fully known at that time), but you will be able
to elaborate and refine this model as construction of the system
progresses.

NOTATION The best notation to use for an installation model really depends
on the situation and what the primary stakeholders (the system administra-
tors) are familiar with. In our experience, an approach using text and tables is
often the best way to communicate this information.

Simple lists work well for laying out and defining the elements of the
installation problem. In simple cases, cross-reference tables can describe
dependencies, while more involved dependencies are usually effectively
addressed with the use of dependency diagrams.

ACTIVITIES

Identify the Installation Groups . Start by considering what elements of
your architecture need to be installed and/or upgraded, and identify groups
of them that can be handled together. For each group, define which ele-
ments it contains and the approach that will be used to install or upgrade
that group.

Identify Any Dependencies. Technical dependencies often exist between
different parts of a complex system during installation, so that the installation
process has to proceed in a specific order. Identify the dependencies that exist
between your installation groups to reveal these constraints.

Identify Any Constraints. Consider the overall installation process and
the different ways it could be achieved. Other than the ordering dependen-
cies you considered in the previous activity, does your architecture or
deployment environment impose any further constraints on the process?
(For example, do you need to start one element after it is installed so it can
generate code or data needed to install the next one? Do you need to follow
any particular environment-specific procedure when installing particular
elements of the system? Do you need to restart one of the machines during
installation?)

Design the Backout Approach. Consider what would need to be done to
undo any of the installation tasks you have identified. In particular, identify
anything that would be complex or time-consuming to undo.
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EXAMPLE This example shows an installation model for a rental-
tracking system, based on the results of the activities just described.

Installation Groups
� Windows Desktop Client: contains all of the software in the WIN-
CLIENT component. Installation shall be via InstallShield auto-
matic installer, remotely executed via the management tool.

� Database Schema: contains all DBMS schema definitions and data 
abstraction stored procedures. To be packaged as simple SQL 
scripts and installed using a custom-written Perl script.

� Web Interface: contains the server-resident user interface compo-
nents (the WEBINTERFACE component). Installation will be by 
manual administrative action, copying files into IIS directories 
according to written instructions.

� Rental-Tracking Service: contains the .NET assemblies that imple-
ment the services called by the Web and Windows interfaces (the 
RENTALTRACKER component). Installation will be by manual 
administrative action, copying files into IIS directories according to 
written instructions.

� Reporting Engine: contains the .NET assemblies that implement 
the summary reporting engine. Installation will be by manual 
administrative action, copying files into IIS directories according to 
written instructions.

Dependencies
� Windows Desktop Client, Web Interface, Rental-Tracking Service, 

and Reporting Engine depend on Database Schema.

� Windows Desktop Client and Web Interface depend on Rental-
Tracking Service.

� Web Interface depends on Reporting Engine.

Constraints
� Windows Desktop Client: A restart of the client machine will be 

required during this installation process.

Backout Strategy
This is the first release of the software, so backout is reasonably 
straightforward and consists simply of uninstallation. For each installa-
tion group, the following action will be required.
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Migration Models
If a migration process is required, the migration model needs to illustrate the
strategy that will be used. Again, a complete plan is not called for in the AD,
but rather a succinct definition of the strategies to be employed. This model
should allow its reader to understand:

� What overall strategies can (or will) be employed to migrate information 
and users to the system

� How the new system will be populated with information from the exist-
ing environment

� How information in the new and old environments will be kept synchro-
nized (if required)

� How operation could revert to the old system if serious problems emerge 
with the new one

As with the installation model, the migration model should focus on the
requirements and constraints that the current architecture places on the
detailed migration process that will be developed later. 

NOTATION A migration model is usually documented by using text and
tables because no suitable, widely accepted graphical notations are available.
Some informal diagrams may help illustrate data migration and synchroniza-
tion, and particularly complex data migration may require some form of data
model to illustrate the transformations involved.

� Windows Desktop Client: Run the installer with an uninstall
flag.

� Database Schema: A custom Perl script will be supplied to remove 
all objects created during the installation.

� Web Interface: Manual administrative action will be required. The 
supplied instructions will list the files to be removed.

� Rental-Tracking Service: Manual administrative action will be 
required. The supplied instructions will list the files to be re-
moved.

� Reporting Engine: Manual administrative action will be required. 
The supplied instructions will list the files to be removed.
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ACTIVITIES

Establish Possible Strategies. Assess your architecture and the existing
system(s), and establish which migration strategies (i.e., big bang, parallel
run, staged migration) are possible, how each would work, and the tradeoffs
among them.

Define the Primary Strategy. In some situations, you will simply define the
options and someone else will decide which approach to use (e.g., if you’re
developing a product and different customers want to migrate in different
ways). In other cases, you will be tasked with the responsibility of defining
which strategy best meets the needs of your stakeholders and making it hap-
pen. If migration is going to take more than a short period of time, you will
need to consult with your stakeholders, particularly users, to define an
approach that minimizes any business disruption.

Design the Data Migration Approach. Having identified a strategy to use,
you need to decide how to populate the system with all of the information in
the existing system(s). This doesn’t mean you need to spend days mapping
fields between databases, but it does mean you have to understand the prob-
lem well enough to choose an appropriate approach for the data migration and
determine how long it is likely to take and what tasks and resources might be
required.

Design the Information Synchronization Approach . Some situations call
for information to be synchronized between the old system(s) and the new
one. This is particularly the case when using the parallel run migration strat-
egy because information in the old system(s) may continue to be updated
after the new system goes live. If synchronization is required, it may be unidi-
rectional (just into the new system) or bidirectional (information changes
need to be migrated from new to old as well as old to new). Your task is to
identify an overall approach that will allow the required degree of synchroni-
zation to be performed within the operational constraints of your environ-
ment.

Identify the Backout Strategy. Being able to back out to an existing system
(if available) is an attractive risk-reduction option for live operation. The
problem is that it isn’t always clear how such a backout would work, or if it is
even possible (e.g., reverse data migration may not be practical due to the
design of the new system). You need to decide whether a backout strategy
involving the old system(s) is required and, if so, how it could work.

Configuration Management Models
You may need to create a configuration management model if your system
requires complex, regular reconfiguration (e.g., reconfiguring parts of the
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system to handle different types of workloads according to a calendar-based
schedule). This model must explain to its readers:

� The groups of configuration items in the system and how each is man-
aged

� The dependencies that exist among the configuration groups

� The different configuration value sets required for routine system opera-
tion (and why each is required)

� How the different sets of configuration values will be applied to the sys-
tem, taking into account the characteristics of the operational environ-
ment(s) that you are using

The aim is to create a model of the system configuration management
aproach (rather than identifying lots of individual configuration values). This
allows those responsible for system configuration management to understand
the problem and plan their solution for it.

Like the installation model, this model is unlikely to be complete in your
early AD but can be elaborated and refined as construction of the system
progresses and the details of the configuration items required become
known.

NOTATION This model is often quite simple and best documented by using
text and tables. In more complex cases, it is usually best treated primarily as a
data model, and a data-modeling notation, such as entity-relationship dia-
grams or UML, is a useful addition to the textual description.

ACTIVITIES

Identify the Configuration Groups. Consider all of the configuration values
your system requires and break them into cohesive groups with as few inter-
group dependencies as possible. This allows you to abstract the problem of
managing the individual values to the level of managing large groups as a
single unit (think of them as clumps of values). Name each group, explain its
purpose, and explain how the configuration group would be managed (how
values are defined, collected, applied, and so on).

Identify Any Configuration Group Dependencies . Having identified the
groups of configuration information in your system, you can clearly identify
and record any dependencies among them. For example, if changing the con-
figuration of your database management system means reconfiguring the
operating system, or adding more instances of one of your elements means
changing the application server configuration, record these as intergroup
dependencies. Identifying these dependencies allows you to start understand-
ing the problem of reconfiguring your system in production.
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Identify Configuration Value Sets. Consider your system during its routine
operational lifecycle, and establish how many configurations your system will
need during it. Define the characteristics of each value set, and identify the
configuration groups that change between different configurations. For each
set you identify, define its purpose and when it needs to be applied. This
allows assessment of the operational impact of your architecture’s configura-
tion needs.

Design the Configuration Change Strategy . Once you have identified the
configuration your system needs and the changes you need to make to it,
design an approach to achieve this in your intended production environment,
taking into account any constraints that it imposes. Again, rather than focus-
ing on the minutiae of the administration process, you need to identify a prac-
tical overall approach that the production administrators of your system will
accept.

EXAMPLE This example shows a configuration management model for 
the rental-tracking system we described earlier.

Configuration Groups
� DBMS Parameters: the SQL Server 2008 parameters that control 

the initialization, operation, and performance characteristics of the 
database. These are managed via SQL scripts, applied by database 
administrators.

� IIS Parameters: the IIS parameters that control the initialization, 
operation, and performance characteristics of the server. These are 
managed by using a set of PowerShell scripts that will be supplied 
with the system.

� Reporting Engine Options: the Reporting Engine parameters that 
control what is summarized and when summaries are computed. 
These are managed as a set of configuration files read by the com-
ponent.

Configuration Dependencies
� When the IIS parameters are set to allow more connections, the 

DBMS parameters must be changed to allow for the possible 
increase in load.

� If the Reporting Engine Options are set for more aggressive sum-
mary activity, the DBMS parameters must be set to allow for an 
increased amount of data cache being required.
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Administration Models
When your system is running in its production environment, it will require
some degree of administration to monitor it and keep it running smoothly.
The administration model is the section of your AD where you define the op-
erational requirements and constraints of your architecture and the facilities it
provides for administrative users.

The administration model must define the following items.

� Monitoring and control facilities: In order to support your system’s 
administrators, you may need to provide or use some monitoring and 
control facilities as part of your architecture. This may involve custom 
utilities and features and/or integration into one or more existing inter-
nal or third-party management environments. It can be as simple as a 
basic message log or as complex as a full-blown integration with a man-
agement or monitoring infrastructure. You need to clearly define the 

Configuration Sets
� Standard: normal configuration for planned system workload of 

up to 1,200 concurrent users with the Reporting Engine producing 
level 1 summary statistics every 6 hours.

� High Volume: configuration to be applied when high client volume 
is expected. Increases capacity to 2,000 concurrent users and 
switches off routine operation of the Reporting Engine.

� Month End: configuration to be applied during the last two days of 
the month, limiting concurrent usage to 800 users and allowing 
the Reporting Engine to run continually to produce complete 
summary statistics.

Configuration Change Strategy
The configuration sets will be applied as follows.

� The DBMS will be manually reconfigured first, by the database 
administrator running a single script that sets the parameters for 
the desired configuration set. (This could involve a DBMS restart.)

� Next, the Reporting Engine Options will be changed by altering the 
Engine’s configuration file parameter and restarting it.

� Finally, the IIS configuration set will be applied by an administra-
tor running the appropriate PowerShell script and restarting the IIS 
server.
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facilities you are going to provide, use, or integrate into; how these address 
the problem; and whether any limitations in these facilities could constrain 
their applicability or usefulness.

� Required routine procedures: You should also review the architecture you 
have designed and identify any administrative work that needs to be per-
formed on a regular basis or that may be required in exceptional circum-
stances. Depending on the system, this can be as basic as a weekly 
backup and a monthly health check, or it can be a set of complex proce-
dures performed on a round-the-clock basis to keep a critical high-volume
system running at peak efficiency. For each procedure, you need to 
define its purpose, when it is performed, who performs it, and what is 
involved in performing it. In most cases, you should cross-refer to the 
relevant monitoring and control facilities provided.

� Likely error conditions: Any complex system can suffer unexpected fail-
ures due to internal or external faults. From simple situations such as 
disks filling up to sudden failures of the underlying network causing a 
cascade of problems, many error conditions that occur can require 
administrative intervention to rectify them. Some of these conditions are 
independent of your architecture and are caused by underlying platform 
failures. The administrators of your system will probably already be 
experts at diagnosing and recovering from these failures. However, you 
cannot expect them to understand the possible error conditions that are 
unique to your architecture, and you need to explain these carefully to 
help administrators understand the conditions they may need to recover 
from. Your description should include when the condition can occur, how 
to recognize it (referencing relevant monitoring facilities provided), how 
to rectify it (referencing relevant control facilities provided), and possible 
further failures the condition could trigger.

� Performance monitoring facilities: A specialist subset of system monitor-
ing is the ability to monitor the performance of the system. The differ-
ence between operational monitoring and performance monitoring tends 
to be how the data is used. Operational monitoring usually reports by 
exception and produces little or no output data when everything is going 
well. In contrast, performance monitoring facilities are usually designed 
so that performance information can be extracted and analyzed routinely 
to allow system performance to be tracked over time. We talk more about 
performance activities in general in Chapter 26. In an administration 
model, you need to explain the types of performance measures you will 
make available and how administrators or developers will extract and 
analyze the information when required.

An important point to note is the strong degree of cross-reference between
the administrative facilities you define in this model and the common design
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model in the Development view. In the Operational view, you define the facili-
ties you will provide for the administrative stakeholders. The Development
view needs to define the common processing required across all of the system’s
elements in order to actually achieve those facilities.

NOTATION The primary customers of the administration model are system
administrators, who may not be software developers by training. We have
found that the right notation for this model is nearly always text and tables
augmented with a few informal diagrams where needed. Extensive use of
more formal notation such as UML is less appropriate for this model.

ACTIVITIES

Identify the Routine Maintenance Required . Consider your system running
in its production environment and create a list of the types of operational
tasks that will need to be performed to keep the system running smoothly. For
each task type, define who needs to perform it, when it needs to be per-
formed, and how it should be performed.

Identify Your Likely Error Conditions. Analyze your architecture by consid-
ering its primary usage scenarios, and work out what is likely to go wrong
during the operational lifecycle (elements failing, data stores filling up, sys-
tems running out of memory or other runtime resources). Make sure you
think about the ones related to administration and maintenance as well as the
ones that end users would be aware of—it is often harder to plan for failures
during larger-scale administrative scenarios (such as data maintenance).
Identify the classes of error conditions that can occur, what causes them, and
how they can be rectified to get the system running again. You should also try
to estimate the likely availability impact of the failure to ensure that you can
recover the system in a time acceptable to your stakeholders. You may want
to consider the error conditions that could occur if routine maintenance isn’t
performed, so that the importance of this maintenance is understood.

Specify Any Custom Utilities. Routine and exceptional procedures may require
system-specific utilities to allow administrators to perform them efficiently.
Such utilities can range from very simple database or operating system scripts
to significant pieces of software in their own right. Consider whether any such
utilities are required, and specify any you need.

Identify the Key Performance Scenarios. Some of your architectural usage
scenarios will be much more important than others from a performance per-
spective (look for the scenarios that support time-critical business processes,
involve a high workload, are executed very frequently, or are required by key
stakeholders). Extract these scenarios from the overall system usage scenarios.

Identify the Performance Metrics. Consider the key performance scenarios
and identify metrics that will allow you to measure the performance
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achieved for each and to analyze where the system spends most of its time
and resources. In order to abstract the problem, it may be more useful to
identify classes of metrics rather than individual ones. Make sure that you
record what each metric or class identified actually means and what it is
used for.

Design the Monitoring Facilities. Having established the operational tasks
and performance metrics required, you can design monitoring facilities to be
used across the system to provide routine system monitoring and error condi-
tion recognition and to gather performance metrics from the system’s ele-
ments. This design will be at the outline level, to be fleshed out later during
the development increments of the lifecycle. However, at this stage you
should provide enough detail to clarify what needs to be done in each system
element to provide the administration facilities required.

EXAMPLE This example shows an administration model for the rental-
tracking system.

Monitoring and Control
The monitoring and control facilities are as follows.

� Server Message Logging: All server components will write informa-
tion, warning, and error messages to the Windows Event Log of 
the machine they are running on.

� Client Message Logging: The client software will log messages if an 
unexpected error is encountered. The log will be written to the hard 
disk of the client machine for later manual retrieval.

� Startup and Shutdown: No system-specific startup and shutdown 
facilities will be provided because the software will run in the 
context of the IIS and SQL Server servers, and their facilities are 
considered to be sufficient.

Operational Procedures
Routine operational procedures are as follows.

� Backup: Operational data in the SQL Server database will need to 
be backed up. This will involve backing up the transaction logs 
every 15 minutes and backing up the application’s databases 
every day. Details of this procedure will be left to the database 
administrators.
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� Pruning of Summary Information: The Reporting Engine does not 
remove the summary reporting information it creates. This infor-
mation is left in place and is available to users of the Windows 
client interface. Database administrators will need to monitor the 
performance of the Reporting Engine and the management report-
ing aspects of the Windows client components and manually prune 
the summary information when its volume starts to impact perfor-
mance. A written procedure will be supplied to explain how the 
pruning should be performed.

Error Conditions
The error conditions that administrators should be expected to handle 
are as follows.

� Database Out of Log Space: If transaction volume rises above a 
certain point, it is possible that the transaction log will fill. This 
will cause the system to suspend operation. Database administrators 
will need to recognize log space problems and manually back up the 
logs to free space. If this happens routinely, the backup interval for the 
transaction logs should be reduced.

� Database Out of Data Space: If the database runs out of data space, 
the system will stop operating. Again, database administrators will 
need to recognize this condition and either prune the summary 
information (see above) or add more data space to the system. A 
written estimate of the amount of space required for various 
volumes of workload will be provided.

� IIS Failure: If the IIS server fails, the system will completely fail, 
and Windows clients will lose contact with the server. Administra-
tors need to recognize this condition and restart IIS. The system 
will recover automatically once IIS is restarted. The Windows cli-
ents will automatically reconnect once the server is available again.

Performance Monitoring
No application-specific performance monitoring facilities are planned. 
System performance monitoring should be achieved by using the follow-
ing facilities.

� SQL Server Counters: The SQL Server 2008 product allows a wide 
range of performance counters to be collected and viewed via the 
Windows Server 2008’s Reliability & Performance Monitor and the 
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Support Models
Once your system is running in production, at least some of the system’s
stakeholders are likely to need help using or operating it, and other parties
will need to provide assistance to them. The support model should provide a
clear abstraction of the support that will be provided, who will provide the
support, and how problems can be escalated between parties when searching
for a resolution. This means defining the following in your support model.

� Groups needing support: The model must clearly define the groups of 
stakeholders who will require support, the nature of the support they 
need, and the appropriate mechanisms for delivering that support.

� Classes of incidents: The model must also define what sorts of support 
incidents are likely to be encountered and what sort of response is rea-
sonable to expect in each case. The definition of each class of incident 
should clearly state the characteristics of an incident in that class, typi-
cally in terms of operational, organizational, or financial impacts.

� Support providers and responsibilities: Each type of support incident 
needs to be handled by at least one support provider, who must accept 
responsibility for resolving the incident. The model should capture who 
the support providers are and their responsibilities for incident resolu-
tion.

� Escalation process: A serious incident often requires a number of differ-
ent support providers to resolve the situation because it is too complex or 
specialized for a single provider to handle. Your model should define how  

SSMS Activity Monitor. These performance metrics should be used 
to assess the volume of workload on the database and the time 
taken for the application’s transactions to complete.

� IIS/ASP.NET Counters: IIS Server and ASP.NET produce a wide 
range of performance counters to be collected via the Windows 
Server 2008’s Reliability & Performance Monitor application. 
These counters should be used to assess the number of Web re-
quests being serviced and how long it is taking to service them.

� .NET Counters: The .NET runtime allows a wide range of perfor-
mance counters to be collected via the Windows Server 2008’s 
Reliability & Performance Monitor application. These counters 
should be used to establish the amount of non-Web-request work-
load that the application is performing and how long it is taking to 
perform the operations.
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incidents are escalated between support providers and the responsibili-
ties of each when this happens. This will help ensure that incident reso-
lution does not stall because of confusion over responsibilities or a lack 
of expertise by a particular provider.

As with the other models for the Operational view, the focus of the sup-
port model should be to provide an overview of the support problem and a
strategy for its solution rather than the definition of detailed procedures.

NOTATION This model needs to be understood by a number of different
technical and nontechnical stakeholder groups. The majority of the model
should normally be a text-and-tables definition of the support to be provided,
with some flow diagrams (such as UML activity diagrams) where required to
make the information flow and decision-making processes clear.

ACTIVITIES

Identify the Supported Groups. Identify the groups of stakeholders who will
need support, the type of support they will need, and the possible avenues
through which that support could be provided.

Identify the Support Providers. Decide who will be providing support to
your stakeholders. For each provider (which will probably be an organiza-
tion), define the support to be provided and how it is to be provided.

Identify Any Incidents Requiring Support . Consider the types of incidents
that could trigger the need for assistance by each of your groups of supported
stakeholders, and characterize each incident type by likely frequency and
severity.

Map the Providers, Incidents, and Groups . Decide which support providers
will resolve which incident types for which stakeholder groups, and ensure
that each provider can offer suitable support.

Plan the Escalation. Consider your groups of support providers, and identify
which of them may need to escalate problems to other internal or external
support providers. Define the escalation paths that should be used between
providers and the responsibilities of each provider when this happens .

EXAMPLE This example shows a support model for the rental-tracking 
system.

Supported Groups
� Web Users: People using the Web interface to book or manage their 

rentals may need support if there are problems with the site or if 
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they have difficulties using the Web interface. Few assumptions 
may be made about this group, and the primary support channel 
should be e-mail, with telephone backup.

� Windows Users: Internal users using the Windows client may need 
help with a range of problems including usage issues, system 
problems, and PC support. Their primary support channel is 
assumed to be telephone, although they may be prepared to receive 
support via e-mail.

� Windows Administrators: The administrators of the server 
machines are technically sophisticated and will require assistance 
only in unexpected failure scenarios. They will need to receive 
immediate assistance via telephone as well as query resolution via 
e-mail.

� Database Administrators: The database administrators are techni-
cally sophisticated and will require assistance only with unfamiliar 
database behavior. They will need to receive immediate assistance 
via telephone as well as query resolution via e-mail.

Support Providers
� Web Services Help Desk: This organizational group is responsible 

for resolving all support incidents raised by users of the Web inter-
face. They provide support via e-mail and telephone, six days per 
week, 20 hours per day.

� IT Help Desk: This organizational group is responsible for resolv-
ing all support incidents raised by users of the Windows client 
interface. They provide support via e-mail and telephone and can 
often provide direct assistance at the end user’s desk as well. 
Support is provided during normal business hours.

� DBA Group: This organizational group is responsible for resolving 
all support incidents related to database management systems. 
They provide support via e-mail and telephone. Support is nor-
mally provided during normal business hours, with the option of 
using on-call staff outside this period.

� Windows Administrators: This organizational group is responsible 
for resolving all support incidents related to IIS, .NET, and 
Windows Server 2008 and underlying hardware. They provide 
support via e-mail and telephone. Support is provided during nor-
mal business hours, with the option of using on-call staff outside 
this period.
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� Microsoft Support: This is an external organization (the Microsoft 
Corporation’s Support division) that is responsible for assisting with 
the resolution of support incidents caused by a fault or usage prob-
lem with the SQL Server 2008, Windows Server 2008, or IIS prod-
ucts. They provide support via e-mail, newsgroups, Web sites, fax, 
and telephone. Support is provided 24 hours per day, every day.

� Development Team: This is the organizational group that devel-
oped the system originally and maintains it on an ongoing basis. 
They are responsible for resolving any incident that other support 
providers cannot resolve. They provide support via e-mail, tele-
phone, and site visits during normal business hours, with the abil-
ity to reach on-call staff during other times.

Support Incidents and Resolution
� Web Usage Difficulties: This class of support incident covers any 

situation where a user of the Web interface is having problems 
using the system that are not caused by failure or malfunction of a 
system component. These incidents should be resolved in a single 
interaction with the Web Services Help Desk, either by phone or by 
e-mail. The impact on the organization should be minimal.

� Windows Usage Difficulties: This class of support incident covers 
any situation where a user of the Windows client interface is 
having problems using the system that are not caused by failure 
or malfunction of a system component. These incidents should be 
resolved in a single interaction with the IT Help Desk, either by 
phone or by e-mail. The impact on the organization should be 
minimal.

� End-User System Errors: This class of support incident covers any 
situation where a user of the system encounters a problem caused 
by failure or malfunction of a system component. These incidents 
should be resolved within 1 working day. The user should inter-
act entirely with staff of the IT or Web Services Help Desk, who 
will manage problem resolution and deal with other support 
providers as required. The impact on the organization should be 
moderate and should not threaten business operations beyond 
inconvenience.

� Slow End-User Performance: This class of support incident covers 
any situation where end users complain of unacceptably slow 
performance. These incidents should be resolved within three work-
ing days. The user should interact entirely with members of the IT 
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or Web Services Help Desk, who will manage problem resolution 
and deal with other support providers as required. The impact on 
the organization should be moderate and should not threaten busi-
ness operations beyond inconvenience.

� Database Corruption: This class of support incident covers any 
situation where the database system reports internal corruption. 
These incidents should be resolved within 2 hours (although real-
istically it is recognized that they could return; however, the origi-
nal incident should be resolved within 2 hours). The DBA Group is 
responsible for recognizing and resolving these situations. The 
impact on the organization should be moderate, but business oper-
ations will be interrupted while the problem is resolved.

� Database Failure: This class of support incident covers any situa-
tion where the database system needs to be recovered from back-
ups. These incidents should be resolved within 4 hours. The DBA 
Group is responsible for recognizing and resolving these situa-
tions. The impact on the organization may be severe during this 
period, with business operations being interrupted for the whole 
period of the incident, but should not continue beyond the resolu-
tion of the incident.

� IIS or Windows Server Failure: This class of support incident 
covers any situation where the IIS Server, underlying operating 
system, or underlying hardware suffers a failure. These incidents 
should be resolved within 1 hour. The Windows Administrators are 
responsible for recognizing and resolving these situations. The impact 
on the organization may be severe during this period, with business 
operations being interrupted for the whole period of the incident, but 
should not continue beyond the resolution of the incident.

Escalation
The escalation process is as follows.

� Users of the Web interface will report problems to the Web Services 
Help Desk.

� Users of the Windows client interface will report problems to the IT 
Help Desk.

� The Help Desks will report system problems to the Windows 
Administrators.

� The Windows Administrators will report database problems to the 
DBA Group.
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PROBLEMS AND PITFALLS

Lack of Engagement with the Operational Staff
In many organizations, a gulf exists between the development staff members
who build systems and the operational staff members who deploy and admin-
ister them. This can be a significant problem if you want to achieve a smooth,
incident-free system rollout. 

RISK REDUCTION

� The best solution to this problem is to engage early with the operational 
groups, stressing how valuable their contribution is. Operational staff 
often have a legitimate grievance with software developers because 
systems are frequently passed on to them with very little thought given 
to operational requirements. 

� Use an explicit Operational view to help avoid this situation.

Lack of Backout Planning
Many systems we have seen don’t have real backout plans. In fact, many
commercial software products don’t have graceful recovery mechanisms to
cope with situations like failed upgrades. Without a good backout plan, you
are relying on a perfect rollout for your entire system, which experience sug-
gests is somewhat optimistic.

RISK REDUCTION

� Make sure that your system can be backed out of its production environ-
ment by defining a clear procedure and reviewing it.

� The Windows Administrators will report other problems to the 
Development Team.

� The Windows Administrators, DBA Group, and Development Team 
will report problems with Microsoft software to the Microsoft 
Support organization.

In each case, the organization accepting the incident must provide the 
reporter with a unique identifier for the incident and record the reporter’s 
description of it. If the problem is not immediately resolved, the organiza-
tion accepting the incident must provide the reporter with information on 
resolution status within 75% of the target resolution time.
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Lack of Migration Planning
Many information systems replace a manual system, a previous automated
system, or an earlier version of themselves, but many systems are developed
without a good migration plan. Migration planning isn’t glamorous or, in
many cases, even interesting, but without it, you are unlikely to achieve a
smooth system deployment.

RISK REDUCTION

� Make sure you understand the migration needs of your architecture as 
early as possible.

� Address migration needs in your AD.

Insufficient Migration Window
In our experience, data migration always takes longer than anticipated, typi-
cally because the data does not conform to the level of quality and consistency
expected of it and because of the problems associated with handling and
manipulating large volumes of data. If you are moving data between geo-
graphical locations or between different types of data stores (e.g., importing
data from a legacy hierarchical database into a relational database), the pro-
cess will take longer still.

RISK REDUCTION

� Consider how you will deal with data errors and inconsistencies.

� Develop processes for accepting migrated data, and make sure your 
stakeholders have bought into them.

� In your hardware sizing models, factor in the storage requirements for 
transitional data.

� Include adequate elapsed-time contingency in your migration plan.

� Factor in the time needed to reorganize databases, create indexes, and 
so on.

� When you are migrating data from live systems and the migration time is 
substantial, create strategies for reconciling any data updates made dur-
ing the migration period.

Missing Management Tools
Most software developers (and, in fact, many architects) are very focused on
the business of building new software. However, successful software spends
most of its life in production, not development. This mismatch between focus
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and lifecycle often manifests itself as a lack of operational facilities, which can
result in a system that is difficult to monitor and control. Software developers
can monitor or control the system by using primitive tools (operating system
commands or simple scripts) because of their detailed knowledge of its inter-
nal workings. Operational staff often don’t have this knowledge and need
more sophisticated tools to automate the required operational procedures.
Without such tools, the system is unlikely to be managed well.

RISK REDUCTION

� Understand the needs of your administration stakeholders as early as 
possible and involve them in the development of the Operational view.

� Ensure that administrators’ needs are addressed with standard, system-
wide facilities.

Production Environment Constraints
All production environments, whether in-house or external, impose con-
straints on your application and its operation, so it’s important to understand
the likely deployment environments you’ll be using, and the constraints that
each imposes, as soon as you can. If you are using a mixture of environments
(for example, hosting in-house but using a cloud environment for short-term
“burst” capacity, or using different cloud providers for production and disas-
ter recovery), naturally you need to understand the overall set of constraints
across all of the environments.

Production environments may impose constraints on you such as rigid
unavailability periods for platform maintenance, particular tools that must be
used for deployment or monitoring, limited choices of platform components
that are available, procedures that must be adhered to for deployment and
operation, and limits to the service-level agreements available. All of these
have the ability to affect the system qualities that you may be able to achieve
in a particular production environment.

RISK REDUCTION

� Agree on the target production environment(s) for your system as early 
as possible to allow their constraints to be understood.

� Clearly define what you need and are expecting from a production envi-
ronment (e.g., reliability, capacity, and availability) as soon as you can 
so that you can spot possible problems with proposed environments.

� Analyze the planned production environments and what they offer and 
require so that you understand the opportunities and constraints that 
they imply and can integrate these into your work.
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� Whether in-house or external, obtain definite commitments from the 
suppliers of your production environments for the service levels that they 
offer, and test them as much as you can to gain confidence in their realism.

Lack of Integration into the Production Environment
Most information systems are deployed into some sort of existing production
environment, even if it is a simple or informal one. Unfortunately, it’s com-
mon to find that a new system doesn’t work with the environment. This can
be quite a problem for operational staff who need to learn new interfaces or
tools or even totally new ways to manage the system, particularly if you are
using a third-party hosting environment for some or all of the system. 

RISK REDUCTION

� Make sure that you understand the existing environment and its integra-
tion needs early in your system design.

� Involve experts who understand the target production environment as 
early as possible, and get their advice on how it works and the type and 
level of integration needed.

Inadequate Backup Models
Backup and restore processes can fail quite spectacularly, and you don’t want
to find out about problems in your model when you are desperately trying to
recover important data.

RISK REDUCTION

� Do not be tempted to skimp on this area or omit it from consideration entirely.

� Incorporate backup and restore as a central part of your architecture 
rather than trying to add it afterward.

� Make sure that your backup scheme includes all the information you 
need for data recovery.

� Estimate how long backup and recovery will take, and perform some 
practical testing under realistic conditions.

� Make sure that your model describes how data will be restored as well as 
backed up.

� Consider how to maintain data consistency across multiple data stores 
when you have to restore one of them to an earlier state.

� Consider a “belt-and-braces” approach to backup. For example, many 
end-user systems—especially older, mainframe-based ones—write copies 
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of updates received from clients to an audit and recovery area as well as 
to the main database. This means that if the database is damaged, it is 
possible to replay these transactions into the database in order to get it in 
synch again.

Unsuitable Alerting
This pitfall either manifests itself as alert starvation, when the system fails to
send appropriate alerts when important events occur, or alert flooding, when
the system sends so many events to the central console that they are ignored
or important ones are missed. Either scenario is a significant operational
problem since small incidents can soon become big ones and big ones can
become catastrophic.

RISK REDUCTION

� Although this pitfall is probably more appropriately addressed during 
design and build, you can set the scene by defining some suitable archi-
tectural principles and approaches in the AD.

CHECKLIST

� Do you know what it takes to install your system?

� Do you have a plan for backing out a failed installation?

� Can you upgrade an existing version of the system (if required)?

� Do you understand the facilities and constraints of the proposed produc-
tion environment(s) that you plan to use? Can you live with or mitigate 
these if they are not ideal?

� Do you know how information will be moved from the existing environ-
ment into the new system?

� Do you have a clear migration strategy to move workload to the new 
system? Can you reverse the migration if you need to? How will you deal 
with data synchronization (if required)?

� Do you know how the system will be backed up? Are you confident that 
the approach identified will allow reliable system restoration in an 
acceptable time period?

� Are the administrators confident that they can monitor and control the 
system in production?

� Do the administrators have a clear understanding of the procedures they 
need to perform for the system?
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� How will performance metrics be captured for the system’s elements?

� Can you manage the configuration of all of the system’s elements?

� Do you know how support will be provided for the system? Is the support 
suitable for the stakeholders it is being provided for?

� Have you cross-referenced the requirements of the administration model 
back to the Development view to ensure that they will be implemented 
consistently?

� Is the data migration architecture compatible with the amount of time 
available to perform the data migration? Are there catch-up mechanisms 
in place where the source data is volatile during the data migration?

FURTHER READING

Little existing literature deals with the operational aspects of a system from
the perspective of the application development team. Although there are many
books on installing and managing specific pieces of technology, we have
found very few books that examine the principles that underpin reliable pro-
duction systems operation.

Some books that at least partially address this area are [KERN04],
[BEHR05], and [JAYA05], and [ALLS10] is an interesting collection of essays
written by operations experts that provides a valuable insight into production
operations. Also, Dyson and Longshaw [DYSO04] includes a number of pat-
terns useful in the Operational view. It can also be useful to understand how
production services are provided, and ITIL has been a very influential model
in this area; [BON07] is a concise overview of ITIL v3. A book written from
the software development perspective but dealing extensively with the inter-
face to production operations is [NYGA07].
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23
ACHIEVING CONSISTENCY
ACROSS VIEWS

he use of views addresses one of the biggest challenges you face as an
architect: to represent a large and complex system in a way your stakehold-

ers can understand. A view is a way to portray those aspects or elements of the
architecture that are relevant to the concerns the view intends to address—and,
by implication, the stakeholders for whom those views are important.

Without views, you end up with a single, all-encompassing model that
tries (and usually fails) to illustrate all of the aspects of your system. Such a
model is complex, uses a mix of notations, and is too hard for anyone to
understand—never mind appreciate the subtleties, nuances, and implications
of your architectural choices.

However, the problem with partitioning the representation of your archi-
tecture through using views is that it is difficult to ensure consistency
between them—in other words, to ensure that the structures, features, and
elements that appear in one view are compatible and in alignment with the
content of your other views. This consistency is a vital characteristic of your
AD—without it, the system will not work properly, will not achieve its design
goals, and may even be impossible to build.

Unfortunately, although some design tools can simplify the process of
creating your models, we are not aware of any currently available tool that
will automate such consistency checking to the extent that you need it to. The
use of formal modeling languages such as UML only partially addresses this
problem, and the tools that support these languages typically provide only
basic features for checking one model for consistency against another. And,
of course, if you are using an informal notation or one you have developed for
your specific situation, the problem is even worse.

Ensuring consistency between views therefore largely comes down to
the skill, thoroughness, and diligence of the architect and (to a lesser extent)

T
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the stakeholders. We have found the following strategies to be helpful in
achieving inter-view consistency.

� Focus on consistency from the outset: We saw that trying to apply quality 
properties after the fact doesn’t work—good performance, availability, 
and resilience have to be designed into your solution from the start. Sim-
ilarly, it is no good waiting until your models are nearly complete to 
determine whether they are consistent with one another: More likely 
than not, they won’t be, and you will be faced with a significant piece of 
rework and additional review.

� Enumerate model elements: Assigning each significant model element a 
unique identifier simplifies the process of asking such questions as “Is 
element 3 from Model B consistent with element 5 from Model D?”

� Ensure that consistency checks are a formal part of reviews : Consis-
tency should be one of the criteria you use to review models and other 
architectural documentation. This means both internal consistency
(Is this part of the model consistent with other parts of this model?) 
and external consistency (Is this model consistent with other models 
that make up the AD?). If you perform such a formal consistency check, 
you should include its results (and the actions taken) in an appendix to 
your AD.

RELATIONSHIPS BETWEEN VIEWS

Although all of the views are obviously interrelated, in practice there are
strong dependencies only between some of the views. The UML class diagram
in Figure 23–1 shows the most important of these dependencies. The relation-
ships illustrate a strong dependency, which implies that if something changes
at the end of the arrow, a change will probably be required at the start of the
arrow.

Conversely, if there’s no dependency between two views, changing some-
thing in one is unlikely to itself necessitate a change in the other. (So chang-
ing a Development view element, for example, does not in itself imply any
changes to the Functional models—unless you are changing it for a reason
not to do with development, of course.)

Note that if you don’t develop a particular view—for example, if you
encapsulate the concurrency aspects of the architecture in the Functional
view, rather than in a separate Concurrency view—it is still useful to apply the
checklists presented in this chapter for that view, to ensure that you have
addressed its most important concerns.
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CONTEXT AND FUNCTIONAL VIEW CONSISTENCY

Goal: To ensure that the system scope and requirements are fully and correctly
implemented by the system.

� Does each requirement map to one or more functional elements that 
implement that requirement?

� Is every functional element necessary (directly or indirectly) in order to 
implement at least one requirement?

� Has every quality property that affects system functionality been taken 
into consideration in the system structure defined by the Functional view?

� Is every external entity defined in one view also present in the other 
view, and do they have the same definition in each view?

� Is every interface defined in one view also present in the other view, and 
do they have the same definition (responsibilities, nature, and character-
istics) in each view?

� Are the interaction scenarios defined in the Context view compatible with 
the functional structure of the system and the way its elements interact 
with one another and the outside world?

CONTEXT AND INFORMATION VIEW CONSISTENCY

Goal: To ensure that data flows in and out of the system are compatible with
the information management approach defined in the Information view.

Functional

Information

Concurrency

Development Deployment

Operational

Context

FIGURE 23–1 DEPENDENCIES BETWEEN VIEWS
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� Has consideration been given in the Information view to all of the data 
items identified in the Context view that flow into the system (owner-
ship, consistency, timeliness, and so on)?

� Has consideration been given in the Information view to all of the data 
items identified in the Context view that flow out of the system (owner-
ship, consistency, timeliness, and so on)?

� Has every quality property that affects information management been 
taken into consideration in the Information view?

� Is the data ownership model in the Information view (particularly when 
data is owned by external entities) compatible with the responsibilities 
defined for external entities in the Context view?

� Is the high-level data model in the Information view compatible with the 
data models used by external systems, or if not, have appropriate mecha-
nisms for data transformation been defined?

� If external archiving services are defined in the Information view, are 
they represented as external entities in the Context view?

CONTEXT AND DEPLOYMENT VIEW CONSISTENCY

Goal: To ensure that external connections between this system and others can
be supported in the planned deployment environment.

� Do all external entities that represent systems, interfaces, or other 
technology-based connections appear consistently in both the Context 
and the Deployment views?

� Does the Deployment view contain all of the hardware and software required 
to communicate with the external entities identified in the Context view?

� Is the technology used for each interface in the Deployment view appro-
priate for its nature and characteristics as defined in the Context view?

� Are system elements that communicate with external entities deployed to 
parts of the deployment environment where external communication is 
possible (e.g., to a DMZ in the network)?

� Has every quality objective identified in the Context view that affects the 
deployment environment been taken into account in the Deployment view?

FUNCTIONAL AND INFORMATION VIEW CONSISTENCY

Goal: To ensure that the functional and information structures are compatible
and that nothing is missing in one that is required by the other.
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� Does every nontrivial functional element in the Functional view that 
needs persistent data have corresponding data elements in the Informa-
tion view?

� Does every nontrivial data element in the Information view have at least 
one element in the Functional view that is responsible for the mainte-
nance of that data?

� If information flows are described in the Information view, are they con-
sistent with the interelement interactions in the Functional view?

� If the Information view requires specific functional features (e.g., distrib-
uted transaction support, redundant logging of updates, and so on), are 
these features addressed in the Functional view?

� Do the data ownership models in the Information view align with the 
functional structure in the Functional view?

� If the data ownership characteristics are complex (e.g., multiple creators 
or updaters), do the functional models reflect the requirements for main-
taining distributed data consistency?

� If there are significant issues around the maintenance of distributed 
identifiers (keys), do the functional models include features to address 
these problems?

� If the architecture has significant data migration and data quality analy-
sis aspects, are there functional elements for these in the Functional 
view?

� If the functional structure has loose coupling as an architectural goal, is 
this reflected (as far as possible) in the static information structure?

FUNCTIONAL AND CONCURRENCY VIEW CONSISTENCY

Goal: To ensure that the functional elements are all mapped to tasks that will
allow them to execute and that the interelement interactions are supported by
interprocess communication mechanisms if required.

� Is every functional element in the Functional view mapped to a concur-
rency element (a process or thread) responsible for its execution in the 
Concurrency view?

� If functional elements are partitioned into separate processes, are suit-
able interprocess communication mechanisms used to allow all of the 
interelement interactions shown in the Functional view?

� If multiple functional elements are packaged into a single process, is it 
clear which element controls the process?
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FUNCTIONAL AND DEVELOPMENT VIEW CONSISTENCY

Goal: To ensure that all of the functional elements are mapped to a design-
time module and to ensure that the common processing, test approach, and
codeline specified are all compatible with and can support the proposed func-
tional structure.

� Does the code module structure include all of the functional elements that 
need to be developed?

� Does the Development view specify a development environment for each 
of the technologies used by the Functional view?

� If the Functional view specifies the use of a particular architectural style, 
does the Development view include sufficient guidelines and constraints 
to ensure correct implementation of the style?

� Where common processing is specified, can it be implemented in a 
straightforward manner over all of the elements defined in the Func-
tional view?

� Where reusable functional elements can be identified from the Func-
tional view, are these modeled as libraries or similar features in the De-
velopment view?

� If a test environment has been specified, does it meet the functional 
needs and priorities of the elements defined in the Functional view?

� Can the functional structure described in the Functional view be built, 
tested, and released reliably using the codeline described in the Develop-
ment view?

FUNCTIONAL AND DEPLOYMENT VIEW CONSISTENCY

Goal: To ensure that each of the functional elements is correctly mapped to its
deployment environment.

� Has each functional element been mapped to a processing node to allow 
it to be executed?

� Where functional elements are hosted on different nodes, do the network 
models allow the required element interactions to occur?

� Are functional elements hosted as close as possible to the information 
they need to process?

� Are functional elements that need to interact extensively hosted as close 
together as possible?
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� Are the specified network connections sufficient for the needs of the 
interelement interactions that will be carried over them (in terms of 
capacity, reliability, security, and so on)?

� Is the hardware specified in the Deployment view the most efficient
solution for hosting the specified functional elements?

FUNCTIONAL AND OPERATIONAL VIEW CONSISTENCY

Goal: To ensure that each of the specified functional elements can be installed,
used, operated, managed, and supported.

� Does the Operational view make it clear how every functional element 
will be installed (and upgraded if necessary)?

� If migration is required, does the Operational view make it clear how 
migration will occur to every functional element that needs it?

� Does the Operational view explain how each functional element will be 
monitored and controlled in the production environment?

� Does the Operational view explain how the configuration of each func-
tional element will be managed in the production environment?

� Does the Operational view explain how the performance of each func-
tional element will be monitored in the production environment?

� Does the Operational view explain how each functional element will be 
supported in the production environment?

� Are the approaches that the Operational view specifies for installation, 
migration, monitoring, control, and support the simplest set that will 
support the needs of the system’s functional elements?

INFORMATION AND CONCURRENCY VIEW CONSISTENCY

Goal: To ensure that the concurrency structure of the system does not cause
data access problems and that the proposed information structure is compati-
ble with the concurrency structure. 

� Does the concurrency design imply concurrent access to any of the sys-
tem’s data elements? If so, have the data elements been protected from 
concurrent access problems?

� When functional elements are packaged into operating system processes, 
is the data they require still available to them?

� If functional elements that share data elements are packaged into differ-
ent operating system processes, has a suitable interprocess data-sharing 
mechanism been defined?
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INFORMATION AND DEVELOPMENT VIEW CONSISTENCY

Goal: To ensure that the proposed development environment can provide the
technical resources required to develop the data management aspects of the
system.

� Does each data management technology identified in the Information 
view have development tools and the environment defined for it?

� Does the sizing of the development environments and test data platforms 
reflect the data volumes created in the Information view?

� If the Information view defines a significant migration data aspect, are 
there development tools and environments defined to support this?

� If the Information view defines external data components (e.g., for exist-
ing systems or external systems under construction), does the Develop-
ment view take this into account (e.g., the creation of stub environments, 
realistic test data, and so on)?

INFORMATION AND DEPLOYMENT VIEW CONSISTENCY

Goal: To ensure that the proposed deployment environment provides the
resources required to support the defined information structure.

� Does the Deployment view include enough storage (of the appropriate 
types) to support the information storage approach specified by the 
Information view?

� If separate storage hardware is used, does the Deployment view specify 
sufficiently fast and reliable links from the storage to the processing 
hardware?

� Does the Deployment view reflect the requirements for backup and re-
covery as addressed by the Information view?

� If large volumes of information need to be moved, is sufficient band-
width available so that this can be achieved without critically impacting 
the operation of the system?

INFORMATION AND OPERATIONAL VIEW CONSISTENCY

Goal: To ensure that the system’s information structure can be installed, used,
operated, managed, and supported.



CHAPTER 23 � ACHIEVING CONSISTENCY ACROSS VIEWS 433

� Does the Operational view make it clear whether specific installation 
steps are required for the system’s data management technology?

� If migration is required, does the Operational view make it clear how data 
migration will occur?

� Does the Operational view explain how the data management technology 
will be monitored and controlled in the production environment?

� Does the Operational view explain how the configuration of the data man-
agement technology will be managed in the production environment?

� Does the Operational view explain how the performance of the data man-
agement technology will be monitored in the production environment?

� Does the Operational view explain how the data management technology 
will be supported in the production environment?

CONCURRENCY AND DEVELOPMENT VIEW CONSISTENCY

Goal: To ensure that the concurrency structure specified in the Concurrency
view can be built and tested in the development environment specified by the
Development view.

� If the concurrency structure is complex, are sufficient design patterns 
specified in the Development view to guide its implementation?

� Does the codeline defined in the Development view support the packag-
ing of the system’s functional elements into the operating system pro-
cesses specified by the Concurrency view?

� Does the test approach defined in the Development view support testing 
of the concurrency structure specified in the Concurrency view?

� Does the development environment defined in the Development view 
allow development and testing of the concurrency structure specified in 
the Concurrency view?

CONCURRENCY AND DEPLOYMENT VIEW CONSISTENCY

Goal: To ensure that the system’s runtime tasks are correctly mapped to
execution resources.

� Is every operating system process mapped to a processing node to allow 
it to run?

� Can the interprocess communication facilities used in the Concurrency 
view be implemented on and between the processing nodes specified in 
the Deployment view?
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� Are the processing nodes specified in the Deployment view sufficiently
powerful to host the processes mapped to them from the Concurrency 
view?

� Is every processing node in the Deployment view fully used by the pro-
cesses mapped to it?

DEPLOYMENT AND OPERATIONAL VIEW CONSISTENCY

Goal: To ensure that the deployment environment described in the Deploy-
ment view can be installed, used, monitored, managed, and supported.

� Does the Operational view define how each of the elements in the 
deployment environment will be installed?

� Does the Operational view describe how each of the elements in the 
deployment environment can be monitored and controlled?

� Does the Operational view make it clear which monitoring and control 
facilities already exist, which can be bought, and which must be devel-
oped?

� Can each of the elements in the deployment environment be supported in 
the organization?
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24
INTRODUCTION TO THE
PERSPECTIVE CATALOG

art IV is devoted to descriptions of a number of perspectives. We describe
the perspectives listed in Table 24–1 in detail, with a chapter devoted to

each. We have chosen to explore this set of perspectives more thoroughly
because we have found that the quality properties they address are crucial to
most information systems.

We outline the perspectives listed in Table 24–2 in the final chapter of Part
IV. We have chosen to explore these perspectives more briefly than the others
for reasons of space and because, although they are often important, we have
not found them as universally applicable as the ones listed in Table 24–1.

P

TABLE 24–1 PERSPECTIVES DESCRIBED IN DETAIL

Perspective Desired Quality

Security The ability of the system to reliably control, monitor, and audit who can 
perform what actions on which resources and the ability to detect and 
recover from security breaches

Performance and 
Scalability

The ability of the system to predictably execute within its mandated perfor-
mance profile and to handle increased processing volumes in the future if 
required

Availability and 
Resilience

The ability of the system to be fully or partly operational as and when required 
and to effectively handle failures that could affect system availability

Evolution The ability of the system to be flexible in the face of the inevitable change 
that all systems experience after deployment, balanced against the costs of 
providing such flexibility
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For each perspective, we present the following details:

� The perspective’s applicability to views—that is, which of your views are 
most likely to be impacted by applying the perspective

� The most important concerns the perspective addresses

� A description of activities for applying the perspective to your architecture

� The key architectural tactics to be considered as possible solutions when 
your architecture does not exhibit the required quality properties the 
perspective addresses

� Some problems and pitfalls to be aware of and risk-reduction techniques 
for mitigating these

� Checklists of things to consider when applying the perspective and when 
reviewing it, to help ensure correctness, completeness, and accuracy

As in our viewpoint catalog, we present only an overview of some com-
plex and detailed topics. Our objective is to provide the fundamental informa-
tion in each area, so each perspective chapter also includes references to a
number of sources of further information.

As we said in Part I, there are many possible perspectives that could apply
to a particular architecture, and it is not usually feasible to consider all of
them in the context of all of the views. Not every perspective is relevant to
every view, or even to every system, and there will be instances where you
don’t need to consider some of the perspectives at all. The key to getting the
most out of them is to consider to what extent each perspective is important to
your architecture and to tailor your approach accordingly.

TABLE 24–2 PERSPECTIVES DESCRIBED IN BRIEF

Perspective Desired Quality

Accessibility The ability of the system to be used by people with disabilities

Development
Resource

The ability of the system to be designed, built, deployed, and operated 
within known constraints related to people, budget, time, and materials

Internationalization The ability of the system to be independent from any particular language, 
country, or cultural group

Location The ability of the system to overcome problems brought about by the abso-
lute location of its elements and the distances between them

Regulation The ability of the system to conform to local and international laws, quasi-
legal regulations, company policies, and other rules and standards

Usability The ease with which people who interact with the system can work 
effectively



439

25
THE SECURITY
PERSPECTIVE

Many factors drive today’s need for information systems security, includ-
ing the increasing trend to distribute systems, the use of public networks

Desired
Quality

The ability of the system to reliably control, monitor, and audit who 
can perform what actions on which resources and the ability to detect 
and recover from security breaches

Applicability Any systems with accessible interfaces, with multiple users where 
the identity of the user is significant, or where access to operations or 
information needs to be controlled

Concerns Resources, principals, policies, threats, confidentiality, integrity, 
availability, accountability, detection and recovery, and security 
mechanisms

Activities Identify sensitive resources, define the security policy, identify threats 
to the system, design the security implementation, and assess the 
security risks

Architectural
Tactics

Apply recognized security principles, authenticate the principals, 
authorize access, ensure information secrecy, ensure information 
integrity, ensure accountability, protect availability, integrate security 
technologies, provide security administration, and use third-party 
security infrastructure

Problems
and Pitfalls

Complex security policies, unproven security technologies, system not 
designed for failure, lack of administration facilities, technology-driven 
approach, failure to consider time sources, overreliance on technology, 
no clear requirements or models, security as an afterthought, ignoring 
the insider threat, assuming the client is secure, security embedded 
in the application code, piecemeal security, and ad hoc security 
technology
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(particularly the Internet) as part of system infrastructure, the everyday
use of interorganizational computing (such as Web services), and the
increasing interest the media and the public have shown in privacy and
security. All of these factors point to the fact that today your system’s
stakeholders are likely to be more interested in the security of the system
than they would have been only a couple of years ago.

We define security as the set of processes and technologies that allow the
owners of resources in the system to reliably control who can access which
resources. The who refers to the people, pieces of software, and so on that
form the set of actors in the system who have a security identity; security spe-
cialists normally refer to such actors as principals. The resources are the parts
of the system considered sensitive (i.e., those to which access must be con-
trolled) such as subsystems, data elements, and operations. The access to the
resources refers to the operations that the principals in the system will want
to legitimately perform on the resources (e.g., read them, change them, exe-
cute them, and so on), and the fact that access must be limited to principals
known to the system. 

Resources are at the core of the system’s security. Policies define the legiti-
mate access allowed to them, which is enforced by security mechanisms, which
are used by the principals of the system to gain access to the resources that
they need. We illustrate the interrelationship of these concepts in Figure 25–1
and discuss them in more detail in the Concerns section of the chapter.

The resources, principals, and policies that need to be considered are often
very specific to the system. An Internet service provider is likely to have a totally

Principals

Mechanisms

Policies

Resources

FIGURE 25–1 PRINCIPALS, ACTIONS, AND RESOURCES
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different set of security concerns from those of a military intelligence organization,
which will be different again from those of an enterprise implementing an internal
information system that allows remote access to its employees. However, in all of
these cases, security is still the business of allowing the right levels of access to the
right resources to the right people.

It is also important to recognize that security is not a simple process of
“being secure” or not. Rather than being a binary state, security is really a pro-
cess of risk management that balances likely security risks against the costs of
guarding against them. Bear this in mind to help you set realistic expectations in
the minds of your stakeholders and to make intelligent tradeoffs that address the
real security risks your system faces.

APPLICABILITY TO VIEWS

Table 25–1 shows how the Security perspective affects each of the views we
discussed in Part III.

TABLE 25–1 APPLICABILITY OF THE SECURITY PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context The Context view allows you to clearly identify the system’s external connec-
tions and consider how they could become system vulnerabilities and how they 
will need to be protected from malicious use. It may be the case that considering 
the security of the system will lead you to change the nature of some of these 
external connections. The Context view may also reveal possible threats to the 
system from elements in its immediate environment.

Functional The Functional view allows you to clearly see which of the system’s functional 
elements need to be protected. Conversely, the functional structure of the sys-
tem may be impacted by the need to implement your security policies.

Information The Information view also helps you see what needs to be protected—in this 
case, the sensitive data in the system. Information models are often modified as 
a result of security design (e.g., partitioning information by sensitivity).

Concurrency The Concurrency view defines how functional elements are packaged into runtime 
elements like processes. Security design may indicate the need to isolate different 
pieces of the system into different runtime elements, and if so, this will affect the 
system’s concurrency structure.

Development You may identify guidelines or constraints that the software developers will 
need to be aware of in order to ensure that the security policy is enforced. You 
need to include these guidelines or constraints in (or reference them from) the 
Development view.

Continued on next page
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CONCERNS

Resources
The reason that we need security in our systems is that they contain valuable
information and sensitive operations, and we want to be sure these are accessed
or executed only by certain people. The items in the system that we are trying to
protect are known in security jargon as resources, and computer security is the
business of designing processes and mechanisms to provide this protection.

Principals
In the security domain, the entities that our system needs to identify for security
purposes are known as principals. A principal can be a person, a role, a piece of
physical equipment, or another computer system. Our security system needs to be
able to reliably identify principals (that is, authenticate them) in order to allow
decisions about their legitimate access rights to be made (authorization decisions).

Policies
The security policy for a system defines the system’s security needs. It defines
the controls and guarantees that the system requires for its resources and identi-
fies which principals (or groups of principals) should be granted which types of
access to each resource (or type of resource) within the system. A security policy
can be considered to be the security specification for a system, as it defines the
set of security-related constraints that the system should be able to enforce.

A typical security policy defines the information access policy in terms of
the different types of principals the system contains (e.g., clerks, managers,
administrators) and, for each type of information (e.g., payroll records, customer

View Applicability

Deployment The security design may have a major impact on the system’s deployment envi-
ronment. For example, you may need security-oriented hardware or software, or 
you may need to change previously assumed deployment arrangements in order 
to address security risks.

Operational Enforcing security policy is not just a matter of adding advanced technological 
features to a system. How the system is operated once it is in production will 
have a major effect on its security. The Operational view needs to make the 
security assumptions and responsibilities extremely clear, so that these aspects 
of the security implementation can be reflected in operational processes.

TABLE 25–1 APPLICABILITY OF THE SECURITY PERSPECTIVE TO THE SEVEN VIEWS (CONTINUED)
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details, invoice information), what sort of access each principal group requires
(e.g., whether they can view the information, change it, delete it, share it). A
security policy also needs to define how the execution of certain sensitive sys-
tem operations (e.g., dispatch of payments or system shutdown) will be con-
trolled. The policy also should define information integrity constraints that must
be enforced, such as the integrity rules and checking required in data stores and
protection of messages from unauthorized changes.

Threats
While the policy defines the security constraints the system requires, the
threats the system faces are the possible ways the security constraints might be
breached by an attacker who wishes to avoid them. Explicitly considering the
security threats the system faces allows you to identify security enforcement
mechanisms that can then counter these threats. Adding security mechanisms
to a system is never free and often adds significantly to the complexity and cost
of the system, while often reducing its usability and making it more difficult to
operate in production. Therefore, it is important to select mechanisms appropri-
ate to the threats faced, to ensure that all of the chosen mechanisms counter re-
alistic, credible security threats to the system.

The threats that a system faces are related to the environment into which the
system is deployed and how the system is built. Certain threats (such as
attackers using “phishing” attacks to gain user names and passwords) are much
more likely for an Internet-facing system; others (such as users who hold differ-
ent security roles colluding to bypass a system control) are much more likely for
an enterprise system; and threats relating to the introduction of malicious code
into the system are more likely where it is easy to introduce new software into
the system (such as those that must support extension through plug-ins).

Common threats that most information systems face include password
cracking, network attacks that exploit software or configuration vulnerabili-
ties, and denial-of-service attacks as well as nontechnical, social-engineering
attacks that try to trick authorized users of the system to perform operations
on behalf of the attacker.

Confidentiality
Confidentiality is normally defined as limiting the disclosure of secrets to those
who are legitimately allowed to access them. In practice this usually means keep-
ing information in a system from being disclosed to anyone who has not been
granted the right to view it. Confidentiality can be achieved using access control
provided that the information can be retained within the confines of the system.
When the information cannot be reliably retained within the control of the sys-
tem (e.g., when it needs to be transmitted to another system), cryptography is
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usually used to maintain confidentiality when the information passes out of the
control of the system.

In classical information security theory, confidentiality is usually consid-
ered along with integrity and availability, forming the well-known “CIA” trio
of concerns. Nowadays, accountability is often added as a fourth general con-
cern for the security engineer.

Integrity
In the context of information security, integrity is a guarantee that information
cannot be changed undetectably, and so we can be sure that information has
not been tampered with since it was created or changed by an authorized prin-
cipal. Ensuring information integrity normally involves “signing” data crypto-
graphically, allowing the data and the cryptographic signature to be compared
in order to prove that an unauthorized party has not changed the data.

Availability
Availability is often thought of as a purely operational consideration, but in
fact it also has a relationship to security. Ensuring that potential attackers of
your system cannot block its availability with denial-of-service attacks is an
important part of your security design.

Designing a system for availability involves thinking about planned and
unplanned outages that can occur due to the nature of the system itself; design-
ing a system to avoid outages as a result of an external attack involves thinking
about risks that can occur as a result of the environment in which the system
resides (such as who can access the system and how). Availability security is an
area that has rapidly gained importance as systems are routinely connected to
public networks like the Internet.

Accountability
Accountability is the means of ensuring that every action can be unambigu-
ously traced back to the principal who performed it. 

In centralized server-based systems, the notion of auditing is a common
mechanism used to ensure accountability. In distributed systems, cryptographic
message signing is typically used to prove that a message originated from a
particular principal (a form of accountability also known as nonrepudiation).

Detection and Recovery
System security is never perfect, and if a system is attractive enough to an
attacker, it is almost inevitable that some sort of security breach will occur
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eventually. This means that an important security concern is the ability of
the system to detect security breaches and recover from them. Addressing
this concern is unlikely to be a purely technical matter but is more likely to
involve people and processes as well as the technology required to spot a secu-
rity breach and react to it appropriately.

Security Mechanisms
Security mechanisms are the technologies, configuration settings, and proce-
dures required to enforce the rules established by the security policy and provide
the confidentiality, integrity, accountability, and availability guarantees required
by the system. Information systems security is a relatively mature field, and
many proven security technologies already exist to act as mechanisms in an
information system. Examples of commonly used security technologies include
user name and password authentication, single-sign-on systems, virtual private
networks to secure network links, database access control systems, and SSL/TLS
encryption for client/server connections. The broad groups of security mecha-
nisms that are typically found in a modern information system are as follows:

� Authentication, authorization, and auditing , which are used to identify 
principals, grant them rights and privileges, and monitor the use of those 
rights and privileges, in order to implement effective access control

� Information privacy and integrity mechanisms, which use cryptography 
to prevent information from being accessed by unauthorized parties and 
allow detection of information tampering

� Nonrepudiation mechanisms, such as message signing, which again use 
cryptography, in this case to prove the provenance of information, such 
as the identity of a message sender

� System availability mechanisms, which aim to keep the system avail-
able in the face of malicious or accidental threats (we discuss these 
technologies primarily in Chapter 27 on the Availability and Resilience 
perspective)

� Security monitoring mechanisms, such as intrusion detection systems 
and security log monitors, that are used to detect breaches in system 
security and respond to them

Your challenge as an architect is to select the right set of technologies from
the wide array available and to apply them appropriately to the particular system
you are building. In particular, it can be difficult to safely combine a number of
these different technologies, along with system-wide security configuration set-
tings and a set of secure operational processes, to create a truly secure end-to-end
system. Except in the simplest cases, it is usually necessary to involve security
specialists in the system design process in order to achieve this. Such specialists
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will usually also be able to advise you on standards or common practices for your
organization or industry.

ACTIVITIES: APPLYING THE SECURITY PERSPECTIVE

The activity diagram in Figure 25–2 illustrates a simple process for applying the
Security perspective. In this section, we describe the activities in this process.

Identify Sensitive Resources
Before considering how to secure your system, you need to establish what
needs to be secured. All of the security for your system needs to be driven
from this key concern, which you should consider as early in the system’s
lifecycle as possible.

The information you gather about the security-sensitive resources feeds
into all of the other security-related decisions you make.

1. Identify
Sensitive

Resources

2. Define Security
Policy

3. Identify Threats
to the System

4. Design
Security

Implementation

5. Assess
Security Risks

[unacceptable]

[acceptable]

FIGURE 25–2 APPLYING THE SECURITY PERSPECTIVE



CHAPTER 25 � THE SECURITY PERSPECTIVE 447

NOTATION A simple text-and-tables approach is normally sufficient, although
you may choose to annotate one of the diagrammatic models of the architecture
(typically in the Functional or Information views).

ACTIVITIES

Classify Sensitive Resources. Using the Functional and Information views as
primary inputs, along with any security requirements information available,
decide what the sensitive resources in the system are—typically, functional
operations and data items. For each type of sensitive resource, define the rea-
sons the resource is sensitive, who should be considered its owner, and the
type of access controls it requires. 

EXAMPLE Table 25–2 shows a simple example of documenting some of 
the sensitive resources that might appear in an e-commerce ordering 
system.

TABLE 25–2 EXAMPLE OF SENSITIVE RESOURCE IDENTIFICATION

Resource Sensitivity Owner Access Control

Customer
account records

Personal information of value 
for identity theft or invasion 
of privacy

Customer Care 
Group

No direct data access

Descriptive prod-
uct catalog 
entries

Defines what is for sale and its 
description; if maliciously changed, 
could harm the business

Stock
Management
Group

No direct data access

Pricing product 
catalog entries

Defines pricing for catalog 
items; if maliciously or acciden-
tally modified, could harm the 
business or allow fraud

Pricing Team 
in Stock Man-
agement
Group

No direct data access

Business opera-
tions on customer 
account records

Needs to be controlled to protect 
data access and integrity

Customer Care 
Group

Access to individual record or 
all records by authenticated 
principal

Descriptive cata-
log operations

Needs to be controlled to 
protect data access and 
integrity

Stock Manage-
ment Group

Access to catalog modifica-
tion operations by authenti-
cated principal

Pricing catalog 
modification
operations

Needs to be controlled to 
protect data access and 
integrity

Pricing Team Access to price modification 
operations by authenticated 
principal, with accountability 
of changes

. . . . . . . . . . . .
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If you’re fortunate enough to have comprehensive security requirements
defined for you, the sensitive resources may have already been identified. In
many cases, though, you will need to do this yourself, in conjunction with
interested stakeholders (such as auditors and managers of the groups own-
ing the information). Useful inputs into this exercise include organizational
security policies and relevant external regulations, as well as the opinions of
interested stakeholders.

When performing this exercise, be sure that everyone (including yourself)
understands exactly what is included in each resource type as well as the
identity of the owner and the type of security the resource type requires.

Define the Security Policy
Having identified the system’s sensitive resources and the threats against
them, you should be able to define a security policy (also sometimes called a
trust model) for your system. The security policy is the basis for the security
implementation in the system. This model identifies who will be trusted with
what access to which system resources (and any constraints on this access
such as limiting it to certain times or days of the week), the integrity guaran-
tees required within the system, and the accountability required when sensi-
tive resources are accessed.

Ideally, you will have a complete, unambiguous, straightforward security
policy defined for you by the system’s main stakeholders that you can just
check and review before proceeding. Alternatively, if it’s like every system
we’ve worked on, you’ll have nothing of the sort, in which case you’ll need to
create it and get agreement on it.

The policy should normally be defined in terms of groups of resources
and principals (often based on organizational unit and role) rather than enu-
merating lots of specific cases. Also remember that this is a policy, not a de-
sign, so it needs to define what access will be provided to whom rather than
defining how this will be achieved.

Work to make the security policy as simple and general as you can, with
as few special cases as possible. A straightforward policy model allows the
simplest possible implementation of enforcement mechanisms and makes it
more likely that the model will be enforced correctly.

The other vital quality of a security policy model is precision. This model is
an important deliverable for your system, and it should be approved by all the
important stakeholders. If the model isn’t precise, each group of stakeholders
will interpret it differently, according to their own interests, assumptions, and
desires. This is bound to lead to problems when implementing the policy.

NOTATION A security policy is normally defined by using a simple text-and-
tables approach to create a structured document. Tables are particularly valuable
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when defining groups of resources and principals and showing the types of
access allowed.

ACTIVITIES

Identify the Principal Classes. In order to make defining the security policy
manageable, start by grouping your principals into classes that you can treat
as groups for security policy purposes. Partition the principals into sets based
on their role and the types of access they require to different types of sensitive
resources.

Identify the Resource Classes. Partition the system’s sensitive resource
types into groups that you can treat uniformly for access control purposes.
(The resource types are derived from the resources, as described earlier.)

Identify the Access Control Sets. For each resource class, define the opera-
tions that can be performed on members of that class and the principal classes
that should be allowed to access each operation on the class.

Identify the Sensitive System Operations . Consider any system-level opera-
tions that are independent of the system’s managed resources (such as ad-
ministrative operations), and define which principal classes should be allowed
to access these operations.

Identify the Integrity Requirements. Consider any situations in the system
where information is or could be changed or sensitive operations performed,
and identify the set of integrity guarantees required for them (such as audit-
ing or “four eyes” approval). 

EXAMPLE Table 25–3 shows part of the result of defining the security 
policy for an e-commerce system.

TABLE 25–3 EXAMPLE OF AN ACCESS CONTROL POLICY

User
Account
Records

Product
Catalog
Records

Pricing
Records

User
Account
Operations

Product
Catalog
Operations

Price
Change
Operations

Data adminis-
trator

Full with 
audit

Full with 
audit

Full with 
audit

All with 
approval and 
audit

All with 
audit

All with 
approval from 
a product price 
administrator

Catalog clerk None None None All Read-only 
operations

None

Continued on next page
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Seven different classes of principals have been identified (including
unauthenticated Web-site users) and six classes of sensitive resources.
Only data administrators are allowed access to data directly; all other users
can only execute business operations. Data administrators can also exe-
cute business operations (on the basis that they can simulate their occur-
rence anyway by changing data), but all of their activity is audited and
some actions need approval. The other classes of principals have been allo-
cated just enough privileges in order to perform their roles in the system.

Identify Threats to the System
In a perfect world, we could now stop and simply publish the list of sensitive
resources and the security policy, and everyone would voluntarily follow the pol-
icy. However, the reason we need security is that we can’t trust everyone to do
this, so we need to identify the possible threats to the security policy. Identifying
threats provides a clear definition of what needs to be protected and what it needs
to be protected from. This makes it clear which threats you are aware of and can
try to guard against and also (implicitly) the threats you have not considered.

The result of this process is termed a threat model, which builds on the
initial list of sensitive resources and should provide a thorough analysis of
the threats to which you think the system is subject, the impact of the threat
being realized, and the likelihood of the threat occurring.

To create a threat model, ask a number of key questions about your pro-
posed system.

� Who is likely to try to circumvent the security policy?

� What is the attacker’s motivation for attacking the system?

Catalog
manager

None None None Read-only 
operations
with audit

All All with audit

Product price 
administrator

None None None None Read-only 
operations

All with audit

Customer care 
clerk

None None None All with audit Read-only 
operations

None

Registered cus-
tomer

None None None All on own 
record

Read-only
operations

None

Unknown Web-
site user

None None None None Read-only 
operations

None

TABLE 25–3 EXAMPLE OF AN ACCESS CONTROL POLICY (CONTINUED)
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� How will an attacker try to circumvent the security policy?

� What are the attacker’s main characteristics (such as sophistication, 
commitment, resources, and so on)?

� What are the consequences of the policy being breached in this way?

When considering the threats your system faces, be sure to consider
threats from inside the organization as well as the more obvious “bad guys”
who are outside it. Many large organizations have suffered attacks from cur-
rent or former employees. Employees are often in a trusted position and have
a lot of knowledge about the organization’s systems, which makes it easier
for them than for outsiders to circumvent information systems controls.

It is also important to consider how the environment into which your
system is deployed affects the threats it faces. If your system is hosted out-
side your organization (such as at a hosting provider or in a cloud computing
environment), you need to consider the threats it faces from the insiders who
run the infrastructure on which it is hosted, as well as the insiders in your
own organization. On the other hand, such external providers may be able to
provide a level of security technology, expertise, monitoring, and support
that is not available within your organization.

Explicitly identifying threats allows specialists from outside your project
to provide assistance by reviewing the model and advising you about poten-
tial threats that have not been considered at all or threats that may have been
incorrectly characterized in the model. Be sure to have it widely reviewed so
that you can be confident you have considered all likely threats. The threat
model also allows you to systematically consider the set of security facilities
your system needs.

NOTATION The threat model is normally presented by using a text-and-tables
approach to create a structured document. A graphical alternative is to use an
attack tree, which is a tree structure used to categorize and illustrate the threats
a system faces and the likely probability of each occurring.   

EXAMPLE An attack tree is a useful approach to representing the threat 
model for your system. The technique is based on the Fault Trees tech-
nique used in safety-critical systems design to analyze possible failure 
modes. In the security domain, you can take a similar approach to repre-
sent possible attacks on your system.

An attack tree represents the possible attacks your system may face 
in order for an attacker to achieve a particular goal. The root of the tree 
is the goal the attacker is trying to achieve, and the branches of the tree
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classify the different types of attacks the intruder could attempt in order 
to achieve the goal.

Attack trees can be represented graphically (as a tree structure with 
nodes and links) or textually as a “dotted decimal” hierarchy (like 
nested subheadings in a technical document). The latter form is often 
more practical because attack trees can get very large as all possible 
attacks are considered, which can make the graphical form difficult to 
draw and comprehend.

Here is a possible attack tree for the goal of extracting customer credit 
card details from an e-commerce Web site.

Goal: Obtain customer credit card details.

1. Extract details from the system database.

1.1. Access the database directly.

1.1.1. Crack/guess database passwords.

1.1.2. Crack/guess operating system passwords that allow 
database security to be bypassed.

1.1.3. Exploit a known vulnerability in the database 
software.

1.2. Access the details via a member of the database 
administration staff.

1.2.1. Bribe a database administrator (DBA).

1.2.2. Conduct social engineering by phone/e-mail to trick 
the DBA into revealing details.

2. Extract details from the Web interface.

2.1. Set up a dummy Web site and e-mail users the URL to trick 
them into entering credit card details.

2.2. Crack/guess passwords for user accounts and extract details 
from the user Web interface.

2.3. Send users a Trojan horse program by e-mail to record 
keystrokes/intercept Web traffic.

2.4. Attack the domain name server to hijack the domain name 
and use the dummy site attack from 2.1.

2.5. Attack the site server software directly to try to find 
loopholes in its security or configuration or to exploit a 
known vulnerability in the software.
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ACTIVITIES

Identify the Threats. Consider the security threats your system faces from
the perspective of the sensitive resources within it, the possible access to
these resources that potential attackers might wish to gain, the main charac-
teristics of the potential attackers, and the types of attacks they are likely to
carry out.

Characterize the Threats. Characterize each threat in terms of the resources that
would be compromised if the attack were successful, the result of this compro-
mise, and the likelihood of the attack occurring.

Design the Security Implementation
Once you understand the sensitive resources and threats, you can consider
the technical security design for the system. The goal of this step is to design
a system-wide security infrastructure that can enforce the system’s security
policy in the face of the risks identified in the threat model. In this step, you
consider using specific security technologies such as single-sign-on systems,
network firewalls, SSL communication link security, cryptographic technol-
ogy, policy management systems, and so on.

This design process results in a number of design decisions you should
incorporate in the architecture. These decisions affect a number of architec-
tural structures, including those likely to be described in the Functional,
Information, Deployment, and Operational views.

NOTATION The outputs of this step are a set of design decisions to be reflected
in the architectural views, so the notation used for the technical security design
depends on the notation used in each view. You may also produce some form of
overall security design model, which is typically captured by using a software
design notation such as UML (similar to its use in the Functional viewpoint).

3. Find details outside the system.

3.1. Conduct social engineering by phone/e-mail to get customer 
services staff to reveal card details.

3.2. Direct a social-engineering attack on users by using public 
details from the site to make contact (see also 2.1).

An attack tree should be created for each of the possible goals that an 
attacker may have for breaching your system’s security. Once you have 
an attack tree, you can analyze each threat it contains to establish 
whether the system’s security neutralizes the threat.
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ACTIVITIES

Design a Way to Mitigate the Threats. For each of the previously identified
threats, design a security mechanism to address the threat. This may include
modifying existing architectural decisions, applying one or more security tech-
nologies, and designing procedures and processes for the system’s operation and
use.

EXAMPLE Based on the attack tree shown in the previous example, 
some of the security measures you might consider for the e-commerce 
system include the following:

� Isolating the database machines from the public network by using 
network firewall technology

� Isolating the security-sensitive parts of your system from the pub-
lic network by using network firewall technology

� Analyzing the paths into your system to check them for possible 
vulnerabilities

� Arranging penetration testing to see if experts can find ways into 
your system

� Identifying an intrusion detection strategy that would allow secu-
rity breaches to be recognized

� Training administration and customer service staff (in fact, proba-
bly all staff) to avoid social-engineering attacks and to abide by 
strict privacy protection procedures for customer information

� Designing your site so that a minimal amount of user information 
(ideally, none) is publicly viewable

� Designing your site so that sensitive information (e.g., credit card 
numbers) is never shown in full (e.g., display just the last four 
digits to allow legitimate users to identify their cards in lists)

� Routinely applying security-related software updates to all third-
party software used in the system

� Reviewing the system’s code for security vulnerabilities using 
analysis tools and expert inspection

� Constantly reminding users of security precautions they should 
take (e.g., not revealing passwords to anyone, including your staff; 
checking URLs before entering information; and so on)

It is interesting to note how much of a typical security implementation 
does not involve security technology directly but is about making sure 
that people act in a secure manner.



CHAPTER 25 � THE SECURITY PERSPECTIVE 455

Design a Detection and Recovery Approach. Bearing in mind that the security
mechanisms you identify are unlikely to be foolproof, design a system-wide
approach to detecting violations of the system security policy and recovering
from them. This will typically include technical intrusion detection solutions,
internal system checks and balances to reveal unexpected inconsistencies,
and a set of processes for regularly checking the system for intrusions and
reacting to any discovered. Good solutions for intrusion detection are avail-
able as proven commercial and open source software packages; however,
deciding how to use the packages and design the processes around them are
still system-specific activities.

Assess the Technology. One way to address a threat is to use a piece of
security technology to provide a security mechanism. This activity involves
assessing which candidate security technologies are suitable for addressing a
particular threat in a particular context. This includes generic assessment
(e.g., checking reliability, ease of use, and so on) as well as context-specific
assessment (e.g., checking that the proposed technology can be operated by
the system’s administrators and is efficient enough to meet the system’s per-
formance and scalability goals).

Integrate the Technology. Once you have decided which security technologies
to apply to your system, the other important activity is deciding how you will in-
tegrate them with the primary system structure and with other security technolo-
gies. It is important to spend some time designing the integration approach
carefully, to avoid possible security loopholes creeping in due to the unexpected
side effects of an ad hoc integration approach.

Assess the Security Risks
No security system is perfect. The process of implementing system security is a
balancing act: You balance the risks you believe you face against the cost of imple-
menting mitigations for those risks and the costs you may face if the risks occur.

Having designed a security infrastructure for your system, you now need
to reevaluate the risks to consider whether your proposed security infrastruc-
ture has achieved an acceptable cost/risk balance. If so, your Security per-
spective is complete. If not, you need to return to a consideration of the threat
model and refine the security infrastructure in order to achieve an acceptable
cost/risk balance.

NOTATION The risk assessment delivers a record of the set of risks, the esti-
mated likelihood of each risk occurring given the design of the system, and
the notional cost (i.e., the estimated cost adjusted for the probability of occur-
rence) that each risk implies. This information is usually best presented in a
simple tabular form. 
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A risk presentation in this form allows us to focus on the risks with the
highest notional costs (i.e., those that have the highest risk of loss and great-
est likelihood of occurrence).

ACTIVITIES

Assess the Risks. The single activity in this step is a process of risk assessment.
For each risk in your threat model, reevaluate its likelihood of occurrence and its
likely impact given the planned security infrastructure, and compare this against
the security needs you established earlier in the process. Assess whether this is
an acceptable level of security risk for your particular system’s situation. It is worth
noting that this can be a lengthy process because it can be difficult and time-
consuming to produce reliable estimates for the impact and likelihood of the
occurrence of each risk.

ARCHITECTURAL TACTICS

Apply Recognized Security Principles
The field of computer security is relatively mature for a rapidly evolving,
high-technology discipline. There is an established body of knowledge, devel-
oped and applied by an identifiable professional security community with its
own principles, standards, norms, and culture.

This community of researchers and practitioners has established a num-
ber of widely accepted and commonly applied principles that are considered
important to establishing security within a system. Some of the more impor-
tant principles include the following.

TABLE 25–4  EXAMPLE OF RISK ASSESSMENT

Risk
Estimated
Cost

Estimated
Likelihood

Notional
Cost

Attacker gains direct database access $8,000,000 0.2% $16,000

Web-site flaw allows free orders to be placed and fulfilled $800,000 4.0% $32,000

Social-engineering attack on a customer service 
representative results in hijacking of customer accounts

$4,000,000 1.5% $60,000

. . . . . . . . . . . .

EXAMPLE Table 25–4 shows an example, using a tabular presentation 
style, for a couple of the risks facing our e-commerce system.
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� Grant the least amount of privilege possible : Always grant security prin-
cipals the smallest set of privileges they require in order to perform their 
tasks. Consider varying the set of privileges a principal has over time if 
certain sensitive tasks are executed only intermittently.

� Secure the weakest link: The security of a system is only as strong as its 
weakest element, so understanding the weakest link in your security is an 
important step toward understanding how secure your system really is. The 
weakest link could be technological (an unsecured network link), proce-
dural (allowing easy access to a data center), or human (people who write 
down their passwords). Identify and secure the weakest links in your sys-
tem’s security until you achieve an acceptable level of security risk.

� Defend in depth: If you examine physical security systems, you’ll find 
that they rarely rely on just one security measure. Just as medieval cas-
tles had moats, drawbridges, and strong walls, banks have alarms, 
vaults, security guards, surveillance systems, and multiple locks on 
important doors. These are examples of the principle of defense in depth, 
where a series of defenses provides a greater level of security than a sin-
gle one could. Defense in depth is particularly relevant to computer sys-
tems, given that many of the security technologies we use may 
themselves have hidden flaws and that we are also susceptible to human 
and procedural failures. Rather than relying on one security measure to 
counter each threat to your system, consider possibilities for layering 
defenses to provide greater protection.

� Separate and compartmentalize: Attempt to clearly separate different 
responsibilities so that authority for each can be assigned to different prin-
cipals if required, and compartmentalize responsibilities for different parts 
of the system so that they can be controlled individually. This makes it eas-
ier to control access securely and means that a successful attack on one part 
of the system does not immediately compromise it entirely. Good examples 
are separating the “security override” privilege from the “alter audit trail” 
privilege (with the audit trail being used to record use of the “security over-
ride” privilege) and implementing separate security configuration and 
mechanisms for each major subdivision of a system.

� Keep security designs simple: Security engineers often say that complex-
ity is the enemy of security. Complexity in a system is difficult to deal 
with and makes it very difficult to analyze the system to assess its secu-
rity. This makes it difficult to know whether the system will be secure or 
not, and it increases the likelihood of vulnerabilities creeping into the 
system. Systems with stringent security requirements need to be simple 
enough to make it possible for them to be secured and verified.

� Don’t rely on obscurity: Some years ago, it was common for the details of 
secure systems to be kept secret in an attempt to make them more difficult 



458 PART IV � THE PERSPECTIVE CATALOG

to attack. An example of this was hiding security secrets, such as crypto-
graphic keys, in obfuscated (and undocumented) computer code for which 
the source was kept secret. The weaknesses in this approach are that it 
assumes the attackers aren’t smart enough to work past the obscurity and 
that it may prevent external experts from assessing the real level of secu-
rity provided. The conventional wisdom in today’s security community is 
total disclosure, where the system is designed assuming that potential 
attackers know it as well as its implementers do. This principle makes the 
system’s security less reliant on hiding secrets, which is extremely difficult 
to do successfully.

� Use secure defaults: Many systems we have encountered include inherently 
insecure default settings and behaviors, including empty default passwords, 
permissive default access control lists, network ports open by default, and 
so on. Such behavior is very likely to result in real security threats, particu-
larly when exhibited by packaged software products, which are often in-
stalled by users who are not familiar with them. Ensuring secure default 
behavior makes a real contribution to practical systems security.

� Fail securely: Another common problem found in many real systems is 
insecure failure mode behavior, where the system is reasonably secure 
during normal operation but becomes insecure when things go wrong. 
Examples include error logs that record sensitive information, audit trails 
that suspend auditing if the audit logs run out of space, systems that 
drop back to an insecure mode if security negotiation fails, unprotected 
recovery consoles that appear after crashes, and so on. System failures 
are inevitable occasionally, so make sure that if your system fails, it does 
so securely.

� Assume external entities are untrusted: Within your system you should 
be able to exert a great deal of control over the security environment and 
the principals within it. This is not the case for external entities who 
access the system. Ensure that all external entities are totally untrusted 
until proven otherwise to avoid accidental security breaches in unex-
pected cases.

� Audit sensitive events: Most systems include a number of key security-
related events that, if abused, could compromise the security system. 
Common examples include resetting passwords, assigning powerful 
roles, and manipulating audit trails. These sensitive events need to be 
securely audited so that their use can be monitored. This principle often 
places a number of constraints on your deployment structure to ensure 
that a reliable audit trail can be implemented.

Make sure that you understand these commonly accepted principles and
apply them to your system’s security. In the Further Reading section at the
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end of this chapter, we recommend a number of background references that
can provide much more detail on these topics.

Authenticate the Principals
Authentication is the reliable identification of each of the principals who can
use the system. These principals could be people, computers, pieces of soft-
ware, or anything else in the system that has a security identity. Nearly all
system security depends on being able to identify the various principals in the
system reliably.

Implementing authentication involves reliably binding a unique name of
some sort to each principal who can use the system. A wide variety of authen-
tication technologies exist to allow you to identify the principals in your sys-
tem, including user names with passwords, public/private key systems (such
as X.509 digital certificates), and hardware token technologies (such as smart
cards). Off-the-shelf products known as single-sign-on systems allow you to
delegate the entire system-wide authentication process to them (which is par-
ticularly useful in mixed technology environments such as those with both
UNIX and Windows authentication). Each of these technologies has its place,
but each tends to be suited to different environments and security needs, so
you need to select the right ones for your system.

The key decision to be made is how every principal in your system is
uniquely identified, via a mechanism that is secure enough to address the par-
ticular risks your system faces. You should bear in mind that you may need to
use different principal authentication technologies for different principal types,
and in some cases, principals may need to be identified by more than one
authentication technology (e.g., users in a corporation may have separate digi-
tal certificates, operating system logins, database logins, and application log-
ins). When multiple logins are necessary, we strongly recommend some form of
single-sign-on technology as a unifying layer on top of the different underlying
systems. People simply can’t remember more than a couple of passwords, and
forcing them to remember more will result in passwords written on notes stuck
to terminals!

What is critical at the architectural level is that every principal can be reli-
ably identified when required and that the system you use is simple and usable
enough that the system’s users will not try to work around it.

Authorize Access
Once you have identified the principals, authorization involves restricting and
enforcing what those principals are permitted to do within the system. Con-
ceptually, you define lists of principals and their permitted actions for each
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controlled resource in the system. This usually involves assigning principals
to roles and groups so you can treat them as homogeneous populations. Then
you can define permitted actions on resources for the roles and groups in the
system.

Most enterprise software technologies already include some form of
access control that allows you to limit access to resources based on user iden-
tity and credentials (such as group membership). In addition, software devel-
opers can code explicit security checks into their software when they
implement the system.

In many systems, your key problem as the architect is how to create a
coherent access control system from this patchwork of separate, often incom-
patible authentication and authorization technologies. For system security to
be manageable and effective, the system architecture needs to include a
clearly defined approach to enforcing principal authorizations, particularly if
multiple candidate authorization systems are available in the system’s envi-
ronment.

One solution to this problem is the use of purpose-built access control
products. These allow access to many sorts of resources to be controlled
through a single product that interfaces to a variety of authentication systems.
Another common approach is to standardize all authorization to be the check-
ing of roles against a central enterprise directory (such as an LDAP directory).
A simpler approach still would be a simple homegrown access control manager
in your system architecture, which may be sufficient for small systems.

Ensure Information Secrecy
Secrecy is the means of ensuring that only owners of information and those
with whom they choose to share it can read that information. 

Secrecy can be partially achieved by using authorization appropriately, to
prevent access to stored information that a principal is not authorized to access.
However, access control is rarely sufficient, and it usually needs to be com-
bined with other techniques in order to achieve the secrecy required.

Traditional information systems were highly centralized, with huge infor-
mation vaults held on central computers. The information was tightly con-
trolled by access control systems (typically as part of database management
systems) and was accessible only via custom applications running on termi-
nals directly connected to the central computer.

In contrast, today’s information systems are highly distributed, with
many computers communicating in order to implement the functions of the
system. This means that information may become much less secure than
with a traditional centralized system—particularly if public networks are
used for communication and the different parts of the system are within dif-
ferent organizations. The ability of most end users to easily access the Internet
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and its many storage services and the widespread use of very large-capacity
personal storage devices (such as USB sticks) make the situation more compli-
cated still.

One of the implications of this shift is that sensitive information needs to
be protected once it moves outside the authorization controls of the database
servers where it resides. Ensuring secrecy of information outside databases
normally involves the use of cryptography, to encrypt information in such a
way that only principals who have access to a particular key can decrypt it
and read it. In reality, the inherent complexity of cryptography means that it
is often implemented by securing network links through the use of communi-
cations protocols that include cryptographic protection, like SSL/TLS, rather
than by encrypting individual pieces of sensitive information. However, this
protects the information only during transmission and leaves it easily accessi-
ble at both ends of the network link.

From the architect’s point of view, the snag with this neat picture is that
extensive use of cryptography in your system is not without cost. It will add
significant complexity to many aspects of the system (cryptographic key
management alone is a complex problem), and it also tends to have high
computational costs, burning up precious computing resources that could be
dedicated to useful functional processing. It can be difficult to apply cryptog-
raphy correctly so that the system is actually secure. It is significantly more
complex than just using server-certificate-based SSL to identify your servers
because this leaves your system open to any number of alternative attacks
(such as intercepting information elsewhere in the system once it has been
decrypted).

In general, use your threat model to identify where information needs to
be protected, and use the minimum amount of cryptography that leaves your
system acceptably secure.

Ensure Information Integrity
Integrity is the name given to the concern of ensuring that information is pro-
tected from unauthorized change (particularly during message transmission).

Implementing integrity in most information systems also involves the
application of cryptography. We would like the recipients of messages sent
over a network to be able to satisfy themselves that they have received each
message unchanged and that no one has tampered with it. Ensuring integrity
of information usually involves the application of cryptographic hash func-
tions. Hash functions are cryptographic operations that use a secret key to
compute a large numeric value for a block of information. They allow the
recipient of that block to ensure that the information has not been changed
since the hash value was computed. However, useful as this is, the same
caveats mentioned for secrecy also apply to integrity, in particular that it adds
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both complexity and runtime overhead to the system and so needs to be used
judiciously.

Ensure Accountability
Many systems require some or all of their users to be accountable for their actions.
In some systems (such as certain financial and medical systems), legal require-
ments mandate user accountability for key operations. There tend to be two dis-
tinct forms of accountability required in information systems: auditing and
nonrepudiation of messages.

Auditing is usually used in situations where secure central servers exe-
cute the system’s primary operations. These servers can record logs of opera-
tions performed by the system’s users, which can later be used to establish
how a particular situation occurred. 

In distributed systems without centralized servers, effective auditing is
more difficult (due to the lack of a secure store for the audit trail). The analo-
gous concept in these systems is nonrepudiation, the ability to definitively
identify a message’s creator in a way that she cannot plausibly deny. A com-
mon solution to this problem is to use digital signatures on messages that can
be generated only by someone with access to the corresponding digital certifi-
cate’s private key.

Both of these approaches come with their own costs. Auditing has a runtime
performance penalty associated with it, as well as management and storage
overhead for the records created. Digital signatures are computationally expen-
sive to create and verify, and they can be complex to administer because they re-
quire all of the principals in the system to have a unique digital certificate. We
are also ignoring other important complexities such as certificate management
and revocation and the difficult problem of ensuring that technically sophisti-
cated users do not compromise other users’ digital certificates.

Once again, your role as an architect is to balance the cost of these
accountability mechanisms against the risks you think your system faces,
applying these techniques where the threat model indicates they are really
needed.

Protect Availability
When thinking about system availability, it is natural to focus on hardware
reliability, software replication, failover, and so on. Such approaches are an
important piece of the availability puzzle, as we discuss in Chapter 27 on the
Availability and Resilience perspective. However, there is an easily overlooked
security aspect related to availability: protecting your system from hostile
attacks that aim to reduce its availability.
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Such attacks, known as denial-of-service (DoS) attacks, have been the
subject of increasing interest as systems have started to expose their network
interfaces to public networks like the Internet and a number of high-profile DoS
attacks have taken place on well-known sites such as the Internet’s DNS back-
bone servers. DoS attacks can range from something as simple as forcing a user
to be locked out by repeatedly using an incorrect password with her login, 1 to
sophisticated distributed network attacks (so-called DDoS attacks) that use
custom software running on many Internet-connected computers to overload
systems. DoS attacks can also be physical attacks such as attempting to inter-
rupt a system’s power supply.

Work to understand the possible DoS threats your system faces and the
impact of any of the threats occurring. This will probably require working with
security specialists who understand this area in detail. Once you understand the
threats, their costs, their likelihood, and the potential approaches to protect
against them, you need to decide the right level of protection for your system by
balancing these factors. Be aware, however, that protecting your system from
network DoS attacks can be tremendously difficult, and for most systems you
may simply have to accept some level of risk of such an attack occurring.

Integrate Security Technologies
Almost inevitably, when you design the security implementation, you will
need a number of different technologies in order to fulfill all of the require-
ments. Similarly, security normally needs to be implemented across a number
of distinct parts of your system. Given this situation, you need to make an
early design decision about how to achieve end-to-end security in the system.
Implementing a large number of unrelated security technologies is highly
undesirable because it introduces complexity and the likelihood of creating
security vulnerabilities at the boundaries of each technology.

Part of your role in the security design of the system is to ensure that
security is implemented consistently and that the different pieces of the tech-
nology are put together to form a complete, integrated security system. This
will be particularly important if you’re using security consultants from a num-
ber of sources (such as different product vendors) who will focus on their
own parts of the security puzzle.

1. This doesn’t sound like a terribly serious attack until you consider time-sensitive sys-
tems such as online auctions. This attack has allegedly been used on a number of occasions 
at Internet auction sites to prevent users from bidding on (and so raising the prices of) items 
that the attacker wishes to buy. Other systems can also be vulnerable to similar DoS 
attacks—for example, a battlefield system isn’t much use if an attacker can lock out all of its 
users simply by bombarding it with credible user names and random passwords.
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Provide Security Administration
Administration is a weakness of many existing security systems, particu-
larly when complex policies need to be enforced or when there is a need to
cope with the sort of large user populations found in today’s global organi-
zations. This problem can become even more awkward when you need to
combine a number of security technologies in order to implement the secu-
rity policy. 

As part of architecture definition, you need to ensure that the planned security
implementation can be administered effectively (this will form part of the Opera-
tional view). Without good administration, security policy is likely to be ignored
simply to “get the job done.” Complex security administration facilities can also
lead to security loopholes caused by administrators who are unaware of the full
ramifications of their actions.

Remember to involve key stakeholders when considering security admin-
istration. Your system administrators will be able to provide a lot of feedback
about the acceptability of the administration facilities available—testers too
often have a perspective on this because they need to reproduce large security
configurations automatically to allow reliable, repeatable testing of the secu-
rity facilities.

Use Third-Party Security Infrastructure
Many of today’s infrastructure technologies (such as J2EE and .NET servers,
enterprise directories, and e-mail servers) provide a number of standard secu-
rity functions. Also, specific security infrastructure technologies (such as enter-
prise access control products) are available that can provide security services to
applications. These technologies offer an alternative to the traditional approach
to implementing application security—namely, embedding policy enforcement
in the application code.

In general, using external security infrastructure is simpler than coding it
directly; after all, someone else has done a lot of the work already. This
approach is often much more flexible, too. Rather than needing to change pro-
gram code when the security policy changes, it is often possible to change the
configuration of the infrastructure element—a process that can be achieved by
the administrators without involving software developers and rereleasing soft-
ware. Most important, a security infrastructure product is likely to provide more
reliable security than application-specific code because it is more widely used
and has been written by software developers with specialized interest and
training in system security.

We strongly recommend adopting a security approach of pushing as
much of your policy enforcement into the underlying infrastructure of your
system as possible. We suggest this for three reasons: simplicity, flexibility,
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and reliability. Security infrastructure products hide much of the complexity
of integrating different security systems. They should also provide some
degree of abstraction over individual mechanisms, allowing the mechanisms
to be changed more easily. Finally, widely deployed infrastructure products
have been widely tested, analyzed, and understood, increasing their reliabil-
ity when compared with custom solutions.

PROBLEMS AND PITFALLS

Complex Security Policies
Security policies have a habit of starting out simple and well defined but
becoming complex, full of special cases, and poorly understood as they are
reviewed by more and more stakeholders. Implementing system security is
difficult during the best of times. If the security policy is not a simple and
regular rule set, this job becomes much more difficult during both develop-
ment and system operation, and the likelihood of flaws in the security
implementation is much higher.

RISK REDUCTION

� Make sure that the security policy is as simple as it can be—make func-
tional, performance, and other tradeoffs if appropriate in order to achieve 
this goal.

� If policies appear to be very complex, consider partitioning the security-
sensitive resources or the principals in different ways to make the policy 
simpler.

Unproven Security Technologies
There are many security technologies available for implementing your secu-
rity infrastructure. They range from simple, very well-understood technolo-
gies such as user names and passwords to large-scale, sophisticated
systems in their own right such as many public/private key cryptography
implementations.

However, whatever technology you use, your system’s security is only as
strong as its weakest link. A single weak element in your security infrastruc-
ture has the potential to make the rest of the infrastructure irrelevant. The
weakness in an element can come from an inherent design or implementation
flaw in the underlying product, a mistake made in its application, or indeed a
mistake made in operating the technology.
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RISK REDUCTION

� Err on the side of caution when selecting your security technology—such 
technology needs to be well understood and proven in operation before 
you can consider it a sound choice for a generic piece of infrastructure.

� If you don’t have practical experience with a particular technology, find 
someone who does have such experience to guide you. (And don’t assume 
that everything the vendor says is true!)

System Not Designed for Failure
As any architect knows, things go wrong in the process of designing, building,
and operating information systems. Therefore, system elements are often created
to fail in certain ways in order to minimize the impact of a particular failure. This
is often a sound approach. It allows the system to continue being used (possibly
with reduced function) while one or more pieces of it are being fixed. However,
when considering security, this is not always the best approach. 

To illustrate this, consider the failure of a security element that controls
access to a sensitive resource. If the element is unexpectedly unavailable, the
high-availability approach to design might suggest that the default behavior in
such cases is to simply allow access until the security element is fixed. How-
ever, this obviously isn’t the right thing to do from a security perspective. Sim-
ilar but much more subtle examples of this problem can happen when
unexpected errors occur and security has not been considered while designing
the relevant error-handling code.

RISK REDUCTION

� Design your security infrastructure to cope with failure in a safe way 
from the beginning so that unexpected element failures do not open 
security loopholes in the system.

� Ensure that your security infrastructure is configured to fail securely if 
unexpected situations occur.

� When reviewing your architecture in failure scenarios, be sure to check 
what impact the failures have on the system’s security.

Lack of Administration Facilities
An important but often neglected part of designing security infrastructure is
to ensure that it can be effectively administered when the system is in produc-
tion. Your testers may also have administration needs to ensure that they can
reproduce large-scale test scenarios effectively.
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Two common problems in this area include administration tools that can
be used only for simple test cases (rather than for the thousands of users
who can be found in real systems) and the use of a patchwork of administra-
tion tools that need to be carefully combined in order to manage the system.
Such a situation will likely result in loopholes in security policy enforcement
as administrators struggle to use inadequate tools to control access.

RISK REDUCTION

� Review your architecture to ensure that its administration facilities are 
adequate for the expected size of the user population and the complexity 
of the security policy.

� Make sure that the administration facilities you are planning to provide 
are acceptable to the administrators and operators who will have to use 
them.

� If possible, make sure that administrative security operations can be per-
formed by using one task-driven interface, rather than requiring the use 
of a number of tools to perform a single task. If many steps are required, 
the likelihood of omission or error is much higher.

Technology-Driven Approach
A problem we have seen with the security design of some systems occurs
when the available technology drives the security design process. You can tell
that you have this sort of problem when you inquire whether the designers
have considered security yet and you get the reply, “Oh, yes—we’re secure;
we use SSL.” In such situations, although security technology is deployed,
you often have no idea whether it addresses the system’s security needs.

RISK REDUCTION

� Drive your security design by the resources that need to be protected, the 
security model that needs to be implemented, and the security threats 
that the system faces.

� Avoid designing your security architecture around specific pieces of se-
curity technology. Don’t incorporate security technology that is not justi-
fied by the security needs of your system.

Failure to Consider Time Sources
A number of security mechanisms rely on checking the passage of time (e.g.,
product license timeouts and password expirations). These mechanisms
assume that a reliable source of time is readily available. Although the specifics
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of the mechanisms and the time source they need differ, they all share the char-
acteristic that if the time source is compromised, the mechanism is ineffective.

RISK REDUCTION

� Identify the security mechanisms that require accurate time and the char-
acteristics of the time they need (such as accuracy, absolute or relative, 
universal or time zone, and so on).

� Incorporate enough secure time sources in your system to meet the needs 
of your security mechanisms.

� Make sure you understand what will happen if a secure time source is 
unavailable or is compromised.

� Protect secure time sources against likely threats (using mechanisms 
such as calling back to secure servers, using external time servers or 
dedicated hardware devices, using operating system access controls to 
protect the time source, and so on).

Overreliance on Technology
It is often said by security luminaries like Bruce Schneier and others that secu-
rity is a process, not a product. Yet you can often find system designers placing
great reliance on particular security products to keep their systems secure.
Although you certainly do need to use good third-party security products to
secure your system, you need to use them intelligently as part of an overall
security design that encompasses all of the different aspects of your system.

At a security conference some time ago, an executive of a security product
company pointed out that “there is no way you can buy anything, subscribe
to anything, and say you are 100% secure.” This is sound advice, coming
from someone actually in the IT security industry.

RISK REDUCTION

� Use your threat model to drive your security design. Addressing these 
tangible threats will help you design a system that is secure, rather than 
a system that just uses security technology.

� Design a sound set of operational procedures to avoid human error 
exposing the system to security threats.

No Clear Requirements or Models
It is common for systems to have no clear, well-defined security requirements
and no formal security models at all. The problem with these systems is that you
simply don’t know if they are secure because you don’t know what “secure”
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means. Security is an area where it usually isn’t possible to be confident that
you have met the needs of the stakeholders without firm requirements and for-
mal models. Security can’t be seen, and most stakeholders won’t test it. You’ll
find out that you have problems only when the security is breached—at which
point you can be pretty certain that the stakeholders won’t think their needs are
being met.

RISK REDUCTION

� Drive the security design process by using threat and security policy 
models. Developing these models will help define requirements because 
they focus the stakeholders’ minds on what is valuable, what is likely to 
be attacked, and what the impact of such attacks would be.

� Use plenty of concrete examples when discussing security with stake-
holders. Security is an abstract area that requires some lateral and imag-
inative thinking in order to be effective. Examples will help your 
stakeholders think clearly about what they need.

� When identifying your architectural scenarios, consider those related to 
security as well as to functionality, performance, evolution, and so on. 
Thinking through security-related scenarios can help identify and clarify 
important security requirements.

Security as an Afterthought
Because stakeholders often don’t think about security requirements explicitly,
these requirements don’t always get mentioned in the initial requirements
analysis. This can lead to the problem where security has to be added to the
system at some point during (or even after) development. At best, this is
likely to be an expensive and painful process involving a lot of rework. At
worst, it won’t be possible to introduce the required security without chang-
ing the system in some way that upsets a stakeholder group.

RISK REDUCTION

� Start considering the system’s security as soon as you start developing its 
functional and information structure. This will allow you to understand 
the security needs early in the lifecycle and make sure that the system you 
design can be secured.

Ignoring the Insider Threat
As noted previously, while it is tempting to treat the system’s “insiders” as
trusted principals, you need to consider threats from people inside the organi-
zation at least as thoroughly as those from principals outside it. Insiders are
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often trusted and are often privy to knowledge about the organization, its
systems, and the security controls that make circumventing a security control
rather easier for them than for an outsider. They may also have grievances
against their employer for all kinds of reasons, which could motivate them to
attempt to damage the organization (e.g., by leaking confidential data). Per-
haps it’s no surprise, then, that in a 2010 survey2 nearly 60% of British busi-
nesses confirmed that they had dealt with one or more incidents of
unauthorized insider access to systems and data.

RISK REDUCTION

� Consider threats to the system that are specific to insiders who have par-
tial or privileged access to it or just thorough knowledge of the system 
and its controls.

� Work with the enterprise security group, if there is one, to ensure that 
people do not retain authorizations that they no longer need in the event 
that their job changes.

� Consider possibilities for collusion between different insiders. Such situ-
ations are very difficult to guard against, but it may be worth introducing 
some form of monitoring for unusual situations that suggest some form 
of collusion.

� If your system is hosted outside your organization, consider whether 
insiders in the hosting organization can pose a threat to the system and 
its resources. Consider protecting externally hosted systems in a way 
that prevents the hosting company from gaining access to the system 
(e.g., by encrypting data to prevent its being read by employees of the 
hosting company who will have administrative access to the hosting 
environment).

Assuming the Client Is Secure
Years ago, when mainframes and proprietary mini-computers ruled the roost,
controlling who could connect to your system was relatively straightforward.
Users used proprietary “green screen” terminals to access the system, the ter-
minals were all registered and authorized to connect to the application, and
you could be pretty sure that they hadn’t been tampered with. Things couldn’t
be more different today!

Nearly all modern information systems are created in a networked environ-
ment, with the main services of the system being accessed by clients of various

2. The “Information Security Breaches Survey 2010,” available from www.pwc.co.uk/eng/
publications/isbs_survey_2010.html.

www.pwc.co.uk/eng/publications/isbs_survey_2010.html
www.pwc.co.uk/eng/publications/isbs_survey_2010.html
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sorts across a network. Internet-connected systems are obviously the most
extreme example of this, with all of their public services being accessed through
Web browsers and Web services, by a range of application clients largely out-
side the architect’s control. While most users may be using a market-leading
browser on a desktop computer, some may be using mobile phones to access
the system, and in a few cases people may even have written their own Web
browsers! Even in the corporate environment, it is becoming more common for
end users to demand access to applications on a variety of devices including
smartphones, tablet computers, and their own computers at home.

In this dynamic and accessible environment we can’t reliably assume any-
thing about the client devices that will be used to access our system, and we
have to accept that from a security perspective, we have lost control of that part
of the system’s deployment environment. The only option open to us in many
cases is to embrace this diverse client mix as well as we can and to ensure that
the system’s security does not rely on trusting the client’s behavior.

RISK REDUCTION

� Remember that almost anything can be changed on a compromised client 
device, and reflect this assumption in the system threat model.

� Even if security checks are performed on client devices (e.g., for perfor-
mance or usability reasons), make sure that the definitive security check 
is performed in the system’s servers that are under your control.

� If it is feasible, consider limiting the devices that can connect to your 
system by checking their identity and accepting connections only from 
devices that have been deployed with a verifiable identity.

� If necessary, consider working with your enterprise security group in 
order to employ mechanisms that prevent data from your application 
from being saved on client computers (e.g., by preventing users from 
writing data to local removable storage).

Security Embedded in the Application Code
A problem we have observed in a number of systems occurs when the code
that enforces the security model is found sprinkled throughout the application
itself. The problems with this approach include reduced reliability, the diffi-
culty of changing the security model being enforced, and the likelihood of
introducing security errors in your system.

RISK REDUCTION

� Push as much of the security technology as possible into your underlying 
infrastructure elements.
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� If security does need to be in application code, apply good software engi-
neering judgment to encapsulate as much of it as possible in a single 
place. Also consider using software technologies (such as aspect-oriented 
programming or code generation) that would allow the security code to be 
applied automatically as part of the build process.

Piecemeal Security
To be effective, security needs to be considered on a holistic basis, throughout
the system. A problem we have seen in many systems is security being
applied to parts of the system but not to others. For example, highly sensitive
data is encrypted during transmission but not when stored. This may or may
not be a problem depending on the sensitivity of the data and the threats the
system is likely to have to withstand. Your role is to make sure that security
is implemented everywhere it is needed as revealed by the threat model—not
just in the places that immediately spring to mind.

RISK REDUCTION

� The use of an architecture-driven development process will help address 
this risk. Make sure that you keep considering the architecture and par-
ticularly its security as a whole, rather than as a set of separate parts.

Ad Hoc Security Technology
Computer security is a specialized field with its own culture, standards, pro-
cesses, and background. Security engineers (the people who build security
technology and secure systems) tend to have a lot of specialized training and
experience. Similarly, cryptographers (the people who study and create ways
to encrypt and decrypt data) tend to have advanced degrees in cryptography.
Despite this, many software developers without this specialized background
fancy themselves as amateur security engineers or cryptographers and decide
to create some or all of the security technology in their systems.

In general, we suggest that this is a bad idea—creating truly secure tech-
nology is harder than it looks, and without specialized training, most of us
can’t do it reliably. Given the integrated nature of security, the consequences
of one piece of weak security technology can be pretty catastrophic.

RISK REDUCTION

� Use proven, widely accepted security technology from established pro-
viders when possible, and get expert help with its use and deployment.

� Make sure you find out what previous users of the possible technologies 
thought of it and how the security community as a whole rates it.

� If you have to create your own technology, engage expert assistance to 
help you systematically develop it.
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CHECKLISTS

Checklist for Requirements Capture
� Have you identified the sensitive resources contained in the system?

� Have you identified the sets of principals who need access to the 
resources?

� Have you identified the system’s needs for information integrity 
guarantees?

� Have you identified the system’s availability needs?

� Have you established a security policy to define the security needs for the 
system, including which principals are allowed to perform which operations 
on which resources and where information integrity needs to be enforced?

� Is the security policy as simple as possible?

� Have you worked through a formal threat model to identify the security 
risks your system faces?

� Have you considered insider as well as outsider threats to the system?

� Have you considered how the system’s deployment environment will 
alter the threats to the system?

� Have you worked through example scenarios with your stakeholders so 
that they understand the planned security policy and the security risks 
the system runs?

� Have you reviewed your security requirements with external experts?

Checklist for Architecture Definition
� Have you addressed each threat identified in the threat model to the 

extent required?

� Have you used as much third-party security technology as possible?

� Have you produced an integrated overall design for the security solution?

� Have you considered all standard security principles when designing 
your security infrastructure?

� Is your security infrastructure as simple as possible?

� Have you defined how security breaches will be identified and how to 
recover from them?

� Have you applied the results of the Security perspective to all of the 
affected views?

� Have external experts reviewed your security design?
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FURTHER READING

You can find a short but thorough and very readable introduction to the main
concepts of information systems security in an IEEE magazine article
[LAMP04]. A much deeper but still approachable introduction to the process
of building secure systems and processes appears in Anderson [ANDE08];
this book provides a comprehensive introduction to many important security
topics, as well as being an entertaining read, full of interesting stories from
the security field. 

A well-known, generally respected, and always colorful figure in the
security field is Bruce Schneier. Two books that he authored or coauthored
that offer useful background are [FERG10], which provides a good nuts-and-
bolts introduction to cryptographic technology for software engineers, and
[SCHN01], which moves beyond a technology-focused approach and explains
how technology will never provide a complete solution to security problems.
This second book is worth reading to understand just how complex the secu-
rity field is and how broad effective security solutions need to be.

Two good, practical security books aimed at software developers are
Viega and McGraw [VIEG02] and Howard and LeBlanc [HOWA04]. Both
books explain how to construct software that is secure by design rather than
by accident or buzzword compliance. Chapter 5 in the former book also pre-
sents and explains a practical and simple set of security principles. Gary
McGraw’s later book [MCGR06] takes the theme further, explaining how
security concerns should be woven into the design process for secure sys-
tems. The Fault Trees approach, which forms the basis of the attack trees we
introduced in this perspective, is explained in Leveson [LEVE95], and a sim-
ple guide to threat modeling can be found in [SWID04].
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26
THE PERFORMANCE AND
SCALABILITY PERSPECTIVE

Desired
Quality

The ability of the system to predictably execute within its mandated 
performance role and to handle increased processing volumes in the 
future if required

Applicability Any system with complex, unclear, or ambitious performance require-
ments; systems whose architecture includes elements whose perfor-
mance is unknown; and systems where future expansion is likely to 
be significant

Concerns Response time, throughput, scalability, predictability, hardware 
resource requirements, and peak load behavior

Activities Capture the performance requirements, create the performance mod-
els, analyze the performance models, conduct practical testing, assess 
against the requirements, and rework the architecture

Architectural
Tactics

Optimize repeated processing, reduce contention via replication, prior-
itize processing, consolidate related workload, distribute processing 
over time, minimize the use of shared resources, reuse resources and 
results, partition and parallelize, scale up or scale out, degrade grace-
fully, use asynchronous processing, relax transactional consistency, 
and make design compromises

Problems
and Pitfalls

Imprecise performance and scalability goals, unrealistic models, use of 
simple measures for complex cases, inappropriate partitioning, invalid 
environment and platform assumptions, too much indirection, concurrency-
related contention, database contention, transaction overhead, careless 
allocation of resources, and disregard for network and in-process invocation 
differences
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This chapter discusses two related quality properties for large information sys-
tems: performance and scalability. These properties are important because, in
large systems, they can cause more unexpected, complex, and expensive prob-
lems late in the system lifecycle than most of the other properties combined.

Intel chief Gordon Moore observed in 1965 that the processing power of
computer chips doubled approximately every 18 to 24 months (now known as
Moore’s Law). This remark seems to apply almost as well today as it did in
1965, so one would hope that by now performance and scalability would have
receded as major concerns for most computer systems. Unfortunately, this
isn’t the case, for a couple of reasons.

The fundamental reason for performance concerns is that the tasks we set
our systems to perform have become much more complex over time, and the
demands we make on the systems (in terms of complexity, numbers of trans-
actions, numbers of users, and so on) have also grown in ways that would
have been unimaginable in the 1960s.

To make matters worse, the performance of a computer system depends on
much more than the raw processing power of its hardware. The way that hard-
ware is configured and used, the way resources are allocated and managed, and
the way the software is written can have significant impacts (good or bad) on the
system’s ability to meet its performance goals. The simple fact is that we face as
many performance challenges today as our predecessors did in the 1960s.

The scalability property of a system is closely related to performance, but
rather than considering how quickly the system performs its current workload,
scalability focuses on the predictability of the system’s performance as the work-
load increases. Even if your system meets its goals today, how confident are you
that it still will in the future? Will it be able to cope with increased numbers of
users, transactions, or messages? Will it be able to handle increased complexity
of processing? How will it behave when unexpectedly presented with a huge in-
crease in workload?

Applying the Performance and Scalability perspective to your architecture
will help you answer all of these questions.

APPLICABILITY TO VIEWS

Table 26–1 shows how the Performance and Scalability perspective affects
each of the views we discussed in Part III.

CONCERNS

Response Time
Response time is the length of time it takes for a specified interaction with the
system to complete. For a human-oriented system, this could be the length of
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time between the user initiating the request and the response being available
for her use (e.g., the time from clicking a user interface button to seeing the
response screen populated with data). For an infrastructure-oriented system

TABLE 26–1 APPLICABILITY OF THE PERFORMANCE AND SCALABILITY PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context The Context view identifies all of the system’s external interfaces, and applying 
this perspective will highlight the performance requirements or potential prob-
lems that the use of these interfaces implies. This allows these constraints to be 
identified early in the design of the system so that their impact on the system 
can be understood and appropriate mitigating actions identified. 

Functional Applying this perspective may reveal the need for changes and compromises to 
your ideal functional structure to achieve the system’s performance require-
ments (e.g., by consolidating system elements to avoid communication 
overhead). The models from this view also provide input to the creation of 
performance models.

Information The Information view provides useful input to performance models, identifying 
shared resources and the transactional requirements of each. As you apply this 
perspective, you may identify aspects of the Information view as obstacles to 
performance or scalability. In addition, considering scalability may suggest 
elements of the Information view that could be replicated or distributed in 
support of this goal.

Concurrency Applying this perspective may result in changes to the concurrency design due 
to identifying problems such as excessive contention on key resources. Alterna-
tively, considering performance and scalability may result in concurrency be-
coming a more important design element to meet these requirements. Elements 
of concurrency views (such as interprocess communication mechanisms) can 
also provide calibration metrics for performance models.

Development One of the possible outputs of applying this perspective is a set of guidelines 
related to performance and scalability that should be followed during software 
development. These guidelines will probably take the form of dos and don’ts (e.g., 
patterns and antipatterns) that must be followed as the software is developed in 
order to avoid performance and scalability problems later when it is deployed. You 
will capture this information in the Development view.

Deployment The Deployment view is a crucial input to the process of considering perfor-
mance and scalability. Many parts of the system’s performance models are 
derived from the contents of this view, which also provides a number of critical 
calibration metrics. In turn, applying this perspective will often suggest changes 
and refinements to the deployment environment, to allow it to support the 
performance and scalability needs of the system.

Operational The application of this perspective highlights the need for performance monitor-
ing and management capabilities.
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such as a database, this could be the time between invoking a service and the
service returning a response (e.g., the time from calling a query application
programming interface to obtaining the query results).

We define two broad classes of response times you may want to consider
separately.

1. Responsiveness considers how quickly the system responds to routine 
workloads such as interactive user requests. The response time for 
such operations is typically on the order of a few seconds. The key 
consideration for such workloads is user productivity, ensuring that 
the system does not slow down its users. The two aspects of respon-
siveness that usually need to be considered are the responsiveness of 
the user’s device (e.g., how long it takes for a keypress or mouse click 
to be recognized) and the responsiveness of the system itself (e.g., 
how long it takes the system to respond to a request when a button is 
clicked). The latter is usually the focus of our attention, but the former 
can be important to consider in some circumstances with very 
resource-limited clients (such as mobile devices), or when users are 
accessing their devices remotely (such as with remote desktop or thin 
client technology).

2. Turnaround time is the time taken to complete (turn around) larger 
tasks. This is typically measured in minutes or hours, and the key 
considerations are whether the task can be completed in the time 
available to it and the impact the task has on the system responsive-
ness while it is running. It may also be important to consider how 
quickly partial results can be produced as part of a long-running task, 
for example, to provide partial or summary information earlier than 
the full results.

These two classes of response times can affect different types of stakeholders
and often require quite different technical solutions to make sure that require-
ments of each type are met.

EXAMPLE The following examples show how requirements could be 
specified for the two classes of response times.

Responsiveness
1. Under a load of 350 update transactions per minute, 95% of 

transactions should return control to the user within 3 seconds of 
pressing the submit button.
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Throughput
Throughput is defined as the amount of workload the system is capable of han-
dling in a unit time period. Throughput and response time have a complex inter-
relationship in most systems. In general, the shorter your transaction processing
time, the higher the throughput your system can achieve. However, as the load
on the system increases (and throughput rises), the response time for individual
transactions tends to increase. Therefore, it is quite possible to end up with a sit-
uation where throughput goals can be met only at the expense of response time
goals, or vice versa. We can illustrate this with a simple example.

2. Under the reference load (defined in a separate document), 90% of 
service requests should return a reply to the calling program 
within the following times:

• Open account: 10 seconds
• Update account details: 5 seconds
• Retrieve account status: 3 seconds
• Retrieve balances: 3 seconds, plus 0.5 seconds per account accessed

Turnaround Time
1. Assuming a total daily throughput of 850,000 transactions, the 

process of establishing a consolidated position against each of the 
firm’s external counterparties should take no longer than 4 hours, 
including writing the results back to a database. It can be assumed 
that no other significant system activity will take place during this 
period.

2. It must be possible to resynchronize the system with all of the 
production line monitoring stations and reset the database to 
reflect the current production line state within 5 minutes. It can be 
assumed that no status updates will be processed during the 
resynchronization period.

EXAMPLE A database server can support up to 500 concurrent users 
performing sales transactions; however, as the number of concurrent 
users increases, the response time the users see increases as well.

� With 10 concurrent users, a typical transaction is processed in 
2 seconds.
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As the architect, you need to make sure that you and your stakeholders
understand these interrelationships and that you have balanced your stake-
holders’ different performance goals.

Scalability
Most systems are subject to workload growth in some form. Scalability is the
ability of a system to handle this increased workload, which may be due to an
increase in the number of requests, transactions, messages, or jobs the sys-
tem is required to process per unit of time or an increase in the complexity of
these tasks.

Long-term scalability always has an associated time element that consid-
ers how soon the increase in workload is anticipated to arrive. You may also
need to consider transient scalability—that is, the ability to handle short
bursts of increased workload (such as increased traffic to an Internet news
site during an international crisis).

Predictability
In addition to providing acceptable response time and throughput, another
desirable property of a computer system is its ability to perform predictably.
By this we mean that similar transactions complete in very similar amounts of

� With 100 concurrent users, a typical transaction is processed in 
4 seconds. 

� With 500 concurrent users, a typical transaction is processed in 
14 seconds.

For simplicity, let us assume that it takes 1 second of “thinking time” 
for a user to enter a transaction.

If we have only 10 users, each user can theoretically perform 20 
transactions per minute, and our total possible throughput is a modest 
200 transactions per minute.

If the load on the system rises to 100 users, each user can process up to 
12 transactions per minute. Our total possible throughput rises to 1,200 
transactions per minute, but at the cost of doubling the response time.

If we operate at our peak load of 500 concurrent users, each user can 
process up to 4 transactions per minute. Our total possible system 
throughput is 2,000 transactions per minute, but the response time cost 
has risen significantly for the users.
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time regardless of when they are executed. Similarly, the maximum transac-
tion throughput the system can cope with should not vary significantly over
time (in particular, it shouldn’t decrease).

Predictability is often a more desirable quality than absolute performance.

Hardware Resource Requirements
A major part of the performance and scalability puzzle is working out how much
(and what type of) hardware your system will need, and this is usually an early
concern in any project, being captured as part of the Deployment view. Hardware
must be considered early because it costs money, takes time to acquire, often
needs people to operate it, and is usually housed in purpose-built environments.
Even virtualized environments cost money and need to be carefully planned if
intended for production use. The amount of hardware needed for a system usu-
ally has a significant and very visible impact on its overall cost.

In general, more hardware means higher throughput and better response
times, albeit at higher cost. Given this fundamental tension between cost and
performance, your role is often to establish the minimum amount of hardware
that will allow the system to meet its performance goals.

Peak Load Behavior
Nearly all computer systems eventually exhibit poor performance as the load
on them increases. If you plot a graph of the average transaction response
time against the load on the system, it will usually have the shape shown in
Figure 26–1.

EXAMPLE Call center agents use a customer service system to answer 
customer queries over the telephone. Having identified the customer, the 
agent executes a transaction to retrieve the customer’s details. Whether 
the response time for this transaction is 1 second or 6 seconds probably 
doesn’t matter that much—5 seconds isn’t a long pause during such a 
telephone conversation, and agents can incorporate this delay into their 
conversations with the customers. Therefore, a predictable transaction 
time of 6 seconds is acceptable.

However, if the system is unpredictable and produces the result in 
any time from 1 second to 15 seconds, then even if the average response 
time is significantly less than 6 seconds, this is still less acceptable to 
the agents, because it will result in awkward pauses during many of the 
longer retrievals.
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The system behaves well for a while: As workload increases, response
time increases in a predictable, linear fashion. However, at a certain point
things start to go very wrong, and the response times increase sharply. This
point is known as the “knee” in the curve. Soon, the graph ends up as a
nearly vertical line, indicating that response times have become so long that
the system is effectively unusable. This behavior is usually caused by one or
more critical resources in the system becoming so overloaded that it can no
longer work effectively (e.g., a network card is so swamped by incoming
connection requests that it cannot service any of them effectively).

This sort of behavior is exhibited by virtually every system we have come
across. However, it obviously isn’t acceptable to experience this effect during
normal system operation. This means that your challenge is to identify where
the “knee” in the performance graph for your system is, to make sure that the
corresponding workload level will be irrelevant during normal system opera-
tion, and to handle the overload condition gracefully, should it occur.

ACTIVITIES: APPLYING THE PERFORMANCE
AND SCALABILITY PERSPECTIVE

The activity diagram in Figure 25–2 illustrates a simple process for applying
the Performance and Scalability perspective. In this section, we describe the
activities in this process.

Capture the Performance Requirements
Ideally, you will already have a complete, consistent, and credible set of perfor-
mance and scalability requirements as a result of the initial system requirements
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FIGURE 26–1 THE PERFORMANCE CURVE
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work. In reality, this usually isn’t the case, and you need to collect these
requirements, at least in summary form, as early as possible in the development
lifecycle. Even if some requirements do exist, you need to verify their correctness,
and your understanding of them, and start to capture this in your Context view .

The performance requirements are often defined in business terms so that
they are meaningful to the users of the system rather than the builders. Require-
ments such as “Be fast enough to support a 20,000-transaction-per-day back-of -
fice workload” are common and are useful because they describe the real
stakeholder requirement rather than some abstract performance metric. However,
at this stage, you need to translate these performance requirements into a set of
quantitative performance goals for the system.

Setting specific performance goals involves identifying the underlying perfor-
mance metrics that are implicitly defined by the business-oriented requirements.
From the previous example, you might end up with a definition of 5,000
information lookup requests, 10,000 specific transaction entry requests, and

1. Capture
Performance
Requirements

2. Create
Performance

Models

3A. Analyze 
Performance

Model

4. Assess
Against

Requirements

5. Apply Tactics 
to Rework 

Architecture

[acceptable] [unacceptable]

3B. Practical 
Testing

FIGURE 26–2 APPLYING THE PERFORMANCE AND SCALABILITY PERSPECTIVE
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5,000 report requests distributed over a 9-hour period, with a peak load of 20%
of the transactions occurring in 45 minutes. This is a set of speci fic, quantita-
tive goals, and you can establish whether or not you have met them by mea-
surement and analysis.

A common problem with this process is understanding the business
requirements enough to translate them into quantitative goals. Experience,
careful analysis, and the knowledge of domain experts who understand the
workload can all help to achieve this.

NOTATION Simplicity and clear communication are key goals when commu-
nicating performance requirements, and we have found that using text and
tables is quite sufficient.

ACTIVITIES

Specify the Response Time Requirements. Response time targets are mean-
ingful only in the context of a defined load. It may be easy for a computer sys-
tem to process a single transaction in 3 seconds but much harder to achieve
this target when it is receiving 500 transactions a second. This means that
response time requirements need to specify the context as well as a clearly
defined response time goal (which also defines when a transaction starts and
ends). In most systems, response time under constant load will vary according
to some sort of distribution curve. Most transactions will complete at or near
the average response time, but some will take longer, and a few will complete
more quickly. In most cases, it isn’t reasonable to expect every transaction to
complete within the target response time. It is more realistic to require a certain
proportion (such as 90% or 95%) of transactions to meet the target.

Specify the Throughput Requirements. Throughput is typically defined in
terms of transactions per unit time (second, minute, or hour), where a trans-
action is a clearly definable unit of work, recognizable to a user of the system.
The transactions used for throughput planning should normally be derived
from the system’s most important usage scenarios (rather than technology-
oriented measures such as the number of database insert statements).

Specify the Scalability Requirements. Scalability requirements are usually
defined in terms of the increase in workload that the system must be able to ab-
sorb over particular time periods while continuing to meet its existing response
and throughput goals. Scalability requirements should also make clear any
changes to the system that will be needed to meet these increased workload levels.

Create the Performance Models
While data is a key part of the performance engineering process, being able to
collect performance data isn’t useful in itself. You need to use the data in an
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effective way to allow you to understand and improve your system’s perfor-
mance. A key part of this process is creating performance models that allow
you to gain this insight. Such a model allows you to assess the maximum
theoretical workload for your system, supplies useful estimates for capacity
planning, and provides a set of measures against which the actual system can
be compared to assess its performance.

The types of models you can use for performance analysis vary widely from
a few simple calculations on a scrap of paper to sophisticated statistical models to
complete online simulations of systems. All these models have their place, but
given our degree of expertise and the space available, we will limit our discussion
to relatively simple pencil-and-paper performance models involving basic repre-
sentations of system structure with the simple statistics used to analyze them.
The performance engineering books mentioned in the Further Reading section at
the end of this chapter provide more information on performance modeling.

NOTATION We have found the following notation methods most helpful
when creating performance models.

� Performance modeling notations: Specialists in this area have developed 
several graphical and mathematical performance modeling approaches, 
including execution graphs, augmented Petri Nets, approaches based on 
queuing theory, and statistical approaches (see the Further Reading 
section for more information). Most of the notations used in these 
approaches are extensions of previously existing notations, with the 
advantage of being tailored specifically for performance modeling. As 
with most specialist notations, they often have the disadvantages of 
complexity and unfamiliarity; many are not widely understood outside 
the specialist computer measurement community.

� Ad hoc diagrams: A simple block diagram notation is probably sufficient 
for many performance models because they are not terribly complex. In 
fact, you can use a UML deployment diagram with some ad hoc exten-
sions as the basis for a performance model. Such an approach has the 
virtue of simplicity but may have limitations for more sophisticated 
modeling applications.

� Text and tables: Some of the performance model will probably need to be 
captured using text and tables to describe model elements, capture key 
metrics, and illustrate relationships between elements that the graphical 
notation does not make clear.

ACTIVITIES

Identify the Performance-Critical Structure. Use the Deployment view of the
system as the basis of the model by simplifying it to its essential performance-
critical elements—such as processes, nodes, network links, and the main data
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storage (such as your main databases). Create a new, simple block diagram of
the system illustrating the main runtime system elements and how they are
connected.

Identify the Key Performance Metrics. Review the block diagram and iden-
tify the parts that need to be annotated with performance data to allow the
creation of performance estimates. This normally includes the processing time
for the main functional elements of the system, the request latency between
the main system processes, the length of time taken by a typical database
operation, the number of concurrent requests that each major element can
handle, and so on.

Estimate the Performance Metrics. At this stage, the values for most of the
key performance metrics are probably unclear. For each such metric, you need
to derive a reliable estimate of its value. Some may be fairly obvious from pre-
vious experiences that you or others on your team have had. For the rest of
the metrics, try to create quick prototypes that allow you to derive estimates.
If prototypes aren’t practical, intelligent guesswork is probably your only
remaining option. Whichever approach you use, make sure that the estimates
are valid for a realistic workload and not just for a single transaction. When
you’ve completed this process, the result will be a simple performance model
you can use for prediction. To estimate the theoretical processing time for an
element of system workload, you can trace its execution through the model
and piece together the relevant performance estimates.

EXAMPLE Figure 26–3 shows an example of a simple performance 
model that might be built to investigate the performance of an order-
entry process for an order-processing system.

The diagram shows that we have identified five performance-related 
parts of the system (plus the Browser Client), whose interactions we 
judge to be the crucial factors determining system performance. For each 
of the elements that provides any services to others, we have estimated 
the response times that the element will provide to its clients under 
defined conditions. We have also estimated the communications latency 
between the elements, which varies widely (due to different technologies  
and deployment decisions).

This model provides two valuable insights. First, we can see how long 
we think a couple of crucial system transactions will take to execute. 
(We could extend this model or build other similar ones to investigate 
other aspects of the system’s performance.) Second, the model helps us 
understand the set of performance-related assumptions we are making 
(such as the invocation latency being minimal between the Order 
Processor and the Price Calculator), which, if incorrect, may cause us 
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Analyze the Performance Models
Before you have real measures for key performance metrics, you can start
analyzing your performance models by calibrating them with the estimated
performance metrics from the previous step and use the results to estimate
likely system throughput under different scenarios. The advantage of using
performance models is that analysis is cheaper, simpler, and quicker than
benchmarking. The disadvantage is obviously that the results are only as
good as the models, so they need to be carefully validated by some practical
testing as well.

problems later. The model also helps us focus on another step in the 
process, practical testing.

As we mentioned, the approach illustrated in Figure 26–3 is very 
simple. Although the model is helpful and provides useful insights, we 
made a number of important simplifications—for example, we’re largely 
ignoring the modeling of queuing within the system. If you want to 
create more sophisticated performance models of your system, we again 
refer you to the books in the Further Reading section.

Round-trip
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orderStatus: ~= 2500 ms Round-trip

latency~= 25 ms 

Negligible round-trip 
latency (local invocation 
measured as averaging 1ms)

Round trip 
latency ~= 35 ms

Round-trip latency not significant
as query processing runs on sales 
db.

Stock
Checker

At a load of 20 concurrent clients: 
checkItem: 900 ms 

20 is max concurrency - above this, 
clients queue

Browser Client
Sales

Database

At a load of 40 concurrent clients: 
retrieve 1 order item: 45 ms 
remove 1 order item: 60 ms 
create 1 order item: 60 ms 

When sales report queries running, 
multiply by ~1.75.

Price
Calculator

At a load of 40 concurrent clients: 
getPriceForItem: 1400 ms

Sales Report
Generator

Order
Processor

FIGURE 26–3 A SIMPLE PERFORMANCE MODEL



488 PART IV � THE PERSPECTIVE CATALOG

Consider using the performance models to explore a large number of scenarios
quickly to find potential trouble spots, and then use this knowledge to drive more
time-consuming practical work.

NOTATION Analysis of performance models results in calculated perfor-
mance data that you can usually represent in tabular form.

ACTIVITIES

Characterize the Workload. The first activity is to establish the “shape” of
the workload your system needs to be able to process. This involves prioritiz-
ing and estimating the volume of each sort of request the system has been
specified to handle, including an estimate of the routine processing needed.

Estimate the Performance. Having identified the kind of workload you
expect, you can estimate the processing time of each piece of that workload.
This involves using the performance models to identify the elements of the
system involved in processing each piece of the workload and to determine
how long the likely best- and worse-case durations will be. From this set of
inputs, you can establish the estimated best- and worst-case processing times
for each element of the expected workload. It is sensible to increase these
estimates by a factor that reflects the hidden inefficiencies likely to be present
in the system. (A value of 20% is a good starting point for an information
system.) At the same time, identify the least scalable element involved in pro-
cessing each workload item, and use this information to estimate how many
concurrent requests your system can handle.

Conduct Practical Testing
Although performance modeling is very valuable, it is of limited use in isola-
tion; practical testing is also important. The practical testing you do ranges
from some simple isolated tests for assessing critical performance metrics to
large-scale prototypes and benchmarks. Some of this activity can begin very
early in the development lifecycle, well before any production code is written,
whereas other work will need to wait until important architectural choices
have been made and the system is starting to take shape.

The amount of practical testing you should perform depends on how
confident you are that you can assess the likely performance of your system
without it (and, of course, on how much time you have available to spend on
this aspect of your architecture). For a system structure you have used before,
with well-tested technology, in an application domain you have experience of,
little practical testing may be needed. In a new domain, with new technology,
or with a novel system architecture, you will probably want to perform a lot of
tests.
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NOTATION You can write up test results in a short report if appropriate.

ACTIVITIES

Measure and Estimate the Performance Metrics . To support the process of
creating a performance model, you need to measure or estimate values for a
number of important performance metrics. A common performance testing
activity is to perform a series of practical tests to estimate these metrics accu-
rately. Such testing typically involves quickly prepared trial scenarios that allow
a particular performance metric to be empirically tested (such as network
response times from a Web server under load). The main pitfall to avoid with
such testing is oversimplification of the test scenario, which results in much
better performance than would be expected in a real deployment. Make sure
that trial scenarios simulate a realistic context for the test metric (such as
ensuring a realistic workload on the system element being tested).

Perform Benchmark Tests. Metric estimation is a highly specific activity that
focuses on one microlevel metric. It can also be useful to perform more com-
plex practical testing to find out what performance can be expected from a
particular configuration of candidate system elements. Such testing is often
referred to as benchmarking and usually involves creating a trial end-to-end
system to allow system-level performance to be estimated. As such, its rela-
tionship to metric estimation is similar to the relationship between integration
and unit testing. Benchmarking is more involved than simple microlevel
performance testing, but the major pitfall is the same: namely, ensuring that
the test is valid. Make sure that the limits of the benchmark are understood
and that it captures enough of the key characteristics of the planned system to
provide a useful insight into its likely performance. (For example, make sure
that system elements perform enough processing to be representative of the
elements in the system under development.)

Assess against the Requirements
Having completed performance analysis and practical testing, you can compare
the results of this process against the performance requirements and draw some
initial conclusions. These conclusions may indicate that all should be well or that
modifications need to be made to the architecture to resolve potential performance
problems. You may also believe that further testing and analysis are required be-
cause you made assumptions that you no longer feel comfortable with.

The result of this process should be a decision to either complete this
cycle of performance work or circle back through the process. If the latter, you
will need to make modifications to your proposed architecture and repeat the
analysis and testing cycle, to increase or deepen your knowledge of how the
system will behave from a performance perspective.
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NOTATION This activity is a process rather than a model-building activity. How-
ever, you do need to clearly capture its outputs so that decisions, assumptions,
and assessments are recorded for everyone else to use. Document this activity’s
outputs as concisely as possible (probably by using plain text), and over time you
will create a useful library of performance information that can be applied in other
situations.

ACTIVITIES

Identify the Risks. Reconsider the performance risks you believe you are fac-
ing, based on your testing and analysis. Clearly record and justify those risks
you think are still a problem and those that have been addressed. For those
that are still troublesome, identify why they are still present, and use these
conclusions to drive the next iteration of performance work, should you
decide you need one.

Review the Requirements. Work through each of your performance require-
ments and demonstrate to your own satisfaction (and the satisfaction of any
interested stakeholders) whether or not the proposed architecture will meet
each requirement.

Rework the Architecture
The output of this performance work is likely to be a number of cross-view
changes you need to make to your candidate architecture. The most likely
impact will be to the functional and deployment designs, but other aspects of
the architecture (particularly the information- and concurrency-related
parts) are also candidates for performance-related changes. Many of the tac-
tics described in the next section imply cross-view changes. In extreme
cases, partitioning and parallelization can require changes to the functional,
concurrency, information, and deployment structures in order to support
effective partitioning and parallel execution of the workload and consolida tion
of the results.

After changing the architecture, move into the next iteration of the pro-
cess by modifying your performance model and rerunning or adding practical
testing, to establish whether or not the proposed changes have the required
effects.

NOTATIONUse the same architectural notations used in your view models.

ACTIVITIES

Any sort of architecture definition activity required to improve performance is
relevant here, particularly the tactics discussed in the next section.
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ARCHITECTURAL TACTICS

Optimize Repeated Processing
An old software engineering heuristic states that most systems spend 80% of
their time running 20% of the system’s code. This certainly matches our expe-
rience that most systems have a small number of common operations that the
system spends most of its time performing.

The resulting performance implication is that you should focus your per-
formance efforts on that core 20% of your system. To state this in slightly
more sophisticated terms:

operation total cost = operation invocation cost × operation invocation frequency

We can consider the total cost of a system operation to be the cost of a single
invocation multiplied by the number of times we will invoke it during a unit
time (e.g., per day). In turn, we can note that:

system workload = operation total cost 

The total workload for our system, for a unit time, is the sum of all of the total
operation costs over that unit time (where we have n possible operations in
our system). 

In order to focus your performance engineering effort, rank your system’s
operations by the total cost metric, and make sure that you optimize the oper-
ations at the top of the list first.

Having this information also helps you make intelligent tradeoffs between
operation optimizations. In many cases, optimizing for one operation can have
a negative impact for another. In general, when you have to make these
tradeoffs, the needs of the frequent operations should take precedence.

EXAMPLE A message bus is a piece of software infrastructure that 
allows applications to exchange messages easily and efficiently. The 
message bus receives messages from senders, performs any data trans-
formation required, calculates how to route the message to its intended 
recipients, and delivers the message to them.

In order to process messages efficiently, the message bus could main-
tain information on its nodes, the routes between them, and the connectiv-
ity characteristics of each (such as communication latency). The bus 
would use this information to derive the most optimal route between mes-
sage senders and receivers. This speeds up the process of route selection 

1.. n
∑
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The goal of the performance engineering process is to minimize the overall
system workload; this is one of the few sure ways to improve system performance.

Reduce Contention via Replication
As we discussed in Chapter 19, whenever you have concurrent operations in
your system, you have the potential for contention. This contention is often a
major source of performance problems, causing reduction in throughput and
wasted resources.

Eliminating contention can be a difficult process, particularly when you
must deal with a single contention point (such as a shared data structure
inside an operating system process). This can occur when the contention is
actually within the system’s underlying infrastructure (e.g., an application
server), rather than in the software over which you have direct control.

A possible solution for some contention problems is to replicate system
elements—hardware, software, or data—a tactic that you will often need to
combine with the related tactics of partitioning and parallelizing (see the Par-
tition and Parallelize tactic later in the chapter). 

(which is a frequent activity), but the tradeoff is that whenever a node 
or link is added or removed (which happens rarely), the entire set of 
route tables has to be recalculated, which is a potentially expensive 
operation.

EXAMPLE Many large Web sites support many millions of page views 
per day, far beyond the capacity of even the largest computers. They 
provide this service by deploying vast server farms, made up of hun-
dreds or even thousands of computers, each running a separate instance 
of the Web server. Special hardware is used to allocate incoming 
requests evenly across the Web servers to ensure that response times 
are consistent and that usage is maximized.

Of course, in this scenario, the network connection into the server 
farm can still be a bottleneck. By replicating the server nodes, we may 
just be moving the bottleneck to a different part of the system. This is a 
very common feature of performance work—solving a problem simply 
uncovers the next bottleneck in the system!
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This approach works only in certain situations, and a limiting factor is
that the system often needs to be designed to take advantage of replication
from the outset. However, where possible, it is worth considering because it
can be a lot easier to solve a contention problem by avoiding it completely in
this way rather than having to solve it directly.

Prioritize Processing
The workload in your system will vary in terms of its importance, ranging from
critical processing that must be performed as quickly as possible to routine work
such as housekeeping that can be completed over an extended period.

A problem in many otherwise well-built systems is the overall perfor-
mance of the system being within target but some important tasks taking too
long to execute. In these systems, the underlying hardware is typically busy,
and the expected overall throughput is being processed. But critical workload
is being processed at the same rate as less important operations, and this
leads to the perception of a performance problem.

To avoid this situation, partition the system’s workload into priority groups
(or classes), and add the ability to prioritize the workload to be processed. This
allows you to ensure that your system’s resources will be applied to the right
task at any point in time, so the perception of performance problems is much
less likely. A low-level example of this approach is the priority class-based
thread and process scheduling built into most modern operating systems.

When dealing with large information systems, this prioritizing usually
involves identifying the business criticality of each class of workload. Those
types of workloads that have to complete in a timely manner for business to
continue (such as order processing) are naturally prioritized over workloads
that, while important, will not immediately impact business operation (such
as management reporting).

EXAMPLE A lottery system supports remote point-of-sale terminals in 
retail locations throughout the country. When a terminal is switched on 
in the morning, it is necessary to enter a user name and password before 
the terminal can be used. This authentication is done through a single 
central database, which experiences very heavy load between 7:00 and 
8:30 A.M., resulting in login times of up to a minute.

To alleviate this problem, several regional authorization databases 
are set up, each one supporting about 10% of the overall terminal popu-
lation. Programs are written to distribute login information to each 
database overnight. As a result, login times are significantly improved.
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The practical problem in most situations is finding the right balance
among the different types of workloads. A number of factors need to be
taken into account, including the relative importance of different stakehold-
ers, the varying importance that different stakeholders place on different
sorts of workloads, and the deadlines for processing various workloads.
Finding the right balance for complex situations is often a case of applying
your judgment to find an acceptable option, rather than discovering any
absolute “right” answer.

Consolidate Related Workload
The processing of most operations in an information system requires a certain
amount of context to be available in order for the processing to take place.
The management of this context information can itself be a significant over-
head when the operation to be performed is small or the context is expensive
to locate (e.g., when loaded from a database).

To address this, consolidate related tasks into batches and process
groups of related requests together. This pattern of processing normally
allows a single initialization step, a number of operation processing steps,
and then a single tear-down step—thus saving the initialization and tear-
down steps that would be required for each operation if processed sepa-
rately. Alternatively, consider whether you can reuse resources or results
between operations to avoid the overhead of allocating or creating them
repeatedly.

EXAMPLE A Web-based system to support e-commerce may need to 
support order capture, customer account management, stock reporting, 
and sales reporting functions.

Probably all of the customer Web workload (such as order capture 
and customer account management) should be prioritized over other 
processing. The customers who use the Web site are extremely impor-
tant stakeholders because a slow Web site will not only reduce immedi-
ate sales but may drive the customers to other retailers, thus damaging 
the business in the longer term.

In contrast, while the management team members are influential 
stakeholders, if the management reporting functions run slowly 
during times of peak load, it is unlikely to directly harm the business. 
Of course, making such a rational tradeoff can be challenging when 
dealing with stakeholders who believe their workload is the most 
important.
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Such an optimization is inherently related to the structure of the system
and the way operations are processed within it, so it is something best con-
sidered as part of architecture definition. Doing so can lead to large efficiency
gains for some systems.

Distribute Processing over Time
Some systems need to process a similar workload continually at all times of
day or night. However, in our experience, such systems are pretty rare
(although some Internet-facing systems do fall into this category). Because
most internal systems support people at work, and because people work dur-
ing relatively fixed hours, systems often have different load requirements at
different times of day. This means that the workload level for a system varies
over time. During busy times (as we have already seen) concurrency tends to
cause performance problems, and this can become quite involved for global
systems that have users in different time zones. Global systems often need to
be available 24 hours a day during the working week and may well experi-
ence contention if different sorts of workloads from different regions need to
be processed simultaneously (e.g., if the overnight batch processing for
Tokyo overlaps with the online day in New York). We talk more about this
when we discuss the Location perspective in Chapter 29.

A useful system-level strategy for reducing system load, resource contention,
and thus performance problems is to even out peaks and troughs of processing.
Some peak workload is simply unavoidable—the result of the way people work.
However, consider spending time during the architecture definition process to

EXAMPLE A risk management system for a retail finance organiza-
tion needs to run every night to update estimations of future credit 
use by its customers to allow proactive monitoring and management 
of the risk of individual consumer default. Each such update involves 
a fairly complicated calculation to estimate the likely future spending 
of the customer, using both customer-specific and global factors. The 
simple approach to this would be to perform each calculation sepa-
rately, but working out the global factors that are needed for the cal-
culation could be a significant overhead. Processing the customers in 
groups that would share global factor values could significantly 
improve overall performance, as the global factors could be calculated 
once for the group rather than for each customer. For example, eco-
nomic activity based on geographical location could be estimated for 
one geographical area and then all of the customers in that area pro-
cessed together. 
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carefully analyze your system’s workload during the peak times. In many cases
you will find that some of the workload can be postponed to other times in your
processing cycle. By moving these parts of the workload, you will improve perfor-
mance during peak load times and use idle resources during quieter times.

Minimize the Use of Shared Resources
At any particular time, each nonidle task running on a system is in one of two
states:

1. Making use of a resource (e.g., a hardware resource such as a processor, 
memory, disk, or network or a software resource such as a message 
service)

2. Waiting for a resource, because it is either busy (e.g., being used by 
another task) or not in a ready state (e.g., waiting for a head to move 
over a particular track on a disk or a software service to initialize)

As systems get busier and contention for shared resources increases, the
waiting time takes proportionally more of the total elapsed time for tasks and
contributes proportionally more to the overall response time.

Increasing the performance of resources that the task uses will help (because
in general you have to wait less time for the tasks ahead of you in the queue to
finish), although this may not be possible for a number of reasons, perhaps be-
cause you have reached the limits of the technology. The other way to alleviate
this situation is to minimize the use of shared resources—that is, reduce the sit-
uations in which waiting has to occur. This is a complex topic, beyond the scope
of this book, but you may want to consider the following strategies.

� Use techniques such as hardware multiplexing to eliminate hardware hot 
spots in your architecture.

� Favor short, simple transactions over long, complex ones where 
possible (because transactions tend to lock up resources for extended 
periods).

� Do not lock resources in human time (e.g., while waiting for a user to 
press a key).

� Try to access shared resources nonexclusively whenever possible.

Reuse Resources and Results
Some resources involved in processing requests are expensive to obtain
because they are computationally expensive to create or they need to be
retrieved from a service that takes a significant amount of time to return its
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results. The judgment as to whether an operation is expensive or not is obvi-
ously very context-dependent, because it depends on the percentage of an
overall task’s execution time that it consumes. In some cases an operation
taking 20 milliseconds might be considered significant, while in others an
operation taking 10 seconds might be insignificant.

A common tactic when faced with expensive steps in a process is to reuse
the results of the expensive operations, by caching them once they are created
and reusing them whenever they are required in the future.

Partition and Parallelize
If your system involves large, lengthy processes, a possible way to reduce their
response time is to partition them into a number of smaller processes, execute
these subprocesses in parallel, and, when the last subprocess is complete, con-
solidate all of the subprocess output into a single result. Whether this approach
is likely to be effective in a particular situation depends on four factors:

1. Whether the overall process can be quickly and efficiently partitioned 
into subprocesses

2. Whether the resulting subprocesses can be executed independently to 
allow effective parallel processing

3. How much time it will take to consolidate the output of the subprocesses 
into a single result

4. Whether enough processing capacity is available to process the subpro-
cesses in parallel faster than handling the same workload in a single process

EXAMPLE A very simple example of using this tactic is caching the 
state of Web sessions for interactive Web applications like Web stores. A 
simplistic solution to storing the session state is simply to write it to a 
database and retrieve it on every request for that session. However, 
retrieving the session information from a database can be relatively 
slow, and so an alternative would be to store it in a distributed cache 
rather than a database, allowing it to be retrieved quickly when needed.

An application of this tactic for business data would be when foreign 
exchange conversion rates are required by an application and must be 
retrieved from an external service. To perform this retrieval every time a 
foreign exchange rate is needed would dramatically slow down request 
processing, and so a cache of previously retrieved rates can be kept by 
the local process and reused repeatedly, avoiding the overhead of the 
service call.
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If the overall process cannot be split easily into independent subpro-
cesses, this technique isn’t practical. Situations involving lengthy and expen-
sive consolidation of subprocess output are suitable for this technique only if
the consolidation cost is still small relative to that of the longer response time
for the original process. Finally, if spare processing resources aren’t available,
parallelization is unlikely to be effective because the subprocesses will be
executed one after the other and will be slower than the original design, due
to the partitioning and consolidation overheads.

It is also important to remember that this approach is less efficient than
using a single linear process (due to the partitioning and consolidation over-
heads) and achieves a reduction in response time at the price of requiring
more processing resources.

Scale Up or Scale Out
When you have reached the limits of your system’s current hardware, the
obvious solution is to buy more of it. In fact, this is often the first tactic tried
when better performance or scalability is required. Nowadays the price of
commodity hardware is low enough that just “throwing hardware at the problem”
is often the easiest thing to try initially. If you have access to cloud computing
services or in-house virtualized environments that allow new virtualized
hardware components to be commissioned almost immediately, this tactic is
even more attractive.

EXAMPLE A feature offered by a sales management system is to 
generate a number of derived measures of sales performance 
(volume, profitability, average price, and so on) across the company, 
broken down by region. This feature is likely to involve a lengthy 
process of calculation over the sales information held in the system 
but is also likely to be a good candidate for partitioning and parallel-
ization. If the request is partitioned into a process for each sales 
region (rather than being run as a single process), each region’s 
results can be calculated in parallel and the results consolidated to 
form the final report. If the underlying data can be efficiently ac-
cessed in n parallel streams, assuming similar data volumes per sales 
region, the parallel process is likely to complete in roughly 1/nth of 
the time taken if run as a single process (plus some time for result 
consolidation, which is likely to be small compared to calculation 
time). This response time can be greatly reduced, at the cost of some 
processing efficiency.
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There are two different ways to add hardware to a system: Either replace
the existing hardware with similar but higher-capacity components (e.g.,
servers with faster processors, more processors, more memory, and so on)
or add more components similar to the ones already used by the system
(e.g., if the system has two calculation servers already, add another two).
The first approach is informally known as “scaling up” and the latter as
“scaling out.” 

In general, scaling up is simpler but more costly (due to the increasing
cost of more powerful hardware—a 32-CPU machine is a lot more costly than
four 8-CPU ones); scaling up will also eventually hit practical limits when you
reach the largest machines available. Scaling out is more complicated and
makes more demands on the design of the system, as it adds more processing
nodes and the processing must be evenly spread across them all, but it is usu-
ally more cost-effective as it uses cheaper commodity hardware. Scaling out
also doesn’t suffer from arbitrary limits imposed by hardware component
size, as proven by the existence of huge Internet sites like Amazon and eBay
that use this technique.

The problem with achieving scalability by adding hardware (particularly
when scaling out) is that it usually isn’t very effective unless the system has
been designed to take advantage of the new hardware. If your system’s scal-
ability is limited by a single threaded process at its core, adding more CPUs or
machines isn’t going to help, and increasing the speed of the single CPU on
which it runs will be of limited help. Similarly, if you can’t partition your
workload into many cooperating processes, you won’t be able to take advan-
tage of scaling out. You can certainly be lucky, and in certain situations
adding some more hardware can save the day, but it is a dangerous tactic to
rely on unless the system has been built from the outset with good scalability
characteristics.

Degrade Gracefully
It is inevitable that one day your system will be faced with a workload so large
that it struggles to keep up. Whether it is a busy day for a trading system, sale
time for a retail system, or a major international crisis for a news Web site, it is
not cost-effective (or sometimes even possible) to deploy enough hardware to
ensure that you never reach the “knee” in the performance curve we described
earlier in the chapter.

However, it is important that you design the system so that when this
happens, system performance degrades gracefully. You should put proactive
monitoring in place and ensure that failures are recognized quickly and hand led
reliably—in particular, overloading and failures should not ripple destruc-
tively throughout the system. One way of achieving this is to design the sys-
tem so that it contains the software equivalent of “circuit breakers” that
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prevent internal components from becoming overloaded. Other common tac-
tics are to reject workload when the system is overloaded, perhaps asking the
user to try again in a few minutes, and to throttle demand by introducing tim-
eouts for service calls made to the system.

The Further Reading section at the end of this chapter contains references
to a number of useful sources of guidance on this topic.

Use Asynchronous Processing
One way to improve perceived response times for users is to carry out some
processing asynchronously—that is, in the background, after the system has
returned a response to the user.

You need to use this technique with some care, and only when it is re-
ally necessary, for several reasons. First, it is usually significantly more
complex to implement, requiring some sort of background service to carry
out the asynchronous parts of processing for you. More important, you have
to develop strategies for dealing with situations where the background
processing fails: It may be minutes or even hours after the transaction was
initiated, and the user may not even be available to take corrective action.
Finally, asynchronous processing doesn’t actually reduce the amount of
workload that needs to be performed or make the system more efficient (and
thus actually solve the performance issue); it just moves the workload
around.

EXAMPLE Processing a large database query in its entirety may take a 
significant amount of time, and for some applications it may be neces-
sary to return all of the results to the user interface for display and 
manipulation by the user (rather than returning a screen of data at a 
time, which might complete more quickly). The problem with this 
situation is that if users must wait for the query to complete before 
returning any data, they will experience a very long delay in process-
ing their request. 

A solution to this problem is to process the query asynchronously and 
to return data to the user interface as it becomes available. The overall 
execution time of the query will be unaffected by the use of this tactic, 
but the user will see the data start to arrive fairly quickly and will 
perceive that the request is being processed more quickly than in the 
situation where the data is returned synchronously.
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Relax Transactional Consistency
Like many software designers, we were brought up in the era when ACID
transactions (providing the familiar guarantees of atomicity, consistency, iso-
lation, and durability) were thought to be the best, and often the only, way of
interacting with transactional data stores. More recently, Internet-scale sys-
tems that need to be highly scalable and highly available, even when parts of
the system suffer failures, have caused some rethinking in this area. The key
insight that designers of Internet-scale systems have had is that as long as an
individual consumer sees consistent data, the need for immediate system-
wide consistency is something that can be relaxed, as long as it happens
“eventually” (where your tolerance for the delay until “eventually” depends
on your situation).

This insight provides us with another possible tactic for improving the
performance and scalability (and in fact the availability) of our systems. If
you can design your system such that different parts of the system can re-
ceive updates related to a single transaction at slightly different times, this
opens up a number of opportunities for partitioning workload and deferring
database updates, which can allow a system to be scaled across a number of
machines and data stores without the overheads and complexity of full dis-
tributed transactions. We address this in a little more detail in Chapter 18 on
the Information viewpoint, and the Further Reading section at the end of
this chapter suggests a number of references that can provide more depth on
this topic.

Make Design Compromises
If other performance tactics you’ve tried have not resulted in acceptable per-
formance or cannot be applied for some reason, you may need a more extreme
approach. Many of the techniques of good architecture definition that we have
described in this book can themselves cause performance problems in ex treme
situations. For example, a loosely coupled, highly modular, and highly coher-
ent system tends to spend more time communicating between its modules
than a tightly coupled, monolithic one does.

Although a loosely coupled, always consistent, and highly modular
design should always be the goal, you should be aware that the benefits it
provides might come at some performance cost. Where performance is a
critical concern and other tactics have failed, you might need to compro-
mise the ideal structure of your design. There are many possible design
compromises that you can consider making, each with its own tradeoffs,
and there are entire books that discuss these options. Architectural choices
also evolve over time in the light of technological progress and system de-
sign experience. This means that it isn’t possible for us to discuss all of the
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options open to you, and even if we tried to do so, the information would
probably be out-of-date quite quickly as new options emerged. Instead, the
Further Reading section at the end of the chapter provides some references
to some of the best thinking about performance and scalability at the time
of writing, and these should provide you with a good starting point for
further research.

All that having been said, at a conceptual level, there are certain classical
design compromises that have proved to be of lasting value when trying to
improve a system’s scalability and performance, such as:

� Moving to a more tightly coupled, monolithic design to minimize internal 
communication delays and contention

� Denormalizing parts of your data model to optimize accesses to data

� Using very coarse-grained operations between distributed system 
elements

� Relaxing transactional guarantees such as immediate consistency in 
order to allow partitioning and asynchronous data updates

� Duplicating data or processing locally to minimize traffic over slow 
communication channels

Making changes like these may improve performance, but they are likely
to have costs in terms of maintainability and possibly even ease of use. You
should carefully assess the desirability of these tradeoffs before deciding to
introduce compromises to your design.

PROBLEMS AND PITFALLS

Imprecise Performance and Scalability Goals
It is far too common for even large projects to have vague, incomplete, or am-
biguous performance goals or to have failed to consider the scalability of the
system altogether. This is simply storing up trouble for the future—you won’t
have a suitable framework for designing, tuning, and building the system,
and it won’t be possible to determine whether or not the system is performing
acceptably.

RISK REDUCTION

� Define and obtain approval from your stakeholders for clear, measurable 
performance and scalability goals.

� Satisfy yourself that your performance and scalability goals are realistic 
and achievable. 
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� Communicate the goals to the architecture, design, and build teams so 
that they can be factored into their work.

� Make sure that acceptance criteria are based only on the agreed-upon 
goals and do not include other (possibly implied) performance or 
scalability goals.

Unrealistic Models
The process of building a performance model can be an absorbing one, and
the result is often a sophisticated model of the likely performance characteris-
tics of the system. A problem that can result from an impressive model is an
overreliance on its abilities. It is easy to be lulled into a false sense of security
when a model suggests that no performance problems exist. A lack of prob-
lems revealed by a model does not necessarily mean that no problems exist in
the real system; the model is an abstraction of reality and only as good as its
match with that reality.

RISK REDUCTION

� Balance and augment the performance modeling activity with enough 
practical testing to make sure that the assumptions underpinning the 
models are valid and that the conclusions resulting from them are 
credible.

� Continue practical testing right through the modeling process.

� Always check your modeling results against practical test results.

Use of Simple Measures for Complex Cases
Achieving acceptable performance in a computer system is a complex pro-
cess, with many variables to consider simultaneously. A common pitfall is
to oversimplify the performance testing and modeling process to make it
easier, but then to assume that its results will apply to much larger and
more complex cases by simple analogy. Practical testing should reflect the
real runtime environment you expect for your system, and if your perfor-
mance models are very simple, the conclusions drawn from them must be
used with care.

As a simple example, consider the practical testing you perform to cali-
brate your model. If these practical tests do not simulate a realistic runtime
environment (e.g., by being single-threaded rather than heavily concurrent),
the results of these tests are unlikely to reflect the way the real system will
behave.
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RISK REDUCTION

� Continually question the validity of your analysis and testing conclusions.

� Consider the differences between the test environment and the real sys-
tem runtime environment to spot critical divergences that are likely to in-
validate the performance engineering process.

Inappropriate Partitioning
In Chapter 17, we discussed poor partitioning as a possible pitfall for the
Functional view, but it is often also problematic when considering perfor-
mance. Partitioning becomes a problem when one or more elements appear to
be involved in nearly all of the transactions in the system. This often means
that these elements become bottlenecks and prevent acceptable performance
from being achieved anywhere in the system because of their dominant role.
Poor partitioning can also manifest itself as an unexpectedly large amount of
intercomponent communication being required for routine operations.

A related problem, which is often a symptom of poor partitioning, is to
ignore the performance differences of local and remote processing. We discuss
this problem near the end of this chapter when we talk about network and in-
process invocation.

RISK REDUCTION

� Watch for functional elements that are highly connected to a large 
percentage of the system’s other functional elements (see the discussion 
of “God elements” in Chapter 17). These system elements may be your 
potential bottlenecks. 

Invalid Environment and Platform Assumptions
Whenever an innovative system is developed, a level of risk exists because of
assumptions that have to be made about its environment or the underlying tech-
nology. This risk can result from new technology that has not been widely used
before (or perhaps not on this scale), or it can result from assumptions about the
system’s environment (e.g., peak request volume).

Some of these risks are unavoidable and are simply the result of being
first. What is surprising is the number of projects that either run into perfor-
mance problems in well-understood areas or simply don’t control their risks,
even when this is perfectly possible.

RISK REDUCTION

� Identify and validate your assumptions, and assess them for risks as part 
of performance analysis.
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� Identify your possible mitigation strategies if your assumptions are 
proved incorrect.

Too Much Indirection
It has been said that any problem in software engineering can be solved by
adding another level of indirection.1 It is certainly true that indirection is a
powerful tool—used wisely, it can make systems more flexible, easier to
change, more powerful, and even more elegant. However, another famous
adage also applies: There is no such thing as a free lunch!

A problem with indirection is that it introduces hidden work into the sys-
tem. Some forms of indirection (e.g., object references in an object-oriented
language) do not normally introduce enough overhead to cause a problem in
anything apart from the most performance-critical situations. However, other
forms of indirection can add a significant percentage of overhead for certain
sorts of processing. For example, using key-mapping techniques for database
access (where complex or structured keys are mapped to more efficient inter-
nal identifiers) may lead to some updates requiring two disk writes rather
than one, and extra tables having to be included in query join conditions.

RISK REDUCTION

� Be careful how much indirection you introduce into the performance-
critical parts of your system.

� If you have a lot of indirection in the implementation of critical path 
operations, carefully assess the tradeoff between the functional advan-
tages and the performance disadvantages.

Concurrency-Related Contention
Any system with concurrent processing and shared resources has the poten-
tial for contention between threads of execution. In its most extreme form,
this contention can slow a concurrent system to a crawl as threads spend
most of their time “thrashing” in and out of wait states trying to obtain access
to shared resources. Even in less extreme cases, such contention can become
a significant bottleneck and cause performance problems throughout the sys-
tem. Careful analysis and design of your system to avoid such bottlenecks is
an important part of the performance work for concurrent systems.

1. Attributed to Butler Lampson, who in turn credits David Wheeler with originating 
this famous aphorism, although Wheeler apparently also noted, “. . . but that will often 
create another problem.”
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RISK REDUCTION

� Inspect your Functional and Concurrency views to identify the elements 
of your system that must deal with a significant amount of concurrent 
processing.

� Investigate the proposed implementation of critical elements as part of 
your modeling, testing, and analysis process to convince yourself that 
they will not become bottlenecks that grind your system to a halt.

� During software construction, test the concurrent behavior of critical 
elements as early as possible.

Database Contention
Most information systems have one or more relational databases at their core,
and a problem we have seen time and time again is where database query
processing time becomes the dominant determinant of system performance.
Sometimes this is just caused by badly written (or generated) database que-
ries or by an overloaded database server that isn’t sized correctly for the task.
Both of these situations are fairly easy to spot with standard database moni-
toring tools, and both have fairly obvious solutions (create better queries and
increase the size of the database hardware, respectively).

A more subtle cause of poor database performance can be internal database
contention, and this is much harder to spot and resolve. The symptoms of inter-
nal database contention are usually slow query performance, which slows the
system down dramatically, along with a database server that doesn’t seem to
be very busy, with low CPU utilization and disk I/O. The root cause is often a
small number of “hot” database objects that many of the system’s operations
need to update and read or parts of the database management system’s internal
infrastructure that have become overloaded (such as transaction logs or partic-
ular storage areas). Such objects become major bottlenecks that prevent the
system’s database operations from performing acceptably quickly.

RISK REDUCTION

� Review the database schema for objects that will be updated very 
frequently, or for operations that generate a very large number of data 
changes, and consider ways in which they can be ameliorated (such as 
partitioning “hot” objects or updating them in batches and decomposing 
or deferring very large update operations).

� Measure the performance of representative database operations under 
realistic loads as early in the development process as possible and keep 
monitoring these measures over time. Look for increasing response times 
as indicators that contention may be creeping into the database.
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� Use database monitoring tools (and if possible the services of experts 
such as a database administration group) to measure contention that 
occurs within the database server in order to spot potential “hot spots” 
that need to be addressed.

Transaction Overhead
This pitfall is closely related to the tactic of “Consolidate Related Workload”
and reflects what can happen when that tactic is not or cannot be applied.
Processing a transaction through an information system always involves a
certain amount of overhead in addition to the useful functional processing
performed. This overhead can come from a number of sources, including
network latency, data serialization, security processing, database access,
and so on. 

There is a danger that if the overheads are too high and the functional
processing is too low, the system will be spending most of its time tied up in
processing overheads that are not directly useful, so greatly reducing its per-
formance. This pitfall is particularly common with distributed transactions,
where two-phase commit is used to apply updates to two or more database
servers as part of a single logical transaction.

RISK REDUCTION

� Review the functional transactions being implemented in the system and 
highlight very small ones, where the overhead of performing a transaction 
may overwhelm the amount of time taken for the functional processing. For 
these cases, consider consolidating the workload to perform a number of 
transactions at once (thus amortizing the overhead over a larger amount of 
functional processing). You may also be able to reduce the overhead for 
these transactions, perhaps by simplifying the way in which they are 
processed (e.g., do they all need fine-grained security authorization check-
ing, or can a simpler coarse-grained approach be used for small transac-
tions?).

� Consider whether you can apply one of the techniques for relaxing trans-
actional consistency described earlier in this chapter, so that data be-
comes “eventually consistent” rather than being immediately consistent 
in all cases.

� Introduce an empty “ping” transaction for each transaction type so that 
you can measure how long the system takes to do “nothing.” Monitor 
these measures over time and watch them rise as capabilities and com-
plexity are added to the system.
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Careless Allocation of Resources
Increases in computing power in recent years mean that, in general, we need to
be much less conscious of using hardware resources frugally than used to be the
case. However, an often-overlooked problem related to this new freedom is the
fact that the process of allocating and freeing runtime resources (such as mem-
ory or locks) requires resources itself. As systems scale to millions of users and
transactions, this resource management becomes a real problem. This is easy to
forget because the process is often implicit (such as the Java language’s auto-
matic garbage collection or a relational database’s automatic lock allocation).
However, this doesn’t mean it is free! A good question to ask yourself in any
situation involving resource allocation is, “What would happen if this happened
a million times?”

An underlying resource allocation problem is often revealed by elements
that appear to run much slower than expected without any obvious place
where the time is being lost.

RISK REDUCTION

� Avoid large amounts of dynamic resource allocation and deallocation in 
critical path elements.

� Consider preallocating resources at less critical times (such as at startup 
or during quiet periods).

� Consider whether allocated resources can be reused more cheaply than 
freeing and reallocating them.

� Work with software developers to understand the problem and document 
guidelines and patterns to explain good practice (in the Development view).

Disregard for Network and In-Process 
Invocation Differences
Modern computing technology provides the option of distributing a system
across a number of machines and accessing resources located anywhere on
the network. Such distribution is a major feature of many modern informa-
tion systems. In fact, much of today’s information systems technology aims
to allow the location of deployed elements to be changed after they have
been developed.

It is easy to accidentally ignore the performance differences between invoking
operations locally within an address space (process), between two processes on
one machine, and between processes on machines located an immense distance
apart. In reality, the response times of these different situations can differ by
several orders of magnitude.
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If you ignore this critical distinction, you run the risk of extremely unpleasant
performance surprises when you deploy the system and find that one or more of
your critical interelement interactions is much slower than you had assumed due
to the locations of key system elements. Consider this pitfall in conjunction with
the related pitfall of “Inappropriate Partitioning.”

RISK REDUCTION

� Consider interelement distribution and possible remote invocation as part 
of your fundamental architecture definition process.

� Make sure that the locations of elements and their interelement invoca-
tion costs are accurately reflected in your performance model to allow 
you to take possible invocation latencies into account.

CHECKLISTS

Checklist for Requirements Capture
� Have you identified approved performance targets, at a high level at 

least, with key stakeholders?

� Have you considered targets for both response time and throughput?

� Do your targets distinguish between observed performance (i.e., syn-
chronous tasks) and actual performance (i.e., taking asynchronous 
activity into account)?

� Have you assessed your performance targets for reasonableness?

� Have you appropriately set expectations among your stakeholders for 
what is feasible in your architecture?

� Have you defined all performance targets within the context of a particu lar
load on the system?

Checklist for Architecture Definition
� Have you identified the major potential performance problems in your 

architecture?

� Have you performed enough testing and analysis to understand the 
likely performance characteristics of your system?

� Do you know what workload your system can process? Have you priori-
tized the different classes of work?

� Do you know how far your proposed architecture can be scaled without 
major changes?
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� Have you identified the performance-related assumptions you have made 
(and validated them if needed)?

� Have you looked for opportunities to relax transactional consistency, 
especially if you are designing a large-scale or distributed system?

� Have you reviewed your architecture for common performance pitfalls?

FURTHER READING

You can find a very practical yet thorough tutorial on the process of perfor-
mance engineering for real systems in a book written by two well-known and
widely regarded specialists in the field [SMIT02]. We have found this book to
be very useful, and it has influenced much of our thinking in this area. A
number of our performance pitfalls are similar to performance antipatterns in
this book (particularly their God Class, Circuitous Treasure Hunt, One-Lane
Bridge, and Excessive Dynamic Allocation), and this book provides valuable
advice on recognizing and avoiding these problems.

Another comprehensive, if rather more daunting, explanation of perfor-
mance engineering focuses on its quantitative aspects [JAIN91]. This book
contains more information on statistical and simulation-based performance
engineering than most of us will ever be able to apply, but it presents compre-
hensive explanations of a number of very usable techniques.

A very practical book that provides a lot of good advice about performance
and scalability, among other topics, is Michael Nygard’s Release It! [NYGA07],
which includes patterns and antipatterns for performance and scalability.

Professor Eric Brewer’s CAP theorem has been very influential in thinking
around performance and scalability for very large-scale systems and led to the
popularization of the notion of eventual consistency. In short, the theorem says
that you can achieve only two of the properties of Consistency, Availability, and
Partition tolerance (hence “CAP”). The idea was first introduced in a keynote talk
at the Principles of Distributed Computing meeting in 2000 [BREW00]; a more
formal treatment was published by Seth Gilbert and Nancy Lynch as [GILB02].

Two articles that explain how large-scale Internet sites have met the chal-
lenge embodied in the CAP theorem are Dan Pritchett’s description of the BASE
architectural style used at eBay [PRIT08] and Werner Vogels’s explanation of
what “eventually consistent” means in the architecture of Amazon’s systems
[VOGE08]. Some more general ideas on building systems without distributed
transactions can also be found in Pat Helland’s well-known paper [HELL07].

There are many good books that cover the topic of performance and scalabil-
ity as it applies to specific technologies, although they tend to come and go as the
technologies they discuss evolve. A search of your favorite online bookstore will
allow you to find the most popular for your particular technology platforms.

Finally, if you’d like to check what Moore’s Law really says, Intel makes it
available via its Web site at www.intel.com/technology/mooreslaw.

www.intel.com/technology/mooreslaw
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27
THE AVAILABILITY AND
RESILIENCE PERSPECTIVE

In the traditional data processing model of system availability, computers
supported the mainstream business of the organization during the day (typi-
cally 9:00 A.M. to 5:30 P.M., Monday through Friday) by capturing orders,

Desired Quality The ability of the system to be fully or partly operational as and 
when required and to effectively handle failures that could affect sys-
tem availability

Applicability Any system that has complex or extended availability requirements, 
complex recovery processes, or a high profile (e.g., is visible to the 
public)

Concerns Classes of service, planned downtime, unplanned downtime, time to 
repair, and disaster recovery

Activities Capture the availability requirements, produce the availability sched-
ule, estimate platform availability, estimate functional availability, 
assess against the requirements, and apply tactics to rework the 
architecture

Architectural
Tactics

Select fault-tolerant hardware, use high-availability clustering and 
load balancing, log transactions, apply software availability solu-
tions, select or create fault-tolerant software, design for failure, allow 
for component replication, relax transactional consistency, and iden-
tify backup and disaster recovery solutions

Problems and 
Pitfalls

Single point of failure, cascading failure, unavailability through 
overload, overambitious availability requirements, ineffective error 
detection, overestimation of component resilience, overlooked global 
availability requirements, and incompatible technologies
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cash withdrawals, and other sorts of transactions. Then the computers reverted
to batch mode during the night to perform tasks such as reconciliation, consoli-
dation, and exchange of information with other systems.

In contrast, companies today routinely run their business on a global
basis. This has caused the business day to become longer, often extending
into the weekend (the traditional preserve of huge, long-running batch jobs),
and near-continuous operation of IT systems is now routinely assumed, with
many critical systems needing to be available close to 24 hours per day, five
or six days per week.

Today’s requirement for many systems, therefore, is to be available for
much, if not all, of the 24-hour cycle. With the improved reliability of hardware
and, to a lesser extent, software, many expect that failures will be few and far
between and that, when these do occur, recovery will be prompt, effective, and
largely automated. As the large number of Web-site failures in the early years
of Internet e-commerce showed, any system exposed directly to customers
must be up and running—if it isn’t, the company’s reputation will suffer.

This business environment means that underestimating your availability
requirements can be very expensive. However, increased online availability
comes at a cost, whether in terms of more hardware, increased software
sophistication, or redundancy in your telecommunications network.

The Availability and Resilience perspective is important to any system
that has complex availability and resilience requirements, is visible to the
public in any way, or is complicated enough to warrant special analysis of
recovery techniques.

APPLICABILITY TO VIEWS

Table 27–1 shows how the Availability and Resilience perspective affects each
of the views we discussed in Part III.

CONCERNS

The fundamental concern of this perspective is system availability: the pro-
portion of time that the system is up and running and available to provide a
service to users. However, availability is a bit more complex than it first
appears, as we’ll discuss in the following subsections.

Classes of Service
When thinking about downtime, you don’t need to restrict yourself to a b inary
available/unavailable model of service. It is often appropriate to consider differ-
ent levels of service, ranging over a spectrum from full service to none.   
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TABLE 27–1 APPLICABILITY OF THE AVAILABILITY AND RESILIENCE PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context Considering availability and resilience is unlikely to result in many changes to 
the Context view, although it will cause you to consider how your system’s 
availability is affected by the availability of external systems, and it could 
change the way that you decide to interact with them.

Functional Availability is a key concern to user and acquirer stakeholders because it may 
impact the business’s ability to operate effectively. Functional changes may 
sometimes be needed to support availability requirements, such as the ability 
to operate in an offline mode when a communications network is unavailable.

Information A key availability consideration is the set of processes and systems for backup 
and recovery. Systems must be backed up in such a way that they can be 
recovered in a reasonable amount of time if a disaster occurs. Backups should 
not impact online availability, or if they do, they may need to be scheduled to 
occur outside the online day.

Concurrency Features such as hardware replication and failover in your system may imply 
changes or enhancements to your concurrency model.

Development Your approach to achieving availability may impose design constraints on the 
software modules. For example, all subsystems may have to support start, 
stop, pause, and restart commands to align with your failover strategy.

Deployment Availability and resilience can have a big impact on the deployment environ-
ment. Availability requirements may mandate a fault-tolerant production 
environment (i.e., one in which each hardware component is duplicated and 
failover is automatic) or a separate disaster recovery site that can be quickly 
activated if the production site goes down. You may also need special software 
to support hardware redundancy or clustering.

Operational Processes and mechanisms to allow the identification and recovery of problems 
in the production environment may be required. There may also be a need for 
geographically separate disaster recovery facilities. Processes for main site 
failover, network failover, and data recovery must be designed, tested, and 
implemented. If the standby site is physically remote from the production site, 
as it usually is, processes are also required to move production staff from one 
location to the other or to deploy suitably trained staff at the standby site.

EXAMPLE Consider a self-service banking system that allows users to 
manage their bank accounts at automated teller machines (ATMs). The 
ATM communicates in real time with a central computer that maintains 
information on the customers’ accounts. Full service implies that cus-
tomers can query balances and enter all supported types of transactions, 
and no service means that no inquiries or transactions can be done.
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Although any system unavailability is usually undesirable, it may be easier
(and is probably considerably cheaper) to offer only restricted service during
slack times of operation, rather than attempting a solution that offers full ser-
vice for long periods.

Planned Downtime
In practice, all computer systems require occasional downtime in order to install
new or repaired hardware, install operating system or software upgrades, or
carry out offline tasks such as backup or data verification.

We call such unavailability planned downtime because it occurs according
to a predetermined schedule that aligns with the broader requirements of the
business. Planned downtime usually occurs overnight or at weekends because
the need to access many systems is less at these times.

It’s usually possible to make fairly accurate estimates of the length of
time such tasks take and the frequency with which they need to be done, so
you can usually make reasonable predictions about planned downtime.

Unplanned Downtime
Unplanned downtime, on the other hand, occurs because of a hardware or
software fault that renders the system unusable. A CPU or disk may fail, net-
work connectivity may be lost, the operating system may crash, or the appli-
cation may suffer an error from which it cannot recover.

Compared with planned downtime, it’s much harder to predict the time and
frequency of unplanned downtime—especially downtime due to software fail-
ures. However, most systems suffer from unplanned downtime to a lesser or
greater extent, and your analysis must account for this. In particular, if downtime

From time to time, the communications network between the ATM 
and the host computer may fail, may be switched off for maintenance, or 
may suffer from poor response due to heavy usage. When the network is 
unavailable or unresponsive, local processing could be carried out on the 
ATM without reference to the host, allowing the system to offer partial 
services, such as:

� Restricting transactions to those below a certain limit

� Requiring increased time to carry out transactions

� Restricting users to deposits only
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is protracted, you may need to establish contingency procedures (manual or
semiautomated) to allow business to continue.

Time to Repair
Failure, of course, is only half of the problem as far as availability is con-
cerned; the other half is how long it takes to rectify the fault.

For hardware, this usually involves swapping out a faulty component for
a working one and restarting the affected part of the system. For disks and
other persistent storage, you need to add the time required to restore from
backup the data that was on the disk. The time required to repair software is
harder to quantify. An immediate “repair” may be as simple as restarting the
affected part of the system; however, ensuring that the problem does not hap-
pen again may be much more complex. Fixing the software itself may involve
conducting forensic analysis of the fault; designing, building, and testing the
fix; deploying it; and dealing with any lost or damaged data.

Disaster Recovery
If a critical system fails entirely or the physical operational environment
becomes unavailable (e.g., due to fire), an entire disaster recovery process
may be required in order to restore service. Disaster recovery can involve the
re-creation of the entire system environment, including the hardware, com-
munication network, and software platform as well as the system’s own ap-
plication software and data. 

In our example, the standby mainframe was kept idle in constant antici-
pation of catastrophe. In reality, it is more common to find standby machines
being used for development, testing, training, or some other nonessential
activity. However it is done, disaster recovery forms an essential part of any
model of service availability. Disasters such as flood or fire are, fortunately,
rare, but their impacts can be catastrophic.

EXAMPLE One of us did a study of system availability in the late 1980s 
for a major UK bank. The bank analyzed its reliance on systems and 
concluded that if it were to lose its main system (which managed all of 
the bank’s retail accounts), it would go out of business within three 
days. For this reason, the bank invested in a separate (and very expen-
sive) standby mainframe computer, solely for the purpose of switching 
over should the main production computer become unavailable.
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Although the system’s runtime environment can be replaced, data can’t,
so your model must also consider how you will recover data in the event of a
disaster. You must determine how much data, if any, the business can afford
to lose in the event of a disaster and how long it can survive while data is
being recovered or repaired.

Many organizations have realized that service availability depends not
just on the availability of an operational computing platform but also on the
availability of staff, information, a working environment, and an internal and
external communications infrastructure. This has developed into the idea of
business continuity, which extends the system availability concept right into
the organization to include people, places, and infrastructure. A discussion of
this topic, important as it is, is outside the scope of this book, but we suggest
some other books that cover this area in the Further Reading section at the
end of this chapter.

ACTIVITIES: APPLYING THE AVAILABILITY AND
RESILIENCE PERSPECTIVE

The activity diagram in Figure 27–1 illustrates a simple process for applying
the Availability and Resilience perspective. In this section, we describe the
activities in this process.

Capture the Availability Requirements
Ideally, your set of availability requirements was defined earlier as part of the
system requirements process, but often this isn’t the case. If you have the
requirements already, you need to analyze, understand, and validate them; if
not, you need to capture them as well. In either case, you must work with the
stakeholders to understand and validate the system’s availability require-
ments, categorizing them by class of service.

NOTATION A simple text-and-tables approach is usually the most effective
and straightforward way to capture availability requirements.

ACTIVITIES

Identify the Types of Services Offered. Consider each of the services your
system offers its users. Classify the services into groups based on their criti-
cality to the system users’ productivity.

Define the Levels of Services. For each type of service identified, define the
availability required in terms of when the service is needed and whether or
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not all of its functions are necessary. If possible, identify one or more levels of
degraded service that are still useful (e.g., if normal service involves placing
an order and confirming a delivery date, a degraded level of service, whereby
the order is placed but a delivery date is not available, might still be useful).

Define the Operational Service Levels. Based on the levels of service you
aim to provide for each of your service types, define the set of operational ser-
vice levels that the system as a whole will provide. This involves defining
what services need to be available during normal operation and the possible
levels of degraded operational availability. Work with the stakeholders to
make sure that the levels of service specified are useful to them.

Produce the Availability Schedule
Based on the availability requirements you have validated with your stake-
holders, create an availability schedule that defines when the different system

FIGURE 27–1 APPLYING THE AVAILABILITY AND RESILIENCE PERSPECTIVE

1. Capture
Availability

Requirements

2. Produce
Availability
Schedule

3A. Estimate
Platform

Availability

4. Assess Against
Requirements

5. Apply Tactics 
to Rework 

Architecture

3B. Estimate
Functional
Availability

[finished] [not finished]
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services need to be available and any periods when services are not required
(and so may not be available). It’s worth noting that at this stage of the pro-
cess, you are really capturing the desired availability schedule because you
don’t yet know what it will cost to provide this level of availability and resil-
ience. Later, when the true cost emerges, it may be necessary to revisit this
question and accept a lower level of availability in return for lower cost, com-
plexity, or some other desirable tradeoff.

NOTATION You can present the availability schedule in a number of ways, the
key being to use an approach that interested stakeholders can immediately
comprehend. Here we list a few techniques we have found to be effective.

� Text and tables: The simplest way to represent an availability schedule is 
just as a set of tabular entries with textual annotations about when services 
are and are not required.

� Graphical notations: As an alternative to plain text and tables, you can 
represent availability schedules very effectively by using Gantt charts or 
similar diagrams (see Figure 27–2).

ACTIVITIES

Identify Normal Operational Availability . For each of the system’s ser-
vice types, work with the stakeholders to identify when this service is nor-
mally required. Make sure this includes seasonal availability, when the
system may be needed at certain times of year but not at others (e.g., public
holidays).

FIGURE 27–2 GANTT CHART OF A REQUIRED AVAILABILITY SCHEDULE
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Identify Possible Unavailability. Attempt to identify regular times when
services are definitely not required (e.g., weekends). These periods should be
marked on the availability schedule as potential unavailability and are useful
for scheduling workload that could otherwise reduce system availability if run
during normal operational periods.

Estimate Platform Availability
In order to understand the potential availability of your system, you need a rea-
sonably accurate estimate of the availability that your underlying hardware and
software platform can provide. This measure is the maximum theoretical avail-
ability of your system (before operational constraints are applied, which will
reduce availability further).

NOTATION Estimation of platform availability results in a set of statistical
measures typically recorded as text and tables, although this information can
also be useful for augmenting UML models in the Deployment view with
availability information.

ACTIVITIES

Create the System Availability Model. You can predict (and therefore mea-
sure) availability by using some basic statistics. Availability models consider
system availability on a component-by-component basis and usually consoli-
date these into an overall availability figure for the system as a whole.

Availability is defined as follows:

Availability metrics are usually expressed as percentages, such as 99.99%,
which represents a downtime of just under an hour a year, or 99.999%, a
downtime of 5 minutes a year. (These two values are often shortened to the
terms four nines and five nines, respectively.) A system that is available from
9:00 A.M. to 5:00 P.M., Monday to Friday, for example, has an availability of 40
hours/168 hours, or about 24%.

Unavailability is the converse of availability:

And, obviously:

availability + unavailability = 100%

availability time the system is available
elapsed time

----------------------------------------------------------------------------=

unavailability time the system is unavailable
elapsed time

-----------------------------------------------------------------------------------=
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For hardware, it is possible to use published mean time between failures
(MTBF, sometimes known as mean time before fault) measures to estimate
how often failures are likely to occur. MTBF is defined as follows:

Mean time to repair (MTTR) is defined as the average time taken to repair
a fault once notified and may be available from hardware manufacturers (or
from supplier service-level agreements).

You can combine MTBF and MTTR to estimate hardware availability as
follows:

You may also be able to obtain reliability data to perform the same sort of
calculation for your operating systems and middleware (where “repair” in this
case is usually the same as “restart”).

Using these formulas and the content of your Deployment view, it is reason-
ably straightforward to derive predicted measures of hardware (and perhaps
system software) availability, although it is often difficult to predict the number
of failures for an average site. When combining metrics for multiple compo-
nents, make sure that you use the rule that the system is only as available as its
least-available component.

Unfortunately, there are rarely any reliable metrics that allow you to come
up with meaningful estimates for application software availability, except for
the most established and unchanging applications. The reason for this is that
software doesn’t fail according to established failure models, which are based
on the degradation of physical materials and assume failure isolation. Soft-
ware fails because it has to cope with unexpected conditions that it was not
designed or tested to meet or as a result of a mistake in its implementation,
and worse still, you cannot assume that software failures are isolated. These
failures are much harder to predict and require quite different models to char-
acterize them accurately.

However, if you want to try to produce a model of application software avail-
ability, you can attempt one by using the models in the Functional, Concurrency,
and Deployment views as primary inputs. A number of books provide tutorials on
software reliability modeling (see the Further Reading section for suggestions).

When estimating availability, try to present the results in terms of classes
of service, for example, “Full service available 95%, at least restricted service
available 99.9%.” This involves looking at component usage by different
types of functionality. (Such information is available primarily from your
Functional view.)

MTBF elapsed time
number of failures
---------------------------------------------------=

hardware availability MTBF
MTBF MTTR+
---------------------------------------=
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Note that your availability model may have some subtleties, especially if
the architecture is complex or the unavailability of some internal components
of the architecture does not impact the perceived availability of the system as
a whole. 

Create the Incident Recovery Analysis. Consider the likely incidents that
could affect your system’s availability. For each, define the failure that could
occur, its impact, the remedial actions to be taken, and the likely time needed
to rectify the situation.

Note that transient failures (e.g., the transient loss of a network connec-
tion) are not usually considered in this analysis, although it may be neces-
sary to accommodate these in your architecture (e.g., by automatically
retrying failed operations a certain number of times to allow for network
recovery).

You may find it useful to walk through some scenarios to validate this
analysis. Once the system is developed, you should thoroughly test the reme-
dial actions specified to ensure that they actually work.

Estimate Functional Availability
Estimating the maximum likely availability of your underlying implementa-
tion platform provides you with an upper bound on the possible availability of
your system. However, it is likely that the system design will impose further
unavailability in the guise of planned downtime. Many information systems

EXAMPLE A bank provides leased-line network access for its larger 
branches and less reliable business-broadband-based connections for 
smaller or more remote branches. The bank’s teller systems are built in 
such a way that they can work offline if the connection to the central 
server (which maintains the latest transaction and balance information) 
goes down for a short period of time.

The perceived availability of this system, from the perspective of tell-
ers and customers, is high, even though the underlying network may 
not be particularly robust.

EXAMPLE Table 27–2 shows an example of incident recovery analysis.
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require some periods when the system cannot provide full operational service
because of the need to perform internal processing (such as reconciliation,
data maintenance, backups, summary and report processing, and so on).

In order to understand the level of functional availability your system can
offer, draw up a functional availability schedule by working through the oper-
ational cycle of the system and identifying the periods of operation when the
design of the system means that normal service cannot be provided.

TABLE 27–2 SAMPLE INCIDENT RECOVERY SCENARIOS

Incident Impact Remedial Action Time to Repair

Hardware (non-
disk) failure

Reduced availability 
(throughput affected)

Replace the faulty compo-
nent, and possibly recon-
figure the hardware or the 
operating system

1 hour

Single disk failure Performance degra-
dation during auto-
mated recovery after 
failed disk is replaced 
in disk array

Failed disk must be 
replaced to allow auto-
matic data recovery by 
disk array

1 hour to replace disk 
and recover

Disk array failure Total unavailability 
(service offline)

Replace the faulty disk 
array, and possibly recover 
data from backup and/or 
other means

6 hours including restore

Nontransient net-
work failure

Temporary service out-
age, in-flight transac-
tions aborted, some 
loss of throughput when 
using backup network

Switch over to the standby 
network, possibly with 
reduced bandwidth

5 minutes

Operating system 
crash

Temporary service out-
age, normal availability 
within 5–10 minutes

Reboot, although the crash 
may be symptomatic of 
some other problem (such 
as faulty memory or disk) 
that needs to be addressed

5 minutes for reboot

Data corruption Affected accounts and 
transactions unavail-
able, failure of end-of-
period reconciliation

Recover data from backup 
and possibly other means 
(such as replaying trans-
action logs)

6 hours

Application soft-
ware failure

Variable, from temporary 
outage (10 minutes) to 
total outage due to 
corruption

Restart, depending on the 
application and the nature 
of the failure; may be nec-
essary also to recover data 
in some way

Not quantified
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You can create this new schedule by starting with the required availability
schedule prepared previously and augmenting it with the system operations
that may impact availability. When possible, schedule these operations in the
periods when the required availability schedule indicates that normal services
are not needed.

NOTATION Representing functional availability involves capturing the peri-
ods during which different aspects of your system will be available. Here are a
couple of techniques we have found effective for achieving this.

� Text and tables: The simplest way to represent the system’s functional 
availability is as a set of tabular entries with textual annotations explain-
ing the level of availability that can be provided in each period.

� Graphical notations: A graphical notation such as a Gantt chart 
(see Figure 27–3) is an effective alternative to a tabular presentation.  

ACTIVITIES

Design the Functional Availability Schedule . If systems have planned down-
time or periods of reduced availability (e.g., to support overnight batch runs),
you should draw up schedules to model the offline activity. These will be driven
partly by requirements determined by stakeholders (users, operations staff, and
so on), as captured in your Operational view, and partly by what is technically

FIGURE 27–3 GANTT CHART OF A FUNCTIONAL AVAILABILITY SCHEDULE
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feasible for your architecture, as reflected in your Functional, Information, and
Concurrency views.

For the online day periods, availability criteria are typically driven by the
business’s need to serve its customers. For enterprise systems, online day
schedules such as 7:00 A.M. to 8:00 P.M. are common. You also need to con-
sider weekends and holiday periods, when availability may be curtailed (or
possibly needs to be extended). If you have an overnight batch run, the most
important consideration is whether all batch jobs can be completed during the
overnight batch window.

For applications that aim for near 24-hour availability, it is rare to offer a
full level of service throughout the period. Although ideally a global or Internet-
facing system needs to provide full capacity at all times, the costs of achieving
this can be prohibitive, often leading to a tradeoff being made, to accept reduced
capability or capacity during periods when less demand is expected. Your analy-
sis needs to balance the costs of very high availability against the benefits it
provides. The final decision is usually a business decision and so needs to be
made by your acquirer stakeholders.

Define the normal working day in consultation with your users, resisting
the temptation to extend this longer than necessary—the longer the working
day, the less time available for overnight batch processing (if applicable).
When sizing the batch window, consider the worst-case elapsed times, which
usually occur at period start or end (the start or end of the month, quarter,
financial year, and so on).

Assess against the Requirements
There are two aspects to assessing your architecture against its availability
requirements. First, ensure that the overall level of availability you can
achieve is acceptable in the context of the system’s requirements. Second,
ensure that no particular availability risks are unacceptable even when the
overall level of availability is sufficient.

If this assessment suggests that your architecture provides sufficient avail-
ability, you’re done applying this perspective. Otherwise, if the overall level of
availability is too low or there appear to be specific availability risks that are too
high to be acceptable, the process continues with the next step, reworking the
architecture to address the availability limitations in the current architecture.

NOTATION You can easily capture any outputs of this step by using text and
tables, without resorting to special-purpose notations.

ACTIVITIES

Combine the Platform and Functional Availability Estimates . Combine the
platform and functional availability estimates you created in the previous steps
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to arrive at an overall estimate for your system’s availability. The functional avail-
ability figure provides you with an estimate of the routine availability of your sys-
tem, while the platform availability estimate indicates how much unavailability
you need to factor in due to unexpected technology failures.

If your functional availability estimate suggests 2 hours of downtime per
day (meaning a functional availability of about 91.5%) and your platform
availability suggests the loss of 6 days per year to technology failures (giving
a platform availability of 98.3%), the overall system availability will be about
90% (.915 × .983 = .899).

Identify Particular Availability Risks. Review the outputs of the platform
and functional availability assessments, and review any particular situations
you identified that could result in particularly acute availability risks. Things
to watch for are situations where particularly long periods of unavailability
can occur and situations where the impact of the unavailability is particularly
significant (e.g., just after a new product launch or at the end of the financial
year). Highlight these particularly significant availability risks, and ensure
that they are acceptable to your stakeholders.

Apply Tactics to Rework the Architecture
If the architecture does not provide sufficient availability to meet the system’s
requirements, you will need to rework aspects of it to increase the availability
it can offer. This is likely to center on the Deployment view (where you can
add technological availability solutions) and the Functional and Information
views (where you can modify the system’s design to increase the amount of
functional availability the system can offer).

NOTATION The notations used for this activity are the same ones used in the
existing models for each view you’re modifying.

ACTIVITIES

Reduce Functional Unavailability. Identify each of the features of the
architecture that were found to cause a reduction in system availability during
the assessment of functional availability. Consider addressing each one by
reducing the amount of unavailability (e.g., by reducing or parallelizing tasks)
or eliminating unavailability where possible (e.g., using replicated data as input
to summary processing). For each, attempt to assess the cost of reducing the
availability against the amount of extra availability achieved, and to keep costs
under control, implement only those with the most favorable ratios.

Reduce Technology Unavailability . Work through the Deployment view to
identify those parts of the deployment environment that are single points of
failure and so could reduce the system’s availability if they fail. For each
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failure point found, identify a possible solution (such as fault-tolerant hard-
ware or high-availability clustering) that could eliminate that failure point.
Again, balance the cost of the solution against the likelihood and impact of
the failure, and select those solutions that give the greatest benefit at the
lowest cost.

ARCHITECTURAL TACTICS

Select Fault-Tolerant Hardware
Fault-tolerant computing platforms can continue to operate without interrup-
tion even if a hardware component fails. These are typically implemented by
means of redundant or duplicated hardware: Each component—CPU, memory,
disk, I/O port, and so on—is deployed in pairs, and if one of the pair fails, the
other continues to operate while the fault is analyzed and the faulty part
repaired or replaced. Such platforms, although expensive, deliver a very high
level of system availability and often allow hardware upgrades to be per-
formed while the system is online.

Redundant disk architectures (such as RAID1 or mirrored disks) are a
particularly common example. A simple example of disk redundancy is disk
mirroring, shown in Figure 27–4. This is known as “RAID 1,” which means

1. RAID (Redundant Array of Inexpensive or Independent Disks) architectures are 
available in a variety of configurations, known as RAID levels, which variously provide 
resilience through mirroring, data redundancy, and error correction and improved per-
formance through striping of data across disks.

FIGURE 27–4 MIRRORED STORAGE HARDWARE
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that disk writes are applied to each side of the mirror, whereas reads come
from only one side (or, in some configurations, whichever side can return
the information with the least amount of head movement). If either disk
fails, the other can continue on its own until the faulty disk is replaced and
resynchronized.

More sophisticated developments of this simple case are the higher levels
of RAID storage, as implemented by resilient disk arrays. These units typi-
cally implement a variant of RAID 5 or higher, transparently striping data
across multiple physical disks and also writing parity information along with
the application data, allowing recovery from single disk failure (in the case of
RAID 5) or multiple drive failures (in the case of higher levels).

If you are deploying a fault-tolerant platform, remember that availability is
only as good as your weakest component. Don’t forget to include routers and
networks, terminals, PCs, printers, tape drives, and so on in your availability
analysis. When fault-tolerant solutions do not exist for these components, you
may have to develop strategies of your own (e.g., standby printing facilities).

Use High-Availability Clustering and Load Balancing
High-availability clustering is a technique for protecting against failures by
mirroring the whole computer rather than just a disk. In a clustered configu-
ration, two or more identical computers (referred to as nodes) are deployed
in parallel and share the total workload between them. If any one of the
nodes fails, one of the remaining nodes takes over its workload and pro-
cessing can continue (although the transactions in progress at the failed
node may have to be resubmitted). This process is known as failover. High-
availability clustering is a very effective approach for mitigating local fail-
ures within the system’s deployment environment (such as the failure of a
server node). It can’t generally be used across long distances, though, so
isn’t an effective approach for dealing with site failures, such as total loss of
connectivity to a data center. For these cases a more involved disaster recov-
ery approach that migrates the entire system deployment environment to a
remote site will be required.

A variety of different clustering configurations are available, depending
on how the nodes are connected to shared resources, such as memory, disk,
and the communications network, and what failover scenarios are supported.
Whatever approach you choose, incoming transactions must be allocated to
one of the nodes. A technique called load balancing performs this allocation
and helps ensure that the nodes are used to their fullest possible extent. Load
balancing can be provided via hardware or (less commonly) software.
Figure 27–5 illustrates an example configuration, where requests are load
balanced between a number of clustered nodes with shared disks, accessed
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via a high-speed technology such as a storage area network (SAN), to allow
failover in case of compute node failure. (The shared storage subsystem
needs to be independently resilient to guard against the risk of the failure of
one or more of the physical disks.)

Clustering typically requires enhancements to the operating systems, middle-
ware, and application programs that run on them. Special software is also required
to manage the cluster. Some types of clusters (scalable clusters) can also be used
to enhance performance due to their ability to reduce contention via replication (as
we describe for the Performance and Scalability perspective, in Chapter 26).

Log Transactions
While in the case of database or storage failure it may be possible to recover
some lost data from backups, that may not be the end of the story. For a num-
ber of reasons, backups may not bring data back to the state it was in at the
point of failure.

� Backups may have been made only daily or periodically during the day, 
so the most recent transactions may not be included in the backup.

� It may be necessary to restore multiple databases to a consistent point in 
time, to maintain cross-database data integrity.

� An up-to-the-minute backup may be available but may have become 
corrupt due to a fault in the database storage mechanism in use.

In such scenarios, it is extremely useful to have a separate transaction
log that can be replayed into the recovered database to bring it completely

FIGURE 27–5 HIGH-AVAILABILITY CLUSTER
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up-to-date, as shown in Figure 27–6. Such a capability may be provided by the
database or underlying storage mechanism, by underlying transaction man-
agement software in your application server or transaction processing monitor,
or you may have to develop it yourself as a feature of your application.  

An added benefit of such transaction logging is that it may be possible to
use it to provide an audit trail.

Apply Software Availability Solutions
Fault-tolerant hardware platforms do not deliver software fault tolerance: They
are just as vulnerable as ordinary platforms to operating system crashes or
application failures. Safety-critical systems, such as aircraft guidance systems,
achieve software fault tolerance by using multiplexing software techniques
(i.e., independently writing the application several times and employing a real-
time “voting” system to compare the outputs of the different versions, allowing
inconsistencies between them to be identified). However, the costs of delivering
this level of sophistication mean that it is usually not appropriate or affordable
for more mainstream systems.

This said, you do still need to develop effective strategies to ensure the
reliability and recoverability of your software. While this can be considered
a design rather than an architectural concern, the approach for achieving
this is a system-wide concern with some architecturally significant aspects,
such as:

� A robust strategy for data validation and dealing with rejected data

� A common strategy for detecting, logging, and responding to software
errors

FIGURE 27–6 POINT-IN-TIME RECOVERY WITH A TRANSACTION LOG
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� A service to which error messages are logged and from which alerts and 
errors can be trapped

� The recording of full diagnostic information to help in subsequent analy-
sis and repair

Select or Create Fault-Tolerant Software
Software can also be written to reconfigure itself in response to changing con-
ditions, for example, by allocating itself more resources (such as shared mem-
ory) when under load or by automatically disabling certain features if they
malfunction and offering only partial service until the problem is rectified.
Such technology is still in its relative infancy in mainstream information sys-
tem development but has been investigated widely by researchers and is
appearing in some operating systems and infrastructure software. You can
also use these approaches within your own application software to provide a
degree of resilience where required.

Design for Failure
When we design systems to be resilient and concentrate on making their com-
ponents reliable, there is a tendency to forget that no matter what steps we
take, we are going to have to deal with partial or total system failure at some
point. While modern hardware can be very reliable and we have many
approaches for making our software resilient to failure, ultimately enough
things can still go wrong that we will encounter a system failure.

It is important to remember this as you design the system’s architecture,
so that you consider what to do when things go wrong. Even when using
resilient and fault-tolerant components, you need to have effective processes
and management tools in place to recognize failures and recover from them.
Your design work needs to include the ability to recover the system to opera-
tion even if one of its highly reliable components fails.

EXAMPLE A desktop application reads from a preferences file when it 
starts up in order to restore the user’s preferences for presentation 
(color, font, and so on). If this preferences file is not present, or if it 
has become damaged or corrupted, the application reverts to a stan-
dard, default configuration and creates a clean version of the prefer-
ences file.
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Allow for Component Replication
A key tactic for increasing the reliability and resilience of a system is to repli-
cate the components within it. If you can use three servers rather than one, a
server failure may still be a dramatic event but is no longer a crisis. Most
resilient hardware components, such as high-availability network devices and
resilient storage, use this principle extensively by replicating their internal
components to allow them to survive the failure of one of them. This approach
can also increase the reliability of application software, where the deployment
of a number of instances of a component allows the failure of one instance to
be masked, with the surviving instances taking over its workload.

The difficulty with applying this tactic in many situations is that you can’t
blindly replicate most of the components or modules of a typical enterprise
application unless they have been designed to allow these multiple instances
to cooperate. A system element that hasn’t been designed to allow replication
may hang, duplicate processing, or even corrupt data, so if you’re planning to
use this tactic, you must design it into your application from the outset. This
normally involves making many of your elements stateless, so that they load
the state they need for an incoming request when it arrives and save the
resulting state after processing the request.

EXAMPLE Modern disk subsystems are very sophisticated and can 
mask many failures in the physical disks that they contain. However, 
there are always failure modes that can result in partial or total unavail-
ability of the data managed by the array, but because such failures are 
rare, there is a tendency to assume that the data in the disk subsystem 
is safe in all situations. Therefore, it’s important to keep reminding 
yourself of this, and to develop a recovery strategy that does not assume 
that data from the disk subsystem is available.

EXAMPLE A simple example of replicated application components can 
be found in most Web-based applications, where many instances of the 
Web and application servers are used to process incoming requests, pro-
viding both scalability and resilience benefits for the application. The 
constraint that this tactic places on the application software is the need 
for server components to be entirely stateless. This is usually achieved 
by storing all application state in a shared database and having the 
server software components load the state they require when a request 
arrives and write the updated state back to the database afterward.
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Relax Transactional Consistency
As discussed with regard to the Performance and Scalability perspective (Chapter
26), the CAP theorem tells us that we can achieve no more than two of the sys-
tem attributes of consistency, availability, and partition tolerance. If availability
is a prime concern, we are likely to choose availability and partition tolerance,
and so a possible tactic is to relax the consistency constraints in the system. We
introduced this tactic with a slightly different emphasis in the Performance and
Scalability perspective, but applying the tactic can benefit availability as well.

Identify Backup and Disaster Recovery Solutions
Every system that manages persistent information (i.e., information that must be
stored on stable storage and be available across system restarts) must include
mechanisms for backing up this information by writing it to a separate storage
medium from which the information can be recovered in the case of system fail-
ure (particularly disk failure).

Traditionally, some form of magnetic tape was used for backup, but this
method suffers from several constraints: the speed at which data can be writ-
ten to the backup media, the amount of information a single tape can store,
and the reliability of the media. A backup that takes 18 hours and requires
200 tapes will be cumbersome and prone to failure.

High-volume backups are often done to disk, for example, over a very
high-speed local- or wide-area network. An alternative solution is to deploy
mirrored data disks, unmirroring them temporarily while the backup is done,
as shown in Figure 27–7.

While the first mirroring architectures placed the disks physically near
one another, you can now mirror onto disks at another location, possibly

FIGURE 27–7 MIRRORING FOR AVAILABILITY
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many miles away, by means of high-bandwidth, highly reliable fiber-optic
networks. Such a distributed mirroring solution, while expensive, can also
form part of your disaster recovery architecture.

Most backup systems can perform online backups; that is, they can back
up data while the system continues to run (with an acceptable degradation in
online performance). Others require that the system be taken down in order to
perform the backup; if this applies to your situation, you will need to factor
this into your recovery plans.

Any backup solution must maintain the transactional integrity of the data
so that, when the data is restored, it is left in a transactionally consistent
state. We discuss this issue further in Chapter 18 on the Information view.

PROBLEMS AND PITFALLS

Single Point of Failure
A system is only as reliable as its least-reliable component. A single point of
failure is an individual element in an architecture that, if it fails, causes the
whole architecture to fail.

The presence of a single point of failure can critically undermine the reli-
ability of the system as a whole.

RISK REDUCTION

� Analyze your architectural models, particularly your Functional and 
Deployment views, for the presence of any single points of failure. If you 
find any, determine whether it is cost-effective to enhance these (per-
haps by hardware duplication) to improve reliability.

EXAMPLE It is common to improve reliability by deploying mirrored 
disk configurations of the sort that we described earlier. This is a sensi-
ble precaution; disks contain mechanical parts, so they are more prone 
to failure than other hardware components.

However, in some mirrored configurations, the disk pairs share a 
common controller (the device that connects the disk to the main com-
puter bus). If a controller fails, access to each disk in the pair is lost. The 
reliability of the controller thus becomes the key determinant of the reli-
ability of the disk architecture.
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Cascading Failure
A particularly difficult type of failure to deal with is a cascading failure, where
the failure of one system component results in failures in other parts of the
system, which in turn can cause other components to fail. Cascading failure is
well known in many types of complex systems; a prominent example of this
outside the computer systems domain is the case of interconnected power
grids, where the failure of one grid suddenly results in very high load on the
neighboring surviving grids, which can then be pushed beyond their safe
capacity, causing further failures.

Complex IT systems can also be vulnerable to cascading failures, such as
when the failure of one element within the system causes other elements to
fail because of the redistribution of load or internal interdependencies.

Unfortunately, it is easier to talk about this problem in general terms
than it is to analyze and address it in real design situations. It can often be
difficult to predict how the failure of one component will affect others, and
this difficulty increases as the complexity of the system rises. The best ad-
vice we can give is to be aware of this problem when designing your system,
to keep the design as simple as possible, to isolate components from each
other whenever possible, and to ensure that all components handle overload
situations gracefully.

RISK REDUCTION

� Walk through the design of your system and assess the impact of the 
failure of each component on the surviving components of the system.

EXAMPLE Many Web-based systems track detailed statistics about page 
views, timings, and other statistics relevant to the user experience and the 
use of the system. A cascading failure problem that can plague these sys-
tems is the failure of the statistics tracking service that all of the page-
rendering components call. If the tracking service becomes overloaded 
and slows down, this can cause all page rendering to slow down too. This 
in turn results in users canceling requests and hitting the “refresh” button 
in their browsers, which further increases the load on the site and the 
struggling tracking service. 

The solution to this is to use a more sophisticated approach to invok-
ing the tracking service, so that if it slows down or fails, page rendering 
is not affected. For example, rather than calling the tracking service via 
an RPC service call, the information might be sent to it via an asynchro-
nous message.
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� Design your components to deal with overload situations gracefully, 
ensuring that sudden high workload does not render them inoperable.

� Consider how you can isolate components from the impact of the failure 
of others. Can workload be throttled? Are service calls to other compo-
nents protected by short timeouts? Can processing that depends on other 
components be skipped if they are not available?

Unavailability through Overload
A measure of success for any system is its widespread use by a large number
of people. This is particularly true for Internet-facing systems, the goal of
which is often to provide a service to a huge number of people from all over
the world. However, the pitfall that lies in wait for successful systems is not
being able to deal with large spikes in workload, so that the system becomes
unavailable simply because of the number of people trying to use it, rather
than any failure within it. This problem is fundamentally a lack of scalability
in your system, but as it becomes more serious, it actually results in unavail-
ability rather just poor performance.

This situation can also manifest itself in enterprise systems when a large
number of people in the organization try to use a system simultaneously. This
might be an authentication service that comes under very heavy load at 9:00 A.M.
each day, a retail system that must process huge transaction loads during holi-
day periods, or an internal HR system that everyone in the organization has to
use on the same day to confirm benefit choices for the coming year.

This problem usually appears as a slowing of request processing, eventu-
ally resulting in the system becoming unusable as more and more people try
to use it. The underlying problem is nearly always application components
that were not designed to handle high workloads gracefully. This is often due
to internal contention in components, caused by blindly allocating resources
(such as memory, threads, or locks) irrespective of how many simultaneous
requests are being handled. When the number of requests gets very high,
these components spend most of their time trying to allocate and deallocate
resources and struggle to perform much useful workload, rapidly leading to
system unavailability.

RISK REDUCTION

� Define patterns for request handling that allow your system components 
to continue to work successfully, or in the worst case reject work grace-
fully, when load increases sharply. For example, consider creating server 
component patterns that include timeouts on service calls, messaging for 
intercomponent connections, and returning errors quickly when compo-
nents are overloaded. Make sure that your patterns are used throughout 
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the system. We provide some sources of information to help you with 
this in the Further Reading section.

� Return to your performance model if you have one and use it to analyze 
the likely behavior of your system if its workload exceeds the limits that 
you are expecting.

� Test your system under heavy and unpredictable workload so that you 
understand how it is likely to behave and can identify possible problems 
that can be rectified before a situation like this happens in production.

Overambitious Availability Requirements
Availability schedules are, of course, driven by the needs of the business.
However, like performance requirements, they usually require a tradeoff
between necessity and cost. Increasing the length of the online day, for exam-
ple, reduces the length of the overnight batch; this may necessitate more pow-
erful hardware, or more sophisticated batch systems or scheduling, to
complete the overnight batch run.

Many systems, particularly ones that provide services over the Internet,
aim for 24/7 availability. This means that the system is never allowed to go
down, ever—not even for maintenance or for software or operating system
upgrades. This is extremely difficult to achieve and extremely expensive, even
with today’s very high-availability computing platforms.

RISK REDUCTION

� Validate your high-availability requirements carefully (in particular, 
challenge requests for 24/7 operation if you hear them). Make sure these 
requirements are backed by a business need.

� When high availability really is needed, make sure that your proposed 
technology platforms are suitable (and supported) for this degree of reli-
ability.

� Make your stakeholders (particularly acquirers) aware of the costs of 
high availability to encourage them to set requirements at a realistic 
level.

� Tie any third parties into clear, quantitative service-level agreements to 
ensure that they do not affect your availability.

Ineffective Error Detection
In most systems, more code is devoted to trapping and dealing with errors than
to implementing core functionality. It is tempting, especially if there are time
pressures, to skimp on error handling, but this can be disastrous in the long run.
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Your error-handling strategy (or lack of it) has a wide impact on your sys-
tem, so you need to clearly define a strategy in the Development view.

RISK REDUCTION

� Define a clear, system-wide error-handling strategy that provides enough 
information for your availability needs. 

� Define design standards for error handling such as the following.

• All actions that can return an error are checked for success and failure.
• When errors occur in a low-level routine, they are reported upward to 

the caller.
• All errors are logged.
• At the top level, any reported error either is fixed by the program (e.g., 

by retrying) or causes a user-visible halt.

� Capture error-handling strategy and standards as part of your Develop-
ment view to ensure that error detection and handling is implemented 
consistently throughout the system.

Overestimation of Component Resilience
When incorporating resilient components such as disk arrays into your archi-
tecture, it is easy to focus on the resiliency that they provide rather than the
possible failure cases that they do not cater for. Most of the documentation
you’ll find for the high-availability features of software and hardware
stresses the cases that the product can survive rather than discussing those

EXAMPLE A system collects information on ticket bookings from a 
number of airlines for the purpose of allocating to customers the bonus 
points that can be exchanged for free flights. Unfortunately, one of the 
routines that calculates the point values returns an error code that is not 
checked. This routine is failing because of a programming error, so cus-
tomers are not being credited with points they are due.

Eventually, a customer complains that her point values have not been 
calculated correctly, and a large-scale corruption of data in the database 
is discovered. The system administrator attempts to restore the database 
from backup, but because the routine has been failing for a long time, all 
of the backups are corrupt as well.

The only solution to this situation is to fix the data in the database 
directly and to eventually write special programs to retrieve the booking 
information and recalculate the data in the whole database.
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that it can’t. This can naturally lead to implicit assumptions that a particular
component is “bulletproof” when in fact there are perfectly reasonable situa-
tions that could occur and cause it to fail. Given that a system is only as resil-
ient as the weakest component, this can lead to dangerous confidence about
the system’s resilience.

RISK REDUCTION

� Ask detailed questions about the failure modes of your components to 
understand exactly what happens in each case.

� Test ambiguous cases if you can, or if you cannot, you have to assume 
the worst case and design your use of the component accordingly.

Overlooked Global Availability Requirements
Any system that has global reach may need to be available around the clock.

EXAMPLE We tend to think of RAID-based disk arrays as being capable 
of surviving any likely failure of a disk within them and therefore pro-
viding a very high degree of resilience. However, it’s important to un-
derstand exactly what can fail and still allow the disk array to continue 
operating. For example, different RAID levels provide different levels of 
protection against different failures (RAID 5 is able to survive the failure 
of one disk, and RAID 6 can survive the failure of two), but no level of 
disk organization will provide resilience in the face of a disk interface 
failure in the server using the disks or a firmware crash in the disk 
array. While these seem like obvious statements, in real situations it can 
be difficult to find out exactly which failures a component is resilient to 
and which will cause it to fail.

EXAMPLE A foreign-exchange trading system is used by traders in 
Hong Kong, London, and New York. As the trading day is coming to an 
end in Hong Kong, it is starting in London, and a few hours later, it 
starts in New York. By the time New York trading has closed, the next 
day’s trading is due to start in Hong Kong again.

However, the system design mandates an end-of-day consolidation 
run, during which trading cannot take place. It is not possible to fit this 
run into the timetable at any point because the system is always being 
used by someone.
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Although your system may not have global reach now, you should
explore with your stakeholders whether the system might go global in the
future. If so, you will save a lot of time by building in some high-availability
features now.

RISK REDUCTION

� If required, take a global perspective when considering the availability 
of your system (also see the discussion of the Location perspective in 
Chapter 29).

� When continuous uptime is a real requirement, reflect this in your archi-
tecture as early and visibly as possible.

� Confirm that your main architectural solutions are compatible with global 
needs (such as adding hardware to allow the transfer of processing 
between different servers to “follow the sun”).

Incompatible Technologies
Many high-availability solutions have some specific requirements related to
the software that will run on them. For example, a database or application
server that caches information in shared memory may need to be redesigned
to work in a clustered environment where each computer has its own cache.

Unless your software elements have been specifically written to run on
such platforms, you may find that they perform badly or just won’t work at
all. It is particularly important that you make sure that all of the different
pieces of third-party software work together perfectly. If they don’t, it is very
unlikely that they will work correctly during a failover situation.

RISK REDUCTION

� Use supplier data to confirm that your hardware and software elements 
are compatible with one another.

� If you have any doubt, consider a proof-of-concept, or ask your suppliers 
to put you in touch with their customers who are running similar config-
urations.

CHECKLISTS

Checklist for Requirements Capture
� Are availability requirements defined, documented, and approved?

� Are availability requirements driven by business needs?

� Do availability requirements consider different classes of service if 
appropriate?
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� Do availability requirements strike a realistic balance between cost and 
business needs?

� Do availability requirements consider online and batch availability?

� Do availability requirements take into account variations such as period 
end?

� Do availability requirements take into account future changes in busi-
ness operations such as moving to a longer online day?

� Can availability requirements be met by the chosen hardware and soft-
ware platform?

� Have you defined strategies for disaster recovery and business continu-
ity?

� Do stakeholders have realistic expectations around unplanned down-
time?

Checklist for Architecture Definition

� Does the proposed architectural solution meet the availability require-
ments? Can this be demonstrated, either theoretically or based on previ-
ous practical experience?

� Does the solution consider the time taken to recover from failure (e.g., to 
restore from backup if necessary)?

� Does the backup solution provide for the transactional integrity of 
restored data?

� Does the backup solution support online backup, with acceptable degra-
dation in performance? If not, is it feasible to take the system down in 
order to perform backups?

� Has consideration been given to restoring data from corrupt or incom-
plete backups?

� Will the system respond gracefully to software errors, logging and report-
ing them appropriately?

� Have you defined a standby site in the architecture if appropriate? Is the 
standby site configured identically to the production site, or will it offer 
reduced performance? If the latter, is this reduced performance accept-
able to the users?

� Have you defined and tested mechanisms for switching from production 
to standby environments and back again? If not, when will you do this?

� Have you assessed the impact of the availability solution on functionality 
and performance? Is this impact acceptable?
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� If high availability is particularly important, have you assessed the archi-
tecture for single points of failure and other weaknesses?

� If you developed a fault-tolerant model, does this extend to all vulnerable 
components (such as disk controllers)?

FURTHER READING

Two IT-oriented books on disaster recovery [TOIG02, SNED07] explain how
to plan for and cope with system disasters from an IT perspective. An alterna-
tive view from the business process perspective can be found in [BARN01]
and [WALL10], which provide a lot of useful guidance in areas outside com-
puter systems recovery that are still crucial to achieving effective overall di-
saster recovery.

A number of approaches exist for modeling and predicting software reli-
ability using statistical models. You can find a readable introduction to these
approaches in Neufelder [NEUF92], which explains how to create models to
predict the reliability of a piece of software, including a comprehensive de-
scription of the various theoretical models available. For an alternative opin-
ion, Butler and Finelli [BUTL93] and Whittaker and Voas [WHIT00] discuss
problems with software reliability modeling, and the latter (which is the more
accessible of the two) suggests factors that new software reliability models
should take into account. When considering disk reliability, it is worth read-
ing Schroeder and Gibson’s technical report [SCHR06], which provides some
sobering analysis of how reliable disks really are. A large amount of informa-
tion on RAID-based disk resilience and disk reliability in general can be found
at Wikipedia and elsewhere via an Internet search.

You can find a very thorough, practical, and readable discussion of how
to create highly available systems using today’s mainstream technology in
Marcus and Stern [MARC03]. Written for the architect and system adminis-
trator, it goes into the practical details of actually getting highly available sys-
tems to work. Another more recent book [SCHM06] covers similar ground, in
a similarly practitioner-oriented, yet thorough, style. Michael Nygard’s book
[NYGA07] is written more directly in application design terms and contains a
great deal of valuable advice on creating highly available systems, including a
number of useful design patterns and antipatterns. Robert Hanmer’s book
[HANM07] goes into more detail on the software design aspect of this topic,
presenting a full pattern language for fault-tolerant software.

Further reading relating to the CAP theorem that we discussed in the Pit-
falls section can be found in the Further Reading section of Chapter 26, where
we also discuss it in more detail.

No list of availability references would be complete without Pfister
[PFIS98], a classic, highly readable, and often entertaining tutorial on the
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technology of cluster computing, addressing both highly available clusters
and scalable clusters. This book manages to make a complex and technical
area both approachable and comprehensible, providing a thorough overview
of the issues, techniques, and technologies involved in achieving clustered
systems.

For those wanting more background on the theory and technology of sys-
tem availability, a large number of references are available. Examples include
the very technical review of the techniques used to create fault-tolerant hard-
ware and software technology found in Jain [JAIN91] and the review and
tutorial on achieving fault-tolerant software found in Pullum [PULL01].
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28
THE EVOLUTION
PERSPECTIVE

A somewhat overused business maxim tells us that the only constant is
change, and most software architects can identify strongly with this. The very
ability of software to be “soft” means that stakeholders expect a software-
based system to be able to evolve very quickly. Couple this expectation with
other common factors such as misunderstood requirements, rapid business

Desired Quality The ability of the system to be flexible in the face of the inevitable 
change that all systems experience after deployment, balanced 
against the costs of providing such flexibility

Applicability Important for all systems to some extent; more important for longer-
lived and more widely used systems

Concerns Product management, magnitude of change, dimensions of change, 
likelihood of change, timescale for change, when to pay for change, 
changes driven by external factors, development complexity, preser-
vation of knowledge, and reliability of change

Activities Characterize the evolution needs, assess the current ease of evolu-
tion, consider the evolution tradeoffs, and rework the architecture

Architectural
Tactics

Contain change, create extensible interfaces, apply design techniques 
that facilitate change, apply metamodel-based architectural styles, 
build variation points into the software, use standard extension points, 
achieve reliable change, and preserve development environments

Problems and 
Pitfalls

Prioritization of the wrong dimensions, changes that never happen, 
impacts of evolution on critical quality properties, overreliance on 
specific hardware or software, lost development environments, and 
ad hoc release management
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change, and the effect that actually delivering a system has on end-user
requirements, and it is easy to see why change is such a major factor in the
lives of software architects.

The commonly adopted iterative approach to system delivery can make an
ability to deal with change all the more important. When a system is delivered
in iterations, its users can start using some parts of it much earlier and thus
provide early feedback to the developers. This is an extremely valuable pro-
cess because it allows requirements to be validated early. However, it also
means that there is constant pressure during the delivery cycle to change the
system’s behavior, with a consequent need in some cases to change its archi-
tecture.

Although, in principle, software is easy to change, experienced software
developers agree that this is true only if change is explicitly considered during
its development. Software developed without any concern for the changes that
will likely be needed can be much harder to change than anyone expects.

We consider the process of dealing with change in the system develop-
ment lifecycle under the term evolution, by which we mean all of the possible
types of changes that a system may experience during its lifetime.

The Evolution perspective addresses the concerns related to dealing with
evolution during the lifetime of a system and thus is relevant to most large-
scale information systems because of the amount of change that most sys-
tems need to handle.

APPLICABILITY TO VIEWS

Table 28–1 shows how the Evolution perspective affects each of the views we
discussed in Part III.

TABLE 28–1 APPLICABILITY OF THE EVOLUTION PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context The Context view may need to show external entities, interfaces, or interactions 
that will form part of the model only in future versions of the system.

Functional If the evolution required is significant, the functional structure will need to reflect 
this.

Information If environment or information evolution is needed, a flexible information model 
will be required.

Concurrency Evolutionary needs may dictate particular element packaging or some con-
straints on the concurrency structure (e.g., that it must be very simple).

Development Evolution requirements may have a significant impact on the development 
environment that needs to be defined (e.g., enforcing portability guidelines).
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CONCERNS

Product Management
In a product development environment, the evolution of a product is usually
planned and overseen by a product manager, who is responsible for under-
standing the needs of the product’s customers and the threats and opportuni-
ties offered by the market in which the product is sold. The product manager’s
job is to use this insight to define a roadmap for the future development of the
product and to work with the product development organization in order to
deliver and evolve the product in line with it.

Agile software development also recognizes the importance of product
management, with an analogous role being explicitly recognized in methods
like XP, which requires an on-site customer, and Scrum, which identifies the
role of product owner. When no such product ownership exists, it is often up
to you as the architect to implicitly or explicitly play this role and plot a future
course for the system you are developing.

Whether or not it is formally recognized, product management is impor-
tant because it provides a context and direction for all of the change happen-
ing in the system. This helps potential changes to be prioritized systematically
and allows them to be considered in the context of a roadmap, to avoid an in-
coherent feature set developing.

Magnitude of Change
For some systems, potential changes are limited to defect rectification and
minor cosmetic adjustments or tweaks to external interfaces. At the other
extreme, some widely used, long-lived systems undergo a continual process
of major evolution to meet the changing needs of their environments and are
effectively rewritten every few years.

The most difficult problems occur when you expect only the former situa-
tion but the latter reality emerges during development or deployment. Such
cases are likely to be expensive to remedy because the system will probably
be hard to change, and complete redevelopment may be your only practical
evolution option.

Deployment This perspective rarely has a significant impact on the Deployment view 
because system evolution usually affects structures described in other views.

Operational This perspective typically has less impact on the Operational view.

TABLE 28–1 APPLICABILITY OF THE EVOLUTION PERSPECTIVE TO THE SEVEN VIEWS (CONTINUED)
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Dimensions of Change
Different types of evolution require different support in the system’s architec-
ture and have different costs and risks associated with them. If you can identify
the dimensions of change required, you can narrow your system evolution to a
more bounded, tractable problem.

We classify the important dimensions of change as follows.

� Functional evolution: This includes any change to the functions that the 
system provides, from simple defect corrections at one end of the scale to 
the addition or replacement of entire subsystems at the other.

� Platform evolution: Many successful systems need to evolve in terms of 
the software and hardware platforms on which they are deployed. This 
can include migrating platforms (e.g., from Windows-based servers to 
Linux-based servers) as well as extending the platforms the system can 
use (e.g., porting products to new platforms or extending existing 
PC-based client platforms to include Web-based access).

� Integration evolution: Most information systems need to be integrated 
with a number of other systems to be useful. This may involve retrieving 
information from systems on demand, processing the outputs of other 
systems, or providing information for other systems to process. As these 
other systems are created, evolve, and are removed, this may put evolu-
tion pressures on your system, so that although it does not have to 
change its functionality, it may need to change the way it integrates with 
other systems.

� Growth. As we describe with regard to the Performance and Scalability 
view, most successful systems undergo a growth in usage during their 
lifetime. This may be due to many factors, such as an increase in the 
number or complexity of transactions, an increase in the number of 
users, or the need to manage and store larger amounts of data. If the sys-
tem provides an Internet service and proves to be successful, this growth 
could be substantial and unpredictable.

Likelihood of Change
It is often easy to identify many types of change that could be needed, but
assessing the probability that the changes actually will be required may be
much harder. Providing facilities for change in your system adds complexity
and expense, so it is important to provide support only for changes that are
likely to occur.
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Timescale for Change
The likely timescale for the required change is also an important concern. The
environment of most systems is changing constantly, which means that assump-
tions that are true today rarely survive intact over time. The further away the
need for a change is, the less likely it is that the change will actually be needed in
its currently identified form.

Requirements for changes that have no associated delivery date or a far-
off delivery date may be of lower priority than changes with firm, short-term
dates attached to them.

When to Pay for Change
There are two strategies for planning for change to your system.

1. Design the most flexible system possible now to make it easy to change 
later. This is perhaps best characterized by the metasystem approach, 
where the system’s information structure and functions are defined at 
runtime by configuration data. 

2. Create the simplest system possible to meet immediate needs and to meet 
the challenge of making changes only when you absolutely have to. This 
is perhaps best characterized by the Extreme Programming (XP) mantras 
of “Do the simplest thing possible” and “You aren’t going to need it,” 
which capture the lesson that trying to guess the future and build the most 
flexible system possible is an expensive, risky, and complex business.

One of the major differences between these two strategies is when you
pay for change. Developing highly flexible systems costs a lot more than de-
veloping simple, rigid ones, so the cost of change is loaded to the front of the
system lifecycle if you follow the first strategy. The tradeoff is that you hope
these early costs will be paid back by cheaper and faster changes later. Devel-
oping the simplest system possible costs less up front because it is simpler
and quicker to deliver, but each later change is likely to cost more because
you have no existing mechanism for implementing it.

Getting the balance right between these two extreme positions avoids
either wasted early effort or huge change costs later and helps you find a po-
sition that minimizes the overall costs of development.

Changes Driven by External Factors
Not all changes are under your control or that of your immediate stakeholders—
some may be imposed on you by people or groups outside your sphere of
influence. For example, a new CIO may be appointed who wants to take the IT
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department in a significantly different direction such as adopting a “buy not
build” strategy. You still need to cater for such changes, with the added com-
plication that you have less control (or possibly no control at all) over
whether and when you do this.

Examples of externally driven change include the following:

� The end-of-life of hardware or software components you plan to use as 
part of your architecture. This is particularly important if your organiza-
tion mandates that systems are allowed to run only on hardware and 
software supported by the vendor. Vendors should be able to supply you 
with roadmaps for their products that will identify when end-of-life 
events are likely to occur.

� Changes to interfaces with external entities, such as moving to a new 
protocol, data format, data content, or interaction model.

� Changes in external regulation, which may drive more stringent require-
ments for business continuity, validation, data retention, auditing, or 
control.

� Organizational change that may lead to different priorities, changed 
requirements, or changes in the user population and transaction profile.

Development Complexity
In nearly all cases, building in support for evolution increases the complexity
of a system’s design, sometimes by a huge amount. This added complexity
costs more to develop (as discussed earlier) and may also bring problems
related to system reliability and the time required to deliver early parts of the
system. In some cases, complexity can even become an obstacle to system
evolution.

Preservation of Knowledge
It is usually fairly obvious how to make changes to a system while it is
being built—the people you need are available, knowledge about how the
system works is fresh in their minds, and a development environment is
available for making and testing the changes. Once the system moves from
active development to a more stable deployed state, this may no longer be
true.

An important concern for any system is how to preserve the knowledge
required to make significant changes to the system as people move to other
projects, memories fade, and the available technical environments change.
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Reliability of Change
From the simplest bug fix to the most complex subsystem redevelopment, any
system change can have a negative impact on the deployed system, so it is
essential to have a set of processes and technologies to make this process as
reliable as possible.

Automated testing, repeatable and well-understood processes, stable
development environments, and effective configuration management are all
key factors in addressing this concern as your system evolves.

ACTIVITIES: APPLYING THE EVOLUTION PERSPECTIVE

The activity diagram in Figure 28–1 illustrates a simple process for applying the
Evolution perspective. In this section, we describe the activities in this process.

Characterize the Evolution Needs
This step is really one of further requirements analysis, this time to understand
the requirements from the perspective of system evolution. The requirements
for the system probably focus on what must be delivered, the system’s level of

FIGURE 28–1 APPLYING THE EVOLUTION PERSPECTIVE

1. Characterize
Evolution Needs

2. Assess Current
Ease of Evolution

[ finished]

[not finished]

4. Apply Tactics to
Rework the Architecture

3. Consider
Evolution Tradeoffs



550 PART IV � THE PERSPECTIVE CATALOG

complexity, technical and project constraints, and so on. Now you must go back
to the requirements and work out what will likely need to change over time.

You can characterize your evolution needs as follows.

1. Type of change required: Characterize each type of evolution into one of 
the dimensions described earlier (functional, platform, integration, or 
growth).

2. Magnitude of change required: Establish how much effort each type of 
evolution will need. Is it just defect correction, or will large-scale, high-
risk system changes be required? A useful way to present this is the 
effort required as a proportion of the initial system development effort.

3. Likelihood of change: Assess how likely it is that each of the types of 
change you have identified will actually be required. This allows you to 
focus on those that are most likely to occur.

4. Timescale of required changes: Are the changes required on an immedi-
ate, firm timetable (in effect, a phased delivery)? Or are they vague 
needs for changes sometime in the future depending on external factors 
(such as system growth)?

Evolution requirements often are not explicitly recorded, so you need to
infer them from the existing documents and validate them through discus-
sions with key stakeholders. When reading the requirements documents, look
for elements such as:

� Deferred functions, any parts of the system requirements that explicitly 
define future extensions, or functions that need not be delivered initially

� Gaps in requirements, probably evolution requirements in disguise, which 
could not be defined initially due to incomplete requirements analysis

� Vague or undefined requirements, which indicate this area of the system 
is not well understood

� Open-ended requirements, for example, terms such as like or including in 
system requirements definitions, which suggest that extensions similar 
to the explicitly specified cases will be required

The result of this process should be a list of key evolution requirements for
your system, with each characterized by its type, magnitude, and timescale.
From this list you can quickly assess the overall importance and nature of the
evolution that stakeholders will expect from your system.

To help you decide which requirements to prioritize, rank the require-
ments in terms of their relative magnitude divided by how many months
from now you think they’ll be needed. (So, for example, a change with an
assigned magnitude of 60 needed in 12 months is allocated a score of 5,
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while a change with a magnitude of 30 needed in 3 months is allocated a
value of 10.) Dividing the magnitude of a change by the time until it is
needed reflects the fact that things are constantly changing. So investing
effort in something not needed for (say) 12 months runs the risk that the
effort will be wasted because of the requirement changing or even vanishing
during that period. Focus your attention on the top couple of requirements
in this list: These are the large changes that are near enough, and so certain
enough, to worry about.

NOTATION A simple text-and-tables approach is usually the most effective
and straightforward way to present evolution needs.

ACTIVITIES

Analyze the Requirements. Perform a manual review and analysis of the
requirements for your system in order to identify these evolution requirements.

Estimate Effort, Nearness, and Priority. Derive a magnitude for each
change and divide it by the time until you think it will be needed.

Assess the Current Ease of Evolution
For each of the evolution requirements you have identified, work through a
scenario of how you would change your system to meet the requirement when
it becomes necessary. For each of these scenarios, note how much of the sys-
tem must change and how difficult and risky the resulting set of changes is.
This assessment allows you to decide whether or not your architecture requires
any changes to meet the evolution requirement.

The focus in this step is not to identify all the details of what needs to be
done, but rather to assess whether the changes required could be accom-
plished at reasonable cost during the required timescales.

NOTATION A simple text-based approach is probably sufficient for capturing
the results of your assessment.

ACTIVITIES

Assess the Architecture. This step is really a mini architectural evaluation of
your system from the perspective of a single quality property (i.e., modifiabil-
ity). Refer to Chapter 14 for a discussion of architectural assessment.

Perform a Risk Assessment. Given how well (or otherwise) your architec-
ture supports the likely evolution requirements for the system, is this level of
risk acceptable enough for your project to go forward?
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Consider the Evolution Tradeoffs
If you feel that your architecture needs some changes to support the evolution
requirements, consider the options for providing the flexibility you need. The
key tradeoff to consider is whether to expend the effort of creating a flexible
system during initial development or whether to defer this effort until system
changes are actually required. This tradeoff depends very much on the type of
system, the likelihood of changes actually being required, and the level of
confidence you have about easily making major changes when needed, rather
than during initial development.

The result of this step is a strategy for meeting your evolution require-
ments in terms of how the system will evolve and at what point the support
for the evolution will be put into the system.

NOTATION A simple text-based approach is probably sufficient for capturing
your strategy for meeting evolution requirements.

ACTIVITIES

Identify the Options. Consider all of the possible approaches to supporting
evolution in your system, from doing nothing initially, through designing but
not implementing various options, to developing a fully flexible system from
the outset. Assess the architectural impact of each possible option.

Assess the Options. Use a mini architectural assessment to consider which
option is right for your system, considering the costs, risks, and priorities of
your requirements.

Rework the Architecture
Use the best evolution strategy you identified to make the set of changes nec-
essary for your architecture to support the evolution requirements.

NOTATION Reworking the architecture involves changing the views that de-
scribe it, so the notations used are dictated by the views you need to change.

ACTIVITIES

Revise the Architectural Design. Revise your architecture in line with the
option(s) you selected in the previous step.

ARCHITECTURAL TACTICS

Contain Change
Typically, dealing with change in a small, well-defined part of your system
isn’t a problem. For example, changing a single software module to deal with
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a change to its interface to an external system is usually fairly straightforward . A
change starts to be a problem when its effects ripple through a number of dif-
ferent parts of the system simultaneously. (For the interface dimension, for
example, if the interface change requires a change to internal system interfaces,
this is a much more serious problem than changing the single software module
that provides the external interface.)

The architectural challenge is to design a system structure so that the
required changes are as contained as possible. Normal sound design practice
has a lot to offer in meeting this challenge. The following general design princi-
ples can help you localize the effects of change.

� Encapsulation: If your system elements are strongly encapsulated with 
well-defined, flexible interfaces, this will go a long way toward helping 
you isolate change. In particular, making sure that the internal data 
structures within your system elements are not visible to their callers 
helps keep those callers isolated from changes that need to be made 
within an element.

� Separation of concerns: Giving each of your system elements a clear 
and distinct set of responsibilities helps ensure that a change related to 
one aspect of your system affects only one element. Conversely, if the 
responsibilities of your system elements are not clear or a number of ele-
ments are involved in each part of the system’s operation, most changes 
are likely to affect a large number of pieces of the system and thus will be 
expensive and risky to implement.

� Functional cohesion. As we describe for the Functional viewpoint, func-
tional cohesion is the extent to which all the functions of an element are 
strongly related to one another. Good cohesion usually makes change eas-
ier, since change tends to be contained to a small and well-defined area.

� Single point of definition: Make sure that all data types, fundamental val-
ues, algorithms, configurations, data schemas, and so on, are defined or 
implemented only once. This prevents a change to, for example, a system 
data structure or interface value limit resulting in changes to a number of 
different parts of the system.

The real trick when containing change is being able to predict which types
of changes will need to be contained in which locations. Of course, there is no
magic way to do this; the best solution is early analysis.

Create Extensible Interfaces
Of all the changes you might make to a system, changes to interfaces usually
have the widest impact and are therefore the most costly. For example, if you
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add a mandatory parameter to a frequently used function, every piece of code in
your system that calls that function will have to be recoded and retested. If you
modify the syntax or semantics of a message passed between components, ev-
ery component that sends or receives a message of that type will be affected.

It is therefore worth investing in designing some level of flexibility into
your interfaces if you believe that the system is likely to undergo significant
change. Some techniques you can use include the following.

� Replace APIs that have large numbers of individual parameters with ones 
that pass in objects or other structured data types instead. For example, a 
CreateEmployee method might take as input the employee first and 
last name, date of birth, and Social Security number. This could be 
replaced by a method that takes an Employee object instead. When 
members are added to the Employee class, they can be given appropri-
ate defaults so that code does not need to be changed everywhere that 
the method is invoked.

� You can use a similar approach with information interfaces. For example, 
by using a self-describing message technology such as XML to define 
message formats, and allowing new message elements to be optional, 
you can allow messages to be extended with little or no impact on system 
elements that do not need to use the extended form of the interface.

We should note that such approaches are not without their costs, and you
need to evaluate them in the context of your evolution requirements. To take in-
terface flexibility to its logical extreme would involve dropping static typing of
your interfaces altogether and establishing the types of all request parameters at
runtime. Such a flexible approach can be more difficult to understand and test
and may be less efficient too. It can also introduce many subtle system problems
because it is hard to check for information that is accidentally missing.

The specifics of how you can create flexible interfaces depend on the tech-
nology environment and problem domain of your system. However, considering
the degree of flexibility required of your important interfaces and how to achieve
it is an important aspect of addressing the evolution concerns of your system.

Apply Design Techniques That Facilitate Change
As we describe in Chapter 11, using styles and patterns allows you to design
your system from standard, proven solutions with known capabilities and
characteristics.

There are a number of design patterns you can use to help make a system
more amenable to change. A detailed consideration of such patterns is outside
the scope of this book, but the sorts of patterns you should consider include
the following.
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� Abstraction and layering patterns make it easier to change one part of 
the system with minimal impact on others.

� Generalization patterns make it easier to handle new use cases or data 
types, by just specializing the existing general-purpose functionality in a 
way that is appropriate to the new use case.

� Inversion of Control (also known as “dependency injection”) and Call-
back patterns help protect higher-level elements in your architecture 
from the implementation specifics of lower-level elements.

Apply Metamodel-Based Architectural Styles
If you have significant requirements for system evolution, it may be worth
considering the adoption of an overall architectural style that is particularly
focused on supporting change. Metamodel-based systems (sometimes called
metasystems) provide a very high degree of flexibility in some problem do-
mains (particularly database systems requiring significant schema evolution).

Metamodel approaches break down the system’s processing and data into
their fundamental building blocks and use runtime configurations to assem-
ble these into fully functional components. Changes to requirements can often
be made by changing the metamodel, rather than having to change the under-
lying software components. A detailed explanation of the relevant architec-
tural styles isn’t possible here due to space constraints. However, we give a
brief example.

EXAMPLE An investment bank needs to capture and process the details 
of deals involving many sorts of financial instruments, such as bond 
purchases, foreign exchange transactions, money market transactions, 
equity trades, derivative transactions, and so on. New types of deals are 
invented regularly, meaning that there is a significant requirement to 
support functional evolution.

A traditional architecture for the system might identify a certain num-
ber of types of deals that the system can handle—perhaps foreign ex-
change, money market, and equity transactions. Each of these would be 
analyzed to work out its characteristics and processing, and the system 
would be built to support these functions. Perhaps the architect would 
spot some commonality between these different types of processing dur-
ing design and would use some generic reusable processing for the com-
mon aspects. Later, bond transactions would need to be added, so a 
similar process would be repeated and the system changed in order to 
incorporate those functions.
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Such metamodel-based systems can provide the ability to support very
rapid change because instead of modifying the system implementation to
change its behavior, you can just reconfigure it—usually a much faster process.

Of course, there is no such thing as a free lunch—or, for that matter, a free
system change. Metamodel-based systems are much more complex to develop
and test than systems based on more static architectural styles. They are also
inherently less efficient in terms of runtime performance, which can limit their
applicability in environments where performance is a major concern.

Build Variation Points into the Software
A less extreme strategy than adopting a complete architectural style is to adopt
specific, localized design solutions to support certain types of changes in spe-
cific places in the system. This approach involves identifying the locations
where supporting a certain type of change is critically important and specifying
a mechanism to achieve the change required. We term these places in the sys-
tem variation points (borrowing the term from product-line architecture).
Using variation points is an example of the architecture placing specific con-
straints on the software design process in order to achieve a particular quality
property.

A large number of specific software design patterns have been published
that attempt to introduce some form of variation point (Façade, Chain of Respon-
sibility, and Bridge, to name only a few). Some of the general approaches we
have found useful include the following.

� Make elements replaceable: Being able to replace certain elements in your 
system with an alternative implementation is a very useful mechanism for 
creating a variation point (and is widely used in commercial software). 
This typically involves developing the software so that the interface to an 

In contrast, a metamodel-based architecture starts by considering 
fundamental concepts such as customers (counterparties), currencies, 
trading and settlement dates, trading limits, collections of trades for a 
particular trader (books), and so on. Then, instead of developing a sys-
tem to process a particular set of transaction types, the architect designs 
a system to provide a set of facilities to implement the underlying con-
cepts and provides a data-based configuration facility to allow the sys-
tem’s implementers to define the types of trades they want to perform in 
terms of these underlying concepts. Later, when new trade types are 
required, they are added by changing the configuration data, rather than 
the system code.
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element and its implementation are kept separate so that other elements 
depend only on the interface. This allows you to change the system’s 
behavior by replacing an element at build time or, with some technologies, 
at runtime.

� Control behavior using configuration: Specify that certain aspects of the 
processing carried out by your software can be parameterized. For exam-
ple, parameterize the inputs, outputs, and accuracy required of a statistical 
processing element in the system to allow some aspects of the system’s 
operation to be changed over time without modifying its implementation.

� Use self-describing data and generic processing : The simplest approach 
to processing data is almost always to hard-code the logic required, but 
this means that changes to the data require changes to the system. How-
ever, certain types of processing (e.g., format conversion) can often be 
performed in a more generic way if the structure of the input data is 
known. To deal with format changes in such situations, consider specify-
ing the use of a self-describing data stream (such as XML) with the pro-
cessing code being written in such a way that it uses the structure of the 
incoming data to guide its processing.

� Separate physical and logical processing: In many systems, data formats 
change frequently, but the actual processing required does not. This is an 
example of a case where separating the physical processing from the logi-
cal processing can create a useful variation point. If the software is parti-
tioned to first process the physical format of the data and then perform the 
business (or logical) processing on the results, it is much easier to deal 
with a change in the physical format (e.g., from CSV files to XML files).

� Break processes into steps: Business processes are frequently made up of a 
number of steps that must be performed in sequence. However, the sim-
plest approach to automating the process may be to implement it as a 
monolithic piece of software. You can introduce a possible variation point 
to support process change if instead you structure the software as a num-
ber of separate elements, one per step, that combine to form a process.

Like other software architecture decisions, you should introduce variation
points carefully, balancing the cost involved in creating, maintaining, and us-
ing each variation point against the likelihood of its being used and its impor-
tance to stakeholder needs.

Use Standard Extension Points
A related approach to building in your own variation points is to consider
how you can use extension points built into standard technologies to provide
support for changes to your system. Many mainstream information systems



558 PART IV � THE PERSPECTIVE CATALOG

technologies provide standard extension points (such as the J2EE platform’s
ability to easily add support for new types of databases, via the JDBC inter-
face, and external systems, via the JCA interface). If you can use these stan-
dard technology solutions, you may find a number of flexible extension
points, available for free, that you can adapt and use in a number of ways to
meet your evolution requirements.

For example, you could write custom adapters that allow you to use stan-
dard application integration facilities to connect to your in-house systems as
well as the packaged applications for which they are normally used. This could
allow you to avoid designing and building your own mechanism for future inte-
gration into in-house systems.

Achieve Reliable Change
A major challenge for the architects, developers, and administrators of many
systems is dealing with change in a reliable way. You, like us, have probably
seen a supposedly simple change turn out to have a number of serious side
effects that caused major problems when deployed.

Change in any system can be risky, but it can be particularly difficult to
deal with in software systems, where it often isn’t possible to assess the
impact visually and the system must be exhaustively tested to confirm your
assumptions about postchange behavior.

If your system is one that needs to cope with change (and, of course,
nearly all are, whether or not change is actually planned for), you need to
make some architectural decisions that allow changes to be made reliably. A
number of relevant strategies can help you with this.

� Software configuration management: A crucial part of dealing with soft-
ware change is having a reliable configuration management system that 
allows you to control changes to the system’s software modules and 
allows formal system versions to be clearly identified and retrieved.

� Automated build process: In addition to controlling the versions of the 
inputs to the software build process, it is important to make the build 
process itself reliable, consistent, and repeatable, to ensure that building 
a particular version of the system always ends up with exactly the same 
result. Inevitably this means creating an automated system so that 
human error and inconsistency do not creep into the build process.

� Dependency analysis: In all but the simplest of systems, working out the 
effect of a change on other parts of the system can be a challenge. There 
are many tools available to automate this analysis, and using these once 
you start building the system can help to highlight dependencies that you 
might not otherwise have been aware of.
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� Automated release process: For most systems, taking the outputs of the 
build process and packaging them for release and deployment isn’t a 
simple process, and you need an automated system to do this reliably. 
Creating and maintaining the build and release systems takes valuable 
time and effort, but in our experience it’s always cheaper than the alter-
native.

� Create mechanisms to roll back unsuccessful deployments : No matter 
how much preproduction testing you do, it is not possible to guarantee 
that the deployment of a change will not cause so many problems that it 
needs to be reversed back out again. You should ensure that you have 
some way of doing this in at least a semiautomated way—for example, 
write scripts to revert to previous versions of software, and to undo data 
model and state changes introduced by a release. You may even want to 
make this a release prerequisite.

� Environment configuration management: In addition to controlling the 
versions of the software modules used in your system, you should con-
trol the development and production environments used for creating and 
running the system. These processes may be less well supported by 
existing tools, but it is important to carefully manage the exact versions 
of development tools and deployment platforms, as well as the precise 
configuration information for them, to avoid instability caused by mis-
matches between different environments.

� Automated testing: Testing is a crucial part of managing the process of 
system change. If you don’t have a way to test the system, you won’t 
know whether or not a change to it has been successful. One aspect of 
this involves making sure that you have a comprehensive set of tests so 
that you can assess the impact of a change on the system’s behavior. The 
other aspect is automation. If you do have a comprehensive set of tests 
for a significant system, it will probably amount to hundreds or thou-
sands of tests. It simply isn’t possible to run this many tests in a reliable, 
timely, and efficient way without a high degree of automation.

� Continuous integration: When making changes, it is always best to 
receive bad news as early as possible. Given that large-scale system 
change often involves bad news, it is sensible to have a process to dis-
cover it as soon as you can. A good way to achieve this is to continually 
integrate the changing parts of your system rather than trying so-called 
big bang integration at the end of the process. Continuous integration 
involves bringing system changes together as often as possible and test-
ing the result (at least once per day in most cases). Both the process of 
integration itself and the tests you run help uncover problems with the 
proposed changes as quickly as possible. This minimizes wasted effort 
and allows you to identify possible solutions.
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Preserve Development Environments
Once a project has delivered a meaningful amount of functionality, the origi-
nal development environment is often dismantled or evolved. Over time, you
can easily reach the point where no one knows the exact set of compilers,
operating systems, patches, libraries, build tools, and so on, used to create the
system. This can be a particular problem for product developers who support
a wide range of platforms and product versions.

Part of your responsibility as an architect is to preserve the development
environment in some way. Clearly record the details of the required develop-
ment environment, and make sure that enough hardware and software are
retained so that the environment can be precisely re-created if the need arises
due to an evolution requirement (e.g., if a fault cannot be reproduced in the
current development environment).

One way to do this is to use hardware virtualization tools to create an
image of the whole software environment. These self-contained images can be
saved to disk and brought up later in exactly the same state that they were in
when they were saved.

PROBLEMS AND PITFALLS

Prioritization of the Wrong Dimensions
When considering how to allow for change in your architecture, it is easy to
focus on dimensions that you know about, or that seem immediately impor-
tant because they are often mentioned by your more vocal stakeholders. How-
ever, the important change dimensions for a system may be found elsewhere.
For example, if your background is primarily data-oriented, it is easy to focus
on the context dimension, whereas in reality the evolutionary challenge for
your system may be to extend the number of client platforms from which
users can access the system.

Focusing on the wrong things is a problem throughout architectural design.
Focusing on the wrong evolutionary dimensions can result in an architecture
that is more complex and expensive to build than simpler alternatives and yet
still is not particularly easy to change when needed.

RISK REDUCTION

� If you decide to build in support for system change, do so only after 
working through enough solid analysis to be confident that you are 
focusing on the right change dimensions.
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Changes That Never Happen
Myriad possible changes could credibly be made to any system. You can’t
realistically design an architecture that allows for them all, certainly not one
that can also be delivered in a cost-effective and timely way with an accept-
able level of risk. Any architecture that allows for all possible changes would
be too complex and unwieldy to build. If you plan for evolution in your archi-
tectural design, you are explicitly or implicitly deciding to make some of the
possible changes easier than others.

If you build in specific support for a certain type of change that is never ac-
tually needed, you end up with design “baggage” that has to be understood
and accommodated by its developers until eventually someone is courageous
enough to decide that the change is never going to happen and removes the
support for it.

Providing support for any future change requires overhead in terms of
design, implementation, and often runtime overhead, so supporting a number
of changes that don’t happen can be a major unnecessary cost for your system.

RISK REDUCTION

� Provide specific support for a type of change in your architecture only 
when you are confident it will be needed.

Impacts of Evolution on Critical Quality Properties
Building a system to support evolution is not without cost. In particular, highly
flexible systems (such as the metamodel-based systems outlined earlier) can
bring significant costs in terms of runtime efficiency and performance, as well
as the more involved development process that their complexity implies. (Of
course, this is not always the case, and a flexible system may actually be easier
to tune for performance because it has a well-understood, flexible, modular
structure that allows easy monitoring and analysis, varied deployment options,
and so on.)

The danger with focusing too heavily on the goal of flexibility is that you
could make a system that is very easy to change but fails to meet one or more
fundamental quality properties such as performance or availability. Also, it is
easy to create such a complex system that all of your energies end up focused
on the flexibility problem, and you neglect other properties such as security or
internationalization due to lack of time.

RISK REDUCTION

� Having decided on the support for evolution in your architecture, make 
sure that you maintain the balance between flexibility and the other 
important quality properties for your system.
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� Use a process of continual architectural assessment (discussed in Chap-
ter 14) to achieve this balance.

Overreliance on Specific Hardware or Software
While computers are fairly interchangeable nowadays, there are some cases
where you might find yourself critically dependent on a specific hardware or
software component. For example, you may install specialized network cards
in your servers that implement security features in firmware for speed; you
may build your system using a specialized library to perform complex calcula-
tions; or you may rely on features in a very specific version and configuration
of the operating system or application package. 

This approach can be very beneficial but can also be a barrier to change. If
you have been forced to write your system in a particular way to deal with the
idiosyncrasies of a specialized component, it is much harder to replace that
component in the future because it is no longer available or has been super-
seded by something better or cheaper.

� Assess the use of specialized components in your architecture and 
ensure that the benefits they bring outweigh the barriers to change.

� Ensure that you are aware of vendor roadmaps and other factors that 
may limit the life of specialized components.

� Abstract your interfaces to specialized components so that you can inter-
change them without too much impact.

Lost Development Environments
We have already mentioned that the development (and test) environment is
more likely to be lost than the deployment environment. In addition, devel-
opment environments are often subject to independent change and evolution
as development and support priorities and workload naturally change over
time.

The problem with trying to re-create a development or test environment is
that it often isn’t clear exactly what is needed to do so. 

� Do you require a specific version of a library, or will a later version be 
acceptable?

� Other than obvious tools like compilers, what other tools do you need to 
perform a complete build and release? For example, was a particular 
scripting language used, and, if so, do you need to install any extensions 
to it?
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� Do any of the major development tools require any software patches? 
(A common example is the compiler, which may change behavior with 
certain patches applied.)

� Do you need a particular underlying operating system version or a spe-
cific model of a hardware component, or can you substitute them later 
with supposedly compatible versions?

In our experience, it is quite rare to find that the answers to these ques-
tions are known, let alone recorded.

RISK REDUCTION

� Whenever an external element is introduced to the development environ-
ment, record its name, version, and origin along with the reason for its 
inclusion. This doesn’t need to be terribly formal; a text file checked into 
your configuration management system is sufficient.

� Toward the end of the construction phase, try to re-create your develop-
ment environment in a completely separate location that you haven’t 
used before, and use the information recorded earlier to build the envi-
ronment. Build your system and run your tests. This process rapidly 
reveals any elements missing from your list, which you can add to save 
others (or perhaps yourself) the same problem in the future.

� Use hardware virtualization tools to preserve development environments, 
and keep spares of critical or hard-to-obtain hardware components.

Ad Hoc Release Management
When deploying to a test environment, it doesn’t really matter if the process
goes wrong because no one is seriously affected—some tests fail, people realize
that deployment has failed and they have to redeploy, but system users are not
affected. However, deployment beyond the test environment is much more seri-
ous, and any problems at best will be annoying for end users and administra-
tors and at worst may threaten critical operations in the target organization. It
is important to orchestrate and manage the release management process just as
carefully as the process of building and testing the system.

Release management differs somewhat between turnkey and product
development environments, with turnkey developers often being responsible
for updating the actual production system, whereas product developers are
responsible for creating an installable system for others to install. In reality,
though, both of these types of release management can be complex and, if
done badly, have a negative impact on important stakeholders (end users and
system administrators, respectively).
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RISK REDUCTION

� Invest in an automated release process to achieve reliability and repeat-
ability. This will save effort for every release and will also help prevent 
problems caused by human error during the release process.

CHECKLISTS

Checklist for Requirements Capture
� Have you considered which evolutionary dimensions are most important 

for your system?

� Are you confident that you have done enough analysis to confirm that 
your prioritization of evolutionary dimensions is valid?

� Have you identified particular specific changes that will be required and 
the magnitude of each?

� Have you assessed the likelihood of each of your changes actually being 
needed?

Checklist for Architecture Definition
� Have you performed an architectural assessment to establish whether 

your architecture is sufficiently flexible to meet the evolutionary needs of 
your system?

� When change is likely, does your architectural design contain the change 
as far as possible?

� Have you considered choosing an inherently change-oriented architec-
tural style? If so, have you assessed the costs of doing so?

� Have you traded off the costs of your support for evolution against the 
needs of the system as a whole? Are any critical quality properties nega-
tively impacted by the design you have adopted?

� Have you designed the architecture to accommodate only those changes 
you are confident will be needed?

� Can you re-create your development and test environments reliably?

� Can you reliably and repeatedly build, test, and release your system, 
including the ability to roll back changes if they go wrong?

� Is your chosen evolutionary approach the cheapest and least risky option 
of delivering the initial system and the future evolution required?
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FURTHER READING

A systematic approach to dealing with change at the implementation level by
using a set of well-defined transformations known as refactorings is described
in Fowler et al. [FOWL99]. A number of architectural styles are described in
Buschmann et al. [BUSC96], including a metamodel-based system style called
Reflection, which is particularly amenable to certain types of change.

There isn’t much written material on evolution aimed at the architect spe-
cifically; however, Bass et al. [BASS03] does include a set of tactics to help
achieve architectural modifiability. These tactics are fairly generic but suggest
a lot of useful things to consider for your architecture. (The book also pro-
vides similar sets of tactics for availability, performance, security, testability,
and usability.) When designing APIs, [TULA08] provides a lot of good advice,
as does [HENN07] and Joshua Bloch’s presentation “How to Design a Good
API and Why It Matters,” which is easy to find via a Web search. A good
resource on product management and ownership in the context of the Scrum
method can be found in [PICH10].

In contrast, there are quite a number of books on software design pat-
terns, many of which address change. Some useful ones to start with are
Gamma et al. [GAMM95] and Coplien et al. [PLOP95–99, PLOP06]. For a
good explanation of the dependency injection pattern, see [FOWL04].

Support for controlled variation and evolution is a major concern of soft-
ware product-line architecture, and the concept of the variation point, which
we mentioned earlier, is borrowed from the techniques used in this discipline.
Two books [BASS03, BOSC00] provide introductions to creating software
architectures for product lines as well as references to further reading in the
area.

One SEI-sponsored book [CLEM02] is a practical guide to performing
architectural evaluation including evaluating systems for modifiability, and
another SEI book [SEAC03] presents an architecture-based evolution process
for modernizing older systems.

Deferring the need to pay for change until it is actually needed is a core
principle of the Extreme Programming approach. The original reference for
Extreme Programming is Kent Beck’s book [BECK00].
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29
OTHER PERSPECTIVES

o far, we have defined some important perspectives—Security, Performance
and Scalability, Availability and Resilience, and Evolution—in reasonably

full detail. We have found the concerns addressed by these perspectives to be
relevant to most if not all information systems. If you do not apply these per-
spectives to your architectural views, you run a serious risk of delivering sys-
tems that do not meet the explicit or implicit needs of your stakeholders: They
may expose sensitive data to malicious attackers; they may perform poorly
under heavy load; they may suffer from frequent and expensive interruptions
in service; or they may be very difficult to change.

You may also need to consider a number of other perspectives when design-
ing your architecture. We say “may” for several reasons.

� Not all of these other perspectives are relevant to all situations. For 
example, a system that operates only in one country is probably unaf-
fected by the Internationalization perspective.

� They may have a less significant impact on the architecture. For exam-
ple, the concerns of the Usability perspective may not be that relevant to 
a server-based EAI or data movement system, which is only minimally 
exposed to users (although the usability needs of system administrators 
should not be ignored).

� They may relate to less highly visible system properties. A system oper-
ating in a lightly regulated business area, for example, is minimally 
affected by the concerns of the Regulation perspective.

Therefore, in this chapter we define the following secondary perspectives
and for each one present a subset of the information we provided for the pri-
mary ones earlier in Part IV.

S
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� The Accessibility perspective ensures that people with disabilities can use 
the system.

� The Development Resource perspective ensures that the system can be 
built, deployed, and operated within known constraints related to people, 
budget, time, and materials.

� The Internationalization perspective ensures the system’s independence 
from any particular language, country, or cultural group.

� The Location perspective ensures that the system can overcome problems 
brought about by the absolute location of its elements and the distances 
between them.

� The Regulation perspective ensures that the system conforms to local and 
international laws, quasi-legal regulations, company policies, and other 
rules and standards.

� The Usability perspective ensures that the people who interact with the 
system can work effectively.

Given that you have only finite time—and probably not very much of
that—to develop your AD, you will need to decide which of these perspectives
are most relevant to you and how much time you want to spend applying
them to your views.

THE ACCESSIBILITY PERSPECTIVE

In recent years, enlightened corporations have come to recognize the contributions
that disabled people can make, and many have high-profile programs to encour-
age their active participation in business operations. Furthermore, many countries
have passed legislation that prohibits discrimination against people with disabili-
ties and obliges employers to provide facilities suitable to their needs.

Desired
Quality

The ability of the system to be used by people with disabilities

Applicability Any system that may be used or operated by people with disabilities or 
may be subject to legislation regarding disabilities

Concerns Types of disability, functional availability, and disability regulation

Activities Identification of system touch points, device independence, and con-
tent equivalence

Architectural
Tactics

High-contrast visual interfaces, assistive technologies, specialist input 
devices, and voice recognition

Problems and 
Pitfalls

Ignoring these needs until too late, lack of knowledge about regulation 
and legislation, and lack of knowledge about suitable solutions
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For systems directly exposed to customers (e.g., Internet- or mobile-
communications-based systems, public kiosks, or automated teller
machines), failing to address the needs of the disabled population can sig-
nificantly reduce the systems’ reach and effectiveness, in addition to reflect-
ing unfavorably on the organization in the eyes of the public.

Accessibility should take into account not only the direct users of the
system—that is those sitting at terminals—but the indirect users as well. For
example, a financial system may need to provide bank statements in Braille
for blind customers.

Consideration of disability aside, addressing accessibility concerns brings
benefits in many cases by making systems more usable and ef ficient in their
operation.

It is also important to assess architectures for compliance with legislative
requirements and internal standards, as we discuss under the Regulation
perspective.

Applicability to Views
Table 29–1 shows how the Accessibility perspective affects each of the views
we discussed in Part III.

TABLE 29–1 APPLICABILITY OF THE ACCESSIBILITY PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context There may be a requirement for the system to interface with specialist 
devices for use by people with disabilities, such as voice-controlled 
input devices. 

Functional In theory, the functional structure should not really be affected by ac-
cessibility considerations—all functions should be available to disabled 
users in exactly the same way they are to able-bodied users. In practice, 
functional compromises may need to be made in some cases. It is 
particularly important that presentation services be separated from 
functional components.

Information The information structure is unlikely to be significantly affected, 
although it may be necessary, for example, to maintain information 
about disabilities of customers and/or users.

Concurrency The concurrency structure of the system is unlikely to impact its acces-
sibility, so the impact on this view is minimal.

Development The Development view needs to raise awareness that accessibility issues 
are important. And, of course, you may need to accommodate disabled 
developers, too.

Continued on next page
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Concerns
Your system may need to be usable by people with a range of disabilities:

� People who are blind or partially sighted, who cannot read small print or 
differentiate items on low-contrast displays

� People who are color-blind (this affects up to 10% of the male 
population)

� People who are totally deaf or hearing-impaired

� People who have difficulty processing information

� People with low levels of literacy or numeracy 

Ideally, all functionality should be available to all users regardless of
their level of ability. When this is not the case, you should clearly identify
the limitations and obtain stakeholder agreement. 

Many countries have legal requirements with regard to disability, such as the
Americans with Disabilities Act in the United States and the Disability Discrimina-
tion Act in the United Kingdom, and at a minimum you should always assess your
systems against these. A number of standards, guidelines, and best-practice
guides are also available, against which you can assess your architecture. (For
more information, see the Further Reading section for this perspective.)

You should be aware of the implications of regulations before you begin
architecture definition. It is much easier to design accessibility features into
the architecture from the outset than to retrofit them at the end. Specialized
knowledge may be required, and you should not be afraid to consult with
experts when necessary.

Activities: Applying the Accessibility Perspective
A simple process follows.

� Identify the types of disabilities of users who may need to interact with 
your system (blind, deaf, movement-impaired, and so on).

View Applicability

Deployment The deployment environment is likely to be the most affected by this 
perspective. Special hardware (described in this section) may be needed 
to support disabled users.

Operational The Operational view may have to take into account the needs of 
disabled users requiring support or the needs of disabled support staff 
themselves.

TABLE 29–1 APPLICABILITY OF THE ACCESSIBILITY PERSPECTIVE TO THE SEVEN VIEWS (CONTINUED)
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� Identify all places where disabled users may interact with the system 
(touch points).

� Use your stakeholders to help identify all relevant regulations and spe-
cific concerns related to accessibility. 

� At a high level, agree on requirements for the intersection of each type of 
user with each of the key touch points.

� Develop an architectural approach and, where appropriate, a more 
detailed solution that meets the requirements.

� Bench-test the solution against the requirements, using prototypes 
where appropriate.

Architectural Tactics
Hardware and software components that have been designed to meet the
needs of disabled users are known as assistive technologies. Examples of
these include the following.

� Visual interfaces can be made available in high-contrast, low-resolution
versions. For a Web interface, for example, this can be as simple as pro-
viding a different CSS style sheet for use by visually impaired users.

� A Braille display is a mechanical device that dynamically raises and low-
ers dots in a Braille grid. Such devices typically display anything from 
one character to a whole line at a time.

� A screen reader is an adjunct to a visual display that reads the contents 
of the screen aloud to visually impaired users.

� A screen magnifier enlarges a portion of a screen so that users with par-
tial vision can see it more easily.

� A voice recognition system provides an alternative to keyboard or mouse 
data entry by accepting commands spoken by the user.

� Internet chat technologies (e.g., Web-based help desks) allow people 
such as those who are deaf to communicate without using a telephone.

� Many types of specialist input devices are available for mobility-impaired 
users.

Designing presentation elements to be device-independent is generally a
good practice and brings particular benefits when there is a need to support
access by disabled users.

Presentation should not rely on one interface capability to convey mean-
ing but should provide alternatives wherever possible. For example, screens
and printouts should not rely solely on color or pictures to emphasize elements
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of text because they may not stand out to color-blind or partially sighted users or
those using display devices that do not render color. Instead, use the tech-
nique of content equivalence—in other words, render content in different
ways that convey the same meaning. For example, if a screen uses color to
highlight incorrect input, it could also use an annotated arrow that points to
the incorrect data.

Similarly, interaction should not rely on a single mechanism but should
support alternatives where possible—for example, you could make a graphical
user interface operable by both mouse and keyboard.

When interactions involve a number of separate steps or are otherwise
complex, aim for navigational simplicity. Screens should be clear in their use,
consistent, and well designed. Avoid excessive use of special effects, such as
blinking text or sounds, as these may not be perceived by some disabled users.

Problems and Pitfalls
Here are some common pitfalls to keep in mind for the Accessibility perspective.

� Failure to think about how to address these issues until it’s too late : This 
can put you at risk of noncompliance with legislation or with the require-
ments of some key stakeholders.

� Lack of knowledge about regulations and legislation : You should consult 
experts if you are at all unsure.

� Lack of knowledge about suitable solutions : If you’re unfamiliar with 
assistive technologies, get advice from specialist stakeholders.

Checklists

CHECKLIST FOR REQUIREMENTS CAPTURE

� Have you identified and obtained stakeholder approval of the extent to 
which the system must support the needs of disabled users?

� Have you provided for the needs of indirect disabled users, such as cus-
tomers who need paperwork provided in Braille format?

� Have you identified the disability legislation that affects the system and 
assessed the system against it?

� Have you ensured that the system meets any internal accessibility 
standards?

� Have you considered all points at which the system has any human 
interaction? For example, have you considered operational management 
and monitoring of the system, or printed forms that are sent to customers 
to be filled in?
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CHECKLIST FOR ARCHITECTURE DEFINITION

� How confident are you that your architectural assumptions are correct? 
When you are not, are mitigating activities in place (such as a proof-of-
concept)?

� Do the interactive elements of your architecture sufficiently separate pre-
sentation and content to meet the system’s accessibility objectives?

� Are the interfaces between components (particularly those leading in and 
out of presentation devices) sufficiently generic to be able to take on 
board new devices without (much) rework?

� Does the architecture allow for presentation alternatives to convey mean-
ing (e.g., text, pictures, and/or sound in a user interface)?

� Are standards for user interface design emphasize simplicity, consis-
tency, and clarity in place? Does the architecture adhere to them?

Further Reading
Many of the references listed later under the Usability perspective also touch
on Accessibility.

A number of Web sites are devoted to accessibility. Your best starting point
is the Web Accessibility Initiative of the World Wide Web Consortium at
www.w3.org/WAI. Also, most hardware and software vendors run disability por-
tals, for example, Microsoft (www.microsoft.com/enable/), IBM (www.ibm.com/
able/), and Google (www.google.com/accessibility/). Many governments also
maintain online resources that provide best-practice guidelines and explanations
of accessibility legislation (such as the www.disabilityinfo.gov site in the United
States and the www.disability.gov.uk site in the United Kingdom).

You can assess Web sites for their conformance to accessibility best prac-
tices by using online tools such as WAVE (the Web Accessibility Evaluation
Tool, maintained by WebAIM at http://wave.webaim.org/).

THE DEVELOPMENT RESOURCE PERSPECTIVE

Desired Quality The ability of the system to be designed, built, deployed, and oper-
ated within known constraints related to people, budget, time, and 
materials

Applicability Any system for which development time is limited, technical skills for 
development or operations are hard to find, or unusual or unfamiliar 
hardware or software is required

Continued on next page
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In this context, a development resource may be a person, a piece of hardware
or software, a building, a timescale, or money. (Note that runtime computing
resources are a slightly different topic, which we discuss as part of the Perfor-
mance and Scalability perspective in Chapter 26.)

All software projects are primarily constrained by time and cost. IT bud-
gets are never unlimited, and although technology capabilities improve from
year to year, the costs of building, deployment, and support seem to increase
as well. Today’s rapidly changing business environments impose substantial
pressures to deliver flexible systems ever more quickly. There may even be
immovable timescale constraints, such as the arrival of new legislation, new
regulations, or a new millennium. (At least that last one is unlikely to recur
for another thousand years or so!)

You may think it odd or inappropriate that an architect should get
involved in things like time and money. Certainly as an architect, none of
these problems are directly yours to solve. However, they all impose con-
straints on your architectural choices. For example, if you have to wait a
month before trained developers are available, you will have less time to
build the system and less scope for incorporating complex features. If the
budget will not stretch to a mainframe, there is little point in considering it
as an architectural candidate. If the data center is full, a server farm is not
an option unless space can be found elsewhere.

Applicability to Views
Table 29–2 shows how the Development Resource perspective affects each of
the views we discussed in Part III.

Concerns Time constraints, cost constraints, required skill sets, available 
resources, budgets, and external dependencies

Activities Cost estimation, development time estimation, development planning, 
dependency management, scoping, prototyping, and expectation 
management

Architectural
Tactics

Incremental and iterative development, expectation management, 
descoping, prototyping and piloting, and fitness for purpose

Problems and 
Pitfalls

Overly ambitious timescales, failure to consider lead times, failure to 
consider physical constraints, underbudgeting, failure to provide staff 
training and consider familiarization needs, insufficient resource al-
location for testing and rollout, insufficient time for likely rework, 
overallocation of staff, and difficulty getting access to knowledgeable 
business stakeholders
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Concerns
The constraints of people, budget, time, and materials lead to a number of
more specific concerns.

� Appropriately skilled people are always a key resource constraint. If your 
architecture makes use of a technology unfamiliar to your developers, 
you will need to provide a large-scale retraining exercise.

� You should also consider the impact of your architecture on the existing 
support community. Retraining or recruitment may be necessary, and 
you may need to provide richer tools for operational management, analy-
sis, and repair.

� Your users may need training in new technologies and new applications. 
This is particularly significant in large-scale rollouts of new or signifi-
cantly modified applications. If users are unfamiliar with the software 
they will be using, you may want to put extra effort into usability.

� Deployment of new applications may necessitate large-scale infrastruc-
ture upgrades that are not immediately obvious to you. For example, a 

TABLE 29–2 APPLICABILITY OF THE DEVELOPMENT RESOURCE PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context Resource constraints such as short timescales or limitations on available skills 
may impose constraints on system scope. You may also be dependent on 
constraints in the development teams for systems that you interact with or 
interface technologies you need to use. 

Functional Resource constraints often impose restrictions on functionality and on 
functional qualities such as generality.

Information Complex or particularly sophisticated information models may require a large 
staff of specialists to implement; lack of such staff may impose restrictions on 
your architectural options.

Concurrency Concurrent architectures are often complex to implement, and you will need to 
consider the development and testing time and the skills of your developers 
when designing your architecture.

Development Cost constraints may limit the number of separate development and test 
environments available to you, so you may need to formulate strategies for 
sharing these.

Deployment Again, cost constraints may limit your options for deployment, particularly 
where redundancy and resilience are concerned.

Operational You need to be aware of the cost implications of your proposed operational 
and support architecture.
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new application may require more memory than the standard PC desktop 
provides or more bandwidth than the corporate network can handle. In 
organizations with a large number of geographically distributed users, 
this sort of massive cost can kill a project.

� On large-scale programs, you should consider the impact on of fice space. 
It may be necessary to quickly commission space to house the develop-
ment team, the support team, a test center, or the users. Extra data center 
space may be needed to store a new server farm or large amounts of 
shared disk storage.

� You should be aware of dependencies between development activities and 
of the overall critical path (the sequence of activities that, if a delay occurs 
to any of them, will delay the entire project). Here are some examples.

• You may have mandated a hardware platform that has a long lead 
time for procurement and deployment, such as a mainframe computer 
or specialized hardware built to order.

• You may be dependent on hardware, software, or services delivered by 
a third-party supplier.

• There may be lead times for recruiting and/or training specialized 
personnel.

• A large-scale rollout may have to align with other activities.

Consideration of these aspects provides an essential reality check that the
system you are proposing will ever see the light of day. You may design the
most flawless, performant, and extensible architecture possible, but if build-
ing it would take many years or hundreds of programmers, it will probably
never get off the drawing board.

Another practical concern is that you may find it hard to get access to
stakeholders with specialized business knowledge to help you ensure that the
system you design is fit for purpose and to act as representatives of or proxies
for your end-user customers. While this may not affect your eventual design,
it is bound to elongate the process of requirements validation and architec-
tural definition and will also make it difficult to achieve any real degree of
agility in your development processes.

Activities: Applying the Development Resource 
Perspective
As you develop your architecture, regularly review the development resources
likely to be required to realize it. Feed these findings back to the project man-
agers as early as possible—particularly if new or unexpected resources are
needed (e.g., specific design skills with a new technology or office space that
isn’t already available).
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Your most important activity here is to not forget anything. If you follow
the processes we describe in this book—identifying and engaging stakehold-
ers, creating views, and applying perspectives to these views—you have a
much better chance of success. 

It may be appropriate to support any controversial architectural decisions
with a risk analysis. Discussion of such a risk analysis is outside the scope of
this book (see the Further Reading section for this perspective).

Architectural Tactics
Many traditional software engineering techniques, such as component-based
development, software reuse, and the use of off-the-shelf software libraries,
can contribute to development efficiencies.

An iterative approach to the definition and construction of your system,
such as that espoused by the Rational Unified Process (RUP) or all of the
mainstream agile approaches, can help mitigate risk and uncertainty and can
deliver key benefits early as part of a phased development. In practice, for
complex developments, an iterative approach (as opposed to a big bang
approach) seems to be the only one that has any chance of success.

Perhaps the most important technique is expectation management.
Because of the relative immaturity of our profession, many software develop-
ment projects go over schedule and/or budget, or they fail to deliver all of
their promised improvement. It is essential that you communicate clearly with
your stakeholders about what will be delivered to them and when and that
you obtain their agreement to any compromises you have to make. You might
want to present the quality triangle (see Chapter 2) to your stakeholders to
help explain the slogan “Quality, speed, cost—pick two!”

Some specific techniques that may be relevant include the following.

� Descoping: Reduce the functional scope, or relax some of the required 
system characteristics such as flexibility or scalability, to reduce develop-
ment times.

� Prototyping or piloting: These can help reduce risk (although they also may 
set an expectation that the system is more complete than it actually is).

� Fitness for purpose: Try not to be tempted to develop a system that is 
more sophisticated, complex, or flexible than the users actually need. If 
they want something quick and cheap, that is what you should deliver.

Problems and Pitfalls
In our experience, resource constraints are one of the biggest causes of soft-
ware project delays or failure. Many factors lead to projects being underre-
sourced or optimistically planned. As an architect, you can draw on your own
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experience to identify plans that are unlikely to succeed and suggest alterna-
tive strategies for them.

In addition to straightforward underbudgeting, keep in mind some other
common pitfalls:

� Overly ambitious timescales

� Failure to consider lead times

� Failure to consider physical constraints such as space, power, furniture, 
and so on

� Failure to provide staff training and consider familiarization needs

� Insufficient time and resources for testing, quality assurance, and rollout

� Insufficient time for rework required due to development mistakes, mis-
understood requirements, and unexpected change

� Overallocation of staff, for example, allocating staff to a project five days 
per week when, realistically, a maximum of about four days of produc-
tive work is possible each week

� Difficulty in getting access to stakeholders with the right specialist busi-
ness knowledge

Checklists

CHECKLIST FOR REQUIREMENTS CAPTURE

� Have you understood the project’s key constraints in terms of time and 
budget, as well as the room for maneuvering if your architecture man-
dates extra resources?

� Have you considered physical constraints such as existing capacity, of -
fice space, and availability of personnel?

� Have you balanced the benefits of new or unfamiliar technologies 
against the costs and risks of deploying them?

� Have you understood which compromises are more likely to be accepted 
where resource constraints necessitate this? To what extent would 
stakeholders consider limiting scope, functionality, or even quality? Are 
you sufficiently confident that savings would be realized by making 
such compromises?

� To what extent is there scope for deferring features until future releases 
of software?

� Do you understand which functional and operational principles abso-
lutely cannot be compromised, no matter what the resource impact? 
(Examples might include quality, security, user/customer experience, 
regulatory compliance, and richness of features.)
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CHECKLIST FOR ARCHITECTURE DEFINITION

� To what extent did you base your architecture on technologies already 
familiar to your developer community?

� To what extent did you base your architecture on proven, established 
technologies as opposed to innovative ones?

� Have you assessed your architecture against existing infrastructure 
capabilities (desktop platforms, network infrastructure, and so on) to see 
whether hardware or software upgrades are required?

� Have you included in plans the costs of additional infrastructures for 
disaster recovery, support, acceptance, and training?

� When new or unfamiliar technologies are used, have you considered the 
impacts of staff training and support?

� Is your architecture simple enough to be built and supported by develop-
ment/operations staff who have only recently been trained?

Further Reading
A wealth of material is available on managing projects and risk. The classic
text is [BROO95], in which Fred Brooks coined his famous law of software
engineering which says that “adding manpower to a late software project
makes it later.” Hall [HALL98] is a comprehensive guide to identifying and
managing risk on complex projects in a structured way. McConnell [MCCO97]
is a software project management handbook that focuses on delivering
projects on time and within budget. There are many, many books on agile
project management, and new ones appear all the time, but a representative
group of titles on the popular Scrum approach are [SCHW01] and [COHN09];
[PICH10] provides an interesting perspective, looking at agile development
from the product owner’s point of view. For guidance on the strengths and
weaknesses of agile and plan-driven development, and how to find middle
ground between their extremes, [BOEH03] provides a balanced view.

THE INTERNATIONALIZATION PERSPECTIVE

Desired Quality The ability of the system to be independent from any particular lan-
guage, country, or cultural group

Applicability Any system that may need to be accessed by users or operational 
staff from different cultures or parts of the world, or in multiple lan-
guages, either now or in the future

Continued on next page
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No longer can we assume that the lingua franca of generally available IT systems
is English. Even if the users of the system speak English, the customers they are
dealing with may not; their names may require support for non-English or non-
Western alphabets; and if the system uses the Internet, it may be directly
exposed to customers from any part of the world.

The Internationalization perspective is important, therefore, for any sys-
tem that will have users who speak different languages or come from different
countries. If systems are aimed at a specific locale with no plans to move them
into a wider area, this perspective has limited relevance.

Because of its length, you may sometimes see the word internationaliza-
tion abbreviated as I18N. A related term is localization (sometimes abbrevi-
ated as L10N), which refers to the process of performing the specific work
required to use an already internationalized system in a particular locale (e.g.,
the translation of system messages).

Applicability to Views
Table 29–3 shows how the Internationalization perspective affects each of the
views we discussed in Part III.

Concerns Character sets, text presentation and orientation, specific language 
needs, cultural norms, automatic translation, currency conversions 
and exchange rates, and cultural neutrality

Activities Identification of system touch points, identification of regions of con-
cern, internationalization of code, and localization of resources

Architectural
Tactics

Separation of presentation and content, use of message catalogs, sys-
tem-wide use of suitable character sets (e.g., Unicode), specialized 
display and presentation hardware, and currency conversion 
mechanisms

Problems and 
Pitfalls

Platforms not available in required locales, initial consideration of 
similar languages only, internationalization performed late in the 
development process, incompatibilities between locales on servers, 
insufficient consideration of currency exchange

TABLE 29–3 APPLICABILITY OF THE INTERNATIONALIZATION PERSPECTIVE TO THE SEVEN VIEW

View Applicability

Context Specialist display and data entry hardware may be required for non-
Western languages.

Continued on next page
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Concerns
This perspective addresses the system’s support for the following concerns.

� Multiple character sets: A character set is a mapping from a standard set 
of characters to a list of byte values. Western character sets such as 
ASCII or EBCDIC encode each letter in a single byte, while more complex 
character sets such as Kanji (Japanese) require more than one byte per 
character. Unicode is a two-byte character set that attempts to encapsu-
late all modern written languages.

� Differently oriented text presentation (horizontal, vertical, left to right, 
right to left): Some non-European languages such as Urdu are written 
right to left, for example.

View Applicability

Functional The functional structure may need to reflect how presentation is sep-
arated from content. General functionality should be independent of 
location.

Information The Information view defines which stored information needs to be inter-
nationalized and how this will be achieved. If data needs to be stored or 
presented in different units of measurement, you may need to define strat-
egies to do this to an appropriate level of precision. If currency conversion 
is involved, you will need to identify a source of appropriate exchange 
rates and define how you will get access to this data.

Concurrency This perspective has minimal impact on the Concurrency view.

Development The Development view will need to reflect the impact of these factors 
on the development environment. For example, internationalized 
test data may be required, or early access may be needed to special-
ized devices. User-visible messages must be populated into catalogs.

Deployment The deployment environment may need to take into consideration 
such items as internationalized input and presentation devices. 
Don’t forget that your underlying software and hardware platforms 
need to support the languages you’re working with—there is little 
point in supporting Urdu if your operating system or relational data-
base management system doesn’t support it. Similarly, the underly-
ing platform needs to be internationalized (e.g., to have the ability to 
store Unicode in data stores).

Operational The Operational view may need to consider what functionality is 
provided to support the maintenance and administration of localized 
information and services, and how support will be provided to 
different locations.

TABLE 29–3 APPLICABILITY OF THE INTERNATIONALIZATION PERSPECTIVE TO THE SEVEN VIEW (CONTINUED)
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� Language-specific concerns, such as:

• Pictographic languages (e.g., Chinese, Japanese), which represent 
words using pictures or symbols rather than a limited alphabet

• Use of different languages to present static information (e.g., screen 
prompts, report headings and titles, error messages, online help and 
reference documentation, printed documentation such as user 
manuals and training materials)

• Different spelling within the same broad language (e.g., British versus 
American English)

• Different usage, meaning, or significance of the same words or 
phrases in different cultures

� Different cultural norms, such as:

• Different units of measurement (metric, imperial, and so on) and 
automatic conversion of data between these, while maintaining 
suitable precision

• Different date, time, and currency display and data entry formats
• Different output sizes (paper, screens, and so on)

� Financial and political differences, particularly different currencies (with 
varying exchange rates).

� The automatic translation of dynamic information for display or printing.

� Cultural neutrality, in other words, avoiding concepts that certain groups 
understand but others do not. This is most difficult to define or measure 
and is particularly important when systems rely heavily on metaphors or 
have highly graphical or abstract presentations.

You should consider all of the system’s devices (screens, printers, key-
boards, and so on) when addressing these concerns.

Activities: Applying the Internationalization Perspective
A simple process follows.

� Identify all places where a person interacts with the system (the touch points).

� Identify the scope of services and information that need to be interna-
tionalized at each of these touch points.

� Identify the system’s regions of concern (the types of countries and 
locales from which the system can be touched and the speci fic set of 
locales if available).

� Develop an architectural approach and, where appropriate, a more 
detailed solution that meets these requirements.

� Bench-test the solution against the requirements.
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Architectural Tactics
Successful internationalization depends on a clear separation of presentation
and content. Screens can be created on the fly with titles, headings, and
prompts pulled from library text in the appropriate language.

In many systems, information and error messages are held in dynamic
message databases, with variable parameters inserted at runtime. Even if you
are not concerned with internationalization, this useful technique gives you
much greater flexibility over message content.

To be compatible with the widest range of character sets, you should use
a multibyte character set such as Unicode. Note, however, that many render-
ing devices do not support this fully, and it has sizing implications for the
storage of large amounts of text data.

You may need to make use of specialized display and presentation hard-
ware, such as Kanji keyboards for the entry of Japanese text.

If your system needs to deal with different currencies, you will need to
provide mechanisms to convert from one to another, automatically or on user
request, and will need a source of up-to-date exchange rates (current and
possibly historical as well). You may need to store money values in more than
one currency rather than calculate them when needed.

Problems and Pitfalls
Here are some common pitfalls to keep in mind for the Internationalization
perspective.

� Unavailability of the underlying platform in the correct locale.

� Consideration of only languages similar to your own when planning 
internationalization (e.g., forgetting about Asian languages and investi-
gating just Western ones or vice versa). 

� Attempts to internationalize the system late in the development cycle. 
This can be very expensive and disruptive. You don’t need to do all the 
localization initially, but it’s important to build in the internationaliza-
tion mechanisms early.

� Incompatibilities between different locales on servers (e.g., some plat-
forms may not support both Chinese and Japanese on the same 
server). 

� Insufficient consideration given to currency conversion (e.g., what 
exchange rates to use, where to obtain up-to-date rates, failure to store 
historical rates or historical money values). 
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Checklists

CHECKLIST FOR REQUIREMENTS CAPTURE

� Have you agreed with stakeholders on the extent to which systems 
must be operable in different languages or countries, either now or in 
the future?

� Have you considered all points at which the system has any human 
interaction? For example, have you considered operational management 
and monitoring of the system or printed forms sent to customers to be 
filled in?

� Have you identified whether there is a requirement for non-Western 
character sets such as Kanji, which have special requirements for entry 
and presentation of data?

� Does your analysis consider all types of interaction—screens, keyboards, 
printed reports, and so on?

� If the system needs to convert between different units of measurement, 
have you considered how this will be done while retaining suitable data 
precision?

CHECKLIST FOR ARCHITECTURE DEFINITION

� How confident are you that the architecture will meet all the require-
ments? When you are not, are mitigating activities in place (such as a 
proof-of-concept)?

� Do the interactive elements of your architecture sufficiently separate 
presentation and content to meet the system’s internationalization 
objectives?

� If non-Western character sets such as Kanji must be supported, do your 
input and output devices accommodate these?

� If standard text must be presented in multiple languages, have you 
designed facilities for maintaining such information?

� Does your system sizing take into consideration the extra capacity (disk stor-
age, network bandwidth, and so on) required for multibyte character sets?

Further Reading
Luong et al. [LUON95] is a thorough explanation of the process required to
create internationalized software by a team that worked together at Borland,
internationalizing a number of products including C++ and dBase. Microsoft
published a comprehensive guide to developing internationalized applications
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on Microsoft’s operating systems [INTE02]. Lund [LUND09] is the de finitive
book on handling Chinese, Korean, Japanese, and Vietnamese data.

THE LOCATION PERSPECTIVE

The Location perspective addresses the problems that arise when systems or
system elements are physically distant from one another. If all elements are
located in the same place, you can usually disregard this perspective.

Be aware, however, that the physical separation of elements may not
always be immediately obvious. For example, many systems have disaster
recovery sites that are physically distant from the main operational site or
may rely on links to external, distant systems. Such an architecture presents a
number of challenges that you should address through this perspective.

Applicability to Views
Table 29–4 shows how the Location perspective affects each of the views we
discussed in Part III.

Desired Quality The ability of the system to overcome problems brought about by the 
absolute location of its elements and the distances between them

Applicability Any system whose elements (or other systems with which it interacts) 
are or may be physically far from one another

Concerns Time zones of operation, network link characteristics, resiliency to 
link failures, wide-area interoperability, high-volume operations, 
intercountry concerns (political, commercial, and legal), use of the 
public Internet, and physical variations between locations

Activities Geographical mapping, estimation of link quality, estimation of 
latency, benchmarking, and modeling of geographical characteristics

Architectural
Tactics

Avoidance of widely distributed transactions, architectural plans for 
wide-area link failure, and allowance for offline operation

Problems and 
Pitfalls

Invalid (wide-area) network assumptions; assumption of single-point 
administration; assumption of one primary time zone; assumption of 
end-to-end security; assumption of an overnight batch period; failure 
to consider political, commercial, or legal differences; assumption that 
public networks are high-bandwidth, low-latency, and highly avail-
able; and assumption of a standard physical environment
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Concerns
The Location perspective addresses a number of concerns.

� If system operation is time-dependent (as virtually all systems are), you 
must consider the impact on its operation of the different time zones and 
the overlapping of the operational day in different parts of the world. For 
example, when it is afternoon in London, it is late evening in Sydney and 
early morning in New York. The system may need to be able to operate 
simultaneously in online mode and in overnight mode.

� If elements are geographically very distant but need to communicate 
efficiently and seamlessly, wide-area network bandwidth, latency, 
reliability, and resilience become important.

� If elements are distant, connectivity is typically less reliable than when 
they are nearby. The architecture may need to accommodate situations 
where wide-area connectivity has been lost for a time, but a (possibly 
degraded) service must continue to be provided.

TABLE 29–4 APPLICABILITY OF THE LOCATION PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context It may be useful to identify the location of external components in the Context 
view, to highlight the risk of poor availability or network latency.

Functional The Functional view is often presented independently of real-world location 
concerns; typically, these are modeled in the Deployment view.

Information If data is highly distributed, the Information view should describe how infor-
mation is kept synchronized, what update latencies are expected, how tempo-
rary discrepancies are handled, and how information is transferred between 
locations.

Concurrency Concurrent processing across highly distributed parts of the system is likely to 
be problematic for reliability and latency reasons. The concurrency approach 
chosen may need to change in order to accommodate location realities.

Development If system development is spread over multiple locations, the Development view 
needs to explain how software will be managed, integrated, and tested.

Deployment The Deployment view must consider how systems are physically rolled out to 
disparate locations in a controlled, synchronized way and what is needed in 
order to test and accept this rollout. Significant issues such as latency, lead 
times, and costs are often associated with the selection and rollout of wide-area 
networks.

Operational The Operational view needs to consider how widely distributed systems are 
monitored, managed, and repaired.
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� If communications are required over heterogeneous networks between 
elements in different countries, there may be issues related to compati-
bility and interoperability of protocols.

� If there is a need to perform high-volume operations remotely over the 
wide-area network, such as distributed backups or distributed software 
updates, you must consider the bandwidth and response implications of 
these.

� You may need to address the political, commercial, and legal implications 
of your location. For example, systems may be subject to different laws 
and regulations (which you can also address in the Regulation perspec-
tive), taxation regimes, working practices, and so on.

� If your architecture relies on the Internet for some of its interactions, par-
ticularly mobile Internet, you can no longer assume you have high-band-
width, low-latency, highly available connectivity for these components, 
and you should develop architectural strategies to mitigate this.

� The system may even need to accommodate differences in the physical 
characteristics of different locations, such as the type or reliability of 
electrical supply, the availability of telecommunication links, or even 
extremes of temperature or climate.

Activities: Applying the Location Perspective
A simple process follows.

� Map each physical component to a geographical location.

� Consider the physical distance and the communications infrastructure 
between each of these components.

� Capture and obtain agreement on operational requirements (response, 
latency, reliability, and so on) over each of these interfaces.

� Take into account any political, commercial, or legal implications. (We 
further discuss legal implications in the section on the Regulation per-
spective later in this chapter).

� Develop an architectural approach and, where appropriate, a more 
detailed solution that meets these requirements.

� If a system’s reach crosses national boundaries, you may want to create 
some models.

• You can model the 24-hour day across the time zones in the countries 
of operation and consider what the system will be doing while it is 
daytime in one zone and nighttime in another. If you need downtime 
for overnight batch processing, for example, how will this be 
accommodated if the system has to provide uninterrupted service? 
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• You can create a geographical model of system location to help 
understand the impact of long distances on information flows, 
multistep processes, and so on. Remember that, in general, the further 
dispersed the end points are, the worse your latency and reliability 
will be. 

� Bench-test the solution against requirements.

Architectural Tactics
You should generally avoid transactions that rely on the availability of
widely distributed elements. However, this is not always possible, particu-
larly in service-based architectures. In such cases, you can provide resilience
in a number of ways. (Note that this area is very complicated and specialized,
and we can only skim the surface in this book.)

The simplest approach is to minimize or remove the possibility of net-
work failure by providing standby routes to use if the main route goes
down. Modern protocols, particularly IP, provide this rerouting automati-
cally, but your architecture still needs to include the standby network hard-
ware and sufficient emergency bandwidth. When this isn’t automated, you
also need to consider the processes whereby traffic reroutes from one pipe to
another. Essentially, in this model, the network is as much a part of the
disaster recovery infrastructure as the computers are and must be designed
to support this.

A more sophisticated solution is to provide the ability to work in offline
mode. This may be an essential feature if resilient communications cannot be
guaranteed, or if you use the Internet as part of your overall network architec-
ture (for example, if your customers are using a Web browser to access your
services). 

EXAMPLE Banks and other types of retail financial institutions typi-
cally operate numerous widely distributed small branches. Although 
these branches may be semiautonomous, many processes require access 
to centrally located systems (in the data center or head office).

Financial transactions, for example, may need to be centrally autho-
rized to reduce the risk of fraud; customer or account data may be man-
aged on a central server to make it universally available; regulatory 
requirements may mandate that information be collated centrally and 
passed on to the relevant authorities.
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In such a scenario, it is essential that local systems be able to operate
offline, in other words, without connectivity to central servers. Typically this
solution will “stack up” transactions to be applied when connectivity is
restored.

Problems and Pitfalls
Here are some common pitfalls to keep in mind for the Location perspective:

� Assuming that networks are infinitely fast and have infinite capacity, 
zero latency, and 100% reliability

� Assuming that one administrator will provide management and support, 
rather than a team of administrators spread across multiple locations, 
time zones, and languages

� Assuming a single time zone for all significant operations

� Assuming that the entire end-to-end network is secure, when in reality 
much of it may run over uncontrolled third-party equipment

� Assuming the availability of an overnight batch period of operation for a 
system that has worldwide reach

� Failing to investigate (e.g., through expert local advice) the political, 
legal, and commercial environments of geographical areas unfamiliar to 
you

� Assuming that public networks are always high-bandwidth, low-latency, 
and highly available

� Assuming that the physical environment (temperature, physical security, 
power supply, networking availability, and so on) will match that of the 
primary site

The volume of traffic from any one local branch to the central site, 
however, is probably fairly small. It is not cost-effective, therefore, to 
use high-bandwidth resilient communications, and typically a solution 
such as ISDN or even dial-up will be deployed.

However, if communications are interrupted for any reason, the 
branches must be able to continue operations, possibly with a degraded 
level of service. If branches cannot accept financial transactions, the 
bank will soon go out of business.
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Checklists

CHECKLIST FOR REQUIREMENTS CAPTURE

� Have you understood and agreed on the physical location of each compo-
nent of the architecture?

� Do you understand the requirements for throughput, response time, 
availability, and resilience for all connections between geographically 
distributed components?

� Are the performance and reliability expectations of the wide-area net-
work realistic and achievable within the time and budget constraints and 
the capabilities of the available network infrastructures?

� If appropriate, have you understood and agreed on how the system will 
accommodate simultaneous operation in multiple time zones?

� If there is a requirement for separate online and batch modes of working, 
is this compatible with the need to operate in multiple time zones around 
the world?

� Have the bandwidth and response time requirements of high-volume 
operations such as distributed backups or distributed software updates 
been understood and approved?

� If there is a requirement to support offline operation when wide-area 
connectivity is not available, are the service-level requirements for these 
clear and achievable?

� Do the requirements take into account the legal and political implications 
of operating in different countries?

� If your architecture relies on the Internet for some of its interactions, are 
the requirements for bandwidth, latency, and availability realistic?

� Has the network infrastructure between sites been factored into disaster 
recovery requirements and plans?

CHECKLIST FOR ARCHITECTURE DEFINITION

� How confident are you that the architecture will meet all the require-
ments? When you are not, are mitigating activities in place (such as a 
proof-of-concept)?

� If there is a requirement to support offline operation when wide-area 
connectivity is not available, does the architecture incorporate features to 
recover and resubmit information when connectivity is restored? Will 
these complete within an acceptable period of time?

� If your architecture relies on the Internet for some of its interactions, 
have you developed architectural strategies to mitigate interruptions to 
service or poor bandwidth or latency?
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� Do the disaster recovery capabilities of the architecture extend to the 
connectivity between distant locations?

Further Reading
This area doesn’t get much attention in the written literature, and we aren’t
aware of any books that specifically address geographical-location-related
concerns for large systems.

THE REGULATION PERSPECTIVE

Unlike other system qualities, compliance with the law is an area where you
cannot make compromises. Although you may be able to live with a system
that is slow, occasionally unreliable, or potentially insecure, a system that
does not comply with legal regulations may be prevented from going into pro-
duction or may expose the organization to risk of prosecution.

Applicability to Views
Table 29–5 shows how the Regulation perspective affects each of the views
we discussed in Part III.

Desired Quality The ability of the system to conform to local and international laws, 
quasi-legal regulations, company policies, and other rules and stan-
dards

Applicability Any system that may be subject to laws or regulations

Concerns Statutory industry regulation, privacy and data protection, cross-
border legal restrictions, data retention and accountability, and 
organizational policy compliance

Activities Compliance auditing

Architectural
Tactics

Assessment of architecture against regulatory and legislative require-
ments

Problems and 
Pitfalls

Not understanding regulations or resulting obligations, and being un-
aware of statutory regulations
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Concerns
Software systems are potentially subject to a wide range of legislation. Most
obvious are any laws that apply directly to the problem the system is intended
to solve. For example, an accounting system needs to comply with financial
regulations, or a human resources system with employment law.

However, many types of legislation may apply to systems regardless of
what they actually do.

� Company law: A number of wide-ranging laws on corporate governance 
and management have been passed in recent years, such as the Sar-
banes-Oxley Act in the United States, that may have regulatory implica-
tions for your system. This issue is hugely complex and you must seek 
expert advice if you think you are affected.

� Finance: This legislation can be frighteningly complex, with severe pen-
alties for noncompliance. It covers a broad spectrum, including 
measures against fraud and money laundering, rules about corporate 
accounting, regulations for local and national taxation, the regulation 
of banking and credit, and requirements for fair and open treatment of 
customers.

TABLE 29–5 APPLICABILITY OF THE REGULATION PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context Application of this perspective may unearth requirements to interface with 
internal or external auditing or regulatory reporting systems.

Functional Regulations can have a significant impact on what the system does and how it 
works.

Information Especially in Europe, there is a great deal of legislation related to the retention, 
use, and manipulation of personal information. The impact on the Information 
view may include privacy, access control, retention and archive, audit, avail-
ability, and distribution.

Concurrency This perspective has little or no impact on the Concurrency view.

Development This perspective has little or no impact on the Development view, although if 
production (live) test data is to be used, there may be restrictions on this.

Deployment This perspective has little or no impact on the Deployment view, although 
health and safety legislation could have an impact on the hardware deployed.

Operational Specific operational tools and processes are often required to manage and over-
see regulatory reporting activities (e.g., monitor conformance to reporting 
SLAs).
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� Data protection: More so in Europe than in North America (e.g., the Data 
Protection Act of the United Kingdom), this sort of legislation can impose 
stringent conditions under which personal data can be captured, stored, 
used, and retained, with severe penalties for noncompliance.

� Data retention: This is especially important when financial transactions 
or contractual agreements are involved. Financial regulations in most 
countries, for example, impose the requirement to archive financial
transactions for a number of years before they can be destroyed. (Note 
that this does not necessarily mean electronic format, either: It may be 
necessary to keep paper copies or microfiche.)

� Disability and antidiscrimination: We discussed this earlier when we 
covered the Accessibility perspective.

� Health and safety: There is a small but significant category of IT-related 
industrial injuries such as eyestrain, repetitive stress injuries, and so 
forth. Incorrect or inappropriate use of computer equipment can cause 
harm to the users and impose liability on employers.

� Environment: These laws may necessitate disposing of waste in an eco-
friendly way or reaching targets for the use of recycled materials.

� Law enforcement: In recent years, a number of laws (the USA PATRIOT 
Act in the United States, the Regulation of Investigatory Powers Act in 
the United Kingdom) have been passed that impose requirements on 
organizations to support the activities of law enforcement and antiterror-
ism agencies. Some of these laws have attracted controversy due to their 
wide-ranging scope.

� Protection of corporate assets: This includes areas such as protection of 
corporate brands, trademarks, and copyright as well as Digital Rights 
Management, which restricts access to content such as prerecorded music 
held in digital form.

In addition to considering national and local laws, you also may need to
take into account foreign or international laws if your system—particularly if
it makes use of the Internet—has a presence in other countries. For example,
some countries, particularly the United States, place severe restrictions on the
export of some technologies such as encryption, although these constraints
have been somewhat relaxed in recent years.

You may also need tools and mechanisms to monitor the regulated
aspects of your system; for example, a financial system may need to be able
to monitor compliance with SLAs for the time taken to report financial trans-
actions or other activity to regulators and escalate exceptions or degradation
in performance for user attention.

Even if your system is completely legal, you need to assess it against the
organization’s own internal policies for security, backup and restore, disaster
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recovery, and any business or technology standards that may be mandated or
recommended.

Activities: Applying the Regulation Perspective
It is difficult to define a formal process here. You need to identify all relevant
regulations (specialist stakeholder involvement will be required) and then
assess your architecture for compliance.

Conformance to directly applicable regulations (such as employment law
for a human resources system) should be implicit in any speci fication of
requirements. However, although stakeholders will typically understand the
law as it applies to their area of interest, you may have to bring in outside
experts to consider areas such as data protection, health and safety issues, or
environmental protection. Do not complacently assume that these do not
apply to software systems; this can be a very costly mistake to make.

Architectural Tactics
There are no solutions specific to this perspective. Rather, you should assess
your architecture against regulatory and legislative requirements as we dis-
cussed earlier.

Problems and Pitfalls
Here are some common pitfalls to keep in mind for the Regulation perspective:

� Not understanding complex regulations fully

� Not fully understanding the obligations implied by regulations

� Being unaware of regulations entirely because you are new to a domain 
or because the law is changing so quickly

Checklists

CHECKLIST FOR REQUIREMENTS CAPTURE

� Have you identified all legislation that applies to the functionality the 
system supports (e.g., employment law for a human resources system, or 
banking law for a financial system) and assessed the architecture for 
compliance with these?

� Have you identified the generic legislation that applies to software sys-
tems (e.g., health and safety, the environment, data protection) and as-
sessed the architecture for compliance with these?
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� Have you determined whether the system can be considered as touching 
on other countries in any way, and if so, what legislation it may be sub-
ject to as a result?

� Have you considered international law such as technology export 
restrictions?

� Have you identified the relevant internal business and technology regu-
lations and standards? Have you assessed the architecture for compli-
ance with these?

� If legislation requires registration with governmental agencies (e.g., the 
Data Protection Registrar in the United Kingdom), have you applied for 
this registration, or do you have plans to make this happen?

� Do your archive and retention plans conform to all applicable legislation?

CHECKLIST FOR ARCHITECTURE DEFINITION

� Does your architecture accommodate any required automated interfaces 
to regulatory bodies (e.g., automatic upload of accounting or taxation 
information)? Do these interfaces conform to prescribed business and 
technical standards?

� Does the architecture conform to any mandated technical standards?

Further Reading
Because regulations can change quickly and vary from country to country, we
recommend that you obtain further information from the relevant authorities.

THE USABILITY PERSPECTIVE

Desired Quality The ease with which people who interact with the system can work 
effectively

Applicability Any system that has significant interaction with humans (users, op-
erational staff, and so on) or that is exposed to members of the public

Concerns User interface usability, business process flow, information quality, 
alignment of the human–computer interface (HCI) with working prac-
tices, alignment of the HCI with users’ skills, maximization of the per-
ceived usability, and ease of changing user interfaces

Activities User interface design, participatory design, interface evaluation, and 
prototyping

Continued on next page



596 PART IV � THE PERSPECTIVE CATALOG

Applying the Usability perspective ensures that the system allows those who
interact with it to do so effectively. This perspective tends to focus on the end
users of the system but should also address the concerns of any others who
interact with it directly or indirectly, such as maintainers and support personnel.

Getting usability right can have a significant impact on the success of the
system, so it is perhaps surprising that this perspective is all too often
neglected. Usability is not just about making life easier for your stakeholders:
It can significantly affect the success of your system. If you design a system
that is awkward to use, meets users’ needs poorly, or fails to help them do
their jobs better, your users will do everything in their power not to use it.
You may find yourself deploying a white elephant—destined never to see the
light of day.

It is easy to get bogged down in details here that are more appropriate to
consider during design. With the Usability perspective, focus on architectur-
ally significant issues, that is, ones that involve multiple stakeholders or have
far-reaching impact. You should aim to “set the tone” for the way that users
will interact with the system and to drive the production of principles, stan-
dards, and user interface templates (or you may even need to produce some of
them yourself).

Applicability to Views
Table 29–6 shows how the Usability perspective affects each of the views we
discussed in Part III.

Architectural
Tactics

Separation of user interface from functional processing

Problems and 
Pitfalls

Failure to consider user capabilities, failure to use human–computer 
interface specialists, failure to consider how concerns from other per-
spectives affect usability, overly complex interfaces, assumption of a 
single type of user access, design based on technology rather than 
needs, inconsistent interfaces, disregard for organizational standards, 
and failure to separate interface and processing implementations

TABLE 29–6 APPLICABILITY OF THE USABILITY PERSPECTIVE TO THE SEVEN VIEWS

View Applicability

Context The Usability perspective does not typically have much of an impact on the 
Context view.

Continued on next page
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Concerns
This perspective addresses a wide range of rather loosely related concerns.

� The obvious concern is the usability of the user interface. (Remember 
that we are considering not only the end users of the system but also any 
person who interacts with it, such as operations staff, support personnel, 
maintainers, or trainers.)

� Process flow around the system should be simple, understandable, and 
consistent, especially when processes are complex, comprise multiple 
steps, or involve different types of users. Clear and straightforward pro-
cess flow increases the likelihood of tasks being completed correctly and 
in a timely manner.

� Information quality has a large impact on usability. The provision of accu-
rate, relevant, consistent, and timely data is essential to the efficient oper-
ation of any system. If information cannot be relied on, is not trusted, or is 
known (or believed) to be of poor quality, systems may not be used or 
may be used in a way other than the way their designers intended.

� The architecture should align with current (or planned) work practices. 
When this does not happen, you should rework it, or you may need to 

View Applicability

Functional The functional structure indicates where the system’s external interfaces are 
and thus where usability needs to be considered. It may be impacted by usabil-
ity needs (e.g., the addition of interface services to support certain interaction 
styles) but is unlikely to be changed significantly.

Information Information quality (the provision of accurate, relevant, consistent, and timely 
data) can have a large impact on usability.

Concurrency This perspective typically has little or no impact on the Concurrency view.

Development The results of applying the Usability perspective impact the Development view 
in terms of the guidelines, standards, and patterns that ensure the creation of a 
consistent and appropriate set of user interfaces for the system. 

Deployment This perspective has little or no impact on the Deployment view, although 
usability concerns could require changes to element deployment (e.g., due to 
response time requirements).

Operational The Usability perspective should consider the usability needs of the system’s 
administrators. For example, your logging and error-handling strategies should 
ensure that important information is highlighted in a useful way and that oper-
ational staff are not flooded with error messages they end up ignoring.

TABLE 29–6 APPLICABILITY OF THE USABILITY PERSPECTIVE TO THE SEVEN VIEWS (CONTINUED)
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drive through some business changes. Business changes are particularly 
likely when implementing a general-purpose package for areas such as 
human resources, customer relationship management, or enterprise 
resource planning. Note that business change driven as a result of tech-
nology deployment is a very thorny activity for architects.

� The architecture should align with the current or planned skills of users. 
When this is not the case, your plans should include provision for staff 
training.

� You should understand and be aware of perceived rather than actual sys-
tem qualities such as reliability and performance. Here are some exam-
ples.

• Making use of asynchronous transactions, where control returns to 
the user before the transaction has completed in the database, can 
provide significant improvements in observed response times.

• Allowing local systems to continue operating in offline mode even 
though links to remote systems are down can deliver high perceived 
availability even when the underlying network is of relatively poor 
quality.

These approaches add to the complexity of the architecture, however, 
so you must balance them against the difficulty of repairing data if asyn-
chronous activities fail.

� The ease (or difficulty) of changing user interfaces can impact a system’s 
usability. Difficult-to-change interfaces make it less likely that user feed-
back will be incorporated through routine modifications.

Activities: Applying the Usability Perspective
A simple process follows.

� Identify all places where people may interact with the system (touch 
points).

� Understand how users will interact with the system at each touch point. 
Are they performing quick, atomic transactions such as checking an 
account balance or the status of an order, or something more measured 
such as browsing a catalog or doing some research?

� Understand the users’ capabilities: How experienced are they at using 
computers and the interface technologies you have speci fied in your 
architecture? How experienced are they in the application or business 
function your system supports? How much training (if any) will they 
receive?



CHAPTER 29 � OTHER PERSPECTIVES 599

� Understand the context in which the system will be used. Is it an internal 
system that is tightly controlled and managed, or will it be exposed to the 
general public on a variety of platforms?

� Develop an architectural approach and, where appropriate, a more de-
tailed solution that meets these requirements.

� Bench-test the solution against the requirements.

It is becoming increasingly common to bring in outside expertise (e.g., for
graphic design and marketing) when designing interfaces exposed to the pub-
lic. This helps ensure that the interface is not only functional and easy to use
but also aesthetically pleasing and that it conveys the right sales and market-
ing messages.

Architectural Tactics
The solutions relevant to the Usability perspective depend highly on the type
of system being built, the capabilities and experience of the people who will
use it, and the means by which they will access it. There are a number of spe-
cific approaches to designing particular types of interfaces (see the Further
Reading section for this perspective).

One basic architectural principle to keep in mind is separating the imple-
mentation of the user interface from the functional processing. If the interface
implementation is tangled with the functional processing, it becomes much
harder to change or replace the interface than it would be if the two are
cleanly separated components. Having the interface as a separate component
allows for much easier experimentation and change as a result of user feed-
back and could also enable simultaneous use of a number of alternative inter-
faces if desired.

Problems and Pitfalls
Here are some common pitfalls to keep in mind for the Usability perspective:

� Failing to take into account the capabilities, expertise, and experience of 
your users when designing interfaces

� Failing to bring non-IT professionals (e.g., marketing or graphic design 
specialists) into the architecture definition process

� Failing to consider how other perspectives—particularly Availability and 
Resilience, Performance and Scalability, and Internationalization—can 
impact usability

� Creating overly complex or inappropriately feature-stuffed interfaces
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� Assuming a single type of user access (e.g., for Web and mobile plat-
forms, assuming that all users have a high-bandwidth connection, fast 
processor, high-resolution color display, and so on)

� Crafting the interface around the technology rather than being driven by 
the business process and the needs of the users

� Using inconsistent or haphazard approaches to data entry validation, 
error management, user help, and so on

� Failing to comply with strict corporate guidelines for presentation (such 
as the use of fonts, logos, terminology, and punctuation) for externally 
visible interfaces such as Web pages

� Implementing the interface and the functional processing together with-
out clear separation between them

Checklists

CHECKLIST FOR REQUIREMENTS CAPTURE

� Have you identified all of the system’s key touch points?

� Have you identified all of the different types of users who will interact 
with the system?

� Do you understand the type of usage (occasional, regular, transactional, 
unstructured) for each of the touch points?

� Have you taken into account the needs of support and maintenance staff 
and other second-line users?

� Do you understand the capabilities, experience, and expertise of the sys-
tem’s users? Have you correctly mapped these into requirements for pre-
sentation and support?

� Have you taken into account any corporate standards for presentation 
and interaction, particularly for systems exposed to the public?

CHECKLIST FOR ARCHITECTURE DEFINITION

� For Web and mobile platforms, have you considered the variation in 
bandwidth, hardware capabilities (screen resolution), and rendering 
software?

� Do the interface designs align in a sensible way with the business pro-
cesses they are automating?

� If your system is exposed to the general public, have you obtained any 
necessary approvals from your marketing department for the use of com-
pany logos and so on?
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Further Reading
One of the earlier books on the topic, Nielsen [NIEL94], has an extensive bib-
liography, and the author runs a Web site extolling his practice and principles.
The approach of Alan Cooper, another well-known name in the field, can be
found in [COOP07]. Shneiderman [SHNE09] is a readable book that takes the
jargon and mystery out of the field of human–computer interactions. Bass
and John [BASS01] describes a technique for making reasoned decisions
about usability tradeoffs in an architectural context.

The Usability Professionals’ Association (www.upassoc.org/), which sup-
ports the work of professionals in this field, publishes a magazine, a process
for usability design, and much other material.

www.upassoc.org/
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30
WORKING AS A SOFTWARE
ARCHITECT

n Parts I through IV, we explained the principles that underpin the role of the
architect, the importance of your role in project delivery, the process of soft-

ware architecture, and some of the pitfalls you are likely to encounter. We also
introduced three key concepts—stakeholders, viewpoints, and perspectives—and
explained how to create an effective architecture and capture it in a sound AD.

We have presented a lot of information along the way, and when you con-
sider how to apply it, you may wonder where on earth to start! In this final
chapter, we describe how to put into practice the guidance in this book,
explaining when it is relevant during different project lifecycles and how to
apply it to different types of projects.

ARCHITECTURE IN THE PROJECT LIFECYCLE

As we explained in Part II, you’ll be closely involved in the development of your
system throughout the project lifecycle, but the nature of your involvement and
when it occurs may vary depending on the kind of project you are involved in.
Every project is different, but it is possible to classify projects into some broad
categories based on attributes like their size and development approach. In this
section we discuss some of the common types of projects that we’ve been
involved in and explain the activities that we have found to be most important
for each. We suggest your key focus areas and tasks for each project type and
refer you to the appropriate parts of the book for further information.

I
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Architecture in Small and Low-Risk Projects
We define small projects (by which we really mean those with relatively low
risk) as projects with fewer than ten people who are collocated, where it is
possible to deliver working software at least every month, and where the
problem being solved is well understood or the impact of project failure on the
organization is low.

A “small” project by definition does not involve a lot of time or effort
and will have little slack built into its schedule, so there is the danger of
architecture work being seen as unnecessary overhead. This means that
there is a real need to identify the benefits of the architecture work to the
project and to minimize the amount of it by focusing on its specific problems
and risks. Unless you discover unexpected risks that will have a significant
impact on the organization (in which case you probably no longer have a
“small” project), minimalism needs to be the guiding principle for your
architecture work.

The way to approach smaller projects is to scale the architecture work to
the scale of the risks really facing the project. For example, it is tempting to
complete a full security analysis and threat model because it is the “right”
thing to do. However, if this is an internal departmental system managing rel-
atively low-risk information, a brief threat assessment and the application of
very standard authentication and authorization policies are likely to suffice.
Remember that small projects are simpler, are expected to deliver something
quickly, and by definition have small downside risks if things go wrong, so
there is less need to analyze everything to the degree needed for a larger
project.

Dealing with stakeholders is also usually relatively straightforward on a
small project because there will be fewer of them (in some cases only one or
two) and the decisions and tradeoffs that you are asking them to make are
usually much simpler than for a large and complicated project.

Similarly, communication within the development team and with other
technical stakeholders can be more direct and less formal than with a large
geographically distributed project, where there are more complicated con-
cerns, decisions, and structures to communicate. In a small project you may
well be able to capture most of your architectural description using collabora-
tive tools like wikis rather than formal documents.

Finally, bear in mind that unless the purpose of the project is to act as a
proof-of-concept for a new technology or approach, small projects can often be
designed using fairly conservative, proven technology choices, which further
reduce risk and the need for extensive architectural description.

Table 30–1 summarizes the key architectural activities for small projects.



CHAPTER 30 � WORKING AS A SOFTWARE ARCHITECT 607

Architecture in Agile Projects
In recent years, many successful software development teams have adopted an
agile approach to software development, following the principles of the Agile
Manifesto and usually basing their approach on one of the well-known agile
methods such as XP or Scrum. Well-run agile projects are characterized by dis-
ciplined, self-organizing teams who have a very well-defined set of lightweight
ceremonies and an effective set of software development practices that they use
in an adaptive and iterative software development approach that allows them to
deliver working software very frequently and to rapidly react to changing prior-
ities and circumstances. Scrum is probably the best-known management
approach for agile projects, and some of the common technical practices found
in agile teams are test-driven development, automated testing, continuous inte-
gration, refactoring, and sometimes pair programming.

While agile development is often used on smaller projects, it has been
successfully scaled to quite large ones, and so this is why we discuss working
with agile teams separately from working with small projects (which may or
may not be agile, depending on how the development team is managed).

TABLE 30–1 KEY ARCHITECTURE ACTIVITIES FOR SMALL PROJECTS

Description
Further
Information

Confirm scope and external interfaces to ensure that the project stays small, with 
an acceptable level of risk.

Chapter 16

Review the required quality properties to identify any unexpected risk areas that 
may need more attention.

Part IV

If possible, identify an architectural style, using proven ideas and technologies, 
to provide the overall architectural structure for the project.

Chapter 11

Create a minimal architectural description for the most important aspects of the 
architecture, focusing on a small number of key views to address the key risks 
that the project faces.

Chapter 13 
and Part III

Consider a lightweight architectural review, such as a TARA review, in order to 
assess the system as it is being constructed, and identify any architectural 
problems that need rectification.

Chapter 14

Ensure that the software development environment is suitable for the scale of 
the project and that it supports good software engineering practices 
(e.g., configuration management, automated testing, continuous integration).

Chapter 20

Review the testing that is being performed to ensure its coverage and in particular 
that the system meets any important quality property requirements that it has.

Bibliography
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We briefly discussed working with agile teams in Chapter 7 and Chapter
12. We have found that the key to working with agile teams is to align the ar-
chitecture work that needs to be done with the culture of the development
teams you’re working with. Good agile teams are self-organizing and create
their own culture and approach, so the most productive way to work with them
is to work sympathetically with that approach. Agile teams and software archi-
tects should have a lot in common, as they’re both interested in ef ficiently de-
livering software to meet stakeholder needs, while flexibly allowing for change.
There are, however, cultural differences between how many software architects
work and the way that agile teams work, not least of which is the tension over
the amount of design that needs to be performed early in the lifecycle and the
amount of documentation that is needed to capture the design.

The area where software architecture can probably help agile teams the
most is in managing the ability of the system to achieve its quality properties.
While some agile teams have no problem in creating performant, scalable sys-
tems that are highly available and make good tradeoffs between competing
quality goals, we have also seen and worked with quite a few agile teams that
found this difficult to achieve. While focusing on the end-user stakeholder (the
“on-site customer”) and functional user stories allows these teams to deliver
features quickly, the lack of any systematic system architecture work means
that they end up having to do a great deal of expensive and disruptive system-
wide refactoring and redesign within a relatively short time, as their systems be-
come successful. This isn’t to say that teams following other methods like RUP
(for example) sometimes don’t have the same problems. However, the snag with
many agile approaches is that it isn’t clear where design fits in, between the
mantras, rules, and dash for functional delivery that often characterize an inex-
perienced agile team’s approach. A sound software architecture for a complex
project will not simply emerge unaided from a weekly refactoring cycle, and
some sympathetic and diplomatic software architecture assistance can go a long
way toward helping these teams avoid a refactoring spiral as time goes on.

Table 30–2 summarizes the key activities that we have found to be impor-
tant when working with agile teams.

TABLE 30–2 KEY ARCHITECTURE ACTIVITIES FOR AGILE PROJECTS

Description
Further
Information

If working with an existing agile team, understand the process that the team 
is using and agree where software architecture can fit into the process and 
usefully address risk for the team.

Chapter 7 
and
Bibliography

Identify how to work in a way that supports the principles of incremental develop-
ment and iterative delivery, delivering your architecture work in an incremental 
manner, so that your deliverables are available when they are needed.

Chapter 7 
and
Bibliography
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Architecture in Plan-Driven Projects
The term plan-driven approaches has been coined to describe structured soft-
ware development approaches that generally predate the agile movement and
that have more emphasis on up-front planning than agile methods. Well-known
examples of plan-driven methods would include the Rational Uni fied Process
(RUP) and the Team Software Process. The largely discredited, but unfortunately
still widely used, “waterfall” approach is the most extreme example of a plan-
driven approach (as it places all of the planning at the start of the project). 1

Draw up a list of key stakeholders and ensure that the importance of each is under-
stood, so that the concerns of the on-site customer do not inadvertently dominate 
the others.

Chapter 9

Identify the key risks that the project faces, particularly with respect to achieving 
quality properties and linking to external systems.

Chapter 16 
and Part IV

Identify a minimal set of views that will represent the key architectural structures of 
the system and create “good enough” models to represent them. Consider whether 
the models can be presented via a collaboration tool such as a wiki.

Chapter 12 
and Part III

Select a set of perspectives that will allow you to address the significant quality 
property risks that the system is facing. Apply the perspectives to the architecture 
of the system in order to understand and mitigate these risks.

Part IV

Collaboratively define a clear set of design principles to guide the system’s design 
work so that design decisions align with the goals and priorities of the system.

Chapter 8

Collaboratively define the cross-cutting mechanisms that must exist throughout 
the system (such as the implementation of the system’s security mechanisms once 
you have identified the mechanisms required).

Chapter 20 
and Part IV

Work across the teams that you have visibility of to identify possible shared func-
tions across their systems and to encourage knowledge, solution, and software 
component sharing among them.

Chapter 20 
and Bibliog-
raphy

Whenever possible, work as part of the team and deliver working software or at 
least proof-of-concept software to validate design ideas.

Chapters 5, 
14, and 20

Oversee the acceptance testing of the system to ensure that sufficient validation is 
performed of the system’s important quality properties.

Bibliography

TABLE 30–2 KEY ARCHITECTURE ACTIVITIES FOR AGILE PROJECTS (CONTINUED)

1. Winston Royce’s original paper, “Managing the Development of Large Software Sys-
tems,” is widely available on the Internet. It is instructive to read it and find that early 
on he states that a waterfall approach is “risky and invites failure” and stresses the 
importance of feedback and iteration in the software development lifecycle. It appears 
that most advocates of the classical waterfall approach didn’t actually read the paper!
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There isn’t a sharp distinction between plan-driven methods and agile
methods; indeed, the general term agile could be described more as a philoso-
phy or state of mind than a specific method, but plan-driven approaches tend
to assume more formal estimation and project management and more early
formal design work than agile methods. Their focus is more on predictability
and risk management than flexibility and reacting to change (indeed, some
classical plan-driven approaches—such as the waterfall approach—are highly
resistant to change of any sort late in the delivery lifecycle).

As with our preceding discussion of agile projects, we have separated our
discussion of plan-driven projects from the small and large project discussions
because plan-driven approaches can be used on the smallest projects as well as
the largest programs (where they tend to be the most common approach found).

Plan-driven projects usually follow a formally defined process, and the
role of software architecture in the project may well be already defined by
this. If not, then you’ll need to have additional activities added to the process
to allow for software architecture work, and even if there are some architec-
tural activities defined already, you’ll need to validate that they are useful,
complete, and likely to be effective.

Most plan-driven approaches acknowledge the key role of stakeholders in
the project, and they include activities to identify and work with a broad
stakeholder group. This activity may be one you can take the lead in perform-
ing, or if not you should still be closely involved.

As plan-driven approaches normally include some architectural design
activity, there is unlikely to be all that much need to introduce the ideas of
software architecture and justify them. However, as we have noted elsewhere,
there is a lot of confusion over what software architecture really is, so you
will still need to clearly explain to stakeholders what you will be doing, why
you will be doing it, and how it reduces risk for them.

Even though nearly all plan-driven approaches advocate iterative processes
and incremental delivery, you often see plan-driven projects start to drift back
toward a more waterfall approach, where there are very few iterations between
inception and delivery, and so there is little iteration, validation, and feedback
in the lifecycle. When this happens, it is a cause for concern, because the most
dangerous part of a system’s lifecycle is the pause between inception and the
first production delivery. Minimizing this stage is important in order to start
delivering value to the stakeholders and getting their validation and feedback
on the system as soon as possible. You can positively influence this aspect of
the project by creating an architecture that supports incremental delivery and
pushing to deliver parts of it as quickly as possible.

Another factor specific to plan-driven projects is the need to ensure that
all of your architecture work (and the other activities in the project lifecycle
for that matter) are valuable to the project. Most plan-driven projects adopt a
lifecycle model from an existing method (such as RUP), and in many cases
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people don’t spend enough time questioning and understanding each of the
activities. This results in their performing time-consuming activities that have
little value. This is particularly the case with documentation, and plan-driven
teams can often produce large amounts of documentation that no one ever
reads. You need to make sure that all of the architecture work you’re doing
has a customer and is useful to the current project, and it’s also worth ques-
tioning the value of other activities being performed too if their usefulness is
not immediately apparent.

Table 30–3 summarizes the key activities that we have found to be impor-
tant when working with plan-driven projects.

TABLE 30–3 KEY ARCHITECTURE ACTIVITIES FOR PLAN-DRIVEN PROJECTS

Description
Further
Information

Review the software development process in use, and validate the role of software 
architecture within it and its relationship to other activities. Work to modify the 
process if the architecture activities are incorrect or in the wrong place.

Chapter 7 
and Bibliog-
raphy

Work with the stakeholders to make sure that everyone understands your role, the 
activities you’ll be involved in, the deliverables you’ll produce, and the purpose of 
each.

Chapters 7 
and 9

Consider whether you should take the lead in the identification of and interaction 
with the system’s stakeholders.

Chapter 9

Ensure that the system’s quality property requirements are thoroughly understood 
and validate them if necessary.

Part IV

Identify the key technical risks that the project faces, focus your architecture work 
on mitigating these risks, and work to make sure that the riskiest parts of the sys-
tem are delivered first.

Chapter 7 
and Bibliog-
raphy

Identify and create a set of views and models to represent the important architect-
ural structures of the system, ensuring that the architecture is amenable to incre-
mental delivery.

Part III and 
Bibliography

Identify a set of perspectives that will allow you to address the system’s quality 
property goals, and apply these to your architectural design in order to meet them.

Part IV

If the system is large or critical enough, perform a scenario-based architectural 
review of your architecture with its stakeholders; otherwise, consider a simpler 
evaluation such as a TARA review.

Chapter 14

Work in and with the project team to drive incremental delivery of the system, in 
alignment with your architecture.

Chapter 20 
and Bibliog-
raphy

Involve yourself in the testing effort to ensure that acceptance testing is effective 
and in particular that it validates the system’s ability to meet its quality goals.

Bibliography
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Architecture in Large Programs
Large programs are quite different from individual software development
projects, even large ones, as they generally involve creating or changing a sys-
tem-of-systems rather than an individual system. The scope of a large program
like this often spans human systems (such as business process changes) as
well as IT systems. Such programs are very common in large organizations as
part of organizational change initiatives, in the public sector when making ma-
jor changes to public service provisions (e.g., tax collection or health care man-
agement), and in the defense and emergency management domains.

A major program of this sort necessarily serves a wide and disparate com-
munity of stakeholders, and so formal stakeholder identi fication, manage-
ment, and communication will be important in order to have a realistic chance
of your understanding and meeting their needs.

The scale and complexity of this sort of program mean that architecture will
be needed at a number of different levels (e.g., system, business area, enterprise,
and CTO) and across a number of different specializations (e.g., software or solu-
tion, enterprise, infrastructure, and business process architecture). This means
that you will probably be only one of a number of architects working on the pro-
gram. In this book we focus on software (or solution) architecture for a single
system, but you may also have to get involved in broader types of IT architecture
(particularly enterprise architecture for an entire business process) and work
with architects from a number of specializations. You may be an architectural
lead or even the chief architect, in which case your remit will include de fining the
responsibilities of other architects as well as your own work.

Large development programs are inherently complicated and usually mean
long delivery timescales, large numbers of people who need to work together to
achieve the overall goal, a number of separate organizations having to coordinate
their efforts, and a high degree of risk as they are often trying to solve problems
that have not been solved before. It’s hardly surprising that cost and time over-
runs are common, and in fact it’s quite amazing that many large programs suc-
ceed at all! Part of your role is to understand the risks that the program, or your
part of it, is running and to ensure that your architecture work explicitly miti-
gates these risks, in order to maximize the chances of successful delivery.

Situations like these necessarily need a lot of planning, governance, stan-
dardization, and guidance. As well as a number of architects, working both in
central teams and directly in the delivery organizations, there will also be a
large number of program and project managers working across the program at
different levels. Management processes such as formal change management
are required to ensure that program-wide decisions are communicated consis-
tently to the whole program team.

In the context of software architecture work, the scale and risk of a large pro-
gram, and the number of people who need to understand the architecture, usu-
ally dictate a fairly formal approach to architectural definition and description.
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You will probably use all of the viewpoints and perspectives we define in this
book, and you will quite possibly use others, too, that you either define yourself
or obtain from other books or papers.

The approach to delivering large programs is usually incremental and
iterative, to avoid large amounts of waste if systems aren’t validated as early
as possible, although it tends to involve a lot more up-front planning than a
typical smaller agile development project (being more like the Spiral Model
than XP or Scrum).

Due to the scale, and often the novelty, of the problem being solved, the
early iterations probably can’t deliver directly usable software and instead will
focus on defining the architecture, proof-of-concept exercises to test technical
decisions, and building one or more system skeletons to validate the architec-
ture and guide software development. Unlike with small projects, until quite a
lot of design has been done, it often won’t be clear that a solution for a big
program is possible, and so building a lot of production software before the
architecture has been defined and tested could be quite counterproductive.

Large programs tend to be geographically distributed, and given the
involvement of people from different teams and organizations, communica-
tion needs to be quite formal, with a lot of information being communicated in
written form and explicitly through meetings, reviews, and workshops. As
mentioned previously, formal version and change management will be
required for most design artifacts to avoid confusion as they evolve through
the life of the program.

Finally, at this scale, testing and migration are both major projects in
their own right, in order to ensure that the entire end-to-end system works as
expected for all of its users and operators, and to make sure that any preexist-
ing workload can be migrated to the new environment without mishap or an
unacceptable level of risk.

Table 30–4 summarizes the key software architecture activities for a large
program.

TABLE 30–4 KEY ARCHITECTURE ACTIVITIES FOR LARGE PROGRAMS

Description
Further
Information

Understand, and if necessary define, the architecture definition process in the pro-
gram lifecycle and your particular responsibilities within it.

Chapter 7

Understand the program structure and your particular architectural remit, defining
the remit of other architects clearly, if this is your responsibility.

Bibliography

Develop resource and time estimates for the planned architecture work and feed 
them into the overall program plan.

Bibliography

Continued on next page
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Draw up and validate the list of key business and technology stakeholders and 
work with them to build good working relationships and to help them understand 
what involvement you need from them.

Chapters 2 
and 9

Review system scope with stakeholders and validate and revise it as necessary. Chapter 16

Create a Context view of your part of the program, to capture its context and scope. Chapter 16

Select a set of viewpoints to use to capture the architectural concerns that you are 
responsible for.

Chapters 2 
and 3, Part 
III

Select a set of perspectives to use to address the key quality requirements that you 
are responsible for.

Chapters 2 
and 4, 
Part IV

Create an initial architectural design for each major architectural structure within 
your remit, documenting it as a model in a view.

Part III

Apply your chosen perspectives to your initial architectural design to refine and 
extend it in order to meet the quality properties that your aspects of the system 
must meet.

Part IV

Perform formal scenario-based architectural evaluation, to validate your architec-
ture with the key program stakeholders.

Chapters 10 
and 14

Ensure that you create an architectural description that effectively provides the 
information that your stakeholders need in order to understand the architecture 
and how it meets the program goals.

Chapter 13

Consider creating one or more skeleton systems to implement the main structures 
of your architecture and to provide a framework for development teams to work 
within.

Chapters 7 
and 14, Bib-
liography

Create proof-of-concept implementations to validate your design ideas, check 
assumptions, and prove technology choices.

Chapter 14 
and Bibliog-
raphy

During the construction iterations of the program, work with the implementation 
teams to ensure the system is implemented in accordance with the architecture, 
modifying the architecture as needed in the light of implementation experience. 

Chapter 14 
and Bibliog-
raphy

Ensure that sufficient user, automated, and acceptance testing is planned to 
validate the required functions and quality properties that are important to the 
program’s success.

Bibliography

Work with those performing system testing in order to ensure that the planned 
testing is being performed, that it is effective, and to gain early insight into the 
quality of what is being delivered.

Bibliography

TABLE 30–4 KEY ARCHITECTURE ACTIVITIES FOR LARGE PROGRAMS (CONTINUED)
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SUPPORTING DIFFERENT TYPES OF PROJECTS

Information systems architects are involved in many types of system develop-
ment projects, each with its own unique challenges. Sometimes it is a “green -
field” project, and you must understand the requirements from scratch; in other
cases, an existing system needs to be modified, and you must define how the
system can be changed at minimum cost and risk; and sometimes, rather than
developing a distinct system, your project is to integrate existing systems.

Each of these project types has a different set of priorities, and this is
reflected in the viewpoints and perspectives you need to consider. In the fol-
lowing subsections, we outline the architectural priorities for a number of
common types of projects and refer back to material elsewhere in the book
that is likely to be useful.

In-House System Development
By “in-house” development, we mean a classical information systems project,
where a business need leads to the initiation of a system development project
to create a new system within an organization. Such development projects
require broad architectural involvement, from scoping the new system right
through to ensuring that it enters production safely. Table 30–5 summarizes
the architectural priorities for this type of project.

New Product Development
Developing a new product involves developing a system in something of a
vacuum. Although you may have some ideas about the expected customers

TABLE 30–5 ARCHITECTURAL PRIORITIES FOR IN-HOUSE SYSTEM DEVELOPMENT

Description Further Information

Understanding the software development methodology being 
used and your role in it

Chapter 7

Scope and requirements Chapter 16

Stakeholder identification and engagement Chapter 9

Design and validation of a new architecture Parts II, III, and IV

Leading and overseeing construction Chapter 20

Specification and acquisition of a deployment environment Chapter 21

Supervision of migration to production Chapter 22
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for the product, you probably don’t have any direct contact with them because
it hasn’t actually been developed yet. This means working extensively with
proxy stakeholders (such as user groups and product managers) to under-
stand likely customer needs. The ease of modification of a new product is
likely to be paramount because most successful products have long lives
spanning many releases. You will also need to lay the groundwork for a solid
development environment that can support a sophisticated, multirelease life-
cycle in the future. On the other hand, competitive and financial pressures
usually mean that the speed of delivery is crucial when developing products,
so you will have limited time to get your ideas defined. This means that you
will need to focus your attention on the highest risks and most important
aspects of the product in order to deliver an architecture quickly. Table 30–6
summarizes the architectural priorities for this type of project.

Enterprise Service
Many organizations deploy enterprise-wide services that provide common
capabilities such as enterprise messaging and file transfer, master data man-
agement, security authentication, systems management, or a standard user
desktop. Developing an enterprise service differs from more traditional systems
development because the service doesn’t usually provide any user-visible func-
tionality but instead acts as an enabler for the systems that use it. For example,
an Enterprise Application Integration (EAI) service links multiple systems
together into an integrated information systems environment. A particular
architectural challenge in enterprise service development is to find a represen-
tative and knowledgeable set of stakeholders. Furthermore, the requirements

TABLE 30–6 ARCHITECTURAL PRIORITIES FOR NEW PRODUCT DEVELOPMENT

Description Further Information

Scope and requirements Chapter 16

Identification of and engagement with proxy stakeholders Chapter 9

Design and validation of a new architecture Parts II, III, and IV

Creation of an architecture that has the ability to evolve over 
time at low cost

Chapter 28

Assessment of requirements for customer deployment 
environments

Chapter 21

Creation of a solid development environment for long-term 
technical integrity 

Chapter 20

Leading and overseeing construction Chapter 20
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and quality properties of the service may be hard to predict when it is first
designed, so it must be easily extendable. Table 30–7 summarizes the architec-
tural priorities for this type of project.

Extension of an Existing System 
Extending an existing system can be quite different from creating a new one.
The existing system has set stakeholders’ expectations, so it is important that
any change to the system not come as an unpleasant surprise. Having said
this, we should note that extending a system is often an opportunity to revisit
and improve weak areas of the existing architecture, and in fact, large system
extension projects are sometimes the result of dissatisfaction with the current
system, so there may be great opportunities for improvement. Requirements
management and scoping are often simpler than with a new system because
the stakeholders have probably been identified already, and the requirements
can often be specified in terms of enhancements to the existing facilities. Of
course, one of the major challenges inherent in extending or changing some-
thing that already exists is understanding and dealing with the existing
implementation and the decisions that have already been made, particularly if
you have not been involved with the system before. Table 30–8 summarizes
the architectural priorities for this type of project.

TABLE 30–7 ARCHITECTURAL PRIORITIES FOR ENTERPRISE SERVICES

Description
Further
Information

Scope and requirements for the service Chapter 16

Identification of and engagement with stakeholders outside the normal 
stakeholder community

Chapter 9

Creation of an architecture that is scalable and resilient Chapters 26 
and 27 

Creation of an architecture that is easy to monitor and exhibits reliable 
error handling and failure recovery

Chapter 22

Creation of an architecture that is easy to extend and enhance in the future Chapter 28

TABLE 30–8  ARCHITECTURAL PRIORITIES FOR EXTENSION OF AN EXISTING SYSTEM

Description Further Information

Understanding and evaluation of the existing architecture Chapter 14

Creation of models for the existing system if none exist Chapter 12

Continued on next page
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Package Implementation
Implementing a software package is another interesting variation of the clas-
sical information systems implementation project, and these two types of
projects share many common activities. However, when implementing a pack-
age, the core activity of the classical project—software development—is
largely replaced by configuration and customization of a software package. A
large portion of the work for a package implementation involves integrating
the package with existing data sources and destinations. Managing require-
ments and dealing with stakeholder expectations can also be a challenging
part of these projects because much of the benefit of implementing a package
will be lost if extensive customization is required. Table 30–9 summarizes the
architectural priorities for this type of project.

Internet Enablement
Many organizations are starting to make their products and services avail-
able directly to the public and to third parties over the public Internet. This is
often implemented by putting a Web browser façade in front of existing sys-
tems that may have previously been used only by the organization’s own
staff. This type of project is a special case of a system extension but has
many specific concerns, risks, and solution approaches that are not seen in

Creation of an architecture that does not cause existing quality 
properties to be degraded

Part IV

Creation of an architecture that can be implemented without 
interrupting existing operations

Chapter 22

Management of the change to the system with the lowest risk 
possible

Chapter 28

TABLE 30–9 ARCHITECTURAL PRIORITIES FOR PACKAGE IMPLEMENTATION

Description Further Information

Scoping and management of stakeholder expectations Chapters 9 and 16

Understanding and evaluation of the package architecture Chapter 14

Assurance that the package exhibits suitable quality properties Part IV

Identification of data sources, destinations, and mappings Chapter 18

Assurance of the package’s manageability Chapter 22

Design of a deployment environment for the package Chapter 21

TABLE 30–8  ARCHITECTURAL PRIORITIES FOR EXTENSION OF AN EXISTING SYSTEM (CONTINUED)
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other types of development. For example, it is very dif ficult to predict the
number of users of Internet-enabled systems, and if the architecture does not
address this concern, a spike in demand can make the Web site unusable
with a consequent impact on revenue and reputation. Table 30–10 summa-
rizes the architectural priorities for this type of project.

Decommissioning
All good things come to an end, and eventually even successful systems will
be decommissioned, so you may well work on a project to decommission a
system at some point. Your skills as an architect can be just as usefully
applied to decommissioning a system as to creating one, and you should
make sure that you are involved in any decommissioning projects within your
remit. Table 30–11 summarizes the architectural priorities for this type of
project.

TABLE 30–10 ARCHITECTURAL PRIORITIES FOR INTERNET ENABLEMENT PROJECT

Description Further Information

Scope and requirements Chapter 16

Creation of models for the system to be Internet-enabled if 
none exist

Chapter 12

Creation of an architecture that can scale on demand and is 
highly resilient (even if the underlying systems aren’t)

Chapters 26 and 27

Creation of an architecture that is secure and resistant to 
malicious attack

Chapter 25

Creation of an architecture that offers an appropriate user 
experience

The Accessibility, In-
ternationalization,
and Usability per-
spective sections in 
Chapter 29

TABLE 30–11 ARCHITECTURAL PRIORITIES FOR DECOMMISSIONING PROJECT

Description
Further
Information

Understanding scope and context to understand the
implications of decommissioning on other systems

Chapter 16

Functional analysis to ensure that any decommissioned 
services are now obsolete or are replaced

Chapters 8 and 9

Continued on next page
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Working with stakeholders to ensure that effective 
migration planning and processes are in place

Chapter 22

Design of suitable data migration and archiving activities to 
safeguard information when the system is decommissioned

Chapters 18 and 25

Ensuring that all regulatory constraints are met, 
where appropriate

The Regulation 
perspective section 
in Chapter 29

TABLE 30–11 ARCHITECTURAL PRIORITIES FOR DECOMMISSIONING PROJECT (CONTINUED)
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APPENDIX
OTHER VIEWPOINT SETS

he set of viewpoints we present in this book is by no means the only one
that could be or has been proposed. While we believe it does a good job of

partitioning the AD into a manageable number of sections and ensuring wide-
spread coverage of concerns, we know of a number of other viewpoint sets
that approach the problem somewhat differently. In order to allow you to com-
pare and contrast our viewpoints with some of the other viewpoint sets that
exist, we summarize a number of other approaches in this appendix. You can
find more details of our experiences with some of these viewpoint sets in
[WOOD04].

We also include, for comparison, brief descriptions of some enterprise
architecture frameworks (which are aimed at the architecture of the whole
organization rather than systems within it).

KRUCHTEN “4+1”
When we first started using architectural views, we began with Philippe
Kruchten’s “4+1” set. The viewpoint set we present in this book is a direct
evolution and development of the “4+1” set, so they have a lot in common.
Table A–1 outlines the “4+1” viewpoints.

T

TABLE A–1 KRUCHTEN “4+1” VIEWPOINT CATALOG

Viewpoint Definition

Logical The logical representation of the system’s functional structure, normally pre-
sumed to be a class model (in an object-oriented systems development context). 
Our Functional viewpoint is a development of this “4+1” viewpoint, renamed to 
make its content clear (because you could have a number of logical aspects to an 
architecture).

Continued on next page
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This approach also suggests the use of a set of functional usage scenarios
(or use cases—the “+1” part of the name) to illustrate how the views work
together. We also strongly endorse the use of scenarios for illustration and
evaluation (although we suggest spending at least as much time on quality
property scenarios as on functional usage scenarios).

In addition to extending and defining the viewpoints outlined in Table A–1,
our approach adds three viewpoints to this set: Context, Information, and
Operational.

1. We added the Context viewpoint because we have found that there is 
always a need to clearly define the context, scope, boundaries, and inter-
faces of systems that we are designing. While much of this information 
can be captured in other views, we have found it to be more effective to 
consolidate it in a view dedicated to this aspect of a system.

2. We added the Information viewpoint because the underlying information 
structure in a large-scale information system may be quite different from 
the desired functional structure and may be much longer-lived than the 
processing elements that use it. The Information viewpoint also needs to 
deal with data-specific concerns such as latency, ownership, distribution, 
replication, and so on. 

3. We added the Operational viewpoint because of our experiences with 
information systems that were developed with little or no thought given 
to how they would be installed, migrated to, monitored, controlled, and 
managed in their production environments. There are often important 
constraints, stakeholders, and concerns in this area that we believe 
architects need to take seriously from an early point in the system life-
cycle. The Operational viewpoint provides structure and guidance for 
this process.

You can learn more about these viewpoints in Kruchten [KRUC95].

Process The concurrency and synchronization aspects of the architecture. Our Concur-
rency viewpoint is a development of this “4+1” viewpoint, renamed to avoid 
confusion with business process modeling.

Development The design-time software structure, identifying modules, subsystems, and layers 
and the concerns directly related to software development. Our Development 
viewpoint is based on this “4+1” viewpoint.

Physical The identification of the nodes on which the system’s software will be executed 
and the mapping of other architectural elements to these nodes. Our Deployment 
viewpoint is a development of this “4+1” viewpoint.

TABLE A–1 KRUCHTEN “4+1” VIEWPOINT CATALOG (CONTINUED)
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RM-ODP
The Reference Model for Open Distributed Processing (RM-ODP) is an ISO
standard framework for describing and discussing distributed systems tech-
nology. The framework is defined using a set of five viewpoints, as shown in
Table A–2.

While the RM-ODP approach provides an interesting partitioning of the
AD, it was actually created to support efforts to standardize distributed sys-
tems technology and (as its name suggests) imposes a reference model on the
systems being described.

You can find a good tutorial on the use of the RM-ODP approach in Put-
man [PUTM00].

SIEMENS (HOFMEISTER, NORD, AND SONI)
While working at Siemens Research, Christine Hofmeister, Robert Nord, and
Dilip Soni developed a set of four architectural viewpoints based on the way
the Siemens software development teams approached software architecture.
Table A–3 shows the Siemens viewpoint set.

A strength of this taxonomy is that the viewpoints are presented in fully
worked form (rather than just being summaries of the kinds of information
they should contain). Unfortunately, we found that this particular viewpoint
set didn’t work that well for information systems because it is specialized for
the needs of embedded and real-time software development.

TABLE A–2 RM-ODP VIEWPOINT CATALOG

Viewpoint Definition

Enterprise Defines the context for the system and allows capture and 
organization of requirements.

Information Describes the information required by the system using static, 
invariant, and dynamic schemas.

Computational Contains an object-oriented model of the functional structure 
of the system, with a particular focus on interfaces and 
interactions.

Engineering Describes the systems infrastructure required to implement the 
desired distribution of the system’s elements. This description 
is performed using a specific reference model.

Technology Defines the specific technology that will be used to build the 
system.
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The Siemens viewpoint set is defined further in Hofmeister et al.
[HOFM00].

SEI “VIEWS AND BEYOND” VIEWS

A somewhat different approach to architectural views is the “Views and
Beyond” approach defined by a group of well-known software architecture
researchers, many of whom are connected to the Software Engineering Insti-
tute, which is documented in [CLEM10]. This approach starts by identifying
the architectural styles that are appropriate for the design problem that the
architect is facing and then applying these to the problem at hand, which re-
sults in an architectural view for each. The approach identifies three broad
categories of architectural styles, known as viewtypes (rather than view-
points), and defines a number of subtypes of each, as shown in Table A–4.
The styles define how a particular type of architectural structure should be
captured within the overall approach defined by the viewtype.

This set of architectural style definitions is somewhat different from the
other viewpoint sets summarized here, primarily containing advice related to
documenting, rather than creating, an architecture. Although the style defini-
tions contain less information about the process of software architecture than
some of the others, they contain a great deal of useful advice about docu-
menting your architecture, which is likely to be relevant even if you are bas-
ing your approach on a different viewpoint set.

TABLE A–3 SIEMENS VIEWPOINT CATALOG

Viewpoint Definition

Conceptual The conceptual functional structure of the system that defines a 
set of conceptual components linked by a set of connectors

Module The concrete structure of the subsystems and modules that will 
be realized in the system, the interfaces exposed by the modules, 
the intermodule dependencies, and any layering constraints in 
the structure

Execution The runtime structure of the system in terms of processes, 
threads, interprocess communication elements, and so on, along 
with a mapping of modules to runtime elements

Code The design-time layout of the system as source code and the in-
termediate and delivered binary elements created from it
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TABLE 1–4 SEI VIEWTYPE CATALOG

Style Category Definition

Component
and Connector

The Component and Connector styles are concerned with the sys-
tem’s runtime functional elements, their behaviors, and their 
interactions. The following styles defined in this category all relate to 
commonly occurring runtime system organizations:

• Pipe-and-Filter

• Client-Server

• Peer-to-Peer

• Service-Oriented Architecture

• Publish-Subscribe

• Shared-Data

• Multi-Tier

Module The Module styles are concerned with how the software comprising 
the system is structured as a set of implementation (code) units. The 
following styles are defined for the Module viewtype:

• Decomposition: for specifying how modules are composed from 
simpler elements

• Uses: for capturing intermodule usage dependencies

• Generalization: for capturing commonality and variation 
(inheritance) relationships between modules

• Layered: for specifying how modules are arranged in layers 
according to their level of abstraction

• Aspects: for isolating the code modules responsible for 
cross-cutting concerns

• Data Model: for describing the data elements and relationships of 
the system’s stored data model

Allocation The Allocation viewtype is concerned with how relationships 
between the different parts of the system and different aspects of 
their environment are captured. The following styles are defined for 
this viewtype:

• Deployment: for specifying how software elements are mapped to 
elements of the deployment environment

• Install: for specifying how the components from a “components-
and-connectors” style are mapped to the file system of the produc-
tion environment

• Work Assignment: for mapping software modules to those 
responsible for creating, testing, and deploying them
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GARLAND AND ANTHONY

Jeff Garland and Richard Anthony are practicing software architects who have
written another practitioner-oriented guide to software architecture for infor-
mation systems. They also define a viewpoint set, although it’s rather differ-
ent from ours, as shown in Table A–5.

This viewpoint set is much larger than the others; each viewpoint has a
narrower scope. The advantage of this is that each view is clearly focused, has

TABLE A–5 GARLAND AND ANTHONY VIEWPOINT CATALOG

Viewpoint Definition

Analysis Focused Illustrates how the elements of the system work together in response to 
a functional usage scenario

Analysis Interaction Presents the interaction diagram used during problem analysis

Analysis Overall Consolidates the contents of the Analysis Focused view into a single 
model

Component Defines the system’s architecturally significant components and their 
connections

Component Interaction Illustrates how the components interact in order to make the system 
work

Component State Presents the state model(s) for a component or set of closely related 
components

Context Defines the context within which the system exists, in terms of external 
actors and their interactions with the system

Deployment Shows how software components are mapped to hardware entities in 
order to be executed

Layered Subsystem Illustrates the subsystems to be implemented and the layers in the soft-
ware design structure

Logical Data Presents the logical view of the architecturally significant data structure

Physical Data Presents the physical view of the architecturally significant data 
structure

Process Defines the runtime concurrency structure (operating system processes 
that the system’s components will be packaged into and interprocess com-
munication mechanisms that will allow communication between them)

Process State Presents the state transition model for the system’s processes

Subsystem Interface 
Dependency

Defines the dependencies that exist between subsystems and the 
interfaces of other subsystems
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a manageable size, and plays an obvious role. The disadvantage is that it is
harder to manage the problems of fragmentation in the AD and cross-view
consistency.

These viewpoints are defined in Garland and Anthony [GARL03].

IAF
IAF (the Integrated Architecture Framework) is a proprietary architectural
framework developed by the French IT services company Capgemini in the
1990s. Its early focus was on systems architecture, but recent versions
have also addressed enterprise architecture concerns. It includes an archi-
tecture definition methodology as well as an architecture documentation
framework.

IAF defines four levels of abstraction: Contextual (Why), Conceptual
(What), Logical (How), and Physical (With What). Orthogonal to this, IAF
defines four aspect areas, namely, Business Architecture, Information Archi-
tecture, Information Systems Architecture, and Technology Infrastructure.
There is a third dimension to the metamodel, which includes two common
disciplines, Security and Governance.

More information can be obtained from [WOUT10].

ENTERPRISE ARCHITECTURE FRAMEWORKS

Enterprise architecture frameworks are aimed at the architecture of the whole
organization (sometimes referred to as the “application landscape”), rather
than the systems within it. However, they share many of the concepts with
their systems architecture counterparts, and in particular they all have at their
core the notion of views.

The Zachman Framework
The Zachman Framework was developed initially as a framework for informa-
tion systems architecture by John Zachman, then at IBM, in the 1980s. He
updated and extended it to address enterprise architecture a few years later,
and it is in this incarnation that it is primarily known today.

Zachman organizes architectural artifacts using a two-dimensional grid.
The columns of the grid represent six fundamental questions, namely, “What?”
(the Data description), “How?” (the Function description), “Where?” (the Net-
work description), “Who?” (the People description), “When?” (the Time
description), and “Why?” (the Motivation description). The rows of the grid
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look at the architecture from the point of view of different stakeholders, as
shown in Table A–6.

Each cell of the grid defines the models that can be created for the stake-
holders for that row to document the answers to the question for that column.
For example, the intersection of the How column with the Logical (informa-
tion systems) view defines a logical process model for the architecture. 

More information can be obtained from http://zachmaninternational.com/.

TOGAF
TOGAF (The Open Group Architecture Framework) is a framework for enter-
prise architecture that was first published by the Architecture Forum of The
Open Group in 1995. New versions of the framework have been published at
regular intervals since then. Unlike most of the taxonomies we discuss in this
Appendix, TOGAF also includes an architecture methodology called ADM
(Architecture Development Method). The framework and its methodology are
available to individuals and organizations to use free of charge.

TOGAF defines four architectural domains as shown in Table A–7.

TABLE A–6 ROWS IN THE ZACHMAN FRAMEWORK

View Description

Contextual Planner’s view (scope)

Conceptual Owner’s view (enterprise or business model)

Logical Designer’s view (information systems model)

Physical Builder’s view (technology model)

Detailed Subcontractor’s view (detailed specifications)

TABLE A–7 TOGAF DOMAINS

Domain Description

Business
architecture

Business strategy, governance, organization, and key business 
processes

Application
architecture

A blueprint for the organization’s application systems, the inter-
actions between them, and their relationships to the business 
processes

Continued on next page
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More information can be obtained from www.opengroup.org/togaf/ and
[TOGA09].

OTHER ENTERPRISE ARCHITECTURE FRAMEWORKS

Since John Zachman first developed the concept, a large number of competing
enterprise architecture frameworks have been developed by national govern-
ments, academic institutions, and commercial organizations. Some frame-
works, such as IAF, which originated as systems architecture frameworks,
have extended or repositioned themselves to address enterprise architecture
concerns. An Internet search will reveal details of many such frameworks.

Data architecture The structure of the organization’s logical and physical data 
assets and associated data management resources

Technical 
architecture

The hardware, software, and network infrastructure needed to 
support the deployment of core, mission-critical applications

TABLE A–7 TOGAF DOMAINS (CONTINUED)

www.opengroup.org/togaf/
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Numbers
“4+1” viewpoint set (Krutchen), 621–622

A
Abstraction

care and precision in the use of, 189
facilitating change, 555
in IAF (Integrated Architecture 

Framework), 627
as modeling skill, 179
in SEI viewpoint catalog, 625
using for precision, 205
validation of, 218

Acceptance criteria, in process outcomes, 87
Access control

authentication. See Authentication
authorization. See Authorization
ensuring information secrecy, 460
insider threats and, 469–470
principles, 456–458
resources and, 440
security policies and, 449

Accessibility perspective
activities, 570–571
applicability to views, 569–570
architectural tactics, 571–572
concerns, 570
defined, 568
desired quality, 438
further reading, 572–573
overview of, 568–569
problems and pitfalls, 572
review checklists, 572–573

Accountability
concerns of Security perspective, 444
ensuring information secrecy, 462
security policy for, 448

ACID (Atomic, Consistent, Isolated, and 
Durable) transaction properties, 302–303

Acquirers, classes of stakeholders, 133, 135
Action entities, in state model, 348
Actors (participants), representing in UML 

use cases, 198
AD (architectural description)

architectural styles and, 172
breaking complex system into interrelated 

views, 33–34
checklist for, 215
creating, 197–198
defined, 24, 92, 197
documenting, 177
ISO standard and, 206–207
limitations of monolithic models, 32–33
overburdening, 368
overview of, 24–26
presenting, 213–215
relationships with core concepts, 26–27
sharing models and, 59
summary and further reading, 216
views in, 177–178

AD (architectural description) contents
appendices, 212–213
design decisions, 209–210
Document Control section, 208
Glossary, 206
Introduction and Management Summary 

section, 209
issues to be addressed, 212
overview of, 207–208
principles, 209
quality properties, 211
scenarios, 211
Stakeholders section, 209
Table of Contents, 208
views and viewpoints, 210–211
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AD (architectural description) properties
clarity, 203–204
conciseness, 201–203
correctness, 198–199
currency, 204
overview of, 198
precision, 205
sufficiency, 199–200
timeliness, 200–201

Ad hoc diagrams, 485
Ad hoc release management, 563–564
Adaptation, benefits of architectural styles, 

170
Adapter design pattern, 162
ADLs (architecture description languages), 

184–185, 276
ADM (Architecture Development Method), 

of TOGAF, 628
Administration

ensuring adequate facilities for, 466–467
provide security, 464

Administration models, 409–414
Agile Manifesto, 101, 607
Agile methods

deferring decision to “last responsible 
moment,” 201

overview of, 193–194
plan-driven methods compared with, 610
in Software development lifecycle, 

100–102
team approach in, 193–194

Agile projects, 607–609
Aging, of information, 308–309
Agreements/contracts, evaluation as tool for 

creating, 219
Alert notifications

alert starvation or alert flooding, 423
integrating with third-party hosting 

environments and, 401
overview of, 397–398

Allocation styles, in SEI viewpoint 
catalog, 625

Americans with Disabilities Act, United 
States, 570

Appendices, 205, 212–213
Application code, avoiding embedding 

security in, 471–472
Architect. See Software architects

Architectural description. See AD 
(architectural description)

Architectural elements. See Elements
Architectural models. See Models
Architectural perspective. See Perspectives
Architectural styles or pattern. See Styles
Architectural tactics. See Tactics
Architectural views. See Views
Architecturally significance, 67–68, 

124–125
Architecture definition

activities, 92–96
Agile methods in software development, 

100–102
aspects of, 64
boundary between design and, 67–68
boundary between requirements analysis 

and, 66
evaluation techniques for system 

construction phase of lifecycle, 
231–232

guiding principles, 85–86
interrelationship with core concepts, 

71–72
ISO standard 42010 for, 58
iterative approaches to software 

development, 100
models in, 178
overview of, 85
process context, 87–89
process exit criteria, 97–98
process outcomes, 86–87
scenarios providing input to, 147
security administration provided as part 

of, 464
separating design from requirements 

analysis, 65–66
in software development lifecycle, 98
styles in, 170
summary and further reading, 102–103
supporting activities in, 89–92
timeliness of, 200
waterfall approaches to software 

development, 99–100
Architecture description languages (ADLs), 

184–185, 276
Architecture Development Method (ADM), 

of TOGAF, 628
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Architecture Tradeoff Analysis Method. See
ATAM (Architecture Tradeoff Analysis 
Method)

Archiving/retaining information, 309–310
Artifacts, 56, 379–380
ARTS Standard Relational Data Model, 322
Assessors, 133, 135
Assistive technologies, for disabled users, 

571–572
Associations, in class models, 312
Assumptions, validation of, 218–219, 

504–505
Asynchronous processing, 500
ATAM (Architecture Tradeoff Analysis 

Method)
architecture-centric activities, 226–229
overview of, 222–223, 226
stakeholder-centric activities, 229–230

Attack trees, 451–455
Attributes

of architecture elements, 20
in class models, 312

Audience
clarity of AD presentation to, 203
in TARA-style architectural review, 233
targeting classes of, 35
targeting in modeling, 188–189

Auditing
ensuring accountability with, 444, 462
as security mechanism, 445
sensitive events, 458

Authentication
as concern in Security perspective, 442
as security mechanism, 445
of system users, 459

Authorization
of access, 459–460
as concern in Security perspective, 442
ensuring information secrecy, 460
as security mechanism, 445

Authorized criteria, in stakeholder selection, 
133

Availability
as concern of Security perspective, 444
protecting, 460–461
as security mechanism, 445

Availability and Resilience perspective
applicability to views, 512–513

assessing against requirements, 524–525
backup and disaster recovery solutions, 

532–533
capturing availability requirements, 

516–517
cascading failures and, 534–535
clustering and load balancing for high-

availability, 527–528
concerns of, 512–516
designing for failure, 530–531
desired quality of, 437
error detection as problem in, 536–537
fault-tolerant hardware, 526–527
fault-tolerant software, 530
functional availability, 521–524
incompatible technologies and, 539
logging transactions, 528–529
maintaining large information systems 

and, 50
overambitious requirements as problem 

in, 536
overestimating component resilience, 

537–538
overlooking global availability 

requirements, 538–539
overview of, 511–512
platform availability, 519–521
producing availability schedule, 517–519
relaxing transactional consistency, 532
replicating components, 531
single point of failure, 533
software availability solutions, 529–530
tactics for reworking architecture, 

525–526
unavailability due to overload, 535–536

Availability requirements
assessing architecture against availability 

requirements, 524–525
avoiding overambitious availability 

requirements, 536
capturing availability requirements, 

516–518, 539–540

B
Background, asynchronous processing in, 

500
Backout strategy

in installation model, 403–405
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Backout strategy, continued
in migration model, 406
planning for, 419

Backup and restore
benefits of transaction logging, 528–529
as concern of Operational view, 399–401
risk of inadequate models for, 422–423
solutions for, 532–533
in third-party environments, 401

Bandwidth, 586–587, 589
BASE (Basically Available, Soft state, 

Eventual consistency), 306
Benchmark tests, 489
Big bang migration approach, 395
Black box approach, 146, 256
Boundary attributes, element, 20
Boxes-and-lines diagrams

for functional structure model, 276–278
for module structure model, 360
for network model, 384
for runtime platform model, 381

Braille display, for visually impaired 
users, 571

Brainstorming, in ATAM, 229
Build process

automating, 558
defining in codeline modeling, 367
reducing risk of lost environments, 563

Business analysts, 73
Business continuity, 516
Business drivers. See also Drivers

developing principles based on, 126
presenting in ATAM, 226
as problem-focused concern, 109–110

Business experts, 132
Business goals. See also Goals, 109–110
Business policies, as problem-focused 

concern, 111
Business principles, 126
Business standards, 111
Business state, 337
Business strategies, 105, 108

C
Candidate architectures

assessing, 64
defined, 18

internal organization and, 18–19
producing, 95

Capacity planning
for networks, 384
quantitative models and, 183

Cardinality, of entity relationships, 312
Cascading failure, avoiding, 534
Centralized systems

ensuring accountability, 462
ensuring information secrecy, 460

Certificates, user authentication and, 49
Change. See also Evolution perspective

create extensible interfaces, 553–554
data model change control, 302
driven by external factors, 547–548
facilitating with design techniques, 

554–555
identify configuration strategy, 408–409
likelihood of change, 546
localizing effects of, 552–553
magnitude and dimensions of, 545–546
metamodel styles supporting, 555–556
preservation of knowledge during, 548
problems and pitfalls, 561
reliability of, 549, 558–559
timescale for, 547
when to pay for, 547

Character sets, internationalization, 581, 
583

CIA (confidentiality, integrity and 
availability), 444

Clarity property, in effective AD, 203–204
Classes

in class models, 312
comparing views/viewpoints with objects/

classes, 35
of incidents, 414–418
of services, 512–514, 520
of stakeholders, 133–138

Client/server structure, 16–18, 171
Clients

nodes of runtime platform, 378
reducing risk of unsecured, 470–471

Cloud computing, 401, 451
Clustering, for high-availability, 527–528
Coarse-grained operations, improving 

performance/scalability with, 502
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Code, presenting AD in, 214
Code viewpoint, in Siemens set, 624
Codeline models

activities, 366
notation of, 366
overview of, 365–366

Codeline, organization of, 359
Coherence, 254–255, 269
Cohesion, in functional design 

philosophy, 269
Collusion, insider threat and, 470
Commentary, on view model, 211
Committed criteria, in stakeholder

selection, 133
Common design models

activities, 365
notation of, 363–365
overview of, 362–363

Common processing
defining, 362
example, 363–364
identifying, 358
need for, 365

Communication
models as tool for, 178, 256
scenarios as tool for, 147
skills of software architects, 77
as stakeholder responsibilities, 141
with stakeholders, 86

Communicators, classes of stakeholders, 
133, 135

Compartmentalization, as security 
principle, 457

Compatibility
internationalization and, 583
of protocols in heterogenous networks, 587
technology-related, 376, 539

Compensating transactions, information 
consistency and, 306

Complex systems
breaking into interrelated views, 33–34
limitations of applying monolithic models 

to, 32–33
Complexity

evolution support adding to, 548
excessive, 352–353
using views/viewpoints to manage, 38

Component and Connector styles, in SEI 
viewpoint catalog, 625

Components
architecture elements as, 21
avoiding cascading failures, 534–535
overreliance on specific hardware/

software, 562
replication of, 531
resilience and, 537–538

Comprehensibility, qualities of good 
scenarios, 153

Computational viewpoint, in RM-ODP, 623
Conceptual viewpoint, in Siemens set, 624
Concerns

capturing, 91
driving architecture definition process, 86
ISO documentation recommendations and, 

206–207
linking to principles and decisions, 

125–128
perspectives defining, 50, 57
problem-focused, 107–111
qualities of good concerns, 116
real-world constraints as, 114–116
relationship with requirements and 

architecture, 117
scope of, 35
separating/breaking down, 38, 270
shaping architectural solutions, 105–106
software architects considering wide 

range of, 66
solution-focused, 107–114
stakeholders and, 22
summary and further reading, 128–129
understanding/capturing, 68
views addressing different, 45

Concerns, by perspective
Accessibility perspective, 570–571
Availability and Resilience perspective, 

512–516
Development Resource perspective, 

575–576
Evolution perspective, 545–549
Internationalization perspective, 581–582
Location perspective, 586–587
Performance and Scalability perspective, 

477–482
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Concerns, by perspective, continued
Regulation perspective, 592–593
Security perspective, 442–446
Usability perspective, 597–598

Concerns, by viewpoint
Concurrency viewpoint, 335–339
Context viewpoint, 248–255
Deployment viewpoint, 374–377
Development viewpoint, 358–360
Functional viewpoint, 268–271
Information viewpoint, 294–311
Operational viewpoint, 394–402

Conciseness, properties of effective AD, 
201–203

Concurrency viewpoint/views
Accessibility perspective applied to, 569
Availability and Resilience perspective 

applied to, 513
checklist for, 355
consistency across views, 431–434
contention issues related to, 506
defined, 245
dependencies, 427
Development Resource perspective applied 

to, 575
Evolution perspective applied to, 544
further reading, 355–356
Internationalization perspective applied to, 

580–581
interprocess communication and, 

336–337
Location perspective applied to, 586
mapping functional elements to 

tasks, 336
overview of, 40–41, 333–335
Performance and Scalability perspective 

applied to, 477
Performance perspective applied to, 51
problems and pitfalls, 351–355
reentrancy, 338–339
Regulation perspective applied to, 592
scalability support, 338
Security perspective applied to, 441
stakeholder concerns, 339
startup and shutdown, 338
state management in, 337
state models. See State models

synchronization and integrity, 337
system-level concurrency models. See

System-level concurrency models
system types and, 40
task failure, 338
task structure in, 335–336
Usability perspective applied to, 596–597

Confidentiality, integrity and availability 
(CIA), 444

Configuration management
build variation points into software, 557
as concern in Operational viewpoint, 398
defining in codeline modeling, 367
reliable change via environment, 559
reliable change with software 

management, 558
Configuration management models, 

406–409
Connectivity

Location perspective concerns, 586
network connections, 383

Connectors
designing, 283
in functional structure model, 272

Consistency
as concern of Context viewpoint, 254–255
in functional design philosophy, 269
of information, 305–306
pitfalls related to view-and-viewpoint 

approach, 39
Consistency of views. See Views, 

consistency across
Constraints

in AD, 25
as concern of Development Resource 

perspective, 575–576
design, 365
in installation model, 403–404
physical, 377
real-world constraints as concerns, 114–116
reducing, 421–422
solutions shaped by, 105
standards and policies as, 107

Construction
evaluation techniques for system 

construction phase, 232–233
incremental deliverables in, 88
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Constructive characteristic, of good 
principles, 120

Consumers
external interface as, 251
separating information providers from 

information consumers, 309
Content equivalence technique, for disabled 

users, 572
Contention. See Resource contention
Context model

activities, 258–260
notation for, 257–258
overview of, 255–256

Context viewpoint/views
Accessibility perspective applied to, 569
Availability and Resilience perspective 

applied to, 513
completeness, consistency, and coherence, 

254–255
consistency across views, 427–428
context model, 255–260
defined, 244
Development Resource perspective applied 

to, 575
Evolution perspective applied to, 544
external entities, services, and data in, 

249–250
external interfaces in, 251–252
impact of system on its environment, 

253–254
interaction scenarios, 260–261
interdependencies between entities, 

252–253
Internationalization perspective applied to, 

580–581
Location perspective applied to, 586
overview of, 40–41, 247–248
Performance and Scalability perspective 

applied to, 477
problems and pitfalls, 261–264
Regulation perspective applied to, 592
Security perspective applied to, 441
stakeholder concerns, 254–255
system scope and responsibilities, 

248–249
system types and, 42
Usability perspective applied to, 596–597

Controls
administrative, 409–410
data model change control, 302
operational, 397

Conventions
diagrams. See Semantics
perspective creating, 57

Corporate assets, protecting, 593
Correctness

checking technical correctness of 
architecture, 218

properties of effective AD, 198–199
Costs

of accommodating changes that do not 
happen, 560–561

auditing, 460
of change, 547
as constraint, 115
of deployment, 575–576
formula for total operation cost, 491
migration and, 395

COTS (custom off-the-shelf) package, 138
Coupling, in functional design philosophy, 270
Credibility, qualities of good scenarios, 153
Cross-cutting concerns, 6, 48
Cryptography

avoiding ad hoc, 472
confidentiality, 444
information secrecy, 461
integrity, 461–462

Cultural norms, internationalization 
and, 582

Currency conversion, internationalization 
and, 583

Currency, properties of effective AD, 204
Custom off-the-shelf (COTS) package, 138
Customers, as focus in modeling, 194

D
Data

Context viewpoint/views and, 249–250
identifying data entities, 314
improving performance and, 502
information systems and, 296
interface design and, 283
protecting, 593
sharing, 341
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Data flow model, 154
Data marts, star schema for, 312, 314
Data migration

models for, 405–409
operational concerns, 395–397
operational problems and pitfalls, 420
third-party environments and, 401

Data model
change control, 302
configuration management model 

as, 407
Data providers, 251
Data stores

backup and restore planning, 401
data migration concerns, 396

Data warehouses
concurrency in, 334
information systems and, 296
star schema for, 312, 314

Databases
configuration management, 398
consistency of distributed, 327–328
contention risk in, 506–507
information storage models, 302–304
locking, 173
overloading, 327

DDoS (distributed denial-of-service) 
attacks, 461

De facto standards, 113
Deadlocks, 346, 353–354
Decision logs, 236
Decision points, evaluation tool for 

go/no go decisions, 219
Decisions

architecturally significant, 124–125
basing on technology principles, 126
concerns influencing, 107
deferring to "last responsible moment," 

201
design decisions in AD document, 

209–210
documenting, 211
linking to principles and concerns, 

125–128
overview of, 122–124
stakeholder responsibilities for 

making, 142

Decommissioning projects, 619–620
Decomposition

applying to functional elements, 281
structural, 314–315

Defense in depth principle, 457
Definitions

conventions use in this book, 8
including glossary in AD, 206
of terms in models, 191

Deliverables
creating executable, 194
timeliness of, 200–201

Denial-of-service (DoS) attacks, 444, 461
Denormalizing data, 502
Dependencies

analyzing, 558
avoiding too many, 290–291
clarity/accuracy of, 387–388
configuration, 408
identifying, 362, 403–404
implicit dependencies missing, 262
between views, 426–427

Dependency injection (Inversion of Control), 
555

Deployment
late consideration of environment for, 

389–390
rolling back unsuccessful, 559

Deployment viewpoint/views
Accessibility perspective applied to, 570
authenticating users and, 49
Availability and Resilience perspective 

applied to, 513
compatibility issues, 376
consistency across views, 428–434
defined, 42, 245
dependencies between views, 427
determining network capacity and 

requirements, 376–377
Development Resource perspective applied 

to, 575
Evolution perspective applied to, 545
hardware availability in, 520
intermodel relationships, 386–387
Internationalization perspective applied to, 

580–581
Location perspective applied to, 56, 586
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network models, 382–384
overview of, 373–374
Performance and Scalability perspective 

applied to, 477
performance-critical structures in, 

485–486
physical constraints, 377
platform models, 378–382
problems and pitfalls, 387–391
reducing technology unavailability, 

525–526
Regulation perspective applied to, 592
runtime platform required in, 374–375
Security perspective applied to, 442
specifying hardware and hosting 

requirements, 375
specifying third-party software 

requirements, 375–376
stakeholder concerns, 377
system types and, 40
technology dependency models, 

384–386
Usability perspective applied to, 596–597

Descriptive naming, of models, 190
Design

assistive technologies for disabilities, 
571–572

avoiding complexity in security, 457
boundary between architecture definition 

and, 67–68
creating set of design inputs, 87
decisions in AD document, 209–210
error handling standards in, 537
for failure, 530–531
functional design philosophy, 269–271
improving performance/scalability, 

501–502
for security implementation, 453–455
separating design from requirements 

analysis, 65–66
Software architects making decisions 

regarding, 64
standard approach in common design 

models, 363–365
styles benefitting, 170
techniques facilitating change, 554–555

Design authorities, 73–75

Design patterns
applying, 172–174
architectural styles. See Styles
building variation points into software, 

556–557
example of, 162–163
identifying and defining, 365
introduction to, 161–162
language idioms. See Language 

idioms
software design patterns. See Software 

design pattern
standardization with, 358
tactics and, 48, 166–167
techniques facilitating change, 554–555
using, 165–166

Detail
level in views, 35
too much, 367–368
wrong/inappropriate level of, 262–263, 

289
Detection, security and, 444–445
Developers

classes of stakeholders, 133, 135–136
expanding focus to include all 

stakeholders not just developers, 2
software architect compared with, 75
using views/viewpoints to improve focus 

of, 38
Development. See also Evolution perspective

complexity concerns, 548
preservation of knowledge during change, 

548
reducing risk of lost environments, 

562–563
reliable change and, 560

Development Resource perspective
activities, 576–577
applicability to views, 574–575
concerns, 575–576
defined, 568
desired quality, 438
overview of, 573–574
problems and pitfalls, 577–578
tactics, 577

Development viewpoint, in “4+1” set 
(Kruchten), 622
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Development viewpoint/views
Accessibility perspective applied to, 569
administration models, 411
Availability and Resilience perspective 

applied to, 513
codeline models, 365–367
common design models, 362–365
concerns, 358–360
consistency across views, 428–433
coordination between development/

operational staff, 419
defined, 41, 245
dependencies between, 427
Development Resource perspective applied 

to, 575
Evolution perspective applied to, 544
Internationalization perspective applied to, 

580–581
Kruchten's standard views, 35
Location perspective applied to, 586
module structure models, 360–362
overview of, 357–358
Performance and Scalability perspective 

applied to, 477
problems and pitfalls, 367–370
Regulation perspective applied to, 592
Security perspective applied to, 441
system types and, 40
Usability perspective applied to, 

596–597
Diagrams. See also Notation

conventions. See Semantics
definitions in, 288
for precision in presentation of 

information, 205
in TARA-style architectural review of 

system, 233
Digital signatures, 460
Dimensional databases, 303
Disabled persons, regulations regarding. 

See also Usability perspective, 593
Disaster recovery. See also Backup and 

restore
Availability and Resilience perspective, 

515–516
failure to specify, 391
identifying solutions for, 532–533

incident recovery analysis, 521–522
location-related tactics, 588

Discovery, architecture definition as, 66
Disks

archiving/retaining information on, 309
availability and time to repair, 515
backup and disaster recovery solutions, 532
mirrored, 526–527, 532–533

Distributed databases, 327–328
Distributed denial-of-service (DDoS) 

attacks, 461
Distributed systems

ensuring accountability with 
nonrepudiation, 462

ensuring information secrecy, 460–461
Document Control section, in AD, 208
Document sign-off, 237
Documentation

formal presentation of AD, 213
wiki presentation of AD, 213–214

Domain architect, 72
Domain-specific languages (DSL), 186–187
Domains

analysis of, 314
TOGAF, 628–629

DoS (denial-of-service) attacks, 444, 461
Downtime, planned/unplanned, 514–515, 

521–524
Drawing tools, for presentation of AD, 214
Drivers

business drivers as problem-focused 
concern, 109–110

shaping architectural solutions, 105
technology drivers as solution-focused 

concern, 112
DSL (domain-specific languages), 186–187
Dynamic structure

in airline reservation example, 16–17
candidate architectures and, 19
of a system, 13

E
EAI (Enterprise Application Integration), 

169, 616
Elements

assigning responsibilities to functional, 
281–282
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of common design models, 365
deciding what to include in a view, 35
defined, 20
of functional structure model, 271–272
identifying functional, 280–281
of network models, 382–383
overview of, 20–21
relationships between core concepts, 26–27
replaceability of, 556–557
of runtime platform models, 378–379
system elements and relationships, 12–13

Encapsulation, of change-related effects, 
553

Engineering viewpoint, in RM-ODP, 623
Enterprise Application Integration (EAI), 

169, 616
Enterprise architect, 73
Enterprise architecture frameworks

overview of, 627
TOGAF (The Open Group Architecture 

Framework), 628–629
Zachman framework, 627–628

Enterprise-owned information, 298–299
Enterprise resource planning (ERP), 138
Enterprise viewpoint, in RM-ODP, 623
Enterprise-wide services, 616–617
Entities

in entity-relationship modeling, 312
external. See External entities
identifying, 314
in life history models, 317
in state models, 347–348

Entity-relationship models, 187, 311–313
Environment

designing for deployment, 381
development problems related to, 

369–370
impact of system on, 253–254
reduce risk of lost, 562–563
regulation concerns and, 593
reliable change with configuration 

management, 559
system quality scenario and, 151

ERP (enterprise resource planning), 138
Error conditions

administration models, 410–411, 413
detection of, 536–537

internationalization and, 583
Escalation process, in support model, 

414–415, 418–419
ETL (Extraction, Transformation, and Load) 

tools, 396
Evaluation of architecture

applying to existing system, 233–236
choosing approach to, 237–238
formal reviews and structured 

walkthroughs, 220–222
overview of, 217–218
presentations for, 219–220
prototypes and proof-of-concept systems, 

224–225
reasons for, 218–219
recording results of, 236–237
reports, 236
reworking and, 96
scenarios in, 222–223, 226–230
skeleton systems, 225
during software lifecycle, 230–233
techniques for, 219

Event entities, in state model, 347
Event providers, 251
Events, alert-related, 397–398
Eventual consistency approach, to 

information consistency, 306
Evolution perspective

achieving reliable change, 558–559
applicability to views, 51, 544–545
assessing ease of evolution, 551
characterizing evolution needs, 549–551
concerns in, 545–549
containing changes, 552–553
creating extensible interfaces, 553–554
design techniques facilitating change, 

554–555
desired quality, 437
maintaining large information systems, 

50
metamodel-based architectural styles, 

555–556
overview of, 543–544
preserving development environments, 

560
problems and pitfalls, 560–564
standard extension points, 557–558
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Evolution perspective, continued
tradeoffs in, 552
variation points in software, 556–557

Execution coordination mechanisms, for 
interprocess communication, 341

Execution viewpoint, in Siemens set, 624
Expectations, managing, 577
Expertise, stakeholder, 35
Extensibility

creating extensible interfaces, 553–554
in functional design philosophy, 270

External checks, consistency across 
views, 426

External entities
in context model, 256
external interfaces and, 251–252
in functional structure model, 272
identifying, 249–250, 260
implicit dependencies and, 262
interdependencies between system and, 

252–253
missing or incorrect, 261
nature and characteristics of, 250
overcomplicated interactions between, 264
trustworthiness of, 458

External hosting
insider threat and, 470
operational concerns, 401
security threats of, 450–453

Extraction, Transformation, and Load (ETL) 
tools, 396

Extreme Programming (XP), 101, 547, 607

F
Facilitation skills, of software architects, 76
Fact tables, in star schema, 312
Fail securely principle, 466

of Security perspective, 458
Failover, high-availability clustering, 527
Failure

avoid cascading, 533
avoid single points of, 533
design for, 530–531

Failure scenarios, 158
Fault-tolerance

hardware, 526–527
software, 530

Fault Trees technique, threat model, 
451–452

Feature Driven Development, 100
File-based stores, 304
Finance, regulation concerns, 592
Finite state machine (FSM), 318
Finite State Processes language, 350
Fitness for purpose, development resources 

and, 577
Flexibility

analyzing, 284
of architectural decisions, 86
critical quality properties and, 

560–561
of design patterns, 173
in functional design philosophy, 270
skills of software architects, 77

Flow diagrams, 415
Flow of information, 304
Focus, lack of or unevenness of, 

368–369
Formal agreements, 219
Formal notations, 343
Fragmentation, view-and-viewpoint 

approach and, 39
FSM (finite state machine), 318
Full-scale live tests, 156–157
Functional availability, 521–525
Functional capabilities, 268
Functional cohesion, 553
Functional differences, internationalization 

and, 582
Functional elements

in functional structure model, 
271–272

mapping to tasks, 336
Functional evolution, 546
Functional migration, 395
Functional requirements, 260
Functional scenarios

example of, 150–151
information in, 150
types of scenarios, 146
UML sequence diagram of, 154–155

Functional structure models
elements of, 271–272
non-UML notation, 276–280
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types of qualitative models, 181
UML component diagrams, 273–275

Functional viewpoint/views
Accessibility perspective applied to, 569
assigning responsibilities to functional 

elements, 281–282
Availability and Resilience perspective 

applied to, 513
breaking AD document down by views, 205
checklist for, 291
comparing with Information, and 

Operational viewpoints, 46–47
concerns, 268–271
consistency across views, 427–431
defined, 41, 244
dependencies between, 427
designing connectors, 283
designing interfaces, 282–283
Development Resource perspective applied 

to, 575
Evolution perspective applied to, 51, 544
example of type of information in AD 

document, 210
functional structure model, 271–273
identifying functional elements, 280–281
Internationalization perspective applied to, 

580–581
Location perspective applied to, 586
non-UML notation, 276–280
overloading of, 286–288
overview of, 267–268
Performance and Scalability perspective 

applied to, 477
problems and pitfalls, 285–291
reducing risk of concurrency-related 

contention, 506
Regulation perspective applied to, 592
Security perspective applied to, 441
system types and, 40
UML component diagrams, 273–275
Usability perspective applied to, 596–597
walkthroughs, traceability checks, and 

analysis, 284

G
Gane and Sarson information flow 

model, 316

Garland and Anthony viewpoint set, 
626–627

Generalization
applying to functional elements, 281
in functional design philosophy, 270
patterns facilitating change, 555
styles, patterns, and idioms resulting in, 

166
Global availability requirements, 538–539
Glossary, 206, 212
Goals

business goals as problem-focused 
concern, 109–110

performance/scalability and, 502–503
reviewing, 259–260
shaping architectural solutions, 105–106
in TARA-style architectural review of 

system, 233
technology goals as solution-focused 

concern, 112
"God object" problem, 290
Good enough approach, to modeling, 179, 

194
Graphical notations. See also UML (unified 

modeling language)
of availability schedule, 518
for estimating functional availability, 523
for technology dependency model, 385

Groups
build variation points into software, 557
configuration, 407–408
identifying supported, 414–416
security policy defined by, 448
stakeholder, 141

Growth, as dimension of change, 546

H
Hardware

availability and time to repair, 515
degrade gracefully, 499–500
estimate platform availability, 519–521
fault-tolerant, 526–527
online/offline storage hardware, 378–379
overreliance on specific, 562
in platform evolution, 546
reducing compatibility risks, 539
resource requirements, 481
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Hardware, continued
runtime platform activities related to, 381
scale up or scale out, 498–499
specifying type and quantity of, 375
virtualization tools, 563

Hash functions, cryptographic, 461–462
Headroom provision, in deployment, 

390–391
Health and safety regulations, 593
High-availability, 527–528
High-contrast and low-resolution interfaces, 

for disabled persons, 571
Hosting requirements, specifying, 375
Hot spots, 506–507

I
IAF (Integrated Architecture Framework), 

627
Identifiers, for information, 299–301
Identifying scenarios, 148–149
IDLs (Interface definition languages), 283
IEEE (Institute of Electrical and Electronics 

Engineers)
role defining open standards, 113
Standard 1471 (on views), 34

Improvements
perspective resulting in, 55
styles, patterns, and idioms resulting in, 

166
In-house development, 615
Incident recovery analysis, 521–522
Informal notations, 343–344
Information

accountability, 462
consistency of, 305–306
disaster recovery of, 515–516
identifiers, 299–301
information, 307–308
integrity of, 461–462
ownership of, 296–298
privacy of, 445
purpose and usage of, 295–296
quality analysis, 320–321
quality of, 597
secrecy of, 460–461
storage models, 302–304
structure and content of, 294–295

synchronization in migration models, 406
timeliness, latency, and aging of, 308–309

Information capture skills, of software 
architects, 76

Information flows and ports, 277, 279–280
Information models

information flow models, 315–317
information lifecycle models, 317–319
information ownership models, 319–320
information quality analysis, 320–321
metamodels, 321–322
types of qualitative models, 181
volumetric models, 322

Information providers, separating from 
information consumers, 309

Information viewpoint, in RM-ODP, 623
Information viewpoint/views

Accessibility perspective applied to, 569
archiving/retaining information, 309–310
Availability and Resilience perspective 

applied to, 513
breaking AD document down by views, 

205
comparing with Functional and 

Operational viewpoints, 46–47
concerns, 294–311
consistency across views, 427–433
consistency of information, 305–306
defined, 41, 244
dependencies between, 427
Development Resource perspective applied 

to, 575
enterprise-owned information, 298–299
Evolution perspective applied to, 544
flow of information, 304
identifiers for information, 299–301
information flow models, 315–317
information lifecycle models, 317–319
information ownership models, 319–320
information quality analysis, 320–321
Internationalization perspective applied to, 

580–581
Location perspective applied to, 586
metamodels, 321–322
models, 311
overview of, 293–294
ownership of information, 296–298



INDEX 659

Performance and Scalability perspective 
applied to, 477

problems and pitfalls, 322–329
purpose and usage of information, 

295–296
quality of information, 307–308
Regulation perspective applied to, 592
Security perspective applied to, 51, 441
stakeholder concerns, 310–311
static information structure models, 

311–315
storage models for information, 302–304
structure and content of information, 

294–295
system types and, 40
timeliness, latency, and aging of 

information, 308–309
Usability perspective applied to, 596–597
user authentication and, 49
volatility of information semantics, 

301–302
volumetric models, 322

Informed criteria, in stakeholder 
selection, 133

Infrastructure architect, 72
Inputs, to the architectural design process, 94
Input, provided by scenarios to architectural 

assessment, 147
Insider threat, 469–470
Installation groups, 403–404
Installation models, 402–405
Installation, operational concerns, 394
Institute of Electrical and Electronics 

Engineers (IEEE)
role defining open standards, 113
Standard 1471 (on views), 34

Instrumentation, 359
Integrated Architecture Framework (IAF), 627
Integration

of architectural decisions, 86
defining in codeline modeling, 367
evolution of, 546
lacking in production environment, 422

Integration hub, for interface complexity 
issues, 326

Integrity
defined, 461

identifying security policy 
requirements, 449

of information, 461–462
security concerns and, 444
as security mechanism, 445
security policy for, 448
synchronization of threads and, 337

Interaction scenarios, 260–261
Interactions, functional, 284
Interactive modeling, 194
Interface definition languages (IDLs), 283
Interfaces

assistive technologies for disabilities, 
571–572

attributes of architecture elements, 20
complexity issues, 325–326
in context model, 256
designing functional, 282–283
extensibility of, 553–554
in functional structure model, 272
poorly defined, 285
usability concerns and, 597–598
usability tactics and, 599

Interfaces, external
functional concerns and, 268
identifying, 251, 260
loose or inaccurate, 262

Internationalization
in common design models, 364–365
design patterns for, 173

Internationalization perspective
activities, 582
applicability to views, 580–581
architectural tactics, 583
concerns, 581–582
defined, 568
desired quality, 438
overview of, 579–580
problems and pitfalls, 583

Internet chat technologies, for hearing 
impaired, 571

Internet, enabling project for, 618–619
Internet-scale systems

availability requirements for, 539
location concerns, 587
overloading, 535
relaxing transactional consistency in, 501
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Interprocess communication. See IPC 
(interprocess communication)

Introduction and Management Summary 
section, in AD document, 209

Intrusion detection, 455
Inversion of Control (dependency injection), 

555
IPC (interprocess communication)

defining mechanisms for, 345–346
overview of, 341
types of mechanisms for, 336–337

ISO (International Organization for 
Standardization)

financial services messaging 
(20022), 322

metadata (11197-3), 321
recommendations for documenting an 

architecture (42010), 206–207
role defining open standards, 113
sharing model across views and 

(42010), 58
IT strategies, 105, 112
Iterative approach

reliable change with continuous 
iterations, 559

to software development, 100
to system delivery, 544

J
Jackson System Development, 276
Jargon, avoiding overuse of, 264

K
Kanji keyboards, 583
Key-matching problem, 324–325
Keys, security, 49
"Knee" in the performance curve, 482, 

499–500
Knowledge, preserving of during change, 

548

L
Language idioms

applying, 172–174
overview of, 165
types of design patterns, 161
using, 165–166

Languages. See also Internationalization 
perspective

internationalization and, 582
patterns creating common, 166

Large programs, 612–614
Latency

estimating for networks, 384
excessive, 328–329
of information, 308–309

Law enforcement, 593
Layered Implementation style, 171
Layering patterns, to facilitate change, 555
Leadership, software architect role and, 70
Lean Software Development, 101
Least amount of privilege, security principle, 

457
Legislation

regarding disabilities, 568–570
regulation concerns and, 592–593
usability problems and, 572

Lifecycle
agile methods in, 100–102
architectural decisions in, 86
architecture definition in, 98
evaluation of architecture during, 

230–233
information lifecycle models, 317–319
project lifecycle, 605
state compared with, 337

Lightweight processes. See Threads
Likelihood of change, 546, 550–551
Links, network, 379
Lists, for presentation of information, 205
Live system, data migration from, 396–397
Load balancing, for high-availability, 

527–528
Load, peak load behavior, 481–482
Local processing

make design compromises, 502
performance differences of remote vs., 

504, 508–509
performance model example, 487

Location perspective
activities, 587–588
applicability to views, 585–586
applied to Deployment view, 56
architectural tactics, 588–589
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concerns, 586–587
defined, 568
desired quality, 438
overview of, 585
problems and pitfalls, 589

Locks, database, 173
Logical views, Kruchten’s standard views, 35
Logs/logging

instrumentation and, 359
log transactions, 528–529

Lookup data, 296

M
Magnetic tape, for backup and disaster 

recovery, 532
Magnitude of change, 545, 550–551
Maintainers, classes of stakeholders, 133, 136
Management tools, 420–421
Master data, 296
Mathematics

mathematical model, 183
mathematical notation, 191

Mean time between failures (MTBF), 520
Mean time to repair (MTTR), 520
Measurement/measurability

business goals and drivers and, 109
estimate platform availability, 519–521
identify and estimate for performance 

models, 486
measure and estimate performance, 489
performance monitoring requiring, 399
perspective creating, 57
qualities of good concerns, 116
quantitative models and, 183

Meetings, minutes of, 236
Message bus, for interface complexity 

issues, 326
Message-oriented interactions, 277, 

279–280
Messaging mechanisms, for interprocess 

communication, 341
Metamodels

architectural styles based on, 555–556
informational, 321–322

Metasystem approach to change, 547, 
555–556

Metrics. See Measurement/measurability

Migration
data, 395–397
functional, 395

Migration models, 405–406
Minutes of meeting, 236
Mirrored disks

backup and disaster recovery solution, 
532–533

fault-tolerance of, 526–527
Mock-ups, types of qualitative models, 181
Modeling languages

ADL (architecture description language), 
184–185

DSL (domain-specific languages), 
186–187

entity-relationship models, 187
for qualitative models, 182
UML (unified modeling language), 

185–186
Models

abstraction in, 189
administration models, 409–414
agile approach to, 193–194
in architectural description, 25
availability, 519–521
avoiding overload using performance 

models, 536
codeline models, 365–367
common design models, 362–365
configuration management models, 

406–409
context models, 255–260
creating performance models, 484–487
descriptive naming in and term 

definitions, 190–191
example of performance model, 487
importance of, 178–181
information flow models, 315–317
information lifecycle models, 317–319
information ownership models, 319–320
information quality analysis, 320–321
installation models, 402–405
interaction scenarios in, 260–261
intermodel relationships, 386–387
metamodels, 321–322
migration models, 405–406
module structure models, 360–362
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Models, continued
network models, 382–384
notation in, 191–192
overview of, 177–178
performance analysis, 487–488
purposeful approach to creating, 187–188
qualitative, 181–182
quantitative, 182–183
reducing risk of unrealistic performance, 503
reworking architecture to improve 

performance, 490
risk-driven approaching to, 189–190
runtime platform models, 378–382
semantics in, 192
simplicity in, 191
sketches, 184
state models, 347–351
static information structure models, 

311–315
support models, 414–419
system-level concurrency models, 

340–347
targeting an audience with, 188–189
technology dependency models, 384–387
updating, 193
validation of, 193
for views, 210–211
volumetric models, 322
for well-defined security, 468–469

Moderator role, in reviews and 
walkthroughs, 221

Module structure models
activities, 362
notation of, 360–361
overview of, 360

Module styles, in SEI viewpoint catalog, 625
Module viewpoint, in Siemens set, 624
Modules, 21, 358
Monitoring

administration models for, 409–410
concerns in third-party environments, 401
operational control and, 397
performance, 399
as security mechanism, 445

Moore's Law, 476
MTBF (Mean time between failures), 520
MTTR (Mean time to repair), 520

N
Naming, descriptive naming of models, 190
Negotiation skills, of software architects, 76
Network models

activities of, 384
elements of, 382–383
example of, 387
notation of, 384

Networks
capacity needs of, 376
connections, 383
designing, 384
failure of, 588
hardware requirements for, 376
links in, 379

Nodes
clustered configurations and, 527
in network models, 378, 382–383

Nonfunctional requirements, issues 
addressed by perspectives, 48

Nonrepudiation of messages, 445, 462
Normalization, of information models, 314
NoSQL databases, 303–304
Notation

administration models, 411
codeline models, 366
common design models, 363–365
configuration management models, 407
context models, 257–258
information flow models, 316–317
information lifecycle models, 318
installation models, 403
interaction scenarios, 261
migration models, 405–406
in models generally, 191–192
module structure models, 360–361
network models, 384
non-UML notation, 276–280
overview of, 273
performance models, 485
perspective creating, 57
runtime platform models, 379–381
state models, 348–350
static information structure models, 

312–314
system-level concurrency models, 

341–344



INDEX 663

technology dependency models, 385–386
UML component diagrams, 273–275

Notifications, alert-related, 397–398
Numbering element of AD, 205

O
Object Constraint Language (OCL), 283
Object ID, 299
Object Modeling Technique, 276
Object-orientation

comparing views/viewpoints with objects/
classes, 35

object ID in, 299
OCL (Object Constraint Language), 283
Off-the-shelf deployment project, 138–139
Office space, development concerns, 576
Offline modes, 588
OLAP (online analytical processing), 296
OLTP (online transactional processing), 295
Online backups, 533
Open standards, 113
Operating systems, configuration 

management and, 398
Operational constraints, 115
Operational monitoring, 397, 410
Operational service levels, 516–517
Operational viewpoint/views

Accessibility perspective applied to, 570
administration models, 409–414
alerting, 397–398
Availability and Resilience perspective 

applied to, 513
backup and restore, 399–401
comparing with Functional and 

Information viewpoints, 46–47
configuration management, 398
configuration management models, 406–409
consistency across views, 431–434
data migration, 395–397
defined, 42, 245
dependencies between, 427
design functional availability schedule, 

523–524
Development Resource perspective applied 

to, 575
Evolution perspective applied to, 545
functional migration, 395

installation and upgrade, 394
installation models, 402–405
Internationalization perspective applied to, 

580–581
Location perspective applied to, 586
migration models, 405–406
operational monitoring and control, 397
overview of, 393–394
Performance and Scalability perspective 

applied to, 477
performance monitoring, 399
problems and pitfalls, 419–423
Regulation perspective applied to, 592
Security perspective applied to, 442
stakeholders, 401–402
support concerns, 399
support models, 414–419
system types and, 40
third-party environment and, 401
Usability perspective applied to, 596–597
user authentication and, 49

Optimization
consolidating related workload, 494–495
repeated processing and, 491–492

Organizational context, software architect 
role in, 73–75

Organizational or cultural 
constraints, 116

Organizational standards, 113
Overhead, transaction, 494–495
Overloading

availability and, 535
of central database, 327
degrade gracefully and, 499–500
functional, 286–288

Overview statement
in functional scenario, 150
in system quality scenario, 151

Ownership
of architecture definition, 68
of information, 296–298

P
Packages, implementing, 618
Paper models, 154–155
Parallel processing, 497–498
Parallel run migration approach, 395
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Partitioning
performance and scalability and, 497–498
reduce risk of inappropriate, 504

Partnered development project, 140
Patterns. See Design patterns and Software 

patterns
Peak load behavior

improving, 495–496
performance and scalability and, 481–482

Percentages, availability metrics, 519
Performance

data migration concerns, 395
usability concerns, 598

Performance and Scalability perspective
analyzing performance models, 487–488
applicability to views, 476–477
applied to Concurrency viewpoint, 51
assessing performance against 

requirements, 489–490
asynchronous processing, 500
capturing performance requirements, 

482–484
conducting practical tests, 488–489
consolidating related workloads, 494–495
creating performance models, 484–487
degrading gracefully, 499–500
design compromises, 501–502
desired quality, 437
distributing processing over time, 495–496
example applying, 55
maintaining large information systems, 49
minimizing resource sharing, 496
optimizing repeated processing, 491–492
overview of, 475–476
partitioning and parallelizing, 497–498
prioritizing processing, 493–494
problems/pitfalls, 502–509
reducing contention, 492–493
relaxing transactional consistency, 501
reusing resources and results, 496–497
reworking architecture to improve 

performance, 490
scaling up or out, 498–499

Performance-Critical structures, 485–486
Performance engineering, 399
Performance models

analyzing, 487–488

avoiding overloading, 536
creating, 484–487
example of, 487
reducing risk of unrealistic 

performance, 503
reworking architecture to improve 

performance, 490
Performance monitoring

administration models, 410–414
operational concerns and, 399
operational monitoring vs., 410

Persistent storage, 515
Perspectives

Accessibility. See Accessibility perspective
applying to models, 178
applying to views, 51–54
Availability and Resilience. See

Availability and Resilience perspective
benefits of, 56–58
catalog of, 60–61, 437–438
comparing with viewpoints and views, 59
consequences of applying, 54–56
defined, 6, 47
Development Resource. See Development 

Resource perspective
Evolution. See Evolution perspective
Internationalization. See

Internationalization perspective
Location. See Location perspective
overview of, 48–51, 567–568
Performance and Scalability. See

Performance and Scalability perspective
pitfalls related to, 58
presenting for views, 210–211
quality properties and, 45–47
Regulation. See Regulation perspective
relationships between core concepts, 56
Security. See Security perspective
in software architecture example, 6
system types and, 61
Usability. See Usability perspective
viewpoints compared with, 58–60
views compared with, 45

Petri Nets, 350
Physical constraints

real-world constraints as concerns, 115
taking into account, 377
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Physical environment, 587, 589
Physical sites, ignoring intersite 

complexities, 389–390
Physical viewpoint, in “4+1” set 

(Kruchten), 622
Physical views, Kruchten’s standard 

views, 35
Piloting, development resources and, 577
Pipes and Filters architectural style, 

167–169
Plan-driven projects, 609–611
Planned downtime, 514–515
Platform

assumptions, 504–505
evolution, 546

Platform availability
assess against availability requirements, 

524–525
create incident recovery analysis, 

521–522
estimate, 519–521
reduce risk of incompatible 

technologies, 539
select fault-tolerant hardware, 

526–527
Policies

business policies as problem-focused 
concern, 111

security. See Security policies
shaping architectural solutions, 105
technology policies as solution-focused 

concern, 113–114
Politics

high-priority stakeholders, 132
internationalization and, 582

Ports and information flows, 277, 
279–280

Power grids, cascading failure of, 534
Practical testing

performance and scalability and, 
488–489

reducing risk of unrealistic 
performance, 503

simulating runtime environment in, 503
Precision

lack of, 369
properties of effective AD, 205

qualities of good scenarios, 153
of security policy, 448

Predictability, performance and scalability 
and, 480–481

Presentations
of AD, 213–215
for evaluation of architecture, 219–220
for scope and option explorations, 231

Presenter role, 221
Primary keys, 299
Principals

authentication of, 459
authorize access for, 459–460
granting least amount of privilege possible 

to, 457
grouping for security policy, 448–450
security, 440
Security perspective concerns, 442

Principles
applying recognized, 456–457
conventions use in this book, 8
creating own, 122
definition of, 119
examples of use of, 118–120
general architectural principles in AD 

document, 209
linking to concerns and decisions, 125–128
overview of, 117–119
qualities of good principles, 120–121
for translating goals into features, 110
view-specific, 210

Prioritization
of evolutionary dimensions, 560–561
of processing, 493–494
of scenarios, 149, 229–230

Privacy, of information, 445
Privilege, principle of least, 457
Problem escalation, 401
Problem-focused concerns, 107–111
Procedure call mechanisms

for interprocess communication, 341
modeling using UML, 342

Process groups, in system-level concurrency 
model, 340

Process viewpoint, in “4+1” set 
(Kruchten), 622

Process views, Kruchten’s standard views, 35
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Processes
context in architecture definition, 87–89
exit criteria in architecture definition, 

97–98
flow of, 597
interprocess communication, 336–337, 341
outcomes in architecture definition, 86–87
prioritizing, 346
in system-level concurrency model, 340
tasks and, 335

Processing
areas of common processing, 358
asynchronous, 500
build variation points into software, 557
consolidating related workloads, 494–495
distributing over time, 495–496
minimizing resource sharing, 496
optimizing repeated, 491–492
partitioning and parallelizing, 497–498
prioritizing, 493–494
reusing resources and results, 496–497

Processing nodes
in network models, 382
of runtime platform, 378

Processing pipeline, 168
Product architect, 72
Product management, 545
Product ownership, 545
Production engineers, classes of 

stakeholders, 133, 136
Production environment

reducing constraints in, 421
reducing lack of integration in, 422

Products
in architectural description, 24–25
development projects, 615–616

Program code, 191
Programming languages, 173–174, 282–283
Project lifecycle, 605
Project managers, 73
Projects

agile, 607–609
decommissioning, 619–620
enabling for Internet, 618–619
for enterprise-wide services, 616–617
for extending existing systems, 617–618
in-house development of, 615

implementing software packages, 618
large programs, 612–614
for new product development, 615–616
plan-driven, 609–611
project lifecycle and, 605
small and low-risk, 606–607

Proof-of-concept systems, 224–225
Proprietary standards, 113
Prototype implementation tests, 156
Prototypes

for architectural definition phase of 
lifecycle, 232

for defining scope and exploring options, 
231

of development resources, 577
in evaluation of architecture, 224–225
types of qualitative models, 181

Proxy stakeholders, 140–141
Publisher/Subscriber style, 171

Q
Qualitative models, 181–182
Quality attribute tree, in ATAM, 228
Quality management standards, 86
Quality, of information

analyzing, 320–321
overview of, 307–308
poor quality information, 328

Quality properties
in airline reservation example, 15–18
internal organization and, 19
modules and, 362
perspective pitfalls and, 58
perspectives and, 45–47
scale of, 202
in software architecture design, 5–6
summarizing in AD document, 211
types of system properties, 14

Quality triangle, 23
Quantifiability

of business goals and drivers, 109
of concerns, 116

Quantitative goals, 482–484
Quantitative models, 182–183

R
Race conditions, 354–355
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RAID (Redundant Array of Inexpensive or 
Independent Disks) architectures, 
526–527, 538

Rational Unified Process. See RUP (Rational 
Unified Process)

Recommendations, in TARA-style 
architectural review of system, 235

Recovery, from disaster. See Disaster 
recovery

Recovery, security detection and, 444–445
Redundant Array of Inexpensive or 

Independent Disks (RAID) architectures, 
526–527, 538

Reentrancy, concurrency and, 338–339
Reference data, in information systems, 296
Regulation perspective

activities, 594
applicability to views, 591–592
architectural tactics, 594
concerns, 592–594
defined, 568
desired quality, 438
in maintaining large information systems, 

50
overview of, 591
problems and pitfalls, 594

Regulations
disability requirements, 570
usability and, 572

Relational databases, 302–303
Relationships, in entity-relationship 

modeling, 312
Release process

ad hoc management and, 563–564
automating, 559
defining in codeline modeling, 367

Reliability
of change, 549, 558–559
usability and, 598

Remote procedure calls, 342
Remote processing, 504, 508–509
Repeated processing, optimize, 491–492
Replication

applying to functional elements, 281
component, 531
reducing contention via, 492–493

Reporting database, for information 

systems, 295
Representative criteria, in stakeholder 

selection, 133
Request handling, overloading and, 535
Requirements

assessing architecture against availability 
requirements, 524–525

avoiding overambitious availability 
requirements, 536

capturing availability requirements, 
516–518, 539–540

converting goals and drivers into, 109
development resources, 578
evolution of, 550–551
identifying and prioritizing scenarios, 148
location, 590
performance and scalability and, 

482–484, 489–490
as problem-focused concern, 110–111
process outcomes, 86
regulation, 594–595
relationship with concerns and 

architecture, 117
revisiting, 96
scenarios for capturing, 145–146
scenarios for finding missing, 147
security, 468–469, 572
TARA-style architectural review of 

system, 234–235
usability, 570, 600

Requirements analysis
boundary between architecture definition 

and, 66
as context for architecture definition, 88
separating from design, 65–66

Resilience. See Availability and Resilience 
perspective

Resource contention
analyzing, 346
concurrency-related, 352–353, 505–506
improving performance by reducing, 

492–493
minimizing resource sharing, 496
reducing risk of, 505–507

Resources
authorize access to, 459–460
careless allocation of, 508
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Resources, continued
constraints causing software projects/

delays, 577–578
at core of system security, 440
defining mechanisms for sharing, 345
designing security for sensitive resources, 

453–455
development resources, 574–579
ensuring information secrecy, 460–461
identifying for security policy, 446–449
identifying threats to, 453
minimizing sharing, 496
reusing, 496–497
security concerns and, 442

Response time
defined, 477
hardware resources effecting, 481
interrelationship with throughput, 

479–480
peak load behavior and, 482
performance and scalability concerns and, 

477–479
Performance and Scalability perspective, 

477–479
specifying requirements for, 484

Responsibilities
assigning to functional elements, 281–282
attributes of architecture elements, 20
context viewpoint concerns, 248–249
of external entities, 260
poorly understood, 285
of software architects, 77–78
of stakeholders, 141–142

Responsiveness class, response time, 
478–479

Restore. See Backup and restore
Reuse, of resources and results, 496–497
Review records, 236
Reviewers

in architecture definition, 98
in reviews and walkthroughs, 221
stakeholder responsibilities, 142

Reviews
for architectural definition phase of 

lifecycle, 232
for defining scope and exploring options, 

231

formal reviews for evaluating architecture, 
220–222

for system construction phase of lifecycle, 
232–233

Risk-driven approach, 189–190
Risks

assessing development resources, 576
assessing ease of evolution, 551
assessing performance, 490
due to unfamiliar technology, 202
functional migration and, 395
identifying availability, 525
operations and, 419–423
reducing, 166
risk assessment process, 455–456

RM-ODP (Reference Model for Open 
Distributed Processing), 623

Roadmaps, in business strategy, 108
Routine operational procedures, 

administration models, 410–412
Runtime containers, 378
Runtime dependencies, 386
Runtime platform, 374–375
Runtime platform models

activities of, 381–382
elements for, 378–379
notation of, 379–381

RUP (Rational Unified Process)
in development resources, 577
iterative approaches to software 

development, 100
Kruchten’s approach as basis of, 34
plan-driven methods, 609

S
SAAM (Software Architecture Assessment 

Method). See also Scenario-based 
evaluation, 223, 226

Safety regulations, 593
Sarbanes-Oxley Act, 592
Scalability. See also Performance and 

Scalability perspective
concerns, 480
concurrency and, 338
scaling up or out hardware, 498–499
specifying requirements, 484

Scenario-based evaluation
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in architectural definition phase of 
lifecycle, 232

architecture-centric activities, 226–229
overview of, 226
stakeholder-centric activities, 229–230
steps in, 222–223

Scenarios
in AD document, 211
applying, 154
capturing, 149–153
checklist for, 159
documenting, 211
effective use of, 157–159
in evaluation of architecture, 222–223, 

226–230
identifying, 94, 148–149
overview of, 145–146
paper models for, 154–155
prioritizing, 148–149, 229–230
qualities of good scenarios, 153–154
simulations of, 156
testing, 156–157
types of, 146
uses for, 147–148
walkthroughs, 155–156, 260, 284

Schedule, availability, 517–519, 522–524
Scope

deciding what to include in a view (view 
scope), 34–35

defining in architectural description, 25
defining initial, 91
scenarios in validation of system scope, 

147
of stakeholder concerns, 35
system scope as concern, 110–111
techniques for defining, 230–231

Scope creep, 263
Screen magnifier, for visually impaired 

users, 571
Screen reader, for visually impaired 

users, 571
Scrum, 101, 607
SDL, 350
Secrecy of information, 460–461
Security

data migration concerns, 395
defined, 440

Security infrastructure
assess risks, 455–445
avoid system not designed for failure, 466
design system-wide, 453–455
use third-party, 464–465

Security mechanisms
enforcing policies, 440
Security perspective concerns, 445–446

Security perspective
applicability to views, 441–442
applied to Information viewpoint, 51
concerns, 442–446
desired quality, 437
example of applying, 55
maintaining large information systems, 

49
overview of, 439–441

Security perspective activities
assessing risks, 455–456
defining security policy, 448–450
designing security implementation, 

453–455
identifying sensitive resources, 446–448
identifying threats, 450–453

Security perspective problems/pitfalls
ad hoc security technology, 472
assuming client is secure, 470–471
complex policies, 465
failure to consider time sources, 467–468
ignoring insider threat, 469–470
lack of administration facilities, 466–467
no clear requirements or models, 468–469
overreliance on security technology, 468
piecemeal security, 472
security as afterthought, 469
security embedded in application code, 

471–472
system not designed for failure, 466
technology-driven approach, 467
unproven technologies, 465–466

Security perspective tactics
applying recognized security principles, 

456–459
authenticating principals, 459
authorizing access, 459–460
ensuring accountability, 462
ensuring information integrity, 461–462
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Security perspective tactics, continued
ensuring information secrecy, 460–461
integrating security technologies, 463
protecting availability, 462–463
providing security administration, 464
third-party infrastructure, 464–465

Security policies
avoiding complex, 465
concerns, 442–443
defining, 448–450
designing detection and recovery 

approach, 455
ensuring well-defined security models and 

requirements, 469
providing administration of, 464
resource address, 440

SEI (Software Engineering Institute) “Views 
and Beyond” Views, 624–625

Semantics
careful use of implied semantics in 

models, 192
representation incompatibilities, 322–324
volatility of information semantics, 301–302

Sensitivity points, in ATAM, 229
Separate responsibilities, security principle 

of, 457
Service-level agreements (SLAs), 388–389
Service providers, 251
Services

capturing availability requirements, 
516–517

classes of, 512–514
enterprise-wide service projects, 616–617
provided by architecture elements, 20

Shared resources, 496
Sharing information, 194
Shutdown, concurrency design and, 338
Siemens viewpoint set, 623–624
Signatures, cryptographic, 444
Simplicity

in functional design philosophy, 270
in models, 191

Simulations
of scenarios, 156
types of qualitative models, 181

Single point of definition, localizing effects 
of change, 553

Single points of failure, 533
Skeleton systems

for architectural definition phase of 
lifecycle, 232–233

creating, 92
in evaluation of architecture, 225

Sketches
functional, 277
of functional and deployment views, 234
for informal modeling, 184

Skills
of model builder, 179
real-world constraints as concerns, 115
of software architect role, 76–77

SLAs (service-level agreements), 388–389
Small projects, 606–607
Software

applying availability solutions, 529–530
availability and time to repair, 515
build variation points for system 

evolution, 556–557
estimating platform availability, 519–521
fault-tolerant, 530
overreliance on specific, 562
in platform evolution, 546
reducing risk of incompatible 

technologies, 539
reliable change and, 558
selecting in common design models, 

363, 365
third-party software requirements, 

375–376
Software architects

in architectural description (AD), 64
architectural leadership, 70
aspects of, 68
boundary between AD and requirements 

analysis, 66
boundary between architecture definition 

and design, 67–68
involvement during stages of system 

delivery, 69–70
in organizational context, 73–75
overview of, 63
project lifecycle and, 605
relationships between core concepts, 

71–72
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responsibilities of, 77–78
separating design from requirements 

analysis, 65–66
skills of, 76–77
specialization areas for, 72–73

Software architecture
agile projects and, 607–609
applying metamodel-based styles, 

555–556
approaches in ATAM, 228
assessing current ease of evolution, 551
considering evolution tradeoffs, 552
core concepts, 26–27
defined, 11–12
Development Resource perspective and, 

574–579
evaluating. See Evaluation of architecture
fundamental system properties, 13–14
importance of, 19–20
ISO recommendations for documenting, 

206–207
key activities, 84
in large programs, 612–614
overview of, 11–12
in plan-driven projects, 609–611
presenting in ATAM, 227
principles of design and evolution, 14–15
project lifecycle and, 605
refining, 64
relationship with requirements and 

concerns, 117
revising for evolution strategy, 552
reworking to improve performance, 490
scenarios in evaluation of, 147
in small and low-risk projects, 606–607
structures resulting from design 

decisions, 64
system elements and relationships, 12–13
system properties and internal 

organization, 15–19
tactics for reworking availability, 525–526
usability concerns, 598

Software design patterns
building patterns (Alexander) and, 161
example of use of, 162–163
overview of, 165

Software development lifecycle

Agile methods in, 100–102
evaluation of architecture during, 

230–233
iterative approaches to, 100
overview of, 98
waterfall approaches to, 99–100

Software engineering practices, 86
Software packages, implementing, 618
Software product development project, 

139–140
Solution architect, 72
Solution-focused concerns, 112–114
Solutions

concerns shaping, 105–106
criticality of problems and, 202
focusing on in modeling, 194
identifying and evaluating, 87
perspectives providing for common 

problems, 58
styles for finding related solutions, 170

Source code
codeline organization, 359
designing structure for, 367

Specialists
high-priority stakeholders, 132
lack of (Deployment viewpoint pitfalls), 

389
Specializations, for software architect role, 

72–73
Specificity, qualities of good scenarios, 153
Spreadsheets, 215
SQL databases, 302
SSADM data flow model, 316
Staged migration approach, 395
Stakeholders

applying Usability perspective, 571
approving security policy, 448
avoiding overambitious availability 

requirements, 539
capturing needs of, 64
clarity of, 203
classes of, 133–138
communicating with, 38
concurrency concerns, 339
context viewpoint concerns, 254–255
correctness in representing needs/

concerns of, 199
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Stakeholders, continued
criteria for good, 133
defined, 6, 21, 131
deployment concerns, 377
determining audience class(es) view is 

aimed at, 35
development concerns, 359–360
development resource concerns, 576
engaging, 91
evaluating AD with, 220–222
evaluating architecture with, 96
functional concerns, 271
groups, 141
high-priority, 132
identifying and engaging, 68
identifying and prioritizing scenarios, 148
importance of, 23–24
individual, team, or organization, 22
information concerns, 310–311
interests and concerns of, 22–23
involving in scenarios, 158–159
involving in security administration, 464
ISO recommendations for documenting an 

architecture, 206–207
managing expectations of, 86–87, 110
in off-the-shelf deployment project 

example, 138–139
operational concerns, 397, 401–402
overview of, 21
in partnered development project 

example, 140
perspective pitfalls and, 58
presenting complex systems to, 33
proxy stakeholders, 140–141
reconciling needs of multiple, 288–289
relationships between core concepts, 

26–27
responsibilities of, 141–142
scenarios for communication with, 147
security examples for, 469
selecting, 131–133
software architects getting input from, 66
in software architecture example, 2–4
in software product development project, 

139–140
support models for, 414–419

Stakeholders section, in AD document, 209

Standard extension points, Evolution 
perspective, 557–558

Standardization
of design, 358–359
styles, patterns, and idioms as aid 

to, 166
of testing, 358–359

Standards
for alerts, 398
business standards as problem-focused 

concern, 111
disability requirements, 570
shaping architectural solutions, 105
technology standards as solution-focused 

concern, 113–114
Star schema (multidimensional schema or 

cube), for modeling data warehouses 
and data marts, 312, 314

Startup, concurrency design and, 338
State entity, 347
State machine, 347
State management

Concurrency view for, 337
designing state transitions, 350–351
identifying states, 350–351

State models
activities, 350–351
entities in, 347–348
notation of, 348–350

State transition models (state charts), 
317–318, 348–350

Static data, in information systems, 296
Static information structure models

activities in, 314–315
notation of, 312–314
overview of, 311–312

Static structures
in airline reservation example, 16–17
candidate architectures and, 19
of a system, 12–13

Statistics tracking service, 534
Storage hardware, 378
Storage models, 302–304
Store of knowledge

perspective as, 50
styles, patterns, and idioms 

for, 165
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Strategies
business strategies as problem-focused 

concern, 108
conventions use in this book, 8
IT strategies as solution-focused 

concern, 112
migration models, 406
shaping architectural solutions, 105

Structural decomposition. See
Decomposition

Structure, internal, 268–269
Structure of information, 294–295
Styles

architectural description (AD) and, 172
benefits of, 170–171
checklist for, 174
defined, 164
example of use of, 167–169
identifying, 95
overview of, 164
in SEI viewpoint catalog, 624–625
two-tier client server approach, 16
types of design patterns, 161
using, 165–166

Sufficiency, properties of effective AD, 199–200
Suppliers, classes of stakeholders, 

134, 136–137
Support models, 414–419
Support, operational concerns, 399
Support providers, 414–417
Support staff, classes of stakeholders, 

134, 137
Symbolic notation, 191
Synchronization, integrity and, 337
SysML functional model, 279
System

architecture of, 20
design using styles, 170
elements and relationships, 12–13
fundamental properties, 13–14
impact on its environment, 253–254
projects for extending existing, 617–618
properties for internal organizations, 15–19
relationships between core concepts, 26
required behavior, 151
response required in functional scenario, 150
state, 150–151

System administrators
classes of stakeholders, 134, 137
as customers of administration models, 

409–413
performance monitoring by, 399

System availability model, 519–521
System-level concurrency models

activities, 344–347
items in, 340–341
notation of, 341–344

System operations
defining sensitive areas in security 

policy, 449
optimizing repeated processing, 491–492

System quality, in TARA-style architectural 
review of system, 234–235

System quality scenarios
benefits of, 158
example, 151–152
information in, 151
types of scenarios, 146

System scope
context viewpoint concerns, 248–249
implicit or assumed, 264
as problem-focused concern, 110–111
validating, 147

Systems and Software Engineering- 
Recommended Practice for Architectural 
Description of Software-Intensive 
Systems (ISO 42010), 206–207

T
Table of Contents, in AD document, 208
Tables, for precision in presentation of 

information, 205
Tactics

for dealing with business goals and 
drivers, 109–110

defined, 48
design patterns and, 166–167
structuring perspective definition by, 51

TARA (Tiny Architectural Review 
Approach), 233–236

Tasks, in Concurrency viewpoint
failure of, 338
mapping functional elements to, 336, 344
structure of, 335–336
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Team Software Process, 609
Teams

agile, 607–608
for modeling, 193–194
of stakeholders, 22

Technical constraints, 115
Technical evaluation

conducting for runtime platform 
model, 382

conducting for technology dependency 
model, 386

Technical integrity, 219
Technical knowledge, 389
Technical state, 337
Technologies

assistive, for disabled users, 571–572
avoiding overambitious availability 

requirements, 539
compatibility issues, 376
development resource concerns, 575
identifying/validating environment and 

platform assumptions, 504–505
increasing availability, 525–526
reducing risk of incompatible, 539
risks due to unfamiliar technology, 202
technology agnostic architectural 

decisions, 86
unproven, 388

Technologies, security
assessing, 455
avoiding ad hoc, 472
avoiding embedding in application code, 

471–472
avoiding overreliance on, 468
avoiding technology-driven approach, 467
avoiding unproven, 465
integrating, 455, 463
providing administration of, 464

Technology dependency models
activities of, 386
notation of, 385–386
overview of, 384–385

Technology drivers, as solution-focused 
concern, 112

Technology experts, 132
Technology goals, as solution-focused 

concern, 112

Technology leadership role, of architects, 70
Technology policies, as solution-focused 

concern, 113–114
Technology principles, developing from 

business principles, 126
Technology specialists, software architect 

compared with, 75
Technology standards, as solution-focused 

concern, 113–114
Technology viewpoint, in RM-ODP, 623
Terminology, defining terms and symbols in 

models, 191
Testers, classes of stakeholders, 134, 137
Tests/testing

automated, 559
avoiding unavailability through 

overload, 536
component resilience, 538
conducting practical, 488–489
driven by scenarios, 147
full-scale live tests, 156–157
prototype implementation tests, 156
scenarios, 156–157
testability of good principles, 120
testability quality of good concerns, 116

Text and tables
administration models in, 411
assessing availability requirements, 

524–525
availability requirements in, 516
availability schedule, 518
characterizing evolution needs, 551
codeline models in, 366–367
configuration management model in, 407
functional availability, 523
identify sensitive resources, 447
installation model in, 403
migration model in, 405
performance model in, 484–485
platform availability, 519
runtime platform model in, 381
for security policy, 448–450
support models in, 415
technology dependency model in, 386
threat model in, 451

Text-based approach
assessing current ease of evolution, 551
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considering evolution tradeoffs, 552
presenting internationalization 

concerns, 581
Third-party environments

avoiding overambitious availability 
requirements, 539

operational concerns, 401
raising and monitoring alerts, 398
reducing risk of incompatible 

technologies, 539
security threats of system hosted in, 451
untrusted until proven otherwise, 458
using third-party security infrastructure, 

464–465
Third-party software requirements, 

375–376
Threads

determining threading design, 345
prioritizing, 346
in system-level concurrency model, 340
tasks and, 335
in thread-based concurrency model, 344

Threat model
avoid overreliance on technology, 468
ensuring well-defined security models and 

requirements, 469
Security perspective and, 450–453
using minimum amount of 

cryptography, 461
Threats

assessing, 455–456
designing mitigation features, 453–455
insider, 469–470
protecting availability, 462–463
security concerns and, 442–443

Three Peaks model, 87–88
Three-tier client server approach, 18
Throughput

defined, 479
effect of hardware resources on, 481
Performance and Scalability perspective, 

479–480
specifying requirements for, 484

Tightly coupled design, 502
Time, real-world constraints as 

concerns, 115
Time sources, 467–468

Time to repair, Availability and Resilience 
perspective, 515

Time zones, 587, 589
Timeliness

of information, 308–309
properties of effective AD, 200–201

Timeouts for service calls, 499–500
Timescale for change, 547, 550–551
Tiny Architectural Review Approach 

(TARA), 233–236
Touch points, for usability, 571
Traceability

checking functional, 284
linking principles together using 

rationales and implications, 126
qualities of good concerns, 116

Tradeoff points, in ATAM, 229
Tradeoffs, consider evolution, 552
Training, development resource 

concerns, 575
Transaction logs, 528–529
Transaction stores, 295
Transactional consistency

backup and restore planning, 400–401
relax for availability and resilience, 532
relax to improve performance/scalability, 

501–502, 507
Transactions

avoiding overhead, 507
as sequence of data updates, 306

Transient scalability, 480
Transition entities, in state model, 347
Trust and permissions model. See also

Security policies, 319
Turnaround time class, response time, 

478–479
Twin Peaks model (Nuseibeh), 87
Two-tier client server approach, 16–17

U
UML (unified modeling language)

activity diagram of details in architecture 
definition, 93

activity diagram of supporting activities in 
architecture definition, 89–90

ATAM process diagram, 227
codeline models in, 366–367
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UML, continued
common design models in, 363
component diagrams for Functional views, 

273–275
context diagram, 257
deployment diagram for network 

model, 384
deployment diagram for runtime platform 

model, 379–381
estimating platform availability, 519
information flow models, 317
as modeling language, 185–186
module structure models in, 360–361
paper-based scenario models, 154–155
presentation of AD, 214
state diagram for information lifecycle 

model, 318
statecharts in, 317–318, 348–350
static and dynamic elements represented 

in, 183
static information structure models in, 

311–313
system-level concurrency models in, 

342–343
use cases in, 146, 198

Unplanned downtime, 514–515
Updating

keeping AD current, 204
models, 193
unavoidable multiple updaters, 324

Upgrades
development resource concerns, 575–576
installation model, 402–403
operational concerns, 394

Uptime, global availability requirements 
and, 539

Usability perspective
activities, 598–599
applicability to views, 596–597
architectural tactics, 599
concerns, 597–598
defined, 568
desired quality, 438
overview of, 595–596
problems and pitfalls, 599–600

Use cases
for documenting functional scenarios, 146

UML context diagram, 257–258
walkthroughs for context model, 260

Users
authentication of, 49
classes of stakeholders, 134, 137
expanding focus to include all 

stakeholders not just end users, 2
visibility of identifiers to, 301

V
Validation

of abstraction, 218
of assumptions, 218–219
of models, 193
perspectives in, 57–58
scenarios in, 147

Value sets, identify configuration, 409–414
Variation points, 556–558
Viewpoint catalog

view relationships in, 243–244
viewpoint definitions in, 244–245

Viewpoints. See also by individual types
in AD, 210–211
benefits of, 38
catalog of core, 39–42
comparing Functional, Information, and 

Operational viewpoints, 46–47
comparing views/viewpoints with objects/

classes, 35
comparing with views and perspectives, 59
deciding what to include in a view, 34–35
function of, 6
ISO recommendations for documenting an 

architecture, 206–207
overview of, 36–37
perspectives applied to, 51–54
perspectives as means of modifying/

enhancing, 47
perspectives compared with, 58–60
pitfalls of, 39
relationship between core concepts, 37–38
in software architecture example, 4–5
summary and further reading, 43
user authentication and, 49
view relationships, in viewpoint catalog, 

243–244
views based on, 178



INDEX 677

Views
in AD, 210–211
AD partitioned into, 33
based on viewpoints, 178
benefits of, 38
comparing views/viewpoints with objects/

classes, 35
comparing with perspectives, 59
comparing with viewpoints and 

perspectives, 59
consisting of one or more models, 178
deciding what to include in, 34–35
defined, 34
designing system architecture and, 31–34
example comparing Functional, 

Information, and Operational 
viewpoints, 46–47

function of, 6
important views for typical systems, 42
ISO recommendations for documenting an 

architecture, 206–207
overview of, 34–35
perspectives applied to, 51–54
perspectives as means of modifying/

enhancing, 47
perspectives compared with, 45
pitfall of wrong set of, 39
relationship between core concepts, 37–38
in software architecture example, 4–5
summary and further reading, 43
view relationships, in viewpoint catalog, 

243–244
view-specific principles, 210

Views, applying perspectives to
Accessibility perspective, 569–570
Availability and Resilience perspective, 

512–513
Development Resource perspective, 574–575
Evolution perspective, 544–545
Internationalization perspective, 580–581
Location perspective, 585–586
Performance and Scalability perspective, 

476–477
Regulation perspective, 591–592
Security perspective, 441–442
Usability perspective, 596–597

Views, consistency across

Concurrency and Deployment views, 
433–434

Concurrency and Development views, 433
Context and Deployment views, 428
Context and Functional views, 427
Context and Information views, 427–428
Deployment and Operational views, 434
Functional and Concurrency views, 

429, 431
Functional and Deployment views, 

430–431
Functional and Development views, 430
Functional and Information views, 

428–429
Functional and Operational views, 431
Information and Deployment views, 432
Information and Operational views, 

432–433
operational monitoring and control 

concerns, 425–426
relationships between views, 426–427

Viewtypes, SEI (Software Engineering 
Institute) “Views and Beyond”
Views, 624

Visible behaviors
in airline reservation example, 15–18
internal organization and, 19
system properties, 13–14

Voice recognition system, for visually 
impaired users, 571

Volumetrics, 329

W
W3C (World Wide Web Consortium), 113
Walkthroughs

activities of Functional viewpoint, 284
for architectural definition, 232
context model and, 260
for defining scope and exploring 

options, 231
for evaluating architecture, 220–222
for functional scenarios, 284
for scenarios, 155–156
for system construction, 232

Waterfall approach
plan-driven methods, 610
to software development, 99–100
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Weakest link, securing, 457, 465–466
Wiki documentation of AD, 213–214
Workflows, in addressing information 

quality, 308
Workload

analyzing performance models, 488
avoiding unavailability through 

overload, 535
consolidating, 494–495, 507
consolidating related, 494–495
degrading gracefully, 499–500
distributing processing over time, 

495–496
optimizing repeated processing, 491–492
partitioning by relaxing transactional 

consistency, 501

peak load behavior and, 481–482
predicting system performance, 476
prioritizing processing, 493–494
reducing risk of transaction overhead, 507
responsiveness to, 478
scale up or scale out, 498–499
throughput and, 479–480

World Wide Web Consortium (W3C), 113

X
XP (Extreme Programming), 101, 547, 607

Y
Yourdon model, 276
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