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Foreword

Businesses are increasingly built around events—the real-time activity data of what is
happening in a company—but what is the right infrastructure for harnessing the
power of events? This is a question I have been thinking about since 2009, when I
started the Apache Kafka project at LinkedIn. In 2014, I cofounded Confluent to
definitively answer it. Beyond providing a way to store and access discrete events, an
event streaming platform needs a mechanism to connect with a myriad of external
systems. It also requires global schema management, metrics, and monitoring. But
perhaps most important of all is stream processing—continuous computation over
never-ending streams of data—without which an event streaming platform is simply
incomplete.

Now more than ever, stream processing plays a key role in how businesses interact
with the world. In 2011, Marc Andreessen wrote an article titled “Why Software Is
Eating the World.” The core idea is that any process that can be moved into software
eventually will be. Marc turned out to be prescient. The most obvious outcome is that
software has permeated every industry imaginable.

But a lesser understood and more important outcome is that businesses are increas‐
ingly defined in software. Put differently, the core processes a business executes—
from how it creates a product, to how it interacts with customers, to how it delivers
services—are increasingly specified, monitored, and executed in software. What has
changed because of that dynamic? Software, in this new world, is far less likely to
be directly interacting with a human. Instead, it is more likely that its purpose is to
programmatically trigger actions or react to other pieces of software that carry out
business directly.

It begs the question: are our traditional application architectures, centered around
existing databases, sufficient for this emerging world? Virtually all databases, from
the most established relational databases to the newest key-value stores, follow a
paradigm in which data is passively stored and the database waits for commands to
retrieve or modify it. This paradigm was driven by human-facing applications in
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which a user looks at an interface and initiates actions that are translated into data‐
base queries. We think that is only half the problem, and the problem of storing data
needs to be complemented with the ability to react to and process events.

Events and stream processing are the keys to succeeding in this new world. Events
support the continuous flow of data throughout a business, and stream processing
automatically executes code in response to change at any level of detail—doing it in
concert with knowledge of all changes that came before it. Modern stream processing
systems like Kafka Streams and ksqlDB make it easy to build applications for a world
that speaks software.

In this book, Mitch Seymour lucidly describes these state-of-the-art systems from
first principles. Mastering Kafka Streams and ksqlDB surveys core concepts, details
the nuances of how each system works, and provides hands-on examples for using
them for business in the real world. Stream processing has never been a more essen‐
tial programming paradigm—and Mastering Kafka Streams and ksqlDB illuminates
the path to succeeding at it.

— Jay Kreps
Cocreator of Apache Kafka,

Cofounder and CEO of Confluent

xii | Foreword



Preface

For data engineers and data scientists, there’s never a shortage of technologies that are
competing for our attention. Whether we’re perusing our favorite subreddits, scan‐
ning Hacker News, reading tech blogs, or weaving through hundreds of tables
at a tech conference, there are so many things to look at that it can start to feel
overwhelming.

But if we can find a quiet corner to just think for a minute, and let all of the buzz fade
into the background, we can start to distinguish patterns from the noise. You see, we
live in the age of explosive data growth, and many of these technologies were created
to help us store and process data at scale. We’re told that these are modern solutions
for modern problems, and we sit around discussing “big data” as if the idea is avant-
garde, when really the focus on data volume is only half the story.

Technologies that only solve for the data volume problem tend to have batch-oriented
techniques for processing data. This involves running a job on some pile of data that
has accumulated for a period of time. In some ways, this is like trying to drink the
ocean all at once. With modern computing power and paradigms, some technologies
actually manage to achieve this, though usually at the expense of high latency.

Instead, there’s another property of modern data that we focus on in this book: data
moves over networks in steady and never-ending streams. The technologies we cover
in this book, Kafka Streams and ksqlDB, are specifically designed to process these
continuous data streams in real time, and provide huge competitive advantages over
the ocean-drinking variety. After all, many business problems are time-sensitive, and
if you need to enrich, transform, or react to data as soon as it comes in, then Kafka
Streams and ksqlDB will help get you there with ease and efficiency.

Learning Kafka Streams and ksqlDB is also a great way to familiarize yourself with
the larger concepts involved in stream processing. This includes modeling data in dif‐
ferent ways (streams and tables), applying stateless transformations of data, using
local state for more advanced operations (joins, aggregations), understanding the dif‐
ferent time semantics and methods for grouping data into time buckets/windows,
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and more. In other words, your knowledge of Kafka Streams and ksqlDB will help
you distinguish and evaluate different stream processing solutions that currently exist
and may come into existence sometime in the future.

I’m excited to share these technologies with you because they have both made an
impact on my own career and helped me accomplish technological feats that I
thought were beyond my own capabilities. In fact, by the time you finish reading this
sentence, one of my Kafka Streams applications will have processed nine million
events. The feeling you’ll get by providing real business value without having to invest
exorbitant amounts of time on the solution will keep you working with these technol‐
ogies for years to come, and the succinct and expressive language constructs make
the process feel more like an art form than a labor. And just like any other art form,
whether it be a life-changing song or a beautiful painting, it’s human nature to want
to share it. So consider this book a mixtape from me to you, with my favorite compi‐
lations from the stream processing space available for your enjoyment: Kafka Streams
and ksqlDB, Volume 1.

Who Should Read This Book
This book is for data engineers who want to learn how to build highly scalable stream
processing applications for moving, enriching, and transforming large amounts of
data in real time. These skills are often needed to support business intelligence initia‐
tives, analytic pipelines, threat detection, event processing, and more. Data scientists
and analysts who want to upgrade their skills by analyzing real-time data streams will
also find value in this book, which is an exciting departure from the batch processing
space that has typically dominated these fields. Prior experience with Apache Kafka is
not required, though some familiarity with the Java programming language will make
the Kafka Streams tutorials easier to follow.

Navigating This Book
This book is organized roughly as follows:

• Chapter 1 provides an introduction to Kafka and a tutorial for running a single-
node Kafka cluster.

• Chapter 2 provides an introduction to Kafka Streams, starting with a background
and architectural review, and ending with a tutorial for running a simple Kafka
Streams application.

• Chapters 3 and 4 discuss the stateless and stateful operators in the Kafka Streams
high-level DSL (domain-specific language). Each chapter includes a tutorial that
will demonstrate how to use these operators to solve an interesting business
problem.

xiv | Preface



• Chapter 5 discusses the role that time plays in our stream processing applica‐
tions, and demonstrates how to use windows to perform more advanced stateful
operations, including windowed joins and aggregations. A tutorial inspired by
predictive healthcare will demonstrate the key concepts.

• Chapter 6 describes how stateful processing works under the hood, and provides
some operational tips for stateful Kafka Streams applications.

• Chapter 7 dives into Kafka Streams’ lower-level Processor API, which can be
used for scheduling periodic functions, and provides more granular access to
application state and record metadata. The tutorial in this chapter is inspired by
IoT (Internet of Things) use cases.

• Chapter 8 provides an introduction to ksqlDB, and discusses the history and
architecture of this technology. The tutorial in this chapter will show you how to
install and run a ksqlDB server instance, and work with the ksqlDB CLI.

• Chapter 9 discusses ksqlDB’s data integration features, which are powered by
Kafka Connect.

• Chapters 10 and 11 discuss the ksqlDB SQL dialect in detail, demonstrating how
to work with different collection types, perform push queries and pull queries,
and more. The concepts will be introduced using a tutorial based on a Netflix use
case: tracking changes to various shows/films, and making these changes avail‐
able to other applications.

• Chapter 12 provides the information you need to deploy your Kafka Streams and
ksqlDB applications to production. This includes information on monitoring,
testing, and containerizing your applications.

Source Code
The source code for this book can be found on GitHub at https://github.com/mitch-
seymour/mastering-kafka-streams-and-ksqldb.

Instructions for building and running each tutorial will be included in the repository.

Kafka Streams Version
At the time of this writing, the latest version of Kafka Streams was version 2.7.0. This
is the version we use in this book, though in many cases, the code will also work with
older or newer versions of the Kafka Streams library. We will make efforts to update
the source code when newer versions introduce breaking changes, and will stage
these updates in a dedicated branch (e.g., kafka-streams-2.8).
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ksqlDB Version
At the time of this writing, the latest version of ksqlDB was version 0.14.0. Compati‐
bility with older and newer versions of ksqlDB is less guaranteed due to the ongoing
and rapid development of this technology, and the lack of a major version (e.g., 1.0) at
the time of this book’s publication. We will make efforts to update the source code
when newer versions introduce breaking changes, and will stage these updates in a
dedicated branch (e.g., ksqldb-0.15). However, it is recommended to avoid versions
older than 0.14.0 when running the examples in this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xvi | Preface



Using Code Examples
Supplemental material (code examples, exercises, etc.) can be found on the book’s
GitHub page, https://github.com/mitch-seymour/mastering-kafka-streams-and-ksqldb.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Mastering Kafka
Streams and ksqlDB by Mitch Seymour (O’Reilly). Copyright 2021 Mitch Seymour,
978-1-492-06249-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/mastering-kafka-streams.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
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PART I

Kafka





CHAPTER 1

A Rapid Introduction to Kafka

The amount of data in the world is growing exponentially and, according to the
World Economic Forum, the number of bytes being stored in the world already far
exceeds the number of stars in the observable universe.

When you think of this data, you might think of piles of bytes sitting in data ware‐
houses, in relational databases, or on distributed filesystems. Systems like these have
trained us to think of data in its resting state. In other words, data is sitting some‐
where, resting, and when you need to process it, you run some query or job against
the pile of bytes.

This view of the world is the more traditional way of thinking about data. However,
while data can certainly pile up in places, more often than not, it’s moving. You see,
many systems generate continuous streams of data, including IoT sensors, medical
sensors, financial systems, user and customer analytics software, application and
server logs, and more. Even data that eventually finds a nice place to rest likely travels
across the network at some point before it finds its forever home.

If we want to process data in real time, while it moves, we can’t simply wait for it to
pile up somewhere and then run a query or job at some interval of our choosing.
That approach can handle some business use cases, but many important use cases
require us to process, enrich, transform, and respond to data incrementally as it
becomes available. Therefore, we need something that has a very different worldview
of data: a technology that gives us access to data in its flowing state, and which allows
us to work with these continuous and unbounded data streams quickly and effi‐
ciently. This is where Apache Kafka comes in.

Apache Kafka (or simply, Kafka) is a streaming platform for ingesting, storing,
accessing, and processing streams of data. While the entire platform is very interest‐
ing, this book focuses on what I find to be the most compelling part of Kafka:
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the stream processing layer. However, to understand Kafka Streams and ksqlDB (both
of which operate at this layer, and the latter of which also operates at the stream
ingestion layer), it is necessary to have a working knowledge of how Kafka, as a
platform, works.

Therefore, this chapter will introduce you to some important concepts and terminol‐
ogy that you will need for the rest of the book. If you already have a working knowl‐
edge of Kafka, feel free to skip this chapter. Otherwise, keep reading.

Some of the questions we will answer in this chapter include:

• How does Kafka simplify communication between systems?
• What are the main components in Kafka’s architecture?
• Which storage abstraction most closely models streams?
• How does Kafka store data in a fault-tolerant and durable manner?
• How is high availability and fault tolerance achieved at the data processing

layers?

We will conclude this chapter with a tutorial showing how to install and run Kafka.
But first, let’s start by looking at Kafka’s communication model.

Communication Model
Perhaps the most common communication pattern between systems is the synchro‐
nous, client-server model. When we talk about systems in this context, we mean
applications, microservices, databases, and anything else that reads and writes data
over a network. The client-server model is simple at first, and involves direct commu‐
nication between systems, as shown in Figure 1-1.

Figure 1-1. Point-to-point communication is simple to maintain and reason about when
you have a small number of systems

For example, you may have an application that synchronously queries a database for
some data, or a collection of microservices that talk to each other directly.
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However, when more systems need to communicate, point-to-point communication
becomes difficult to scale. The result is a complex web of communication pathways
that can be difficult to reason about and maintain. Figure 1-2 shows just how confus‐
ing it can get, even with a relatively small number of systems.

Figure 1-2. The result of adding more systems is a complex web of communication chan‐
nels, which is difficult to maintain

Some of the drawbacks of the client-server model include:

• Systems become tightly coupled because their communication depends on knowl‐
edge of each other. This makes maintaining and updating these systems more
difficult than it needs to be.

• Synchronous communication leaves little room for error since there are no deliv‐
ery guarantees if one of the systems goes offline.

• Systems may use different communication protocols, scaling strategies to deal
with increased load, failure-handling strategies, etc. As a result, you may end up
with multiple species of systems to maintain (software speciation), which hurts
maintainability and defies the common wisdom that we should treat applications
like cattle instead of pets.

• Receiving systems can easily be overwhelmed, since they don’t control the pace at
which new requests or data comes in. Without a request buffer, they operate at the
whims of the applications that are making requests.

• There isn’t a strong notion for what is being communicated between these sys‐
tems. The nomenclature of the client-server model has put too much emphasis
on requests and responses, and not enough emphasis on the data itself. Data
should be the focal point of data-driven systems.

• Communication is not replayable. This makes it difficult to reconstruct the state
of a system.
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Kafka simplifies communication between systems by acting as a centralized commu‐
nication hub (often likened to a central nervous system), in which systems can send
and receive data without knowledge of each other. The communication pattern it
implements is called the publish-subscribe pattern (or simply, pub/sub), and the result
is a drastically simpler communication model, as shown in Figure 1-3.

Figure 1-3. Kafka removes the complexity of point-to-point communication by acting as
a communication hub between systems

If we add more detail to the preceding diagram, we can begin to identify the main
components involved in Kafka’s communication model, as shown in Figure 1-4.

Figure 1-4. The Kafka communication model, redrawn with more detail to show the
main components of the Kafka platform

Instead of having multiple systems communicate directly with each other, pro‐
ducers simply publish their data to one or more topics, without caring who comes
along to read the data.

Topics are named streams (or channels) of related data that are stored in a Kafka
cluster. They serve a similar purpose as tables in a database (i.e., to group related
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1 We talk about the raw byte arrays that are stored in topics, as well as the process of deserializing the bytes into
higher-level structures like JSON objects/Avro records, in Chapter 3.

data). However, they do not impose a particular schema, but rather store the raw
bytes of data, which makes them very flexible to work with.1

Consumers are processes that read (or subscribe) to data in one or more topics.
They do not communicate directly with the producers, but rather listen to data
on any stream they happen to be interested in.

Consumers can work together as a group (called a consumer group) in order to
distribute work across multiple processes.

Kafka’s communication model, which puts more emphasis on flowing streams of data
that can easily be read from and written to by multiple processes, comes with several
advantages, including:

• Systems become decoupled and easier to maintain because they can produce and
consume data without knowledge of other systems.

• Asynchronous communication comes with stronger delivery guarantees. If a con‐
sumer goes down, it will simply pick up from where it left off when it comes back
online again (or, when running with multiple consumers in a consumer group,
the work will be redistributed to one of the other members).

• Systems can standardize on the communication protocol (a high-performance
binary TCP protocol is used when talking to Kafka clusters), as well as scaling
strategies and fault-tolerance mechanisms (which are driven by consumer
groups). This allows us to write software that is broadly consistent, and which fits
in our head.

• Consumers can process data at a rate they can handle. Unprocessed data is stored
in Kafka, in a durable and fault-tolerant manner, until the consumer is ready to
process it. In other words, if the stream your consumer is reading from suddenly
turns into a firehose, the Kafka cluster will act as a buffer, preventing your con‐
sumers from being overwhelmed.

• A stronger notion of what data is being communicated, in the form of events. An
event is a piece of data with a certain structure, which we will discuss in “Events”
on page 11. The main point, for now, is that we can focus on the data flowing
through our streams, instead of spending so much time disentangling the com‐
munication layer like we would in the client-server model.

• Systems can rebuild their state anytime by replaying the events in a topic.
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2 Jay Kreps, Neha Narkhede, and Jun Rao initially led the development of Kafka.

One important difference between the pub/sub model and the client-server model is
that communication is not bidirectional in Kafka’s pub/sub model. In other words,
streams flow one way. If a system produces some data to a Kafka topic, and relies on
another system to do something with the data (i.e., enrich or transform it), the
enriched data will need to be written to another topic and subsequently consumed by
the original process. This is simple to coordinate, but it changes the way we think
about communication.

As long as you remember the communication channels (topics) are stream-like in
nature (i.e., flowing unidirectionally, and may have multiple sources and multiple
downstream consumers), it’s easy to design systems that simply listen to whatever
stream of flowing bytes they are interested in, and produce data to topics (named
streams) whenever they want to share data with one or more systems. We will be
working a lot with Kafka topics in the following chapters (each Kafka Streams and
ksqlDB application we build will read, and usually write to, one or more Kafka top‐
ics), so by the time you reach the end of this book, this will be second nature for you.

Now that we’ve seen how Kafka’s communication model simplifies the way systems
communicate with each other, and that named streams called topics act as the com‐
munication medium between systems, let’s gain a deeper understanding of how
streams come into play in Kafka’s storage layer.

How Are Streams Stored?
When a team of LinkedIn engineers2 saw the potential in a stream-driven data plat‐
form, they had to answer an important question: how should unbounded and contin‐
uous data streams be modeled at the storage layer?

Ultimately, the storage abstraction they identified was already present in many types
of data systems, including traditional databases, key-value stores, version control sys‐
tems, and more. The abstraction is the simple, yet powerful commit log (or simply,
log).

When we talk about logs in this book, we’re not referring to applica‐
tion logs, which emit information about a running process (e.g.,
HTTP server logs). Instead, we are referring to a specific data
structure that is described in the following paragraphs.

Logs are append-only data structures that capture an ordered sequence of events. Let’s
examine the italicized attributes in more detail, and build some intuition around
logs, by creating a simple log from the command line. For example, let’s create a log

6 | Chapter 1: A Rapid Introduction to Kafka

https://oreil.ly/Y2Fe5


called user_purchases, and populate it with some dummy data using the following
command:

# create the logfile
touch users.log

# generate four dummy records in our log
echo "timestamp=1597373669,user_id=1,purchases=1" >> users.log
echo "timestamp=1597373669,user_id=2,purchases=1" >> users.log
echo "timestamp=1597373669,user_id=3,purchases=1" >> users.log
echo "timestamp=1597373669,user_id=4,purchases=1" >> users.log

Now if we look at the log we created, it contains four users that have made a single
purchase:

# print the contents of the log
cat users.log

# output
timestamp=1597373669,user_id=1,purchases=1
timestamp=1597373669,user_id=2,purchases=1
timestamp=1597373669,user_id=3,purchases=1
timestamp=1597373669,user_id=4,purchases=1

The first attribute of logs is that they are written to in an append-only manner. This
means that if user_id=1 comes along and makes a second purchase, we do not
update the first record, since each record is immutable in a log. Instead, we just
append the new record to the end:

# append a new record to the log
echo "timestamp=1597374265,user_id=1,purchases=2" >> users.log

# print the contents of the log
cat users.log

# output
timestamp=1597373669,user_id=1,purchases=1 
timestamp=1597373669,user_id=2,purchases=1
timestamp=1597373669,user_id=3,purchases=1
timestamp=1597373669,user_id=4,purchases=1
timestamp=1597374265,user_id=1,purchases=2 

Once a record is written to the log, it is considered immutable. Therefore, if we
need to perform an update (e.g., to change the purchase count for a user), then
the original record is left untouched.

In order to model the update, we simply append the new value to the end of the
log. The log will contain both the old record and the new record, both of which
are immutable.
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3 Deterministic means the same inputs will produce the same outputs.
4 This is why traditional databases use logs for replication. Logs are used to capture each write operation on the

leader database, and process the same writes, in order, on a replica database in order to deterministically re-
create the same dataset on another machine.

Any system that wants to examine the purchase counts for each user can simply read
each record in the log, in order, and the last record they will see for user_id=1 will
contain the updated purchase amount. This brings us to the second attribute of logs:
they are ordered.

The preceding log happens to be in timestamp order (see the first column), but that’s
not what we mean by ordered. In fact, Kafka does store a timestamp for each record
in the log, but the records do not have to be in timestamp order. When we say a log is
ordered, what we mean is that a record’s position in the log is fixed, and never
changes. If we reprint the log again, this time with line numbers, you can see the posi‐
tion in the first column:

# print the contents of the log, with line numbers
cat -n users.log

# output
1 timestamp=1597373669,user_id=1,purchases=1
2 timestamp=1597373669,user_id=2,purchases=1
3 timestamp=1597373669,user_id=3,purchases=1
4 timestamp=1597373669,user_id=4,purchases=1
5 timestamp=1597374265,user_id=1,purchases=2

Now, imagine a scenario where ordering couldn’t be guaranteed. Multiple processes
could read the user_id=1 updates in a different order, creating disagreement about
the actual purchase count for this user. By ensuring the logs are ordered, the data can
be processed deterministically3 by multiple processes.4

Furthermore, while the position of each log entry in the preceding example uses line
numbers, Kafka refers to the position of each entry in its distributed log as an offset. 
Offsets start at 0 and they enable an important behavior: they allow multiple con‐
sumer groups to each read from the same log, and maintain their own positions in
the log/stream they are reading from. This is shown in Figure 1-5.

Now that we’ve gained some intuition around Kafka’s log-based storage layer by creat‐
ing our own log from the command line, let’s tie these ideas back to the higher-level
constructs we identified in Kafka’s communication model. We’ll start by continuing
our discussion of topics, and learning about something called partitions.
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5 Martin Kleppmann has an interesting article on this topic, which can be found at https://oreil.ly/tDZMm. He
talks about the various trade-offs and the reasons why one might choose one strategy over another. Also, Rob‐
ert Yokota’s follow-up article goes into more depth about how to support multiple event types when using
Confluent Schema Registry for schema management/evolution.

Figure 1-5. Multiple consumer groups can read from the same log, each maintaining
their position based on the offset they have read/processed

Topics and Partitions
In our discussion of Kafka’s communication model, we learned that Kafka has the
concept of named streams called topics. Furthermore, Kafka topics are extremely
flexible with what you store in them. For example, you can have homogeneous topics
that contain only one type of data, or heterogeneous topics that contain multiple types
of data.5 A depiction of these different strategies is shown in Figure 1-6.

Figure 1-6. Different strategies exist for storing events in topics; homogeneous topics gen‐
erally contain one event type (e.g., clicks) while heterogeneous topics contain multiple
event types (e.g., clicks and page_views)

We have also learned that append-only commit logs are used to model streams in
Kafka’s storage layer. So, does this mean that each topic correlates with a log file? Not
exactly. You see, Kafka is a distributed log, and it’s hard to distribute just one of some‐
thing. So if we want to achieve some level of parallelism with the way we distribute
and process logs, we need to create lots of them. This is why Kafka topics are broken
into smaller units called partitions.
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6 The partitioning strategy is configurable, but a popular strategy, including the one that is implemented in
Kafka Streams and ksqlDB, involves setting the partition based on the record key (which can be extracted
from the payload of the record or set explicitly). We’ll discuss this in more detail over the next few chapters.

7 The trade-offs include longer recovery periods after certain failure scenarios, increased resource utilization
(file descriptors, memory), and increased end-to-end latency.

Partitions are individual logs (i.e., the data structures we discussed in the previous
section) where data is produced and consumed from. Since the commit log abstrac‐
tion is implemented at the partition level, this is the level at which ordering is guaran‐
teed, with each partition having its own set of offsets. Global ordering is not
supported at the topic level, which is why producers often route related records to the
same partition.6

Ideally, data will be distributed relatively evenly across all partitions in a topic. But
you could also end up with partitions of different sizes. Figure 1-7 shows an example
of a topic with three different partitions.

Figure 1-7. A Kafka topic configured with three partitions

The number of partitions for a given topic is configurable, and having more parti‐
tions in a topic generally translates to more parallelism and throughput, though there
are some trade-offs of having too many partitions.7 We’ll talk about this more
throughout the book, but the important takeaway is that only one consumer per con‐
sumer group can consume from a partition (individual members across different
consumer groups can consume from the same partition, however, as shown in
Figure 1-5).

Therefore, if you want to spread the processing load across N consumers in a single
consumer group, you need N partitions. If you have fewer members in a consumer
group than there are partitions on the source topic (i.e., the topic that is being read
from), that’s OK: each consumer can process multiple partitions. If you have more
members in a consumer group than there are partitions on the source topic, then
some consumers will be idle.
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With this in mind, we can improve our definition of what a topic is. A topic is a
named stream, composed of multiple partitions. And each partition is modeled as a
commit log that stores data in a totally ordered and append-only sequence. So what
exactly is stored in a topic partition? We’ll explore this in the next section.

Events
In this book, we spend a lot of time talking about processing data in topics. However,
we still haven’t developed a full understanding of what kind of data is stored in a
Kafka topic (and, more specifically, in a topic’s partitions).

A lot of the existing literature on Kafka, including the official documentation, uses a
variety of terms to describe the data in a topic, including messages, records, and
events. These terms are often used interchangeably, but the one we have favored in
this book (though we still use the other terms occasionally) is event. An event is a
timestamped key-value pair that records something that happened. The basic anatomy
of each event captured in a topic partition is shown in Figure 1-8.

Figure 1-8. Anatomy of an event, which is what is stored in topic partitions

Application-level headers contain optional metadata about an event. We don’t
work with these very often in this book.

Keys are also optional, but play an important role in how data is distributed
across partitions. We will see this over the next few chapters, but generally speak‐
ing, they are used to identify related records.

Each event is associated with a timestamp. We’ll learn more about timestamps in
Chapter 5.

The value contains the actual message contents, encoded as a byte array. It’s up to
clients to deserialize the raw bytes into a more meaningful structure (e.g., a JSON
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object or Avro record). We will talk about byte array deserialization in detail in
“Serialization/Deserialization” on page 69.

Now that we have a good understanding of what data is stored in a topic, let’s get a
deeper look at Kafka’s clustered deployment model. This will provide more informa‐
tion about how data is physically stored in Kafka.

Kafka Cluster and Brokers
Having a centralized communication point means reliability and fault tolerance are
extremely important. It also means that the communication backbone needs to be
scalable, i.e., able to handle increased amounts of load. This is why Kafka operates as
a cluster, and multiple machines, called brokers, are involved in the storage and
retrieval of data.
Kafka clusters can be quite large, and can even span multiple data centers and geo‐
graphic regions. However, in this book, we will usually work with a single-node Kafka
cluster since that is all we need to start working with Kafka Streams and ksqlDB. In
production, you’ll likely want at least three brokers, and you will want to set the repli‐
cation of your Kafka topic so that your data is replicated across multiple brokers
(we’ll see this later in this chapter’s tutorial). This allows us to achieve high availability
and to avoid data loss in case one machine goes down.
Now, when we talk about data being stored and replicated across brokers, we’re really
talking about individual partitions in a topic. For example, a topic may have three
partitions that are spread across three brokers, as shown in Figure 1-9.

Figure 1-9. Partitions are spread across the available brokers, meaning that a topic can
span multiple machines in the Kafka cluster
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As you can see, this allows topics to be quite large, since they can grow beyond the
capacity of a single machine. To achieve fault tolerance and high availability, you can
set a replication factor when configuring the topic. For example, a replication factor
of 2 will allow the partition to be stored on two different brokers. This is shown in
Figure 1-10.

Figure 1-10. Increasing the replication factor to 2 will cause the partitions to be stored on
two different brokers

Whenever a partition is replicated across multiple brokers, one broker will be desig‐
nated as the leader, which means it will process all read/write requests from produc‐
ers/consumers for the given partition. The other brokers that contain the replicated
partitions are called followers, and they simply copy the data from the leader. If the
leader fails, then one of the followers will be promoted as the new leader.

Furthermore, as the load on your cluster increases over time, you can expand your
cluster by adding even more brokers, and triggering a partition reassignment. This
will allow you to migrate data from the old machines to a fresh, new machine.

Finally, brokers also play an important role with maintaining the membership of con‐
sumer groups. We’ll explore this in the next section.

Consumer Groups
Kafka is optimized for high throughput and low latency. To take advantage of this on
the consumer side, we need to be able to parallelize work across multiple processes.
This is accomplished with consumer groups.
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Consumer groups are made up of multiple cooperating consumers, and the member‐
ship of these groups can change over time. For example, new consumers can come
online to scale the processing load, and consumers can also go offline either for plan‐
ned maintenance or due to unexpected failure. Therefore, Kafka needs some way of
maintaining the membership of each group, and redistributing work when necessary.

To facilitate this, every consumer group is assigned to a special broker called the
group coordinator, which is responsible for receiving heartbeats from the consumers,
and triggering a rebalance of work whenever a consumer is marked as dead. A depic‐
tion of consumers heartbeating back to a group coordinator is shown in Figure 1-11.

Figure 1-11. Three consumers in a group, heartbeating back to group coordinator

Every active member of the consumer group is eligible to receive a partition assign‐
ment. For example, the work distribution across three healthy consumers may look
like the diagram in Figure 1-12.

Figure 1-12. Three healthy consumers splitting the read/processing workload of a three-
partition Kafka topic
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8 There are many Docker images to choose from for running Kafka. However, the Confluent images are a con‐
venient choice since Confluent also provides Docker images for some of the other technologies we will use in
this book, including ksqlDB and Confluent Schema Registry.

However, if a consumer instance becomes unhealthy and cannot heartbeat back to the
cluster, then work will automatically be reassigned to the healthy consumers. For
example, in Figure 1-13, the middle consumer has been assigned the partition that
was previously being handled by the unhealthy consumer.

Figure 1-13. Work is redistributed when consumer processes fail

As you can see, consumer groups are extremely important in achieving high availabil‐
ity and fault tolerance at the data processing layer. With this, let’s now commence our
tutorial by learning how to install Kafka.

Installing Kafka
There are detailed instructions for installing Kafka manually in the official documen‐
tation. However, to keep things as simple as possible, most of the tutorials in this
book utilize Docker, which allows us to deploy Kafka and our stream processing
applications inside a containerized environment.

Therefore, we will be installing Kafka using Docker Compose, and we’ll be using
Docker images that are published by Confluent.8 The first step is to download and
install Docker from the Docker install page.

Next, save the following configuration to a file called docker-compose.yml:
---
version: '2'

services:
  zookeeper: 
    image: confluentinc/cp-zookeeper:6.0.0
    hostname: zookeeper
    container_name: zookeeper
    ports:
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      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000

  kafka: 
    image: confluentinc/cp-enterprise-kafka:6.0.0
    hostname: kafka
    container_name: kafka
    depends_on:
      - zookeeper
    ports:
      - "29092:29092"
    environment:
      KAFKA_BROKER_ID: 1
      KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: |
         PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
      KAFKA_ADVERTISED_LISTENERS: |
         PLAINTEXT://kafka:9092,PLAINTEXT_HOST://localhost:29092
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1

The first container, which we’ve named zookeeper, will contain the ZooKeeper
installation. We haven’t talked about ZooKeeper in this introduction since, at the
time of this writing, it is being actively removed from Kafka. However, it is a cen‐
tralized service for storing metadata such as topic configuration. Soon, it will no
longer be included in Kafka, but we are including it here since this book was
published before ZooKeeper was fully removed.

The second container, called kafka, will contain the Kafka installation. This is
where our broker (which comprises our single-node cluster) will run and where
we will execute some of Kafka’s console scripts for interacting with the cluster.

Finally, run the following command to start a local Kafka cluster:

docker-compose up

With our Kafka cluster running, we are now ready to proceed with our tutorial.

Hello, Kafka
In this simple tutorial, we will demonstrate how to create a Kafka topic, write data to a
topic using a producer, and finally, read data from a topic using a consumer. The first
thing we need to do is log in to the container that has Kafka installed. We can do this
by running the following command:

docker-compose exec kafka bash
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Now, let’s create a topic, called users. We’ll use one of the console scripts (kafka-
topics) that is included with Kafka. The following command shows how to do this:

kafka-topics \ 
    --bootstrap-server localhost:9092 \ 
    --create \ 
    --topic users \ 
    --partitions 4 \ 
    --replication-factor 1 

# output
Created topic users.

kafka-topics is a console script that is included with Kafka.

A bootstrap server is the host/IP pair for one or more brokers.

There are many flags for interacting with Kafka topics, including --list,
--describe, and --delete. Here, we use the --create flag since we are creating
a new topic.

The topic name is users.

Split our topic into four partitions.

Since we’re running a single-node cluster, we will set the replication factor to 1. 
In production, you will want to set this to a higher value (such as 3) to ensure
high-availability.

The console scripts we use in this section are included in the Kafka
source distribution. In a vanilla Kafka installation, these scripts
include the .sh file extension (e.g., kafka-topics.sh, kafka-console-
producer.sh, etc.). However, the file extension is dropped in Conflu‐
ent Platform (which is why we ran kafka-topics instead of kafka-
topics.sh in the previous code snippet).

Once the topic has been created, you can print a description of the topic, including its
configuration, using the following command:

kafka-topics \
    --bootstrap-server localhost:9092 \
    --describe \ 
    --topic users

# output
Topic: users PartitionCount: 4 ReplicationFactor: 1 Configs:
 Topic: users Partition: 0 Leader: 1 Replicas: 1 Isr: 1
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 Topic: users Partition: 1 Leader: 1 Replicas: 1 Isr: 1
 Topic: users Partition: 2 Leader: 1 Replicas: 1 Isr: 1
 Topic: users Partition: 3 Leader: 1 Replicas: 1 Isr: 1

The --describe flag allows us to view configuration information for a given
topic.

Now, let’s produce some data using the built-in kafka-console-producer script:

kafka-console-producer \ 
    --bootstrap-server localhost:9092 \
    --property key.separator=, \ 
    --property parse.key=true \
    --topic users

The kafka-console-producer script, which is included with Kafka, can be used
to produce data to a topic. However, once we start working with Kafka Streams
and ksqlDB, the producer processes will be embedded in the underlying Java
library, so we won’t need to use this script outside of testing and development
purposes.

We will be producing a set of key-value pairs to our users topic. This property
states that our key and values will be separated using the , character.

The previous command will drop you in an interactive prompt. From here, we can
input several key-value pairs to produce to the users topic. When you are finished,
press Control-C on your keyboard to exit the prompt:

>1,mitch
>2,elyse
>3,isabelle
>4,sammy

After producing the data to our topic, we can use the kafka-console-consumer script
to read the data. The following command shows how:

kafka-console-consumer \ 
    --bootstrap-server localhost:9092 \
    --topic users \
    --from-beginning 

# output
mitch
elyse
isabelle
sammy
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9 As of version 2.7, you can also use the --property print.headers=true flag to print the message headers.

The kafka-console-consumer script is also included in the Kafka distribution.
Similar to what we mentioned for the kafka-console-producer script, most of
the tutorials in this book will leverage consumer processes that are built into
Kafka Streams and ksqlDB, instead of using this standalone console script (which
is useful for testing purposes).

The --from-beginning flag indicates that we should start consuming from the
beginning of the Kafka topic.

By default, the kafka-console-consumer will only print the message value. But as we
learned earlier, events actually contain more information, including a key, a time‐
stamp, and headers. Let’s pass in some additional properties to the console consumer
so that we can see the timestamp and key values as well:9

kafka-console-consumer \
    --bootstrap-server localhost:9092 \
    --topic users \
    --property print.timestamp=true \
    --property print.key=true \
    --property print.value=true \
    --from-beginning

# output
CreateTime:1598226962606 1 mitch
CreateTime:1598226964342 2 elyse
CreateTime:1598226966732 3 isabelle
CreateTime:1598226968731 4 sammy

That’s it! You have now learned how to perform some very basic interactions with
a Kafka cluster. The final step is to tear down our local cluster using the following
command:

docker-compose down

Summary
Kafka’s communication model makes it easy for multiple systems to communicate,
and its fast, durable, and append-only storage layer makes it possible to work with
fast-moving streams of data with ease. By using a clustered deployment, Kafka can
achieve high availability and fault tolerance at the storage layer by replicating data
across multiple machines, called brokers. Furthermore, the cluster’s ability to receive
heartbeats from consumer processes, and update the membership of consumer
groups, allows for high availability, fault tolerance, and workload scalability at the
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stream processing and consumption layer. All of these features have made Kafka one
of the most popular stream processing platforms in existence.

You now have enough background on Kafka to get started with Kafka Streams and
ksqlDB. In the next section, we will begin our journey with Kafka Streams by seeing
how it fits in the wider Kafka ecosystem, and by learning how we can use this library
to work with data at the stream processing layer.

20 | Chapter 1: A Rapid Introduction to Kafka



PART II

Kafka Streams





CHAPTER 2

Getting Started with Kafka Streams

Kafka Streams is a lightweight, yet powerful Java library for enriching, transforming,
and processing real-time streams of data. In this chapter, you will be introduced to
Kafka Streams at a high level. Think of it as a first date, where you will learn a little
about Kafka Streams’ background and get an initial glance at its features.

By the end of this date, er…I mean chapter, you will understand the following:

• Where Kafka Streams fits in the Kafka ecosystem
• Why Kafka Streams was built in the first place
• What kinds of features and operational characteristics are present in this library
• Who Kafka Streams is appropriate for
• How Kafka Streams compares to other stream processing solutions
• How to create and run a basic Kafka Streams application

So without further ado, let’s get our metaphorical date started with a simple question
for Kafka Streams: where do you live (…in the Kafka ecosystem)?

The Kafka Ecosystem
Kafka Streams lives among a group of technologies that are collectively referred to as
the Kafka ecosystem. In Chapter 1, we learned that at the heart of Apache Kafka is a
distributed, append-only log that we can produce messages to and read messages
from. Furthermore, the core Kafka code base includes some important APIs for inter‐
acting with this log (which is separated into categories of messages called topics).
Three APIs in the Kafka ecosystem, which are summarized in Table 2-1, are con‐
cerned with the movement of data to and from Kafka.
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1 We are referring to the official ecosystem here, which includes all of the components that are maintained
under the Apache Kafka project.

Table 2-1. APIs for moving data to and from Kafka

API Topic interaction Examples
Producer API Writing messages to Kafka topics. • Filebeat

• rsyslog
• Custom producers

Consumer API Reading messages from Kafka topics. • Logstash
• kafkacat
• Custom consumers

Connect API Connecting external data stores, APIs, and 
filesystems to Kafka topics.
Involves both reading from topics (sink
connectors) and writing to topics (source
connectors).

• JDBC source connector
• Elasticsearch sink connector
• Custom connectors

However, while moving data through Kafka is certainly important for creating data
pipelines, some business problems require us to also process and react to data as it
becomes available in Kafka. This is referred to as stream processing, and there are mul‐
tiple ways of building stream processing applications with Kafka. Therefore, let’s take
a look at how stream processing applications were implemented before Kafka Streams
was introduced, and how a dedicated stream processing library came to exist along‐
side the other APIs in the Kafka ecosystem.

Before Kafka Streams
Before Kafka Streams existed, there was a void in the Kafka ecosystem.1 Not the kind
of void you might encounter during your morning meditation that makes you feel
refreshed and enlightened, but the kind of void that made building stream processing
applications more difficult than it needed to be. I’m talking about the lack of library
support for processing data in Kafka topics.

During these early days of the Kafka ecosystem, there were two main options for
building Kafka-based stream processing applications:

• Use the Consumer and Producer APIs directly
• Use another stream processing framework (e.g., Apache Spark Streaming,

Apache Flink)

With the Consumer and Producer APIs, you can read from and write to the event
stream directly using a number of programming languages (Python, Java, Go, C/C++,
Node.js, etc.) and perform any kind of data processing logic you’d like, as long
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2 Jay Kreps, one of the original authors of Apache Kafka, discussed this in detail in an O’Reilly blog post back in
2014.

3 This includes aggregated streams/tables, which we’ll discuss later in this chapter.
4 We have an entire chapter dedicated to time, but also see Matthias J. Sax’s great presentation on the subject

from Kafka Summit 2019.
5 Guozhang Wang, who has played a key role in the development of Kafka Streams, deserves much of the rec‐

ognition for submitting the original KIP for what would later become Kafka Streams. See https://oreil.ly/l2wbc.

as you’re willing to write a lot of code from scratch. These APIs are very basic and
lack many of the primitives that would qualify them as a stream processing API,
including:

• Local and fault-tolerant state2

• A rich set of operators for transforming streams of data
• More advanced representations of streams3

• Sophisticated handling of time4

Therefore, if you want to do anything nontrivial, like aggregate records, join separate
streams of data, group events into windowed time buckets, or run ad hoc queries
against your stream, you will hit a wall of complexity pretty quickly. The Producer
and Consumer APIs do not contain any abstractions to help you with these kinds of
use cases, so you will be left to your own devices as soon as it’s time to do something
more advanced with your event stream.

The second option, which involves adopting a full-blown streaming platform like
Apache Spark or Apache Flink, introduces a lot of unneeded complexity. We talk
about the downsides of this approach in “Comparison to Other Systems” on page 30,
but the short version is that if we’re optimizing for simplicity and power, then we
need a solution that gives us the stream processing primitives without the overhead
of a processing cluster. We also need better integration with Kafka, especially when it
comes to working with intermediate representations of data outside of the source and
sink topics.

Fortunately for us, the Kafka community recognized the need for a stream processing
API in the Kafka ecosystem and decided to build it.5

Enter Kafka Streams
In 2016, the Kafka ecosystem was forever changed when the first version of Kafka
Streams (also called the Streams API) was released. With its inception, the landscape
of stream processing applications that relied so heavily on hand-rolled features gave
way to more advanced applications, which leveraged community-developed patterns
and abstractions for transforming and processing real-time event streams.
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6 Kafka Connect veered a little into event processing territory by adding support for something called single
message transforms, but this is extremely limited compared to what Kafka Streams can do.

Unlike the Producer, Consumer, and Connect APIs, Kafka Streams is dedicated to
helping you process real-time data streams, not just move data to and from Kafka.6

It makes it easy to consume real-time streams of events as they move through our
data pipeline, apply data transformation logic using a rich set of stream processing
operators and primitives, and optionally write new representations of the data back
to Kafka (i.e., if we want to make the transformed or enriched events available to
downstream systems).

Figure 2-1 depicts the previously discussed APIs in the Kafka ecosystem, with Kafka
Streams operating at the stream processing layer.

Figure 2-1. Kafka Streams is the “brain” of the Kafka ecosystem, consuming records from
the event stream, processing the data, and optionally writing enriched or transformed
records back to Kafka

As you can see from the diagram in Figure 2-1, Kafka Streams operates at an exciting
layer of the Kafka ecosystem: the place where data from many sources converges.
This is the layer where sophisticated data enrichment, transformation, and processing
can happen. It’s the same place where, in a pre–Kafka Streams world, we would have
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7 Kafka Streams will work with other JVM-based languages as well, including Scala and Kotlin. However, we
exclusively use Java in this book.

tediously written our own stream processing abstractions (using the Consumer/
Producer API approach) or absorbed a complexity hit by using another framework.
Now, let’s get a first look at the features of Kafka Streams that allow us to operate at
this layer in a fun and efficient way.

Features at a Glance
Kafka Streams offers many features that make it an excellent choice for modern
stream processing applications. We’ll be going over these in detail in the following
chapters, but here are just a few of the features you can look forward to:

• A high-level DSL that looks and feels like Java’s streaming API. The DSL provides
a fluent and functional approach to processing data streams that is easy to learn
and use.

• A low-level Processor API that gives developers fine-grained control when they
need it.

• Convenient abstractions for modeling data as either streams or tables.
• The ability to join streams and tables, which is useful for data transformation and

enrichment.
• Operators and utilities for building both stateless and stateful stream processing

applications.
• Support for time-based operations, including windowing and periodic functions.
• Easy installation. It’s just a library, so you can add Kafka Streams to any Java

application.7

• Scalability, reliability, maintainability.

As you begin exploring these features in this book, you will quickly see why this
library is so widely used and loved. Both the high-level DSL and low-level Processor
API are not only easy to learn, but are also extremely powerful. Advanced stream
processing tasks (such as joining live, moving streams of data) can be accomplished
with very little code, which makes the development experience truly enjoyable.

Now, the last bullet point pertains to the long-term stability of our stream processing
applications. After all, many technologies are exciting to learn in the beginning, but
what really counts is whether or not Kafka Streams will continue to be a good choice
as our relationship gets more complicated through real-world, long-term usage of
this library. Therefore, it makes sense to evaluate the long-term viability of Kafka
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8 Multiple consumer groups can consume from a single topic, and each consumer group processes messages
independently of other consumer groups.

9 While partitions can be added to an existing topic, the recommended pattern is to create a new source topic
with the desired number of partitions, and to migrate all of the existing workloads to the new topic.

Streams before getting too far down the rabbit hole. So how should we go about
doing this? Let’s start by looking at Kafka Streams’ operational characteristics.

Operational Characteristics
In Martin Kleppmann’s excellent book, Designing Data-Intensive Applications
(O’Reilly), the author highlights three important goals for data systems:

• Scalability
• Reliability
• Maintainability

These goals provide a useful framework for evaluating Kafka Streams, so in this
section, we will define these terms and discover how Kafka Streams achieves each
of them.

Scalability
Systems are considered scalable when they can cope and remain performant as load
increases. In Chapter 1, we learned that scaling Kafka topics involves adding more
partitions and, when needed, more Kafka brokers (the latter is only needed if the
topic grows beyond the existing capacity of your Kafka cluster).

Similarly, in Kafka Streams, the unit of work is a single topic-partition, and Kafka
automatically distributes work to groups of cooperating consumers called consumer
groups.8 This has two important implications:

• Since the unit of work in Kafka Streams is a single topic-partition, and since
topics can be expanded by adding more partitions, the amount of work a Kafka
Streams application can undertake can be scaled by increasing the number of
partitions on the source topics.9

• By leveraging consumer groups, the total amount of work being handled by a
Kafka Streams application can be distributed across multiple, cooperating instan‐
ces of your application.
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10 Including some features that are specific to stateful applications, which we will discuss in Chapter 4.

A quick note about the second point. When you deploy a Kafka Streams application,
you will almost always deploy multiple application instances, each handling a subset
of the work (e.g., if your source topic has 32 partitions, then you have 32 units of
work that can be distributed across all cooperating consumers). For example, you
could deploy four application instances, each handling eight partitions (4 * 8 = 32),
or you could just as easily deploy sixteen instances of your application, each handling
two partitions (16 * 2 = 32).

However, regardless of how many application instances you end up deploying, Kafka
Streams’ ability to cope with increased load by adding more partitions (units of work)
and application instances (workers) makes Kafka Streams scalable.

On a similar note, Kafka Streams is also elastic, allowing you to seamlessly (albeit
manually) scale the number of application instances in or out, with a limit on the
scale-out path being the number of tasks that are created for your topology. We’ll dis‐
cuss tasks in more detail in “Tasks and Stream Threads” on page 41.

Reliability
Reliability is an important feature of data systems, not only from an engineering per‐
spective (we don’t want to be woken up at 3 a.m. due to some fault in the system), but
also from our customers’ perspective (we don’t want the system to go offline in any
noticeable way, and we certainly can’t tolerate data loss or corruption). Kafka Streams
comes with a few fault-tolerant features,10 but the most obvious one is something
we’ve already touched on in “Consumer Groups” on page 13: automatic failovers and
partition rebalancing via consumer groups.

If you deploy multiple instances of your Kafka Streams application and one goes off‐
line due to some fault in the system (e.g., a hardware failure), then Kafka will auto‐
matically redistribute the load to the other healthy instances. When the failure is
resolved (or, in more modern architectures that leverage an orchestration system like
Kubernetes, when the application is moved to a healthy node), then Kafka will reba‐
lance the work again. This ability to gracefully handle faults makes Kafka Streams
reliable.

Operational Characteristics | 29



11 The ever-growing nature of the stream processing space makes it difficult to compare every solution to Kafka
Streams, so we have decided to focus on the most popular and mature stream processing solutions available at
the time of this writing.

Maintainability
It is well known that the majority of the cost of software is not in its initial develop‐
ment, but in its ongoing maintenance—fixing bugs, keeping its systems operational,
investigating failures…

—Martin Kleppmann

Since Kafka Streams is a Java library, troubleshooting and fixing bugs is relatively
straightforward since we’re working with standalone applications, and patterns for
both troubleshooting and monitoring Java applications are well established and may
already be in use at your organization (collecting and analyzing application logs, cap‐
turing application and JVM metrics, profiling and tracing, etc.).

Furthermore, since the Kafka Streams API is succinct and intuitive, code-level main‐
tenance is less time-consuming than one would expect with more complicated libra‐
ries, and is very easy to understand for beginners and experts alike. If you build a
Kafka Streams application and then don’t touch it for months, you likely won’t suffer
the usual project amnesia and require a lot of ramp-up time to understand the previ‐
ous code you’ve written. For the same reasons, new project maintainers can typically
get up to speed pretty quickly with a Kafka Streams application, which improves
maintainability even further.

Comparison to Other Systems
By this point, you should be starting to feel comfortable about starting a long-term
relationship with Kafka Streams. But before things get too serious, isn’t it natural to
see if there are other fish in the sea?

Actually, it is sometimes difficult to evaluate how good a technology is without know‐
ing how it stacks up against its competitors. So let’s take a look at how Kafka Streams
compares to some other popular technologies in the stream processing space.11 We’ll
start by comparing Kafka Streams’ deployment model with other popular systems.

Deployment Model
Kafka Streams takes a different approach to stream processing than technologies like
Apache Flink and Apache Spark Streaming. The latter systems require you to set up a
dedicated processing cluster for submitting and running your stream processing pro‐
gram. This can introduce a lot of complexity and overhead. Even experienced engi‐
neers at well-established companies have conceded that the overhead of a processing

30 | Chapter 2: Getting Started with Kafka Streams



cluster is nontrivial. In an interview with Nitin Sharma at Netflix, I learned that it
took around six months to adapt to the nuances of Apache Flink and build a highly
reliable production Apache Flink application and cluster.

On the other hand, Kafka Streams is implemented as a Java library, so getting started
is much easier since you don’t need to worry about a cluster manager; you simply
need to add the Kafka Streams dependency to your Java application. Being able to
build a stream processing application as a standalone program also means you have a
lot of freedom in terms of how you monitor, package, and deploy your code. For
example, at Mailchimp, our Kafka Streams applications are deployed using the same
patterns and tooling we use for other internal Java applications. This ability to imme‐
diately integrate into your company’s systems is a huge advantage for Kafka Streams.

Next, let’s explore how Kafka Streams’ processing model compares to other systems
in this space.

Processing Model
Another key differentiator between Kafka Streams and systems like Apache Spark
Streaming or Trident is that Kafka Streams implements event-at-a-time processing, so
events are processed immediately, one at a time, as they come in. This is considered
true streaming and provides lower latency than the alternative approach, which is
called micro-batching. Micro-batching involves grouping records into small groups
(or batches), which are buffered in memory and later emitted at some interval (e.g.,
every 500 milliseconds). Figure 2-2 depicts the difference between event-at-a-time
and micro-batch processing.

Figure 2-2. Micro-batching involves grouping records into small batches and emitting
them to downstream processors at a fixed interval; event-at-a-time processing allows
each event to be processed at soon as it comes in, instead of waiting for a batch to
materialize
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12 Although there is an open, albeit dated, proposal to support batch processing in Kafka Streams.
13 Including a Kafka-backed relational database called KarelDB, a graph analytics library built on Kafka Streams,

and more. See https://yokota.blog.

Frameworks that use micro-batching are often optimized for
greater throughput at the cost of higher latency. In Kafka Streams,
you can achieve extremely low latency while also maintaining high
throughput by splitting data across many partitions.

Finally, let’s take a look at Kafka Streams’ data processing architecture, and see how its
focus on streaming differs from other systems.

Kappa Architecture
Another important consideration when comparing Kafka Streams to other solutions
is whether or not your use case requires support for both batch and stream process‐
ing. At the time of this writing, Kafka Streams focuses solely on streaming use cases12

(this is called a Kappa architecture), while frameworks like Apache Flink and Apache
Spark support both batch and stream processing (this is called a Lambda architec‐
ture). However, architectures that support both batch and streaming use cases aren’t
without their drawbacks. Jay Kreps discussed some of the disadvantages of a hybrid
system nearly two years before Kafka Streams was introduced into the Kafka
ecosystem:

The operational burden of running and debugging two systems is going to be very
high. And any new abstraction can only provide the features supported by the intersec‐
tion of the two systems.

These challenges didn’t stop projects like Apache Beam, which defines a unified pro‐
gramming model for batch and stream processing, from gaining popularity in recent
years. But Apache Beam isn’t comparable to Kafka Streams in the same way that
Apache Flink is. Instead, Apache Beam is an API layer that relies on an execution
engine to do most of the work. For example, both Apache Flink and Apache Spark
can be used as execution engines (often referred to as runners) in Apache Beam. So
when you compare Kafka Streams to Apache Beam, you must also consider the exe‐
cution engine that you plan on using in addition to the Beam API itself.

Furthermore, Apache Beam–driven pipelines lack some important features that
are offered in Kafka Streams. Robert Yokota, who created an experimental Kafka
Streams Beam Runner and who maintains several innovative projects in the Kafka
ecosystem,13 puts it this way in his comparison of different streaming frameworks:
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14 At the time of this writing, Apache Flink had recently released a beta version of queryable state, though the
API itself was less mature and came with the following warning in the official Flink documentation: “The cli‐
ent APIs for queryable state are currently in an evolving state and there are no guarantees made about stability
of the provided interfaces. It is likely that there will be breaking API changes on the client side in the upcom‐
ing Flink versions.” Therefore, while the Apache Flink team is working to close this gap, Kafka Streams still
has the more mature and production-ready API for querying state.

One way to state the differences between the two systems is as follows:

• Kafka Streams is a stream-relational processing platform.

• Apache Beam is a stream-only processing platform.

A stream-relational processing platform has the following capabilities which are typi‐
cally missing in a stream-only processing platform:

• Relations (or tables) are first-class citizens, i.e., each has an independent identity.

• Relations can be transformed into other relations.

• Relations can be queried in an ad-hoc manner.

We will demonstrate each of the bulleted features over the next several chapters, but
for now, suffice it to say that many of Kafka Streams’ most powerful features (includ‐
ing the ability to query the state of a stream) are not available in Apache Beam or
other more generalized frameworks.14 Furthermore, the Kappa architecture offers a
simpler and more specialized approach for working with streams of data, which can
improve the development experience and simplify the operation and maintenance of
your software. So if your use case doesn’t require batch processing, then hybrid sys‐
tems will introduce unnecessary complexity.

Now that we’ve looked at the competition, let’s look at some Kafka Streams use cases.

Use Cases
Kafka Streams is optimized for processing unbounded datasets quickly and effi‐
ciently, and is therefore a great solution for problems in low-latency, time-critical
domains. A few example use cases include:

• Financial data processing (Flipkart), purchase monitoring, fraud detection
• Algorithmic trading
• Stock market/crypto exchange monitoring
• Real-time inventory tracking and replenishment (Walmart)
• Event booking, seat selection (Ticketmaster)
• Email delivery tracking and monitoring (Mailchimp)
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• Video game telemetry processing (Activision, the publisher of Call of Duty)
• Search indexing (Yelp)
• Geospatial tracking/calculations (e.g., distance comparison, arrival projections)
• Smart Home/IoT sensor processing (sometimes called AIOT, or the Artificial

Intelligence of Things)
• Change data capture (Redhat)
• Sports broadcasting/real-time widgets (Gracenote)
• Real-time ad platforms (Pinterest)
• Predictive healthcare, vitals monitoring (Children’s Healthcare of Atlanta)
• Chat infrastructure (Slack), chat bots, virtual assistants
• Machine learning pipelines (Twitter) and platforms (Kafka Graphs)

The list goes on and on, but the common characteristic across all of these examples is
that they require (or at least benefit from) real-time decision making or data process‐
ing. The spectrum of these use cases, and others you will encounter in the wild, is
really quite fascinating. On one end of the spectrum, you may be processing streams
at the hobbyist level by analyzing sensor output from a Smart Home device. However,
you could also use Kafka Streams in a healthcare setting to monitor and react to
changes in a trauma victim’s condition, as Children’s Healthcare of Atlanta has done.

Kafka Streams is also a great choice for building microservices on top of real-time
event streams. It not only simplifies typical stream processing operations (filtering,
joining, windowing, and transforming data), but as you will see in “Interactive Quer‐
ies” on page 129, it is also capable of exposing the state of a stream using a feature
called interactive queries. The state of a stream could be an aggregation of some kind
(e.g., the total number of views for each video in a streaming platform) or even the
latest representation for a rapidly changing entity in your event stream (e.g., the latest
stock price for a given stock symbol).

Now that you have some idea of who is using Kafka Streams and what kinds of use
cases it is well suited for, let’s take a quick look at Kafka Streams’ architecture before
we start writing any code.
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Processor Topologies
Kafka Streams leverages a programming paradigm called dataflow programming
(DFP), which is a data-centric method of representing programs as a series of inputs,
outputs, and processing stages. This leads to a very natural and intuitive way of creat‐
ing stream processing programs and is one of the many reasons I think Kafka
Streams is easy to pick up for beginners.

This section will dive a little deeper into Kafka Streams architec‐
ture. If you prefer to get your feet wet with Kafka Streams and
revisit this section later, feel free to proceed to “Introducing Our
Tutorial: Hello, Streams” on page 45.

Instead of building a program as a sequence of steps, the stream processing logic in a
Kafka Streams application is structured as a directed acyclic graph (DAG). Figure 2-3
shows an example DAG that depicts how data flows through a set of stream process‐
ors. The nodes (the rectangles in the diagram) represent a processing step, or pro‐
cessor, and the edges (the lines connecting the nodes in the diagram) represent input
and output streams (where data flows from one processor to another).

Figure 2-3. Kafka Streams borrows some of its design from dataflow programming, and
structures stream processing programs as a graph of processors through which data flows
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There are three basic kinds of processors in Kafka Streams:

Source processors
Sources are where information flows into the Kafka Streams application. Data is
read from a Kafka topic and sent to one or more stream processors.

Stream processors
These processors are responsible for applying data processing/transformation
logic on the input stream. In the high-level DSL, these processors are defined
using a set of built-in operators that are exposed by the Kafka Streams library,
which we will be going over in detail in the following chapters. Some example
operators are filter, map, flatMap, and join.

Sink processors
Sinks are where enriched, transformed, filtered, or otherwise processed records
are written back to Kafka, either to be handled by another stream processing
application or to be sent to a downstream data store via something like Kafka
Connect. Like source processors, sink processors are connected to a Kafka topic.

A collection of processors forms a processor topology, which is often referred to as
simply the topology in both this book and the wider Kafka Streams community. As we
go through each tutorial in this part of the book, we will first design the topology by
creating a DAG that connects the source, stream, and sink processors. Then, we will
simply implement the topology by writing some Java code. To demonstrate this, let’s
go through the exercise of translating some project requirements into a processor
topology (represented by a DAG). This will help you learn how to think like a Kafka
Streams developer.

Scenario
Say we are building a chatbot with Kafka Streams, and we have a topic named slack-
mentions that contains every Slack message that mentions our bot, @StreamsBot. We
will design our bot so that it expects each mention to be followed by a command, like
@StreamsBot restart myservice.

We want to implement a basic processor topology that does some preprocessing/vali‐
dation of these Slack messages. First, we need to consume each message in the source
topic, determine if the command is valid, and if so, write the Slack message to a topic
called valid-mentions. If the command is not valid (e.g., someone makes a spelling
error when mentioning our bot, such as @StreamsBot restart serverrr), then we
will write to a topic named invalid-mentions).

In this case, we would translate these requirements to the topology shown in
Figure 2-4.
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15 The exception to this is when topics are joined. In this case, a single topology will read from each source topic
involved in the join without further dividing the step into sub-topologies. This is required for the join to
work. See “Co-Partitioning” on page 114 for more information.

Figure 2-4. An example processor topology that contains a single source processor for
reading Slack messages from Kafka (slack-mentions), a single stream processor that
checks the validity of each message (isValid), and two sink processors that route the
message to one of two output topics based on the previous check (valid-mentions,
invalid-mentions)

Starting with the tutorial in the next chapter, we will then begin to implement any
topology we design using the Kafka Streams API. But first, let’s take a look at a related
concept: sub-topologies.

Sub-Topologies
Kafka Streams also has the notion of sub-topologies. In the previous example, we
designed a processor topology that consumes events from a single source topic
(slack-mentions) and performs some preprocessing on a stream of raw chat mes‐
sages. However, if our application needs to consume from multiple source topics,
then Kafka Streams will (under most circumstances15) divide our topology into
smaller sub-topologies to parallelize the work even further. This division of work is
possible since operations on one input stream can be executed independently of oper‐
ations on another input stream.

For example, let’s keep building our chatbot by adding two new stream processors:
one that consumes from the valid-mentions topic and performs whatever command

Processor Topologies | 37



16 In this example, we write to two intermediate topics (valid-mentions and invalid-mentions) and then
immediately consume data from each. Using intermediate topics like this is usually only required for certain
operations (for example, repartitioning data). We do it here for discussion purposes only.

was issued to StreamsBot (e.g., restart server), and another processor that con‐
sumes from the invalid-mentions topic and posts an error response back to Slack.16

As you can see in Figure 2-5, our topology now has three Kafka topics it reads from:
slack-mentions, valid-mentions, and invalid-mentions. Each time we read from a
new source topic, Kafka Streams divides the topology into smaller sections that it can
execute independently. In this example, we end up with three sub-topologies for our
chatbot application, each denoted by a star in the figure.

Figure 2-5. A processor topology, subdivided into sub-topologies (demarcated by dotted
lines)

Notice that both the valid-mentions and invalid-mentions topics serve as a sink
processor in the first sub-topology, but as a source processor in the second and third
sub-topologies. When this occurs, there is no direct data exchange between sub-
topologies. Records are produced to Kafka in the sink processor, and reread from
Kafka by the source processors.
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Now that we understand how to represent a stream processing program as a pro‐
cessor topology, let’s take a look at how data actually flows through the interconnec‐
ted processors in a Kafka Streams application.

Depth-First Processing
Kafka Streams uses a depth-first strategy when processing data. When a new record is
received, it is routed through each stream processor in the topology before another
record is processed. The flow of data through Kafka Streams looks something like
what’s shown in Figure 2-6.

Figure 2-6. In depth-first processing, a single record moves through the entire topology
before another record is processed
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This depth-first strategy makes the dataflow much easier to reason about, but also
means that slow stream processing operations can block other records from being
processed in the same thread. Figure 2-7 demonstrates something you will never see
happen in Kafka Streams: multiple records going through a topology at once.

Figure 2-7. Multiple records will never go through the topology at the same time

When multiple sub-topologies are in play, the single-event rule
does not apply to the entire topology, but to each sub-topology.

Now that we know how to design processor topologies and how data flows through
them, let’s take a look at the advantages of this data-centric approach to building
stream processing applications.
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Benefits of Dataflow Programming
There are several advantages of using Kafka Streams and the dataflow programming
model for building stream processing applications. First, representing the program as
a directed graph makes it easy to reason about. You don’t need to follow a bunch of
conditionals and control logic to figure out how data is flowing through your applica‐
tion. Simply find the source and sink processors to determine where data enters and
exits your program, and look at the stream processors in between to discover how the
data is being processed, transformed, and enriched along the way.

Furthermore, expressing our stream processing program as a directed graph allows us
to standardize the way we frame real-time data processing problems and, subse‐
quently, the way we build our streaming solutions. A Kafka Streams application that I
write will have some level of familiarity to anyone who has worked with Kafka
Streams before in their own projects—not only due to the reusable abstractions avail‐
able in the library itself, but also thanks to a common problem-solving approach:
defining the flow of data using operators (nodes) and streams (edges). Again, this
makes Kafka Streams applications easy to reason about and maintain.

Directed graphs are also an intuitive way of visualizing the flow of data for non-
technical stakeholders. There is often a disconnect about how a program works
between engineering teams and nonengineering teams. Sometimes, this leads to non‐
technical teams treating the software as a closed box. This can have dangerous side
effects, especially in the age of data privacy laws and GDPR compliance, which
requires close coordination between engineers, legal teams, and other stakeholders.
Thus, being able to simply communicate how data is being processed in your applica‐
tion allows people who are focused on another aspect of a business problem to
understand or even contribute to the design of your application.

Finally, the processor topology, which contains the source, sink, and stream process‐
ors, acts as a template that can be instantiated and parallelized very easily across mul‐
tiple threads and application instances. Therefore, defining the dataflow in this way
allows us to realize performance and scalability benefits since we can easily replicate
our stream processing program when data volume demands it.

Now, to understand how this process of replicating topologies works, we first need to
understand the relationship between tasks, stream threads, and partitions.

Tasks and Stream Threads
When we define a topology in Kafka Streams, we are not actually executing the pro‐
gram. Instead, we are building a template for how data should flow through our
application. This template (our topology) can be instantiated multiple times in a sin‐
gle application instance, and parallelized across many tasks and stream threads (which

Processor Topologies | 41



17 A Java application may execute many different types of threads. Our discussion will simply focus on the
stream threads that are created and managed by the Kafka Streams library for running a processor topology.

18 Remember, a Kafka Streams topology can be composed of multiple sub-topologies, so to get the number of
tasks for the entire program, you should sum the task count across all sub-topologies.

19 This doesn’t mean a poorly implemented stream processor is immune from concurrency issues. However, by
default, the stream threads do not share any state.

20 For example, the number of cores that your application has access to could inform the number of threads you
decide to run with. If your application instance is running on a 4-core machine and your topology supports
16 tasks, you may want to configure the thread count to 4, which will give you a thread for each core. On the
other hand, if your 16-task application was running on a 48-core machine, you may want to run with 16
threads (you wouldn’t run with 48 since the upper bound is the task count, or in this case: 16).

we’ll refer to as simply threads going forward.17) There is a close relationship between
the number of tasks/threads and the amount of work your stream processing applica‐
tion can handle, so understanding the content in this section is especially important
for achieving good performance with Kafka Streams.

Let’s start by looking at tasks:

A task is the smallest unit of work that can be performed in parallel in a Kafka Streams
application…
Slightly simplified, the maximum parallelism at which your application may run is
bounded by the maximum number of stream tasks, which itself is determined by the
maximum number of partitions of the input topic(s) the application is reading from.

—Andy Bryant

Translating this quote into a formula, we can calculate the number of tasks that can be
created for a given Kafka Streams sub-topology18 with the following math:

max(source_topic_1_partitions, ... source_topic_n_partitions)

For example, if your topology reads from one source topic that contains 16 partitions,
then Kafka Streams will create 16 tasks, each of which will instantiate its own copy of
the underlying processor topology. Once Kafka Streams has created all of the tasks, it
will assign the source partitions to be read from to each task.

As you can see, tasks are just logical units that are used to instantiate and run a pro‐
cessor topology. Threads, on the other hand, are what actually execute the task. In
Kafka Streams, the stream threads are designed to be isolated and thread-safe.19

Furthermore, unlike tasks, there isn’t any formula that Kafka Streams applies to figure
out how many threads your application should run. Instead, you are responsible
for specifying the thread count using a configuration property named
num.stream.threads. The upper bound for the number of threads you can utilize
corresponds to the task count, and there are different strategies for deciding on the
number of stream threads you should run with.20
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Now, let’s improve our understanding of these concepts by visualizing how tasks and
threads are created using two separate configs, each specifying a different number of
threads. In each example, our Kafka Streams application is reading from a source
topic that contains four partitions (denoted by p1 - p4 in Figure 2-8).

First, let’s configure our application to run with two threads (num.stream.threads =
2). Since our source topic has four partitions, four tasks will be created and dis‐
tributed across each thread. We end up with the task/thread layout depicted in
Figure 2-8.

Figure 2-8. Four Kafka Streams tasks running in two threads

Running more than one task per thread is perfectly fine, but sometimes it is often
desirable to run with a higher thread count to take full advantage of the available
CPU resources. Increasing the number of threads doesn’t change the number of tasks,
but it does change the distribution of tasks among threads. For example, if we recon‐
figure the same Kafka Streams application to run with four threads instead of two
(num.stream.threads = 4), we end up with the task/thread layout depicted in
Figure 2-9.
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21 From First Principles: Elon Musk on the Power of Thinking for Yourself.

Figure 2-9. Four Kafka Streams tasks running in four threads

Now that we’ve learned about Kafka Streams’ architecture, let’s take a look at the APIs
that Kafka Streams exposes for creating stream processing applications.

High-Level DSL Versus Low-Level Processor API
Different solutions present themselves at different layers of abstraction.

—James Clear21

A common notion in the software engineering field is that abstraction usually comes
at a cost: the more you abstract the details away, the more the software feels like
“magic,” and the more control you give up. As you get started with Kafka Streams,
you may wonder what kind of control you will be giving up by choosing to imple‐
ment a stream processing application using a high-level library instead of designing
your solution using the lower-level Consumer/Producer APIs directly.

Luckily for us, Kafka Streams allows developers to choose the abstraction level that
works best for them, depending on the project and also the experience and preference
of the developer.
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The two APIs you can choose from are:

• The high-level DSL
• The low-level Processor API

The relative abstraction level for both the high-level DSL and low-level Processor API
is shown in Figure 2-10.

Figure 2-10. Abstraction levels of Kafka Streams APIs

The high-level DSL is built on top of the Processor API, but the interface each expo‐
ses is slightly different. If you would like to build your stream processing application
using a functional style of programming, and would also like to leverage some
higher-level abstractions for working with your data (streams and tables), then the
DSL is for you.

On the other hand, if you need lower-level access to your data (e.g., access to record
metadata), the ability to schedule periodic functions, more granular access to your
application state, or more fine-grained control over the timing of certain operations,
then the Processor API is a better choice. In the following tutorial, you will see exam‐
ples of both the DSL and Processor API. In subsequent chapters, we will explore both
the DSL and Processor API in further detail.

Now, the best way to see the difference between these two abstraction levels is with a
code example. Let’s move on to our first Kafka Streams tutorial: Hello Streams.

Introducing Our Tutorial: Hello, Streams
In this section, we will get our first hands-on experience with Kafka Streams. This is a
variation of the “Hello, world” tutorial that has become the standard when learning
new programming languages and libraries. There are two implementations of this
tutorial: the first uses the high-level DSL, while the second uses the low-level
Processor API. Both programs are functionally equivalent, and will print a simple
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22 If you want to verify and have telnet installed, you can run echo 'exit' | telnet localhost 29092. If the
port is open, you should see “Connected to localhost” in the output.

23 Instructions for installing Gradle can be found at https://gradle.org. We used version 6.6.1 for the tutorials in
this book.

greeting whenever they receive a message from the users topic in Kafka (e.g., upon
receiving the message Mitch, each application will print Hello, Mitch).

Before we get started, let’s take a look at how to set up the project.

Project Setup
All of the tutorials in this book will require a running Kafka cluster, and the source
code for each chapter will include a docker-compose.yml file that will allow you to run
a development cluster using Docker. Since Kafka Streams applications are meant to
run outside of a Kafka cluster (e.g., on different machines than the brokers), it’s best
to view the Kafka cluster as a separate infrastructure piece that is required but distinct
from your Kafka Streams application.

To start running the Kafka cluster, clone the repository and change to the directory
containing this chapter’s tutorial. The following commands will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-02/hello-streams

Then, start the Kafka cluster by running:

docker-compose up

The broker will be listening on port 29092.22 Furthermore, the preceding command
will start a container that will precreate the users topic needed for this tutorial. Now,
with our Kafka cluster running, we can start building our Kafka Streams application.

Creating a New Project
In this book, we will use a build tool called Gradle23 to compile and run our Kafka
Streams applications. Other build tools (e.g., Maven) are also supported, but we have
chosen Gradle due to the improved readability of its build files.

In addition to being able to compile and run your code, Gradle can also be used to
quickly bootstrap new Kafka Streams applications that you build outside of this book.
This can be accomplished by creating a directory for your project to live in and then
by running the gradle init command from within that directory. An example of
this workflow is as follows:

$ mkdir my-project && cd my-project

$ gradle init \
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 --type java-application \
 --dsl groovy \
 --test-framework junit-jupiter \
 --project-name my-project \
 --package com.example

The source code for this book already contains the initialized project structure for
each tutorial, so it’s not necessary to run gradle init unless you are starting a new
project for yourself. We simply mention it here with the assumption that you will be
writing your own Kafka Streams applications at some point, and want a quick way to
bootstrap your next project.

Here is the basic project structure for a Kafka Streams application:

.
├── build.gradle 
└── src
    ├── main
    │   ├── java 
    │   └── resources 
    └── test
        └── java 

This is the project’s build file. It will specify all of the dependencies (including the
Kafka Streams library) needed by our application.

We will save our source code and topology definitions in src/main/java.

src/main/resources is typically used for storing configuration files.

Our unit and topology tests, which we will discuss in “Testing Kafka Streams” on
page 352, will live in src/test/java.

Now that we’ve learned how to bootstrap new Kafka Streams projects and have had
an initial look at the project structure, let’s take a look at how to add Kafka Streams to
our project.

Adding the Kafka Streams Dependency
To start working with Kafka Streams, we simply need to add the Kafka Streams
library as a dependency in our build file. (In Gradle projects, our build file is called
build.gradle.) An example build file is shown here:

plugins {
    id 'java'
    id 'application'
}

repositories {
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    jcenter()
}

dependencies {
    implementation 'org.apache.kafka:kafka-streams:2.7.0' 
}

task runDSL(type: JavaExec) { 
    main = 'com.example.DslExample'
    classpath sourceSets.main.runtimeClasspath
}

task runProcessorAPI(type: JavaExec) { 
    main = 'com.example.ProcessorApiExample'
    classpath sourceSets.main.runtimeClasspath
}

Add the Kafka Streams dependency to our project.

This tutorial is unique among others in this book since we will be creating two
different versions of our topology. This line adds a Gradle task to execute the
DSL version of our application.

Similarly, this line adds a Gradle task to execute the Processor API version of our
application.

Now, to build our project (which will actually pull the dependency from the remote
repository into our project), we can run the following command:

./gradlew build

That’s it! Kafka Streams is installed and ready to use. Now, let’s continue with the
tutorial.

DSL
The DSL example is exceptionally simple. We first need to use a Kafka Streams class
called StreamsBuilder to build our processor topology:

StreamsBuilder builder = new StreamsBuilder();

Next, as we learned in “Processor Topologies” on page 35, we need to add a source
processor in order to read data from a Kafka topic (in this case, our topic will be
called users). There are a few different methods we could use here depending on
how we decide to model our data (we will discuss different approaches in “Streams
and Tables” on page 53), but for now, let’s model our data as a stream. The following
line adds the source processor:

KStream<Void, String> stream = builder.stream("users");
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We’ll discuss this more in the next chapter, but the generics in KStream<Void,
String> refer to the key and value types. In this case, the key is empty (Void) and
the value is a String type.

Now, it’s time to add a stream processor. Since we’re just printing a simple greeting for
each message, we can use the foreach operator with a simple lambda like so:

stream.foreach(
    (key, value) -> {
        System.out.println("(DSL) Hello, " + value);
    });

Finally, it’s time to build our topology and start running our stream processing
application:

KafkaStreams streams = new KafkaStreams(builder.build(), config);
streams.start();

The full code, including some boilerplate needed to run the program, is shown in
Example 2-1.

Example 2-1. Hello, world—DSL example

class DslExample {

  public static void main(String[] args) {
    StreamsBuilder builder = new StreamsBuilder(); 

    KStream<Void, String> stream = builder.stream("users"); 

    stream.foreach( 
        (key, value) -> {
          System.out.println("(DSL) Hello, " + value);
        });

    // omitted for brevity
    Properties config = ...; 

    KafkaStreams streams = new KafkaStreams(builder.build(), config); 
    streams.start();

    // close Kafka Streams when the JVM shuts down (e.g., SIGTERM)
    Runtime.getRuntime().addShutdownHook(new Thread(streams::close)); 
  }
}

The builder is used to construct the topology.

Add a source processor that reads from the users topic.
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Use the DSL’s foreach operator to print a simple message. The DSL includes
many operators that we will be exploring in upcoming chapters.

We have omitted the Kafka Streams configuration for brevity, but will discuss this
in upcoming chapters. Among other things, this configuration allows us to spec‐
ify which Kafka cluster our application should read from and what consumer
group this application belongs to.

Build the topology and start streaming.

Close Kafka Streams when the JVM shuts down.

To run the application, simply execute the following command:

./gradlew runDSL --info

Now your Kafka Streams application is running and listening for incoming data. As
you may recall from “Hello, Kafka” on page 16, we can produce some data to our
Kafka cluster using the kafka-console-producer console script. To do this, run the
following commands:

docker-compose exec kafka bash 

kafka-console-producer \ 
    --bootstrap-server localhost:9092 \
    --topic users

The console scripts are available in the kafka container, which is running the
broker in our development cluster. You can also download these scripts as part of
the official Kafka distribution.

Start a local producer that will write data to the users topic.

Once you are in the producer prompt, create one or more records by typing the name
of the user, followed by the Enter key. When you are finished, press Control-C on
your keyboard to exit the prompt:

>angie
>guy
>kate
>mark

Your Kafka Streams application should emit the following greetings:

(DSL) Hello, angie
(DSL) Hello, guy
(DSL) Hello, kate
(DSL) Hello, mark
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We have now verified that our application is working as expected. We will explore
some more interesting use cases over the next several chapters, but this process of
defining a topology and running our application is a foundation we can build upon.
Next, let’s look at how to create the same Kafka Streams topology with the lower-level
Processor API.

Processor API
The Processor API lacks some of the abstractions available in the high-level DSL, and
its syntax is more of a direct reminder that we’re building processor topologies, with
methods like Topology.addSource, Topology.addProcessor, and Topology.addSink
(the latter of which is not used in this example). The first step in using the processor
topology is to instantiate a new Topology instance, like so:

Topology topology = new Topology();

Next, we will create a source processor to read data from the users topic, and a
stream processor to print a simple greeting. The stream processor references a class
called SayHelloProcessor that we’ll implement shortly:

topology.addSource("UserSource", "users"); 
topology.addProcessor("SayHello", SayHelloProcessor::new, "UserSource"); 

The first argument for the addSource method is an arbitrary name for this
stream processor. In this case, we simply call this processor UserSource. We will
refer to this name in the next line when we want to connect a child processor,
which in turn defines how data should flow through our topology. The second
argument is the topic name that this source processor should read from (in this
case, users).

This line creates a new downstream processor called SayHello whose processing
logic is defined in the SayHelloProcessor class (we will create this in the next
section). In the Processor API, we can connect one processor to another by spec‐
ifying the name of the parent processor. In this case, we specify the UserSource
processor as the parent of the SayHello processor, which means data will flow
from the UserSource to SayHello.

As we saw before, in the DSL tutorial, we now need to build the topology and call
streams.start() to run it:

KafkaStreams streams = new KafkaStreams(topology, config);
streams.start();
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24 This version of the Processor interface was introduced In Kafka Streams version 2.7 and deprecates an earlier
version of the interface that was available in Kafka Streams 2.6 and earlier. In the earlier version of the
Processor interface, only input types are specified. This presented some issues with type-safety checks, so the
newer form of the Processor interface is recommended.

Before running the code, we need to implement the SayHelloProcessor class. When‐
ever you build a custom stream processor using the Processor API, you need to
implement the Processor interface. The interface specifies methods for initializing
the stream processor (init), applying the stream processing logic to a single record
(process), and a cleanup function (close). The initialization and cleanup function
aren’t needed in this example.

The following is a simple implementation of SayHelloProcessor that we will use
for this example. We will explore more complex examples, and all of the interface
methods in the Processor interface (init, process, and close), in more detail in
Chapter 7.

public class SayHelloProcessor implements Processor<Void, String, Void, Void> { 
  @Override
  public void init(ProcessorContext<Void, Void> context) {} 

  @Override
  public void process(Record<Void, String> record) { 
    System.out.println("(Processor API) Hello, " + record.value());
  }

  @Override
  public void close() {} 
}

The first two generics in the Processor interface (in this example,
Processor<Void, String, ..., ...>) refer to the input key and value types.
Since our keys are null and our values are usernames (i.e., text strings), Void
and String are the appropriate choices. The last two generics
(Processor<..., ..., Void, Void>) refer to the output key and value types. In
this example, our SayHelloProcessor simply prints a greeting. Since we aren’t
forwarding any output keys or values downstream, Void is the appropriate type
for the final two generics.24

No special initialization is needed in this example, so the method body is empty.
The generics in the ProcessorContext interface (ProcessorContext<Void,
Void>) refer to the output key and value types (again, as we’re not forwarding any
messages downstream in this example, both are Void).
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The processing logic lives in the aptly named process method in the Processor
interface. Here, we print a simple greeting. Note that the generics in the Record
interface refer to the key and value type of the input records.

No special cleanup needed in this example.

We can now run the code using the same command we used in the DSL example:

./gradlew runProcessorAPI --info

You should see the following output to indicate your Kafka Streams application is
working as expected:

(Processor API) Hello, angie
(Processor API) Hello, guy
(Processor API) Hello, kate
(Processor API) Hello, mark

Now, despite the Processor API’s power, which we will see in Chapter 7, using the
DSL is often preferable because, among other benefits, it includes two very powerful
abstractions: streams and tables. We will get our first look at these abstractions in the
next section.

Streams and Tables
If you look closely at Example 2-1, you will notice that we used a DSL operator called
stream to read a Kafka topic into a stream. The relevant line of code is:

KStream<Void, String> stream = builder.stream("users");

However, kafka streams also supports an additional way to view our data: as a table.
in this section, we’ll take a look at both options and learn when to use streams and
when to use tables.

As discussed in “Processor Topologies” on page 35, designing a processor topology
involves specifying a set of source and sink processors, which correspond to the top‐
ics your application will read from and write to. However, instead of working with
Kafka topics directly, the Kafka Streams DSL allows you to work with different repre‐
sentations of a topic, each of which are suitable for different use cases. There are two
ways to model the data in your Kafka topics: as a stream (also called a record stream)
or a table (also known as a changelog stream). The easiest way to compare these two
data models is through an example.

Say we have a topic containing ssh logs, where each record is keyed by a user ID as
shown in Table 2-2.
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Table 2-2. Keyed records in a single topic-partition

Key Value Offset
mitch {

    "action": "login"
}

0

mitch {
    "action": "logout"
}

1

elyse {
    "action": "login"
}

2

isabelle {
    "action": "login"
}

3

Before consuming this data, we need to decide which abstraction to use: a stream or a
table. When making this decision, we need to consider whether or not we want to
track only the latest state/representation of a given key, or the entire history of mes‐
sages. Let’s compare the two options side by side:

Streams
These can be thought of as inserts in database parlance. Each distinct record
remains in this view of the log. The stream representation of our topic can be
seen in Table 2-3.

Table 2-3. Stream view of ssh logs
Key Value Offset
mitch {

    "action": "login"
}

0

mitch {
    "action": "logout"
}

1

elyse {
    "action": "login"
}

2

isabelle {
    "action": "login"
}

3
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25 In fact, tables are sometimes referred to as aggregated streams. See “Of Streams and Tables in Kafka and
Stream Processing, Part 1” by Michael Noll, which explores this topic further.

Tables
Tables can be thought of as updates to a database. In this view of the logs, only
the current state (either the latest record for a given key or some kind of aggrega‐
tion) for each key is retained. Tables are usually built from compacted topics (i.e.,
topics that are configured with a cleanup.policy of compact, which tells Kafka
that you only want to keep the latest representation of each key). The table repre‐
sentation of our topic can be seen in Table 2-4.

Table 2-4. Table view of ssh logs
Key Value Offset
mitch {

    "action": "logout"
}

1

elyse {
    "action": "login"
}

2

isabelle {
    "action": "login"
}

3

Tables, by nature, are stateful, and are often used for performing aggregations in
Kafka Streams.25 In Table 2-4, we didn’t really perform a mathematical aggregation,
we just kept the latest ssh event for each user ID. However, tables also support mathe‐
matical aggregations. For example, instead of tracking the latest record for each key,
we could have just as easily calculated a rolling count. In this case, we would have
ended up with a slightly different table, where the values contain the result of our
count aggregation. You can see a count-aggregated table in Table 2-5.

Table 2-5. Aggregated table view of ssh logs

Key Value Offset
mitch 2 1

elyse 1 2

isabelle 1 3

Careful readers may have noticed a discrepancy between the design of Kafka’s storage
layer (a distributed, append-only log) and a table. Records that are written to Kafka
are immutable, so how is it possible to model data as updates, using a table represen‐
tation of a Kafka topic?
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26 RocksDB is a fast, embedded key-value store that was originally developed at Facebook. We will talk more
about RocksDB and key-value stores in Chapters 4–6.

27 To go even deeper with the analogy, the index position for each item in the list would represent the offset of
the record in the underlying Kafka topic.

The answer is simple: the table is materialized on the Kafka Streams side using a key-
value store which, by default, is implemented using RocksDB.26 By consuming an
ordered stream of events and keeping only the latest record for each key in the client-
side key-value store (more commonly called a state store in Kafka Streams terminol‐
ogy), we end up with a table or map-like representation of the data. In other words,
the table isn’t something we consume from Kafka, but something we build on the
client side.

You can actually write a few lines of Java code to implement this basic idea. In the
following code snippet, the List represents a stream since it contains an ordered col‐
lection of records,27 and the table is constructed by iterating through the list
(stream.forEach) and only retaining the latest record for a given key using a Map.
The following Java code demonstrates this basic idea:

import java.util.Map.Entry;

var stream = List.of(
    Map.entry("a", 1),
    Map.entry("b", 1),
    Map.entry("a", 2));

var table = new HashMap<>();

stream.forEach((record) -> table.put(record.getKey(), record.getValue()));

If you were to print the stream and table after running this code, you would see the
following output:

stream ==> [a=1, b=1, a=2]

table ==> {a=2, b=1}

Of course, the Kafka Streams implementation of this is more sophisticated, and can
leverage fault-tolerant data structures as opposed to an in-memory Map. But this abil‐
ity to construct a table representation of an unbounded stream is only one side of a
more complex relationship between streams and tables, which we will explore next.
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Stream/Table Duality
The duality of tables and streams comes from the fact that tables can be represented
as streams, and streams can be used to reconstruct tables. We saw the latter transfor‐
mation of a stream into a table in the previous section, when discussing the discrep‐
ancy between Kafka’s append-only, immutable log and the notion of a mutable table
structure that accepts updates to its data.

This ability to reconstruct tables from streams isn’t unique to Kafka Streams, and is in
fact pretty common in various types of storage. For example, MySQL’s replication
process relies on the same notion of taking a stream of events (i.e., row changes) to
reconstruct a source table on a downstream replica. Similarly, Redis has the notion of
an append-only file (AOF) that captures every command that is written to the in-
memory key-value store. If a Redis server goes offline, then the stream of commands
in the AOF can be replayed to reconstruct the dataset.

What about the other side of the coin (representing a table as a stream)? When view‐
ing a table, you are viewing a single point-in-time representation of a stream. As we
saw earlier, tables can be updated when a new record arrives. By changing our view of
the table to a stream, we can simply process the update as an insert, and append the
new record to the end of the log instead of updating the key. Again, the intuition
behind this can be seen using a few lines of Java code:

var stream = table.entrySet().stream().collect(Collectors.toList());

stream.add(Map.entry("a", 3));

This time, if you print the contents of the stream, you’ll see we’re no longer using
update semantics, but instead insert semantics:

stream ==> [a=2, b=1, a=3]

So far, we’ve been working with the standard libraries in Java to build intuition
around streams and tables. However, when working with streams and tables in Kafka
Streams, you’ll use a set of more specialized abstractions. We’ll take a look at these
abstractions next.

KStream, KTable, GlobalKTable
One of the benefits of using the high-level DSL over the lower-level Processor API in
Kafka Streams is that the former includes a set of abstractions that make working
with streams and tables extremely easy.
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28 Assuming your source topic contains more than one partition.

The following list includes a high-level overview of each:

KStream

A KStream is an abstraction of a partitioned record stream, in which data is repre‐
sented using insert semantics (i.e., each event is considered to be independent of
other events).

KTable

A KTable is an abstraction of a partitioned table (i.e., changelog stream), in which
data is represented using update semantics (the latest representation of a given
key is tracked by the application). Since KTables are partitioned, each Kafka
Streams task contains only a subset of the full table.28

GlobalKTable

This is similar to a KTable, except each GlobalKTable contains a complete (i.e.,
unpartitioned) copy of the underlying data. We’ll learn when to use KTables and
when to use GlobalKTables in Chapter 4.

Kafka Streams applications can make use of multiple stream/table abstractions, or
just one. It’s entirely dependent on your use case, and as we work through the next
few chapters, you will learn when to use each one. This completes our initial discus‐
sion of streams and tables, so let’s move on to the next chapter and explore Kafka
Streams in more depth.

Summary
Congratulations, you made it through the end of your first date with Kafka Streams.
Here’s what you learned:

• Kafka Streams lives in the stream processing layer of the Kafka ecosystem. This is
where sophisticated data processing, transformation, and enrichment happen.

• Kafka Streams was built to simplify the development of stream processing appli‐
cations with a simple, functional API and a set of stream processing primitives
that can be reused across projects. When more control is needed, a lower-level
Processor API can also be used to define your topology.

• Kafka Streams has a friendlier learning curve and a simpler deployment model
than cluster-based solutions like Apache Flink and Apache Spark Streaming. It
also supports event-at-a-time processing, which is considered true streaming.
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• Kafka Streams is great for solving problems that require or benefit from real-time
decision making and data processing. Furthermore, it is reliable, maintainable,
scalable, and elastic.

• Installing and running Kafka Streams is simple, and the code examples in this
chapter can be found at https://github.com/mitch-seymour/mastering-kafka-
streams-and-ksqldb.

In the next chapter, we’ll learn about stateless processing in Kafka Streams. We will
also get some hands-on experience with several new DSL operators, which will help
us build more advanced and powerful stream processing applications.
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1 Processed is a loaded word. Here, we use the word in its broadest sense, and refer to the process of enriching,
transforming, reacting to, and optionally writing the processed data to an output topic.

CHAPTER 3

Stateless Processing

The simplest form of stream processing requires no memory of previously seen
events. Each event is consumed, processed,1 and subsequently forgotten. This para‐
digm is called stateless processing, and Kafka Streams includes a rich set of operators
for working with data in a stateless way.

In this chapter, we will explore the stateless operators that are included in Kafka
Streams, and in doing so, we’ll see how some of the most common stream processing
tasks can be tackled with ease. The topics we will explore include:

• Filtering records
• Adding and removing fields
• Rekeying records
• Branching streams
• Merging streams
• Transforming records into one or more outputs
• Enriching records, one at a time

We’ll take a tutorial-based approach for introducing these concepts. Specifically, we’ll
be streaming data about cryptocurrencies from Twitter and applying some stateless
operators to convert the raw data into something more meaningful: investment sig‐
nals. By the end of this chapter, you will understand how to use stateless operators in
Kafka Streams to enrich and transform raw data, which will prepare you for the more
advanced concepts that we will explore in later chapters.
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2 We’ll focus on the DSL in this chapter, but we will also cover stateless and stateful processing via the Processor
API in Chapter 7.

Before we jump into the tutorial, let’s get a better frame of reference for what stateless
processing is by comparing it to the other form of stream processing: stateful
processing.

Stateless Versus Stateful Processing
One of the most important things you should consider when building a Kafka
Streams application is whether or not your application requires stateful processing.
The following describes the distinction between stateless and stateful stream
processing:

• In stateless applications, each event handled by your Kafka Streams application is
processed independently of other events, and only stream views are needed by
your application (see “Streams and Tables” on page 53). In other words, your
application treats each event as a self-contained insert and requires no memory
of previously seen events.

• Stateful applications, on the other hand, need to remember information about
previously seen events in one or more steps of your processor topology, usually for
the purpose of aggregating, windowing, or joining event streams. These applica‐
tions are more complex under the hood since they need to track additional data,
or state.

In the high-level DSL, the type of stream processing application you ultimately build
boils down to the individual operators that are used in your topology.2 Operators are 
stream processing functions (e.g., filter, map, flatMap, join, etc.) that are applied to
events as they flow through your topology. Some operators, like filter, are consid‐
ered stateless because they only need to look at the current record to perform an
action (in this case, filter looks at each record individually to determine whether or
not the record should be forwarded to downstream processors). Other operators, like
count, are stateful since they require knowledge of previous events (count needs to
know how many events it has seen so far in order to track the number of messages).

If your Kafka Streams application requires only stateless operators (and therefore
does not need to maintain any memory of previously seen events), then your applica‐
tion is considered stateless. However, if you introduce one or more stateful operators
(which we will learn about in the next chapter), regardless of whether or not your
application also uses stateless operators, then your application is considered stateful.
The added complexity of stateful applications warrants additional considerations with
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3 We won’t develop the full trading algorithm in this tutorial since, ideally, our trading algorithm would include
many types of signals, not just market sentiment (unless we wanted to lose a bunch of money).

regards to maintenance, scalability, and fault tolerance, so we will cover this form of
stream processing separately in the next chapter.

If all of this sounds a little abstract, don’t worry. We’ll demonstrate these concepts by
building a stateless Kafka Streams application in the following sections, and getting
some first-hand experience with stateless operators. So without further ado, let’s
introduce this chapter’s tutorial.

Introducing Our Tutorial: Processing a Twitter Stream
In this tutorial, we will explore the use case of algorithmic trading. Sometimes called
high-frequency trading (HFT), this lucrative practice involves building software to
evaluate and purchase securities automatically, by processing and responding to
many types of market signals with minimal latency.

To assist our fictional trading software, we will build a stream processing application
that will help us gauge market sentiment around different types of cryptocurrencies
(Bitcoin, Ethereum, Ripple, etc.), and use these sentiment scores as investment/
divestment signals in a custom trading algorithm.3 Since millions of people use Twit‐
ter to share their thoughts on cryptocurrencies and other topics, we will use Twitter
as the data source for our application.

Before we get started, let’s look at the steps required to build our stream processing
application. We will then use these requirements to design a processor topology,
which will be a helpful guide as we build our stateless Kafka Streams application. The
key concepts in each step are italicized:

1. Tweets that mention certain digital currencies (#bitcoin, #ethereum) should be
consumed from a source topic called tweets:
• Since each record is JSON-encoded, we need to figure out how to properly

deserialize these records into higher-level data classes.
• Unneeded fields should be removed during the deserialization process to sim‐

plify our code. Selecting only a subset of fields to work with is referred to as
projection, and is one of the most common tasks in stream processing.

2. Retweets should be excluded from processing. This will involve some form of
data filtering.

3. Tweets that aren’t written in English should be branched into a separate stream
for translating.
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4. Non-English tweets need to be translated to English. This involves mapping one
input value (the non-English tweet) to a new output value (an English-translated
tweet).

5. The newly translated tweets should be merged with the English tweets stream to
create one unified stream.

6. Each tweet should be enriched with a sentiment score, which indicates whether
Twitter users are conveying positive or negative emotion when discussing certain
digital currencies. Since a single tweet could mention multiple cryptocurrencies,
we will demonstrate how to convert each input (tweet) into a variable number of
outputs using a flatMap operator.

7. The enriched tweets should be serialized using Avro, and written to an output
topic called crypto-sentiment. Our fictional trading algorithm will read from
this topic and make investment decisions based on the signals it sees.

Now that the requirements have been captured, we can design our processor topol‐
ogy. Figure 3-1 shows what we’ll be building in this chapter and how data will flow
through our Kafka Streams application.

Figure 3-1. The topology that we will be implementing for our tweet enrichment
application
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4 We won’t worry about the record keys in this chapter since our application doesn’t perform any key-level
operations.

With our topology design in hand, we can now start implementing our Kafka
Streams application by working our way through each of the processing steps (labeled
1–7) in Figure 3-1. We will start by setting up our project, and then move on to the
first step in our topology: streaming tweets from the source topic.

Project Setup
The code for this chapter is located at https://github.com/mitch-seymour/mastering-
kafka-streams-and-ksqldb.git.

If you would like to reference the code as we work our way through each topology
step, clone the repository and change to the directory containing this chapter’s tuto‐
rial. The following command will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-03/crypto-sentiment

You can build the project anytime by running the following command:

$ ./gradlew build --info

We have omitted the implementation details of tweet translation
and sentiment analysis (steps 4 and 6 in Figure 3-1) since they
aren’t necessary to demonstrate the stateless operators in Kafka
Streams. However, the source code in GitHub does include a full
working example, so please consult the project’s README.md file
if you are interested in these implementation details.

Now that our project is set up, let’s start creating our Kafka Streams application.

Adding a KStream Source Processor
All Kafka Streams applications have one thing in common: they consume data from
one or more source topics. In this tutorial, we only have one source topic: tweets.
This topic is populated with tweets from the Twitter source connector, which streams
tweets from Twitter’s streaming API and writes JSON-encoded tweet records to
Kafka. An example tweet value4 is shown in Example 3-1.
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Example 3-1. Example record value in the tweets source topic

{
    "CreatedAt": 1602545767000,
    "Id": 1206079394583924736,
    "Text": "Anyone else buying the Bitcoin dip?",
    "Source": "",
    "User": {
        "Id": "123",
        "Name": "Mitch",
        "Description": "",
        "ScreenName": "timeflown",
        "URL": "https://twitter.com/timeflown",
        "FollowersCount": "1128",
        "FriendsCount": "1128"
    }
}

Now that we know what the data looks like, the first step we need to tackle is getting
the data from our source topic into our Kafka Streams application. In the previous
chapter, we learned that we can use the KStream abstraction to represent a stateless
record stream. As you can see in the following code block, adding a KStream source
processor in Kafka Streams is simple and requires just a couple of lines of code:

StreamsBuilder builder = new StreamsBuilder(); 

KStream<byte[], byte[]> stream = builder.stream("tweets"); 

When using the high-level DSL, processor topologies are built using a
StreamsBuilder instance.

KStream instances are created by passing the topic name to the
StreamsBuilder.stream method. The stream method can optionally accept
additional parameters, which we will explore in later sections.

One thing you may notice is that the KStream we just created is parameterized with
byte[] types:

KStream<byte[], byte[]>

We briefly touched on this in the previous chapter, but the KStream interface lever‐
ages two generics: one for specifying the type of keys (K) in our Kafka topic and the
other for specifying the type of values (V). If we were to peel back the floorboards in
the Kafka Streams library, we would see an interface that looks like this:

public interface KStream<K, V> {
  // omitted for brevity
}
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5 Storing and transmitting data as a byte array allows Kafka to leverage something called zero-copy, which
means the data doesn’t need to cross the user-kernel space boundary for serialization/deserialization pur‐
poses, since this is handled on the client side. This is a major performance benefit.

6 So when we say that the Twitter connector encodes tweets as JSON, we don’t mean the tweet records in Kafka
are stored as raw JSON. We simply mean the bytes representing these tweets in the underlying Kafka topic
should, when deserialized, be formatted as JSON.

Therefore, our KStream instance, which is parameterized as KStream<byte[],
byte[]>, indicates that the record keys and values coming out of the tweets topic are
being encoded as byte arrays. However, we just mentioned that the tweet records are
actually encoded as JSON objects by the source connector (see Example 3-1), so what
gives?

Kafka Streams, by default, represents data flowing through our application as byte
arrays. This is due to the fact that Kafka itself stores and transmits data as raw byte
sequences, so representing the data as a byte array will always work (and is therefore a
sensible default). Storing and transmitting raw bytes makes Kafka flexible because it
doesn’t impose any particular data format on its clients, and also fast, since it requires
less memory and CPU cycles on the brokers to transfer a raw byte stream over the
network.5 However, this means that Kafka clients, including Kafka Streams applica‐
tions, are responsible for serializing and deserializing these byte streams in order to
work with higher-level objects and formats, including strings (delimited or non-
delimited), JSON, Avro, Protobuf, etc.6

Before we address the issue of deserializing our tweet records into higher-level
objects, let’s add the additional boilerplate code needed to run our Kafka Streams
application. For testability purposes, it’s often beneficial to separate the logic for
building a Kafka Streams topology from the code that actually runs the application.
So the boilerplate code will include two classes. First, we’ll define a class for building
our Kafka Streams topology, as shown in Example 3-2.

Example 3-2. A Java class that defines our Kafka Streams topology

class CryptoTopology {

  public static Topology build() {
    StreamsBuilder builder = new StreamsBuilder();

    KStream<byte[], byte[]> stream = builder.stream("tweets");
    stream.print(Printed.<byte[], byte[]>toSysOut().withLabel("tweets-stream")); 

    return builder.build();
  }
}
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The print operator allows us to easily view data as it flows through our applica‐
tion. It is generally recommended for development use only.

The second class, which we’ll call App, will simply instantiate and run the topology, as
shown in Example 3-3.

Example 3-3. A separate Java class used to run our Kafka Streams application

class App {
  public static void main(String[] args) {
    Topology topology = CryptoTopology.build();

    Properties config = new Properties(); 
    config.put(StreamsConfig.APPLICATION_ID_CONFIG, "dev");
    config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:29092");

    KafkaStreams streams = new KafkaStreams(topology, config); 

    Runtime.getRuntime().addShutdownHook(new Thread(streams::close)); 

    System.out.println("Starting Twitter streams");
    streams.start(); 
  }
}

Kafka Streams requires us to set some basic configuration, including an applica‐
tion ID (which corresponds to a consumer group) and the Kafka bootstrap
servers. We set these configs using a Properties object.

Instantiate a KafkaStreams object with the processor topology and streams
config.

Add a shutdown hook to gracefully stop the Kafka Streams application when a
global shutdown signal is received.

Start the Kafka Streams application. Note that streams.start() does not block,
and the topology is executed via background processing threads. This is the rea‐
son why a shutdown hook is required.

Our application is now ready to run. If we were to start our Kafka Streams application
and then produce some data to our tweets topic, we would see the raw byte arrays
(the cryptic values that appear after the comma in each output row) being printed to
the screen:

[tweets-stream]: null, [B@c52d992
[tweets-stream]: null, [B@a4ec036
[tweets-stream]: null, [B@3812c614
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As you might expect, the low-level nature of byte arrays makes them a little difficult
to work with. In fact, additional stream processing steps will be much easier to
implement if we find a different method of representing the data in our source topic.
This is where the concepts of data serialization and deserialization come into play.

Serialization/Deserialization
Kafka is a bytes-in, bytes-out stream processing platform. This means that clients, like
Kafka Streams, are responsible for converting the byte streams they consume into
higher-level objects. This process is called deserialization. Similarly, clients must also
convert any data they want to write back to Kafka back into byte arrays. This process
is called serialization. These processes are depicted in Figure 3-2.

Figure 3-2. An architectural view of where the deserialization and serialization processes
occur in a Kafka Streams application
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7 More Serdes classes are likely to be introduced in future releases. Please refer to the official documentation for
a complete list of the available Serdes classes.

8 An example JSON Serdes is included in the Kafka source code, but was not exposed via the Serdes factory
class like the official Serdes at the time of this writing.

9 This would require a nasty use of regex, and even then, still wouldn’t work very well.

In Kafka Streams, serializer and deserializer classes are often combined into a single 
class called a Serdes, and the library ships with several implementations, shown in
Table 3-1.7 For example, the String Serdes (accessible via the Serdes.String()
method) includes both the String serializer and deserializer class.

Table 3-1. Default Serdes implementations that are available in Kafka Streams

Data type Serdes class
byte[] Serdes.ByteArray(), Serdes.Bytes()

ByteBuffer Serdes.ByteBuffer()

Double Serdes.Double()

Integer Serdes.Integer()

Long Serdes.Long()

String Serdes.String()

UUID Serdes.UUID()

Void Serdes.Void()

Whenever you need to deserialize/serialize data in Kafka Streams, you should first
check to see whether or not one of the built-in Serdes classes fits your needs. How‐
ever, as you may have noticed, Kafka Streams doesn’t ship with Serdes classes for
some common formats, including JSON,8 Avro, and Protobuf. However, we can
implement our own Serdes when the need arises, and since tweets are represented
as JSON objects, we will learn how to build our own custom Serdes to handle this
format next.

Building a Custom Serdes
As mentioned earlier, the tweets in our source topic are encoded as JSON objects, but
only the raw bytes are stored in Kafka. So, the first thing we will do is write some code
for deserializing tweets as higher-level JSON objects, which will ensure the data is
easy to work with in our stream processing application. We could just use the built-in
String Serdes, Serdes.String(), instead of implementing our own, but that would
make working with the Twitter data difficult, since we couldn’t easily access each field
in the tweet object.9
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If your data is in a common format, like JSON or Avro, then you won’t need to rein‐
vent the wheel by implementing your own low-level JSON serialization/deserializa‐
tion logic. There are many Java libraries for serializing and deserializing JSON, but
the one we will be using in this tutorial is Gson. Gson was developed by Google and
has an intuitive API for converting JSON bytes to Java objects. The following code
block demonstrates the basic method for deserializing byte arrays with Gson, which
will come in handy whenever we need to read JSON records from Kafka:

Gson gson = new Gson();
byte[] bytes = ...; 
Type type = ...; 
gson.fromJson(new String(bytes), type); 

The raw bytes that we need to deserialize.

type is a Java class that will be used to represent the deserialized record.

The fromJson method actually converts the raw bytes into a Java class.

Furthermore, Gson also supports the inverse of this process, which is to say it allows
us to convert (i.e., serialize) Java objects into raw byte arrays. The following code
block shows how serialization works in Gson:

Gson gson = new Gson();
gson.toJson(instance).getBytes(StandardCharsets.UTF_8);

Since the Gson library takes care of the more complex task of serializing/deserializing
JSON at a low level, we just need to leverage Gson’s capabilities when implementing a
custom Serdes. The first step is to define a data class, which is what the raw byte
arrays will be deserialized into.

Defining Data Classes
One feature of Gson (and some other JSON serialization libraries, like Jackson) is that
it allows us to convert JSON byte arrays into Java objects. In order to do this, we sim‐
ply need to define a data class, or POJO (Plain Old Java Object), that contains the
fields that we want to deserialize from the source object.

As you can see in Example 3-4, our data class for representing raw tweet records in
our Kafka Streams application is pretty simple. We simply define a class property for
each field we want to capture from the raw tweet (e.g., createdAt), and a correspond‐
ing getter/setter method for accessing each property (e.g., getCreatedAt).

Example 3-4. A data class to use for deserializing tweet records

public class Tweet {
  private Long createdAt;
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  private Long id;
  private String lang;
  private Boolean retweet;
  private String text;

  // getters and setters omitted for brevity
}

If we don’t want to capture certain fields in the source record, then we can just omit
the field from the data class, and Gson will drop it automatically. Whenever you cre‐
ate your own deserializer, you should consider dropping any fields in the source
record that aren’t needed by your application or downstream applications during the
deserialization process. This process of reducing the available fields to a smaller sub‐
set is called projection and is similar to using a SELECT statement in the SQL world to
only select the columns of interest.

Now that we have created our data class, we can implement a Kafka Streams deserial‐
izer for converting the raw byte arrays from the tweets topic to higher-level Tweet
Java objects (which will be much easier to work with).

Implementing a Custom Deserializer
The code required for implementing a custom deserializer is pretty minimal,
especially when you leverage a library that hides most of the complexity of deserializ‐
ing byte arrays (as we’re doing with Gson). We simply need to implement the
Deserializer interface in the Kafka client library, and invoke the deserialization
logic whenever deserialize is invoked. The following code block shows how to
implement the Tweet deserializer:

public class TweetDeserializer implements Deserializer<Tweet> {
  private Gson gson =
      new GsonBuilder()
          .setFieldNamingPolicy(FieldNamingPolicy.UPPER_CAMEL_CASE) 
          .create();

  @Override
  public Tweet deserialize(String topic, byte[] bytes) { 
    if (bytes == null) return null; 
    return gson.fromJson(
      new String(bytes, StandardCharsets.UTF_8), Tweet.class); 
  }
}

Gson supports several different formats for JSON field names. Since the Twitter
Kafka connector uses upper camel case for field names, we set the appropriate
field naming policy to ensure the JSON objects are deserialized correctly. This is
pretty implementation-specific, but when you write your own deserializer, feel
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free to leverage third-party libraries and custom configurations like we’re doing
here to help with the heavy lifting of byte array deserialization.

We override the deserialize method with our own logic for deserializing
records in the tweets topic. This method returns an instance of our data class
(Tweet).

Don’t try to deserialize the byte array if it’s null.

Use the Gson library to deserialize the byte array into a Tweet object.

Now, we are ready to implement our serializer.

Implementing a Custom Serializer
The code for implementing a custom serializer is also very straightforward. This time,
we need to implement the serialize method of the Serializer interface that is
included in the Kafka client library. Again, we will leverage Gson’s serialization capa‐
bilities to do most of the heavy lifting. The following code block shows the Tweet
serializer we will be using in this chapter:

class TweetSerializer implements Serializer<Tweet> {
  private Gson gson = new Gson();

  @Override
  public byte[] serialize(String topic, Tweet tweet) {
    if (tweet == null) return null; 
    return gson.toJson(tweet).getBytes(StandardCharsets.UTF_8); 
  }
}

Don’t try to deserialize a null Tweet object.

If the Tweet object is not null, use Gson to convert the object into a byte array.

With both a Tweet deserializer and serializer in place, we can now combine these two
classes into a Serdes.
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Building the Tweet Serdes
So far, the deserializer and serializer implementations have been very light on code.
Similarly, our custom Serdes class, whose sole purpose is to combine the deserializer
and serializer in a convenient wrapper class for Kafka Streams to use, is also pretty
minimal. The following code block shows how easy it is to implement a custom
Serdes class:

public class TweetSerdes implements Serde<Tweet> {

  @Override
  public Serializer<Tweet> serializer() {
    return new TweetSerializer();
  }

  @Override
  public Deserializer<Tweet> deserializer() {
    return new TweetDeserializer();
  }
}

Now that our custom Serdes is in place, we can make a slight modification to the code
in Example 3-2. Let’s change:

KStream<byte[], byte[]> stream = builder.stream("tweets");
stream.print(Printed.<byte[], byte[]>toSysOut().withLabel("tweets-stream"));

to:

KStream<byte[], Tweet> stream = 
  builder.stream(
    "tweets",
    Consumed.with(Serdes.ByteArray(), new TweetSerdes())); 

stream.print(Printed.<byte[], Tweet>toSysOut().withLabel("tweets-stream"));

Notice that our value type has changed from byte[] to Tweet. Working with
Tweet instances will make our life much easier, as you will see in upcoming
sections.

Explicitly set the key and value Serdes to use for this KStream using Kafka
Stream’s Consumed helper. By setting the value Serdes to new TweetSerdes(), our
stream will now be populated with Tweet objects instead of byte arrays. The key
Serdes remains unchanged.

Note, the keys are still being serialized as byte arrays. This is because our topology
doesn’t require us to do anything with the record keys, so there is no point in
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10 Unnecessary serialization/deserialization can negatively impact performance in some applications.

deserializing these.10 Now, if we were to run our Kafka Streams application and pro‐
duce some data to the source topic, you would see that we are now working with
Tweet objects, which include the helpful getter methods for accessing the original
JSON fields that we will leverage in later stream processing steps:

[tweets-stream]: null, Tweet@182040a6
[tweets-stream]: null, Tweet@46efe0cb
[tweets-stream]: null, Tweet@176ef3db

Now that we have created a KStream that leverages our Tweet data class, we can start
implementing the rest of the topology. The next step is to filter out any retweets from
our Twitter stream.

Handling Deserialization Errors in Kafka Streams

You should always be explicit with how your application handles
deserialization errors, otherwise you may get an unwelcome sur‐
prise if a malformed record ends up in your source topic. Kafka
Streams has a special config, DEFAULT_DESERIALIZATION_EXCEP
TION_HANDLER_CLASS_CONFIG, that can be used to specify a deseri‐
alization exception handler. You can implement your own
exception handler, or use one of the built-in defaults, including
LogAndFailExceptionHandler (which logs an error and then sends
a shutdown signal to Kafka Streams) or LogAndContinueException
Handler (which logs an error and continues processing).

Filtering Data
One of the most common stateless tasks in a stream processing application is filtering
data. Filtering involves selecting only a subset of records to be processed, and ignor‐
ing the rest. Figure 3-3 shows the basic idea of filtering.

Figure 3-3. Filtering data allows us to process only a subset of data in our event stream
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11 As you’ll see later, flatMap and flatMapValues can also be used for filtering. But for clarity, it’s advisable to
use filter or filterNot unless the filtering step sometimes needs to produce more than one record.

12 In Java, functional interfaces have a single abstract method. The Predicate class only contains one abstract
method, called test.

In Kafka Streams, the two primary operators11 that are used for filtering are:

• filter

• filterNot

We’ll start by exploring the filter operator. filter simply requires us to pass in a
Boolean expression, called a Predicate, in order to determine if a message should be
kept. If the predicate returns true, the event will be forwarded to downstream pro‐
cessors. If it returns false, then the record will be excluded from further processing.
Our use case requires us to filter out retweets, so our predicate will leverage the
Tweet.isRetweet() method.

Since Predicate is a functional interface,12 we can use a lambda with the filter
operator. Example 3-5 shows how to filter out retweets using this method.

Example 3-5. An example of how to use the DSL’s filter operator

KStream<byte[], Tweet> filtered =
  stream.filter(
      (key, tweet) -> {
        return !tweet.isRetweet();
      });

The filterNot operator is very similar to filter, except the Boolean logic is inver‐
ted (i.e., returning true will result in the record being dropped, which is the opposite
of filter). As you can see in Example 3-5, our filtering condition is negated: !
tweet.isRetweet(). We could have just as easily negated at the operator level
instead, using the code in Example 3-6.

Example 3-6. An example of how to use the DSL’s filterNot operator

KStream<byte[], Tweet> filtered =
  stream.filterNot(
      (key, tweet) -> {
        return tweet.isRetweet();
      });

These two approaches are functionally equivalent. However, when the filtering logic
contains a negation, I prefer to use filterNot to improve readability. For this
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tutorial, we will use the filterNot implementation shown in Example 3-6 to exclude
retweets from further processing.

If your application requires a filtering condition, you should filter
as early as possible. There’s no point in transforming or enriching
data that will simply be thrown away in a subsequent step, espe‐
cially if the logic for processing the unneeded event is computa‐
tionally expensive.

We have now implemented steps 1 and 2 in our processor topology (Figure 3-1). We
are ready to move on to the third step: separating our filtered stream into substreams
based on the source language of the tweet.

Branching Data
In the previous section, we learned how to use Boolean conditions called predicates
to filter streams. Kafka Streams also allows us to use predicates to separate (or
branch) streams. Branching is typically required when events need to be routed to dif‐
ferent stream processing steps or output topics based on some attribute of the event
itself.

Revisiting our requirements list, we see that tweets can appear in multiple languages
in our source topic. This is a great use case for branching, since a subset of records in
our stream (non-English tweets) require an extra processing step: they need to be
translated to English. The diagram in Figure 3-4 depicts the branching behavior we
need to implement in our application.

Figure 3-4. Branching operations split a single stream into multiple output streams
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Let’s create two lambda functions: one for capturing English tweets, and another for
capturing everything else. Thanks to our earlier deserialization efforts, we can lever‐
age another getter method in our data class to implement our branching logic:
Tweet.getLang(). The following code block shows the predicates we will use for
branching our stream:

Predicate<byte[], Tweet> englishTweets =
  (key, tweet) -> tweet.getLang().equals("en"); 

Predicate<byte[], Tweet> nonEnglishTweets =
  (key, tweet) -> !tweet.getLang().equals("en"); 

This predicate matches all English tweets.

This predicate is the inverse of the first, and captures all non-English tweets.

Now that we have defined our branching conditions, we can leverage Kafka Streams’
branch operator, which accepts one or more predicates and returns a list of output
streams that correspond to each predicate. Note that each predicate is evaluated in
order, and a record can only be added to a single branch. If a record doesn’t match
any predicate, then it will be dropped:

KStream<byte[], Tweet>[] branches =
  filtered.branch(englishTweets, nonEnglishTweets); 

KStream<byte[], Tweet> englishStream = branches[0]; 

KStream<byte[], Tweet> nonEnglishStream = branches[1]; 

We create two branches of our stream by evaluating the source language of a
tweet.

Since we passed the englishTweets predicate first, the first KStream in our list (at
the 0 index) contains the English output stream.

Since the nonEnglishTweets predicate was used as the final branching condition,
the tweets that need translating will be the last KStream in our list (at index
position 1).

The method of branching streams may be changing in an upcom‐
ing Kafka Streams release. If you are using a Kafka Streams version
greater than 2.7.0, you may want to check “KIP-418: A method-
chaining way to branch KStream” for potential API changes. Some
backward compatibility is expected, and the current implementa‐
tion does work on the latest version of Kafka Streams at the time of
writing (version 2.7.0).
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Now that we have created two substreams (englishStream and nonEnglishStream),
we can apply different processing logic to each. This takes care of the third step of our
processor topology (see Figure 3-1), so we’re now ready to move on to the next step:
translating non-English tweets into English.

Translating Tweets
At this point, we have two record streams: tweets that are written in English (english
Stream), and tweets that are written in another language (nonEnglishStream). We
would like to perform sentiment analysis on each tweet, but the API we will be using
to perform this sentiment analysis only supports a few languages (English being one
of them). Therefore, we need to translate each tweet in the nonEnglishStream to
English.

We’re talking about this as a business problem, though. Let’s look at the requirement
from a stream processing perspective. What we really need is a way of transforming
one input record into exactly one new output record (whose key or value may or may
not be the same type as the input record). Luckily for us, Kafka Streams has two
operators that fit the bill:

• map

• mapValues

A visualization of a mapping operation is shown in Figure 3-5.

Figure 3-5. Mapping operations allow us to perform a 1:1 transformation of records
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13 Rekeying helps ensure related data is colocated to the same streams task, which is important when aggregating
and joining data. We will discuss this in detail in the next chapter

The map and mapValues operators are very similar (they both have a 1:1 mapping
between input and output records), and both could work for this use case. The only
difference is that map requires us to specify a new record value and record key, while
mapValues requires us to just set a new value.

Let’s first take a look at how we might implement this with map. Assume that we not
only want to translate the tweet text, but also rekey each record by the Twitter user‐
name associated with a given tweet. We could implement the tweet translation step as
shown in the following code block:

KStream<byte[], Tweet> translatedStream =
  nonEnglishStream.map(
      (key, tweet) -> { 
        byte[] newKey = tweet.getUsername().getBytes();
        Tweet translatedTweet = languageClient.translate(tweet, "en");
        return KeyValue.pair(newKey, translatedTweet); 
      });

Our mapping function is invoked with the current record key and record value
(called tweet).

Our mapping function is required to return a new record key and value, repre‐
sented using Kafka Streams’ KeyValue class. Here, the new key is set to the Twit‐
ter username, and the new value is set to the translated tweet. The actual logic for
translating text is out of scope for this tutorial, but you can check the source code
for implementation details.

However, the requirements we outlined don’t require us to rekey any records. As we’ll
see in the next chapter, rekeying records is often used when stateful operations will be
performed in a latter stream processing step.13 So while the preceding code works, we
can simplify our implementation by using the mapValues operator instead, which is
only concerned with transforming record values.

An example of how to use the mapValues operator is shown in the following code
block:

KStream<byte[], Tweet> translatedStream =
  nonEnglishStream.mapValues(
      (tweet) -> { 
        return languageClient.translate(tweet, "en"); 
      });
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Our mapValues function is invoked with only the record value.

We are only required to return the new record value when using the mapValues
operator. In this case, the value is a translated Tweet.

We will stick with the mapValues implementation since we don’t need to rekey any
records.

It is recommended to use mapValues instead of map whenever pos‐
sible, as it allows Kafka Streams to potentially execute the program
more efficiently.

After translating all non-English tweets, we now have two KStreams that contain
English tweets:

• englishStream, the original stream of English tweets
• translatedStream, the newly translated tweets, which are now in English

This wraps up step 4 in our processor topology (see Figure 3-1). However, the goal of
our application is to perform sentiment analysis on all English tweets. We could
duplicate this logic across both of these streams: englishStream and translated
Stream. However, instead of introducing unnecessary code duplication, it would be
better to merge these two streams. We’ll explore how to merge streams in the next
section.

Merging Streams
Kafka Streams provides an easy method for combining multiple streams into a single
stream. Merging streams can be thought of as the opposite of a branching operation,
and is typically used when the same processing logic can be applied to more than one
stream in your application.

The equivalent of a merge operator in the SQL world is a union
query. For example:

SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;

Now that we have translated all tweets in the non-English stream, we have two sepa‐
rate streams that we need to perform sentiment analysis on: englishStream and
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translatedStream. Furthermore, all tweets that we enrich with sentiment scores will
need to be written to a single output topic: crypto-sentiment. This is an ideal use
case for merging since we can reuse the same stream/sink processors for both of these
separate streams of data.

The diagram in Figure 3-6 depicts what we are trying to accomplish.

Figure 3-6. Merging operations combine multiple streams into a single stream

The code for merging streams is very simple. We only need to pass the streams we
want to combine to the merge operator, as shown here:

KStream<byte[], Tweet> merged = englishStream.merge(translatedStream);

Now that our streams are combined, we are ready to move to the next step.

Enriching Tweets
We are nearing the goal of being able to enrich each tweet with a sentiment score.
However, as you may have noticed, our current data class, Tweet, represents the struc‐
ture of the raw tweets in our source topic. We need a new data class for representing
the enriched records that we will be writing to our output topic (crypto-sentiment).
This time, instead of serializing our data using JSON, we will be using a data serializa‐
tion format called Avro. Let’s take a deeper look at Avro and learn how to create
an Avro data class for representing the enriched records in our Kafka Streams
application.
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14 Record schemas define the field names and types for a given record. They allow us to provide strong contracts
about the data format between different applications and services.

15 Both Protobuf and JSON schemas are supported since Confluent Platform 5.5. See https://oreil.ly/4hsQh.

16 entitySentiment here is an instance of the Avro-generated EntitySentiment class, which we will be creating
later in this section.

Avro Data Class
Avro is a popular format in the Kafka community, largely due to its compact byte rep‐
resentation (which is advantageous for high throughput applications), native support
for record schemas,14 and a schema management tool called Schema Registry, which
works well with Kafka Streams and has had strong support for Avro since its incep‐
tion.15 There are other advantages as well. For example, some Kafka Connectors can
use Avro schemas to automatically infer the table structure of downstream data
stores, so encoding our output records in this format can help with data integration
downstream.

When working with Avro, you can use either generic records or specific records.
Generic records are suitable when the record schema isn’t known at runtime. They
allow you to access field names using generic getters and setters. For example: Generi
cRecord.get(String key) and GenericRecord.put(String key, Object value).

Specific records, on the other hand, are Java classes that are generated from Avro
schema files. They provide a much nicer interface for accessing record data. For
example, if you generate a specific record class named EntitySentiment, then you
can access fields using dedicated getters/setters for each field name. For example:
entitySentiment.getSentimentScore().16

Since our application defines the format of its output records (and therefore, the
schema is known at build time), we’ll use Avro to generate a specific record (which
we’ll refer to as a data class from here on out). A good place to add a schema defini‐
tion for Avro data is in the src/main/avro directory of your Kafka Streams project.
Example 3-7 shows the Avro schema definition we will be using for our sentiment-
enriched output records. Save this schema in a file named entity_sentiment.avsc in the
src/main/avro/ directory.

Example 3-7. An Avro schema for our enriched tweets

{
  "namespace": "com.magicalpipelines.model", 
  "name": "EntitySentiment", 
  "type": "record",
  "fields": [
    {
      "name": "created_at",
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      "type": "long"
    },
    {
      "name": "id",
      "type:" "long"
    },
    {
      "name": "entity",
      "type": "string"
    },
    {
      "name": "text",
      "type": "string"
    },
    {
      "name": "sentiment_score",
      "type": "double"
    },
    {
      "name": "sentiment_magnitude",
      "type": "double"
    },
    {
      "name": "salience",
      "type": "double"
    }
  ]
}

The desired package name for your data class.

The name of the Java class that will contain the Avro-based data model. This class
will be used in subsequent stream processing steps.

Now that we have defined our schema, we need to generate a data class from this defi‐
nition. In order to do that, we need to add some dependencies to our project. This
can be accomplished by adding the following lines in the project’s build.gradle file:

plugins {
  id 'com.commercehub.gradle.plugin.avro' version '0.9.1' 
}

dependencies {
  implementation 'org.apache.avro:avro:1.8.2'  
}

This Gradle plug-in is used to autogenerate Java classes from Avro schema defini‐
tions, like the one we created in Example 3-7.

This dependency contains the core classes for working with Avro.

84 | Chapter 3: Stateless Processing



17 The Gradle Avro plug-in will automatically scan the src/main/avro directory and pass any schema files it finds
to the Avro compiler.

Now, when we build our project (see “Project Setup” on page 65), a new data class
named EntitySentiment will be automatically generated for us.17 This generated data
class contains a new set of fields for storing tweet sentiment (sentiment_score,
sentiment_magnitude, and salience) and corresponding getter/setter methods.
With our data class in hand, we can now proceed with adding sentiment scores to our
tweets. This will introduce us to a new set of DSL operators that are extremely useful
for transforming data.

Sentiment Analysis
We have already seen how to transform records during the tweet translation step by
using map and mapValues. However, both map and mapValues produce exactly one
output record for each input record they receive. In some cases, we may want to pro‐
duce zero, one, or even multiple output records for a single input record.

Consider the example of a tweet that mentions multiple cryptocurrencies:

#bitcoin is looking super strong. #ethereum has me worried though

This fictional tweet explicitly mentions two cryptocurrencies, or entities (Bitcoin and
Ethereum) and includes two separate sentiments (positive sentiment for Bitcoin, and
negative for Ethereum). Modern Natural Language Processing (NLP) libraries and
services are often smart enough to calculate the sentiment for each entity within the
text, so a single input string, like the one just shown, could lead to multiple output
records. For example:

{"entity": "bitcoin", "sentiment_score": 0.80}
{"entity": "ethereum", "sentiment_score": -0.20}

Once again, let’s consider this requirement outside of the business problem itself.
Here, we have a very common stream processing task: we need to convert a single
input record into a variable number of output records. Luckily for us, Kafka Streams
includes two operators that can help with this use case:

• flatMap

• flatMapValues

Both flatMap and flatMapValues are capable of producing zero, one, or multiple
output records every time they are invoked. Figure 3-7 visualizes this 1:N mapping of
input to output records.
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Figure 3-7. flatMap operations allow us to transform one input record into zero or more
output records

Similar to the map operation we saw earlier, flatMap requires us to set a new record
key and value. On the other hand, flatMapValues only requires us to specify a new
value. Since we don’t need to process the record key in this example, we will use
flatMapValues to perform entity-level sentiment analysis for our tweets, as shown in
the following code block (notice that we are using our new Avro-based data class,
EntitySentiment):

KStream<byte[], EntitySentiment> enriched =
  merged.flatMapValues(
      (tweet) -> {
        List<EntitySentiment> results =
          languageClient.getEntitySentiment(tweet); 

        results.removeIf(
            entitySentiment -> !currencies.contains(
              entitySentiment.getEntity())); 

        return results; 
      });

Get a list of sentiment scores for each entity in the tweet.

Remove all entities that don’t match one of the cryptocurrencies we are tracking.
The final list size after all of these removals is variable (a key characteristic of
flatMap and flatMapValues return values), and could have zero or more items.

Since the flatMap and flatMapValues operators can return any number of
records, we will return a list that contains every record that should be added to
the output stream. Kafka Streams will handle the “flattening” of the collection we
return (i.e., it will break out each element in the list into a distinct record in the
stream).

86 | Chapter 3: Stateless Processing



18 For more information about schema compatibility, check out Gwen Shapira’s 2019 Confluent article on the
subject.

Similar to our recommendation about using mapValues, it is also
recommended to use flatMapValues instead of flatMap whenever
possible, as it allows Kafka Streams to potentially execute the pro‐
gram more efficiently.

We are now ready to tackle the final step: writing the enriched data (the sentiment
scores) to a new output topic. In order to do this, we need to build an Avro Serdes
that can be used for serializing the Avro-encoded EntitySentiment records that we
created.

Serializing Avro Data
As mentioned earlier, Kafka is a bytes-in, bytes-out stream processing platform.
Therefore, in order to write the EntitySentiment records to our output topic, we
need to serialize these Avro records into byte arrays.

When we serialize data using Avro, we have two choices:

• Include the Avro schema in each record.
• Use an even more compact format, by saving the Avro schema in Confluent

Schema Registry, and only including a much smaller schema ID in each record
instead of the entire schema.

As shown in Figure 3-8, the benefit of the first approach is you don’t have to set up
and run a separate service alongside your Kafka Streams application. Since Confluent
Schema Registry is a REST service for creating and retrieving Avro, Protobuf, and
JSON schemas, it requires a separate deployment and therefore introduces a mainte‐
nance cost and an additional point of failure. However, with the first approach, you
do end up with larger message sizes since the schema is included.

However, if you are trying to eke every ounce of performance out of your Kafka
Streams application, the smaller payload sizes that Confluent Schema Registry ena‐
bles may be necessary. Furthermore, if you anticipate ongoing evolution of your
record schemas and data model, the schema compatibility checks that are included in
Schema Registry help ensure that future schema changes are made in safe, non-
breaking ways.18
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19 The code repository for the registryless Avro Serdes can be found at https://oreil.ly/m1kk7.

Figure 3-8. Advantages and disadvantages of including an Avro schema in each record

Since Avro Serdes classes are available for both approaches, the amount of code you
need to introduce to your application for serializing Avro data is minimal. The
following sections show how to configure both a registryless and Schema Registry-
aware Avro Serdes.

Registryless Avro Serdes
While a registryless Avro Serdes can be implemented very simply by yourself, I have
open sourced a version under the com.mitchseymour:kafka-registryless-avro-
serdes package.19 You can use this package by updating your build.gradle file with the
following code:

dependencies {
  implementation 'com.mitchseymour:kafka-registryless-avro-serdes:1.0.0'
}

Whenever you need to use this Serdes in your Kafka Streams application, just provide
an Avro-generated class to the AvroSerdes.get method, as shown here:

AvroSerdes.get(EntitySentiment.class)

The resulting Serdes can be used anywhere you would normally use one of Kafka’s
built-in Serdes.

Schema Registry–Aware Avro Serdes
Confluent has also published a package for distributing its Schema Registry–aware
Avro Serdes. If you want to leverage the Confluent Schema Registry, update your
build.gradle file as follows:

repositories {
  mavenCentral()

  maven {
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20 This may not be needed when using future versions of the kafka-streams-avro-serde library, but at the time
of writing, the latest version of kafka-streams-avro-serde (6.0.1) conflicts with a dependency in Kafka
Streams 2.7.0.

      url "https://packages.confluent.io/maven/" 
  }
}

dependencies {
  implementation ('io.confluent:kafka-streams-avro-serde:6.0.1') { 
    exclude group: 'org.apache.kafka', module: 'kafka-clients' 
  }
}

Add the Confluent Maven repository since this is where the artifact for the
Schema Registry–aware Avro Serdes lives.

Add the required dependency for using a Schema Registry–aware Avro Serdes.

Exclude an incompatible transitive dependency included in the kafka-streams-
avro-serde at the time of writing.20

The Schema Registry–aware Avro Serdes requires some additional configuration, so
you can improve the readability of your code by creating a factory class for instantiat‐
ing Serdes instances for each of the data classes in your project. For example, the
following code block shows how to create a registry-aware Avro Serdes for the
TweetSentiment class:

public class AvroSerdes {
  public static Serde<EntitySentiment> EntitySentiment(
    String url, boolean isKey) {

      Map<String, String> serdeConfig =
        Collections.singletonMap("schema.registry.url", url); 
      Serde<EntitySentiment> serde = new SpecificAvroSerde<>();
      serde.configure(serdeConfig, isKey);
      return serde;
  }
}

The register-aware Avro Serdes requires us to configure the Schema Registry
endpoint.

Now, you can instantiate the Serdes wherever you need it in your Kafka Streams
application with the following code:

AvroSerdes.EntitySentiment("http://localhost:8081", false) 
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Update the Schema Registry endpoint to the appropriate value.

You can interact with Schema Registry directly for registering,
deleting, modifying, or listing schemas. However, when using a
registry-aware Avro Serdes from Kafka Streams, your schema will
automatically be registered for you. Furthermore, to improve per‐
formance, the registry-aware Avro Serdes minimizes the number of
schema lookups by caching schema IDs and schemas locally.

Now that we have our Avro Serdes in place, we can create our sink processor.

Adding a Sink Processor
The last step is to write the enriched data to our output topic: crypto-sentiment. 
There are a few operators for doing this:

• to

• through

• repartition

If you want to return a new KStream instance for appending additional operators/
stream processing logic, then you should use the repartition or through operator
(the latter was deprecated right before this book was published, but is still widely used
and backward compatibility is expected). Internally, these operators call
builder.stream again, so using them will result in additional sub-topologies (see
“Sub-Topologies” on page 37) being created by Kafka Streams. However, if you have
reached a terminal step in your stream, as we have, then you should use the to opera‐
tor, which returns void since no other stream processors need to be added to the
underlying KStream.

In this example, we will use the to operator since we have reached the last step of our
processor topology, and we will also use the Schema Registry–aware Avro Serdes
since we want better support for schema evolution and also smaller message sizes.
The following code shows how to add the sink processor:

enriched.to(
  "crypto-sentiment",
  Produced.with(
    Serdes.ByteArray(),
    AvroSerdes.EntitySentiment("http://localhost:8081", false)));

We have now implemented each of the steps in our processor topology (see
Figure 3-1). The final step is to run our code and verify that it works as expected.
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21 Instructions for running the Kafka cluster and Schema Registry instance can be found at https://oreil.ly/
DEoaJ.

Running the Code
In order to run the application, you’ll need to stand up a Kafka cluster and Schema
Registry instance. The source code for this tutorial includes a Docker Compose envi‐
ronment to help you accomplish this.21 Once the Kafka cluster and Schema Registry
service are running, you can start your Kafka Streams application with the following
command:

./gradlew run --info

Now we’re ready to test. The next section shows how to verify that our application
works as expected.

Empirical Verification
As mentioned in Chapter 2, one of the easiest ways to verify that your application is
working as expected is through empirical verification. This involves generating data
in a local Kafka cluster and subsequently observing the data that gets written to the
output topic. The easiest way to do this is to save some example tweet records in a
text file, and use the kafka-console-producer to write these records to our source
topic: tweets.

The source code includes a file called test.json, with two records that we will use for
testing. Note: the actual example records are flattened in test.json, but we have shown
the pretty version of each record in Example 3-8 to improve readability.

Example 3-8. Two example tweets used for testing our Kafka Streams application

{
  "CreatedAt": 1577933872630,
  "Id": 10005,
  "Text": "Bitcoin has a lot of promise. I'm not too sure about #ethereum",
  "Lang": "en",
  "Retweet": false, 
  "Source": "",
  "User": {
    "Id": "14377871",
    "Name": "MagicalPipelines",
    "Description": "Learn something magical today.",
    "ScreenName": "MagicalPipelines",
    "URL": "http://www.magicalpipelines.com",
    "FollowersCount": "248247",
    "FriendsCount": "16417"
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  }
}
{
  "CreatedAt": 1577933871912,
  "Id": 10006,
  "Text": "RT Bitcoin has a lot of promise. I'm not too sure about #ethereum",
  "Lang": "en",
  "Retweet": true, 
  "Source": "",
  "User": {
    "Id": "14377870",
    "Name": "Mitch",
    "Description": "",
    "ScreenName": "Mitch",
    "URL": "http://mitchseymour.com",
    "FollowersCount": "120",
    "FriendsCount": "120"
  }
}

This first tweet (ID 10005) is not a retweet. We expect this tweet to be enriched
with sentiment scores.

The second tweet (ID 10006) is a retweet, and we expect this record to be
ignored.

Now, let’s produce these example records to our local Kafka cluster using the follow‐
ing command:

kafka-console-producer \
  --bootstrap-server kafka:9092 \
  --topic tweets < test.json

In another tab, let’s use kafka-console-consumer to consume the enriched records.
Run the following command:

kafka-console-consumer \
  --bootstrap-server kafka:9092 \
  --topic crypto-sentiment \
  --from-beginning

You should see some cryptic-looking output with lots of strange symbols:

����[��|Bitcoin has a lot of promise.
I'm not too sure about #ethereumbitcoin`ff�?`ff�? -��?
����[��|Bitcoin has a lot of promise.
I'm not too sure about #ethereumethereum���ɿ���ɿ���?
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22 Additional setup steps may be required. See the README for this chapter’s tutorial.

This is because Avro is a binary format. If you’re using Schema Registry, as we are,
then you can use a special console script developed by Confluent that improves the
readability of Avro data. Simply change kafka-console-consumer to kafka-avro-
console-consumer as shown here:

kafka-avro-console-consumer \
 --bootstrap-server kafka:9092 \
 --topic crypto-sentiment \
 --from-beginning

Finally, you should see output similar to the following:

{
  "created_at": 1577933872630,
  "id": 10005,
  "text": "Bitcoin has a lot of promise. I'm not too sure about #ethereum",
  "entity": "bitcoin",
  "sentiment_score": 0.699999988079071,
  "sentiment_magnitude": 0.699999988079071,
  "salience": 0.47968605160713196
}
{
  "created_at": 1577933872630,
  "id": 10005,
  "text": "Bitcoin has a lot of promise. I'm not too sure about #ethereum",
  "entity": "ethereum",
  "sentiment_score": -0.20000000298023224,
  "sentiment_magnitude": -0.20000000298023224,
  "salience": 0.030233483761548996
}

Notice that tweet ID 10006 does not appear in the output. This was a retweet, and
therefore was filtered in the second topology step in Figure 3-1. Also notice that tweet
ID 10005 resulted in two output records. This is expected since this tweet mentioned
two separate cryptocurrencies (each with a separate sentiment), and verifies that our
flatMapValues operator worked as expected (the sixth topology step in Figure 3-1).

If you would like to verify the language translation step, feel free to update the exam‐
ple records in test.json with a foreign language tweet.22 We will leave this as an
exercise for the reader.
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Summary
You have now learned a new set of capabilities for building stateless stream process‐
ing applications with Kafka Streams, including:

• Filtering data with filter and filterNot
• Creating substreams using the branch operator
• Combining streams with the merge operator
• Performing 1:1 record transformations using map and mapValues
• Performing 1:N record transformations using flatMap and flatMapValues
• Writing records to output topics using to, through, and repartition
• Serializing, deserializing, and reserializing data using custom serializers, deserial‐

izers, and Serdes implementations

In the next chapter, we will explore more complex stream processing operations by
introducing stateful tasks, including joining, windowing, and aggregating streams.

94 | Chapter 3: Stateless Processing



CHAPTER 4

Stateful Processing

In the previous chapter, we learned how to perform stateless transformations of
record streams using the KStream abstraction and a rich set of stateless operators that
are available in Kafka Streams. Since stateless transformations don’t require any
memory of previously seen events, they are easy to reason about and use. We treat
every event as an immutable fact and process it independently of other events.

However, Kafka Streams also gives us the ability to capture and remember informa‐
tion about the events we consume. The captured information, or state, allows us to
perform more advanced stream processing operations, including joining and aggre‐
gating data. In this chapter, we will explore stateful stream processing in detail. Some
of the topics we will cover include:

• The benefits of stateful stream processing
• The differences between facts and behaviors
• What kinds of stateful operators are available in Kafka Streams
• How state is captured and queried in Kafka Streams
• How the KTable abstraction can be used to represent local, partitioned state
• How the GlobalKTable abstraction can be used to represent global, replicated

state
• How to perform stateful operations, including joining and aggregating data
• How to use interactive queries to expose state

As with the previous chapter, we will explore these concepts using a tutorial-based
approach. This chapter’s tutorial is inspired by the video game industry, and we’ll be
building a real-time leaderboard that will require us to use many of Kafka Streams’
stateful operators. Furthermore, we’ll spend a lot of time discussing joins since this is
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1 For more information about stream-relational processing platforms, please see Robert Yokota’s 2018 blog post
on the subject.

one of the most common forms of data enrichment in stateful applications. But
before we get to the tutorial, let’s start by looking at some of the benefits of stateful
processing.

Benefits of Stateful Processing
Stateful processing helps us understand the relationships between events and leverage
these relationships for more advanced stream processing use cases. When we are able
to understand how an event relates to other events, we can:

• Recognize patterns and behaviors in our event streams
• Perform aggregations
• Enrich data in more sophisticated ways using joins

Another benefit of stateful stream processing is that it gives us an additional abstrac‐
tion for representing data. By replaying an event stream one event at a time, and
saving the latest state of each key in an embedded key-value store, we can build a
point-in-time representation of continuous and unbounded record streams. These
point-in-time representations, or snapshots, are referred to as tables, and Kafka
Streams includes different types of table abstractions that we’ll learn about in this
chapter.

Tables are not only at the heart of stateful stream processing, but when they are mate‐
rialized, they can also be queried. This ability to query a real-time snapshot of a fast-
moving event stream is what makes Kafka Streams a stream-relational processing
platform,1 and enables us to not only build stream processing applications, but also
low-latency, event-driven microservices as well.

Finally, stateful stream processing allows us to understand our data using more
sophisticated mental models. One particularly interesting view comes from Neil
Avery, who discusses the differences between facts and behaviors in his discussion of
event-first thinking:

An event represents a fact, something happened; it is immutable…

Stateless applications, like the ones we discussed in the previous chapter, are fact-
driven. Each event is treated as an independent and atomic fact, which can be
processed using immutable semantics (think of inserts in a never-ending stream), and
then subsequently forgotten.
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However, in addition to leveraging stateless operators to filter, branch, merge, and
transform facts, we can ask even more advanced questions of our data if we learn how
to model behaviors using stateful operators. So what are behaviors? According to Neil:

The accumulation of facts captures behavior.

You see, events (or facts) rarely occur in isolation in the real world. Everything is
interconnected, and by capturing and remembering facts, we can begin to understand
their meaning. This is possible by understanding events in their larger historical con‐
text, or by looking at other, related events that have been captured and stored by our
application.

A popular example is shopping cart abandonment, which is a behavior comprised of
multiple facts: a user adds one or more items to a shopping cart, and then a session is
terminated either manually (e.g., the user logs off) or automatically (e.g., due to a
long period of inactivity). Processing either fact independently tells us very little
about where the user is in the checkout process. However, collecting, remembering,
and analyzing each of the facts (which is what stateful processing enables) allows us
to recognize and react to the behavior, and provides much greater business value than
viewing the world as a series of unrelated events.

Now that we understand the benefits of stateful stream processing, and the differ‐
ences between facts and behaviors, let’s get a preview of the stateful operators in
Kafka Streams.

Preview of Stateful Operators
Kafka Streams includes several stateful operators that we can use in our processor
topologies. Table 4-1 includes an overview of several operators that we will be work‐
ing with in this book.

Table 4-1. Stateful operators and their purpose

Use case Purpose Operators
Joining data Enrich an event with additional information or context

that was captured in a separate stream or table
• join (inner join)
• leftJoin

• outerJoin

Aggregating data Compute a continuously updating mathematical or
combinatorial transformation of related events

• aggregate

• count

• reduce

Windowing data Group events that have close temporal proximity • windowedBy
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2 In memory, on disk, or some combination of both.

Furthermore, we can combine stateful operators in Kafka Streams to understand even
more complex relationships/behaviors between events. For example, performing a
windowed join allows us to understand how discrete event streams relate during a cer‐
tain period of time. As we’ll see in the next chapter, windowed aggregations are
another useful way of combining stateful operators.

Now, compared to the stateless operators we encountered in the previous chapter,
stateful operators are more complex under the hood and have additional compute
and storage2 requirements. For this reason, we will spend some time learning about
the inner workings of stateful processing in Kafka Streams before we start using the
stateful operators listed in Table 4-1.

Perhaps the most important place to begin is by looking at how state is stored and
queried in Kafka Streams.

State Stores
We have already established that stateful operations require our application to main‐
tain some memory of previously seen events. For example, an application that counts
the number of error logs it sees needs to keep track of a single number for each key: a
rolling count that gets updated whenever a new error log is consumed. This count
represents the historical context of a record and, along with the record key, becomes
part of the application’s state.

To support stateful operations, we need a way of storing and retrieving the remem‐
bered data, or state, required by each stateful operator in our application (e.g., count,
aggregate, join, etc.). The storage abstraction that addresses these needs in Kafka
Streams is called a state store, and since a single Kafka Streams application can lever‐
age many stateful operators, a single application may contain several state stores.

This section provides some lower-level information about how
state is captured and stored in Kafka Streams. If you are eager to
get started with the tutorial, feel free to skip ahead to “Introducing
Our Tutorial: Video Game Leaderboard” on page 102 and revisit
this section later.

There are many state store implementations and configuration possibilities available
in Kafka Streams, each with specific advantages, trade-offs, and use cases. Whenever
you use a stateful operator in your Kafka Streams application, it’s helpful to consider
which type of state store is needed by the operator, and also how to configure the
state store based on your optimization criteria (e.g., are you optimizing for high
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throughput, operational simplicity, fast recovery times in the event of failure, etc.). In
most cases, Kafka Streams will choose a sensible default if you don’t explicitly specify
a state store type or override a state store’s configuration properties.

Since the variation in state store types and configurations makes this quite a deep
topic, we will initially focus our discussion on the common characteristics of all of the
default state store implementations, and then take a look at the two broad categories
of state stores: persistent and in-memory stores. More in-depth discussions of state
stores will be covered in Chapter 6, and as we encounter specific topics in our
tutorial.

Common Characteristics
The default state store implementations included in Kafka Streams share some com‐
mon properties. We will discuss these commonalities in this section to get a better
idea of how state stores work.

Embedded
The default state store implementations that are included in Kafka Streams are
embedded within your Kafka Streams application at the task level (we first discussed
tasks in “Tasks and Stream Threads” on page 41). The advantage of embedded state
stores, as opposed to using an external storage engine, is that the latter would require
a network call whenever state needed to be accessed, and would therefore introduce
unnecessary latency and processing bottlenecks. Furthermore, since state stores are
embedded at the task level, a whole class of concurrency issues for accessing shared
state are eliminated.

Additionally, if state stores were remote, you’d have to worry about the availability of
the remote system separately from your Kafka Streams application. Allowing Kafka
Streams to manage a local state store ensures it will always be available and reduces
the error surface quite a bit. A centralized remote store would be even worse, since it
would become a single point of failure for all of your application instances. Therefore,
Kafka Streams’ strategy of colocating an application’s state alongside the application
itself not only improves performance (as discussed in the previous paragraph), but
also availability.

All of the default state stores leverage RocksDB under the hood. RocksDB is a fast,
embedded key-value store that was originally developed at Facebook. Since it sup‐
ports arbitrary byte streams for storing key-value pairs, it works well with Kafka,
which also decouples serialization from storage. Furthermore, both reads and writes
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3 LevelDB was written at Google, but when Facebook engineers started using it, they found it to be too slow for
their embedded workflows. By changing the single-threaded compaction process in LevelDB to a multi-
threaded compaction process, and by leveraging bloom filters for reads, both read and write performance
were drastically improved.

4 We mentioned that state stores are highly configurable, and even fault tolerance can be turned off by disabling
the change logging behavior.

5 For example, inMemoryKeyValueStore uses a Java TreeMap, which is based on a red-black tree, while all per‐
sistent key-value stores use RocksDB.

6 For example, window stores are key-value stores, but the keys also include the window time in addition to the
record key.

are extremely fast, thanks to a rich set of optimizations that were made to the forked 
LevelDB code.3

Multiple access modes
State stores support multiple access modes and query patterns. Processor topologies
require read and write access to state stores. However, when building microservices
using Kafka Streams’ interactive queries feature, which we will discuss later in “Inter‐
active Queries” on page 129, clients require only read access to the underlying state.
This ensures that state is never mutable outside of the processor topology, and is
accomplished through a dedicated read-only wrapper that clients can use to safely
query the state of a Kafka Streams application.

Fault tolerant
By default, state stores are backed by changelog topics in Kafka.4 In the event of fail‐
ure, state stores can be restored by replaying the individual events from the underly‐
ing changelog topic to reconstruct the state of an application. Furthermore, Kafka
Streams allows users to enable standby replicas for reducing the amount of time it
takes to rebuild an application’s state. These standby replicas (sometimes called
shadow copies) make state stores redundant, which is an important characteristic of
highly available systems. In addition, applications that allow their state to be queried
can rely on standby replicas to serve query traffic when other application instances go
down, which also contributes to high availability.

Key-based
Operations that leverage state stores are key-based. A record’s key defines the rela‐
tionship between the current event and other events. The underlying data structure
will vary depending on the type of state store you decide to use,5 but each implemen‐
tation can be conceptualized as some form of key-value store, where keys may be
simple, or even compounded (i.e., multidimensional) in some cases.6
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To complicate things slightly, Kafka Streams explicitly refers to cer‐
tain types of state stores as key-value stores, even though all of the
default state stores are key-based. When we refer to key-value
stores in this chapter and elsewhere in this book, we are referring
to nonwindowed state stores (windowed state stores will be dis‐
cussed in the next chapter).

Now that we understand the commonalities between the default state stores in Kafka
Streams, let’s look at two broad categories of state stores to understand the differences
between certain implementations.

Persistent Versus In-Memory Stores
One of the most important differentiators between various state store implementa‐
tions is whether or not the state store is persistent, or if it simply stores remembered
information in-memory (RAM). Persistent state stores flush state to disk asynchro‐
nously (to a configurable state directory), which has two primary benefits:

• State can exceed the size of available memory.
• In the event of failure, persistent stores can be restored quicker than in-memory

stores.

To clarify the first point, a persistent state store may keep some of its state in-
memory, while writing to disk when the size of the state gets too big (this is called
spilling to disk) or when the write buffer exceeds a configured value. Second, since the
application state is persisted to disk, Kafka Streams does not need to replay the entire
topic to rebuild the state store whenever the state is lost (e.g., due to system failure,
instance migration, etc.). It just needs to replay whatever data is missing between the
time the application went down and when it came back up.

The state store directory used for persistent stores can be set using
the StreamsConfig.STATE_DIR_CONFIG property. The default loca‐
tion is /tmp/kafka-streams, but it is highly recommended that you
override this to a directory outside of /tmp.

The downside is that persistent state stores are operationally more complex and can
be slower than a pure in-memory store, which always pulls data from RAM. The
additional operational complexity comes from the secondary storage requirement
(i.e., disk-based storage) and, if you need to tune the state store, understanding
RocksDB and its configurations (the latter may not be an issue for most applications).

Regarding the performance gains of an in-memory state store, these may not be dras‐
tic enough to warrant their use (since failure recovery takes longer). Adding more
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7 Tim Berglund and Yaroslav Tkachenko talk about Activision’s use case in the Streaming Audio podcast.
8 We’ve already seen how Kafka Streams can write directly to output topics, which allows us to push processed/

enriched data to downstream applications. However, interactive queries can be used by clients who want to
issue ad hoc queries against a Kafka Streams application instead.

partitions to parallelize work is always an option if you need to squeeze more perfor‐
mance out of your application. Therefore, my recommendation is to start with persis‐
tent stores and only switch to in-memory stores if you have measured a noticeable
performance improvement and, when quick recovery is concerned (e.g., in the event
your application state is lost), you are using standby replicas to reduce recovery time.

Now that we have some understanding of what state stores are, and how they enable
stateful/behavior-driven processing, let’s take a look at this chapter’s tutorial and see
some of these ideas in action.

Introducing Our Tutorial: Video Game Leaderboard
In this chapter, we will learn about stateful processing by implementing a video game
leaderboard with Kafka Streams. The video game industry is a prime example of
where stream processing excels, since both gamers and game systems require low-
latency processing and immediate feedback. This is one reason why companies like
Activision (the company behind games like Call of Duty and remasters of Crash Ban‐
dicoot and Spyro) use Kafka Streams for processing video game telemetry.7

The leaderboard we will be building will require us to model data in ways that we
haven’t explored yet. Specifically, we’ll be looking at how to use Kafka Streams’ table
abstractions to model data as a sequence of updates. Then, we’ll dive into the topics of
joining and aggregating data, which are useful whenever you need to understand or
compute the relationship between multiple events. This knowledge will help you
solve more complicated business problems with Kafka Streams.

Once we’ve created our real-time leaderboard using a new set of stateful operators, we
will demonstrate how to query Kafka Streams for the latest leaderboard information
using interactive queries. Our discussion of this feature will teach you how to build
event-driven microservices with Kafka Streams, which in turn will broaden the type
of clients we can share data with from our stream processing applications.8

Without further ado, let’s take a look at the architecture of our video game leader‐
board. Figure 4-1 shows the topology design we’ll be implementing in this chapter.
Additional information about each step is included after the diagram.
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Figure 4-1. The topology that we will be implementing in our stateful video game leader‐
board application

Our Kafka cluster contains three topics:

• The score-events topic contains game scores. The records are unkeyed and
are therefore distributed in a round-robin fashion across the topic’s
partitions.

• The players topic contains player profiles. Each record is keyed by a player
ID.

• The products topic contains product information for various video games.
Each record is keyed by a product ID.

We need to enrich our score events data with detailed player information. We can
accomplish this using a join.

Once we’ve enriched the score-events data with player data, we need to add
detailed product information to the resulting stream. This can also be accom‐
plished using a join.

Since grouping data is a prerequisite for aggregating, we need to group the
enriched stream.
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9 As mentioned in Chapter 3, if our topics contained Avro data, we could define our data model in an Avro
schema file instead.

We need to calculate the top three high scores for each game. We can use Kafka
Streams’ aggregation operators for this purpose.

Finally, we need to expose the high scores for each game externally. We will
accomplish this by building a RESTful microservice using the interactive queries
feature in Kafka Streams.

With our topology design in hand, we can now move on to the project setup.

Project Setup
The code for this chapter is located at https://github.com/mitch-seymour/mastering-
kafka-streams-and-ksqldb.git.

If you would like to reference the code as we work our way through each topology
step, clone the repo and change to the directory containing this chapter’s tutorial. The
following command will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-04/video-game-leaderboard

You can build the project anytime by running the following command:

$ ./gradlew build --info

Now that our project is set up, let’s start implementing our video game leaderboard.

Data Models
As always, we’ll start by defining our data models. Since the source topics contain
JSON data, we will define our data models using POJO data classes, which we will
serialize and deserialize using our JSON serialization library of choice (throughout
this book, we use Gson, but you could easily use Jackson or another library).9

I like to group my data models in a dedicated package in my project, for example,
com.magicalpipelines.model. A filesystem view of where the data classes for this
tutorial are located is shown here:

src/
└── main
    └── java
        └── com
            └── magicalpipelines
                └── model
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                    ├── ScoreEvent.java 
                    ├── Player.java 
                    └── Product.java 

The ScoreEvent.java data class will be used to represent records in the score-
events topic.

The Player.java data class will be used to represent records in the players
topic.

The Product.java data class will be used to represent records in the products
topic.

Now that we know which data classes we need to implement, let’s create a data class
for each topic. Table 4-2 shows the resulting POJOs that we have implemented for
this tutorial.

Table 4-2. Example records and data classes for each topic

Kafka topic Example record Data class

score-events {
  "score": 422,
  "product_id": 6,
  "player_id": 1
}

public class ScoreEvent {
  private Long playerId;
  private Long productId;
  private Double score;
}

players {
  "id": 2,
  "name": "Mitch"
}

public class Player {
  private Long id;
  private String name;
}

products {
  "id": 1,
  "name": "Super Smash Bros"
}

public class Product {
  private Long id;
  private String name;
}

We have already discussed serialization and deserialization in detail
in “Serialization/Deserialization” on page 69. In that chapter’s tuto‐
rial, we implemented our own custom serializer, deserializer, and
Serdes. We won’t spend more time on that here, but you can check
out the code for this tutorial to see how we’ve implemented the
Serdes for each of the data classes shown in Table 4-2.
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10 We can also use KStreams for lookup/join operations, but this is always a windowed operation, so we have
reserved discussion of this topic until the next chapter.

Adding the Source Processors
Once we’ve defined our data classes, we can set up our source processors. In this top‐
ology, we need three of them since we will be reading from three source topics. The
first thing we need to do when adding a source processor is determine which Kafka
Streams abstraction we should use for representing the data in the underlying topic.

Up until now, we have only worked with the KStream abstraction, which is used to
represent stateless record streams. However, our topology requires us to use both the
products and players topics as lookups, so this is a good indication that a table-like
abstraction may be appropriate for these topics.10 Before we start mapping our topics
to Kafka Streams abstractions, let’s first review the difference between KStream, KTa
ble, and GlobalKTable representations of a Kafka topic. As we review each abstrac‐
tion, we’ll fill in the appropriate abstraction for each topic in Table 4-3.

Table 4-3. The topic-abstraction mapping that we’ll update in the following sections

Kafka topic Abstraction

score-events ???

players ???

products ???

KStream
When deciding which abstraction to use, it helps to determine the nature of the topic,
the topic configuration, and the keyspace of records in the underlying source topic.
Even though stateful Kafka Streams applications use one or more table abstractions, it
is also very common to use stateless KStreams alongside a KTable or GlobalKTable
when the mutable table semantics aren’t needed for one or more data sources.

In this tutorial, our score-events topic contains raw score events, which are unkeyed
(and therefore, distributed in a round-robin fashion) in an uncompacted topic. Since
tables are key-based, this is a strong indication that we should be using a KStream for
our unkeyed score-events topic. We could change our keying strategy upstream
(i.e., in whatever application is producing to our source topic), but that’s not always
possible. Furthermore, our application cares about the highest score for each player,
not the latest score, so table semantics (i.e., retain only the most recent record for a
given key) don’t translate well for how we intend to use the score-events topic, even
if it were keyed.
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11 Florian Trossbach and Matthias J. Sax go much deeper on this subject in their “Crossing the Streams: Joins in
Apache Kafka” article.

Therefore, we will use a KStream for the score-events topic, so let’s update the table
in Table 4-3 to reflect this decision as follows:

Kafka topic Abstraction

score-events KStream

players ???

products ???

The remaining two topics, players and products, are keyed, and we only care about
the latest record for each unique key in the topic. Hence, the KStream abstraction isn’t
ideal for these topics. So, let’s move on and see if the KTable abstraction is appropriate
for either of these topics.

KTable
The players topic is a compacted topic that contains player profiles, and each record
is keyed by the player ID. Since we only care about the latest state of a player, it makes
sense to represent this topic using a table-based abstraction (either KTable or
GlobalKTable).

One important thing to look at when deciding between using a KTable or GlobalKTa
ble is the keyspace. If the keyspace is very large (i.e., has high cardinality/lots of
unique keys), or is expected to grow into a very large keyspace, then it makes more
sense to use a KTable so that you can distribute fragments of the entire state across all
of your running application instances. By partitioning the state in this way, we can
lower the local storage overhead for each individual Kafka Streams instance.

Perhaps a more important consideration when choosing between a KTable or Global
KTable is whether or not you need time synchronized processing. A KTable is time
synchronized, so when Kafka Streams is reading from multiple sources (e.g., in the
case of a join), it will look at the timestamp to determine which record to process
next. This means a join will reflect what the combined record would have been at a
certain time, and this makes the join behavior more predictable. On the other hand,
GlobalKTables are not time synchronized, and are “completely populated before any
processing is done.”11 Therefore, joins are always made against the most up-to-date
version of a GlobalKTable, which changes the semantics of the program.

In this case, we’re not going to focus too much on the second consideration since
we’ve reserved the next chapter for our discussion of time and the role it plays in
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Kafka Streams. With regards to the keyspace, players contains a record for each
unique player in our system. While this may be small depending on where we are in
the life cycle of our company or product, it is a number we expect to grow signifi‐
cantly over time, so we’ll use a KTable abstraction for this topic.

Figure 4-2 shows how using a KTable leads to the underlying state being distributed
across multiple running application instances.

Figure 4-2. A KTable should be used when you want to partition state across multiple
application instances and need time synchronized processing

Our updated abstraction table now looks like this:

Kafka topic Abstraction

score-events KStream

players KTable

products ???

We have one topic left: the products topic. This topic is relatively small, so we should
be able to replicate the state in full across all of our application instances. Let’s take a
look at the abstraction that allows us to do this: GlobalKTable.
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GlobalKTable
The products topic is similar to the players topic in terms of configuration (it’s
compacted) and its bounded keyspace (we maintain the latest record for each unique
product ID, and there are only a fixed number of products that we track). However,
the products topic has much lower cardinality (i.e., fewer unique keys) than the
players topic, and even if our leaderboard tracked high scores for several hundred
games, this still translates to a state space small enough to fit entirely in-memory.

In addition to being smaller, the data in the products topic is also relatively static.
Video games take a long time to build, so we don’t expect a lot of updates to our
products topic.

These two characteristics (small and static data) are what GlobalKTables were
designed for. Therefore, we will use a GlobalKTable for our products topic. As a
result, each of our Kafka Streams instances will store a full copy of the product infor‐
mation, which, as we’ll see later, makes performing joins much easier.

Figure 4-3 shows how each Kafka Streams instance maintains a full copy of the
products table.

Figure 4-3. A GlobalKTable should be used when your keyspace is small, you want to
avoid the co-partitioning requirements of a join (we will discuss co-partitioning in
“Co-Partitioning” on page 114), and when time synchronization is not needed
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We can now make the final update to our topic-abstraction mapping:

Kafka topic Abstraction

score-events KStream

players KTable

products GlobalKTable

Now that we’ve decided which abstraction to use for each of our source topics, we can
register the streams and tables.

Registering Streams and Tables
Registering streams and tables is simple. The following code block shows how to use
the high-level DSL to create a KStream, KTable, and GlobalKTable using the appro‐
priate builder methods:

StreamsBuilder builder = new StreamsBuilder();

KStream<byte[], ScoreEvent> scoreEvents =
    builder.stream(
        "score-events",
        Consumed.with(Serdes.ByteArray(), JsonSerdes.ScoreEvent())); 

KTable<String, Player> players =
    builder.table(
        "players",
        Consumed.with(Serdes.String(), JsonSerdes.Player())); 

GlobalKTable<String, Product> products =
    builder.globalTable(
        "products",
        Consumed.with(Serdes.String(), JsonSerdes.Product())); 

Use a KStream to represent data in the score-events topic, which is currently
unkeyed.

Create a partitioned (or sharded) table for the players topic, using the KTable
abstraction.

Create a GlobalKTable for the products topic, which will be replicated in full to
each application instance.

By registering the source topics, we have now implemented the first step of our lead‐
erboard topology (see Figure 4-1). Let’s move on to the next step: joining streams and
tables.
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12 UNION queries are another method for combining datasets in the relational world. The behavior of the merge
operator in Kafka Streams is more closely related to how a UNION query works.

Joins
The most common method for combining datasets in the relational world is through
joins.12 In relational systems, data is often highly dimensional and scattered across
many different tables. It is common to see these same patterns in Kafka as well, either
because events are sourced from multiple locations, developers are comfortable or
used to relational data models, or because certain Kafka integrations (e.g., the JDBC
Kafka Connector, Debezium, Maxwell, etc.) bring both the raw data and the data
models of the source systems with them.

Regardless of how data becomes scattered in Kafka, being able to combine data in
separate streams and tables based on relationships opens the door for more advanced
data enrichment opportunities in Kafka Streams. Furthermore, the join method for
combining datasets is very different from simply merging streams, as we saw in
Figure 3-6. When we use the merge operator in Kafka Streams, records on both sides
of the merge are unconditionally combined into a single stream. Simple merge opera‐
tions are therefore stateless since they do not need additional context about the events
being merged.

Joins, however, can be thought of as a special kind of conditional merge that cares
about the relationship between events, and where the records are not copied verbatim
into the output stream but rather combined. Furthermore, these relationships must
be captured, stored, and referenced at merge time to facilitate joining, which makes
joining a stateful operation. Figure 4-4 shows a simplified depiction of how one type
of join works (there are several types of joins, as we’ll see in Table 4-5).

As with relational systems, Kafka Streams includes support for multiple kinds of
joins. So, before we learn how to join our score-events stream with our players
table, let’s first familiarize ourselves with the various join operators that are available
to us so that we can select the best option for our particular use case.
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Figure 4-4. Joining messages

Join Operators
Kafka Streams includes three different join operators for joining streams and tables.
Each operator is detailed in Table 4-4.

Table 4-4. Join operators

Operator Description
join Inner join. The join is triggered when the input records on both sides of the join share the same key.

leftJoin Left join. The join semantics are different depending on the type of join:

• For stream-table joins: a join is triggered when a record on the left side of the join is received. If there is no
record with the same key on the right side of the join, then the right value is set to null.

• For stream-stream and table-table joins: same semantics as a stream-stream left join, except an input on
the right side of the join can also trigger a lookup. If the right side triggers the join and there is no
matching key on the left side, then the join will not produce a result.

outerJoin Outer join. The join is triggered when a record on either side of the join is received. If there is no matching
record with the same key on the opposite side of the join, then the corresponding value is set to null.
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When discussing the differences between join operators, we refer
to different sides of the join. Just remember, the right side of the join
is always passed as a parameter to the relevant join operator. For
example:

KStream<String, ScoreEvent> scoreEvents = ...;
KTable<String, Player> players = ...;

scoreEvents.join(players, ...); 

scoreEvents is the left side of the join. players is the right side
of the join.

Now, let’s look at the type of joins we can create with these operators.

Join Types
Kafka Streams supports many different types of joins, as shown in Table 4-5. The
co-partitioning column refers to something we will discuss in “Co-Partitioning” on
page 114. For now, it’s sufficient to understand that co-partitioning is simply an extra
set of requirements that are needed to actually perform the join.

Table 4-5. Join types

Type Windowed Operators Co-partitioning required

KStream-KStream Yesa • join

• leftJoin

• outerJoin

Yes

KTable-KTable No • join

• leftJoin

• outerJoin

Yes

KStream-KTable No • join

• leftJoin

Yes

KStream-GlobalKTable No • join

• leftJoin

No

a One key thing to note is that KStream-KStream joins are windowed. We will discuss this in detail in the next chapter.

The two types of joins we need to perform in this chapter are:

• KStream-KTable to join the score-events KStream and the players KTable
• KStream-GlobalKTable to join the output of the previous join with the products
GlobalKTable

Joins | 113



We will use an inner join, using the join operator for each of the joins since we only
want the join to be triggered when there’s a match on both sides. However, before we
do that, we can see that the first join we’ll be creating (KStream-KTable) shows that
co-partitioning is required. Let’s take a look at what that means before we write any
more code.

Co-Partitioning
If a tree falls in a forest and no one is around to hear it, does it make a sound?

—Aphorism

This famous thought experiment raises a question about what role an observer has in
the occurrence of an event (in this case, sound being made in a forest). Similarly, in
Kafka Streams, we must always be aware of the effect an observer has on the process‐
ing of an event.

In “Tasks and Stream Threads” on page 41, we learned that each partition is assigned
to a single Kafka Streams task, and these tasks will act as the observers in our analogy
since they are responsible for actually consuming and processing events. Because
there’s no guarantee that events on different partitions will be handled by the same
Kafka Streams task, we have a potential observability problem.

Figure 4-5 shows the basic observability issue. If related events are processed by dif‐
ferent tasks, then we cannot accurately determine the relationship between events
because we have two separate observers. Since the whole purpose of joining data is to
combine related events, an observability problem will make our joins fail when they
should otherwise succeed.

In order to understand the relationship between events (through joins) or compute
aggregations on a sequence of events, we need to ensure that related events are routed
to the same partition, and so are handled by the same task.

To ensure related events are routed to the same partition, we must ensure the follow‐
ing co-partitioning requirements are met:

• Records on both sides must be keyed by the same field, and must be partitioned
on that key using the same partitioning strategy.

• The input topics on both sides of the join must contain the same number of par‐
titions. (This is the one requirement that is checked at startup. If this requirement
is not met, then a TopologyBuilderException will be thrown.)
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Figure 4-5. If we want to join related records but these records aren’t always processed by
the same task, then we have an observability problem

In this tutorial, we meet all of the requirements to perform a KTable-KTable join
except the first one. Recall that records in the score-events topic are unkeyed, but
we’ll be joining with the players KTable, which is keyed by player ID. Therefore, we
need to rekey the data in score-events by player ID as well, prior to performing the
join. This can be accomplished using the selectKey operator, as shown in
Example 4-1.

Example 4-1. The selectKey operator allows us to rekey records; this is often needed to
meet the co-partitioning requirements for performing certain types of joins

KStream<String, ScoreEvent> scoreEvents =
  builder
    .stream(
      "score-events",
      Consumed.with(Serdes.ByteArray(), JsonSerdes.ScoreEvent()))
    .selectKey((k, v) -> v.getPlayerId().toString()); 

selectKey is used to rekey records. In this case, it helps us meet the first co-
partitioning requirement of ensuring records on both sides of the join (the
score-events data and players data) are keyed by the same field.
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A visualization of how records are rekeyed is shown in Figure 4-6.

Figure 4-6. Rekeying messages ensures related records appear on the same partition

When we add a key-changing operator to our topology, the under‐
lying data will be marked for repartitioning. This means that as soon
as we add a downstream operator that reads the new key, Kafka
Streams will:

• Send the rekeyed data to an internal repartition topic
• Reread the newly rekeyed data back into Kafka Streams

This process ensures related records (i.e., records that share the
same key) will be processed by the same task in subsequent topol‐
ogy steps. However, the network trip required for rerouting data to
a special repartition topic means that rekey operations can be
expensive.

What about our KStream-GlobalKTable for joining the products topic? As shown in
Table 4-5, co-partitioning is not required for GlobalKTable joins since the state is
fully replicated across each instance of our Kafka Streams app. Therefore, we will
never encounter this kind of observability problem with a GlobalKTable join.

We’re almost ready to join our streams and tables. But first, let’s take a look at how
records are actually combined during a join operation.
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Value Joiners
When performing a join using traditional SQL, we simply need to use the join opera‐
tor in conjunction with a SELECT clause to specify the shape (or projection) of the
combined join record. For example:

SELECT a.customer_name, b.purchase_amount 
FROM customers a
LEFT JOIN purchases b
ON a.customer_id = b.customer_id

The projection of the combined join record includes two columns.

However, in Kafka Streams, we need to use a ValueJoiner to specify how different
records should be combined. A ValueJoiner simply takes each record that is
involved in the join, and produces a new, combined record. Looking at the first join,
in which we need to join the score-events KStream with the players KTable, the
behavior of the value joiner could be expressed using the following pseudocode:

(scoreEvent, player) -> combine(scoreEvent, player);

But we can do much better than that. It’s more typical to have a dedicated data class
that does one of the following:

• Wraps each of the values involved in the join
• Extracts the relevant fields from each side of the join, and saves the extracted val‐

ues in class properties

We will explore both approaches next. First, let’s start with a simple wrapper class for
the score-events -> players join. Example 4-2 shows a simple implementation of a
data class that wraps the record on each side of the join.

Example 4-2. The data class that we’ll use to construct the joined score-events ->
players record

public class ScoreWithPlayer {
  private ScoreEvent scoreEvent;
  private Player player;

  public ScoreWithPlayer(ScoreEvent scoreEvent, Player player) {
    this.scoreEvent = scoreEvent; 
    this.player = player;
  }

  // accessors omitted from brevity
}
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The constructor contains a parameter for each side of the join. The left side of the
join contains ScoreEvent, and the right side contains a Player.

We simply save a reference to each record involved in the join inside of our wrap‐
per class.

We can use our new wrapper class as the return type in our ValueJoiner.
Example 4-3 shows an example implementation of a ValueJoiner that combines
a ScoreEvent (from the score-events KStream) and a Player (from the players
KTable) into a ScoreWithPlayer instance.

Example 4-3. The ValueJoiner for combining score-events and players

ValueJoiner<ScoreEvent, Player, ScoreWithPlayer> scorePlayerJoiner =
        (score, player) -> new ScoreWithPlayer(score, player); 

We could also simply use a static method reference here, such as
ScoreWithPlayer::new.

Let’s move on to the second join. This join needs to combine a ScoreWithPlayer
(from the output of the first join) with a Product (from the products GlobalKTable).
We could reuse the wrapper pattern again, but we could also simply extract the prop‐
erties we need from each side of the join, and discard the rest.

The following code block shows an implementation of a data class that follows the
second pattern. We simply extract the values we want and save them to the appropri‐
ate class properties:

public class Enriched {
  private Long playerId;
  private Long productId;
  private String playerName;
  private String gameName;
  private Double score;

  public Enriched(ScoreWithPlayer scoreEventWithPlayer, Product product) {
    this.playerId = scoreEventWithPlayer.getPlayer().getId();
    this.productId = product.getId();
    this.playerName = scoreEventWithPlayer.getPlayer().getName();
    this.gameName = product.getName();
    this.score = scoreEventWithPlayer.getScoreEvent().getScore();
  }

  // accessors omitted from brevity
}

With this new data class in place, we can build our ValueJoiner for the KStream-
GlobalKTable join using the code shown in Example 4-4.
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Example 4-4. A ValueJoiner, expressed as a lambda, that we will use for the join

ValueJoiner<ScoreWithPlayer, Product, Enriched> productJoiner =
    (scoreWithPlayer, product) -> new Enriched(scoreWithPlayer, product);

Now that we’ve told Kafka Streams how to combine our join records, we can actually
perform the joins.

KStream to KTable Join (players Join)
It’s time to join our score-events KStream with our players KTable. Since we only
want to trigger the join when the ScoreEvent record can be matched to a Player
record (using the record key), we’ll perform an inner join using the join operator, as
shown here:

Joined<String, ScoreEvent, Player> playerJoinParams =
  Joined.with( 
    Serdes.String(),
    JsonSerdes.ScoreEvent(),
    JsonSerdes.Player()
  );

KStream<String, ScoreWithPlayer> withPlayers =
  scoreEvents.join( 
    players,
    scorePlayerJoiner, 
    playerJoinParams
  );

The join parameters define how the keys and values for the join records should
be serialized.

The join operator performs an inner join.

This is the ValueJoiner we created in Example 4-3. A new ScoreWithPlayer
value is created from the two join records. Check out the ScoreWithPlayer data
class in Example 4-2 to see how the left and right side of the join values are
passed to the constructor.

It’s that simple. Furthermore, if you were to run the code at this point and then list all
of the topics that are available in your Kafka cluster, you would see that Kafka
Streams created two new internal topics for us.
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13 If you’re not using Confluent Platform, the script is kafka-topics.sh.

14 The GlobalKTable side of the join will still use the record key for the lookup.

These topics are:

• A repartition topic to handle the rekey operation that we performed in
Example 4-1.

• A changelog topic for backing the state store, which is used by the join operator.
This is part of the fault-tolerance behavior that we initially discussed in “Fault
tolerant” on page 100.

You can verify with the kafka-topics console script:13

$ kafka-topics --bootstrap-server kafka:9092 --list

players
products
score-events
dev-KSTREAM-KEY-SELECT-0000000001-repartition 
dev-players-STATE-STORE-0000000002-changelog 

An internal repartition topic that was created by Kafka Streams. It is prefixed
with the application ID of our Kafka Streams application (dev).

An internal changelog topic that was created by Kafka Streams. As with the
repartition topic, this changelog topic is also prefixed with the application ID of
our Kafka Streams application.

OK, we’re ready to move on to the second join.

KStream to GlobalKTable Join (products Join)
As we discussed in the co-partitioning requirements, records on either side of a Glob
alKTable join do not need to share the same key. Since the local task has a full copy
of the table, we can actually perform a join using some attribute of the record value
itself on the stream side of the join,14 which is more efficient than having to rekey
records through a repartition topic just to ensure related records are handled by the
same task.

To perform a KStream-GlobalKTable join, we need to create something called a Key
ValueMapper, whose purpose is to specify how to map a KStream record to a Global
KTable record.For this tutorial, we can simply extract the product ID from the
ScoreWithPlayer value to map these records to a Product, as shown here:
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KeyValueMapper<String, ScoreWithPlayer, String> keyMapper =
  (leftKey, scoreWithPlayer) -> {
    return String.valueOf(scoreWithPlayer.getScoreEvent().getProductId());
  };

With our KeyValueMapper in place, and also the ValueJoiner that we created in
Example 4-4, we can now perform the join:

KStream<String, Enriched> withProducts =
  withPlayers.join(products, keyMapper, productJoiner);

This completes the second and third steps of our leaderboard topology (see
Figure 4-1). The next thing we need to tackle is grouping the enriched records so that
we can perform an aggregation.

Grouping Records
Before you perform any stream or table aggregations in Kafka Streams, you must first
group the KStream or KTable that you plan to aggregate. The purpose of grouping is
the same as rekeying records prior to joining: to ensure the related records are pro‐
cessed by the same observer, or Kafka Streams task.

There are some slight differences between grouping streams and tables, so we will
take a look at each.

Grouping Streams
There are two operators that can be used for grouping a KStream:

• groupBy

• groupByKey

Using groupBy is similar to the process of rekeying a stream using selectKey, since
this operator is a key-changing operator and causes Kafka Streams to mark the
stream for repartitioning. If a downstream operator is added that reads the new key,
Kafka Streams will automatically create a repartition topic and route the data back to
Kafka to complete the rekeying process.

Example 4-5 shows how to use the groupBy operator to group a KStream.

Example 4-5. Use the groupBy operator to rekey and group a KStream at the same time

KGroupedStream<String, Enriched> grouped =
  withProducts.groupBy(
      (key, value) -> value.getProductId().toString(), 
      Grouped.with(Serdes.String(), JsonSerdes.Enriched())); 
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We can use a lambda to select the new key, since the groupBy operator expects a
KeyValueMapper, which happens to be a functional interface.

Grouped allows us to pass in some additional options for grouping, including the
key and value Serdes to use when serializing the records.

However, if your records don’t need to be rekeyed, then it is preferable to use the
groupByKey operator instead. groupByKey will not mark the stream for repartitioning,
and will therefore be more performant since it avoids the additional network calls
associated with sending data back to Kafka for repartitioning. The groupByKey imple‐
mentation is shown here:

KGroupedStream<String, Enriched> grouped =
    withProducts.groupByKey(
      Grouped.with(Serdes.String(),
      JsonSerdes.Enriched()));

Since we want to calculate the high scores for each product ID, and since our enriched
stream is currently keyed by player ID, we will use the groupBy variation shown in
Example 4-5 in the leaderboard topology.

Regardless of which operator you use for grouping a stream, Kafka Streams will
return a new type that we haven’t discussed before: KGroupedStream. KGroupedStream
is just an intermediate representation of a stream that allows us to perform aggrega‐
tions. We will look at aggregations shortly, but first, let’s take a look at how to group
KTables.

Grouping Tables
Unlike grouping streams, there is only one operator available for grouping tables:
groupBy. Furthermore, instead of returning a KGroupedStream, invoking groupBy on
a KTable returns a different intermediate representation: KGroupedTable. Otherwise,
the process of grouping KTables is identical to grouping a KStream. For example, if
we wanted to group the players KTable so that we could later perform some aggre‐
gation (e.g., count the number of players), then we could use the following code:

KGroupedTable<String, Player> groupedPlayers =
    players.groupBy(
        (key, value) -> KeyValue.pair(key, value),
        Grouped.with(Serdes.String(), JsonSerdes.Player()));

The preceding code block isn’t needed for this tutorial since we don’t need to group
the players table, but we are showing it here to demonstrate the concept. We now
know how to group streams and tables, and have completed step 4 of our processor
topology (see Figure 4-1). Next, we’ll learn how to perform aggregations in Kafka
Streams.
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15 Streams are append-only, so do not need a subtractor.

Aggregations
One of the final steps required for our leaderboard topology is to calculate the high
scores for each game. Kafka Streams gives us a set of operators that makes perform‐
ing these kinds of aggregations very easy:

• aggregate

• reduce

• count

At a high level, aggregations are just a way of combining multiple input values into a
single output value. We tend to think of aggregations as mathematical operations, but
they don’t have to be. While count is a mathematical operation that computes the
number of events per key, both the aggregate and reduce operators are more
generic, and can combine values using any combinational logic you specify.

reduce is very similar to aggregate. The difference lies in the
return type. The reduce operator requires the output of an aggre‐
gation to be of the same type as the input, while the aggregate
operator can specify a different type for the output record.

Furthermore, aggregations can be applied to both streams and tables. The semantics
are a little different across each, since streams are immutable while tables are muta‐
ble. This translates into slightly different versions of the aggregate and reduce
operators, with the streams version accepting two parameters: an initializer and an
adder, and the table version accepting three parameters: an initializer, adder, and
subtractor.15

Let’s take a look at how to aggregate streams by creating our high scores aggregation.

Aggregating Streams
In this section, we’ll learn how to apply aggregations to record streams, which
involves creating a function for initializing a new aggregate value (called an initial‐
izer) and a function for performing subsequent aggregations as new records come in
for a given key (called an adder function). First, we’ll learn about initializers.
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Initializer
When a new key is seen by our Kafka Streams topology, we need some way of initial‐
izing the aggregation. The interface that helps us with this is Initializer, and like
many of the classes in the Kafka Streams API, Initializer is a functional interface
(i.e., contains a single method), and therefore can be defined as a lambda.

For example, if you were to look at the internals of the count aggregation, you’d see
an initializer that sets the initial value of the aggregation to 0:

Initializer<Long> countInitializer = () -> 0L; 

The initializer is defined as a lambda, since the Initializer interface is a func‐
tional interface.

For more complex aggregations, you can provide your own custom initializer instead.
For example, to implement a video game leaderboard, we need some way to compute
the top three high scores for a given game. To do this, we can create a separate class
that will include the logic for tracking the top three scores, and provide a new
instance of this class whenever an aggregation needs to be initialized.

In this tutorial, we will create a custom class called HighScores to act as our aggrega‐
tion class. This class will need some underlying data structure to hold the top three
scores for a given video game. One approach is to use a TreeSet, which is an ordered
set included in the Java standard library, and is therefore pretty convenient for hold‐
ing high scores (which are inherently ordered).

An initial implementation of our data class that we’ll use for the high scores aggrega‐
tion is shown here:

public class HighScores {

  private final TreeSet<Enriched> highScores = new TreeSet<>();

}

Now we need to tell Kafka Streams how to initialize our new data class. Initializing a
class is simple; we just need to instantiate it:

Initializer<HighScores> highScoresInitializer = HighScores::new;

Once we have an initializer for our aggregation, we need to implement the logic for
actually performing the aggregation (in this case, keeping track of the top three high
scores for each video game).
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Adder
The next thing we need to do in order to build a stream aggregator is to define the
logic for combining two aggregates. This is accomplished using the Aggregator inter‐
face, which, like Initializer, is a functional interface that can be implemented using
a lambda. The implementing function needs to accept three parameters:

• The record key
• The record value
• The current aggregate value

We can create our high scores aggregator with the following code:

Aggregator<String, Enriched, HighScores> highScoresAdder =
        (key, value, aggregate) -> aggregate.add(value);

Note that aggregate is a HighScores instance, and since our aggregator invokes the
HighScores.add method, we simply need to implement that in our HighScores class.
As you can see in the following code block, the code is extremely simple, with the add
method simply appending a new high score to the internal TreeSet, and then remov‐
ing the lowest score if we have more than three high scores:

public class HighScores {
  private final TreeSet<Enriched> highScores = new TreeSet<>();

  public HighScores add(final Enriched enriched) {
    highScores.add(enriched); 

    if (highScores.size() > 3) { 
      highScores.remove(highScores.last());
    }

    return this;
  }
}

Whenever our adder method (HighScores.add) is called by Kafka Streams, we
simply add the new record to the underlying TreeSet, which will sort each entry
automatically.

If we have more than three high scores in our TreeSet, remove the lowest score.

In order for the TreeSet to know how to sort Enriched objects (and therefore, be
able to identify the Enriched record with the lowest score to remove when our high
Scores aggregate exceeds three values), we will implement the Comparable interface,
as shown in Example 4-6.
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16 We haven’t talked about deleting keys yet, but we will cover this topic in Chapter 6, when we discuss cleaning
up state stores.

Example 4-6. The updated Enriched class, which implements the Comparable interface

public class Enriched implements Comparable<Enriched> { 

  @Override
  public int compareTo(Enriched o) { 
    return Double.compare(o.score, score);
  }

  // omitted for brevity
}

We will update our Enriched class so that it implements Comparable, since deter‐
mining the top three high scores will involve comparing one Enriched object to
another.

Our implementation of the compareTo method uses the score property as a
method of comparing two different Enriched objects.

Now that we have both our initializer and adder function, we can perform the aggre‐
gation using the code in Example 4-7.

Example 4-7. Use Kafka Streams’ aggregate operator to perform our high scores
aggregation

KTable<String, HighScores> highScores =
    grouped.aggregate(highScoresInitializer, highScoresAdder);

Aggregating Tables
The process of aggregating tables is pretty similar to aggregating streams. We need an
initializer and an adder function. However, tables are mutable, and need to be able to
update an aggregate value whenever a key is deleted.16 We also need a third parame‐
ter, called a subtractor function.

Subtractor
While this isn’t necessary for the leaderboard example, let’s assume we want to count
the number of players in our players KTable. We could use the count operator, but
to demonstrate how to build a subtractor function, we’ll build our own aggregate
function that is essentially equivalent to the count operator. A basic implementation
of an aggregate that uses a subtractor function (as well as an initializer and adder
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function, which is required for both KStream and KTable aggregations), is shown
here:

KGroupedTable<String, Player> groupedPlayers =
  players.groupBy(
      (key, value) -> KeyValue.pair(key, value),
      Grouped.with(Serdes.String(), JsonSerdes.Player()));

groupedPlayers.aggregate(
    () -> 0L, 
    (key, value, aggregate) -> aggregate + 1L, 
    (key, value, aggregate) -> aggregate - 1L); 

The initializer function initializes the aggregate to 0.

The adder function increments the current count when a new key is seen.

The subtractor function decrements the current count when a key is removed.

We have now completed step 5 of our leaderboard topology (Figure 4-1). We’ve writ‐
ten a decent amount of code, so let’s see how the individual code fragments fit
together in the next section.

Putting It All Together
Now that we’ve constructed the individual processing steps on our leaderboard topol‐
ogy, let’s put it all together. Example 4-8 shows how the topology steps we’ve created
so far come together.

Example 4-8. The processor topology for our video game leaderboard application

// the builder is used to construct the topology
StreamsBuilder builder = new StreamsBuilder();

// register the score events stream
KStream<String, ScoreEvent> scoreEvents = 
    builder
        .stream(
          "score-events",
          Consumed.with(Serdes.ByteArray(), JsonSerdes.ScoreEvent()))
        .selectKey((k, v) -> v.getPlayerId().toString()); 

// create the partitioned players table
KTable<String, Player> players = 
    builder.table("players", Consumed.with(Serdes.String(), JsonSerdes.Player()));

// create the global product table
GlobalKTable<String, Product> products = 
    builder.globalTable(
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      "products",
      Consumed.with(Serdes.String(), JsonSerdes.Product()));

// join params for scoreEvents - players join
Joined<String, ScoreEvent, Player> playerJoinParams =
    Joined.with(Serdes.String(), JsonSerdes.ScoreEvent(), JsonSerdes.Player());

// join scoreEvents - players
ValueJoiner<ScoreEvent, Player, ScoreWithPlayer> scorePlayerJoiner =
    (score, player) -> new ScoreWithPlayer(score, player);
KStream<String, ScoreWithPlayer> withPlayers =
    scoreEvents.join(players, scorePlayerJoiner, playerJoinParams); 

// map score-with-player records to products
KeyValueMapper<String, ScoreWithPlayer, String> keyMapper =
  (leftKey, scoreWithPlayer) -> {
    return String.valueOf(scoreWithPlayer.getScoreEvent().getProductId());
  };

// join the withPlayers stream to the product global ktable
ValueJoiner<ScoreWithPlayer, Product, Enriched> productJoiner =
  (scoreWithPlayer, product) -> new Enriched(scoreWithPlayer, product);
KStream<String, Enriched> withProducts =
  withPlayers.join(products, keyMapper, productJoiner); 

// Group the enriched product stream
KGroupedStream<String, Enriched> grouped =
  withProducts.groupBy( 
      (key, value) -> value.getProductId().toString(),
      Grouped.with(Serdes.String(), JsonSerdes.Enriched()));

// The initial value of our aggregation will be a new HighScores instance
Initializer<HighScores> highScoresInitializer = HighScores::new;

// The logic for aggregating high scores is implemented in the HighScores.add method
Aggregator<String, Enriched, HighScores> highScoresAdder =
  (key, value, aggregate) -> aggregate.add(value);

// Perform the aggregation, and materialize the underlying state store for querying
KTable<String, HighScores> highScores =
    grouped.aggregate( 
        highScoresInitializer,
        highScoresAdder);

Read the score-events into a KStream.

Rekey the messages to meet the co-partitioning requirements needed for the join.
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Read the players topic into a KTable since the keyspace is large (allowing us to
shard the state across multiple application instances) and since we want time
synchronized processing for the score-events -> players join.

Read the products topic as a GlobalKTable, since the keyspace is small and we
don’t need time synchronized processing.

Join the score-events stream and the players table.

Join the enriched score-events with the products table.

Group the enriched stream. This is a prerequisite for aggregating.

Aggregate the grouped stream. The aggregation logic lives in the HighScores
class.

Let’s add the necessary configuration for our application and start streaming:

Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "dev");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

KafkaStreams streams = new KafkaStreams(builder.build(), props);
streams.start();

At this point, our application is ready to start receiving records and calculating high
scores for our leaderboard. However, we still have one final step to tackle in order to
expose the leaderboard results to external clients. Let’s move on to the final step of
our processor topology, and learn how to expose the state of our Kafka Streams appli‐
cation using interactive queries.

Interactive Queries
One of the defining features of Kafka Streams is its ability to expose application state,
both locally and to the outside world. The latter makes it easy to build event-driven
microservices with extremely low latency. In this tutorial, we can use interactive quer‐
ies to expose our high score aggregations.

In order to do this, we need to materialize the state store. We’ll learn how to do this in
the next section.

Materialized Stores
We already know that stateful operators like aggregate, count, reduce, etc., leverage
state stores to manage internal state. However, if you look closely at our method for
aggregating high scores in Example 4-7, you won’t see any mention of a state store.
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This variant of the aggregate method uses an internal state store that is only accessed
by the processor topology.

If we want to enable read-only access of the underlying state store for ad hoc queries,
we can use one of the overloaded methods to force the materialization of the state
store locally. Materialized state stores differ from internal state stores in that they are
explicitly named and are queryable outside of the processor topology. This is where
the Materialized class comes in handy. Example 4-9 shows how to materialize a per‐
sistent key-value store using the Materialized class, which will allow us to query the
store using interactive queries.

Example 4-9. Materialized state store with minimal configuration

KTable<String, HighScores> highScores =
    grouped.aggregate(
        highScoresInitializer,
        highScoresAdder,
        Materialized.<String, HighScores, KeyValueStore<Bytes, byte[]>> 
            as("leader-boards") 
            .withKeySerde(Serdes.String()) 
            .withValueSerde(JsonSerdes.HighScores()));

This variation of the Materialized.as method includes three generics:

• The key type of the store (in this case, String)
• The value type of the store (in this case, HighScores)
• The type of state store (in this case, we’ll use a simple key-value store, repre‐

sented by KeyValueStore<Bytes, byte[]>)

Provide an explicit name for the store to make it available for querying outside of
the processor topology.

We can customize the materialized state store using a variety of parameters,
including the key and value Serdes, as well as other options that we will explore
in Chapter 6.

Once we’ve materialized our leader-boards state store, we are almost ready to
expose this data via ad hoc queries. The first thing we need to do, however, is to
retrieve the store from Kafka Streams.
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Accessing Read-Only State Stores
When we need to access a state store in read-only mode, we need two pieces of
information:

• The name of the state store
• The type of state store

As we saw in Example 4-9, the name of our state store is leader-boards. We need to
retrieve the appropriate read-only wrapper for our underlying state store using the
QueryableStoreTypes factory class. There are multiple state stores supported,
including:

• QueryableStoreTypes.keyValueStore()

• QueryableStoreTypes.timestampedKeyValueStore()

• QueryableStoreTypes.windowStore()

• QueryableStoreTypes.timestampedWindowStore()

• QueryableStoreTypes.sessionStore()

In our case, we’re using a simple key-value store, so we need the QueryableStore
Type.keyValueStore() method. With both the state store name and the state store
type, we can instantiate an instance of a queryable state store to be used in interactive
queries, by using the KafkaStreams.store() method, as shown in Example 4-10.

Example 4-10. Instantiate a key-value store that can be used for performing interactive
queries

ReadOnlyKeyValueStore<String, HighScores> stateStore =
    streams.store(
        StoreQueryParameters.fromNameAndType(
            "leader-boards",
            QueryableStoreTypes.keyValueStore()));

When we have our state store instance, we can query it. The next section discusses
the different query types available in key-value stores.

Querying Nonwindowed Key-Value Stores
Each state store type supports different kinds of queries. For example, windowed 
stores (e.g., ReadOnlyWindowStore) support key lookups using time ranges, while
simple key-value stores (ReadOnlyKeyValueStore) support point lookups, range
scans, and count queries.
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We will discuss windowed state stores in the next chapter, so for now, let’s demon‐
strate the kinds of queries we can make to our leader-boards store.

The easiest way to determine which query types are available for your state store type
is to check the underlying interface. As we can see from the interface definition in the
following snippet, simple key-value stores support several different types of queries:

public interface ReadOnlyKeyValueStore<K, V> {

    V get(K key);

    KeyValueIterator<K, V> range(K from, K to);

    KeyValueIterator<K, V> all();

    long approximateNumEntries();
}

Let’s take a look at each of these query types, starting with the first: point lookups
(get()).

Point lookups
Perhaps the most common query type, point lookups simply involve querying the
state store for an individual key. To perform this type of query, we can use the get
method to retrieve the value for a given key. For example:

HighScores highScores = stateStore.get(key);

Note that a point lookup will return either a deserialized instance of the value (in this
case, a HighScores object, since that is what we’re storing in our state store) or null if
the key is not found.

Range scans
Simple key-value stores also support range scan queries. Range scans return an itera‐
tor for an inclusive range of keys. It’s very important to close the iterator once you are
finished with it to avoid memory leaks.

The following code block shows how to execute a range query, iterate over each
result, and close the iterator:

KeyValueIterator<String, HighScores> range = stateStore.range(1, 7); 

while (range.hasNext()) {
    KeyValue<String, HighScores> next = range.next(); 

    String key = next.key;
    HighScores highScores = next.value; 

    // do something with high scores object
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}

range.close(); 

Returns an iterator that can be used for iterating through each key in the selected
range.

Get the next element in the iteration.

The HighScores value is available in the next.value property.

It’s very important to close the iterator to avoid memory leaks. Another way of
closing is to use a try-with-resources statement when getting the iterator.

All entries

Similar to a range scan, the all() query returns an iterator of key-value pairs, and is
similar to an unfiltered SELECT * query. However, this query type will return an itera‐
tor for all of the entries in our state store, instead of those within a specific key range
only. As with range queries, it’s important to close the iterator once you’re finished
with it to avoid memory leaks. The following code shows how to execute an all()
query. Iterating through the results and closing the iterator is the same as the range
scan query, so we have omitted that logic for brevity:

KeyValueIterator<String, HighScores> range = stateStore.all();

Number of entries

Finally, the last query type is similar to a COUNT(*) query, and returns the approxi‐
mate number of entries in the underlying state store.

When using RocksDB persistent stores, the returned value is
approximate since calculating a precise count can be expensive and,
when it comes to RocksDB-backed stores, challenging as well.
Taken from the RocksDB FAQ:

Obtaining an accurate number of keys [in] LSM databases
like RocksDB is a challenging problem as they have dupli‐
cate keys and deletion entries (i.e., tombstones) that will
require a full compaction in order to get an accurate
number of keys. In addition, if the RocksDB database
contains merge operators, it will also make the estimated
number of keys less accurate.

On the other hand, if using an in-memory store, the count will be
exact.
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17 The latter of these is not advisable. Running a single Kafka Streams application would consolidate the entire
application state to a single instance, but Kafka Streams is meant to be run in a distributed fashion for maxi‐
mizing performance and fault tolerance.

18 And other clients if desired, e.g., humans.

To execute this type of query against a simple key-value store, we could run the
following code:

long approxNumEntries = stateStore.approximateNumEntries();

Now that we know how to query simple key-value stores, let’s see where we can
actually execute these queries from.

Local Queries
Each instance of a Kafka Streams application can query its own local state. However,
it’s important to remember that unless you are materializing a GlobalKTable or run‐
ning a single instance of your Kafka Streams app,17 the local state will only represent a
partial view of the entire application state (this is the nature of a KTable, as discussed
in “KTable” on page 107).

Luckily for us, Kafka Streams provides some additional methods that make it easy to
connect distributed state stores, and to execute remote queries, which allow us to
query the entire state of our application. We’ll learn about remote queries next.

Remote Queries
In order to query the full state of our application, we need to:

• Discover which instances contain the various fragments of our application state
• Add a remote procedure call (RPC) or REST service to expose the local state to

other running application instances18

• Add an RPC or REST client for querying remote state stores from a running
application instance

Regarding the last two points, you have a lot of flexibility in choosing which server
and client components you want to use for inter-instance communication. In this
tutorial, we’ll use Javalin to implement a REST service due to its simple API. We will
also use OkHttp, developed by Square, for our REST client for its ease of use. Let’s
add these dependencies to our application by updating our build.gradle file with the
following:

dependencies {

  // required for interactive queries (server)
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  implementation 'io.javalin:javalin:3.12.0'

  // required for interactive queries (client)
  implementation 'com.squareup.okhttp3:okhttp:4.9.0'

  // other dependencies
}

Now let’s tackle the issue of instance discovery. We need some way of broadcasting
which instances are running at any given point in time and where they are running.
The latter can be accomplished using the APPLICATION_SERVER_CONFIG parameter to
specify a host and port pair in Kafka Streams, as shown here:

Properties props = new Properties();

props.put(StreamsConfig.APPLICATION_SERVER_CONFIG, "myapp:8080"); 

// other Kafka Streams properties omitted for brevity

KafkaStreams streams = new KafkaStreams(builder.build(), props);

Configure an endpoint. This will be communicated to other running application
instances through Kafka’s consumer group protocol. It’s important to use an IP
and port pair that other instances can use to communicate with your application
(i.e., localhost would not work since it would resolve to different IPs depending
on the instance).

Note that setting the APPLICATION_SERVER_CONFIG parameter config doesn’t actually
tell Kafka Streams to start listening on whatever port you configure. In fact, Kafka
Streams does not include a built-in RPC service. However, this host/port information
is transmitted to other running instances of your Kafka Streams application and is
made available through dedicated API methods, which we will discuss later. But first,
let’s set up our REST service to start listening on the appropriate port (8080 in this
example).

In terms of code maintainability, it makes sense to define our leaderboard REST ser‐
vice in a dedicated file, separate from the topology definition. The following code
block shows a simple implementation of the leaderboard service:

class LeaderboardService {
  private final HostInfo hostInfo; 
  private final KafkaStreams streams; 

  LeaderboardService(HostInfo hostInfo, KafkaStreams streams) {
    this.hostInfo = hostInfo;
    this.streams = streams;
  }

  ReadOnlyKeyValueStore<String, HighScores> getStore() { 
    return streams.store(
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        StoreQueryParameters.fromNameAndType(
            "leader-boards",
            QueryableStoreTypes.keyValueStore()));
  }

  void start() {
    Javalin app = Javalin.create().start(hostInfo.port()); 

    app.get("/leaderboard/:key", this::getKey); 
  }
}

HostInfo is a simple wrapper class in Kafka Streams that contains a hostname
and port. We’ll see how to instantiate this shortly.

We need to keep track of the local Kafka Streams instance. We will use some API
methods on this instance in the next code block.

Add a dedicated method for retrieving the state store that contains the leader‐
board aggregations. This follows the same method for retrieving a read-only state
store wrapper that we saw in Example 4-10.

Start the Javalin-based web service on the configured port.

Adding endpoints with Javalin is easy. We simply map a URL path to a method,
which we will implement shortly. Path parameters, which are specified with a
leading colon (e.g., :key), allow us to create dynamic endpoints. This is ideal for
a point lookup query.

Now, let’s implement the /leaderboard/:key endpoint, which will show the high
scores for a given key (which in this case is a product ID). As we recently learned, we
can use a point lookup to retrieve a single value from our state store. A naive imple‐
mentation is shown in the following:

void getKey(Context ctx) {
    String productId = ctx.pathParam("key");
    HighScores highScores = getStore().get(productId); 
    ctx.json(highScores.toList()); 
}

Use a point lookup to retrieve a value from the local state store.

Note: the toList() method is available in the source code.

Unfortunately, this isn’t sufficient. Consider the example where we have two running
instances of our Kafka Streams application. Depending on which instance we query
and when we issue the query (state can move around whenever there is a consumer
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19 Which replaces the metadataForKey method that was widely used in versions < 2.5, but officially deprecated
in that release.

rebalance), we may not be able to retrieve the requested value. Figure 4-7 shows this
conundrum.

Figure 4-7. When state is partitioned across multiple application instances, local queries
are not sufficient

Fortunately, Kafka Streams provides a method called queryMetadataForKey,19 which
allows us to discover the application instance (local or remote) that a specific key lives
on. An improved implementation of our getKey method is shown in Example 4-11.

Example 4-11. An updated implementation of the getKey method, which leverages
remote queries to pull data from different application instances

void getKey(Context ctx) {

  String productId = ctx.pathParam("key");

  KeyQueryMetadata metadata =
      streams.queryMetadataForKey(
        "leader-boards", productId, Serdes.String().serializer()); 

  if (hostInfo.equals(metadata.activeHost())) {
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20 There is an overloaded version of the queryMetadataForKey method that accepts a custom StreamParti
tioner as well.

    HighScores highScores = getStore().get(productId); 

    if (highScores == null) { 
      // game was not found
      ctx.status(404);
      return;
    }

    // game was found, so return the high scores
    ctx.json(highScores.toList()); 
    return;
  }

  // a remote instance has the key
  String remoteHost = metadata.activeHost().host();
  int remotePort = metadata.activeHost().port();
  String url =
    String.format(
        "http://%s:%d/leaderboard/%s",
        remoteHost, remotePort, productId); 

  OkHttpClient client = new OkHttpClient();
  Request request = new Request.Builder().url(url).build();

  try (Response response = client.newCall(request).execute()) { 
    ctx.result(response.body().string());
  } catch (Exception e) {
    ctx.status(500);
  }
}

queryMetadataForKey allows us to find which host a specific key should live on.

If the local instance has the key, just query the local state store.

The queryMetadataForKey method doesn’t actually check to see if the key exists.
It uses the default stream partitioner20 to determine where the key would exist, if
it existed. Therefore, we check for null (which is returned if the key isn’t found)
and return a 404 response if it doesn’t exist.

Return a formatted response containing the high scores.
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If we made it this far, then the key exists on a remote host, if it exists at all. There‐
fore, construct a URL using the metadata, which includes the host and port of the
Kafka Streams instance that would contain the specified key.

Invoke the request, and return the result if successful.

To help visualize what is happening here, Figure 4-8 shows how distributed state
stores can be connected using a combination of instance discovery and an RPC/REST
service.

Figure 4-8. Remote queries allow us to query the state of other running application
instances

But what if you need to execute a query that doesn’t operate on a single key? For
example, what if you need to count the number of entries across all of your dis‐
tributed state stores? The queryMetadataForKey wouldn’t work well in this case, since
it requires us to specify a single key. Instead, we would leverage another Kafka
Streams method, called allMetadataForStore, which returns the endpoint for every
running Kafka Streams application that shares the same application ID and has at
least one active partition for the provided store name.

Let’s add a new endpoint to our leaderboard service that surfaces the number of high
score records across all of the running application instances:

app.get("/leaderboard/count", this::getCount);
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Now, we’ll implement the getCount method referenced in the preceding code, which
leverages the allMetadataForStore method to get the total number of records in
each remote state store:

void getCount(Context ctx) {
  long count = getStore().approximateNumEntries(); 
                                          
  for (StreamsMetadata metadata : streams.allMetadataForStore("leader-boards")) {
    if (!hostInfo.equals(metadata.hostInfo())) {
      continue; 
    }
    count += fetchCountFromRemoteInstance( 
      metadata.hostInfo().host(),
      metadata.hostInfo().port());
  }

  ctx.json(count);
}

Initialize the count with the number of entries in the local state store.

On the following line, we use the allMetadataForStore method to retrieve the
host/port pairs for each Kafka Streams instance that contains a fragment of the
state we want to query.

If the metadata is for the current host, then continue through the loop since we’ve
already pulled the entry count from the local state store.

If the metadata does not pertain to the local instance, then retrieve the count
from the remote instance. We’ve omitted the implementation details of fetch
CountFromRemoteInstance from this text since it is similar to what we saw in
Example 4-11, where we instantiated a REST client and issued a request against a
remove application instance. If you’re interested in the implementation details,
please check the source code for this chapter.

This completes the last step of our leaderboard topology (see Figure 4-1). We can
now run our application, generate some dummy data, and query our leaderboard
service.

The dummy data for each of the source topics is shown in Example 4-12.

For the keyed topics (players and products), the record key is for‐
matted as <key>|<value>. For the score-events topic, the dummy
records are simply formatted as <value>.
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Example 4-12. Dummy records that we will be producing to our source topics

# players
1|{"id": 1, "name": "Elyse"}
2|{"id": 2, "name": "Mitch"}
3|{"id": 3, "name": "Isabelle"}
4|{"id": 4, "name": "Sammy"}

# products
1|{"id": 1, "name": "Super Smash Bros"}
6|{"id": 6, "name": "Mario Kart"}

# score-events
{"score": 1000, "product_id": 1, "player_id": 1}
{"score": 2000, "product_id": 1, "player_id": 2}
{"score": 4000, "product_id": 1, "player_id": 3}
{"score": 500, "product_id": 1, "player_id": 4}
{"score": 800, "product_id": 6, "player_id": 1}
{"score": 2500, "product_id": 6, "player_id": 2}
{"score": 9000.0, "product_id": 6, "player_id": 3}
{"score": 1200.0, "product_id": 6, "player_id": 4}

If we produce this dummy data into the appropriate topics and then query our lead‐
erboard service, we will see that our Kafka Streams application not only processed the
high scores, but is now exposing the results of our stateful operations. An example
response to an interactive query is shown in the following code block:

$ curl -s localhost:7000/leaderboard/1 | jq '.'

[
  {
    "playerId": 3,
    "productId": 1,
    "playerName": "Isabelle",
    "gameName": "Super Smash Bros",
    "score": 4000
  },
  {
    "playerId": 2,
    "productId": 1,
    "playerName": "Mitch",
    "gameName": "Super Smash Bros",
    "score": 2000
  },
  {
    "playerId": 1,
    "productId": 1,
    "playerName": "Elyse",
    "gameName": "Super Smash Bros",
    "score": 1000
  }
]
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Summary
In this chapter, you learned how Kafka Streams captures information about the
events it consumes, and how to leverage the remembered information (state) to per‐
form more advanced stream processing tasks, including:

• Performing a KStream-KTable join
• Rekeying messages to meet the co-partitioning requirements for certain join

types
• Performing a KStream-GlobalKTable join
• Grouping records into intermediate representations (KGroupedStream, KGrou
pedTable) to prepare our data for aggregating

• Aggregating streams and tables
• Using the interactive queries to expose the state of our application using both

local and remote queries

In the next chapter, we will discuss another aspect of stateful programming that is
concerned with not only what events our application has seen, but when they occur‐
red. Time plays a key role in stateful processing, so understanding the different
notions of time and also the several time-based abstractions in the Kafka Streams
library will help us expand our knowledge of stateful processing even further.
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CHAPTER 5

Windows and Time

Time is such an important concept that we measure our lives by the passing of it.
Each year, half a dozen people stand around me, singing happy birthday, and as the
last flat note dissipates from the air, a cake is offered at the feet of this mysterious
force. I like to think the cake is for me, but it’s for time.

Not only is time so intricately woven into the physical world, but it also permeates
our event streams. In order to unlock the full power of Kafka Streams, we must
understand the relationship between events and time. This chapter explores this rela‐
tionship in detail, and will give us hands-on experience with something called win‐
dows. Windows allow us to group events into explicit time buckets, and can be used
for creating more advanced joins and aggregations (which we first explored in the
previous chapter).

By the end of this chapter, you will understand the following:

• The differences between event time, ingestion time, and processing time
• How to build a custom timestamp extractor for associating events with a particu‐

lar timestamp and time semantic
• How time controls the flow of data through Kafka Streams
• What types of windows are supported in Kafka Streams
• How to perform windowed joins
• How to perform windowed aggregations
• What strategies are available for dealing with late and out-of-order events
• How to use the suppress operator to process the final results of windows
• How to query windowed key-value stores
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1 This is accomplished by measuring intracranial pressure, aggregating the measurements, and sending the
aggregations to a predictive model. When the model predicts that the pressure will reach dangerous levels in
the next 30 minutes, then healthcare professionals will be notified so they can take the appropriate action. All
of this is made possible through time-aware stream processing. Check out Tim Berglund’s interview with
Ramesh Sringeri for an in-depth look at this use case.

2 We won’t actually implement the monitoring application in this tutorial since it isn’t necessary to demonstrate
the time-centric features of Kafka Streams.

As with previous chapters, we will introduce these concepts through a tutorial. So
without further ado, let’s take a look at the application we will be building in this
chapter.

Introducing Our Tutorial: Patient Monitoring Application
Some of the most important use cases for time-centric stream processing are in the
medical field. Patient monitoring systems are capable of producing hundreds of
measurements per second, and processing/responding to this data quickly is impor‐
tant for treating certain types of medical conditions. This is why Children’s Health‐
care of Atlanta uses Kafka Streams and ksqlDB to make real-time predictions about
whether or not children with head trauma will need surgical intervention in the near
future.1

Inspired by this use case, we will demonstrate several time-centric streaming con‐
cepts by building an application to monitor patient vitals. Instead of monitoring for
head trauma, we will try to detect the presence of a medical condition called systemic
inflammatory response syndrome, or SIRS. According to Bridgette Kadri, a physician’s
assistant at the Medical University of South Carolina, there are several vital signs,
including body temperature, blood pressure, and heart rate, that can be used as indi‐
cators of SIRS. In this tutorial, we will look at two of these measurements: body tem‐
perature and heart rate. When both of these vitals reach predefined thresholds (heart
rate >= 100 beats per minute, body temperature >= 100.4°F), we will send a record to
an alerts topic to notify the appropriate medical personnel.2

Let’s look at the architecture of our patient monitoring application. Figure 5-1 shows
the topology design we’ll be implementing in this chapter. Additional information
about each step is included after the diagram.
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Figure 5-1. The topology that we will be implementing for our patient monitoring
application

Our Kafka cluster contains two topics that capture patient vitals measurements:

• The pulse-events topic is populated by a heartbeat sensor. Every time the
sensor picks up a patient’s heartbeat, it appends a record to this topic.
Records are keyed by patient ID.

• The body-temp-events topic is populated by a wireless body temperature
sensor. Every time the patient’s core body temperature is taken, a record is
appended to this topic. These records are also keyed by patient ID.

In order to detect elevated heart rates, we need to convert the raw pulse events
into a heart rate (measured using beats per minute, or bpm). As we learned in the
previous chapter, we must first group the records to satisfy Kafka Streams’ pre‐
requisite for performing aggregations.
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We will use a windowed aggregation to convert the pulse events into a heart rate.
Since our unit of measurement is beats per minute, our window size will be 60
seconds.

We will use the suppress operator to only emit the final computation of the bpm
window. We’ll see why this is needed once we discuss this operator later in the
chapter.

In order to detect an infection, we will filter all vitals measurements that breach a
set of predefined thresholds (heart rate >= 100 beats per minute, body tempera‐
ture >= 100.4°F).

As we’ll see shortly, windowed aggregations change the record key. Therefore,
we’ll need to rekey the heart rate records by patient ID to meet the
co-partitioning requirements for joining records.

We will perform a windowed join to combine the two vitals streams. Since we are
performing the join after filtering for elevated bpm and body temperature meas‐
ures, each joined record will indicate an alerting condition for SIRS.

Finally, we will expose the results of our heart rate aggregation via interactive
queries. We will also write the output of our joined stream to a topic called
alerts.

Let’s now quickly run through the project setup so you can follow along with this
tutorial.

Project Setup
The code for this chapter is located at https://github.com/mitch-seymour/mastering-
kafka-streams-and-ksqldb.git.

If you would like to reference the code as we work our way through each topology
step, clone the repo and change to the directory containing this chapter’s tutorial. The
following command will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-05/patient-monitoring

You can build the project anytime by running the following command:

$ ./gradlew build --info

Now that our project is set up, let’s start implementing our patient monitoring
application.
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Data Models
As usual, we’ll start by defining our data models. Since each vitals measurement is
associated with a timestamp, we will first create a simple interface for each data class
to implement. This interface allows us to extract the timestamp from a given record
in a consistent manner, and will come in handy when we implement a timestamp
extractor later in this chapter. The following code block shows the interface each data
class will implement:

public interface Vital {
 public String getTimestamp();
}

Here are the data classes we’ll be working with. Note: the accessor methods (including
the interface method, getTimestamp) have been omitted for brevity:

Kafka
topic

Example record Data class

pulse-

events

{
 "timestamp": "2020-11-05T09:02:00.000Z"
}

public class Pulse implements Vital {
 private String timestamp;
}

body-

temp-

events

{
 "timestamp": "2020-11-04T09:02:06.500Z",
 "temperature": 101.2,
 "unit": "F"
}

public class BodyTemp implements Vital {
 private String timestamp;
 private Double temperature;
 private String unit;
}

Now that we have a good understanding of what the source data looks like, we’re
almost ready to register the input streams. However, this application requires special
attention to time, and so far in this book, we haven’t put much thought into how
records are associated with timestamps. So, before we register the input streams, let’s
look at the various time semantics in Kafka Streams.

Time Semantics
There are several different notions of time in Kafka Streams, and choosing the correct
semantic is important when performing time-based operations, including windowed
joins and aggregations. In this section, we will take some time to understand the dif‐
ferent notions of time in Kafka Streams, starting with some simple definitions:

Event time
When an event was created at the source. This timestamp can be embedded
in the payload of an event, or set directly using the Kafka producer client as of
version 0.10.0.
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Ingestion time
When the event is appended to a topic on a Kafka broker. This always occurs
after event time.

Processing time
When the event is processed by your Kafka Streams application. This always
occurs after event time and ingestion time. It is less static than event time, and
reprocessing the same data (i.e., for bug fixes) will lead to new processing time‐
stamps, and therefore nondeterministic windowing behavior.

To illustrate where these notions of time are physically manifested in an event stream,
see Figure 5-2.

Figure 5-2. The different time semantics in Kafka Streams, as shown through a heart‐
beat sensor

Event time is probably the most intuitive notion of time since it describes when the
event actually occurred. For example, if a heartbeat sensor records a pulse at 9:02
a.m., then the event time is 9:02 a.m.
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3 Either directly via the topic-level config or indirectly using the broker-level config and no override for the
topic-level config.

The event time is typically embedded in the payload, as shown in the following code
example:

{
 "timestamp": "2020-11-12T09:02:00.000Z", 
 "sensor": "smart-pulse"
}

An embedded event timestamp that must be extracted.

Alternatively, Kafka producers allow the default timestamp that gets set for each
record to be overridden, which can also be used to achieve event-time semantics.
However, for systems that use this method for associating timestamps with events, it’s
important to be aware of two Kafka configurations (one at the broker level and one at
the topic level) to ensure you don’t accidentally end up with ingestion-time seman‐
tics. The relevant configurations are:

• log.message.timestamp.type (broker level)
• message.timestamp.type (topic level)

There are two possible values for these configs: CreateTime or LogAppendTime. Fur‐
thermore, the topic-level config takes precedence over the broker-level config. If the
topic is configured with the LogAppendTime timestamp type,3 the timestamp that the
producer appends to the message will be overwritten with the local system time of the
broker whenever a record is appended to the topic (therefore, you’ll be working with
ingestion-time semantics, even if that wasn’t your intent). If you want to achieve
event-time semantics and you’re relying on the producer timestamp, be sure that you
are using CreateTime as the message timestamp type.

The benefit of using event-time semantics is that this timestamp is more meaningful
to the event itself, and is therefore more intuitive for users. Event time also allows
time-dependent operations to be deterministic (e.g., when reprocessing data). This is
not the case when using processing time. Processing time is usually used if you aren’t
leveraging time-based operations, if the time at which the event is processed is more
meaningful to the semantics of the application than when the event initially occurred,
or if you can’t associate an event with a timestamp for some reason. Interestingly
enough, the latter issue, which occurs when an event time can’t be associated with a
record, is sometimes addressed by using ingestion time. In systems where there isn’t a
lot of lag between the time an event is created and when the event is subsequently
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4 Matthias J. Sax has a great presentation that talks about this, as well as some of the other topics discussed in
this chapter.

appended to a topic, ingestion time can be used to approximate event time, so it can
be a viable alternative when event time can’t be used.4

Now that we’ve learned about the different notions of time in Kafka Streams, how do
we actually leverage the time semantic of our choice? We’ll learn about this in the
next section.

Timestamp Extractors
In Kafka Streams, timestamp extractors are responsible for associating a given record
with a timestamp, and these timestamps are used in time-dependent operations like
windowed joins and windowed aggregations. Each timestamp extractor implementa‐
tion must adhere to the following interface:

public interface TimestampExtractor {
   long extract(
       ConsumerRecord<Object, Object> record, 
       long partitionTime 
   );
}

The current consumer record being processed.

Kafka Streams keeps track of the most recent timestamp it has seen for each par‐
tition it consumes from, and passes this timestamp to the extract method using
the partitionTime parameter.

The second parameter, partitionTime, is particularly interesting since it can be used
as a fallback if a timestamp cannot be extracted. We’ll dig into that shortly, but first,
let’s look at the timestamp extractors that are included in Kafka Streams.

Included Timestamp Extractors
FailOnInvalidTimestamp, which is the default timestamp extractor in Kafka Streams,
extracts the timestamp from the consumer record, which is either the event time
(when message.timestamp.type is set to CreateTime) or ingestion time (when mes
sage.timestamp.type is set to LogAppendTime). This extractor will throw a Stream
sException if the timestamp is invalid. A timestamp is considered invalid if it is
negative (which can happen if the record was produced using a message format older
than 0.10.0). At the time of this writing, it’s been over four years since version 0.10.0
was released, so negative/invalid timestamps are becoming more of a corner case at
this point.
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The LogAndSkipOnInvalidTimestamp extractor can also be used to achieve event-
time semantics, but unlike the FailOnInvalidTimestamp extractor, it simply logs a
warning when an invalid timestamp is encountered. This will result in the record
being skipped, allowing Kafka Streams to continue processing when it encounters
invalid timestamps.

There is another built-in extractor that we can use if we want processing-time seman‐
tics. As you can see in the code that follows, the WallclockTimestampExtractor sim‐
ply returns the local system time of your stream processing application:

public class WallclockTimestampExtractor implements TimestampExtractor {

   @Override
   public long extract(
     final ConsumerRecord<Object, Object> record,
     final long partitionTime
   ) {
       return System.currentTimeMillis(); 
   }
}

The WallclockTimestampExtractor, which is one of the included timestamp
extractors in Kafka Streams, simply returns the current system time.

Regardless of which timestamp extractor you use, you can override the default
timestamp extractor by setting the DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG
property as shown in Example 5-1.

Example 5-1. An example of how to override the default timestamp extractor in Kafka
Streams

Properties props = new Properties();
props.put( 
  StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
  WallclockTimestampExtractor.class
);

// ... other configs

KafkaStreams streams = new KafkaStreams(builder.build(), props);

Override the default timestamp extractor.

When your Kafka Streams application leverages windows, as our patient monitoring
application does, using processing-time semantics can have unintended side effects.
For example, we want to capture the number of heartbeats within a one-minute win‐
dow. If we use processing-time semantics (e.g., via WallclockTimestampExtractor)
for our windowed aggregation, then our window boundaries won’t represent the
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pulse time at all, but will instead represent the time our Kafka Streams application
observed the pulse event. If our application experiences even a few seconds of lag, an
event may fall outside of the intended window and therefore could impact our
expectations in certain ways (i.e., our ability to detect an elevated heart rate).

When a timestamp is extracted and subsequently associated with a
record, the record is said to be stamped.

After reviewing the built-in timestamp extractors, it’s clear that we need a custom
timestamp extractor since the event time is embedded in the payloads of each of our
vitals data (pulse and body temperature events). We’ll discuss how to build a custom
timestamp extractor in the next section.

Custom Timestamp Extractors
It’s very common to build a custom timestamp extractor whenever you need event-
time semantics and the event timestamp is embedded in the record payload. The
following code block shows a custom timestamp extractor that we will use to extract
the timestamp of a patient vitals measurement. As mentioned before, our custom
timestamp extractor implements the TimestampExtractor interface included in
Kafka Streams:

public class VitalTimestampExtractor implements TimestampExtractor {

 @Override
 public long extract(ConsumerRecord<Object, Object> record, long partitionTime) {
   Vital measurement = (Vital) record.value(); 
   if (measurement != null && measurement.getTimestamp() != null) { 
     String timestamp = measurement.getTimestamp(); 
     return Instant.parse(timestamp).toEpochMilli(); 
   }
   return partitionTime; 
 }
}

Cast the record value to a Vital object. This is where our interface comes in
handy, since it allows us to extract the timestamp from Pulse and BodyTemp
records in a consistent way.

Make sure the record contains a timestamp before we attempt to parse it.

Extract the timestamp from the record.
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The TimestampExtractor.extract method expects us to return the record’s
timestamp in milliseconds. So we perform the timestamp-to-milliseconds con‐
version here.

If we cannot extract a timestamp for some reason, we can fall back to the parti‐
tion time in order to approximate when the event occurred.

One thing you should consider when using timestamp extractors is how records
without valid timestamps should be handled. The three most common options are to:

• Throw an exception and stop processing (giving the developers an opportunity
to resolve the bug)

• Fallback to the partition time
• Return a negative timestamp, which will allow Kafka Streams to skip over the

record and continue processing

In our implementation of the VitalTimestampExtractor we’ve decided to fallback to
the partition time, which will resolve to the highest timestamp that has already been
observed for the current partition.

Now that we have created our timestamp extractor, let’s register our input streams.

Registering Streams with a Timestamp Extractor
Registering a set of input streams should be familiar by now, but this time, we’ll pass 
in an extra Consumed parameter that will explicitly set the timestamp extractor to
our custom timestamp extractor implementation (VitalTimestampExtractor).
Example 5-2 shows how to register our two source streams using a custom timestamp
extractor, which is the first step of our processor topology (see Figure 5-1).

Example 5-2. An example of how to override the timestamp extractor for source streams

StreamsBuilder builder = new StreamsBuilder(); 

Consumed<String, Pulse> pulseConsumerOptions =
   Consumed.with(Serdes.String(), JsonSerdes.Pulse())
       .withTimestampExtractor(new VitalTimestampExtractor()); 

KStream<String, Pulse> pulseEvents =
    builder.stream("pulse-events", pulseConsumerOptions); 

Consumed<String, BodyTemp> bodyTempConsumerOptions =
   Consumed.with(Serdes.String(), JsonSerdes.BodyTemp())
       .withTimestampExtractor(new VitalTimestampExtractor()); 
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KStream<String, BodyTemp> tempEvents =
        builder.stream("body-temp-events", bodyTempConsumerOptions); 

As always with the DSL, use a StreamsBuilder to construct our processor
topology.

Use Consumed.withTimestampExtractor to tell Kafka Streams to use our custom
timestamp extractor (VitalTimestampExtractor) for extracting vitals time‐
stamps.

Register the stream for capturing pulse events.

Use our custom timestamp extractor in the body temperature options as well.

Register the stream for capturing body temperature events.

Alternatively, we could override the default timestamp extractor using the method
shown in Example 5-1. Either method is fine, but for now, we’ll stick with setting the
extractor for each input stream directly. Now that we’ve registered our source
streams, let’s move on to the second and third steps of our processor topology (see
Figure 5-1): grouping and windowing the pulse-events stream.

Windowing Streams
The pulse-events topic receives data whenever a patient’s heartbeat is recorded.
However, for our purposes, we’re interested in the patient’s heart rate, which is meas‐
ured by the number of beats per minute (bpm). We know that the count operator can
be used to count the number of heartbeats, but we need some way of only counting
the records that fall within each 60-second window. This is where windowed aggrega‐
tions come into play. Windowing is a method for grouping records into different
time-based subgroups for the purpose of aggregating and joining. Kafka Streams sup‐
ports a few different types of windows, so let’s take a look at each type to determine
which implementation we will need for our patient monitoring system.

Window Types
Windows are used to group records with close temporal proximity. Temporal proxim‐
ity can mean different things depending on which time semantic you are using. For
example, when using event-time semantics, it can mean “records that occurred
around the same time,” whereas with processing-time semantics, it means “records
that were processed around the same time.” For most cases, “around the same time” is
defined by the window size (e.g., five minutes, one hour, etc.), though session win‐
dows (which we’ll discuss shortly) utilize an activity period.
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5 Taken from the Java docs: “Aligned to the epoch means that the first window starts at timestamp zero.” In
other words, a window size of 5,000 would have boundaries of 0–5,000, 5,000–10,000, etc. Note that the start
time is inclusive but the end time is exclusive.

There are four different types of windows in Kafka Streams. We will discuss the char‐
acteristics of each window type next, and then use these properties to create a
decision tree for deciding which window to use in our tutorial (you can also use the
resulting decision tree in your own applications).

Tumbling windows
Tumbling windows are fixed-sized windows that never overlap. They are defined
using a single property, the window size (in milliseconds), and have predictable time
ranges since they are aligned with the epoch.5 The following code shows how to cre‐
ate a tumbling window in Kafka Streams:

TimeWindows tumblingWindow =
  TimeWindows.of(Duration.ofSeconds(5)); 

The size of the window is five seconds.

As you can see in Figure 5-3, a tumbling window is very simple to reason about, visu‐
ally. You don’t have to worry about overlapping window boundaries or records
appearing in more than one time bucket.

Figure 5-3. Tumbling window
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6 In some systems, the term “sliding window” is used to refer to hopping windows. However, in Kafka Streams,
hopping windows are distinct from sliding windows, which we will discuss shortly.

Hopping windows
Hopping windows are fixed-sized windows that may overlap.6 When configuring a
hopping window, you must specify both the window size and the advance interval
(how much the window moves forward). When the advance interval is less than the
window size, as shown in Figure 5-4, then windows will overlap, allowing some
records to appear in multiple windows. Furthermore, hopping windows have predict‐
able time ranges since they are aligned with the epoch, and the start time is inclusive
while the end time is exclusive. The following code depicts how to create a simple
hopping window with Kafka Streams:

TimeWindows hoppingWindow =  TimeWindows
 .of(Duration.ofSeconds(5))  
 .advanceBy(Duration.ofSeconds(4));  

The size of the window is five seconds.

The window has a four-second advance interval (or hop).

A visualization of this hopping window is shown in Figure 5-4.

Figure 5-4. Hopping window

Session windows
Session windows are variable-sized windows that are determined by periods of activ‐
ity followed by gaps of inactivity. A single parameter called the inactivity gap is used
to define a session window. If the inactivity gap is five seconds, then each record that
has a timestamp within five seconds of the previous record with the same key will be
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merged into the same window. Otherwise, if the timestamp of a new record is greater
than the inactivity gap (in this case, five seconds), then a new window will be created.
Unlike tumbling and hopping windows, both the lower and upper boundaries are
inclusive. The following code snippet shows how to define a session window:

SessionWindows sessionWindow = SessionWindows
 .with(Duration.ofSeconds(5)); 

A session window with an inactivity gap of five seconds.

As you can see in Figure 5-5, session windows are unaligned (the range is specific to
each key) and variable in length. The range is completely dependent on the record
timestamps, with hot keys leading to long window ranges, and less active keys leading
to shorter windows.

Figure 5-5. Session window

Sliding join windows
Sliding join windows are fixed-sized windows that are used for joins and created
using the JoinWindows class. Two records fall within the same window if the differ‐
ence between their timestamps is less than or equal to the window size. Thus, similar
to session windows, both the lower and upper window boundaries are inclusive. Here
is an example of how to create a join window with a duration of five seconds:

JoinWindows joinWindow = JoinWindows
 .of(Duration.ofSeconds(5)); 

Timestamps must be less than or equal to five seconds apart to fall within the
same window.

Visually, join windows look a little different than other types of windows since their
use in joins allows them to span multiple input streams. Figure 5-6 illustrates this,
and shows how a five-second window is used to determine which records are com‐
bined in a windowed join.
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7 Sliding aggregation windows are the only window type that require us to explicitly set a grace period. We’ll
discuss grace periods later in this chapter.

Figure 5-6. Join window

Sliding aggregation windows
In the previous section, we discussed a special type of sliding window that is used for
joins. Since Kafka Streams 2.7.0, sliding windows can also be used with aggregations.
Like sliding join windows, the window boundaries in a sliding aggregation window
are aligned to the record timestamps (as opposed to the epoch) and the lower and
upper window boundaries are both inclusive. Additionally, records will fall within the
same window if the difference between their timestamps is within the specified win‐
dow size. Here is an example of how to create a sliding window with a duration of five
seconds and a grace period of zero seconds:7

SlidingWindows slidingWindow =
 SlidingWindows.withTimeDifferenceAndGrace(
   Duration.ofSeconds(5),
   Duration.ofSeconds(0));

Selecting a Window
Now that we’ve learned which window types are supported in Kafka Streams, we need
to decide which type is appropriate for converting raw pulse events into a heart rate
using a windowed aggregation.

Session windows aren’t a good fit for measuring the heart rate, because the window
size could extend indefinitely as long as there is activity on the stream. This doesn’t
meet our requirement of having fixed-size windows of 60 seconds. Furthermore, a
sliding join window is used for joins only, so we can rule that choice out, as well
(though we will use a sliding join window later in this tutorial).
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You could arguably use any of the other window types for our aggregation, but to
keep things simple, let’s align our window boundaries with the epoch (which rules out
sliding aggregation windows) and avoid overlapping windows (which means we don’t
need a hopping window). This leaves us with a tumbling window for our heart rate
aggregation. With our window type selected, we are ready to perform a windowed
aggregation.

Windowed Aggregation
Since we’ve decided to use a tumbling window for the heart rate aggregation, we can
build our windowed aggregation. First, we’ll construct the window using the
TimeWindows.of method, and then we’ll window our stream with the windowedBy
operator before performing the aggregation. The following code shows how to
accomplish both of these steps:

TimeWindows tumblingWindow =
 TimeWindows.of(Duration.ofSeconds(60));

KTable<Windowed<String>, Long> pulseCounts =
 pulseEvents
     .groupByKey() 
     .windowedBy(tumblingWindow) 
     .count(Materialized.as("pulse-counts")); 

pulseCounts
 .toStream() 
 .print(Printed.<Windowed<String>, Long>toSysOut().withLabel("pulse-counts")); 

Grouping records is a prerequisite for performing an aggregation. However, the
records in the pulse-events topic are already keyed using the desired scheme
(i.e., by patient ID), so we can use the groupByKey operator instead of groupBy to
avoid an unnecessary repartition of our data.

Window the stream using a 60-second tumbling window. This will allow us to
turn the raw pulse events into a heart rate (measured by beats per minute).

Materialize the heart rate for interactive queries (this will be needed by step 8 in
our processor topology—see Figure 5-1.

For debugging purposes only, convert the KTable to a stream so we can print the
contents to the console.

Print the contents of our windowed stream to the console. Print statements are
useful for local development purposes, but should be removed before deploying
our application to production.
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One interesting thing to highlight in this code example is that the key of the KTable
changed from String to Windowed<String>. This is because the windowedBy operator
converts KTables into windowed KTables, which have multidimensional keys that
contain not only the original record key, but also the time range of the window. This
makes sense because we need some way of grouping keys into subgroups (windows),
and simply using the original key would cause all of the pulse events to be included in
the same subgroup. We can see this multidimensional key transformation in action
by producing some records to the pulse-events topic and viewing the printed out‐
put of the windowed stream. The records we will produce are shown here (the record
key and value are demarcated by the | character):

1|{"timestamp": "2020-11-12T09:02:00.000Z"}
1|{"timestamp": "2020-11-12T09:02:00.500Z"}
1|{"timestamp": "2020-11-12T09:02:01.000Z"}

Producing these records leads to the output in Example 5-3. Note that the old key for
each of these records, 1, has been changed to the following format:

[<oldkey>@<window_start_ms>/<window_end_ms>]

Example 5-3. The output of the print operator, which shows the multidimensional keys
in our windowed pulseCounts table

[pulse-counts]: [1@1605171720000/1605171780000], 1 
[pulse-counts]: [1@1605171720000/1605171780000], 2
[pulse-counts]: [1@1605171720000/1605171780000], 3

The multidimensional record key, which contains not only the original key, but
also the window boundaries.

Apart from the key transformation logic, the preceding output highlights a peculiar
behavior of Kafka Streams. The heart rate count, which we compute in our windowed
aggregation, gets updated each time a new heartbeat is recorded. We can see this in
Example 5-3, since the first heart rate that is emitted is 1, followed by 2, 3, etc. There‐
fore, downstream operators will see not just the final results of a window (the beats
per minute), but also the intermediate results of the window (the number of heart‐
beats in this 60-second window so far). In applications that are highly tuned for low
latency, these intermediate or incomplete window results are useful. However, in our
case, we can’t truly know the patient’s heart rate until a window has been closed, so it
is misleading at best. Let’s look at why Kafka Streams emits each intermediate result
and see if we can tune this behavior.
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8 Of course, if you use ingestion-time semantics by setting message.timestamp.type to LogAppendTime, then
the record timestamps will always appear in order. This is because the timestamp is overwritten at topic
append time. However, the ingestion time is somewhat arbitrary in relation to the event itself, and in the best-
case scenario is just a close approximation of the event time (assuming the event is written right after it’s
created).

Emitting Window Results
The decision of when to emit a window’s computation is a surprisingly complex one
for stream processing systems. The complexity is caused by two facts:

• Unbounded event streams may not always be in timestamp order, especially when
using event-time semantics.8

Kafka does guarantee events will always be in offset order at the
partition level. This means that every consumer will always
read the events in the same sequence that they were appended
to the topic (by ascending offset value).

• Events are sometimes delayed.

The lack of timestamp order means that we can’t just assume that if we’ve seen a
record containing a certain timestamp, we’ve seen all records that should have arrived
before that timestamp, and therefore can emit what we think is the final window
result. Furthermore, delayed and out-of-order data requires us to make a choice: do
we wait a certain amount of time for all of the data to arrive, or do we output the
window result whenever it is updated (as seen in Example 5-3)? This is a trade-off
between completeness and latency. Since waiting for data is more likely to produce a
complete result, this approach optimizes for completeness. On the other hand, propa‐
gating updates downstream immediately (even though they may be incomplete)
reduces latency. It’s up to you and potentially any service-level agreements (SLAs)
you’ve established to decide what to optimize for.

Figure 5-7 demonstrates how both of these issues could occur. Patient #1 is attached
to a vitals monitoring machine that is having intermittent networking issues. This
leads to producer retries, causing some vitals measurements to have a delayed arrival
into our Kafka cluster. Furthermore, since we have multiple producers writing to the
pulse-events topic (one for each vitals monitoring machine), this also causes some
events to be unordered with respect to their event timestamp.
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Figure 5-7. Data can arrive out of timestamp order for many reasons; one common
example is a topic having multiple producers, which introduces a race condition

One important thing to note is that there doesn’t need to be some failure scenario to
result in out-of-order data. This could happen even in normal operating conditions,
such as when multiple producers are writing to the same topic.

As mentioned previously, to overcome these issues, we need to optimize for either
latency or completeness. By default, Kafka Streams optimizes for latency, using an
approach called continuous refinement. Continuous refinement means that whenever
a new event is added to the window, Kafka Streams will emit the new computation
immediately. This is why we saw each intermediate window result when we produced
some records to our patient monitoring application (see Example 5-3). However, with
continuous refinement, each result should be seen as potentially incomplete, and an
emitted event does not mean we have processed every record that will eventually fall
into the window. Furthermore, delayed data can continue causing events to be emit‐
ted at unexpected times.

The next two sections discuss how to address each of these issues in our patient mon‐
itoring application. First, let’s look at a strategy for handling delayed data in Kafka
Streams. After that, we will learn how to suppress intermediate window calculations
using Kafka Streams’ suppress operator.
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9 This is different than how many other streaming systems work, in which processing occurs only when a win‐
dow is closed.

Grace Period
One of the biggest challenges faced by stream processing systems is how to handle
delayed data. Many frameworks, including those that adhere to the influential Data‐
flow model (e.g., Apache Flink), leverage watermarks. Watermarks are used to esti‐
mate when all of the data for a given window should have arrived (usually by
configuring the window size and the allowed lateness of events). Users can then spec‐
ify how late events (as determined by the watermark) should be handled, with a pop‐
ular default (in Dataflow, Flink, and others) being to discard late events.

Similar to the watermark approach, Kafka Streams allows us to configure the allowed
lateness of events using a grace period. Setting a grace period will keep the window
open for a specific amount of time, in order to admit delayed/unordered events to
the window. For example, we initially configured our tumbling window using the
following code:

TimeWindows tumblingWindow =
  TimeWindows.of(Duration.ofSeconds(60));

However, if we want to be able to tolerate five seconds of lag for pulse events (which
we will use to calculate a heart rate), we could define our tumbling window with a
grace period as well:

TimeWindows tumblingWindow =
  TimeWindows
    .of(Duration.ofSeconds(60))
    .grace(Duration.ofSeconds(5));

We could increase the grace period further, but just remember the trade-off: higher
grace periods optimize for completeness, because they keep the window open longer
(allowing for data to be delayed), but they do this at the expense of higher latency
(windows won’t be closed until the grace period ends).

Now, let’s see how to solve the problem of intermediate results being emitted in our
windowed heart rate aggregation.

Suppression
As we learned in the previous section, Kafka Streams’ strategy of continuous refine‐
ment, which involves emitting the results of a window whenever new data arrives, is
ideal when we are optimizing for low latency and can tolerate incomplete (i.e., inter‐
mediate) results being emitted from the window.9
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10 Since Kafka Streams holds the latest record for each key when using the suppress operator, the required
amount of memory is a function of your keyspace, with smaller keyspaces for a given input stream requiring
less memory than large keyspaces. The grace period can also impact memory usage.

However, in our patient monitoring application, this is undesirable. We cannot calcu‐
late a heart rate using less than 60 seconds of data, so we need to only emit the final
result of a window. This is where the suppress operator comes into play. The sup
press operator can be used to only emit the final computation of a window, and to
suppress (i.e., temporarily hold intermediate computations in memory) all other
events. In order to use the suppress operator, we need to decide three things:

• Which suppression strategy should be used for suppressing intermediate window
computations

• How much memory should be used for buffering the suppressed events (this is
set using a Buffer Config)

• What to do when this memory limit is exceeded (this is controlled using a Buffer
Full Strategy)

Let’s first look at the two suppression strategies. Table 5-1 describes each strategy
available in Kafka Streams. Note that each strategy is available as a method on the
Suppressed class.

Table 5-1. Window suppression strategies

Strategy Description

Suppressed.untilWindowCloses Only emit the final results of a window.

Suppressed.untilTimeLimit Emit the results of a window after a configurable amount of time has elapsed
since the last event was received. If another event with the same key arrives
before the time limit is up, it replaces the first event in the buffer (note, the
timer is not restarted when this happens). This has the effect of rate-limiting
updates.

In our patient monitoring application, we only want to emit the results of our heart
rate window once a full 60 seconds has elapsed. Therefore, we will use the Sup
pressed.untilWindowCloses suppression strategy. However, before we can use this
strategy in our processor topology, we need to tell Kafka Streams how to buffer the
unemitted results in memory. After all, suppressed records aren’t discarded; instead,
the latest unemitted record for each key in a given window is kept in memory until
it’s time to emit the result. Memory is a limited resource, so Kafka Streams requires
us to be explicit with how it is used for this potentially memory-intensive task of sup‐
pressing updates.10 In order to define our buffering strategy, we need to use Buffer

164 | Chapter 5: Windows and Time



Configs. Table 5-2 contains a description of each Buffer Config available in Kafka
Streams.

Table 5-2. Buffer Configs

Buffer Config Description

BufferConfig.maxBytes() The in-memory buffer for storing suppressed events will be constrained by a
configured number of bytes.

BufferConfig.maxRecords() The in-memory buffer for storing suppressed events will be constrained by a
configured number of keys.

BufferConfig.unbounded() The in-memory buffer for storing suppressed events will use as much heap space as
needed to hold the suppressed records in the window. If the application runs out of
heap, an OutOfMemoryError (OOM) exception will be thrown.

Finally, the last requirement for suppressing records is to tell Kafka Streams what to
do when the buffer is full. Kafka Streams exposes a couple of Buffer Full Strategies,
each of which is described in Table 5-3.

Table 5-3. Buffer Full Strategies

Buffer Full Strategy Description

shutDownWhenFull Gracefully shut down the application when the buffer is full. You will never see intermediate
window computations when using this strategy.

emitEarlyWhenFull Emit the oldest results when the buffer is full instead of shutting down the application. You may
still see intermediate window computations using this strategy.

Now that we understand which suppression strategies, Buffer Configs, and Buffer
Full Strategies are available, let’s make a decision about which combination of the
three works for us. We don’t want to rate-limit updates, so we won’t use untilTimeLi
mit. Instead, we want to only emit the final results of the heart rate window, so until
WindowCloses is a better fit here. Second, we expect our keyspace to be relatively
small, so we’ll choose the unbounded Buffer Config. Finally, we never want to emit
results early since that would lead to an inaccurate heart rate calculation (e.g., if we
were to emit the number of heartbeats after only 20 seconds elapsed). Therefore, we
will use shutDownWhenFull as our Buffer Config strategy.

Putting this all together, we can update our patient monitoring topology to use the
suppress operator as shown in Example 5-4.
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Example 5-4. Use the suppress operator to only emit the final results of the heart rate
window (tumblingWindow)

TimeWindows tumblingWindow =
  TimeWindows
    .of(Duration.ofSeconds(60))
    .grace(Duration.ofSeconds(5));

KTable<Windowed<String>, Long> pulseCounts =
  pulseEvents
   .groupByKey()
   .windowedBy(tumblingWindow)
   .count(Materialized.as("pulse-counts"))
   .suppress(
     Suppressed.untilWindowCloses(BufferConfig.unbounded().shutDownWhenFull())); 

Suppress the results of the window so that only the final computation is emitted.

Now that we’ve completed step 4 in our processor topology (see Figure 5-1), let’s
move on to steps 5 and 6: filtering and rekeying the pulse-events and body-temp-
events data.

Filtering and Rekeying Windowed KTables
If you look closely at the KTable in Example 5-4, you’ll see that windowing caused
our key to change from a String type to a Windowed<String>. As mentioned before,
this is because windowing causes our records to be grouped by an extra dimension:
the window range. So, in order to join the body-temp-events stream, we need to
rekey the pulse-events stream. We also need to filter both streams of data since we
are only interested in records that exceed our predefined thresholds.

It may seem like we should perform the filter and rekeying operation in any order,
and that’s true. However, one piece of advice is to perform filtering as early as you
can. We know that rekeying records requires a repartition topic, so if we filter first,
then we will reduce the number of reads/writes to this topic, making our application
more performant.

Since both filtering and rekeying were discussed in previous chapters, we won’t do
another deep dive into these concepts. But you can see the filtering and rekeying code
for our patient monitoring application in the following code block:

KStream<String, Long> highPulse =
 pulseCounts
     .toStream() 
     .filter((key, value) -> value >= 100) 
     .map(
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         (windowedKey, value) -> {
           return KeyValue.pair(windowedKey.key(), value); 
      });

KStream<String, BodyTemp> highTemp =
     tempEvents.filter((key, value) -> value.getTemperature() > 100.4); 

Convert to a stream so we can use the map operator to rekey the records.

Filter for only heart rates that exceed our predefined threshold of 100 bpm.

Rekey the stream using the original key, which is available in windowed
Key.key(). Note that windowedKey is an instance of org.apache.kaf

ka.streams.kstream.Windowed. This class contains methods for accessing the
original key (as we saw with windowedKey.key()) and also the underlying time
window (using windowedKey.window()).

Filter for only core body temperature readings that exceed our predefined thres‐
hold of 100.4°F.

We have completed steps 5 and 6 in our processor topology, so we are ready to per‐
form a windowed join.

Windowed Joins
As discussed in “Sliding join windows” on page 157, windowed joins require a sliding
join window. Sliding join windows compare the timestamps of events on both sides of
the join to determine which records should be joined together. Windowed joins are
required for KStream-KStream joins since streams are unbounded. Therefore, the
data needs to be materialized into a local state store for performing quick lookups of
related values.

We can build a sliding join window and join the pulse rate and body temperature
streams like so:

StreamJoined<String, Long, BodyTemp> joinParams =
    StreamJoined.with(Serdes.String(), Serdes.Long(), JsonSerdes.BodyTemp()); 

JoinWindows joinWindows =
   JoinWindows
       .of(Duration.ofSeconds(60)) 
       .grace(Duration.ofSeconds(10)); 

ValueJoiner<Long, BodyTemp, CombinedVitals> valueJoiner = 
    (pulseRate, bodyTemp) -> new CombinedVitals(pulseRate.intValue(), bodyTemp);

KStream<String, CombinedVitals> vitalsJoined =
   highPulse.join(highTemp, valueJoiner, joinWindows, joinParams); 
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Specify the Serdes to be used in the join.

Records with timestamps one minute apart or less will fall into the same window,
and will therefore be joined.

Tolerate a delay of up to 10 seconds.

Combine the heart rate and body temp into a CombinedVitals object.

Perform the join.

Joins are particularly interesting with regard to time because each side of the join
could receive records at different rates, and so some additional synchronization is
required to ensure events are joined at the appropriate time. Luckily for us, Kafka
Streams is able to handle this scenario by allowing the timestamps on each side of the
join to determine how data flows (and is subsequently joined) through our processor
topology. We’ll explore these ideas in more detail in the next section.

Time-Driven Dataflow
We’ve already seen how time can impact the behavior of certain operations, including
windowed joins and windowed aggregations. However, time also controls the flow of
data through our streams. It’s important for stream processing applications to syn‐
chronize the input streams to ensure correctness, especially when processing histori‐
cal data from multiple sources.

To facilitate this synchronization, Kafka Streams creates a single partition group for
each stream task. A partition group buffers the queued records for each partition
being handled by the given task using a priority queue, and includes the algorithm for
selecting the next record (across all input partitions) for processing. The record with
the lowest timestamp is selected for processing.

Stream time is the highest timestamp observed for a particular
topic-partition. It is initially unknown and can only increase or stay
the same. It advances only when new data is seen. This is different
from the other notions of time we discussed since it is internal to
Kafka Streams itself.

When a single Kafka Streams task consumes data from more than one partition (e.g.,
in the case of a join), Kafka Streams will compare the timestamps for the next unpro‐
cessed records (called head records) in each partition (record queue) and will choose
the record with the lowest timestamp for processing. The selected record is forwar‐
ded to the appropriate source processor in the topology. Figure 5-8 shows how this
works.
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11 It’s important to note that this is best-effort when one of the input streams becomes empty. However, you can
use the max.task.idle.ms configuration, which controls how long you are willing to wait for new records to
arrive in the drained input stream, to help avoid this. The default value is 0, but increasing this will allow you
to improve time synchronization by waiting longer.

Figure 5-8. Record timestamps are compared to determine how data flows through your
Kafka Streams application

With our join in place, and some reassurances that Kafka Streams will attempt to pro‐
cess our records in timestamp order using time-based flow-control mechanisms,11 we
are now ready to tackle the final steps of our patient monitoring topology. We’ll
briefly recap how to add a sink processor to our topology, and then we’ll learn how to
query windowed key-value stores.

Time-Driven Dataflow | 169



12 Prior to version 2.3, the timestamp on the output record was set to the timestamp of whatever record trig‐
gered the join. Using the maximum value in newer versions of Kafka Streams is an improvement over the old
behavior, since it ensures the result timestamp is the same whether data is out of order or not.

Alerts Sink
In order to make our join results available to downstream consumers, we need to
write the enriched data back to Kafka. As we’ve seen in previous chapters, adding a
sink is extremely easy in Kafka Streams. The following code shows how to add the
alerts sink. This sink will be written to whenever our application determines that a
patient is at risk for SIRS, as determined by our thresholds and windowed join:

vitalsJoined.to(
  "alerts",
  Produced.with(Serdes.String(), JsonSerdes.CombinedVitals())
);

One benefit of using a timestamp extractor when registering our source streams (see
Example 5-2) is that our output records will also be associated with the extracted
timestamp. For unjoined streams/tables, the timestamp is propagated from the initial
timestamp extraction that occurred when you registered the source processors. How‐
ever, if you perform a join, like we’ve done with our patient monitoring application,
then Kafka Streams will look at the timestamps for each record involved in the join
and choose the maximum value for the output record.12

Registering the alerts sink exposes our patient monitoring data to real-time consum‐
ers of the alerts topic. Now, let’s learn how to query windowed key-value stores by
exposing the results of our windowed aggregation (which calculates a patient’s heart
rate).

Querying Windowed Key-Value Stores
In “Querying Nonwindowed Key-Value Stores” on page 131, we saw how to query
nonwindowed key-value stores. However, windowed key-value stores support a differ‐
ent set of queries because the record keys are multidimensional, and consist of both
the original key and the window range, as opposed to just the original record key
(which is what we see in nonwindowed key-value stores). We’ll start by looking at key
and window range scans.

Key + window range scans
There are two different types of range scans that can be used for windowed key-value
stores. The first type searches for a specific key in a given window range, and there‐
fore requires three parameters:
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13 1970-01-01T00:00:00Z (UTC)

• The key to search for (in the case of our patient monitoring application, this
would correspond to the patient ID, e.g., 1)

• The lower boundary of the window range, represented as milliseconds from the
epoch13 (e.g., 1605171720000, which translates to 2020-11-12T09:02:00.00Z)

• The upper boundary of the window range, represented as milliseconds from the
epoch (e.g., 1605171780000, which translates to 2020-11-12T09:03:00Z)

An example of how to execute this type of range scan, and how to extract the relevant
properties from the result, is shown here:

String key = 1;
Instant fromTime = Instant.parse("2020-11-12T09:02:00.00Z");
Instant toTime = Instant.parse("2020-11-12T09:03:00Z");

WindowStoreIterator<Long> range = getBpmStore().fetch(key, fromTime, toTime); 
while (range.hasNext()) {
 KeyValue<Long, Long> next = range.next(); 
 Long timestamp = next.key; 
 Long count = next.value; 
  // do something with the extracted values
}

range.close(); 

Returns an iterator that can be used for iterating through each key in the selected
time range.

Get the next element in the iteration.

The timestamp of the record is available in the key property.

The value can be extracted using the value property.

Close the iterator to avoid memory leaks.

Window range scans
The second type of range scan that can be performed on windowed key-value stores
searches for all keys within a given time range. This type of query requires two
parameters:
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14 1970-01-01T00:00:00Z (UTC)
15 Depending on the number of keys in your state store, this could be a heavyweight call.

• The lower boundary of the window range, represented as milliseconds from the
epoch14 (e.g., 1605171720000, which translates to 2020-11-12T09:02:00.00Z)

• The upper boundary of the window range, represented as milliseconds from the
epoch (e.g., 1605171780000, which translates to 2020-11-12T09:03:00Z)

The following code block shows how to execute this type of range scan, and how to
extract the relevant properties from the result:

Instant fromTime = Instant.parse("2020-11-12T09:02:00.00Z");
Instant toTime = Instant.parse("2020-11-12T09:03:00Z");

KeyValueIterator<Windowed<String>, Long> range =
  getBpmStore().fetchAll(fromTime, toTime);

while (range.hasNext()) {
  KeyValue<Windowed<String>, Long> next = range.next();
  String key = next.key.key();
  Window window = next.key.window();
  Long start = window.start();
  Long end = window.end();
  Long count = next.value;
    // do something with the extracted values
}

range.close();

All entries

Similar to range scan queries, the all() query returns an iterator for all windowed
key-value pairs that are available in the local state store.15 The following code snippet
shows how to execute an all() query against a local windowed key-value store. Iter‐
ating through the results is the same as the range scan query, so we have omitted that
logic for brevity:

KeyValueIterator<Windowed<String>, Long> range = getBpmStore().all();

It’s very important to close the iterator once you are finished with it
to avoid memory leaks. For example, looking at the preceding code
snippet, we would call range.close() when we are finished with
the iterator.
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Using these query types, you can build an interactive query service in the same way
that we discussed in the previous chapter. We just need to add an RPC service and
client to our application, leverage the Kafka Streams instance discovery logic for dis‐
covering remote application instances, and wire up the preceding windowed key-
value store queries to the RPC or RESTful endpoints (see “Remote Queries” on page
134 for more information).

Summary
In this chapter, we learned how time can be used for more advanced stream process‐
ing use cases. By being deliberate with the time semantics we use in our topology def‐
initions, we can achieve more deterministic processing in Kafka Streams. Time not
only drives the behavior of windowed aggregations, windowed joins, and other time-
based operations, but since Kafka Streams tries to synchronize input streams based
on time, it even controls how and when data flows through our application.

Windowing data allows us to derive temporal relationships between events. Whether
we want to leverage these relationships for aggregating data (as we did by converting
raw pulse events into a time-based heart rate aggregation) or joining data (e.g., when
we joined the heart rate stream with the body temperature stream), time opens the
door for more meaningful data enrichment.

Finally, learning how to query windowed key-value stores taught us something
important about windowed state stores: keys are multidimensional (containing both
the original key and the time range of the window), and therefore support a different
set of queries, including windowed range scans.

In the next chapter, we will wrap up our discussion of stateful Kafka Streams applica‐
tions by looking at advanced state management tasks.
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CHAPTER 6

Advanced State Management

In the past two chapters, we discussed stateful processing in Kafka Streams. As we
learned how to perform aggregations, joins, and windowed operations, it became
apparent that stateful processing is pretty easy to get started with.

However, as I alluded to previously, state stores come with additional operational
complexity. As you scale your application, experience failures, and perform routine
maintenance, you will learn that stateful processing requires a deeper understanding
of the underlying mechanics to ensure your application continues to operate
smoothly over time.

The goal of this chapter is to dig deeper into state stores so that you can achieve a
higher level of reliability when building stateful stream processing applications. A
large portion of this chapter is dedicated to the topic of rebalancing, which occurs
when work needs to be redistributed across your consumer group. Rebalancing can
be especially impactful for stateful applications, so we’ll develop our understanding so
that you are equipped to deal with this in your own applications.

Some of the questions we will answer include:

• How are persistent state stores represented on disk?
• How do stateful applications achieve fault tolerance?
• How can we configure built-in state stores?
• What kinds of events are the most impactful for stateful applications?
• What measures can be taken to minimize recovery time of stateful tasks?
• How do you ensure that state stores don’t grow indefinitely?
• How can the DSL cache be used to rate limit downstream updates?
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1 Note: you should never attempt to modify the files.

• How do you track progress of state restoration using a State Restore Listener?
• How can State Listeners be used to detect rebalances?

Let’s start by looking at the on-disk layout of persistent state stores.

Persistent Store Disk Layout
Kafka Streams includes both in-memory and persistent state stores. The latter cate‐
gory of state stores are generally preferred because they can help reduce the recovery
time of an application whenever state needs to be reinitialized (e.g., in the event of
failure or task migration).

By default, persistent state stores live in the /tmp/kafka-streams directory. You can
override this by setting the StreamsConfig.STATE_DIR_CONFIG property, and given
the ephemeral nature of a /tmp directory (the contents of this directory are deleted
during system reboots/crashes), you should choose another location for persisting
your application state.

Since persistent state stores live on disk, we can inspect the files very easily.1 Doing so
allows us to glean a surprising amount of information from the directory and file‐
names alone. The file tree in Example 6-1 was taken from the patient monitoring
application that we created in the previous chapter. The annotations provide addi‐
tional detail about the important directories and files.

Example 6-1. An example of how a persistent state store is represented on disk

.
└── dev-consumer 
    ├── 0_0
    │   ├── .lock
    │   └── pulse-counts
    ├── 0_1
    │   ├── .lock
    │   └── pulse-counts
    ├── 0_2
    │   ├── .lock
    │   └── pulse-counts
    ├── 0_3 
    │   ├── .checkpoint 
    │   ├── .lock 
    │   └── pulse-counts 
    │       └── ...
    ├── 1_0
    │   ├── ...
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The top-level directory contains the application ID. This is helpful to understand
which applications are running on the server, especially in a shared environment
where workloads can be scheduled on any number of nodes (e.g., in a Kubernetes
cluster).

Each of the second-level directories corresponds to a single Kafka Streams task.
The directory name is formatted as a task ID. Task IDs are composed of two
parts: <sub-topology-id>_<partition>. Note that, as we discussed in “Sub-
Topologies” on page 37, a sub-topology might process data from one or multiple
topics, depending on the logic of your program.

Checkpoint files store offsets from changelog topics (see “Changelog Topics” on
page 178). They indicate to Kafka Streams what data has been read into the local
state store and, as you’ll see shortly, play an important role in state store recovery.

The lock file is used by Kafka Streams to acquire a lock on the state directory.
This helps prevent concurrency issues.

The actual data is stored in named state directories. Here, pulse-counts corre‐
sponds to an explicit name that we set when materializing the state store.

The main benefit of knowing what state stores look like on disk is to simply remove
some of the mystery around how they work. Furthermore, the lock file and check‐
point files are especially important, and are referenced in certain error logs (for
example, permissions issues could surface as a failure to write to a checkpoint file,
while a concurrency issue could lead to an error about Kafka Streams failing to
acquire a lock), so understanding their location and utility is helpful.

The checkpoint file plays an important role in state store recovery. Let’s dig into this
further by first looking at the fault-tolerant features of stateful applications, and then
seeing how offset checkpoints are used to reduce recovery time.

Fault Tolerance
Kafka Streams owes much of its fault-tolerant characteristics to Kafka’s storage layer
and group management protocol. For example, data replication at the partition level
means if a broker goes offline, data can still be consumed from one of the replicated
partitions on another broker. Furthermore, by using consumer groups, if a single
instance of your application goes down, work will be redistributed to one of the
healthy instances.

However, when it comes to stateful applications, Kafka Streams takes additional
measures to ensure applications are resilient to failure. This includes using changelog
topics to back state stores, and standby replicas to minimize reinitialization time in
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the event that state is lost. We’ll discuss these Kafka Streams–specific fault-tolerant
features in further detail in the following sections.

Changelog Topics
Unless explicitly disabled, state stores are backed by changelog topics, which are cre‐
ated and managed by Kafka Streams. These topics capture state updates for every key
in the store, and can be replayed in the event of failure to rebuild the application
state.2 In the event of a total state loss (or when spinning up a new instance), the
changelog topic is replayed from the beginning. However, if a checkpoint file exists
(see Example 6-1), then the state can be replayed from the checkpointed offset found
in that file, since this offset indicates what data has already been read into the state
store. The latter is much quicker because recovering only part of the state takes less
time than recovering the full state.

Changelog topics are configurable using the Materialized class in the DSL. For
example, in the previous chapter, we materialized a state store named pulse-counts
using the following code:

pulseEvents
  .groupByKey()
  .windowedBy(tumblingWindow)
  .count(Materialized.as("pulse-counts"));

There are some additional methods on the Materialized class that allow us to cus‐
tomize the changelog topics even further. For example, to disable change logging
completely, we could use the following code to create what is sometimes called an
ephemeral store (i.e., state stores that cannot be restored on failure):

Materialized.as("pulse-counts").withLoggingDisabled();

However, disabling change logging isn’t usually a good idea since it means your state
store will no longer be fault tolerant, and it prevents you from using standby replicas.
When it comes to configuring changelog topics, you will more commonly either
override the retention of windowed or session stores using the withRetention
method (this is covered a little later in “Window retention” on page 190) or pass in
certain topic configs for the changelog topic. For example, if we wanted to bump the
number of insync replicas to two, we could use the following code:

Map<String, String> topicConfigs =
  Collections.singletonMap("min.insync.replicas", "2"); 

KTable<Windowed<String>, Long> pulseCounts =
    pulseEvents
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3 There is a ticket for allowing internal topics to be reconfigured, which you can track at https://oreil.ly/OoKBV.

      .groupByKey()
      .windowedBy(tumblingWindow)
      .count(
          Materialized.<String, Long, WindowStore<Bytes, byte[]>>
              as("pulse-counts")
              .withValueSerde(Serdes.Long())
              .withLoggingEnabled(topicConfigs)); 

Create a map for saving our topic configs. The entries can include any valid topic
config and value.

Configure the changelog topic by passing the topic configs to the Material
ized.withLoggingEnabled method.

Now, if you describe the topic, you’ll see the topic was configured accordingly:

$ kafka-topics \
  --bootstrap-server localhost:9092 \
  --topic dev-consumer-pulse-counts-changelog \ 
  --describe

# output
Topic: dev-consumer-pulse-counts-changelog
PartitionCount: 4
ReplicationFactor:1
Configs: min.insync.replicas=2
...

Note that changelog topics have the following naming scheme: 
<application_id>-<internal_store_name>-changelog.

One thing to note is that, at the time of this writing, you cannot reconfigure a change‐
log topic using this method after it has been created.3 If you need to update a topic
configuration on an existing changelog topic, then you’ll need to do so using the
Kafka console scripts. An example of how to manually update a changelog topic after
it has been created is shown here:

$ kafka-configs \ 
  --bootstrap-server localhost:9092 \
  --entity-type topics \
  --entity-name dev-consumer-pulse-counts-changelog \
  --alter \
  --add-config min.insync.replicas=1 

# output
Completed updating config for topic dev-consumer-pulse-counts-changelog
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You can also use the kafka-topics console script. Remember to append the file
extension (.sh) if you are running vanilla Kafka outside of Confluent Platform.

Update the topic configurations.

Now that we understand the purpose of the state store–backing changelog topics, as
well as how to override the default topic configurations, let’s take a look at a feature
that makes Kafka Streams highly available: standby replicas.

Standby Replicas
One method for reducing the downtime of stateful application failure is to create and
maintain copies of task state across multiple application instances.

Kafka Streams handles this automatically, as long as we set a positive value for the
NUM_STANDBY_REPLICAS_CONFIG property. For example, to create two standby repli‐
cas, we can configure our application like so:

props.put(StreamsConfig.NUM_STANDBY_REPLICAS_CONFIG, 2);

When standby replicas are configured, Kafka Streams will attempt to reassign any
failed stateful tasks to an instance with a hot standby. This will drastically reduce
downtime for applications with large state by removing the need to reinitialize the
underlying state store from scratch.

Furthermore, as we’ll see toward the end of the chapter, newer versions of Kafka
Streams allow us to fall back to standby replicas when querying state stores during a
rebalance. But before we get to that, let’s discuss what rebalancing is, and why it is the
biggest enemy of stateful Kafka Streams applications.

Rebalancing: Enemy of the State (Store)
We’ve learned that changelog topics and standby replicas help reduce the impact of
stateful application failure. The former allows Kafka Streams to reconstruct state
whenever it’s lost, and the latter allows us to minimize the time it takes to reinitialize
state stores.

However, while Kafka Streams handles failure transparently, it doesn’t change the fact
that losing a state store, even temporarily, can be incredibly disruptive (especially for
heavily stateful applications). Why? Because the change-logging technique for back‐
ing up state still requires us to replay each message in the underlying topic, and if that
topic is huge, then rereading each record could take several minutes or, in extreme
cases, even hours.
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4 Adding or removing partitions from the source topics could also trigger a rebalance.

The biggest culprit that leads to reinitializing state is rebalancing. We first encoun‐
tered this term when we discussed consumer groups in “Consumer Groups” on page
13. A simplified explanation is that Kafka automatically distributes work across the
active members of a consumer group, but occasionally the work needs to be redistrib‐
uted in response to certain events—most notably group membership changes.4 We
won’t cover the entire rebalance protocol in depth, but the level of detail we will cover
requires a quick vocabulary review:

• The group coordinator is a designated broker that is responsible for maintaining
the membership of a consumer group (e.g., by receiving heartbeats and trigger‐
ing a rebalance when a membership change is detected).

• The group leader is a designated consumer in each consumer group that is
responsible for determining the partition assignments.

We will encounter these terms as we discuss rebalancing more in the following sec‐
tions. But for now, the important takeaway is that rebalances are expensive when they
cause a stateful task to be migrated to another instance that does not have a standby
replica. There are a couple of strategies for dealing with the issues that rebalancing
can introduce:

• Prevent state from being moved when possible
• If state does need to be moved or replayed, make recovery time as quick as

possible

With both strategies, there are measures that Kafka Streams takes automatically, as
well as actions we can take ourselves, to minimize the impact of rebalances. We’ll
explore this in more detail, starting with the first strategy: preventing state migration.

Preventing State Migration
When stateful tasks are reassigned to another running instance, the underlying state
is migrated as well. For applications with large state, it could take a long time to
rebuild the state store on the destination node, and therefore should be avoided if
possible.

Since the group leader (one of the consumers) is responsible for determining how
work is distributed among the active consumers, there is some onus on the Kafka
Streams library (which implements the load balancing logic) to prevent unnecessary
state store migration. One way it achieves this is through something called a sticky
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5 The internal class is called StickyTaskAssignor. Note that it is not possible to override the default partitioner
in Kafka Streams.

assignor, and it’s something we get for free when we use Kafka Streams. We’ll explore
this in the next section.

Sticky Assignment
To help prevent stateful tasks from being reassigned, Kafka Streams uses a custom
partition assignment strategy5 that attempts to reassign tasks to instances that previ‐
ously owned the task (and therefore, should still have a copy of the underlying state
store). This strategy is called sticky assignment.

To understand the problem Kafka Streams is solving with its sticky assignor, consider
the default rebalancing strategy for other types of Kafka clients. Figure 6-1 shows that
when a rebalance occurs, a stateful task could potentially be migrated to another
application instance, which would be extremely expensive.

The sticky partition assignor that is included in Kafka Streams addresses this issue by
keeping track of which task owned each partition (and the associated state stores) and
reassigning the stateful task to its previous owner. As you can see in Figure 6-2, this
drastically improves the availability of our application since it helps us avoid unneces‐
sary reinitialization of potentially large state stores.

While the sticky assignor helps reassign tasks to their previous owners, state stores
can still be migrated if Kafka Streams clients are temporarily offline. Now, let’s discuss
something we, as Kafka Streams developers, can enable to help avoid rebalances dur‐
ing transient downtime.
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Figure 6-1. Nonsticky partition assignment
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Figure 6-2. Sticky partition assignment using Kafka Streams’ built-in partition assignor
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6 See the session.timeout.ms consumer configuration.

Static Membership
One of the issues that can cause state to be moved around is unnecessary rebalances.
Sometimes, even a healthy event, like a rolling bounce, can lead to several rebalances.
If the group coordinator detects membership changes during these brief periods of
unavailability, it will trigger a rebalance and immediately reassign the work to the
remaining application instances.

When an instance comes back online after a brief period of being down, the coordi‐
nator won’t recognize it because its member ID (a unique identifier assigned by the
coordinator whenever a consumer is registered) is erased, so the instance is treated as
a new member and work may be reassigned.

To prevent this, you can use static membership. Static membership aims to reduce the
number of rebalances due to transient downtime. It achieves this by using a hardco‐
ded instance ID for identifying each unique application instance. The following con‐
figuration property allows you to set the ID:

group.instance.id = app-1 

In this case, we set the ID to app-1. If we spin up another instance, we would
assign it a unique ID as well (e.g., app-2). This ID must be unique across the
entire cluster (even among different Kafka Streams applications, independent of
application.id, and other consumers, independent of group.id).

The hardcoded instance ID is typically used in conjunction with higher session time‐
outs,6 which buys the application even more time for restarting so that the coordina‐
tor doesn’t think the consumer instance is dead when it goes offline for a short period
of time.

Static membership is only available for Kafka versions >= 2.3, so if your client or
brokers are on an older version, you’ll need to upgrade first. Be aware that increasing
the session timeout is a double-edged sword. While it can prevent the coordinator
from assuming an instance is dead during a brief period of downtime, the trade-off is
that it can lead to slower detection of actual failure.

Now that we’ve learned how we can use static membership to help avoid unnecessary
rebalances, let’s look at how to reduce the impact of rebalances when they do happen.
Once again, there are measures that Kafka Streams takes for us and actions we can
take ourselves to reduce this impact. We will discuss both in the upcoming sections.
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Reducing the Impact of Rebalances
While static membership can be used to avoid unnecessary rebalances, sometimes a
rebalance cannot be avoided. After all, failure is expected in distributed systems.
Historically, rebalancing has been very costly. This is because at the start of each reba‐
lancing round, each client gives up all of its resources. We saw this in Figure 6-2, and
a detailed view of this rebalancing step is shown in Figure 6-3.

Figure 6-3. Revoking all resources during an eager rebalance is extremely inefficient

This rebalancing strategy is called eager rebalancing, and is impactful for two reasons:

• A so-called stop-the-world effect occurs when all clients give up their resources,
which means an application can fall behind on its work very quickly since pro‐
cessing is halted.

• If a stateful task gets reassigned to a new instance, then the state will need to be
replayed/rebuilt before processing starts. This leads to additional downtime.

Remember, Kafka Streams tries to mitigate the second issue (stateful task migration)
for us by using a custom sticky partition assignor. However, it has historically relied
on its own implementation to achieve task stickiness instead of the rebalance protocol
itself. As of version 2.4, however, an update to the rebalance protocol introduces
additional measures that help reduce the impact of rebalances. We will discuss this
new protocol, called incremental cooperative rebalancing, in the next section.
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7 Versions >= 2.4 use the improved rebalancing strategy. More information about incremental cooperative
rebalancing can be found at https://oreil.ly/P3iVG.

Incremental Cooperative Rebalancing
Incremental cooperative rebalancing is a more efficient rebalancing protocol than
eager rebalancing, and is enabled by default in versions >= 2.4. If you are using an
older Kafka Streams version, you will want to upgrade in order to take advantage of
this feature, since it provides the following advantages over the older eager rebalanc‐
ing protocol:

• One global round of rebalancing is replaced with several smaller rounds (incre‐
mental).

• Clients hold on to resources (tasks) that do not need to change ownership, and
they only stop processing the tasks that are being migrated (cooperative).

Figure 6-4 shows how incremental cooperative rebalancing works at a high level
when an application instance goes offline for a long period of time (i.e., any period of
time that exceeds the session.timeout.ms config, which is the timeout that the coor‐
dinator uses to detect consumer failures).

As you can see, the healthy application instances (including the one with the stateful
task) did not need to give up their resources when a rebalance was initiated. This is a
huge improvement over the eager rebalancing strategy since it allows the application
to continue processing during a rebalance.

There’s a lot of detailed information about incremental cooperative rebalancing that
we won’t cover here, but it’s important to know that newer versions of Kafka Streams
implement this protocol under the hood, so we just need to make sure we’re running
with a supported version of Kafka Streams.7

We’ve seen how incremental cooperative rebalancing can help reduce the impact of
rebalances, so let’s look at a more active role application developers can take to ensure
rebalances are less painful.
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Figure 6-4. The stop-the-world effect is avoided in incremental cooperative rebalancing
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8 It’s unlikely the keyspace would be exactly evenly split in a real-world scenario, but it’s convenient for this
discussion and the point remains the same.

Controlling State Size
If you’re not careful, your state stores could grow unbounded and cause operational
issues. For example, imagine the keyspace in your compacted changelog topic is very
large (let’s say one billion keys), and the application state is evenly distributed across
10 physical nodes.8 If one of the nodes goes offline, then you’ll need to replay a
minimum of 100 million records to rebuild the state. This takes a lot of time and
could lead to availability issues. It’s also not a great use of computational or storage
resources to retain more data than you need.

Depending on your use case, you may not need to retain the entire application state
indefinitely. Perhaps the value of each record has a fixed lifetime. For example, at
Mailchimp, we track the number of active email messages that haven’t yet been deliv‐
ered, and perform per-key aggregations to expose various stats about these messages.
Eventually, however, these email messages become inactive (i.e., they are delivered, or
they bounce), and we no longer need to track them. Use cases like these necessitate
active cleanup of our state stores. Removing unneeded data to keep your state store
small greatly reduces the impact of rebalancing. If a stateful task needs to be migrated,
it’s a lot easier to rebuild a small state store than an unnecessarily large one. So how
do we remove unneeded state in Kafka Streams? We use tombstones.

Tombstones
Tombstones are special records that indicate that some state needs to be deleted. They
are sometimes referred to as delete markers, and they always have a key and a null
value. As mentioned previously, state stores are key-based, so the key in a tombstone
record indicates which record from the state store needs to be deleted.

An example of how to generate a tombstone is shown in the following code block. In
this hypothetical scenario, we are performing some aggregation for a hospital patient,
but once we see a patient checkout event, we no longer expect any additional events
for this patient, so we remove their data from the underlying state store:

StreamsBuilder builder = new StreamsBuilder();
KStream<byte[], String> stream = builder.stream("patient-events");

stream
    .groupByKey()
    .reduce(
        (value1, value2) -> {
          if (value2.equals(PATIENT_CHECKED_OUT)) {
            // create a tombstone
            return null; 
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          }
          return doSomething(value1, value2); 
        });

Return null to generate a tombstone (i.e., a delete marker) whenever a patient
checks out. This will cause the related key to be removed from the underlying
state store.

If a patient has not checked out, then perform the aggregation logic.

While tombstones are useful for keeping key-value stores small, there is another
method we can use to remove unneeded data from windowed key-value stores. We’ll
discuss this in the next section.

Window retention
Windowed stores have a configurable retention period to keep the state stores small.
For example, in the previous chapter, we created a windowed store in our patient
monitoring application to convert raw pulse events into a heart rate. The relevant
code is shown here:

TimeWindows tumblingWindow =
  TimeWindows.of(Duration.ofSeconds(60)).grace(Duration.ofSeconds(5));

KTable<Windowed<String>, Long> pulseCounts =
  pulseEvents
    .groupByKey()
    .windowedBy(tumblingWindow)
    .count(Materialized.<String, Long, WindowStore<Bytes, byte[]>>
      as("pulse-counts")) 
    .suppress(
      Suppressed.untilWindowCloses(BufferConfig.unbounded().shutDownWhenFull()));

Materialize a windowed store with the default retention period (one day) since
this value is not explicitly overridden.

However, the Materialized class has an additional method, called withRetention,
that we can use to specify how long Kafka Streams should keep records in a
windowed store. The following code demonstrates how to specify the retention of a
windowed store:

TimeWindows tumblingWindow =
  TimeWindows.of(Duration.ofSeconds(60)).grace(Duration.ofSeconds(5));

KTable<Windowed<String>, Long> pulseCounts =
  pulseEvents
    .groupByKey()
    .windowedBy(tumblingWindow)
    .count(
      Materialized.<String, Long, WindowStore<Bytes, byte[]>>
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          as("pulse-counts")
          .withRetention(Duration.ofHours(6))) 
    .suppress(
      Suppressed.untilWindowCloses(BufferConfig.unbounded().shutDownWhenFull()));

Materialize a windowed store with a retention period of six hours.

Note that the retention period should always be larger than the window size and the
grace period combined. In the preceding example, the retention period must be larger
than 65 seconds (60 seconds for the tumbling window size + 5 seconds for the grace
period). The default window retention period is one day, so lowering this value can
reduce the size of your windowed state stores (and their underlying changelog topics)
and therefore speed up recovery time.

So far, we’ve discussed two methods we can employ in our application code for keep‐
ing our state stores small (namely, generating tombstones and setting the retention
period for windowed stores). Let’s look at another method for keeping the underlying
changelog topics small: aggressive topic compaction.

Aggressive topic compaction
By default, changelog topics are compacted. This means that only the latest value for
each key is retained and, when tombstones are used, the value for the related key is
deleted entirely. However, while the state store will reflect the compacted or deleted
value immediately, the underlying topic may remain larger than it needs to be, by
retaining the uncompacted/deleted values for a longer period of time.

The reason for this behavior is related to how Kafka represents topics on disk. We’ve
already talked about how topics are split into partitions, and these partitions translate
to a single unit of work in Kafka Streams. However, while partitions are the lowest-
level topic abstraction we typically deal with on the application side (we generally
think about partitions when we consider how many threads we need, and also when
figuring out how data should be routed or co-partitioned with related data), there is
an even lower-level abstraction on the Kafka broker side: segments.

Segments are files that contain a subset of messages for a given topic partition. At any
given point in time, there is always an active segment, which is the file that is currently
being written to for the underlying partition. Over time, the active segments will
reach their size threshold and become inactive. Only once a segment is inactive will it
be eligible for cleaning.

Uncompacted records are sometimes referred to as dirty. The log
cleaner is a process that performs compaction on dirty logs, which
benefits both the brokers, by increasing available disk space, and
the Kafka Streams clients, by reducing the number of records that
need to be replayed in order to rebuild a state store.
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Kokhreidze.

10 Configuration definitions come from the official Kafka documentation.

Since the active segment isn’t eligible for cleaning, and could therefore include a large
number of uncompacted records and tombstones that would need to be replayed
when initializing a state store, it is sometimes beneficial to reduce the segment size in
order to enable more aggressive topic compaction.9 Furthermore, the log cleaner will
also avoid cleaning a log if more than 50% of the log has already been cleaned/
compacted. This is also configurable and can be adjusted to increase the frequency at
which log cleaning occurs.

The topic configurations listed in Table 6-1 are useful for enabling more aggressive
compaction, leading to fewer records that need to be replayed in the event of a state
store needing to be reinitialized.10

Table 6-1. Topic configurations that can be used for triggering more frequent log cleaning/
compaction

Configuration Default Definition

segment.bytes 1073741824 (1 GB) This configuration controls the segment file size
for the log. Cleaning is always done a file at a
time, so a larger segment size means fewer files
but less granular control over retention.

segment.ms 604800000 (7 days) This configuration controls the period of time after
which Kafka will force the log to roll, even if the
segment file isn’t full, to ensure older data can be
compacted or deleted.

min.cleanable.dirty.ratio 0.5 This configuration controls how frequently the log
compactor will attempt to clean the log (assuming
log compaction is enabled). By default we will
avoid cleaning a log where more than 50% of the
log has been compacted. This ratio bounds the
maximum space wasted in the log by duplicates
(with the default setting, at most, 50% of the log
could contain duplicates). A higher ratio will mean
fewer, more efficient cleanings but will mean
more wasted space in the log. If the max.com
paction.lag.ms or the min.compac
tion.lag.ms configurations are also specified,
then the log compactor considers the log to be
eligible for compaction as soon as either: (i) the
dirty ratio threshold has been met and the log has
had dirty (uncompacted) records for at least the
min.compaction.lag.ms duration, or (ii)
the log has had dirty (uncompacted) records for at
most the max.compaction.lag.ms period.

192 | Chapter 6: Advanced State Management

https://oreil.ly/ZR4A6
https://oreil.ly/ZR4A6


Configuration Default Definition

max.compaction.lag.ms Long.MAX_VALUE - 1 The maximum time a message will remain
ineligible for compaction in the log. Only
applicable for logs that are being compacted.

min.compaction.lag.ms 0 The minimum time a message will remain
uncompacted in the log. Only applicable for logs
that are being compacted.

An example of how to change two of these configs in a materialized store is shown in
the following code. These topic configurations could help trigger more frequent log
cleaning by reducing the segment size and also the minimum cleanable dirty ratio:

Map<String, String> topicConfigs = new HashMap<>();
topicConfigs.put("segment.bytes", "536870912"); 
topicConfigs.put("min.cleanable.dirty.ratio", "0.3"); 

StreamsBuilder builder = new StreamsBuilder();
KStream<byte[], String> stream = builder.stream("patient-events");

KTable<byte[], Long> counts =
    stream
        .groupByKey()
        .count(
            Materialized.<byte[], Long, KeyValueStore<Bytes, byte[]>>as("counts")
                .withKeySerde(Serdes.ByteArray())
                .withValueSerde(Serdes.Long())
                .withLoggingEnabled(topicConfigs));

Reduce the segment size to 512 MB.

Reduce the minimum cleanable dirty ratio to 30%.

Now, topic compaction is needed because the underlying storage medium is theoreti‐
cally unbounded. Another approach to the problem of minimizing state store size is
to instead use a fixed-size data structure. While there are some drawbacks to this
approach, Kafka Streams does include a state store that tackles the problem from this
angle. We’ll discuss this next.

Fixed-size LRU cache
A less common method for ensuring state stores don’t grow indefinitely is to use an
in-memory LRU cache. This is a simple key-value store that has a configurable, fixed
capacity (specified by the max number of entries) that automatically deletes the least-
recently used entry when the state exceeds the configured size. Furthermore, when‐
ever an entry is removed from the in-memory store, a tombstone is automatically
sent to the underlying changelog topic as well.
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An example of how to use an in-memory LRU map is shown here:

KeyValueBytesStoreSupplier storeSupplier = Stores.lruMap("counts", 10); 

StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> stream = builder.stream("patient-events");

stream
    .groupByKey()
    .count(
        Materialized.<String, Long>as(storeSupplier) 
            .withKeySerde(Serdes.String())
            .withValueSerde(Serdes.Long()));

return builder.build();

Create an in-memory LRU store named counts with a max size of 10 entries.

Materialize the in-memory LRU store using a store supplier.

To achieve this in the Processor API, you could use a store builder as follows:

StreamsBuilder builder = new StreamsBuilder();

KeyValueBytesStoreSupplier storeSupplier = Stores.lruMap("counts", 10);

StoreBuilder<KeyValueStore<String, Long>> lruStoreBuilder =
  Stores.keyValueStoreBuilder(storeSupplier, Serdes.String(), Serdes.Long());

builder.addStateStore(lruStoreBuilder);

As mentioned in “Aggressive topic compaction” on page 191, compaction and dele‐
tion will not happen immediately in the underlying changelog topic that backs the
LRU cache, so in the event of failure, the restore time could be higher than a persis‐
tent state store since the entire topic will need to be replayed in order to reinitialize
the state store (even if it resolves to only 10 records in the LRU map!). This is a major
downside to using in-memory stores that we initially discussed in “Persistent Versus
In-Memory Stores” on page 101, so this option should be used with a full under‐
standing of the trade-offs.

This wraps up our discussion for keeping state stores and their underlying changelog
topics free of unneeded records. Now, let’s look at a strategy you can pursue if it
appears that your state stores are bottlenecked by either read latency or write volume.
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Deduplicating Writes with Record Caches
As we discussed in “Suppression” on page 163, there are some DSL methods (namely,
suppress, in combination with a buffer config; see Table 5-2) for rate-limiting
updates in a windowed store. We also have an operational parameter11 for controlling
the frequency with which state updates are written to both the underlying state stores
and downstream processors. These parameters are shown in Table 6-2.

Table 6-2. Topic configurations that can be used to reduce writes to state stores and
downstream processors

Raw config StreamsConfig property Default Definition

cache.max.bytes.buffering CACHE_MAX_BYTES_BUFFERING
_CONFIG

1048576 (10
MB)

The maximum
amount of
memory, in bytes,
to be used for
buffering across
all threads

commit.interval.ms COMMIT_INTERVAL_MS_CONFIG 30000 (30
seconds)

The frequency
with which to
save the position
of the processor

A larger cache size and higher commit interval can help deduplicate consecutive
updates to the same key. This has a few benefits, including:

• Reducing read latency
• Reducing write volume to:

— State stores
— Their underlying changelog topics (if enabled)
— Downstream stream processors

Therefore, if your bottleneck appears to be with reading/writing to the state store, or
with network I/O (which can be a byproduct of frequent updates to the changelog
topic), you should consider adjusting these parameters. Of course, larger record
caches do come with a couple of trade-offs:

• Higher memory usage
• Higher latency (records are emitted less frequently)
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Regarding the first point, the total memory that is allocated for the record caches
(controlled by the cache.max.bytes.buffering parameter) is shared across all of the
streaming threads. The memory pool will be subdivided evenly, so threads that are
processing “hot partitions” (i.e., partitions with relatively high data volume compared
to others) will flush their cache more frequently. Regardless of the cache size or com‐
mit interval, the final stateful computation will be the same.

There is also a trade-off with using larger commit intervals. Namely, the amount of
work that needs to be redone after a failure will increase as you increase the value of
this configuration.

Finally, sometimes it may be desirable to see each intermediate state change without
any caching at all. In fact, sometimes people who are new to Kafka Streams will
observe the deduplication or the delay in flushing the cache and think something is
wrong with their topology, because they produced a certain number of records to
their source topic and only saw a subset of the state changes get flushed (possibly
after a delay of several seconds, instead of immediately). Therefore, sometimes people
will disable the cache entirely and have a smaller commit interval in their develop‐
ment environments. Just be careful of doing this in production because it could
impact performance.

State Store Monitoring
Before deploying your application to production, it’s important to ensure you have
sufficient visibility into your application to properly support it. In this section, we will
discuss the common approaches for monitoring stateful applications so that you can
reduce operational toil and have enough info to debug it when an error occurs.

Adding State Listeners
A Kafka Streams application can be in one of many states (not to be confused with
state stores). Figure 6-5 shows each of these states and their valid transitions.

As mentioned before, the rebalancing state can be especially impactful for stateful
Kafka Streams applications, so being able to track when your applications transition
to a rebalancing state, and how often this happens, can be useful for monitoring pur‐
poses. Luckily for us, Kafka Streams makes it extremely easy to monitor when the
application state changes, using something called a State Listener. A State Listener is
simply a callback method that is invoked whenever the application state changes.

Depending on your application, you may want to take a certain action when a reba‐
lance occurs. For example, at Mailchimp, we create a special metric in our Kafka
Streams applications that gets incremented whenever a rebalance is triggered. The
metric is sent to our monitoring system (Prometheus), where it can be queried or
even used for creating alerts.
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Figure 6-5. Application states and their valid transitions in Kafka Streams

The following code shows an example of how to add a State Listener to a Kafka
Streams topology, which listens specifically for transitions to the rebalancing state:

KafkaStreams streams = new KafkaStreams(...);

streams.setStateListener( 
    (oldState, newState) -> { 
      if (newState.equals(State.REBALANCING)) {
        // do something
      }
    });

Use the KafkaStreams.setStateListener method to invoke a method whenever
the application state changes.

The method signature for the StateListener class includes both the old state
and new state.

Conditionally perform some action whenever the application enters a rebalanc‐
ing state.

While State Listeners are very useful, they are not the only listeners we can leverage
in our Kafka Streams applications. The next section will discuss another method that
can be used for improving visibility of our stateful applications.
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Adding State Restore Listeners
In the previous section, we learned how to listen to rebalance triggers in our Kafka
Streams application. However, rebalances are primarily of interest when they cause a
state store to be reinitialized. Kafka Streams includes another listener, called a State
Restore Listener, that can be invoked whenever a state store is reinitialized. The
following code shows how to add a State Restore Listener to your Kafka Streams
application:

KafkaStreams streams = new KafkaStreams(...);

streams.setGlobalStateRestoreListener(new MyRestoreListener());

The class MyRestoreListener is an instance of a StateRestoreListener, which we
have implemented in the following code block. Unlike the State Listener we built in
the previous section, a State Restore Listener requires us to implement three methods,
each of which is hooked into part of the life cycle of the state restoration process. The
annotations of the following code describe what each method is used for:

class MyRestoreListener implements StateRestoreListener {

  private static final Logger log =
      LoggerFactory.getLogger(MyRestoreListener.class);

  @Override
  public void onRestoreStart(  
      TopicPartition topicPartition,
      String storeName,
      long startingOffset,
      long endingOffset) {

    log.info("The following state store is being restored: {}", storeName);

  }

  @Override
  public void onRestoreEnd(  
      TopicPartition topicPartition,
      String storeName,
      long totalRestored) {

    log.info("Restore complete for the following state store: {}", storeName);

  }

  @Override
  public void onBatchRestored(  
      TopicPartition topicPartition,
      String storeName,
      long batchEndOffset,
      long numRestored) {
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    // this is very noisy. don't log anything

  }
}

The onRestoreStart method is invoked at the beginning of a state reinitializa‐
tion. The startingOffset parameter is of particular interest, since it indicates
whether or not the entire state needs to be replayed (this is the most impactful
type of reinitialization, and occurs when using in-memory stores, or when using
persistent stores and the previous state is lost). If the startingOffset is set to 0,
a full reinitialization is required. If it is set to a value greater than 0, then only a
partial restore is necessary.

The onRestoreEnd method is invoked whenever a restore is completed.

The onBatchRestored method is invoked whenever a single batch of records is
restored. The maximum size of a batch is the same as the MAX_POLL_RECORDS
config. This method could potentially be called a lot of times, so be careful when
doing any synchronous processing in this method because it can slow down the
restore process. I typically don’t do anything in this method (even logging can be
extremely noisy).

Built-in Metrics
We’ll defer most of our discussion of monitoring Kafka Streams applications to Chap‐
ter 12 (see “Monitoring” on page 366). However, it’s important to note that Kafka
Streams includes a set of built-in JMX metrics, many of which relate to state stores.

For example, you can access the rate of certain state store operations and queries (e.g.,
get, put, delete, all, range), the average and maximum execution time for these
operations, and the size of the suppression buffer. There are a number of metrics for
RocksDB-backed stores as well, with bytes-written-rate and bytes-read-rate
being especially useful when looking at I/O traffic at the byte level.

A detailed breakdown of these metrics can be found in Confluent’s monitoring docu‐
mentation. In practice, I typically use higher-level measures of the application’s health
(e.g., consumer lag) for alerting purposes, but it’s nice to have these detailed state
store metrics for certain troubleshooting scenarios.
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Interactive Queries
Prior to Kafka Streams 2.5, rebalances were especially painful for applications that
exposed their state using interactive queries. In these older versions of the library, off‐
line or rebalancing partitions would cause interactive queries to your state stores to
fail. Since even healthy rebalances (e.g., a rolling update) could introduce an availabil‐
ity issue, it was a deal breaker for microservices that require high availability.

However, starting in Kafka Streams 2.5, standby replicas can be used to serve stale
results while the newly migrated state store is being initialized. This keeps your API
highly available even when your application enters a rebalancing state. Recall that in
Example 4-11, we learned how to retrieve the metadata for a given key in our state
store. In our initial example, we extracted the active Kafka Streams instance:

KeyQueryMetadata metadata =
  streams.queryMetadataForKey(storeName, key, Serdes.String().serializer());  

String remoteHost = metadata.activeHost().host(); 
int remotePort = metadata.activeHost().port(); 

Get the metadata for the specified key, which includes the host and port pair that
a specific key should live on if it exists.

Extract the hostname of the active Kafka Streams instance.

Extract the port of the active Kafka Streams instance.

As of version 2.5, we can retrieve the standby hosts using the following code:

KeyQueryMetadata metadata =
    streams.queryMetadataForKey(storeName, key, Serdes.String().serializer()); 

if (isAlive(metadata.activeHost())) { 
  // route the query to the active host
} else {
  // route the query to the standby hosts
  Set<HostInfo> standbys = metadata.standbyHosts(); 
}

Use the KafkaStreams.queryMetadataForKey method to get both the active and
standby hosts for a given key.

Check to see if the active host is alive. You will need to implement this yourself,
but you could potentially add a State Listener (see “Adding State Listeners” on
page 196) and a corresponding API endpoint in your RPC server to surface the
current state of your application. isAlive should resolve to true whenever your
application is in the Running state.
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12 For example, the KeyValueStore interface adds the void put(K key, V value) method, among others, since
it knows the underlying store will need to write key-value pairs to the underlying storage engine.

If the active host is not alive, retrieve the standby hosts so you can query one of
the replicated state stores. Note: if no standbys are configured, then this method
will return an empty set.

As you can see, this ability to query standby replicas ensures our application is highly
available, even when the active instance is down or unable to serve queries. This
wraps up our discussion of how to mitigate the impact of rebalances. Next, we’ll dis‐
cuss custom state stores.

Custom State Stores
It’s also possible to implement your own state store. In order to do this, you need to
implement the StateStore interface. You can either implement this directly or, more
likely, use one of the higher-level interfaces like KeyValueStore, WindowStore, or Ses
sionStore, which add additional interface methods specific to how the store is
intended to be used.12

In addition to the StateStore interface, you will also want to implement the Store
Supplier interface, which will contain the logic for creating new instances of your
custom state store. Since the performance characteristics of the built-in RocksDB-
based state stores are hard to match, it’s typically not necessary to go through the very
tedious and error-prone task of implementing your own custom store. For this rea‐
son, and given the sheer amount of code that would be needed just to implement a
very basic custom store, we will instead point you to one of the few examples of a
custom store on GitHub.

Finally, if you do decide to implement a custom store, be aware that any storage solu‐
tion that requires a network call could potentially greatly impact performance. One of
the reasons RocksDB or a local, in-memory store is a good choice is because they are
colocated with the streams task. Of course, your mileage will vary based on your proj‐
ect’s requirements, so ultimately, just be sure to define your performance targets up
front and choose your state store accordingly.
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Summary
You should now have a deeper understanding of how state stores are internally man‐
aged by Kafka Streams, and what options are available to you, as the developer, for
ensuring your stateful applications run smoothly over time. This includes using
tombstones, aggressive topic compaction, and other techniques for removing old data
from state stores (and therefore reducing state reinitialization time). Also, by using
standby replicas, you can reduce failover time for stateful tasks and also keep your
application highly available when a rebalance occurs. Finally, rebalancing, while
impactful, can be avoided to some extent using static membership, and the impact
can be minimized by using a version of Kafka Streams that supports an improved
rebalance protocol called incremental cooperative rebalancing.
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CHAPTER 7

Processor API

Just a few chapters ago, we embarked on our journey to learn about Kafka Streams.
We started with Kafka Streams’ high-level DSL, which allows us to build stream pro‐
cessing applications using a functional and fluent interface. This involves composing
and chaining stream processing functions using the library’s built-in operators (e.g.,
filter, flatMap, groupBy, etc.) and abstractions (KStream, KTable, GlobalKTable).

In this chapter, we will explore a lower-level API that is available in Kafka Streams:
the Processor API (sometimes called PAPI). The Processor API has fewer abstrac‐
tions than the high-level DSL and uses an imperative style of programming. While
the code is generally more verbose, it is also more powerful, giving us fine-grained
control over the following: how data flows through our topologies, how stream pro‐
cessors relate to each other, how state is created and maintained, and even the timing
of certain operations.

Some of the questions we will answer in this chapter include:

• When should you use the Processor API?
• How do you add source, sink, and stream processors using the Processor API?
• How can you schedule periodic functions?
• Is it possible to mix the Processor API with the higher-level DSL?
• What is the difference between processors and transformers?

As usual, we will demonstrate the fundamentals of the API through a tutorial,
answering the preceding questions along the way. However, before we show you how
to use the Processor API, let’s first discuss when to use it.
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1 The DSL is expressive and problem-framing is easy when we take advantage of its built-in operators. Losing
some of this expressiveness and the operators themselves can make our problem-framing less standardized,
and our solutions harder to communicate.

2 For example, committing too aggressively or accessing state stores in a way that could impact performance.

When to Use the Processor API
Deciding which abstraction level to use for your stream processing application is
important. In general, whenever you introduce complexity into a project, you should
have a good reason for doing so. While the Processor API isn’t unnecessarily com‐
plex, its low-level nature (compared to the DSL and ksqlDB) and fewer abstractions
can lead to more code and, if you’re not careful, more mistakes.

In general, you may want to utilize the Processor API if you need to take advantage of
any of the following:

• Access to record metadata (topic, partition, offset information, record headers,
and so on)

• Ability to schedule periodic functions
• More fine-grained control over when records get forwarded to downstream

processors
• More granular access to state stores
• Ability to circumvent any limitations you come across in the DSL (we’ll see an

example of this later)

On the other hand, using the Processor API can come with some disadvantages,
including:

• More verbose code, which can lead to higher maintenance costs and impair
readability

• A higher barrier to entry for other project maintainers
• More footguns, including accidental reinvention of DSL features or abstractions,

exotic problem-framing,1 and performance traps2

Fortunately, Kafka Streams allows us to mix both the DSL and Processor API in an
application, so you don’t need to go all in on either choice. You can use the DSL for
simpler and more standard operations, and the Processor API for more complex or
unique functions that require lower-level access to the processing context, state, or
record metadata. We will discuss how to combine the DSL and Processor API at the
end of this chapter, but initially, we will see how to implement an application using
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3 In this chapter, we use the broader term IoT, even when we’re talking about use cases that have industrial
applications. Also, a notable example of where digital twins are used is Tesla Motors. “Tesla creates a digital
twin of every car it sells. Tesla then updates software based on individual vehicles’ sensor data and uploads
updates to its products.” See the following link for more information: https://oreil.ly/j6_mj.

4 Usually, an interaction means either getting the latest state of a device, or changing the state of a device by
updating one of the mutable state properties, like the power status.

only the Processor API. So without further ado, let’s take a look at the application we’ll
be building in this chapter.

Introducing Our Tutorial: IoT Digital Twin Service
In this tutorial, we will use the Processor API to build a digital twin service for an
offshore wind farm. Digital twins (sometimes called device shadows) are popular in
both IoT (Internet of Things) and IIoT (industrial IoT) use cases,3 in which the state
of a physical object is mirrored in a digital copy. This is a great use case for Kafka
Streams, which can easily ingest and process high-volume sensor data, capture the
state of a physical object using state stores, and subsequently expose this state using
interactive queries.

To give you a quick example of what a digital twin is (this will make our tutorial a
little clearer), consider the following. We have a wind farm with 40 wind turbines.
Whenever one of the turbines reports its current state (wind speed, temperature,
power status, etc.), we save that information in a key-value store. An example of a
reported state record value is shown here:

{
  "timestamp": "2020-11-23T09:02:00.000Z",
  "wind_speed_mph": 40,
  "temperature_fahrenheit": 60,
  "power": "ON"
}

Note that a device ID is communicated via the record key (e.g., the preceding value
may correspond to a device with an ID of abc123). This will allow us to distinguish
the reported/desired state events of one device from another.

Now, if we want to interact with a particular wind turbine,4 we don’t do so directly.
IoT devices can and do frequently go offline, so we can achieve higher availability and
reduce errors if we instead only interact with the digital copy (twin) of a physical
device.
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5 In IoT use cases, sensor data is often sent over a protocol called MQTT. One method for getting this data into
Kafka would be to use Confluent’s MQTT Kafka connector.

For example, if we want to set the power state from ON to OFF, instead of sending that
signal to the turbine directly, we would set the so-called desired state on the digital
copy. The physical turbine would subsequently synchronize its state (i.e., disable
power to the blades) whenever it comes online, and usually at set intervals, thereafter.
Therefore, a digital twin record will include both a reported and desired state, and we
will create and expose digital twin records like the following using Kafka Streams’
Processor API:

{
  "desired": {
    "timestamp": "2020-11-23T09:02:01.000Z",
    "power": "OFF"
  },
  "reported": {
    "timestamp": "2020-11-23T09:00:01.000Z",
    "windSpeedMph": 68,
    "power": "ON"
  }
}

With this in mind, our application needs to ingest a stream of sensor data from a set
of wind turbines,5 perform some minor processing on the data, and maintain the lat‐
est state of each wind turbine in a persistent key-value state store. We will then expose
the data via Kafka Streams’ interactive queries feature.

Though we will avoid much of the technical detail around interactive queries since
this has already been covered in previous chapters, we will present some additional
value statements of interactive queries that IoT use cases afford.

Figure 7-1 shows the topology we will be building in this chapter. Each step is
detailed after the diagram.
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6 In practice, the wind speed threshold could be two-sided. While higher wind speeds introduce dangerous
operating conditions, low wind speeds may not justify the cost of running the turbine.

Figure 7-1. The topology that we will be implementing for our IoT digital twin service

Our Kafka cluster contains two topics, and therefore we need to learn how to add
source processors using the Processor API. Here is a description of these topics:

• Each wind turbine (edge node) is outfitted with a set of environmental sen‐
sors, and this data (e.g., wind speed), along with some metadata about the
turbine itself (e.g., power state), is sent to the reported-state-events topic
periodically.

• The desired-state-events topic is written to whenever a user or process
wants to change the power state of a turbine (i.e., turn it off or on).

Since the environmental sensor data is reported in the reported-state-events
topic, we will add a stream processor that determines whether or not the
reported wind speed for a given turbine exceeds safe operating levels,6 and if it
does, we will automatically generate a shutdown signal. This will teach you how
to add a stateless stream processor using the Processor API.
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7 For another method, see our discussion of tombstones in “Tombstones” on page 189.

The third step is broken into two parts:

• First, both types of events (reported and desired) will be combined into a so-
called digital twin record. These records will be processed and then written
to a persistent key-value store called digital-twin-store. In this step, you
will learn how to connect to and interact with state stores using the Pro‐
cessor API, and also how to access certain record metadata that isn’t accessi‐
ble via the DSL.

• The second part of this step involves scheduling a periodic function, called a
punctuator, to clean out old digital twin records that haven’t seen an update
in more than seven days. This will introduce you to the Processor API’s
punctuation interface, and also demonstrate an alternative method for
removing keys from state stores.7

Each digital twin record will be written to an output topic called digital-twins
for analytical purposes. In this step, you will learn how to add sink processors
using the Processor API.

We will expose the digital twin records via Kafka Streams’ interactive queries fea‐
ture. Every few seconds, the microcontroller on the wind turbine will attempt to
synchronize its own state with the desired state exposed by Kafka Streams. For
example, if we generate a shutdown signal in step 2 (which would set the desired
power state to OFF), then the turbine would see this desired state when it queries
our Kafka Streams app, and kill power to the blades.

Now that we understand what we’ll be building (and what we’ll learn at each step),
let’s set up our project.

Project Setup
The code for this chapter is located at https://github.com/mitch-seymour/mastering-
kafka-streams-and-ksqldb.git.

If you would like to reference the code as we work our way through each topology
step, clone the repo and change to the directory containing this chapter’s tutorial. The
following command will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-07/digital-twin
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You can build the project anytime by running the following command:

$ ./gradlew build --info

With our project set up, let’s start implementing our digital twin application.

Data Models
As usual, before we start creating our topology, we’ll first define our data models. The
example records and class definition shown in Table 7-1 correspond to the data in
our input topics (see step 1 in our processor topology: Figure 7-1).

Note that the data coming through both of the input topics is formatted as JSON
for simplicity, and both types of records are represented using a common class:
TurbineState. We have omitted the accessor functions in the TurbineState class for
brevity’s sake.

Table 7-1. Example records and data classes for each source topic

Kafka topic Example record Data class
reported-state-events {

  "timestamp": "...",
  "wind_speed_mph": 40,
  "power": "ON"
}

public class TurbineState {
  private String timestamp;
  private Double windSpeedMph;

  public enum Power { ON, OFF }

  public enum Type { DESIRED, REPORTED }

  private Power power;
  private Type type;
}

desired-state-events {
  "timestamp": "...",
  "power": "OFF"
}

Same as the data class for reported-state

As mentioned in the tutorial overview, we need to combine the reported and desired
state records to create a digital twin record. Therefore, we also need a data class for
the combined record. The following table shows the JSON structure of the combined
digital twin record, as well as the corresponding data class:
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Example record Data class
{
  "desired": {
    "timestamp": "2020-11-23T09:02:01.000Z",
    "power": "OFF"
  },
  "reported": {
    "timestamp": "2020-11-23T09:00:01.000Z",
    "windSpeedMph": 68,
    "power": "ON"
  }
}

public class DigitalTwin {
  private TurbineState desired;
  private TurbineState reported;

  // getters and setters omitted for
  // brevity
}

As you can see from the example record, the desired state shows the turbine powered
off, but the last reported state shows that the power is on. The turbine will eventually
synchronize its state with the digital twin and power the blades off.

Now, at this point, you may be wondering how record serialization and deserializa‐
tion work in the Processor API compared to the high-level DSL. In other words, how
do we actually convert the raw record bytes in our Kafka topics into the data classes
shown in Table 7-1? In “Serialization/Deserialization” on page 69, we talked about
using Serdes classes in the DSL, which are wrapper classes that contain both a serial‐
izer and deserializer. Many DSL operators, like stream, table, join, etc., allow you to
specify a Serdes instance, so they are commonplace in applications that use the DSL.

In the Processor API, the various API methods only require the underlying serializer
or deserializer that a Serdes instance would typically contain. However, it is still often
convenient to define a Serdes for your data classes, since 1) you can always extract the
underlying serializer/deserializer to satisfy a Processor API method signature, and 2)
Serdes are often useful for testing purposes.

With that said, for this tutorial, we will leverage the Serdes classes shown in
Example 7-1.

Example 7-1. Serdes for our digital twin and turbine state records

public class JsonSerdes {

  public static Serde<DigitalTwin> DigitalTwin() { 
    JsonSerializer<DigitalTwin> serializer = new JsonSerializer<>();
    JsonDeserializer<DigitalTwin> deserializer =
      new JsonDeserializer<>(DigitalTwin.class);

    return Serdes.serdeFrom(serializer, deserializer);
  }

  public static Serde<TurbineState> TurbineState() { 
    JsonSerializer<TurbineState> serializer = new JsonSerializer<>();
    JsonDeserializer<TurbineState> deserializer =
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      new JsonDeserializer<>(TurbineState.class);

    return Serdes.serdeFrom(serializer, deserializer); 
  }
}

A method for retrieving a DigitalTwin Serdes.

A method for retrieving a TurbineState Serdes.

In previous tutorials, we implemented the Serde interface directly (see “Building
the Tweet Serdes” on page 74 for an example). This shows an alternative
approach, which is to use the Serdes.serdeFrom method in Kafka Streams to
construct a Serdes from a serializer and deserializer instance.

In the next section, we’ll learn how to add source processors and deserialize input
records using the Processor API.

Adding Source Processors
Now that we have defined our data classes, we are ready to tackle step 1 of our pro‐
cessor topology (see Figure 7-1). This involves adding two source processors, which
will allow us to stream data from our input topics into our Kafka Streams application.
Example 7-2 shows how we can accomplish this using the Processor API.

Example 7-2. The initial topology with both of our source processors added

Topology builder = new Topology(); 

builder.addSource(
    "Desired State Events", 
    Serdes.String().deserializer(), 
    JsonSerdes.TurbineState().deserializer(), 
    "desired-state-events"); 

builder.addSource(
    "Reported State Events",
    Serdes.String().deserializer(),
    JsonSerdes.TurbineState().deserializer(),
    "reported-state-events");

Instantiate a Topology instance directly. This is what we will use to add and con‐
nect source, sink, and stream processors. Note: instantiating a Topology directly
is different than how we work with the DSL, which requires us to instantiate a
StreamsBuilder object, add our DSL operators (e.g., map, flatMap, merge,
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branch, etc.) to the StreamsBuilder instance, and ultimately build a Topology
instance using the StreamsBuilder#build method.

Use the addSource method to create a source processor. There are many overloa‐
ded versions of this method, including variations that support offset reset strate‐
gies, topic patterns, and more. So check out the Kafka Streams Javadocs or
navigate to the Topology class using your IDE and choose the addSource varia‐
tion that best fits your needs.

The name of the source processor. Each processor must have a unique name,
since under the hood, Kafka Streams stores these names in a topologically sorted
map (and therefore, each key must be unique). As we’ll see shortly, names are
important in the Processor API since they are used to connect child processors.
Again, this is very different from how the DSL makes connections, which doesn’t
need an explicit name to define the relationship between processors (by default,
the DSL generates an internal name for you). It’s advisable to use a descriptive
name here to improve the readability of your code.

The key deserializer. Here, we use the built-in String deserializer since our keys
are formatted as strings. This is another difference between the Processor API
and the DSL. The latter requires us to pass in a Serdes (an object that contains
both a record serializer and deserializer), while the Processor API only requires
the underlying deserializer (which can be extracted directly from the Serdes, as
we have done here).

The value deserializer. Here, we use a custom Serdes (found in the source code of
this tutorial) to convert the record values into a TurbineState object. The addi‐
tional notes about the key deserializer also apply here.

The name of the topic this source processor consumes from.

Add a second source processor for the reported-state-events topic. We won’t
go through each parameter again since the parameter types match the previous
source processor.

One thing to note about the preceding example is that you will see no mention of a
stream or table. These abstractions do not exist in the Processor API. However, con‐
ceptually speaking, both source processors we have added in the preceding code rep‐
resent a stream. This is because the processors are not stateful (i.e., they are not
connected to a state store) and therefore have no way of remembering the latest state/
representation of a given key.
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We will see a table-like representation of our stream when we get to step 3 of our pro‐
cessor topology, but this section completes step 1 of our topology. Now, let’s see how
to add a stream processor for generating shutdown signals when our wind turbine is
reporting dangerous wind speeds.

Adding Stateless Stream Processors
The next step in our processor topology requires us to automatically generate a shut‐
down signal whenever the wind speed recorded by a given turbine exceeds safe oper‐
ating levels (65 mph). In order to do this, we need to learn how to add a stream
processor using the Processor API. The API method we can use for this purpose is
called addProcessor, and an example of how to use this method is shown here:

builder.addProcessor(
    "High Winds Flatmap Processor", 
    HighWindsFlatmapProcessor::new, 
    "Reported State Events"); 

The name of this stream processor.

The second argument expects us to provide a ProcessSupplier, which is a func‐
tional interface that returns a Processor instance. Processor instances contain
all of the data processing/transformation logic for a given stream processor. In
the next section, we will define a class called HighWindsFlatmapProcessor, which
will implement the Processor interface. Therefore, we can simply use a method
reference for that class’s constructor.

Names of the parent processors. In this case, we only have one parent processor,
which is the Reported State Events processor that we created in Example 7-2.
Stream processors can be connected to one or more parent nodes.

Whenever you add a stream processor, you need to implement the Processor inter‐
face. This isn’t a functional interface (unlike ProcessSupplier, which we just dis‐
cussed), so you can’t just pass in a lambda expression to the addProcessor method,
like we often do with DSL operators. It’s a little more involved and requires more
code than we may be accustomed to, but we’ll walk through how to do this in the next
section.
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Creating Stateless Processors
Whenever we use the addProcessor method in the Processor API, we need to imple‐
ment the Processor interface, which will contain the logic for processing and trans‐
forming records in a stream. The interface has three methods, as shown here:

public interface Processor<K, V> { 

    void init(ProcessorContext context); 

    void process(K key, V value); 

    void close(); 
}

Notice that the Processor interface specifies two generics: one for the key type
(K) and one for the value type (V). We will see how to leverage these generics
when we implement our own processor later in this section.

The init method is called when the Processor is first instantiated. If your pro‐
cessor needs to perform any initialization tasks, you can specify the initialization
logic in this method. The ProcessorContext that is passed to the init method is
extremely useful, and contains many methods that we will explore in this chapter.

The process method is called whenever this processor receives a new record. It
contains the per-record data transformation/processing logic. In our example,
this is where we will add the logic for detecting whether or not wind speeds
exceed safe operating levels for our turbine.

The close method is invoked by Kafka Streams whenever it is finished with this
operator (e.g., during shutdown). This method typically encapsulates any clean
up logic you need for your processor and its local resources. However, you
should not attempt to cleanup any Kafka Streams–managed resources, like state
stores, in this method, since that is handled by the library itself.

With this interface in mind, let’s implement a Processor that will generate a shut‐
down signal when wind speeds reach dangerous levels. The code in Example 7-3
shows what our high winds processor looks like.

Example 7-3. A Processor implementation that detects dangerous wind speeds

public class HighWindsFlatmapProcessor
    implements Processor<String, TurbineState, String, TurbineState> { 
  private ProcessorContext<String, TurbineState> context;

  @Override
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  public void init(ProcessorContext<String, TurbineState> context) { 
    this.context = context; 
  }

  @Override
  public void process(Record<String, TurbineState> record) {
    TurbineState reported = record.value();
    context.forward(record); 

    if (reported.getWindSpeedMph() > 65 && reported.getPower() == Power.ON) { 
      TurbineState desired = TurbineState.clone(reported); 
      desired.setPower(Power.OFF);
      desired.setType(Type.DESIRED);

      Record<String, TurbineState> newRecord = 
        new Record<>(record.key(), desired, record.timestamp());
      context.forward(newRecord); 
    }
  }

  @Override
  public void close() {
    // nothing to do 
  }
}

Recall that the Processor interface is parameterized with four generics. The first
two generics (in this case, Processor<String, TurbineState, ..., ...>) refer
to the input key and value types. The last two generics (in this case,
Processor<..., ..., String, TurbineState>) refer to the output key and
value types.

The generics in the ProcessorContext interface refer to the output key and value
types (in this case, ProcessorContext<String, TurbineState>).

It is typical to save the processor context as an instance property, as we do here,
so that we can access it later (e.g., from the process and/or close methods).

Whenever you want to send a record to downstream processors, you can call the
forward method on the ProcessorContext instance (we have saved this in the
context property). This method accepts the record that you would like to for‐
ward. In our processor implementation, we always want to forward the reported
state records, which is why we call context.forward using an unmodified record
in this line.
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Check to see if our turbine meets the conditions for sending a shutdown signal.
In this case, we check that wind speeds exceed a safe threshold (65 mph), and
that our turbine is currently powered on.

If the previous conditions are met, generate a new record containing a desired
power state of OFF. Since we have already sent the original reported state record
downstream, and we are now generating a desired state record, this is effectively
a type of flatMap operation (our processor has created two output records from
one input record).

Create an output record that includes the desired state that we saved to the state
store. The record key and timestamp are inherited from the input record.

Call the context.forward method in order to send the new record (the shut‐
down signal) to downstream processors.

In this processor, there’s no special logic that we need to execute when our pro‐
cessor is closed.

As you can see, implementing a Processor is pretty straightforward. One interesting
thing to call out is that when you build processors like this, you usually don’t need
to concern yourself with where the output records will be forwarded to from the
Processor implementation itself (you can define the dataflow by setting the parent
name of a downstream processor). The exception to this is if you use a variation of
ProcessorContext#forward that accepts a list of downstream processor names,
which tells Kafka Streams which child processors to forward the output to. An exam‐
ple of this is shown here:

context.forward(newRecord, "some-child-node");

Whether or not you use this variation of the forward method depends on if you want
to broadcast the output to all of the downstream processors or to a specific down‐
stream processor. For example, the DSL’s branch method uses the above variation
since it only needs to broadcast its output to a subset of the available downstream
processors.

This completes step 2 of our processor topology (see Figure 7-1). Next, we need to
implement a stateful stream processor that creates and saves digital twin records in a
key-value store.
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Creating Stateful Processors
In “State Stores” on page 98, we learned that stateful operations in Kafka Streams
require so-called state stores for maintaining some memory of previously seen data.
In order to create our digital twin records, we need to combine desired state and
recorded state events into a single record. Since these records will arrive at different
times for a given wind turbine, we have a stateful requirement of remembering the
last recorded and desired state record for each turbine.

So far in this book, we have mostly focused on using state stores in the DSL. Further‐
more, the DSL gives us a couple of different options for using state stores. We can use
a default internal state store by simply using a stateful operator without specifying a
state store, like so:

grouped.aggregate(initializer, adder);

Or we can use the Stores factory class to create a store supplier, and materialize the
state store using the Materialized class in conjunction with a stateful operator, as
shown in the following code:

KeyValueBytesStoreSupplier storeSupplier =
    Stores.persistentTimestampedKeyValueStore("my-store");

grouped.aggregate(
    initializer,
    adder,
    Materialized.<String, String>as(storeSupplier));

Using state stores in the Processor API is a little different. Unlike the DSL, the Pro‐
cessor API won’t create an internal state store for you. Therefore, you must always
create and connect state stores to the appropriate stream processors yourself when
you need to perform stateful operations. Furthermore, while we can still use the
Stores factory class, we will use a different set of methods that are available in this
class for creating state stores. Instead of using one of the methods that returns a store
supplier, we will use the methods for creating store builders.

For example, to store the digital twin records, we need a simple key-value store. The
factory method for retrieving a key-value store builder is called keyValueStore
Builder, and the following code demonstrates how we can use this method for creat‐
ing our digital twin store:

StoreBuilder<KeyValueStore<String, DigitalTwin>> storeBuilder =
    Stores.keyValueStoreBuilder(
        Stores.persistentKeyValueStore("digital-twin-store"),
        Serdes.String(), 
        JsonSerdes.DigitalTwin()); 
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We’ll use the built-in String Serdes for serializing/deserializing keys.

Use the Serdes we defined in Example 7-1 for serializing/deserializing values.

Once you’ve created a store builder for your stateful processor, it’s time to implement
the Processor interface. This process is very similar to what we saw when we added a
stateless processor in “Creating Stateless Processors” on page 214. We simply need to
use the addProcessor method in the Processor API, as shown in the following code:

builder.addProcessor(
  "Digital Twin Processor", 
  DigitalTwinProcessor::new, 
  "High Winds Flatmap Processor", "Desired State Events"); 

The name of this stream processor.

A ProcessSupplier, which is a method that can be used to retrieve a Processor
instance. We will implement the DigitalTwinProcessor referenced in this line
shortly.

Names of the parent processors. By specifying multiple parents, we are effectively
performing what would be a merge operation in the DSL.

Before we implement the DigitalTwinProcessor, let’s go ahead and add our new
state store to the topology. We can do this using the Topology#addStateStore
method, and a demonstration of its usage is shown in Example 7-4.

Example 7-4. Example usage of the addStateStore method

builder.addStateStore(
  storeBuilder, 
  "Digital Twin Processor" 
);

A store builder that can be used to obtain the state store.

We can optionally pass in the name of the processors that should have access to
this store. In this case, the DigitalTwinProcessor that we created in the previous
code block should have access. We could also have passed in more processor
names here if we had multiple processors with shared state. Finally, if we omit
this optional argument, we could instead use the Topology#connectProcessor
AndState to connect a state store to a processor after the store was added to the
topology (instead of at the same time, which is what we’re doing here).
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The last step is to implement our new stateful processor: DigitalTwinProcessor.
Like stateless stream processors, we will need to implement the Processor interface.
However, this time, our implementation will be slightly more involved since this
processor needs to interact with a state store. The code in Example 7-5, and the anno‐
tations that follow it, will describe how to implement a stateful processor.

Example 7-5. A stateful processor for creating digital twin records

public class DigitalTwinProcessor
    implements Processor<String, TurbineState, String, DigitalTwin> { 
  private ProcessorContext<String, DigitalTwin> context;
  private KeyValueStore<String, DigitalTwin> kvStore;

  @Override
  public void init(ProcessorContext<String, DigitalTwin> context) { 
    this.context = context; 
    this.kvStore = (KeyValueStore) context.getStateStore("digital-twin-store"); 
  }

  @Override
  public void process(Record<String, TurbineState> record) {
    String key = record.key(); 
    TurbineState value = record.value();
    DigitalTwin digitalTwin = kvStore.get(key); 
    if (digitalTwin == null) { 
      digitalTwin = new DigitalTwin();
    }

    if (value.getType() == Type.DESIRED) { 
      digitalTwin.setDesired(value);
    } else if (value.getType() == Type.REPORTED) {
      digitalTwin.setReported(value);
    }

    kvStore.put(key, digitalTwin); 

    Record<String, DigitalTwin> newRecord =
      new Record<>(record.key(), digitalTwin, record.timestamp()); 
    context.forward(newRecord); 
  }

  @Override
  public void close() {
    // nothing to do
  }
}
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The first two generics in the Processor interface (in this case,
Processor<String, TurbineState, ..., ...>) refer to the input key and value
types, and the last two generics (Processor<..., ..., String, DigitalTwin>)
refer to the output key and value types.

The generics in the ProcessorContext interface (ProcessorContext<String,
DigitalTwin>) refer to the output key and value types

We’ll save the ProcessorContext (referenced by the context property) so that we
can access it later on.

The getStateStore method on the ProcessorContext allows us to retrieve the
state store we previously attached to our stream processor. We will interact with
this state store directly whenever a record is processed, so we will save it to an
instance property named kvStore.

This line and the one that follows it show how to extract the key and value of the
input record

Use our key-value store to perform a point lookup for the current record’s key. If
we have seen this key before, then this will return the previously saved digital
twin record.

If the point lookup didn’t return any results, then we will create a new digital twin
record.

In this code block, we set the appropriate value in the digital twin record depend‐
ing on the current record’s type (reported state or desired state).

Store the digital twin record in the state store directly, using the key-value store’s
put method.

Create an output record that includes the digital twin instance that we saved to
the state store. The record key and timestamp are inherited from the input
record.

Forward the output record to downstream processors.

We’ve now implemented the first part of step 3 in our processor topology. The next
step (step 3.2 in Figure 7-1) will introduce you to a very important feature in the Pro‐
cessor API that has no DSL equivalent. Let’s take a look at how to schedule periodic
functions in the DSL.
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Periodic Functions with Punctuate
Depending on your use case, you may need to perform some periodic task in your
Kafka Streams application. This is one area where the Processor API really shines,
since it allows you to easily schedule a task using the ProcessorContext#schedule
method. Recall that in “Tombstones” on page 189, we discussed how to keep our state
store size to a minimum by removing unneeded records. In this tutorial, we will
present another method for cleaning out state stores that leverages this task schedul‐
ing capability. Here, we will remove all digital twin records that haven’t seen any state
updates in the last seven days. We will assume these turbines are no longer active or
are under long-term maintenance, and therefore we’ll delete these records from our
key-value store.

In Chapter 5, we showed that when it comes to stream processing, time is a complex
subject. When we think about when a periodic function will execute in Kafka
Streams, we are reminded of this complexity. There are two punctuation types (i.e.,
timing strategies) that you can select from, as shown in Table 7-2.

Table 7-2. The types of punctuations that are available in Kafka Streams

Punctuation
type

Enum Description

Stream time PunctuationType.STREAM_TIME Stream time is the highest timestamp observed for a
particular topic-partition. It is initially unknown and can
only increase or stay the same. It advances only when new
data is seen, so if you use this punctuation type, then your
function will not execute unless data arrives on a
continuous basis.

Wall clock
time

PunctuationType.WALL_CLOCK_TIME The local system time, which is advanced during each
iteration of the consumer poll method. The upper bound
for how often this gets updated is defined by the
StreamsConfig#POLL_MS_CONFIG configuration,
which is the maximum amount of time (in milliseconds)
the underlying poll method will block as it waits for new
data. This means periodic functions will continue to
execute regardless of whether or not new messages arrive.

Since we don’t want our periodic function to be tied to new data arriving (in fact, the
very presence of this TTL (“time to live”) function is based on the assumption that
data may stop arriving), then we will use wall clock time as our punctuation type.
Now that we’ve decided which abstraction to use, the rest of the work is simply a
matter of scheduling and implementing our TTL function.
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The following code shows our implementation:

public class DigitalTwinProcessor
    implements Processor<String, TurbineState, String, DigitalTwin> {

  private Cancellable punctuator; 

  // other omitted for brevity

  @Override
  public void init(ProcessorContext<String, DigitalTwin> context) {

    punctuator = this.context.schedule(
        Duration.ofMinutes(5),
        PunctuationType.WALL_CLOCK_TIME, this::enforceTtl); 

    // ...
  }

  @Override
  public void close() {
    punctuator.cancel(); 
  }

  public void enforceTtl(Long timestamp) {
    try (KeyValueIterator<String, DigitalTwin> iter = kvStore.all()) { 

      while (iter.hasNext()) {
        KeyValue<String, DigitalTwin> entry = iter.next();
        TurbineState lastReportedState = entry.value.getReported(); 
        if (lastReportedState == null) {
          continue;
        }

        Instant lastUpdated = Instant.parse(lastReportedState.getTimestamp());
        long daysSinceLastUpdate =
          Duration.between(lastUpdated, Instant.now()).toDays(); 
        if (daysSinceLastUpdate >= 7) {
          kvStore.delete(entry.key); 
        }
      }
    }
  }

  // ...
}
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When we schedule the punctuator function, it will return a Cancellable object
that we can use to stop the scheduled function later on. We’ll use an object vari‐
able named punctuator to keep track of this object.

Schedule our periodic function to execute every five minutes based on wall clock
time, and save the returned Cancellable under the punctuator property (see the
preceding callout).

Cancel the punctuator when our processor is closed (e.g., during a clean shut‐
down of our Kafka Streams application).

During each invocation of our function, retrieve each value in our state store.
Note that we use a try-with-resources statement to ensure the iterator is closed
properly, which will prevent resource leaks.

Extract the last reported state of the current record (which corresponds to a
physical wind turbine).

Determine how long it’s been (in days) since this turbine last reported its state.

Delete the record from the state store if it’s stale (hasn’t been updated in at least
seven days).

The process function and any punctuations we schedule will be
executed in the same thread (i.e., there’s no background thread for
punctuations) so you don’t need to worry about concurrency
issues.

As you can see, scheduling periodic functions is extremely easy. Next, let’s look at
another area where the Processor API shines: accessing record metadata.

Accessing Record Metadata
When we use the DSL, we typically only have access to a record’s key and value. How‐
ever, there’s a lot of additional information associated with a given record that is not
exposed by the DSL, but that we can access using the Processor API. Some of the
more prominent examples of record metadata that you might want to access are
shown in Table 7-3. Note that the context variable in the following table refers to an
instance of ProcessorContext, which is made available in the init method, as we
first showed in Example 7-3.
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Table 7-3. Methods for accessing additional record metadata

Metadata Example
Record headers context.headers()

Offset context.offset()

Partition context.partition()

Timestamp context.timestamp()

Topic context.topic()

The methods shown in Table 7-3 pull metadata about the current
record, and can be used within the process() function. However,
there isn’t a current record when the init() or close() functions
are invoked or when a punctuation is executing, so there’s no meta‐
data to extract.

So what could you do with this metadata? One use case is to decorate the record val‐
ues with additional context before they are written to some downstream system. You
can also decorate application logs with this information to help with debugging pur‐
poses. For example, if you encounter a malformed record, you could log an error
containing the partition and offset of the record in question, and use that as a basis
for further troubleshooting.

Record headers are also interesting, because they can be used to inject additional
metadata (for example, tracing context that can be used for distributed tracing). Some
examples of how to interact with record headers are shown here:

Headers headers = context.headers();
headers.add("hello", "world".getBytes(StandardCharsets.UTF_8)); 
headers.remove("goodbye"); 
headers.toArray(); 

Add a header named hello. This header will be propagated to downstream
processors.

Remove a header named goodbye.

Get an array of all of the available headers. You could iterate over this and do
something with each.

Finally, if you’d like to trace the origin of a record, the topic() method could be use‐
ful for this purpose. In this tutorial, we don’t need to do this, or really access any
metadata at all, but you should now have a good understanding of how to access
additional metadata in case you encounter a use case that requires it in the future.
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We’re ready to move to the next step of our processor topology and learn how to add
a sink processor using the Processor API.

Adding Sink Processors
Tackling step 4 of our processor topology (see Figure 7-1). involves adding a sink
processor that will write all digital twin records to an output topic called digital-
twins. This is very simple with the Processor API, so this section will be short. We
simply need to use the addSink method and specify a few additional parameters,
which are detailed in the following code:

builder.addSink(
  "Digital Twin Sink", 
  "digital-twins", 
  Serdes.String().serializer(), 
  JsonSerdes.DigitalTwin().serializer(), 
  "Digital Twin Processor"); 

The name of this sink node.

The name of the output topic.

The key serializer.

The value serializer.

The name of one or more parent nodes to connect to this sink.

That’s all there is to adding a sink processor. Of course, as with most methods in
Kafka Streams, there are some additional variations of this method you may want to
utilize. For example, one variation allows you to specify a custom StreamParti
tioner to map the output record to a partition number. Another variation allows you
to exclude the key and value serializers and, instead, use the default serializers that are
derived from the DEFAULT_KEY_SERDE_CLASS_CONFIG property. But no matter which
overloaded method you use, adding a sink processor is a pretty simple operation.

Let’s move on to the final step of exposing digital twin records to external services
(including the wind turbines themselves, which will synchronize their state to the
digital twin records in our state store).

Interactive Queries
We’ve completed steps 1–4 of our topology (see Figure 7-1). The fifth step simply
involves exposing the digital twin records using Kafka Streams’ interactive queries
feature. We already covered this topic in detail in “Interactive Queries” on page 129,

Adding Sink Processors | 225



so we won’t go into too much detail or show the entire implementation. However,
Example 7-6 shows a very simple REST service that uses interactive queries to pull
the latest digital twin record. Note that in this example, remote queries aren’t shown,
but you can view this example’s source code for a more complete example.

The important thing to note is that from an interactive query perspective, using the
Processor API is exactly the same as using the DSL.

Example 7-6. An example REST service to expose digital twin records

class RestService {
  private final HostInfo hostInfo;
  private final KafkaStreams streams;

  RestService(HostInfo hostInfo, KafkaStreams streams) {
    this.hostInfo = hostInfo;
    this.streams = streams;
  }

  ReadOnlyKeyValueStore<String, DigitalTwin> getStore() {
    return streams.store(
        StoreQueryParameters.fromNameAndType(
            "digital-twin-store", QueryableStoreTypes.keyValueStore()));
  }

  void start() {
    Javalin app = Javalin.create().start(hostInfo.port());
    app.get("/devices/:id", this::getDevice);
  }

  void getDevice(Context ctx) {
    String deviceId = ctx.pathParam("id");
    DigitalTwin latestState = getStore().get(deviceId);
    ctx.json(latestState);
  }
}

This completes step 5 of our processor topology (see Figure 7-1). Let’s put the various
pieces that we’ve constructed together.

Putting It All Together
The following code block shows what our full processor topology looks like at this
point:

Topology builder = new Topology();

builder.addSource( 
    "Desired State Events",

226 | Chapter 7: Processor API



    Serdes.String().deserializer(),
    JsonSerdes.TurbineState().deserializer(),
    "desired-state-events");

builder.addSource( 
    "Reported State Events",
    Serdes.String().deserializer(),
    JsonSerdes.TurbineState().deserializer(),
    "reported-state-events");

builder.addProcessor( 
    "High Winds Flatmap Processor",
    HighWindsFlatmapProcessor::new,
    "Reported State Events");

builder.addProcessor( 
    "Digital Twin Processor",
    DigitalTwinProcessor::new,
    "High Winds Flatmap Processor",
    "Desired State Events");

StoreBuilder<KeyValueStore<String, DigitalTwin>> storeBuilder =
    Stores.keyValueStoreBuilder( 
        Stores.persistentKeyValueStore("digital-twin-store"),
        Serdes.String(),
        JsonSerdes.DigitalTwin());

builder.addStateStore(storeBuilder, "Digital Twin Processor"); 

builder.addSink( 
    "Digital Twin Sink",
    "digital-twins",
    Serdes.String().serializer(),
    JsonSerdes.DigitalTwin().serializer(),
    "Digital Twin Processor");

Create a source processor named Desired State Events that consumes data
from the desired-state-events topic. This is the equivalent of a stream in the
DSL.

Create a source processor named Reported State Events that consumes data
from the reported-state-events topic. This is also the equivalent of a stream in
the DSL.

Add a stream processor named High Winds Flatmap Processor that generates a
shutdown signal if high winds are detected. This processor receives events from
the Reported State Events processor. This would be a flatMap operation in the
DSL since there is a 1:N relationship between the number of input and output
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records for this stream processor. Example 7-3 shows the implementation of this
processor.

Add a stream processor named Digital Twin Processor that creates digital twin
records using data emitted from both the High Winds Flatmap Processor and
Desired State Events. This would be a merge operation in the DSL since multi‐
ple sources are involved. Furthermore, since this is a stateful processor, this
would be the equivalent of an aggregated table in the DSL. Example 7-5 shows
the implementation of this processor.

Use the Stores factory class to create a store builder, which can be used by Kafka
Streams to build persistent key-value stores that are accessible from the Digital
Twin Processor node.

Add the state store to the topology and connect it to the Digital Twin

Processor node.

Create a sink processor named Digital Twin Sink that writes all digital twin
records that get emitted from the Digital Twin Processor node to an output
topic named digital-twins.

We can now run our application, write some test data to our Kafka cluster, and query
our digital twin service. Running our application is no different than what we’ve seen
in previous chapters, as you can see from the following code block:

Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "dev-consumer"); 
// ...

KafkaStreams streams = new KafkaStreams(builder, props); 
streams.start(); 

Runtime.getRuntime().addShutdownHook(new Thread(streams::close)); 

RestService service = new RestService(hostInfo, streams); 
service.start();

Configure the Kafka Streams application. This works the same way as we saw
when building applications with the DSL. Most of the configs are omitted for
brevity’s sake.

Instantiate a new KafkaStreams instance that can be used to execute our
topology.

Start the Kafka Streams application.

228 | Chapter 7: Processor API



Add a shutdown hook to gracefully stop the Kafka Streams application when a
global shutdown signal is received.

Instantiate and (on the following line) start the REST service, which we imple‐
mented in Example 7-6.

Our application now reads from multiple source topics, but we will only produce test
data to the reported-state-events topic in this book (see the source code for a
more complete example). To test that our application generates a shutdown signal, we
will include one record that contains a wind speed that exceeds our safe operating
threshold of 65 mph. The following code shows the test data we will produce, with
record keys and values separated by | and timestamps omitted for brevity:

1|{"timestamp": "...", "wind_speed_mph": 40, "power": "ON", "type": "REPORTED"}
1|{"timestamp": "...", "wind_speed_mph": 42, "power": "ON", "type": "REPORTED"}
1|{"timestamp": "...", "wind_speed_mph": 44, "power": "ON", "type": "REPORTED"}
1|{"timestamp": "...", "wind_speed_mph": 68, "power": "ON", "type": "REPORTED"} 

This sensor data shows a wind speed of 68 mph. When our application sees this
record, it should generate a shutdown signal by creating a new TurbineState
record, with a desired power state of OFF.

If we produce this test data into the reported-state-events topic and then query
our digital twin service, we will see that our Kafka Streams application not only pro‐
cessed the reported states of our windmill, but also produced a desired state record
where the power is set to OFF. The following code block shows an example request
and response to our REST service:

$ curl localhost:7000/devices/1 | jq '.'

{
  "desired": {
    "timestamp": "2020-11-23T09:02:01.000Z",
    "windSpeedMph": 68,
    "power": "OFF",
    "type": "DESIRED"
  },
  "reported": {
    "timestamp": "2020-11-23T09:02:01.000Z",
    "windSpeedMph": 68,
    "power": "ON",
    "type": "REPORTED"
  }

Now, our wind turbines can query our REST service and synchronize their own state
with the desired state that was either captured (via the desired-state-events topic)
or enforced (using the high winds processor to send a shutdown signal) by Kafka
Streams.
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Combining the Processor API with the DSL
We’ve verified that our application works. However, if you look closely at our code,
you’ll see that only one of the topology steps requires the low-level access that the
Processor API offers. The step I’m referring to is the Digital Twin Processor step
(see step 3 in Figure 7-1), which leverages an important feature of the Processor API:
the ability to schedule periodic functions.

Since Kafka Streams allows us to combine the Processor API and the DSL, we can
easily refactor our application to only use the Processor API for the Digital Twin
Processor step, and to use the DSL for everything else. The biggest benefit of per‐
forming this kind of refactoring is that other stream processing steps can be simpli‐
fied. In this tutorial, the High Winds Flatmap Processor offers the biggest
opportunity of simplification, but in larger applications, this kind of refactoring
reduces complexity on an even greater scale.

The first two steps in our processor topology (registering the source processors
and generating a shutdown signal using a flatMap-like operation) can be refactored
using operators we’ve already discussed in this book. Specifically, we can make the
following changes:

Processor API DSL
Topology builder = new Topology();

builder.addSource(
  "Desired State Events",
  Serdes.String().deserializer(),
  JsonSerdes.TurbineState().deserializer(),
  "desired-state-events");

builder.addSource(
  "Reported State Events",
  Serdes.String().deserializer(),
  JsonSerdes.TurbineState().deserializer(),
  "reported-state-events");

builder.addProcessor(
  "High Winds Flatmap Processor",
  HighWindsFlatmapProcessor::new,
  "Reported State Events");
  

StreamsBuilder builder = new StreamsBuilder();

KStream<String, TurbineState> desiredStateEvents =
  builder.stream("desired-state-events",
    Consumed.with(
      Serdes.String(),
      JsonSerdes.TurbineState()));

KStream<String, TurbineState> highWinds =
  builder.stream("reported-state-events",
    Consumed.with(
      Serdes.String(),
      JsonSerdes.TurbineState()))
  .flatMapValues((key, reported) -> ... )
  .merge(desiredStateEvents);

As you can see, these changes are pretty straightforward. However, step 3 in our top‐
ology actually does require the Processor API, so how do we go about combining the
DSL and Processor API in this step? The answer lies in a special set of DSL operators,
which we will explore next.
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Processors and Transformers
The DSL includes a special set of operators that allow us to use the Processor API
whenever we need lower-level access to state stores, record metadata, and processor
context (which can be used for scheduling periodic functions, among other things).
These special operators are broken into two categories: processors and transformers.
The following outlines the distinction between these two groups:

• A processor is a terminal operation (meaning it returns void and downstream
operators cannot be chained), and the computational logic must be implemented
using the Processor interface (which we first discussed in “Adding Stateless
Stream Processors” on page 213). Processors should be used whenever you need
to leverage the Processor API from the DSL, but don’t need to chain any down‐
stream operators. There is currently only one variation of this type of operator, as
shown in the following table:

DSL operator Interface to implement Description

process Processor Apply a Processor to each record at a time

• Transformers are a more diverse set of operators and can return one or more
records (depending on which variation you use), and are therefore more optimal
if you need to chain a downstream operator. The variations of the transform
operator are shown in Table 7-4.

Table 7-4. Various transform operators that are available in Kafka Streams
DSL operator Interface to implement Description Input/

output
ratio

transform Transformer Apply a Transformer to each record,
generating one or more output records. Single
records can be returned from the Trans
former#transform method, and multiple
values can be emitted using ProcessorCon
text#forward.a The transformer has access
to the record key, value, metadata, processor
context (which can be used for scheduling
periodic functions), and connected state stores.

1:N
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DSL operator Interface to implement Description Input/
output
ratio

transform
Values

ValueTransformer Similar to transform, but does not have
access to the record key and cannot forward
multiple records using ProcessorCon
text#forward (if you try to forward
multiple records, you will get a StreamsEx
ception). Since state store operations are
key-based, this operator is not ideal if you need
to perform lookups against a state store.
Furthermore, output records will have the same
key as the input records, and downstream auto-
repartitioning will not be triggered since the
key cannot be modified (which is advantageous
since it can help avoid network trips).

1:1

transform
Values

ValueTransformerWithKey Similar to transform, but the record key is
read-only and should not be modified. Also, you
cannot forward multiple records using
ProcessorContext#forward (if you try
to forward multiple records, you will get a
StreamsException).

1:1

flatTrans
form

Transformer (with an iterable
return value)

Similar to transform, but instead of relying
on ProcessorContext#forward to
return multiple records, you can simply return a
collection of values. For this reason, it’s
recommended to use flatTransform over
transform if you need to emit multiple
records, since this method is type-safe while
the latter is not (since it relies on Processor
Context#forward).

1:N

flatTrans
formValues

ValueTransformer (with an
iterable return value)

Apply a Transformer to each record,
returning one or more output records directly
from the ValueTransformer#trans
form method.

1:N

flatTrans
formValues

ValueTransformerWithKey
(with an iterable return value)

A stateful variation of flatTransformVal
ues in which a read-only key is passed to the
transform method, which can be used for
state lookups. One or more output records are
returned directly from the ValueTransfor
merWithKey#transform method.

1:N

a Though 1:N transformations are technically supported, transform is better for 1:1 or 1:0 transformations in which a
single record is returned directly, since the ProcessorContext#forward approach is not type-safe. Therefore, if
you need to forward multiple records from your transform, flatTransform is recommended instead, since it is
type-safe.

No matter which variation you choose, if your operator is stateful, you will need to
connect the state store to your topology builder before adding your new operator.
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Since we are refactoring our stateful Digital Twin Processor step, let’s go ahead
and do that:

StoreBuilder<KeyValueStore<String, DigitalTwin>> storeBuilder =
  Stores.keyValueStoreBuilder(
      Stores.persistentKeyValueStore("digital-twin-store"),
      Serdes.String(),
      JsonSerdes.DigitalTwin());

builder.addStateStore(storeBuilder); 

In Example 7-4, we discussed an optional second parameter to the Topology#add
StateStore method, which specifies the processor names that should be connec‐
ted with the state store. Here, we omit the second parameter, so this state store is
dangling (though we will connect it in the next code block).

Now, we need to make a decision. Do we use a processor or transformer for refactor‐
ing the Digital Twin Processor step? Looking at the definitions in the preceding
tables, you may be tempted to use the process operator since we already imple‐
mented the Processor interface in the pure Processor API version of our app (see
Example 7-5). If we were to take this approach (which is problematic for reasons we’ll
discuss shortly), we’d end up with the following implementation:

highWinds.process(
  DigitalTwinProcessor::new, 
  "digital-twin-store"); 

A ProcessSupplier, which is used to retrieve an instance of our DigitalTwinPro
cessor.

The name of the state store that our processor will interact with.

Unfortunately, this isn’t ideal because we need to connect a sink processor to this
node, and the process operator is a terminal operation. Instead, one of the trans‐
former operators would work better here since it allows us to easily connect a sink
processor (as we’ll see shortly). Now, looking at Table 7-4, let’s find an operator that
meets our requirements:

• Each input record will always produce one output record (1:1 mapping)
• We need read-only access to the record key since we’re performing point lookups

in our state store, but do not need to modify the key in any way

The operator that best fits these requirements is transformValues (the variation that
uses a ValueTransformerWithKey). We’ve already implemented the computational
logic for this step using a Processor (see Example 7-5), so we just need to implement
the ValueTransformerWithKey interface and copy the logic from the process method
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in Example 7-5 to the transform method, shown in the following. Most of the code
has been omitted because it’s the same as the processor implementation. The changes
are highlighted in the annotations following this example:

public class DigitalTwinValueTransformerWithKey
    implements ValueTransformerWithKey<String, TurbineState, DigitalTwin> { 

  @Override
  public void init(ProcessorContext context) {
    // ...
  }

  @Override
  public DigitalTwin transform(String key, TurbineState value) {
    // ...
    return digitalTwin; 
  }

  @Override
  public void close() {
    // ...
  }

  public void enforceTtl(Long timestamp) {
    // ...
  }
}

Implement the ValueTransformerWithKey interface. String refers to the key
type, TurbineState refers to the value type of the input record, and DigitalTwin
refers to the value type of the output record.

Instead of using context.forward to send records to downstream processors, we
can return the record directly from the transform method. As you can see, this is
already feeling much more DSL-like.

With our transformer implementation in place, we can add the following line to our
application:

highWinds
  .transformValues(DigitalTwinValueTransformerWithKey::new, "digital-twin-store")
  .to("digital-twins", Produced.with(Serdes.String(), JsonSerdes.DigitalTwin()));
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Putting It All Together: Refactor
Now that we’ve discussed the individual steps in our DSL refactor, let’s take a look at
the two implementations of our application side by side, as seen in Table 7-5.

Table 7-5. Two different implementations of our digital twin topology

Processor API only DSL + Processor API
Topology builder = new Topology();

builder.addSource(
  "Desired State Events",
  Serdes.String().deserializer(),
  JsonSerdes.TurbineState().deserializer(),
  "desired-state-events");

builder.addSource(
  "Reported State Events",
  Serdes.String().deserializer(),
  JsonSerdes.TurbineState().deserializer(),
  "reported-state-events");

builder.addProcessor(
  "High Winds Flatmap Processor",
  HighWindsFlatmapProcessor::new,
  "Reported State Events");

builder.addProcessor(
  "Digital Twin Processor",
  DigitalTwinProcessor::new,
  "High Winds Flatmap Processor",
  "Desired State Events");

StoreBuilder<KeyValueStore<String, DigitalTwin>>
  storeBuilder =
    Stores.keyValueStoreBuilder(
        Stores.persistentKeyValueStore(
          "digital-twin-store"),
        Serdes.String(),
        JsonSerdes.DigitalTwin());

builder.addStateStore(storeBuilder,
  "Digital Twin Processor");

builder.addSink(
  "Digital Twin Sink",
  "digital-twins",
  Serdes.String().serializer(),
  JsonSerdes.DigitalTwin().serializer(),
  "Digital Twin Processor");
      

StreamsBuilder builder = new StreamsBuilder();

KStream<String, TurbineState> desiredStateEvents =
  builder.stream("desired-state-events",
    Consumed.with(
      Serdes.String(),
      JsonSerdes.TurbineState()));

KStream<String, TurbineState> highWinds =
  builder.stream("reported-state-events",
    Consumed.with(
      Serdes.String(),
      JsonSerdes.TurbineState()))
  .flatMapValues((key, reported) -> ... )
  .merge(desiredStateEvents);

  // empty space to align next topology step

StoreBuilder<KeyValueStore<String, DigitalTwin>>
  storeBuilder =
    Stores.keyValueStoreBuilder(
        Stores.persistentKeyValueStore(
          "digital-twin-store"),
        Serdes.String(),
        JsonSerdes.DigitalTwin());

builder.addStateStore(storeBuilder);

highWinds
  .transformValues(
    DigitalTwinValueTransformerWithKey::new,
    "digital-twin-store")
  .to("digital-twins",
    Produced.with(
      Serdes.String(),
      JsonSerdes.DigitalTwin()));

Either implementation is perfectly fine. But going back to something I mentioned
earlier, you don’t want to introduce additional complexity unless you have a good rea‐
son for doing so.

Putting It All Together: Refactor | 235



The benefits of the hybrid DSL + Processor API implementation are:

• It’s easier to construct a mental map of your dataflow by chaining operators
instead of having to define the relationship between processors using node
names and parent names.

• The DSL has lambda support for most operators, which can be beneficial for suc‐
cinct transformations (the Processor API requires you to implement the
Processor interface, even for simple operations, which can be tedious).

• Although we didn’t need to rekey any records in this tutorial, the method for
doing this in the Processor API is much more tedious. You not only need to
implement the Processor interface for a simple rekey operation, but you also
have to handle the rewrite to an intermediate repartition topic (this involves
adding an additional sink and source processor explicitly, which can lead to
unnecessarily complex code).

• The DSL operators give us a standard vocabulary for defining what happens at a
given stream processing step. For example, we can infer that a flatMap operator
may produce a different number of records than the input, without knowing any‐
thing else about the computational logic. On the other hand, the Processor API
makes it easy to disguise the nature of a given Processor implementation, which
hurts code readability and can have a negative impact on maintenance.

• The DSL also gives us a common vocabulary for different types of streams. These
include pure record streams, local aggregated streams (which we usually refer to
as tables), and global aggregated streams (which we refer to as global tables).

Therefore, I usually recommend leveraging the DSL’s special set of operators for using
the Processor API whenever you need lower-level access, as opposed to implementing
an application purely in the Processor API.

Summary
In this chapter, we learned how to use the Processor API to gain lower-level access to
Kafka records and Kafka Streams’ processor context. We also discussed a useful fea‐
ture of the Processor API that allows us to schedule periodic functions, and the vari‐
ous notions of time that can be used when defining a punctuator for these scheduled
functions. Finally, we showed that combining the Processor API and high-level DSL
is a great way to leverage the benefits of both APIs. In the next chapter, we will start
exploring ksqlDB, which will take us to the opposite side of the spectrum in terms of
simplicity (it is the simplest option for building stream processing applications that
we will discuss in this book, and arguably the simplest option, period).
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PART III

ksqlDB

SQL Syntax Notation
The chapters in this part of the book will include several syntax references that we will
use to describe how certain SQL statements can be constructed in ksqlDB. For
example, the syntax reference for listing the running queries on a ksqlDB server is
as follows:

{ SHOW | LIST } QUERIES [EXTENDED];

The notation we will use for all SQL syntax references in this part is as follows:

• Square brackets [ ] enclose optional elements or clauses.
• Curly braces { } enclose a set of alternative choices.
• Parentheses ( ) are literal parentheses.
• A vertical bar | represents a logical OR.
• An ellipsis preceded by a comma within square brackets [, ... ] indicates that

the preceding item can be repeated in a comma-separated list.

For example, using the syntax reference, we can see that our statement can begin with
either SHOW or LIST, and we can optionally append the EXTENDED keyword to the end
of our example statement. Thus, the following is a valid ksqlDB statement:

SHOW QUERIES ;

Note that we will follow this pattern whenever we introduce a new ksqlDB statement.





CHAPTER 8

Getting Started with ksqlDB

The story of ksqlDB is one of simplification and evolution. It was built with the same
goal as Kafka Streams: simplify the process of building stream processing applica‐
tions. However, as ksqlDB evolved, it became clear that its goals were much more
ambitious than even Kafka Streams. That’s because it not only simplifies how we
build stream processing applications, but also how we integrate these applications
with other systems (including those external to Kafka). It does all of this with a SQL
interface, making it easy for beginners and experts alike to leverage the power of
Kafka.

Now, I know what you’re thinking: why would you need to know both Kafka Streams
and ksqlDB, and can you rip out one of the sections of this book and sell it on Craigs‐
list to recover some of your investment? Actually, both Kafka Streams and ksqlDB are
excellent tools to have in your stream processing toolbelt, and complement each
other quite well. You can use ksqlDB for stream processing applications that can be
expressed in SQL, and for easily setting up data sources and sinks to create end-to-
end data processing pipelines using a single tool. On the other hand, you can use
Kafka Streams for more complex applications, and your knowledge of that library will
only deepen your understanding of ksqlDB since it’s actually built on top of Kafka
Streams.

I was going to save the part about ksqlDB being built on top of Kafka Streams as a big
reveal later in this chapter, which hopefully would have caught you in the middle of
drinking a large sip of water. But I couldn’t make it two paragraphs in before I shared
that. This is such a huge selling point and one of the reasons I think you’ll love work‐
ing with ksqlDB. Most databases get really complicated as you start peeling back the
floorboards, making it difficult to establish expertise in the technology without dedi‐
cating months to the tedious study of its internals. However, having Kafka Streams at
its core means ksqlDB is built on well-designed and easily understood layers of
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abstraction, allowing you to dive deeper into the internals and learn how to fully lev‐
erage the power of this technology in a fun and accessible way. In fact, you could even
view the Kafka Streams part of this book as an initial look at the internals of ksqlDB.

There are so many great features in ksqlDB that we have dedicated a few chapters to
its study. In this first chapter, we’ll get our first look at this technology and answer
some important questions, including:

• What exactly is ksqlDB?
• When should you use ksqlDB?
• How have ksqlDB’s features evolved over time?
• Which areas does ksqlDB offer simplification in?
• What are the key components of ksqlDB’s architecture?
• How can we install and run ksqlDB?

So without further ado, let’s start by providing more context about what ksqlDB
actually is and what it’s capable of.

What Is ksqlDB?
ksqlDB is an open source event streaming database that was released by Confluent in
2017 (a little more than a year after Kafka Streams was introduced into the Kafka eco‐
system). It simplifies the way stream processing applications are built, deployed, and
maintained, by integrating two specialized components in the Kafka ecosystem
(Kafka Connect and Kafka Streams) into a single system, and by giving us a high-
level SQL interface for interacting with these components. Some of the things we can
do with ksqlDB include:

• Model data as either streams or tables (each of which is considered a collection in
ksqlDB) using SQL.

• Apply a wide number of SQL constructs (e.g., for joining, aggregating, trans‐
forming, filtering, and windowing data) to create new derived representations of
data without touching a line of Java code.

• Query streams and tables using push queries, which run continuously and emit/
push results to clients whenever new data is available. Under the hood, push
queries are compiled into Kafka Streams applications and are ideal for event-
driven microservices that need to observe and react to events quickly.

• Create materialized views from streams and tables, and query these views using
pull queries. Pull queries are akin to the way keyed-lookups work in traditional
SQL databases, and under the hood, they leverage Kafka Streams and state stores.
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1 Extract, transform, load.
2 Whether or not you should run with this setup in production depends on your workload. For serious work‐

loads, you’ll probably want to run Connect externally so that you can scale these components independently,
as we’ll discuss in Chapter 9. However, the combined setup is extremely convenient for development pur‐
poses.

Pull queries can be used by clients that need to work with ksqlDB in a synchro‐
nous/on-demand workflow.

• Define connectors to integrate ksqlDB with external data stores, allowing you to
easily read from and write to a wide range of data sources and sinks. You can also
combine connectors with tables and streams to create end-to-end streaming ETL1

pipelines.

We’ll explore each of these capabilities in detail over the following chapters. But it’s
worth noting that since ksqlDB is built on the mature bones of Kafka Connect and
Kafka Streams, you get the stability and power of those tools for free, but also all of
the benefits of a friendlier interface. We’ll discuss the benefits of using ksqlDB in the
next section, which will inform our decision of when to use it.

When to Use ksqlDB
It’s no surprise that higher-level abstractions are often easier to work with than their
lower-level counterparts. However, if we were to just say, “SQL is easier to write than
Java,” we’d be glossing over the many benefits of using ksqlDB that stem from its sim‐
pler interface and architecture. These benefits include:

• More interactive workflows, thanks to a managed runtime that can compose and
deconstruct stream processing applications on demand using an included CLI
and REST service for submitting queries.

• Less code to maintain since stream processing topologies are expressed using SQL
instead of a JVM language.

• Lower barrier to entry and fewer new concepts to learn, especially for those who
are familiar with traditional SQL databases but new to stream processing. This
improves project onboarding for new developers and also maintainability.

• Simplified architecture, since the interface for managing connectors (which inte‐
grate external data sources into Kafka) and transforming data are combined into
a single system. There’s also an option for running Kafka Connect from the same
JVM as ksqlDB.2

• Increased developer productivity since it takes less code to express a stream pro‐
cessing application, and complexities of lower-level systems are hidden beneath
new layers of abstraction. Also, the interactive workflow translates to quicker
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3 Note that testing Kafka Streams applications is also very easy, as we’ll see in Chapter 12.

feedback loops and there is an included test harness that makes query verifica‐
tion extremely simple.3 This makes for an enjoyable and productive development
experience.

• Cross-project consistency. Thanks to SQL’s declarative syntax, stream processing
applications that are expressed in SQL are less likely to suffer from speciation
(i.e., developing unique features that differentiate them from otherwise similar
projects). Kafka Streams does a great job of this already by introducing a stan‐
dard set of DSL operators for working with event streams, but there’s still a lot of
freedom when managing the rest of the application code, which can lead to appli‐
cations that are more like pets than cattle.

• Easy setup and turnkey deployments thanks to several distribution options,
including officially supported Docker images. For those who really want a
streamlined path to production, there are also fully managed, cloud-based offer‐
ings of ksqlDB (e.g., Confluent Cloud).

• Better support for data exploration. ksqlDB makes it easy to list and print the con‐
tents of topics, and to quickly create and query materialized views of the data.
These kinds of data exploration use cases are much better fitted for ksqlDB.

Now that we’ve discussed some of the benefits of using ksqlDB, let’s look at when you
should use ksqlDB over Kafka Streams. The most common answer you’ll hear is to
use ksqlDB whenever your stream processing applications can be expressed using
SQL. However, I think this version of the answer is incomplete. Instead, I suggest that
you use ksqlDB whenever your project could leverage any of the preceding benefits
stated and when your stream processing applications can be expressed naturally and
simply using SQL.

For example, one of ksqlDB’s greatest and most powerful features is its ability for
users to extend the built-in function library with custom, Java-based functions. You
may want to leverage this feature on a regular basis, but if you find yourself operating
at the JVM level frequently for a specific application/query set, it’s worth evaluating
whether or not you’re operating at the proper abstraction level (e.g., it may make
more sense to use Kafka Streams).

There are some additional use cases that are better suited for Kafka Streams. For
example, if you need lower-level access to your application state, need to run periodic
functions against your data, need to work with data formats that aren’t supported in
ksqlDB, want more flexibility with application profiling/monitoring (e.g., distributed
tracing, custom metric collection, etc.), or have a lot of business logic that isn’t easily
expressed in SQL, then Kafka Streams is a better fit.
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We’ve discussed when to use ksqlDB and what benefits it offers, so now we’ll get a
better understanding of the individual integrations (Kafka Streams and Kafka Con‐
nect) by looking at how ksqlDB evolved and improved these integrations over time.

Evolution of a New Kind of Database
It’s helpful to understand how ksqlDB evolved over time and which capabilities it
gained along the way. While ksqlDB’s evolution is interesting, this section serves a
larger purpose than to simply provide a look at its history. Since ksqlDB used to be
known by a different name (KSQL), knowing when certain features were introduced
can help you distinguish between different generations of this technology.

Let’s kick off this section with how ksqlDB has evolved its Kafka Streams integration
over time, and how Kafka Streams supports one of the most fundamental capabilities
of ksqlDB: querying data.

Kafka Streams Integration
For the first two years of its life, ksqlDB was known as KSQL. Early development
focused on its core feature: a streaming SQL engine that could parse and compile SQL
statements into full-blown stream processing applications. In this early evolutionary
form, KSQL was conceptually a mix between a traditional SQL database and Kafka
Streams, borrowing features from relational databases (RDBMS) while using Kafka
Streams to do the heavy lifting in the stream processing layer. This is shown in
Figure 8-1.

Figure 8-1. The first phase of ksqlDB’s evolution combined Kafka Streams with features
of traditional SQL databases, including a SQL interface
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4 D. D. Chamberlin, “Early History of SQL,” in IEEE Annals of the History of Computing, vol. 34, no. 4, pp. 78–
82, Oct.–Dec. 2012.

The most notable feature KSQL borrows from the RDBMS branch of the evolution‐
ary tree is the SQL interface. This removed a language barrier for building stream
processing applications in the Kafka ecosystem, since users were no longer required
to use a JVM language like Java or Scala in order to use Kafka Streams.

Why SQL
SQL itself is the product of many rounds of product development and simplification.
Retrieving data from persistent data stores used to require writing lengthy programs
in complex languages. However, by using mathematical notations and declarative
constructs, relational languages became much more compact and efficient. Additional
rounds of linguistic optimization allowed a new language, SQL, to read more like nat‐
ural English.4 What we’ve ended up with after all of these rounds of simplification is a
highly accessible language for querying persistent data stores that enjoys widespread
popularity to this day. By adapting SQL to streaming use cases, ksqlDB immediately
realizes the same benefits of using classical SQL:

• Succinct and expressive syntax that reads like English
• Declarative programming style
• A low learning curve

While the SQL grammar is inspired by ANSI SQL, a special SQL dialect was needed
to model data in both streams and tables. Traditional SQL databases are primarily
concerned with the latter, having no native support for unbounded datasets
(streams). This manifests more generally as two types of statements in classical SQL:

• Classical DDL (Data Definition Language) statements are focused on creating
and destroying database objects (usually tables, but sometimes databases, views,
etc.):

CREATE TABLE users ...;
DROP TABLE users;

• Classical DML (Data Manipulation Language) statements are focused on reading
and manipulating data in tables:

SELECT username from USERS;
INSERT INTO users (id, username) VALUES(2, "Izzy");

The SQL dialect implemented in KSQL (and subsequently ksqlDB) extends classical
SQL to support streams. The next chapter will explore the extended DDL and DML
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statements in detail, but as you might expect, CREATE TABLE and DROP TABLE state‐
ments have stream equivalents (CREATE STREAM, DROP STREAM), and the extended
DML supports querying both streams and tables.

With regards to the evolution of ksqlDB, it’s important to note that the earlier form of
this technology, KSQL, primarily used Kafka Streams to support push queries. These
are continuously running queries that can be executed against a stream or table, and
they emit (or push) results to a client whenever new data becomes available. The flow
of data for a push query is shown in Figure 8-2.

At the time, queries in KSQL weren’t referred to as push queries.
The terminology was developed later on, though we still use this
term to describe the earlier form of KSQL queries in this book
since it is sufficiently descriptive for how these queries push results
to clients.

Figure 8-2. Push queries automatically emit results whenever new data becomes avail‐
able; this allows applications/clients to listen for new data

Over time, the SQL engine became more advanced, and when KSQL was renamed
ksqlDB, an important feature came with the name change: the ability to perform pull
queries. The life cycle of a pull query is more similar to what you will find in tradi‐
tional databases, since they are short-lived queries that are used to perform keyed-
lookups of data. Under the hood, they leverage Kafka Streams and state stores. As you
may recall from Chapter 4, state stores are locally embedded key-value stores that are
usually powered by RocksDB. Figure 8-3 shows the flow of data for both push and
pull queries, which are available in ksqlDB.
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Figure 8-3. ksqlDB supports both push and pull queries

Both types of queries rely heavily on Kafka Streams and also ksqlDB’s own SQL
engine, which we’ll get a deeper look at in “Architecture” on page 251. But now that
we’ve looked at the Kafka Streams integration, let’s look at ksqlDB’s Kafka Connect
integration and learn how it addresses a different set of streaming use cases than the
Kafka Streams integration.

Connect Integration
As we learned in Chapter 2, Kafka Streams applications read from and write to Kafka
topics. Therefore, if the data you want to process is external to Kafka, or if you want
to sink the output of your Kafka Streams application to an external data store, you
need to build a data pipeline to move data to and from the appropriate systems. These
ETL processes are usually handled by a separate component of the Kafka ecosystem:
Kafka Connect. So when you use vanilla Kafka Streams, you need to deploy Kafka
Connect and the appropriate sink/source connectors yourself.

The early form of the product, KSQL, imposed the same limitations as vanilla Kafka
Streams. Integrating non-Kafka data sources required you to absorb additional archi‐
tectural complexities and operational overhead, since connector management needed
to be handled by a separate system. However, when KSQL evolved into the more
advanced form, ksqlDB, it brought with it some new ETL capabilities. It accom‐
plished this by adding a Kafka Connect integration to its feature list. This integration
includes the following:

• Additional SQL constructs for defining source and sink connectors. We’ll provide
more code examples in the next chapter’s tutorial, but an initial look at the aug‐
mented DDL is shown here:

CREATE SOURCE CONNECTOR `jdbc-connector` WITH (
    "connector.class"='io.confluent.connect.jdbc.JdbcSourceConnector',
    "connection.url"='jdbc:postgresql://localhost:5432/my.db',
    "mode"='bulk',
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    "topic.prefix"='jdbc-',
    "table.whitelist"='users',
    "key"='username'
);

• The ability to manage and execute connectors in an externally deployed Kafka
Connect cluster, or run a distributed Kafka Connect cluster alongside ksqlDB for
an even simpler setup.

The Kafka Connect integration allows ksqlDB to support the full ETL life cycle of an
event stream, instead of just the transformation part of an ETL process, which is han‐
dled by the Kafka Streams integration. An updated look at ksqlDB, with both data
integration and transformation capabilities, is shown in Figure 8-4.

Figure 8-4. ksqlDB evolved into a system that supports both data transformation and
integration

With both a Kafka Streams integration that drives ksqlDB’s querying capabilities and
a Kafka Connect integration that helps us make additional data sources available for
querying, we can begin to see how powerful ksqlDB is.

How Does ksqlDB Compare to a Traditional SQL Database?
Now that we’ve seen how ksqlDB evolved into a new kind of database (an event
streaming database), let’s explore how it compares to a traditional SQL database. After
all, when your database admin hears that you’re running queries that may continue
executing for months (push queries), they’re going to want answers. First, let’s start by
looking at the similarities between ksqlDB and a traditional SQL database.
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Similarities
Despite its focus on streaming, ksqlDB has many characteristics of a traditional SQL
database. These similarities include the following:

A SQL interface
Like a traditional SQL database, ksqlDB includes a SQL grammar, a parser, and
an execution engine. This means interacting with data in either type of system
can be accomplished using a high-level declarative language: SQL. ksqlDB’s SQL
dialect contains the language constructs you would expect, including SELECT
for projection, FROM for defining sources, WHERE for filtering, JOIN for, well,
joining, etc.

DDL and DML statements
DDL and DML are the two broad categories of statements supported in both tra‐
ditional SQL databases and ksqlDB. DDL statements are responsible for manipu‐
lating database objects (e.g., tables in traditional databases, tables and streams in
ksqlDB), while DML statements are used to read and manipulate data.

Network service and clients for submitting queries
If you have worked with traditional SQL databases, you have likely come to
expect two things: you can connect to the database over a network and there are
default client implementations (e.g., a CLI) for submitting queries. ksqlDB
includes these features as well, with the network service being implemented as a
REST API and a ksqlDB CLI and UI for submitting queries interactively. There is
also a Java client that can be used for interacting with a ksqlDB server.

Schemas
The collections you interact with contain schema definitions, which include field
names and types. Furthermore, like some of the more flexible database systems
(e.g., Postgres), ksqlDB supports user-defined types as well.

Materialized views
To optimize for read performance in traditional databases, users sometimes cre‐
ate materialized views, which are named objects that contain the results of a
query. In traditional systems, however, these views can be updated either lazily
(the update to the view is queued for later or must be applied manually) or
eagerly (whenever new data arrives). An eagerly maintained view is similar to
how ksqlDB represents data, and updates to streams and tables are made imme‐
diately when new data becomes available.

Built-in functions and operators for data transformation
Like many traditional SQL databases, ksqlDB includes a rich set of functions and
operators for working with data. We will discuss functions and operators in detail
in “Functions and Operators” on page 337, but for now, suffice it to say there is a

248 | Chapter 8: Getting Started with ksqlDB

https://oreil.ly/s6dDf


wide range of string functions, mathematical functions, time functions, table
functions, geospatial functions, and more. Several operators are included as well
(+,-,/,*,%,||, etc.), and there’s even a pluggable interface for defining your own
functions using Java.

Data replication
Most traditional databases leverage leader-based replication, where data written
on the leader node is propagated to a follower (or replica) node. ksqlDB inherits
this replication strategy from both Kafka (for the underlying topic data) and
Kafka Streams (for stateful table data, via standby replicas, as discussed in
“Standby Replicas” on page 180). In interactive mode, ksqlDB also uses
statement-based replication by writing queries to an internal topic called the com‐
mand topic, which ensures multiple nodes in a single ksqlDB cluster are able to
process and run the same query.

As you can see, ksqlDB has many characteristics of a traditional SQL database. Now,
let’s explore the differences between ksqlDB and other database systems. This will help
you explain to your database administrator friend that polling a traditional database
in an infinite loop is not the same as using an event streaming database like ksqlDB,
which has first-class support for unbounded datasets. It will also help you understand
what use cases are better served by other systems.

Differences
Despite the many similarities between ksqlDB and traditional SQL databases, there
are also some major differences. These include:

Enhanced DDL and DML statements
Classical DDL and DML statements that are supported in traditional databases
are focused on modeling and querying data in tables. However, as an event
streaming database, ksqlDB has a different view of the world. It recognizes the
stream/table duality discussed in “Stream/Table Duality” on page 57, and there‐
fore its SQL dialect supports modeling and querying data in streams and tables. 
It also introduces a new database object not typically found in other systems:
connectors.

Push queries
The query pattern in most traditional SQL databases is to issue a query against
the current snapshot of data, and to terminate the query as soon as the request is
fulfilled or errors out. These short-lived, lookup-style queries are supported
in ksqlDB, but since ksqlDB operates on unbounded event streams, it also sup‐
ports continuous queries that can run for months or even years, emitting results
whenever new data is received. This means out of the gate, ksqlDB has better
support for clients who want to subscribe to changes in data.
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5 For more, see Jay Kreps’s “Introducing ksqlDB” on Confluent.
6 For example, hot standbys are supported via Kafka Streams standby replica configs.

Simple query capabilities
ksqlDB is a highly specialized database for querying eagerly maintained material‐
ized views, either continuously via push queries or interactively via pull queries.
It doesn’t attempt to provide the same query capabilities as analytical stores (e.g.,
Elasticsearch), relational systems (e.g., Postgres, MySQL), or other types of speci‐
alized data stores.5 Its query patterns are tailored to a specific set of use cases,
including streaming ETL, materialized caches, and event-driven microservices.

More sophisticated schema management strategies
Schemas can be defined as you would expect using SQL itself. However, they can
also be stored in a separate schema registry (Confluent Schema Registry), which 
has a few benefits, including schema evolution support/compatibility guarantees,
reduced data size (by replacing the schema with a schema identifier in serialized
records), automatic column name/data type inference, and easier integration
with other systems (since downstream applications can also retrieve the record
schema from the registry to deserialize the data processed by ksqlDB).

ANSI-inspired SQL, but not fully compliant
Attempts to standardize streaming SQL are still relatively new, and the SQL dia‐
lect used by ksqlDB introduces constructs that aren’t found in the SQL standard.

High availability, fault tolerance, and failover operate much more seamlessly
These aren’t separate add-ons or enterprise features like they are with some
systems. They are built into ksqlDB’s DNA, and are highly configurable.6

Local and remote storage
The data surfaced by ksqlDB lives in Kafka, and when using tables, is material‐
ized in local state stores. This has a couple of interesting notes. For example, syn‐
chronization/commit acking is handled by Kafka itself, and your storage layer
can be scaled independently from your SQL engine. Also, you get the perfor‐
mance benefits of colocating compute with the data (i.e., state stores) while tak‐
ing advantage of Kafka’s own distributed storage layer for more durable and
scalable storage.

Consistency model
ksqlDB adheres to an eventually consistent and async consistency model, while
many traditional systems adhere more closely to the Atomicity, Consistency, Iso‐
lation, Durability (ACID) model.
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So now that we’ve looked at both the similarities and differences between ksqlDB and
traditional SQL databases, what’s our final verdict? Well, ksqlDB has many character‐
istics of a more traditional database, but it doesn’t aim to replace them. It’s a highly
specialized tool that can be used for streaming use cases, and when you need the
capabilities of another system, ksqlDB’s Kafka Connect integration will help you
move any enriched, transformed, or otherwise processed data to a data store of your
choice.

Before we install ksqlDB, let’s get a brief view of its architecture.

Architecture
Since ksqlDB is built on top of Kafka Streams, you can review the streaming architec‐
ture discussion in Chapter 2 for a lower-level understanding of how the Kafka
Streams integration works. This section focuses on the ksqlDB-specific components
of the architecture, which are broken into two main groups: the ksqlDB servers and
ksqlDB clients.

ksqlDB Server
ksqlDB servers are responsible for running your stream processing applications
(which in the ksqlDB sense would be a set of queries that work together to solve a
business problem). Each server is conceptually similar to a single instance of a Kafka
Streams application, and workloads (created by the query set) can be distributed
across multiple ksqlDB servers with the same ksql.service.id configuration. Like
Kafka Streams applications, ksqlDB servers are deployed separately from the Kafka
cluster (usually on separate machines/containers from the brokers themselves).

A group of cooperating ksqlDB servers is called a ksqlDB cluster, and it’s generally
recommended to isolate workloads for a single application at the cluster level. For
example, Figure 8-5 shows two ksqlDB clusters, each with a different service ID run‐
ning isolated workloads that can be scaled and managed independently of each other.

When you need to add capacity to your ksqlDB cluster, you can deploy more ksqlDB
servers. You can also scale the cluster down by removing ksqlDB servers at any time.
Since ksqlDB servers with the same service ID are members of the same consumer
group, Kafka automatically handles the reassignment/distribution of work as new
ksqlDB servers are added or removed (removal could be manual or automatic, e.g.,
due to a system fault).

Each ksqlDB server is made up of two subcomponents: the SQL engine and the REST
service. We’ll discuss each of these separate components in the following sections.
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Figure 8-5. Two ksqlDB clusters processing data from Kafka independently

SQL engine
The SQL engine is responsible for parsing a SQL statement, converting it into one or
more Kafka Streams topologies, and ultimately running the Kafka Streams applica‐
tions. A visualization of this process is shown in Figure 8-6.

Figure 8-6. The SQL engine converts SQL statements into Kafka Streams topologies

The parser itself uses a tool called ANTLR, which converts a SQL statement into an
Abstract Syntax Tree (AST), where each node in the tree represents a recognized
phrase or token in the input query. ksqlDB visits each node in the parse tree and
builds a Kafka Streams topology using the tokens it finds. For example, if you include
a WHERE clause in your query, ksqlDB knows it needs to use the stateless filter oper‐
ator when building the underlying Kafka Streams topology for your query. Similarly,
if your query includes a join condition (e.g., LEFT JOIN), ksqlDB will add the left
Join operator to the topology for you. Source processors are determined by looking
at the FROM value, and the SELECT statement is used for projection.

Once the engine has created the necessary processor topologies required to run the
query, it will actually run the resulting Kafka Streams application. Now, let’s take a
look at the component that is required to pass queries to the SQL engine: the REST
service.
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REST service
ksqlDB includes a REST interface that allows clients to interact with the SQL engine.
It is primarily used by the ksqlDB CLI, ksqlDB UI, and other clients to submit queries
to the engine (i.e., DML statements that begin with SELECT), execute other types of
statements (e.g., DDL statements), check the cluster status/health, and more. By
default, it listens on port 8088 and communicates over HTTP, but you can change the
endpoint using the listeners config, and enable communication over HTTPS using
the ssl configs. Both sets of configs are shown here:

listeners=http://0.0.0.0:8088
ssl.keystore.location=/path/to/ksql.server.keystore.jks
ssl.keystore.password=...
ssl.key.password=...

The REST API is optional, and depending on the mode of operation (see “Deploy‐
ment Modes” on page 255), it may be disabled entirely. However, running the API is
needed when working with ksqlDB interactively, whether you’re using one of the
default clients (e.g., the ksqlDB CLI and UI, which we will discuss in the following
section) or a custom client. You can even issue requests using curl, as shown here:

curl -X "POST" "http://localhost:8088/query" \
     -H "Content-Type: application/vnd.ksql.v1+json; charset=utf-8" \
     -d $'{
  "ksql": "SELECT USERNAME FROM users EMIT CHANGES;",
  "streamsProperties": {}
}'

When interacting with the API directly, you should consult the most up-to-date
REST API reference in the ksqlDB docs. ksqlDB is still undergoing rapid evolution,
and I expect this to be one area that sees changes in the future, based on some design
proposals that have been submitted to the ksqlDB project. Most of the examples in
this book will use the API indirectly via one of the officially supported clients, which
we’ll discuss next.

ksqlDB Clients
In the previous section, we learned that ksqlDB servers include a REST interface for
submitting queries and retrieving information about the ksqlDB cluster. We also
learned that we could interact with the REST service using curl or custom clients,
but for most use cases, you will likely want to use one of the official clients for inter‐
acting with ksqlDB servers. In this section, we will learn about these clients, starting
with the ksqlDB CLI.

ksqlDB CLI
The ksqlDB CLI is a command-line application that allows you to interact with a run‐
ning ksqlDB server. It’s an excellent tool for experimenting with ksqlDB, as it allows
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you to submit queries, inspect topics, adjust ksqlDB configurations, and more in an
interactive fashion. It is distributed as a Docker image (confluentinc/ksqldb-cli)
and also as part of Confluent Platform (fully managed on Confluent Cloud, or
through a self-managed deployment).

Invoking the CLI involves running the ksql command and specifying the host/port
combination for the ksqlDB server (this corresponds to the listeners config, as dis‐
cussed in “REST service” on page 253):

ksql http://localhost:8088

When you run the ksql command, you will be dropped into a prompt that looks sim‐
ilar to the following:

                  ===========================================
                  =       _              _ ____  ____       =
                  =      | | _____  __ _| |  _ \| __ )      =
                  =      | |/ / __|/ _` | | | | |  _ \      =
                  =      |   <\__ \ (_| | | |_| | |_) |     =
                  =      |_|\_\___/\__, |_|____/|____/      =
                  =                   |_|                   =
                  =  Event Streaming Database purpose-built =
                  =        for stream processing apps       =
                  ===========================================

Copyright 2017-2020 Confluent Inc.

CLI v0.14.0, Server v0.14.0 located at http://ksqldb-server:8088
Server Status: RUNNING

Having trouble? Type 'help' (case-insensitive) for a rundown of how things work!

ksql>

In this book, the preceding prompt will be our launching point as we explore the SQL
dialect and work through tutorials. Before we start using the CLI, let’s look at another
client: the ksqlDB UI.

ksqlDB UI
Confluent Platform also includes a UI for interacting with ksqlDB. The UI is a com‐
mercial feature, so you will find the UI in the commercially licensed version of Con‐
fluent Platform and also on Confluent Cloud (which runs Confluent Platform in a
fully managed cloud environment). In addition to being able to submit queries from
a web-based editor, you can also visualize the flow of data, create streams and tables
using web forms, view a list of running queries, and more. A screenshot of the
ksqlDB UI is shown in Figure 8-7.
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Figure 8-7. ksqlDB UI, as shown from Confluent Cloud

Deployment Modes
ksqlDB supports two different deployment modes, depending on the level of interac‐
tivity you want to allow with the running ksqlDB servers. This section will describe
each of these deployment nodes and discuss when you might use each.

Interactive Mode
When running ksqlDB in interactive mode, clients can submit new queries anytime by
using the REST API. As the name suggests, this leads to an interactive experience,
allowing the ksqlDB server to create and tear down streams, tables, queries, and con‐
nectors at will.

A depiction of ksqlDB running in interactive mode is shown in Figure 8-8. One key
characteristic of interactive mode is that all queries submitted to the SQL engine (via
the REST API) are written to an internal topic called the command topic. This topic is
autocreated and managed by ksqlDB, and is used to achieve statement-based replica‐
tion, allowing all ksqlDB servers in the cluster to execute and run the query.

Interactive mode is the default deployment mode for ksqlDB, and you don’t need any
special configuration to run in this mode. However, if you want to disable interactive
mode, you will need to run in headless mode, which does require a special configura‐
tion. We’ll discuss headless mode in the next section.
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Figure 8-8. ksqlDB running in interactive mode, allowing clients (e.g., the ksqlDB CLI,
UI, the Java client, or even curl) to submit queries via the REST API

Headless Mode
In some cases, you may not want clients interactively submitting queries against your
ksqlDB cluster. For example, if you want to lock down a production deployment, you
can run it in headless mode (which disables the REST API) to ensure no changes are
made to the running queries. In order to run in headless mode, you simply need to
create a file containing any persistent queries you want the SQL engine to execute,
and specify the path to this file using the queries.file ksqlDB server config. For
example:

queries.file=/path/to/query.sql 

The path to the file containing the queries you want to run in your ksqlDB server
is specified using the queries.file property.

A depiction of ksqlDB running in headless mode is shown in Figure 8-9. Note that
unlike the interactive deployment, headless mode does not utilize a command topic
for statement-based replication. However, it does write some internal metadata to a
config topic.

For most of the tutorials in this book, we will be running in interactive mode. Next,
let’s finally get our feet wet with an initial “Hello, world” style tutorial for ksqlDB.
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Figure 8-9. ksqlDB running in headless mode

Tutorial
In this section, we’ll work through a very simple “Hello, world” tutorial. This will
involve building a simple stream processing application with ksqlDB, which will say
hello to each user that we write to a Kafka topic called users. Let’s start by learning
how to install ksqlDB.

Installing ksqlDB
There are a few different ways to start working with ksqlDB. The most popular
options are listed in the following table:

Install method Link Notes
Download Confluent Platform https://www.confluent.io/download ksqlDB is a community-

licensed software component
in the self-managed version
of Confluent Platform

Use Confluent Cloud https://confluent.cloud No download is necessary,
you just need to create an
account

Download and run the official Docker images Images for both the ksqlDB server and
CLI

• https://hub.docker.com/r/confluentinc/
ksqldb-server

• https://hub.docker.com/r/confluentinc/
ksqldb-cli

This will require you to run
all dependencies and related
software separately (Kafka,
Schema Registry, the ksqlDB
CLI)

Clone the open source repository on GitHub and
build from source

https://github.com/confluentinc/ksql This is the most involved
option
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The easiest method listed in the table is to use the official Docker images. The code
repository for this book includes a Docker Compose deployment that stands up each
of the related services using the appropriate Docker images. Refer to the full instruc‐
tions on GitHub.

The rest of the code in this chapter will reference the raw commands that are needed
to start the ksqlDB server, the CLI, precreate our Kafka topic, etc. Where applicable,
we have added instructions for how to execute these commands with Docker Com‐
pose, though these are annotated separately since they are more specific to a Docker
Compose–based workflow.

With ksqlDB installed, it’s time to start running a ksqlDB server. We’ll learn how to
do that in the next section.

Running a ksqlDB Server
Once you’ve installed ksqlDB, you need to create the configuration for the ksqlDB
server. There are several configuration properties at your disposal, but for now, let’s
just save the two most important configs to a file named ksql-server.properties:

listeners=http://0.0.0.0:8088 
bootstrap.servers=kafka:9092 

The REST API endpoint for the ksqlDB server. This will bind to all IPv4
interfaces.

A list of host and port pairs corresponding to one or more Kafka brokers. This
will be used to establish a connection to the Kafka cluster.

With our ksqlDB server configuration saved to a file, we can start the ksqlDB server
with the following command:

ksql-server-start ksql-server.properties 

In a Docker Compose workflow, this command is set in the docker-compose.yml
file. See this chapter’s code repository for more information.

After running the preceding command, you should see a lot of information get
printed to the console as ksqlDB boots up. Among the other lines in the output, you
should see something similar to the following:

[2020-11-28 00:53:11,530] INFO ksqlDB API server listening on http://0.0.0.0:8088

As you recall from our discussion in “Deployment Modes” on page 255, the default
deployment mode is interactive mode, and since we didn’t set the queries.file con‐
fig in our ksql-server.properties file, the REST service is running inside our ksqlDB
server, and we can now use one of the default clients to submit queries to the ksqlDB
server. In this tutorial, we’ll submit our queries via the ksqlDB CLI, as we’ll see next.
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Precreating Topics
In the following chapters, we’ll learn how ksqlDB can autocreate topics if we set cer‐
tain parameters in our SQL statements. For this tutorial, we will simply pre-create our
users topic by running the following command:

kafka-topics \ 
  --bootstrap-server localhost:9092 \
  --topic users \
  --replication-factor 1 \
  --partitions 4 \
  --create

If running from Docker Compose, prefix this command with docker-compose
exec kafka.

Now we’re ready to start using the ksqlDB CLI.

Using the ksqlDB CLI
It’s time to build our “Hello, world” streaming processing application by creating a set
of queries for the ksqlDB server to run. Since we’ll be using the CLI to submit our
queries, the first thing we need to do is run the ksql command with the REST end‐
point of our ksqlDB server, as shown here:

ksql http://0.0.0.0:8088 

If running with Docker Compose, run docker-compose exec ksqldb-cli ksql
http://ksqldb-server:8088.

This will drop you in the CLI. From here, you can run various queries and state‐
ments. You can also adjust various ksqlDB configurations from the CLI. For example,
run the following SET statement to ensure our queries read from the beginning of the
underlying Kafka topics:

SET 'auto.offset.reset' = 'earliest';

Since we precreated our users topic, we can use the SHOW TOPICS command to verify
its presence and view some of the topic’s underlying configuration (e.g., partition and
replica counts).
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This command is shown in the following code block:

ksql> SHOW TOPICS ;

 Kafka Topic | Partitions | Partition Replicas
-----------------------------------------------
 users       | 4          | 1
-----------------------------------------------

Now, let’s model the data in the users topic as a stream using the CREATE STREAM
DDL statement in ksqlDB. Among other things, this gives ksqlDB some information
about the data types and format it can expect to find in this topic, and also creates a
stream that we can query:

CREATE STREAM users (
    ROWKEY INT KEY, 
    USERNAME VARCHAR 
) WITH ( 
    KAFKA_TOPIC='users', 
    VALUE_FORMAT='JSON' 
);

ROWKEY corresponds to the Kafka record key. Here, we specify the type as INT.

Here, we specify that the records in the users topic will have a field called
USERNAME. The data type for this field is VARCHAR.

The WITH clause is used to pass in additional properties. There are several addi‐
tional properties that we’ll discuss in “With Clause” on page 291.

Our stream reads from the users topic, which we specify in the KAFKA_TOPIC
property in the WITH clause.

Specify the serialization format of the record values in Kafka.

Once you run the CREATE STREAM statement, you should see confirmation that the
stream was created in the console, as shown here:

 Message
----------------
 Stream created
----------------

Before we query the users stream, let’s insert some test data in this stream using
ksqlDB’s INSERT INTO statement:

INSERT INTO users (username) VALUES ('izzy');
INSERT INTO users (username) VALUES ('elyse');
INSERT INTO users (username) VALUES ('mitch');
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7 Transient means the results of this query will not be written back to Kafka. We will explore persistent queries
in the next chapter.

Now that the stream has been created and has been populated with test data, we can
create a push query that will create a greeting for every user that appears in the users
stream. Run the statement in Example 8-1 to create a continuous, transient (i.e., not
persistent)7 push query.

Example 8-1. A Hello, world–style push query

SELECT 'Hello, ' + USERNAME AS GREETING
FROM users
EMIT CHANGES; 

By including EMIT CHANGES here, we are telling ksqlDB to run a push query,
which will automatically emit/push changes to the client (in this case, the CLI)
whenever new data is available.

Because we inserted some test data in our users stream, you should see the following
output immediately printed to the console, since we set auto.offset.reset to
earliest and there is already data available in the topic:

+--------------------+
|GREETING            |
+--------------------+
|Hello, izzy         |
|Hello, elyse        |
|Hello, mitch        |

Note that the SELECT query will continue to run even after the initial set of results
have been emitted. As mentioned before, this is characteristic of push queries, which
will continue to run and emit results until you terminate the query (or, if you include
a LIMIT clause in your query, will continue to run until the record limit is reached).

You can also open another CLI session and run additional INSERT INTO statements to
generate more data in the users stream. Whenever a new record is inserted, the push
query (represented by the SELECT statement issued earlier) will continue to emit
results to the console.

This completes our simple tutorial for this chapter, but this represents only the tip of
the iceberg of what ksqlDB can do. Over the next few chapters, we will explore the
query language in more detail and work through some interesting tutorials to get you
even more familiar with ksqlDB.
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Summary
We have gotten an initial look at ksqlDB’s history, learned why it was built and when
to use it, seen how it compares with traditional databases, and taken a peek at its
architecture. In the next chapter, we’ll continue our journey of learning about ksqlDB
by exploring how to integrate it with external data sources.
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CHAPTER 9

Data Integration with ksqlDB

The first step of building a stream processing application with ksqlDB is to consider
where the data you want to process currently lives, and where the enriched/trans‐
formed data will eventually be written. Since ksqlDB leverages Kafka Streams under
the hood, the direct input and outputs of the application you build will always be
Kafka topics. ksqlDB makes it simple to integrate other data sources as well, including
from popular third-party systems like Elasticsearch, PostgreSQL, MySQL, Google
PubSub, Amazon Kinesis, MongoDB, and hundreds of others.

Of course, if your data already lives in Kafka and you don’t plan on writing the pro‐
cessed results to an external system, then working with ksqlDB’s data integration fea‐
tures (which are driven by Kafka Connect) isn’t required. However, should you ever
need to read from/write to external systems, this chapter will provide the necessary
foundations to help you connect the appropriate data sources and sinks using ksqlDB
and Kafka Connect.

This chapter isn’t a comprehensive guide on Kafka Connect, which is a separate API
in the Kafka ecosystem and, accordingly, a topic about which much can and has been
written. We will provide enough background to get you started, and look at ksqlDB’s
high-level abstractions for working with the Connect API. Some of the topics we will
explore in this chapter include:

• A quick Kafka Connect overview
• Kafka Connect integration modes
• Configuring Kafka Connect workers
• Installing source and sink connectors
• Creating, dropping, and introspecting source and sink connectors in ksqlDB
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1 The Consumer, Producer, Streams, and Admin APIs are the other four.

• Introspecting source and sink connectors using the Kafka Connect API
• Viewing connector schemas in Confluent Schema Registry

By the end of this chapter, you will understand two of the three tasks for performing
Streaming ETL (extract, transform, and load) operations with ksqlDB:

• Extracting data from external systems into Kafka
• Loading data from Kafka to an external system

The missing piece of the ETL abbreviation, transforming, will be covered in the next
two chapters since transforming data relates more closely with stream processing
than data integration. We’ll start with a quick overview of Kafka Connect to learn
about the technology that actually powers the data integration features in ksqlDB.

Kafka Connect Overview
Kafka Connect is one of five APIs in the Kafka ecosystem,1 and it is used to connect
external data stores, APIs, and filesystems to Kafka. Once the data is in Kafka, we can
process, transform, and enrich it using ksqlDB. The primary components of Kafka
Connect are as follows:

Connectors
Connectors are packaged pieces of code that can be installed on workers (we’ll
discuss workers in a moment). They facilitate the flow of data between Kafka and
other systems, and can be broken into two categories:

• Source connectors read data from an external system to Kafka
• Sink connectors write data to an external system from Kafka

Tasks
Tasks are the units of work inside a connector. The number of tasks is configura‐
ble, allowing you to control how much work a single worker instance can
perform.

Workers
Workers are the JVM processes that execute the connectors. Multiple workers
can be deployed to help parallelize/distribute the work, and to achieve fault toler‐
ance in the event of partial failure (e.g., one worker goes offline).
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Converters
Converters are the code that handles the serialization/deserialization of data in
Connect. A default converter (e.g., the AvroConverter) must be specified at the
worker level, but you can also override the converter at the connector level.

Connect cluster
A connect cluster refers to one or more Kafka Connect workers, working
together as a group to move data to and from Kafka.

A visualization of how these components work together is shown in Figure 9-1.

Figure 9-1. Kafka Connect architecture

It may seem like a lot to keep track of now, but as we work our way through the chap‐
ter, you will see that ksqlDB simplifies the mental model for working with Kafka Con‐
nect quite a bit. Now, let’s see our options for deploying Kafka Connect for use with
ksqlDB.

External Versus Embedded Connect
In ksqlDB, the Kafka Connect integration can run in two different modes. This sec‐
tion describes each mode and when to use them. We’ll start by looking at external
mode.
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External Mode
If you already have a Kafka Connect cluster running, or if you want to create and
manage a separate deployment of Kafka Connect outside of ksqlDB, then you can run
the Kafka Connect integration in external mode. This involves pointing ksqlDB to the
URL of the Kafka Connect cluster using the ksql.connect.url property. ksqlDB will
make requests to the external Kafka Connect cluster directly in order to create and
manage connectors. An example configuration for enabling external mode is shown
in the following code (this would be saved to your ksqlDB server properties file):

ksql.connect.url=http://localhost:8083

When running in external mode, any source/sink connectors your application
requires will need to be installed on the external workers themselves. Note that the
workers are generally not colocated with the ksqlDB server when running in external
mode, since one of the main benefits of running in this mode is that you don’t need to
share machine resources with ksqlDB. A diagram of Kafka Connect running in exter‐
nal mode is shown in Figure 9-2.

Figure 9-2. Kafka Connect running in external mode
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2 Kafka Connect has its own deployment modes (distributed and standalone), which shouldn’t be confused
with ksqlDB’s Kafka Connect integration modes (external and embedded).

3 See the ksqlDB documentation for more.

Some reasons you may want to run Kafka Connect in external mode include:

• You want to scale your stream processing and data ingress/egress workloads
independently and/or want resource isolation for these different types of
workloads.

• You expect high throughput on the source/sink topics.
• You already have an existing Kafka Connect cluster.

Next, let’s look at embedded mode, which is the mode we’ll be using for the tutorials
in this book.

Embedded Mode
In embedded mode, a Kafka Connect worker is executed in the same JVM as the
ksqlDB server. The worker runs in Kafka Connect’s distributed mode,2 meaning work
can be distributed across multiple cooperating worker instances. The number of
Kafka Connect workers coincides with the number of ksqlDB servers in your ksqlDB
cluster. You should use embedded mode when:

• You want to scale your stream processing and data ingress/egress workloads
together.

• You expect low to medium throughput on the source/sink topics.
• You want to support data integration very simply, you don’t want to manage a

separate deployment of Kafka Connect, and you don’t have a need to scale data
integration/transformation workloads independently.

• You don’t mind your Kafka Connect workers being restarted whenever you
restart your ksqlDB servers.

• You don’t mind sharing compute/memory resources between ksqlDB and Kafka
Connect.3

Since ksqlDB servers are colocated with Kafka Connect workers in embedded mode,
you’ll need to install any source/sink connectors your application requires on the
same node that your ksqlDB servers run on. A diagram of Kafka Connect running in
embedded mode is shown in Figure 9-3.
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Figure 9-3. Kafka Connect running in embedded mode

To run in embedded mode, you’ll need to set the ksql.connect.worker.config
property in the ksqlDB server configuration. The value of this property is the path to
the Kafka Connect worker configs (remember, the workers are the Kafka Connect
processes that actually execute the source and sink connectors). An example of how
this property can be configured in a ksqlDB server’s properties file is shown here:

ksql.connect.worker.config=/etc/ksqldb-server/connect.properties

So what should live in the worker configuration file referenced by the
ksql.connect.worker.config property? We’ll take a look at that next.

Configuring Connect Workers
Kafka Connect is highly configurable, and the official Apache Kafka documentation
covers the available configuration properties in detail. However, this section will
cover some of the more important parameters by looking at an example Kafka Con‐
nect worker config. If you’re running it in embedded mode, this should be saved to a
file (e.g., connect.properties), and referenced in the ksql.connect.worker.config proper‐
ties in the ksqlDB server configuration. If you’re running in external mode, the
worker configuration is supplied as an argument when starting Kafka Connect. The
example configuration is shown in the following code block:

bootstrap.servers=localhost:9092 
group.id=ksql-connect-cluster 
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key.converter=org.apache.kafka.connect.storage.StringConverter 
value.converter=org.apache.kafka.connect.storage.StringConverter 

config.storage.topic=ksql-connect-configs 
offset.storage.topic=ksql-connect-offsets
status.storage.topic=ksql-connect-statuses

errors.tolerance=all

plugin.path=/opt/confluent/share/java/ 

A list of host/port pairs of the Kafka brokers that should be used for establishing
an initial connection to the Kafka cluster.

A string identifier that corresponds with the Connect cluster this worker belongs
to. Workers that are configured with the same group.id belong to the same clus‐
ter, and can share the workload for executing connectors.

“Converter class used to convert between Kafka Connect format and the serial‐
ized form that is written to Kafka. This controls the format of the keys in mes‐
sages written to or read from Kafka, and since this is independent of connectors
it allows any connector to work with any serialization format. Examples of com‐
mon formats include JSON and Avro.” (Connect docs)

“Converter class used to convert between Kafka Connect format and the serial‐
ized form that is written to Kafka. This controls the format of the values in mes‐
sages written to or read from Kafka, and since this is independent of connectors
it allows any connector to work with any serialization format. Examples of com‐
mon formats include JSON and Avro.” (Connect docs)

Kafka Connect uses a few topics to store information related to connector and
task configurations. Here, we just use the standard names for these topics, pre‐
fixed by ksql- since we will be running in embedded mode (meaning the work‐
ers will be executed in the same JVM as our ksqlDB server instances).

The errors.tolerance property allows you to configure the default error han‐
dling policy in Kafka Connect. Valid values include none (fail immediately when
an error occurs) and all (either ignore errors completely, or, when used with the
errors.deadletterqueue.topic.name property, route all errors to the Kafka
topic of your choice).

A comma-separated list of filesystem paths where plug-ins (connectors, convert‐
ers, transformations) are expected to be installed. We’ll see how to install connec‐
tors later in this chapter.
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As you can see, most of the worker configurations are pretty straightforward. How‐
ever, one set of configurations that are worth digging into further, since they relate to
the important task of data serialization, are the converter properties (key.converter
and value.converter). Let’s take a deeper look at converters and serialization for‐
mats in the next section.

Converters and Serialization Formats
The converter classes we use in Kafka Connect play an important role in how data is
serialized and deserialized in both Kafka Connect and ksqlDB. In our “Hello, world”
tutorial in the previous chapter (see “Tutorial” on page 257), we used the statement in
Example 9-1 to create a stream in ksqlDB.

Example 9-1. Create a stream that reads from the users topic

CREATE STREAM users (
    ROWKEY INT KEY,
    USERNAME VARCHAR
) WITH (
    KAFKA_TOPIC='users',
    VALUE_FORMAT='JSON'
);

In the preceding statement, we tell ksqlDB that the users topic (KAFKA_TOPIC=
'users') contains records with JSON-serialized record values (VALUE_FORMAT=
'JSON'). If you have a custom producer that is writing JSON-formatted data to a
topic, then it’s pretty easy to reason about the format. But what if you’re using Kafka
Connect to, say, stream data from a PostgreSQL database to Kafka? Which format
does the data from PostgreSQL get serialized to when it is written to Kafka?

This is where the converter configurations come into play. To control the serialization
format of both the record keys and values that Kafka Connect handles, we can set the
key.converter and value.converter properties to the appropriate converter class.
Table 9-1 shows the most common converter classes and the corresponding ksqlDB
serialization format (i.e., the value you would provide for the VALUE_FORMAT property
when creating a stream or table, as we saw in Example 9-1).

Table 9-1 also denotes which converters rely on Confluent Schema Registry to store
the record schemas, which is useful when you want a more compact message format
(Schema Registry allows you to store record schemas, i.e., field names/types, outside
of the messages themselves).
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Table 9-1. The most common converter classes that can be used with Kafka Connect, and
their corresponding serialization type in ksqlDB

Type Convert class Requires
Schema
Registry?

ksqlDB
serialization
type

Avro io.confluent.connect.avro.Avro
Converter

Yes AVRO

Protobuf io.confluent.connect.protobuf.Protobuf
Converter

Yes PROTOBUF

JSON (with Schema Registry) io.confluent.connect.json.JsonSchema
Converter

Yes JSON_SR

JSON org.apache.kafka.connect.json.Json
Convertera

No JSON

String org.apache.kafka.connect.stor
age.StringConverter

No KAFKAb

DoubleConverter org.apache.kafka.connect.convert
ers.DoubleConverter

No KAFKA

IntegerConverter org.apache.kafka.connect.convert
ers.IntegerConverter

No KAFKA

LongConverter org.apache.kafka.connect.convert
ers.LongConverter

No KAFKA

a When using the JsonConverter that ships with Kafka Connect, you may want to also set the following configuration in
your Connect worker configs: value.converter.schemas.enable. Setting this value to true will tell Connect to
embed its own schema in the JSON record (this does not use Schema Registry, and by including the schema in each record,
message sizes can be quite large). Alternatively, you can set this value to false and ksqlDB will determine the field type
using the data type hints you define when creating a stream or table. We’ll explore this later.
b The KAFKA format indicates that a record key or value was serialized using one of Kafka’s built-in Serdes (see Table 3-1).

For each converter in Table 9-1 that requires Schema Registry, you will need to add
an additional configuration property: { key | value }.converter.schema.regis
try.url. For example, in this book, we’ll be mostly working with Avro data, so if we
want our connectors to write values in this format, we can update our worker config‐
uration as shown in Example 9-2:

Example 9-2. Worker configuration that uses an AvroConverter for record values

bootstrap.servers=localhost:9092
group.id=ksql-connect-cluster

key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=io.confluent.connect.avro.AvroConverter 
value.converter.schema.registry.url=http://localhost:8081 

config.storage.topic=ksql-connect-configs
offset.storage.topic=ksql-connect-offsets
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4 It is also possible to use Schema Registry–dependent converters for record keys. In this case, you would need
to set the key.converter.schema.registry.url property in your worker configs.

status.storage.topic=ksql-connect-statuses

plugin.path=/opt/confluent/share/java/

Use the AvroConverter to ensure that Kafka Connect serializes values in Avro
format.

The Avro converter requires Confluent Schema Registry to store record schemas,
so we need to specify the URL where Schema Registry is running using the
value.converter.schema.registry.url property.4

Now that we have learned how to specify the data serialization format in Kafka Con‐
nect, and we have prepared the Kafka Connect worker configuration (Example 9-2),
let’s work through a tutorial to actually install and use some connectors.

Tutorial
In this tutorial, we will use a JDBC source connector to stream data from PostgreSQL
to Kafka. Then, we will create an Elasticsearch sink connector to write data from
Kafka to Elasticsearch. Refer to the code for this tutorial, and instructions for setting
up the environment (including a PostgreSQL and Elasticsearch instance), on GitHub.

We’ll start by installing the connectors.

Installing Connectors
There are two primary ways of installing source and sink connectors:

• Manual installation
• Automated installation via Confluent Hub

Manual installation can vary across connector implementations, and is dependent on
how the connector maintainer chooses to distribute the artifact (a connector artifact
usually includes one or more JAR files). However, it usually involves downloading the
artifact directly from a website or an artifact repository like Maven Central or Arti‐
factory. Once the connector is downloaded, the JAR files are placed in the location
specified by the plugin.path configuration property.

An easier method for downloading connectors, and the method we’ll use in this book,
allows us to install connectors using a CLI tool developed by Confluent. This CLI,
called confluent-hub, can be installed using the instructions in the Confluent

272 | Chapter 9: Data Integration with ksqlDB

https://oreil.ly/7ImWJ
https://oreil.ly/31Sd9


documentation. Once you’ve installed Confluent Hub, you can install connectors very
easily. The command syntax for installing a connector is as follows:

confluent-hub install <owner>/<component>:<version> [options]

For example, to install the Elasticsearch sink connector, we could run the following
command:

confluent-hub install confluentinc/kafka-connect-elasticsearch:10.0.2 \
    --component-dir /home/appuser \ 
    --worker-configs /etc/ksqldb-server/connect.properties \ 
    --no-prompt 

The directory where the connector should be installed.

Location of the worker configs. The install location (specified by --component-
dir) will be appended to the plugin.path if it is not already included.

Bypass interactive steps (e.g., install confirmations, software license agreements,
etc.) by allowing the CLI to proceed with the recommended/default values. This
is useful for scripted installs.

Similarly, the PostgreSQL source connector can be installed with the following
command:

confluent-hub install confluentinc/kafka-connect-jdbc:10.0.0 \
  --component-dir /home/appuser/ \
  --worker-configs /etc/ksqldb-server/connect.properties \
  --no-prompt

Note that if you are running in embedded mode, you will need to restart the ksqlDB
server if you want to use any connectors that were installed after the ksqlDB server
instance was started. Once you’ve installed the connectors required by your applica‐
tion, you can create and manage connector instances in ksqlDB. We’ll discuss this in
the next section.

Creating Connectors with ksqlDB
The syntax for creating a connector is as follows:

CREATE { SOURCE | SINK } CONNECTOR [ IF NOT EXISTS ] <identifier> WITH(
     property_name = expression [, ...]);

Assuming you have a PostgreSQL instance running at postgres:5432, we can install
a source connector to read from a table called titles by running the following com‐
mand in ksqlDB:

CREATE SOURCE CONNECTOR `postgres-source` WITH( 
    "connector.class"='io.confluent.connect.jdbc.JdbcSourceConnector', 
    "connection.url"=
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 'jdbc:postgresql://postgres:5432/root?user=root&password=secret', 
    "mode"='incrementing', 
    "incrementing.column.name"='id', 
    "topic.prefix"='', 
    "table.whitelist"='titles', 
    "key"='id'); 

The WITH clause is used to pass in the connector configuration (this varies by
connector, so you’ll need to look at the connector’s documentation for a list of
available configuration properties).

The Java class for the connector.

The JDBC source connector requires a connection URL for connecting to the
data store (in this case, a PostgreSQL database).

There are various modes you can run the JDBC source connector in. Since we
want to stream any new records that get added to the titles table, and have an
auto-incrementing column, we can set the mode to incrementing. This mode,
and the other modes supported by this connector, are detailed in the connector’s
documentation.

The name of the auto-incrementing column that our source connector will use to
determine which rows it has seen already.

Each table is streamed to a dedicated topic (e.g., the titles table will be streamed
to the titles topic). We can optionally set a prefix for the topic name (e.g., a
prefix for ksql- would stream the titles data into the ksql-titles topic). In this
tutorial, we won’t use a prefix.

A list of tables to stream into Kafka.

The value that will be used as the record key.

Once you’ve executed the CREATE SOURCE CONNECTOR statement, you should see a
message like the following:

 Message
-----------------------------------
 Created connector postgres-source
-----------------------------------
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Now, let’s create the sink connector for writing the output of our application to Elas‐
ticsearch. This is pretty similar to creating a source connector:

CREATE SINK CONNECTOR `elasticsearch-sink` WITH(
    "connector.class"=
 'io.confluent.connect.elasticsearch.ElasticsearchSinkConnector',
    "connection.url"='http://elasticsearch:9200',
    "connection.username"='',
    "connection.password"='',
    "batch.size"='1',
    "write.method"='insert',
    "topics"='titles',
    "type.name"='changes',
    "key"='title_id');

As you can see, the connector-specific configurations vary across connectors. Most of
the preceding configurations are self-explanatory, but we’ll leave it as an exercise for
the reader to learn more about the ElasticsearchSinkConnector configurations,
which can be found in the Elasticsearch Sink Connector’s configuration reference.
Again, you should see some confirmation that the preceding statement worked after
executing the CREATE SINK CONNECTOR statement:

 Message
--------------------------------------
 Created connector elasticsearch-sink
--------------------------------------

Once the connector instances have been created in ksqlDB, we can interact with them
in various ways. We’ll look at some use cases in the following sections.

Showing Connectors
In interactive mode, it is sometimes helpful to list all of the running connectors and
their statuses. The syntax for listing connectors is as follows:

{ LIST | SHOW } [ { SOURCE | SINK } ] CONNECTORS

In other words, we can show all connectors, just source connectors, or just sink con‐
nectors. Since we’ve created both a source and sink connector at this point, let’s use
the following variation to list both:

SHOW CONNECTORS ;

You should see both connectors listed in the output:

 Connector Name     | Type   | Class    | Status
---------------------------------------------------------------------
 postgres-source    | SOURCE | ...      | RUNNING (1/1 tasks RUNNING)
 elasticsearch-sink | SINK   | ...      | RUNNING (1/1 tasks RUNNING)
---------------------------------------------------------------------
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The SHOW CONNECTORS command prints some useful information about the active
connectors, including their status. In this case, both connectors have a single task in
the RUNNING state. The other states you might see include UNASSIGNED, PAUSED,
FAILED, and DESTROYED. If you see a state like FAILED, you might want to investigate. 
For example, if your postgres-source connector lost its connection to the config‐
ured PostgreSQL database (which you can simulate in this tutorial by simply killing
your PostgreSQL instance), then you will see something like this:

Connector Name  | Type   | Class | Status
--------------------------------------------------------------
postgres-source | SOURCE | ...   | FAILED
--------------------------------------------------------------

So how do you get more information about the connector, e.g., if you want to investi‐
gate failed tasks? This is where ksqlDB’s ability to describe connectors comes into
play. Let’s take a look at that next.

Describing Connectors
ksqlDB makes it easy to retrieve the status of connectors using the DESCRIBE CONNEC
TOR command. For example, if our postgres-source connector lost its connection to
the underlying data store, as we discussed in the previous section, you could describe
the connector to glean some additional information about its state. For example:

DESCRIBE CONNECTOR `postgres-source` ;

If an error is present, you should see an error trace in the output. A truncated version
is shown here:

Name                 : postgres-source
Class                : io.confluent.connect.jdbc.JdbcSourceConnector
Type                 : source
State                : FAILED
WorkerId             : 192.168.65.3:8083
Trace                : org.apache.kafka.connect.errors.ConnectException 

 Task ID | State  | Error Trace
---------------------------------------------------------------------
 0       | FAILED | org.apache.kafka.connect.errors.ConnectException 

The stack trace in this example is truncated, but in the event of an actual failure,
you should see the full stack trace of the exception.

The task-specific breakdown. Tasks can be in different states (e.g., some may be
RUNNING, while others are UNASSIGNED, FAILED, etc.).
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More often than not, however, you should see tasks in a healthy state. An example
output for the DESCRIBE CONNECTOR command is shown here:

Name                 : postgres-source
Class                : io.confluent.connect.jdbc.JdbcSourceConnector
Type                 : source
State                : RUNNING
WorkerId             : 192.168.65.3:8083

 Task ID | State   | Error Trace
---------------------------------
 0       | RUNNING |
--------------------------------

Now that we’ve seen how to create and describe connectors, let’s learn how to remove
them.

Dropping Connectors
Dropping connectors is required for reconfiguring previously registered connectors,
or permanently deleting a connector. The syntax for dropping a connector is:

DROP CONNECTOR [ IF EXISTS ] <identifier>

For example, to drop our PostgreSQL connector, we could run the following
command:

DROP CONNECTOR `postgres-source` ;

Whenever you drop a connector, you should see some verification that the connector
was actually dropped. For example:

 Message
-------------------------------------
 Dropped connector "postgres-source"
-------------------------------------

Verifying the Source Connector
One quick way to verify that the PostgreSQL source connector is working is to write
some data to our PostgreSQL database and then print the contents of the topic. For
example, let’s create a table called titles in our Postgres instance, and prepopulate
this table with some data:

CREATE TABLE titles (
    id           SERIAL PRIMARY KEY,
    title        VARCHAR(120)
);

INSERT INTO titles (title) values ('Stranger Things');
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INSERT INTO titles (title) values ('Black Mirror');
INSERT INTO titles (title) values ('The Office');

The preceding statement is a PostgreSQL statement, not a ksqlDB
statement.

Our PostgreSQL source connector should populate the data from this table to the
titles topic automatically. We can use the PRINT statement in ksqlDB to verify this:

PRINT `titles` FROM BEGINNING ;

ksqlDB should print output similar to the following:

Key format: JSON or KAFKA_STRING
Value format: AVRO or KAFKA_STRING
rowtime: 2020/10/28 ..., key: 1, value: {"id": 1, "title": "Stranger Things"}
rowtime: 2020/10/28 ..., key: 2, value: {"id": 2, "title": "Black Mirror"}
rowtime: 2020/10/28 ..., key: 3, value: {"id": 3, "title": "The Office"

Note in the first two lines in the output, ksqlDB tries to infer both the key and value
format of the records in the titles topic. Since we’re using the StringConverter for
record keys and the AvroConverter for record values (see Example 9-2), this is the
expected output.

Similarly, verifying the sink connector requires us to produce data to the sink topic,
and then query the downstream data store. We’ll leave this as an exercise for the
reader (the code repository also shows how to do this). Now, let’s look at how to
interact with the Kafka Connect cluster directly, and explore use cases for why we
might want to do that.

Interacting with the Kafka Connect Cluster Directly
In some cases, you may want to interact with the Kafka Connect cluster directly, out‐
side of ksqlDB. For example, the Kafka Connect endpoints sometimes expose infor‐
mation that isn’t available in ksqlDB, and they allow you to perform some important
operational tasks like restarting failed tasks. Providing a comprehensive guide of the
Connect API is beyond the scope of this book, but some example queries you may
want to execute against your Connect cluster are shown in the following table:

Use case Example query
Listing connectors curl -XGET localhost:8083/connectors

Describing a connector curl -XGET localhost:8083/connectors/elasticsearch-sink

Listing tasks curl -XGET -s localhost:8083/connectors/elasticsearch-sink/tasks
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Use case Example query
Getting task status curl -XGET -s localhost:8083/connectors/elasticsearch-sink/

tasks/0/status

Restarting a failed task curl -XPOST -s localhost:8083/connectors/elasticsearch-sink/
tasks/0/restart

Finally, let’s learn how to inspect schemas when using serialization formats that lever‐
age Confluent Schema Registry.

Introspecting Managed Schemas
Table 9-1 showed several data serialization formats, some of which required Conflu‐
ent Schema Registry for storing the record schemas. Now, Kafka Connect will auto‐
matically store schemas in Confluent Schema Registry for you. Table 9-2 shows some
example queries that you can make to a Schema Registry endpoint to introspect the
managed schemas.

Table 9-2. Example Schema Registry queries

Use case Example query
Listing schema types curl -XGET localhost:8081/subjects/

Listing versions of a schema curl -XGET localhost:8081/subjects/titles-value/versions

Getting the version of a schema curl -XGET localhost:8081/subjects/titles-value/
versions/1

Getting the latest version of a schema curl -XGET localhost:8081/subjects/titles-value/
versions/latest

A full API reference can be found in the Schema Registry API reference.

Summary
You’ve now learned how to integrate external systems with ksqlDB. With a basic
understanding of Kafka Connect, along with our knowledge of various ksqlDB state‐
ments for managing connectors, you are ready to learn how to process, transform,
and enrich data using ksqlDB. In the next chapter, we will look at a stream processing
use case at Netflix and explore some additional ksqlDB statements for building
stream processing applications using SQL.
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CHAPTER 10

Stream Processing Basics with ksqlDB

In this chapter, we will learn how to use ksqlDB to perform some common stream
processing tasks. The topics we will explore include:

• Creating streams and tables
• Leveraging ksqlDB data types
• Filtering data using simple Boolean conditions, wildcards, and range filters
• Reshaping data by flattening complex or nested structures
• Using projection to select a subset of the available fields
• Using conditional expressions to handle NULL values
• Creating derived streams and tables, and writing the results back to Kafka

By the end of this chapter, you will be well prepared to handle basic data pre-
processing and transformation tasks using ksqlDB’s SQL dialect. Furthermore, while
the SQL constructs we explored in the preceding chapter leveraged ksqlDB’s Kafka
Connect integration under the hood, all of the SQL statements we will use in this
chapter will leverage ksqlDB’s Kafka Streams integration. This is where we will really
start to see how powerful ksqlDB is, since with just a few lines of SQL, we will be able
to build full-blown stream processing applications. As usual, we will explore this
chapter’s topics by building an application that leverages the related language con‐
structs. So without further ado, let’s introduce our tutorial.

Tutorial: Monitoring Changes at Netflix
Netflix invests billions of dollars in video content every year. With so many film and
television shows in production at once, communicating updates to various systems
when a production change occurs (e.g., release date changes, financial updates, talent
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1 Note: this is not a production application at Netflix, but a demonstration of how to model a Netflix use case
with ksqlDB.

scheduling, etc.) is important to keeping things running smoothly. Historically, Net‐
flix has used Apache Flink for its stream processing use cases. But in collaboration
with Nitin Sharma, an engineer at Netflix, we have decided to tackle this problem
using ksqlDB instead.1

The goal of this application is simple. We need to consume a stream of production
changes, filter and transform the data for processing, enrich and aggregate the data
for reporting purposes, and ultimately make the processed data available to down‐
stream systems. It sounds like a lot of work, but with ksqlDB, the implementation will
be very straightforward.

The type of change we’ll be focusing on in this tutorial will be changes to a show’s
season length (for example, Stranger Things, Season 4 may originally be slated for 12
episodes, but could be reworked into an 8-episode season, causing a ripple effect in
various systems, including talent scheduling, cash projection, etc.). This example was
chosen because it not only models a real-world problem, but also touches on the
most common tasks you will tackle in your own ksqlDB applications.

The architectural diagram for the change-tracking application we’ll be building is
shown in Figure 10-1. Descriptions of each step can be found after the diagram.

Figure 10-1. Architectural diagram for the Netflix change-tracking application
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Our application will read from two topics:

• The titles topic is a compacted topic containing metadata (title name,
release date, etc.) for films and television shows (collectively referred to as
titles throughout this tutorial) that are hosted on the Netflix service.

• The production_changes topic is written to whenever there is a talent
scheduling, budgetary, release date, or season length change to a title that is
currently in production.

After consuming the data from our source topics, we need to perform some basic
preprocessing (e.g., filtering and transformation) in order to prepare the produc
tion_changes data for enrichment. The preprocessed stream, which will contain
only changes to a title’s episode count/season length after it has been filtered, will
be written to a Kafka topic named season_length_changes.

We will then perform some data enrichment on the preprocessed data. Specifi‐
cally, we will join the season_length_changes stream with the titles data to
create a combined record from multiple sources and dimensions.

Next, we will perform some windowed and nonwindowed aggregations to count
the number of changes in a five-minute period. The resulting table will be mate‐
rialized, and made available for lookup-style pull queries.

Finally, we will make the enriched and aggregated data available to two different
types of clients. The first client will receive continuous updates via push queries,
using a long-lived connection to ksqlDB. The second client will perform point
lookups using short-lived pull queries that are more akin to traditional database
lookups.

Given the sheer number of concepts we will be introducing in this example, our tuto‐
rial will span two chapters. This chapter will focus on creating streams and tables, as
well as the basic data preprocessing and transformation steps (i.e., steps 1–2). The
next chapter will focus on data enrichment, aggregation, and push/pull queries
(though we will explore push queries in this chapter as well, since they are needed for
step 2).
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Project Setup
The code for this chapter is located at https://github.com/mitch-seymour/mastering-
kafka-streams-and-ksqldb.git.

If you would like to reference the code as we work our way through each topology
step, clone the repo and change to the directory containing this chapter’s tutorial. The
following command will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-10/

This tutorial uses Docker Compose to spin up each component needed for this appli‐
cation, including:

• Kafka
• Schema Registry
• ksqlDB server
• ksqlDB CLI

Simply run the following command after cloning the repo to start each component:

docker-compose up

The SQL statements we discuss in this chapter will be executed in the ksqlDB CLI.
You can log in to the ksqlDB CLI using the following command:

docker-compose exec ksqldb-cli \ 
    ksql http://ksqldb-server:8088 

Use docker-compose exec to run a command in the ksqldb-cli container. The
command we will run is shown on the next line.

ksql is the name of the CLI executable. The http://ksqldb-server:8088 argu‐
ment is the URL of our ksqlDB server.

Now that the CLI is running, let’s begin our tutorial.

Source Topics
So you have data in a Kafka topic and you want to process it using ksqlDB. Great!
Where do you start?

The most logical place to begin is by looking at the data in your source topics, and
then determining how to model the data in ksqlDB. In this tutorial, we have two pri‐
mary source topics: titles and production_changes. An example record in each
source topic is shown in Table 10-1.
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Table 10-1. Example record in each source topic

Source topic Example record
titles {

    "id": 1,
    "title": "Stranger Things",
    "on_schedule": false
}

production_change {
    "uuid": 1,
    "title_id": 1,
    "change_type": "season_length",
    "before": {
        "season_id": 1,
        "episode_count": 12
    },
    "after": {
       "season_id": 1,
       "episode_count": 8
    },
    "created_at": "2021-02-08 11:30:00"
}

In the previous chapter, we discussed record-level serialization formats that are sup‐
ported in ksqlDB. These include popular formats such as AVRO, JSON, PROTOBUF,
DELIMITED, and single-value primitives (e.g., String, Double, Integer, and Long
types, which are collectively grouped under the KAFKA format). For example, since the
data in our titles topic is formatted as JSON, we know that we can use JSON as our
record serialization format.

What we haven’t covered yet are the field-level data types. For example, the titles
record in Table 10-1 contains three fields (id, title, on_schedule), each with differ‐
ent types of values (integer, string, and Boolean, respectively). Before we create any
streams or tables to model the data in our topics, we need to consider which data type
is associated with each field. ksqlDB includes many built-in data types for us to use,
which we will explore in the next section.

Data Types
The available data types in ksqlDB are shown in Table 10-2.

Table 10-2. Built-in data types

Type Description

ARRAY<element-type> A collection of elements of the same type (e.g.,
ARRAY<STRING>)

BOOLEAN A Boolean value
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Type Description

INT 32-bit signed integer

BIGINT 64-bit signed integer

DOUBLE Double precision (64-bit) IEEE 754 floating-point number

DECIMAL(precision, scale) A floating-point number with a configurable number of
total digits (precision) and digits to the right of the decimal
point (scale)

MAP<key-type, element-type> An object that contains keys and values, each of which
coincides with a data type (e.g., MAP<STRING,INT>)

STRUCT<field-name field-type [, ...]> A structured collection of fields (e.g., STRUCT<FOO 
INT, BAR BOOLEAN>)

VARCHAR or STRING A unicode character sequence (UTF8)

One interesting thing about ksqlDB data types is that for some serialization formats,
they are optional. This includes any serialization format that relies on Confluent
Schema Registry, including AVRO, PROTOBUF, and JSON_SR. This is because Schema
Registry already stores field names and types, so specifying the data types again in a
CREATE statement is redundant (ksqlDB can just pull the schema information from
Schema Registry).

The exception to this is when you need to specify a key column. In ksqlDB, you can
use the PRIMARY KEY (for tables) or KEY (for streams) identifier to tell ksqlDB which
column to read for the message key.

Therefore, we only need to specify a partial schema that contains the PRIMARY KEY
column, which tells ksqlDB to read this column for the message key. However, the
value columns (e.g., title) can be derived from the schema. For example, if our titles
data was instead formatted as AVRO, and the related Avro schema was stored in
Schema Registry, we could use either of the following CREATE statements to create our
titles table:

Explicit types Inferred typesa

CREATE TABLE titles (
    id INT PRIMARY KEY,
    title VARCHAR
) WITH (
    KAFKA_TOPIC='titles',
    VALUE_FORMAT='AVRO',
    PARTITIONS=4
);

CREATE TABLE titles (
    id INT PRIMARY KEY
)
WITH (
    KAFKA_TOPIC='titles',
    VALUE_FORMAT='AVRO',
    PARTITIONS=4
);

a Only available for serialization formats that use Schema Registry.
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This book will use the explicit version to improve the clarity of our examples,
even when the short-form version would suffice. We will also explain the
CREATE { STREAM | TABLE } syntax in more detail shortly, but let’s first continue our
discussion of data types by learning how we can create our own custom types in
ksqlDB.

Custom Types
Custom types (similar to composite types in PostgreSQL) allow us to specify a group
of field names and their associated data types, and then later reference the same col‐
lection of fields using a name of our choosing. Custom types are especially useful for
reusing complex type definitions. For example, our application needs to capture
changes to a season length, which could have a before and after state that are structur‐
ally identical. The following record demonstrates this:

{
    "uuid": 1,
    "before": { 
        "season_id": 1,
        "episode_count": 12
    },
    "after": {
       "season_id": 1,
       "episode_count": 8
    },
    "created_at": "2021-02-08 11:30:00"
}

The structure of the before field is identical to the after field. This is a good use
case for a custom type.

We could specify separate STRUCT definitions for the before and after fields, or we
could simply create a custom type that can be reused. In this tutorial, we’ll opt for the
latter since it will improve readability of our SQL statements. The various operations
for working with custom types, as well as the related SQL syntax, are shown in the
following table:

Operation Syntax
Create a custom type CREATE TYPE <type_name> AS <type>;

Show all registered custom types { LIST | SHOW } TYPES

Drop a custom type DROP TYPE <type_name>

Let’s create a custom type named season_length using the following statement:

ksql> CREATE TYPE season_length AS STRUCT<season_id INT, episode_count INT> ;
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2 These collections are backed by RocksDB state stores, as we discussed in “State Stores” on page 98.

Once the type has been created, you can use the SHOW TYPES query to view it:

ksql> SHOW TYPES ;

 Type Name     | Schema
------------------------------------------------------------------
 SEASON_LENGTH | STRUCT<SEASON_ID INTEGER, EPISODE_COUNT INTEGER>
------------------------------------------------------------------

If we wanted to drop our custom type, we could execute the following statement:

ksql> DROP TYPE season_length;

This tutorial will make use of the season_length custom type, so if you dropped it,
be sure to re-create it before proceeding. Now that we’ve learned about the various
data types in ksqlDB, we can start creating the streams and tables needed by our
application. We’ll explore this topic in the next section.

Collections
Streams and tables are the two primary abstractions at the heart of both Kafka
Streams and ksqlDB. In ksqlDB, they are referred to as collections. We got our first
look at streams and tables in “Streams and Tables” on page 53, but we’ll quickly
review the differences again before we look at the ksqlDB syntax for creating them.

Tables can be thought of as a snapshot of a continuously updating dataset, where the
latest state or computation (in the case of an aggregation) of each unique key in a
Kafka topic is stored in the underlying collection.2 They are backed by compacted
topics and leverage Kafka Streams state stores under the hood.

A popular use case for tables is join-based data enrichment, in which a so-called
lookup table can be referenced to provide additional context about events coming
through a stream. They also play a special role in aggregations, which we will explore
in the next chapter.

Streams, on the other hand, are modeled as an immutable sequence of events. Unlike
tables, which have mutable characteristics, each event in a stream is considered to be
independent of all other events. Streams are stateless, meaning each event is con‐
sumed, processed, and subsequently forgotten.

To visualize the difference, consider the following sequence of events (keys and values
are shown as <key, value>):
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Sequence of events
<K1, V1>
<K1, V2>
<K1, V3>
<K2, V1>

A stream models the full history of events, while a table captures the latest state of
each unique key. The stream and table representations of the preceding sequence are
shown here:

Stream Table
<K1, V1>
<K1, V2>
<K1, V3>
<K2, V1>

<K1, V3>
<K2, V1>

There are a couple of ways of creating streams and tables in ksqlDB. They can either
be created directly on top of Kafka topics (we refer to these as source collections in this
book) or derived from other streams and tables (referred to as derived collections).
We’ll look at both types of collections in this chapter, but we’ll start our discussion
with source collections since they are the starting point for all stream processing
applications in ksqlDB.

Creating Source Collections
Before we can start working with data in ksqlDB, we need to create the source collec‐
tions on top of our Kafka topics. This is because in ksqlDB, we don’t query Kafka top‐
ics directly. We query collections (i.e., streams and tables). The syntax for creating
streams and tables is here:

CREATE [ OR REPLACE ] { STREAM | TABLE } [ IF NOT EXISTS ] <identifier> (
    column_name data_type [, ... ]
) WITH (
    property=value [, ... ]
)

In this tutorial, we need to create both a stream and a table. Our titles topic, which
contains metadata about films and television shows (we’ll refer to both of these
entities as titles going forward), will be modeled as a table since we only care about
the current metadata associated with each title. We can create our table using the
following statement:

CREATE TABLE titles (
    id INT PRIMARY KEY, 
    title VARCHAR
) WITH (
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    KAFKA_TOPIC='titles',
    VALUE_FORMAT='AVRO',
    PARTITIONS=4 
);

PRIMARY KEY specifies the key column for this table, and this is derived from the
record key. Remember that tables have mutable, update-style semantics, so if
multiple records are seen with the same primary key, then only the latest will be
stored in the table. The exception to this is if the record key is set but the value is
NULL. In this case, the record is considered to be a tombstone and will trigger a
deletion of the related key. Note that for tables, ksqlDB will ignore any record
whose key is set to NULL (this is not true for streams).

Since we’re specifying the PARTITIONS property in our WITH clause, ksqlDB will
create the underlying topic for us if it does not already exist (in this case, the
topic will be created with four partitions). We could also set the replication factor
of the underlying topic here using the REPLICAS property. We’ll explore the WITH
clause in more detail in the next section.

Furthermore, we’ll model the production_changes topic as a stream. This is the ideal
collection type for this topic since we don’t need to track the latest state of each
change event; we simply need to consume and process each value. Therefore, we can
create our source stream using the following statement:

CREATE STREAM production_changes (
    rowkey VARCHAR KEY, 
    uuid INT,
    title_id INT,
    change_type VARCHAR,
    before season_length, 
    after season_length,
    created_at VARCHAR
) WITH (
    KAFKA_TOPIC='production_changes',
    PARTITIONS='4',
    VALUE_FORMAT='JSON',
    TIMESTAMP='created_at', 
    TIMESTAMP_FORMAT='yyyy-MM-dd HH:mm:ss'
);
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3 Here, complex refers to a nonprimitive type. In this case, both the before and after fields are represented
using a STRUCT, which we alias using our custom type. MAP and ARRAY are also complex types.

Unlike tables, streams do not have a primary key column. Streams have immuta‐
ble, insert-style semantics, so uniquely identifying records is not possible. How‐
ever, the KEY identifier can be used to alias the record key column (which
corresponds to the Kafka record key).

Here, we’re using our custom type, season_length, to reuse the type definition
for both the before and after fields, which are complex objects3 that are struc‐
turally identical.

This tells ksqlDB that the created_at column contains the timestamp that
ksqlDB should use for time-based operations, including windowed aggregations
and joins (which we’ll explore in the next chapter). The TIMESTAMP_FORMAT prop‐
ery on the next line specifies the format of the record timestamps. More informa‐
tion about the TIMESTAMP and TIMESTAMP_FORMAT properties will be covered in
the next section.

The WITH clause that is available in CREATE { STREAM | TABLE } statements supports
several properties that we haven’t explored yet. Let’s explore these in the next section
before continuing our discussion of streams and tables.

With Clause
When creating a stream or table, you can configure several properties using ksqlDB’s
WITH clause. Some of the more important properties you will likely make use of are
shown in Table 10-3:

Table 10-3. Properties that are supported in the WITH clause

Property name Description Required?

KAFKA_TOPIC The Kafka topic that contains the data you want to consume. Yes

VALUE_FORMAT The serialization format of the data in the source topic (e.g., AVRO,
PROTOBUF, JSON, JSON_SR, KAFKA).

Yes

PARTITIONS Specify this property if you want ksqlDB to create the source topic
with the configured number of partitions.

No

REPLICAS Specify this property if you want ksqlDB to create the source topic
with the configured number of replicas.

No
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Property name Description Required?

TIMESTAMP The name of the column that contains the timestamp that ksqlDB
should use for time-based operations (e.g., windowed operations).
If you do not set this property, ksqlDB will use the timestamp
embedded in the record metadata. If the column is a BIGINT
type, then ksqlDB will know how to parse the timestamp without
additional configuration. If the column is a VARCHAR type, you
should also set the TIMESTAMP_FORMAT property, which we’ll
discuss next.

No

TIMESTAMP_FORMAT The format of the timestamp. Any format supported by
java.time.format.DateTimeFormatter is valid (e.g.,
yyyy-MM-dd HH:mm:ss).

No

VALUE_DELIMITER The character that acts as the field delimiter when VALUE_FOR
MAT='DELIMITED'. Commas (,) are the default delimiter, but
'SPACE' and 'TAB' are also valid values.

No

Let’s continue our discussion of streams and tables by learning how to inspect them
once they have been created.

Working with Streams and Tables
In interactive mode, it’s often useful to view and describe the collections you have cre‐
ated. In some cases, you may even want to delete a collection because you no longer
need it, or because you want to re-create another stream or table with the same name.
This section will discuss each of these use cases and show example responses for the
related SQL statements. First, let’s look at how to show the active streams and tables
defined in your application.

Showing Streams and Tables
Sometimes, you may want to view some information about all of the currently regis‐
tered streams and tables. ksqlDB includes a couple of statements to help with this,
and the syntax is as follows:

{ LIST | SHOW } { STREAMS | TABLES } [EXTENDED];

While LIST and SHOW are interchangable, we will use the SHOW variation in this book.

For example, we have created both the source stream and table needed for our tuto‐
rial. Let’s now use the SHOW statement to view some information about these collec‐
tions in the ksqlDB CLI. The output of each statement is shown directly after the
command in the following code block:

292 | Chapter 10: Stream Processing Basics with ksqlDB



ksql> SHOW TABLES ;

 Table Name | Kafka Topic | Format | Windowed
----------------------------------------------
 TITLES     | titles      | AVRO   | false
----------------------------------------------

ksql> SHOW STREAMS ;

 Stream Name         | Kafka Topic                 | Format
------------------------------------------------------------
 PRODUCTION_CHANGES  | production_changes          | JSON
------------------------------------------------------------

As you can see, the output for listing streams and tables is pretty minimal. If you
need more information about the underlying collections, you can use the EXTENDED
variation of the SHOW statement, as shown here:

ksql> SHOW TABLES EXTENDED; 

Name                 : TITLES
Type                 : TABLE
Timestamp field      : Not set - using <ROWTIME>
Key format           : KAFKA
Value format         : AVRO
Kafka topic          : titles (partitions: 4, replication: 1)
Statement            : CREATE TABLE titles (...) 

 Field | Type
----------------------------------------
 ID    | INTEGER          (primary key)
 TITLE | VARCHAR(STRING)
----------------------------------------

Local runtime statistics 
------------------------
messages-per-sec:   0.90   total-messages:   292    last-message: 2020-06-12...

(Statistics of the local KSQL server interaction with the Kafka topic titles)

SHOW STREAMS EXTENDED is also supported, but we have omitted a streams-
specific example since the output format is similar.

The full DDL statement is shown in the actual output, but has been truncated
here for brevity.

The runtime statistics include additional fields not shown here, including
consumer-total-message-bytes, failed-messages-per-sec, last-failed, and
more. This is useful to get a high-level glance at the throughput and error rates
(e.g., deserialization errors) of your streams and tables. Note that these statistics
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will be omitted if none are available (e.g., if there’s no activity on the stream or
table).

Since SHOW commands are used to view data for all of the streams/tables in the ksqlDB
cluster, the preceding output would be repeated for each stream/table that is currently
registered.

Now that you know how to show all of the streams and tables in your cluster, let’s see
how to describe specific streams and tables, one at a time.

Describing Streams and Tables
Describing collections is similar to the SHOW command, but it operates on a single
stream or table instance at a time. The syntax for describing a stream or table is as
follows:

DESCRIBE [EXTENDED] <identifier> 

<identifier> is the name of a stream or table. Note the lack of a STREAM or
TABLE keyword in this command. Since ksqlDB doesn’t allow you to create a
stream and table using the same name, it doesn’t need to distinguish between the
collection type in this command. It simply needs to know the unique identifier of
the stream or table you wish to describe.

For example, we could describe the titles table using the following statement:

ksql> DESCRIBE titles ;

Name                 : TITLES
 Field | Type
----------------------------------------
 ID    | INTEGER          (primary key)
 TITLE | VARCHAR(STRING)
----------------------------------------

If we wanted more information, e.g., about the runtime statistics, we could use the
DESCRIBE EXTENDED variation, as shown in the following code snippet. We have omit‐
ted the output for the DESCRIBE EXTENDED command, since it was identical to the
SHOW { STREAMS | TABLES } EXTENDED output at the time of writing, except it only
shows the output for the specified stream/table, and not all of the streams and tables
currently registered by the ksqlDB cluster:

ksql> DESCRIBE EXTENDED titles ;

Another common task in more traditional databases is to drop database objects you
no longer need. Similarly, ksqlDB allows you to drop streams and tables, as we will
see in the next section.

294 | Chapter 10: Stream Processing Basics with ksqlDB



4 If you are following along with the tutorial and decide to run this statement, be sure to re-create the
production_changes stream before proceeding with the rest of the tutorial.

Altering Streams and Tables
Sometimes you may want to alter an existing collection. ksqlDB includes an ALTER
statement that makes this possible. The syntax is shown in the following snippet:

ALTER { STREAM | TABLE } <identifier> alterOption [,...]

As of ksqlDB version 0.14.0, the only operation that can be performed with the ALTER
statement is adding columns, although this may be expanded in the future. An exam‐
ple of how to add a column using the ALTER statement is shown in the following:

ksql> ALTER TABLE titles ADD COLUMN genre VARCHAR; 

 Message
-----------------------
 Table TITLES altered.
-----------------------

Add a VARCHAR column named genre to the titles table

Dropping Streams and Tables
My parents used to say, “I brought you into this world, and I can take you out of it.”
Similarly, if you brought a stream or table into the world and want to take it out again
(maybe it was supposed to be home by 10 p.m., but didn’t get home until 11 p.m. and
then lied about it), you can use the DROP { STREAM | TABLE } command. The full
syntax is as follows:

DROP { STREAM | TABLE } [ IF EXISTS ] <identifier> [DELETE TOPIC]

For example, if we wanted to drop our production_changes stream and the underly‐
ing topic, you could execute the following statement:4

ksql> DROP STREAM IF EXISTS production_changes DELETE TOPIC ;

 Message
----------------------------------------------------------------------
 Source `PRODUCTION_CHANGES` (topic: production_changes) was dropped.
----------------------------------------------------------------------

Be careful with the optional DELETE TOPIC clause, since ksqlDB will promptly delete
the topic if this is included. You can exclude DELETE TOPIC if you simply want to
delete the table and not the topic itself.

At this point, we have covered a lot about how to work with collections at a high level.
For example, we can assert their presence and inspect their metadata using ksqlDB’s
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SHOW and DESCRIBE statements, and we can bring them in and out of this world using
CREATE and DROP statements. Let’s now look at some additional ways to work with
streams and tables by exploring some basic stream processing patterns and their
related SQL statements.

Basic Queries
In this section, we’ll look at some basic ways of filtering and transforming data in
ksqlDB. Recall that at this point, our change-tracking application is consuming data
from two different Kafka topics: titles and production_changes. We have already
completed step 1 of our application (see Figure 10-1) by creating source collections
for each of these topics (a titles table and a production_changes stream). Next,
we will tackle step 2 of our application, which requires us to filter the
production_changes stream for season-length changes only, to transform the data
into a simpler format, and to write the filtered and transformed stream to a new topic
called season_length_changes.

Let’s get started by looking at a statement that is particularly useful for development
purposes: the INSERT VALUES statement.

Insert Values
Inserting values into a stream or table is extremely useful when you need to pre-
populate a collection with data. If you are familiar with traditional databases, the
insert semantics are slightly different than what you’re used to. For both streams and
tables, the record is appended to the underlying Kafka topic, but tables only store the
latest representation of each key, so it acts as more of an upsert operation for tables
(which is why there isn’t a separate UPDATE statement in ksqlDB).

We’ll prepopulate both our titles table and our production_changes stream in this
tutorial with some test data to facilitate experimentation with various types of SQL
statements. The syntax for inserting values into a collection is as follows:

INSERT INTO <collection_name> [ ( column_name [, ...]] ) ]
VALUES (
    value [,...]
);

Our application is only interested in changes to a title’s season length, so let’s insert
the following record:

INSERT INTO production_changes (
    uuid,
    title_id,
    change_type,
    before,
    after,
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    created_at
) VALUES (
    1,
    1,
    'season_length',
    STRUCT(season_id := 1, episode_count := 12),
    STRUCT(season_id := 1, episode_count := 8),
    '2021-02-08 10:00:00'
);

Since we’ll need to filter out all other types of changes, let’s insert a release date
change as well. This will be useful to test our filter conditions later on. We’ll use a
slightly different variation of the INSERT statement this time, by also specifying values
for ROWKEY and ROWTIME, which are special pseudo columns that are automatically
created by ksqlDB:

INSERT INTO production_changes (
    ROWKEY,
    ROWTIME,
    uuid,
    title_id,
    change_type,
    before,
    after,
    created_at
) VALUES (
    '2',
    1581161400000,
    2,
    2,
    'release_date',
    STRUCT(season_id := 1, release_date := '2021-05-27'),
    STRUCT(season_id := 1, release_date := '2021-08-18'),
    '2021-02-08 10:00:00'
);

Finally, for good measure, let’s insert some data into our titles table as well. We’ll
use another variation of INSERT INTO VALUES here, which omits the column names.
Instead, we’ll provide values for each column in the order they were defined (e.g., the
first value will specify the id, and the second value will correspond to the title):

INSERT INTO titles VALUES (1, 'Stranger Things');
INSERT INTO titles VALUES (2, 'Black Mirror');
INSERT INTO titles VALUES (3, 'Bojack Horseman');

Now that we have prepopulated our table and stream with some test data, let’s get to
the exciting part: running queries against our collections.
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Simple Selects (Transient Push Queries)
The simplest form of query we can run is called a transient (i.e., not persistent) push
query. These are simple SELECT statements with an EMIT CHANGES clause at the end.
The syntax for transient push queries is as follows:

SELECT select_expr [, ...]
FROM from_item
[ LEFT JOIN join_collection ON join_criteria ]
[ WINDOW window_expression ]
[ WHERE condition ]
[ GROUP BY grouping_expression ]
[ PARTITION BY partitioning_expression ]
[ HAVING having_expression ]
EMIT CHANGES
[ LIMIT count ];

Let’s start by selecting all of the records from the production_changes stream:

ksql> SET 'auto.offset.reset' = 'earliest'; 
ksql> SELECT * FROM production_changes EMIT CHANGES ; 

This allows us to read from the beginning of our topics, which is useful since
we’ve already inserted some test data.

Run a transient query.

Unlike persistent queries, which we will explore at the end of this chapter, transient
push queries like the preceding one will not survive restarts of your ksqlDB server.

If we run the preceding query, we will see the initial query output printed to the
screen, and the query will continue to run, waiting for new data to arrive. The output
of the query is shown in Example 10-1.

Example 10-1. Output of our transient push query

+------+----+--------+-------------+--------------------+---------------------+-------------+
|ROWKEY|UUID|TITLE_ID|CHANGE_TYPE  |BEFORE              |AFTER                |CREATED_AT   |
+------+----+--------+-------------+--------------------+---------------------+-------------+
|2     |2   |2       |release_date |{SEASON_ID=1,        |{SEASON_ID=1,       |2021-02-08...|
                                     EPISODE_COUNT=null}   EPISODE_COUNT=null}

|null  |1    |1      |season_length|{SEASON_ID=1,
                                     EPISODE_COUNT=12}   |{SEASON_ID=1,       |2021-02-08...|
                                                           EPISODE_COUNT=8}

If you were to open another CLI session and execute another INSERT VALUES state‐
ment against the production_changes stream, the output of the results would be
updated automatically.
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Transient push queries against tables work the same way. We can verify by running a
SELECT statement against our titles table:

ksql> SELECT * FROM titles EMIT CHANGES ;

Again, the initial contents of the table would be emitted, as shown in the following
code. Furthermore, as new data arrived, the output would be updated accordingly:

+----+-----------------+
|ID  |TITLE            |
+----+-----------------+
|2   |Black Mirror     |
|3   |Bojack Horseman  |
|1   |Stranger Things  |

Simple SELECT statements like the ones we’ve explored in this section are a useful
starting point for building stream processing applications, but processing data often
requires us to transform data in different ways. We’ll explore some basic data trans‐
formation tasks in the next couple of sections.

Projection
Perhaps the simplest form of data transformation involves selecting a subset of the
available columns in a stream or table, and thereby simplifying the data model for
downstream operations. This is called projection, and simply requires us to replace
the SELECT * syntax with the explicit column names we want to work with. For
example, in this tutorial, we need to work with the title_id, before, after, and cre
ated_at columns in the production_changes stream, so we can write the following
statement to project these columns into a new, simplified stream:

SELECT title_id, before, after, created_at
FROM production_changes
EMIT CHANGES ;

The output of this query shows the simplified stream:

+---------+---------------------+----------------------------------+
|TITLE_ID |BEFORE               |AFTER               |CREATED_AT   |
+---------+---------------------+--------------------+-------------+
|2        |{SEASON_ID=1,        |{SEASON_ID=1,       |2021-02-08...|
            EPISODE_COUNT=null}   EPISODE_COUNT=null}

|1        |{SEASON_ID=1,        |{SEASON_ID=1,       |2021-02-08...|
            EPISODE_COUNT=12}     EPISODE_COUNT=8}

As you can see, our stream still includes some records we don’t actually need for our
application. We’re only interested in season_length changes, but the record with
TITLE_ID=2 is a release_date change, as we saw in Example 10-1. Let’s explore
ksqlDB’s filtering capabilities to see how we can address this use case.
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Filtering
ksqlDB’s SQL dialect includes the ubiquitous WHERE clause, which can be used for fil‐
tering streams and tables. Since our application is only interested in a certain kind of
production change at Netflix (season_length changes), we can use the statement in
Example 10-2 to filter the relevant records.

Example 10-2. A ksqlDB statement that uses the WHERE clause to filter records

SELECT title_id, before, after, created_at
FROM production_changes
WHERE change_type = 'season_length'
EMIT CHANGES ;

The output of this query is shown in Example 10-3.

Example 10-3. The filtered result set

+---------+---------------------+----------------------------------+
|TITLE_ID |BEFORE               |AFTER               |CREATED_AT   |
+---------+---------------------+--------------------+-------------+
|1        |{SEASON_ID=1,        |{SEASON_ID=1,       |2021-02-08...|
            EPISODE_COUNT=12}     EPISODE_COUNT=8}

Now, let’s explore some variations of the WHERE statement before we move forward.

In addition to the variations of the WHERE statement that we’ll dis‐
cuss later, there is also an IN predicate that is currently supported
for pull queries (which we’ll look at in the next chapter). The IN
predicate is expected to be supported for push queries sometime in
the future as well. The purpose of the IN predicate is to match mul‐
tiple values (e.g., WHERE id IN (1, 2, 3)). If you are using a ver‐
sion of ksqlDB greater than 0.14.0, you can check the ksqlDB
changelog to see if your version of ksqlDB supports the IN predi‐
cate for push queries.

Wildcards
Wildcard filtering is also supported in ksqlDB, and is useful for cases when we want
to match only part of a column value. In this case, the LIKE operator with the % char‐
acter, which represents zero or more characters, can be used for a more powerful
filtering condition, as shown here:

SELECT title_id, before, after, created_at
FROM production_changes
WHERE change_type LIKE 'season%' 
EMIT CHANGES ;
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Match any record where the change_type column begins with the word season.

Logical operators

Multiple filter conditions can be provided using AND/OR logical operators. You can also
use parentheses to group multiple filter conditions as a single logical expression.
Conditions can be negated using the NOT operator. The following variation of our
SQL statement demonstrates each of these concepts:

SELECT title_id, before, after, created_at
FROM production_changes
WHERE NOT change_type = 'release_date' 
AND ( after->episode_count >= 8 OR after->episode_count  <=20 ) 
EMIT CHANGES ;

Include only records where the change_type is set to any value except
release_date.

The two conditions in the parentheses are evaluated together. In this case, we are
filtering for any change where the new episode count is between 8 and 20 (inclu‐
sive).

Finally, while the second filtering condition is capturing records where the episode
count falls within a certain range (8 to 20), there is a better option for implementing
range filters, which we will explore in the next section.

Between (range filter)
If you need to filter for records within a certain numeric or alphanumeric range, you
can use the BETWEEN operator. The range is inclusive, meaning BETWEEN 8 AND 20 will
match values between 8 and 20, including 8 and 20. An example SQL statement is:

SELECT title_id, before, after, created_at
FROM production_changes
WHERE change_type = 'season_length'
AND after->episode_count BETWEEN 8 AND 20
EMIT CHANGES ;

For our tutorial, the filtering condition shown in Example 10-2 will suffice, but you
should now have a good idea how to use other types of filtering conditions as well.

Our stream is now filtered, but as you can see from the output in Example 10-3, two
of the columns (before and after) contain complex, multivariate structures (e.g.,
{SEASON_ID=1, EPISODE_COUNT=12}). This highlights another common use case in
data transformation and preprocessing: flattening/unnesting complex structures into
simpler structures. We’ll take a look at this use case next.
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Flattening/Unnesting Complex Structures
Flattening values involves breaking out nested fields in a complex structure (e.g., a
STRUCT) into top-level, single-value columns. Like projection, it is a useful way of
simplifying the data model for downstream operations.

For example, in the previous section, we saw the following complex value in the
after column for a single record:

{SEASON_ID=1, EPISODE_COUNT=8}

We can access nested struct fields using the -> operator, and pull these values into
separate columns using the following query:

SELECT
    title_id,
    after->season_id,
    after->episode_count,
    created_at
FROM production_changes
WHERE change_type = 'season_length'
EMIT CHANGES ;

As you can see from the following output, this has a flattening effect since the once
multivariate datapoint ({SEASON_ID=1, EPISODE_COUNT=8}) is now represented in
two separate columns:

+----------+-----------+--------------+-------------------+
|TITLE_ID  |SEASON_ID  |EPISODE_COUNT |CREATED_AT         |
+----------+-----------+--------------+-------------------+
|1         |1          |8             |2021-02-08 10:00:00|

We’re well on our way to creating a transformed version of the production_changes
stream that we can use for more advanced operations later on, but before we write the
results back to Kafka, let’s take a look at another type of expression that is useful in
basic stream processing use cases: conditional expressions.

Conditional Expressions
ksqlDB also supports several conditional expressions. There are many different uses
for these expressions, but one common use case is to address potential data integrity
issues in a stream or table by supplying alternate values for NULL columns.

As an example, say we want to address a potential data integrity issue in our
production_changes stream, where the season_id is sometimes NULL in one of the
before or after columns, but not the other. In this case, we can use one of three dif‐
ferent types of conditional expressions to handle this error case, and fallback to
an alternate season_id value when necessary. Let’s start by looking at the COALESCE
function.
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Coalesce
The COALESCE function can be used to return the first non-NULL value in a list of val‐
ues. The function signature of COALESCE is as follows:

COALESCE(first T, others T[])

For example, to implement some fallback logic to select a non-NULL season_id, we
could update our SELECT statement like this:

SELECT COALESCE(after->season_id, before->season_id, 0) AS season_id
FROM production_changes
WHERE change_type = 'season_length'
EMIT CHANGES ;

In this case, if after->season_id is NULL, then we fallback to before->season_id. If
before->season_id is also NULL, then we will fallback to a default value of 0.

IFNULL
The IFNULL function is similar to COALESCE, except it only has a single fallback value.
The function signature of IFNULL is as follows:

IFNULL(expression T, altValue T)

If we want to fallback to before->season_id in the event after->season_id is NULL,
we could update our statement like this:

SELECT IFNULL(after->season_id, before->season_id) AS season_id
FROM production_changes
WHERE change_type = 'season_length'
EMIT CHANGES ;

Case Statements
Of all the conditional expressions in ksqlDB, the CASE statement is the most powerful. 
It allows us to evaluate any number of Boolean conditions and return the first value
where the condition evaluates to true. Unlike COALESCE and IFNULL, the conditions
evaluated in a CASE statement are not limited to simple NULL checks.

The syntax for CASE statements is as follows:

CASE expression
    WHEN condition THEN result [, ...]
    [ELSE result]
END

For example, the following code shows how to use a CASE statement that includes
multiple fallback conditions, and return 0 if both the after->season_id and before-
>season_id values are NULL:
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SELECT
  CASE
    WHEN after->season_id IS NOT NULL THEN after->season_id
    WHEN before->season_id IS NOT NULL THEN before->season_id
    ELSE 0
  END  AS season_id
FROM production_changes
WHERE change_type = 'season_length'
EMIT CHANGES ;

If you’re performing a simple NULL check, as we are, it makes more sense to use
COALESCE or IFNULL. In this tutorial, we’ll use the IFNULL variation.

Now we’re finally ready to write our filtered and transformed production_changes
stream back to Kafka.

Writing Results Back to Kafka (Persistent Queries)
Up until this point, we’ve been working with transient queries. These queries begin
with SELECT and the output is returned to the client, but not written back to Kafka.
Furthermore, transient queries do not survive server restarts.

ksqlDB also allows us to create so-called persistent queries, which write the results to
Kafka and also survive server restarts. This is useful when you want to make your fil‐
tered, transformed, and/or enriched stream available to other clients. In order to
write the results of a query back to Kafka, we can create derived collections. We’ll dis‐
cuss what these are in the next section.

Creating Derived Collections
Derived collections are the product of creating streams and tables from other streams
and tables. The syntax varies slightly from the way we create source collections, since
we don’t specify the column schemas and there is an added AS SELECT clause. The full
syntax for creating derived collections is as follows:

CREATE { STREAM | TABLE } [ IF NOT EXISTS ] <identifier>
WITH (
    property=value [, ... ]
)
AS SELECT select_expr [, ...]
FROM from_item
[ LEFT JOIN join_collection ON join_criteria ]
[ WINDOW window_expression ]
[ WHERE condition ]
[ GROUP BY grouping_expression ]
[ PARTITION BY partitioning_expression ]
[ HAVING having_expression ]
EMIT CHANGES
[ LIMIT count ];
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The queries for creating derived streams are often referred to by one of two
acronyms:

• CSAS (pronounced sē-sas) queries (CREATE STREAM AS SELECT) are used to cre‐
ate derived streams.

• CTAS (pronounced sē-tas) queries (CREATE TABLE AS SELECT) are used to create
derived tables.

Let’s apply the filter conditions, data transformations, and conditional expressions
we’ve learned about so far to create a derived stream named season_length_changes,
which will contain only the types of changes we need for our application:

CREATE STREAM season_length_changes 
WITH ( 
    KAFKA_TOPIC = 'season_length_changes', 
    VALUE_FORMAT = 'AVRO',
    PARTITIONS = 4,
    REPLICAS = 1
) AS SELECT 
    ROWKEY, 
    title_id, 
    IFNULL(after->season_id, before->season_id) AS season_id, 
    before->episode_count AS old_episode_count, 
    after->episode_count AS new_episode_count,
    created_at
FROM production_changes
WHERE change_type = 'season_length' 
EMIT CHANGES ;

Creating derived collections is syntactically similar to creating source collections
(e.g., CREATE STREAM and CREATE TABLE).

The WITH clause is also supported when creating derived collections.

Write the derived stream to the season_length_changes topic.

The AS SELECT part of the statement is where we define the query to populate the
derived stream or table.

You must include the key column in the projection. This tells ksqlDB what value
it should use for the key in the underlying Kafka record.

By specifying individual columns, we are using projection to reshape the original
stream or table.
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Using the IFNULL conditional expression allows us to handle certain types of data
integrity issues. We also use the AS statement here (and in the two lines that fol‐
low) to provide explicit names for our column.

Flattening nested or complex values will make our collection easier to work with
for downstream processors and clients.

Filtering the stream allows us to capture a specific subset of records, which is
another common stream processing use case.

Once you’ve created the derived collection, you should see confirmation that a query
was created:

 Message
---------------------------------------------------
 Created query with ID CSAS_SEASON_LENGTH_CHANGES_0
---------------------------------------------------

As you can see, ksqlDB created a continuous/persistent query when we ran the
preceding CSAS statement. The queries that ksqlDB creates (for example,
CSAS_SEASON_LENGTH_CHANGES_0) are essentially Kafka Streams applications that
were dynamically created by ksqlDB in order to process the provided SQL statement.
Before we close out this chapter, let’s quickly explore some of the statements you can
run to interact with the underlying query.

Showing queries
Whether you’ve created a derived collection or are running a simple transient query,
it is sometimes useful to view the active queries in your ksqlDB cluster and their
current state.

The syntax for viewing the active queries is as follows:

{ LIST | SHOW } QUERIES [EXTENDED];

Now that we’ve created a derived stream that contains our filtered and transformed
season_length changes, we can view some information about the underlying query
by executing the following statement:

ksql> SHOW QUERIES;

 Query ID                      | Query Type | Status    | .... 
--------------------------------------------------------------
 CSAS_SEASON_LENGTH_CHANGES_0 | PERSISTENT | RUNNING:1 | .... 
--------------------------------------------------------------
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Some columns in the SHOW QUERIES output were truncated for brevity. However,
more information appears in the output, including the Kafka topic that the per‐
sistent query is writing to, the original query string, and more.

The query ID (CSAS_SEASON_LENGTH_CHANGES_0) is needed for certain operations
(for example, terminating and explaining queries). The query type will show as
PERSISTENT if you run a CSAS or CTAS statement, or PUSH if the query is transi‐
ent (e.g., begins with SELECT instead of CREATE). Finally, the status of this query
indicates that it is in a RUNNING state. Other valid query states include ERROR and
UNRESPONSIVE.

Explaining queries

When we need even more information about an active query than the SHOW QUERIES
statement provides, we can explain queries. The syntax for explaining a query is as
follows:

EXPLAIN { query_id | query_statement }

For example, to explain the query we created in the previous section, we could exe‐
cute the following statement:

ksql> EXPLAIN CSAS_SEASON_LENGTH_CHANGES_0 ;

You could also explain a hypothetical query that is not actually running. For example:

ksql> EXPLAIN SELECT ID, TITLE FROM TITLES ;

In either case, the output is extremely verbose, so we will leave this as an exercise for
the reader. Among the information included, however, are the field names and types
included in the query, the status of the ksqlDB servers that are running the query
(unless you are explaining a hypothetical query), and a description of the underlying
Kafka Streams topology that is being used to actually run the query.

Terminating queries
Earlier in this chapter, we learned how to drop running streams and tables. However,
if you were to drop our newly created season_length_changes stream, you would see
an error:

ksql> DROP STREAM season_length_changes ;

Cannot drop SEASON_LENGTH_CHANGES.
The following queries read from this source: [].
The following queries write into this source: [CSAS_SEASON_LENGTH_CHANGES_0].
You need to terminate them before dropping SEASON_LENGTH_CHANGES.
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The error text is pretty self-explanatory: you cannot drop a collection when a query is
currently accessing it (e.g., reading from or writing to it). Therefore, we first need to
terminate the underlying query.

The syntax for terminating a query is as follows:

TERMINATE { query_id | ALL }

If we had multiple queries, we could stop all of them at once by running TERMINATE
ALL. Furthermore, if we wanted to only stop the query we created earlier (with an ID
of CSAS_SEASON_LENGTH_CHANGES_0), we could execute the following statement:

TERMINATE CSAS_SEASON_LENGTH_CHANGES_0 ;

Once the query has been terminated and no other queries are accessing the stream or
table, you can drop the collection using the DROP { STREAM | TABLE } statement dis‐
cussed in “Dropping Streams and Tables” on page 295.

Putting It All Together
We’ve explored a lot of different stream processing use cases and SQL statements in
this chapter, but the actual code needed to build steps 1 and 2 of our stream process‐
ing application is pretty succinct. The full query set needed to complete this part of
the tutorial is shown in Example 10-4.

Example 10-4. The query set for steps 1–2 in our Netflix-inspired change-tracking
application

CREATE TYPE season_length AS STRUCT<season_id INT, episode_count INT> ;

CREATE TABLE titles (
    id INT PRIMARY KEY,
    title VARCHAR
) WITH (
    KAFKA_TOPIC='titles',
    VALUE_FORMAT='AVRO',
    PARTITIONS=4
);

CREATE STREAM production_changes (
    rowkey VARCHAR KEY,
    uuid INT,
    title_id INT,
    change_type VARCHAR,
    before season_length,
    after season_length,
    created_at VARCHAR
) WITH (
    KAFKA_TOPIC='production_changes',
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    PARTITIONS='4',
    VALUE_FORMAT='JSON',
    TIMESTAMP='created_at',
    TIMESTAMP_FORMAT='yyyy-MM-dd HH:mm:ss'
);

CREATE STREAM season_length_changes
WITH (
    KAFKA_TOPIC = 'season_length_changes',
    VALUE_FORMAT = 'AVRO',
    PARTITIONS = 4,
    REPLICAS = 1
) AS SELECT
    ROWKEY,
    title_id,
    IFNULL(after->season_id, before->season_id) AS season_id,
    before->episode_count AS old_episode_count,
    after->episode_count AS new_episode_count,
    created_at
FROM production_changes
WHERE change_type = 'season_length'
EMIT CHANGES ;

In the next chapter, we will continue with our tutorial by learning how to enrich,
aggregate, and materialize data using ksqlDB (steps 3–5 in Figure 10-1).

Summary
We have now learned how to perform many important stream processing tasks with
ksqlDB, including filtering data, flattening complex structures, using conditional
expressions, and more. We have also learned about several SQL statements that are
especially helpful for introspecting the state of our streams, tables, and queries, and of
course the related statements for creating and dropping each of these entities.

While this chapter focused on data preprocessing and transformation, there is still a
whole other world yet to be discovered in ksqlDB. Specifically, a world focused on
data enrichment and aggregation. In the next chapter, we will explore these topics in
detail, and in doing so, learn about a more powerful set of SQL statements and con‐
structs that are available in ksqlDB.
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CHAPTER 11

Intermediate and Advanced Stream
Processing with ksqlDB

In the last chapter, we learned how to perform basic data preprocessing and transfor‐
mation tasks using ksqlDB. The SQL statements we discussed were stateless, and they
allowed us to filter data, flatten complex or nested structures, use projection to
reshape data, and more. In this chapter, we will deepen our understanding of ksqlDB
by discussing some data enrichment and aggregation use cases. Most of the state‐
ments we will discuss are stateful (e.g., involve multiple records, which is required
with joins and aggregations) and time-based (e.g., windowed operations), making
them more complex under the hood, but also more powerful.

Some of the topics we will cover in this chapter include:

• Using joins to combine and enrich data
• Performing aggregations
• Executing pull queries (i.e., point lookups) against materialized views using the

CLI
• Working with built-in ksqlDB functions (scalar, aggregate, and table

functions)
• Creating user-defined functions using Java

We will use the Netflix change-tracking tutorial from the previous chapter to intro‐
duce many of these concepts (see “Tutorial: Monitoring Changes at Netflix” on page
281 if you need a recap). However, some topics, including ksqlDB functions, will be
introduced as standalone discussions near the end of the chapter.

Let’s get started by reviewing the project setup steps.
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Project Setup
If you would like to reference the code as we work our way through each topology
step, clone the repo and change to the directory containing this chapter’s tutorial. The
following command will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-11/

As discussed in the previous chapter, we will use Docker Compose to spin up each
component that is needed for this tutorial (e.g., Kafka, ksqlDB server, the CLI, etc.).
Simply run the following command after cloning the repo to start each component:

docker-compose up

Unless otherwise noted, the SQL statements we discuss in this chapter will be
executed in the ksqlDB CLI. You can log in to the ksqlDB CLI using the following
command:

docker-compose exec ksqldb-cli \
    ksql http://ksqldb-server:8088 --config-file /etc/ksqldb-cli/cli.properties

So far, the setup has been nearly identical to Chapter 10. However, this chapter builds
on the previous chapter’s tutorial, so we actually need to set up our ksqlDB environ‐
ment where the last chapter left off. This brings us to a very important ksqlDB state‐
ment, which we will discuss in the next section.

Bootstrapping an Environment from a SQL File
We have already worked through part of the tutorial to build the Netflix change-
tracking application, and therefore, we have a set of previously created queries that
we need to rerun in order to pick up from where we left off. This may seem specific to
this tutorial, but running a set of queries to set up your environment is a common
development workflow, and ksqlDB includes a special statement that makes this easy.

The syntax of this statement is as follows:

RUN SCRIPT <sql_file> 

The SQL file can contain any number of queries to execute.

For example, we can place all of the queries for the previous chapter (see
Example 10-4) in a file called /etc/sql/init.sql, and then run the following command to
re-create the collections and queries that we were working with previously:

ksql> RUN SCRIPT '/etc/sql/init.sql' ;

When RUN SCRIPT is executed, the output of every statement that was included in the
SQL file will be returned to the client. In the case of the CLI, the output is simply
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printed to the screen. An example of the truncated output for the Chapter 10 queries
is shown here:

CREATE TYPE season_length AS STRUCT<season_id INT, episode_count INT> ;

-----------------------------
 Registered custom type ...
-----------------------------

CREATE TABLE titles ...

---------------
 Table created
---------------

CREATE STREAM production_changes ...

----------------
 Stream created
----------------

CREATE STREAM season_length_changes ...
----------------------------------------------------
 Created query with ID CSAS_SEASON_LENGTH_CHANGES_0
----------------------------------------------------

As you can see, RUN SCRIPT is a useful time-saving mechanism for iterating on a
ksqlDB application. We can experiment with statements in the CLI, and checkpoint
our progress to a file that can be executed later on. When we’re ready to deploy our
queries to production, we can use the same SQL file to run ksqlDB in headless mode
(see Figure 8-9).

To visualize which steps RUN SCRIPT executed for us, and to get our bearings for the
additional steps we’ll be tackling in this chapter, see Figure 11-1.

The next step we need to tackle is step 3, which requires us to enrich the filtered and
transformed data in our season_length_changes stream. We’ll take a look at this in
the next section.
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Figure 11-1. Architectural diagram for the Netflix change-tracking application; steps 1
and 2 were completed in the previous chapter, and re-executed using the RUN SCRIPT
statement

Data Enrichment
Data enrichment refers to the process of improving or enhancing raw data. It goes
beyond simple data transformation, which is usually focused on changing the format
or structure of data. Instead, enrichment involves adding information to data, and one
of the most widely used enrichment techniques in the database world are joins.

In step 3 of our application, we will enrich our season_length_changes stream with
information from the titles table. We’ll explore how to do this in the next section.

Joins
Joining data involves combining related records from multiple data sources using a
join predicate (a Boolean expression that resolves to true when a related record is
found, otherwise false). Joins are common in both the relational and streaming
worlds, since data is often scattered across many sources and needs to be brought
together for processing and analysis.
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There are many types of joins in ksqlDB, and the variations can be expressed using
two dimensions:

• The join expression that is being used (INNER JOIN, LEFT JOIN, and FULL JOIN)
• The type of collections that are being joined (STREAM, TABLE)

Let’s start with the first bullet point. Table 11-1 provides a description of each of the
available join types in ksqlDB.

Table 11-1. Join expressions that are available in ksqlDB

SQL expression Description

INNER JOIN An inner join is triggered when the input records on both sides of the join share the same key.

LEFT JOIN A left join is triggered when a record on the left side of the join is received. If there is no matching record
with the same key on the right side of the join, then the right value is set to null.

FULL JOIN A full join is triggered when a record on either side of the join is received. If there is no matching record
with the same key on the opposite side of the join, then the corresponding value is set to null.

If you’ve worked with traditional databases before, the preceding join expressions
should feel familiar. However, while traditional databases are capable of joining
tables, ksqlDB supports joins across two types of collections: tables and streams.
Furthermore, the type of join expression you can use (INNER JOIN, LEFT JOIN, or
FULL JOIN) depends on which collections (STREAM or TABLE) are the subject of your
join. Table 11-2 provides a summary of the available combinations, with an extra col‐
umn (Windowed) to indicate whether or not the join must also be time-constrained.

Table 11-2. Join types in ksqlDB

Join type Supported expressions Windowed
Stream-Stream • INNER JOIN

• LEFT JOIN

• FULL JOIN

Yes

Stream-Table • INNER JOIN

• LEFT JOIN

No

Table-Table • INNER JOIN

• LEFT JOIN

• FULL JOIN

No

As you can see, Stream-Stream joins are windowed. Since streams are unbounded,
we must confine the search of related records to a user-defined time range. Other‐
wise, we’d be left with the infeasible task of searching two or more unbounded, con‐
tinuous streams for related records, which is why ksqlDB imposes a windowing
requirement for this type of join.
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1 This is checked when you execute a SQL statement containing a join. If the partition count doesn’t match, you
will see an error similar to Can't join S with T since the number of partitions don't match.

Prerequisites for Joining Data Across Collections
Before we start writing our join query, it’s important to note that there are some pre‐
requisites for joining data across collections. These include:

• All columns referenced in the join expression must be of the same data type
(STRING, INT, LONG, etc.).

• The partition count on each side of the join must be the same.1

• The data in the underlying topics must have been written using the same
partitioning strategy (usually, this means the producers will use the default parti‐
tioner, which creates a hash based on the input record’s key).

With these requirements in mind, let’s write a join query. In our tutorial, our pre-
processed data stream, season_length_changes, includes a column called title_id.
We’d like to use this value to look up more information about a title (including the
title name, e.g., Stranger Things or Black Mirror, which is stored in the titles
table). If we wanted to express this as an inner join, we could execute the SQL state‐
ment shown in Example 11-1:

Example 11-1. A SQL statement that joins two collections

SELECT
    s.title_id,
    t.title,
    s.season_id,
    s.old_episode_count,
    s.new_episode_count,
    s.created_at
FROM season_length_changes s
INNER JOIN titles t 
ON s.title_id = t.id 
EMIT CHANGES ;

Use INNER JOIN since we only want the join to be triggered when a correspond‐
ing record in the titles table can be found.

Streams can specify any column to use for the join. Tables must be joined on the
column that was designated as the PRIMARY KEY. The latter requirement can be
understood when we consider that tables are key-value stores. As new records
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from the stream come in, we need to execute a point lookup in the table’s under‐
lying key-value store to see if there’s a related record. Using the PRIMARY KEY is
the most efficient way to do this, since records are already keyed by this value in
the underlying state store. This also guarantees that no more than one record
in the table will be matched to the stream record, since the key is a unique
constraint on the table.

The output of the preceding statement shows the new enriched record, which con‐
tains the title name (see the TITLE column):

+---------+----------------+-----------+------------------+------------------+-------------+
|TITLE_ID |TITLE           |SEASON_ID  |OLD_EPISODE_COUNT |NEW_EPISODE_COUNT |CREATED_AT   |
+---------+----------------+-----------+------------------+------------------+-------------+
|1        |Stranger Things |1          |12                |8                 |2021-02-08...|

The preceding join was very simple, in part because all of the join prerequisites were
already met in this tutorial. However, the join prerequisites for real-world applica‐
tions may not be so conveniently satisfied. Let’s quickly explore some slightly more
complicated situations that will require additional steps in order to perform a join.

Casting a column to a new type
In some cases, the data sources you are joining may specify different data types on the
join attribute. For example, what if s.title_id was actually encoded as a VARCHAR,
but you needed to join it against the ROWKEY, which is encoded as an INT? In this case,
you could use the built-in CAST expression to convert s.title_id to an INT type, and
thus satisfy the first prerequisite for joining data, as discussed in “Joins” on page 314:

SELECT ... 
FROM season_length_changes s
INNER JOIN titles t
ON CAST(s.title_id AS INT) = t.id 
EMIT CHANGES ;

The column names here were omitted for brevity.

In this hypothetical example, if s.title_id was encoded as a VARCHAR, then we’d
need to cast s.title_id to the same type as t.id (INT) in order to satisfy the first
join prerequisite.

Repartitioning data
Let’s now consider a situation that would require us to repartition data before execut‐
ing a join. This could arise if either of the last two join prerequisites described in
“Prerequisites for Joining Data Across Collections” on page 316 isn’t met. For exam‐
ple, what if the titles table had eight partitions, and the season_length_changes
table had four partitions?
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In this case, you would need to repartition one of the collections in order to perform
the join. This can be accomplished by creating a new collection with the PARTITIONS
property, as shown in the SQL statement in Example 11-2.

Example 11-2. Example of how to repartition data using the PARTITIONS property

CREATE TABLE titles_repartition
WITH (PARTITIONS=4) AS 
SELECT * FROM titles
EMIT CHANGES;

By default, this will create a new topic with the same name as the collection
(TITLES_REPARTITION). You could also provide the KAFKA_TOPIC property if you
want to specify a custom name for the repartition topic.

Once you’ve repartitioned the data to ensure the partition count matches on both
sides of the join, you can join on the repartitioned collection (titles_repartition)
instead.

Persistent joins
Now that we’ve learned how to satisfy the various prerequisites for joining data, let’s
continue implementing step 3 of our tutorial. The starting point for our join query
will be Example 11-1 since the join prerequisites were already satisfied for our Netflix
change-tracking application.

As discussed in the previous chapter, queries beginning with SELECT are not persis‐
tent, meaning they do not survive server restarts and the results are not written back
to Kafka. So if we want to actually persist the results of our join query instead of sim‐
ply printing the output to the CLI console, we need to use a CREATE STREAM AS
SELECT (aka CSAS) statement.

The following SQL statement shows a persistent version of our join query, which will
write the enriched records to a new topic called season_length_changes_enriched
(see step 3 in Figure 11-1):

CREATE STREAM season_length_changes_enriched 
WITH (
    KAFKA_TOPIC = 'season_length_changes_enriched',
    VALUE_FORMAT = 'AVRO',
    PARTITIONS = 4,
    TIMESTAMP='created_at', 
    TIMESTAMP_FORMAT='yyyy-MM-dd HH:mm:ss'
) AS
SELECT 
    s.title_id,
    t.title,
    s.season_id,
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    s.old_episode_count,
    s.new_episode_count,
    s.created_at
FROM season_length_changes s
INNER JOIN titles t
ON s.title_id = t.id
EMIT CHANGES ;

Use CREATE STREAM to make our original query persistent.

This tells ksqlDB that the created_at column contains the timestamp that
ksqlDB should use for time-based operations, including windowed aggregations
and joins.

Our original SELECT statement starts on this line.

We have now learned how to join data using ksqlDB, and have completed step 3 of
our tutorial. Before we wrap up our discussion of joins, let’s talk about another type of
join that is commonly used in stream processing applications.

Windowed Joins
In this tutorial, we don’t need to perform a windowed join. But we’d be remiss if we
didn’t at least mention them in this book, since they are required for Stream-Stream
joins. Windowed joins are different than unwindowed joins (e.g., the join we created
in the previous section) since they include an additional join attribute: time.

We have an entire chapter dedicated to windows and time, so a deep dive of these
topics will require a visit to Chapter 5. But as mentioned in that chapter, windowed
joins use something called sliding windows under the hood, which group records that
fall within a configured time boundary, as shown in Figure 11-2.

Figure 11-2. Sliding window
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To create a windowed join, you need to include the WITHIN expression in your join
clause. The syntax is as follows:

WITHIN <number> <time_unit>

The supported time units, including both the singular and plural forms, are:

• DAY, DAYS
• HOUR, HOURS
• MINUTE, MINUTES
• SECOND, SECONDS
• MILLISECOND, MILLISECONDS

For example, let’s step away from our tutorial for a minute (which doesn’t require a
windowed join) and consider another use case. You’re working at Netflix, and you’ve
decided to capture all shows or movies that get less than two minutes of watch time
before the user ends their watch session. In our fictional example, the start-watching
and stop-watching events are written to separate Kafka topics. This is a great use case
for a windowed join since we need to join each record using a session_id (which
identifies the watch session) and the event time. Translating this example into SQL,
let’s first create our two source streams using the DDL in Example 11-3.

Example 11-3. Create two separate streams for start- and stop-watching events

CREATE STREAM start_watching_events ( 
    session_id STRING, 
    title_id INT,
    created_at STRING
)
WITH (
    KAFKA_TOPIC='start_watching_events',
    VALUE_FORMAT='JSON',
    PARTITIONS=4,
    TIMESTAMP='created_at',
    TIMESTAMP_FORMAT='yyyy-MM-dd HH:mm:ss' 
);

CREATE STREAM stop_watching_events ( 
    session_id STRING,
    title_id INT,
    created_at STRING
)
WITH (
    KAFKA_TOPIC='stop_watching_events',
    VALUE_FORMAT='JSON',
    PARTITIONS=4,
    TIMESTAMP='created_at',
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    TIMESTAMP_FORMAT='yyyy-MM-dd HH:mm:ss'
);

Create a source stream for start-watching events. This stream will see a new
record each time a user starts watching a new show or movie.

The session_id is one of our join attributes. It represents a single watch session
and is referenced in both of our source streams.

The optional TIMESTAMP_FORMAT allows us to specify a format string that repre‐
sents the format of the timestamps in this Kafka topic, which can be any value
supported by the DateTimeFormatter class in Java.

Create a source stream for the stop-watching events. This stream will see a new
record each time a user stops watching a show or movie.

Now, let’s insert a couple of start- and stop-watching events for two different watch
sessions (you can think of this as two different viewers watching two different shows).
The first session, session_123, will have a total watch time of 90 seconds. The second
session, session_456, will have a total watch time of 25 minutes:

INSERT INTO start_watching_events
VALUES ('session_123', 1, '2021-02-08 02:00:00');

INSERT INTO stop_watching_events
VALUES ('session_123', 1, '2021-02-08 02:01:30');

INSERT INTO start_watching_events
VALUES ('session_456', 1, '2021-02-08 02:00:00');

INSERT INTO stop_watching_events
VALUES ('session_456', 1, '2021-02-08 02:25:00');

Finally, let’s capture the watch sessions that were less than two minutes long using a
windowed join. At a high level, we’re simply asking the following question with our
query: which watch sessions were terminated (as indicated by the stop-watching
timestamp) within two minutes of their start time (as indicated by the start-watching
timestamp)? The following SQL statement demonstrates how to ask this question in
ksqlDB:

SELECT
  A.title_id as title_id,
  A.session_id as session_id
FROM start_watching_events A
INNER JOIN stop_watching_events B
WITHIN 2 MINUTES 
ON A.session_id = B.session_id
EMIT CHANGES ;
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2 In the case of a COUNT operation, the value for a given key will be initialized to 0, and then incremented by 1
whenever a new record comes in with the same key. As we’ve mentioned previously, these kinds of mutable
semantics require a stateful table structure under the hood, instead of a stream.

Join records from the start_watch_events and stop_watching_events streams
with timestamps that are less than two minutes apart, and where the session_id
is the same across both streams (the latter condition is expressed on the next
line). This will capture all watch sessions that were less than two minutes long.

You should see the following output, since session_123 had only 90 seconds of watch
time:

+------------+-------------+
|TITLE_ID    |SESSION_ID   |
+------------+-------------+
|1           |session_123  |

Now that we have a good grasp of both windowed and unwindowed joins, let’s con‐
tinue our primary tutorial (the Netflix change-tracking application) by learning how
to aggregate data in ksqlDB.

Aggregations
Working with a single record at a time in ksqlDB is useful for certain tasks, including
filtering data, transforming the structure of data, or even performing event-at-a-time
enrichment. However, some of the most powerful insights we can glean from our data
require us to group and then aggregate related records. For example, counting the
number of season-length changes at Netflix over a period of time may help improve
planning processes around new television shows or films, or provide an indicator of
projects that are experiencing operational hiccups.

Aggregations can be computed over both streams and tables, but they always return a
table. This is because aggregate functions are applied to a group of related records, and
the result of our aggregate function (e.g., COUNT) needs to be saved to some mutable
structure that can easily be retrieved and updated whenever new records come in.2

There are two broad categories of aggregations: windowed and unwindowed. In
this tutorial, we will use a windowed aggregation to compute the season_

length_change_counts table (see step 4 in Figure 11-1). But first, let’s take a look at
the basics of aggregating data in the next section.
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3 As we’ll see in the next section, there is an optional third step that involves specifying a time window over
which the aggregation should be computed.

Aggregation Basics
There are two primary steps for aggregating data in ksqlDB:3

• Construct a SELECT expression that leverages some aggregate function.
• Group related records using the GROUP BY clause. The aggregate function will be

applied to each group.

An example aggregation query is shown in Example 11-4.

Example 11-4. Example usage of an aggregate function (COUNT) and the GROUP BY
clause

SELECT
  title_id,
  COUNT(*) AS change_count, 
  LATEST_BY_OFFSET(new_episode_count) AS latest_episode_count 
FROM season_length_changes_enriched
GROUP BY title_id 
EMIT CHANGES ;

Use the built-in COUNT aggregate function to count the number of records for
each title_id.

Use the built-in LATEST_BY_OFFSET aggregate function to get the latest episode
count for each title_id.

Group the records in this stream by the title_id column.

The query in Example 11-4 uses the built-in COUNT function, but ksqlDB includes
many aggregate functions, including AVG, COUNT_DISTINCT, MAX, MIN, SUM, and many
more. Aggregations aren’t even always mathematical. Two prominent examples
include the EARLIEST_BY_OFFSET and LATEST_BY_OFFSET aggregate functions, which
return the oldest and newest value for a column (computed by offset), respectively. At
the end of this chapter, we’ll show you how to list all of the available aggregate func‐
tions in ksqlDB, and discuss how to write your own functions should the need arise.
But for now, suffice it to say you have a lot of different built-in functions to choose
from in ksqlDB.

The second requirement involves grouping records using the GROUP BY clause. This
places records into distinct buckets based on the columns you specify in this clause.
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For example, the query shown in Example 11-4 will group all items with the same
title_id in the same group.

Finally, your SELECT expression can include additional columns as well. For example,
let’s add the title_id and season_id columns to our query:

SELECT
  title_id,
  season_id, 
  COUNT(*) AS change_count,
  LATEST_BY_OFFSET(new_episode_count) AS latest_episode_count
FROM season_length_changes_enriched
GROUP BY title_id, season_id 
EMIT CHANGES ;

Add a new nonaggregate column (season_id) to our query.

Add the season_id column to the GROUP BY clause.

Note that when performing aggregations, if you want to include a nonaggregate col‐
umn in your SELECT expression, it must also be included in the GROUP BY clause. For
example, say you ran the following query:

SELECT
  title_id,
  season_id, 
  COUNT(*) AS change_count,
  LATEST_BY_OFFSET(new_episode_count) AS latest_episode_count
FROM season_length_changes_enriched
GROUP BY title_id 
EMIT CHANGES ;

We’ve included season_id in the SELECT expression (i.e., the projection)…

…but not the GROUP BY clause.

You would get an error like this:

Non-aggregate SELECT expression(s) not part of GROUP BY: SEASON_ID
Either add the column to the GROUP BY or remove it from the SELECT

Despite the error message, there is a third option to resolve this issue: apply an aggre‐
gation function to the column that isn’t included in the GROUP BY clause.
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Each field that you include in the GROUP BY clause becomes part of
the key in the underlying table. For example, GROUP BY title_id
will create a table that is keyed by each unique title_id. If you
group by multiple columns, e.g., GROUP BY title_id, season_id,
then the underlying table will contain composite keys, where each
column value is separated by |+| (e.g., 1|+|2).
This is important to remember when you execute pull queries
against the materialized table, since if you are querying a table with
composite keys, you need to include the separator in your query
(e.g., SELECT * FROM T WHERE COL='1|+|2'). Future versions of
ksqlDB will likely improve how composite keys are queried, but the
behavior we documented here was present in at least version 0.14.0.

Each of the preceding aggregations is an example of an unwindowed aggregation.
They are considered unwindowed since the records are only bucketed by the fields in
the GROUP BY clause, and not using a separate time-based windowing condition.
However, ksqlDB also supports windowed aggregations, which we will explore in the
next section.

Windowed Aggregations
Sometimes, you may want to compute an aggregation over a certain period of time.
For example, we may want to know how many season-length changes occurred over a
24-hour period. This adds another dimension to our aggregation: time. Luckily for
us, ksqlDB supports windowed aggregations, which were designed for this use case.

In Chapter 5, we discussed the three different types of windows in Kafka Streams (see
“Window Types” on page 154 if you need a recap). The same window types are avail‐
able in ksqlDB, and each window type and the corresponding ksqlDB expression is
shown in Table 11-3.

Table 11-3. ksqlDB window types

Window type Example
Tumbling windows WINDOW TUMBLING (

  SIZE 30 SECONDS
)

Hopping windows WINDOW HOPPING (
  SIZE 30 SECONDS,
  ADVANCE BY 10 SECONDS
)

Session windows WINDOW SESSION (60 SECONDS)
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In order to incorporate a window expression in a query, you simply need to include
the window expressions before the GROUP BY clause, as shown here:

SELECT
  title_id,
  season_id,
  COUNT(*) AS change_count,
  LATEST_BY_OFFSET(new_episode_count) AS latest_episode_count
FROM season_length_changes_enriched
WINDOW TUMBLING (SIZE 1 HOUR) 
GROUP BY title_id, season_id 
EMIT CHANGES ;

Group records into one-hour-long buckets.

Records are grouped by title_id and season_id.

The preceding query will produce the following results:

+-----------+----------+-------------+---------------------+
|TITLE_ID   |SEASON_ID |CHANGE_COUNT |LATEST_EPISODE_COUNT |
+-----------+----------+-------------+---------------------+
|1          |1         |1            |8

Of course, while windowing is pretty easy using ksqlDB’s windowing expressions, the
added dimension of time requires additional considerations around the following:

• When should data be emitted to downstream processors?
• How can we handle delayed/out-of-order data?
• How long should we retain each window?

We’ll address each of these considerations in the following sections.

Delayed data
When we talk about the delayed arrival of data in ksqlDB or Kafka Streams, we aren’t
exclusively talking about an event being delayed according to the wall clock time. For
example, if an event occurs at 10:02 a.m., but isn’t processed by your stream process‐
ing application until 10:15 a.m., you may consider it delayed in the traditional sense
of the word.

However, as we learned in Chapter 5, Kafka Streams (and, by extension, ksqlDB)
keeps an internal clock called the stream time, which is an always-increasing value
that is extracted from the timestamps of consumed records. The timestamps can be
extracted from the record metadata, or from an embedded value within a record
using the TIMESTAMP and TIMESTAMP_FORMAT properties, as we saw in Example 11-3.

326 | Chapter 11: Intermediate and Advanced Stream Processing with ksqlDB



When records are consumed out of timestamp order, then any record that arrives
with a timestamp less than the current stream time is considered delayed. And when
it comes to windowed aggregations, delayed records are of particular interest since
you can control whether or not they are admitted to a window (which allows them to
be computed in the aggregation) or if they are simply ignored after a certain amount
of time has elapsed (at this point, they are considered late and are not admitted to the
window). The allowed delay is called the grace period, and the syntax for defining a
grace period in ksqlDB is as follows:

WINDOW <window_type> ( 
    <window_properties>, 
    GRACE PERIOD <number> <time_unit> 
)

The window type can be HOPPING, TUMBLING, or SESSION.

See Table 11-3 for the required windowing properties needed for constructing
each window type.

Define a grace period. Note that the same time units we discussed for sliding
windows are also supported for grace periods. See “Windowed Joins” on page
319.

For example, if we want to apply a windowed aggregation that tolerates up to 10
minutes of delay, and ignores any record that arrives after this threshold, we could
use the following query:

SELECT
    title_id,
    season_id,
    COUNT(*) AS change_count,
    LATEST_BY_OFFSET(new_episode_count) AS episode_count
FROM season_length_changes_enriched
WINDOW TUMBLING (SIZE 1 HOUR, GRACE PERIOD 10 MINUTES) 
GROUP BY title_id, season_id
EMIT CHANGES ;

Group records into 1-hour-long buckets, and tolerate delays of up to 10 minutes.

With the preceding grace period defined as 10 MINUTES, we can produce some
records in another tab (while the previous query is running) to see explicitly the
effect it has on stream time, and whether or not the record will be admitted to an
open window. Example 11-5 shows the statements we will execute to produce these
records.
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Example 11-5. In another CLI session, produce records with various timestamps to
observe the effect on stream time

INSERT INTO production_changes VALUES (
    '1', 1, 1, 'season_length',
    STRUCT(season_id := 1, episode_count := 12),
    STRUCT(season_id := 1, episode_count := 8),
    '2021-02-24 10:00:00' 
);

INSERT INTO production_changes VALUES (
    '1', 1, 1, 'season_length',
    STRUCT(season_id := 1, episode_count := 8),
    STRUCT(season_id := 1, episode_count := 10),
    '2021-02-24 11:00:00' 
);

INSERT INTO production_changes VALUES (
    '1', 1, 1, 'season_length',
    STRUCT(season_id := 1, episode_count := 10),
    STRUCT(season_id := 1, episode_count := 8),
    '2021-02-24 10:59:00' 
);

INSERT INTO production_changes VALUES (
    '1', 1, 1, 'season_length',
    STRUCT(season_id := 1, episode_count := 8),
    STRUCT(season_id := 1, episode_count := 12),
    '2021-02-24 11:10:00' 
);

INSERT INTO production_changes VALUES (
    '1', 1, 1, 'season_length',
    STRUCT(season_id := 1, episode_count := 12),
    STRUCT(season_id := 1, episode_count := 8),
    '2021-02-24 10:59:00' 
);

Stream time is set to 10 a.m., and this record will be added to the (10 a.m.–11
a.m.) window.

Stream time is set to 11 a.m., and this record will be added to the (11 a.m.–12
p.m.) window.

Stream time is unchanged, because this record’s timestamp is less than the cur‐
rent stream time. The record will be added to the (10 a.m.–11 a.m.) window
because the grace period is still active.
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Stream time is set to 11:10 a.m., and this record will be added to the (11 a.m.– 12
p.m.) window.

This record does not get added to a window, since this record is 11 minutes late.
In other words, stream_time (11:10 a.m.) – current_time (10:59 a.m.) =
11 minutes, which is greater than the grace period of 10 minutes.

When a record is skipped because it arrives late (for example, the last record in
Example 11-5), you should see some helpful information included in the ksqlDB
server logs, as shown here:

WARN Skipping record for expired window.
key=[Struct{KSQL_COL_0=1|+|1}]
topic=[...]
partition=[3]
offset=[5]
timestamp=[1614164340000] 
window=[1614160800000,1614164400000) 
expiration=[1614164400000] 
streamTime=[1614165000000] 

The current timestamp associated with this record is 2021-02-24 10:59:00.

The window this record would have been grouped in has a range of 2021-02-24
10:00:00 – 2021-02-24 11:00:00.

The expiration time translates to 2021-02-24 11:00:00. This is calculated by
subtracting the grace period (10 minutes) from the stream time (see the next bul‐
let).

The stream time, which is the highest timestamp seen by ksqlDB, translates to
2021-02-24 11:10:00.

Setting a grace period is optional (though highly recommended), so it really depends
on how you want to handle out-of-order/delayed data. If you don’t set a grace period,
the window will remain open until its retention has expired and the window has been
closed.

Window retention is also configurable, and it plays another role in ksqlDB since it
controls how long windowed data can be queried. So, let’s look at how to control the
retention of windows in the next section.

Window retention
If you plan to query the results of a windowed aggregation, as we do, you may want to
control the retention period of old windows in ksqlDB. Once a window is removed,
you can no longer query it. Another motivation for explicitly setting the retention
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4 By default, state stores leverage an embedded key-value store called RocksDB, which stores data in memory
and can optionally spill to disk when the keyspace is large. Therefore, you should be conscious of disk and
memory utilization when maintaining large state stores.

period of windows is to keep your state stores small. The more windows you keep
around, the larger your state stores will become. As we learned in Chapter 6, keeping
state stores small can reduce the impact of rebalancing and also the resource utiliza‐
tion of your application.4

In order to set the retention of a window, you simply need to specify the RETENTION
property in the WINDOW expression. The syntax is as follows:

WINDOW { HOPPING | TUMBLING | SESSION } ( 
    <window_properties>, 
    RETENTION <number> <time_unit> 
)

See Table 11-3 for the required windowing properties needed for constructing
each window type.

Specify the window retention period. Note that the same time units we discussed
for sliding windows are also supported for window retention settings. See “Win‐
dowed Joins” on page 319.

The window retention period must be greater than or equal to the
window size plus the grace period. Also, the retention is a lower
bound for how long windows should be maintained. The window
will most likely not be removed at the exact time the retention
period expires.

For example, let’s refactor our query to set a window retention of two days. The SQL
statement in Example 11-6 shows how we can accomplish this.

Example 11-6. A ksqlDB statement that explicitly sets the retention period for the
underlying window

SELECT
    title_id,
    season_id,
    LATEST_BY_OFFSET(new_episode_count) AS episode_count,
    COUNT(*) AS change_count
FROM season_length_changes_enriched
WINDOW TUMBLING (
    SIZE 1 HOUR,
    RETENTION 2 DAYS, 
    GRACE PERIOD 10 MINUTES
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)
GROUP BY title_id, season_id
EMIT CHANGES ;

Set a window retention period of two days.

One important thing to note here is that the retention period is driven by Kafka
Streams and ksqlDB’s internal clock: stream time. It does not reference wall clock
time.

Example 11-6 gets us extremely close to being able to wrap up step 4 of our tutorial
(see Figure 11-1). The last thing we need to do is create a materialized view from this
query. We’ll explore this in the next section.

Materialized Views
Materialized views have existed in the database world for a long time, and they are
used to store the results of a query (this is called materialization). The precomputed
results of a query are then made available for querying, and are ideal for improving
the performance of expensive queries in traditional databases, which operate on
many rows at a time in a batch-like manner.

ksqlDB also has the concept of materialized views, which maintain some of the same
properties of their traditional counterparts:

• They are derived from a query against another collection.
• They can be queried in a lookup-style manner (called pull queries in ksqlDB).

Materialized views in ksqlDB are also different in some important ways:

• At the time of this writing, materialized views in ksqlDB could only be computed
from aggregate queries.

• They are refreshed automatically as new data comes in. Compare this with
traditional systems, where refreshes can be scheduled, issued on demand, or
non-existent.

When we talk about materialized views in ksqlDB, we are actually talking about a cer‐
tain kind of TABLE that we can execute pull queries against. As we’ve already seen in
this book, tables can be created directly on top of Kafka topics (see “Creating Source
Collections” on page 289) or from nonaggregate queries (e.g., Example 11-2). At the
time of this writing, ksqlDB did not support keyed-lookups (pull queries) against
these kinds of tables (though this limitation may not be around in future versions of
ksqlDB).
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5 The view nomenclature was adopted from traditional systems, but there isn’t a separate view object in ksqlDB.
So when you hear the word view in relation to ksqlDB, you should just think of a table collection that can be
used for lookup-style pull queries.

However, we can execute pull queries against materialized views, which are TABLE
objects that are constructed from an aggregate query.5 All we need to do is create a
derived table collection (see “Creating Derived Collections” on page 304) using an
aggregate query.

For example, let’s create a materialized view from our windowed aggregation query
that we created in Example 11-6. The SQL statement shown in Example 11-7 demon‐
strates how to do this.

Example 11-7. Create a materialized view using an aggregate query

CREATE TABLE season_length_change_counts
WITH (
    KAFKA_TOPIC = 'season_length_change_counts',
    VALUE_FORMAT = 'AVRO',
    PARTITIONS = 1
) AS
SELECT
    title_id,
    season_id,
    COUNT(*) AS change_count,
    LATEST_BY_OFFSET(new_episode_count) AS episode_count
FROM season_length_changes_enriched
WINDOW TUMBLING (
    SIZE 1 HOUR,
    RETENTION 2 DAYS,
    GRACE PERIOD 10 MINUTES
)
GROUP BY title_id, season_id
EMIT CHANGES ;

We now have a materialized view named season_length_change_counts that we can
query. This completes step 4 of our tutorial (see Figure 11-1), and we are ready to
proceed with the final step: executing queries against our data using various clients.

Clients
The final step of our tutorial is to ensure the data we’ve processed with ksqlDB can be
queried by various clients. Let’s now walk through the process of executing queries
against our materialized view (season_length_change_counts) and push queries
against our enriched stream (season_length_changes_enriched). We’ll explore each
type of query using both the CLI and curl.
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We use curl not with the expectation that you will build production clients using this
command-line utility, but because it will be a useful reference point when implement‐
ing a RESTful client in the language of your choice. We owe this to curl’s simple syn‐
tax, which conveys the HTTP method type being used for the request, the HTTP
client headers, and the request payload. Furthermore, you can analyze the raw
response returned by curl for a clear understanding of the response format returned
by ksqlDB.

At the time of this writing, an initial version of a Java client had
also been released. The source code for this chapter contains an
example of how to use this client as well. We have omitted it here
due to uncertainty around how the Java client interface will change
in the near future. Furthermore, a ksqlDB improvement proposal
(KLIP) was also under discussion at the time of this writing, which
mentioned potential changes to the Java client, the ksqlDB REST
API, and even the possible introduction of new, official clients writ‐
ten in Python or Go.

Let’s explore pull queries in more detail.

Pull Queries
With our materialized view in place, we can execute pull queries against the view. The
syntax for executing a pull query is as follows:

SELECT select_expr [, ...]
FROM from_item
WHERE condition

As you can see, pull queries are very simple. At the time of this writing, neither joins
nor aggregations were supported in the pull query itself (though you can perform
both of these operations when creating the materialized view, as shown in
Example 11-7). Instead, pull queries can be thought of as simple lookups that refer‐
ence a key column, and for windowed views, they can also optionally reference the
WINDOWSTART pseudo column, which contains the lower boundary for a given win‐
dow’s time range (the upper boundary is stored in another pseudo column called
WINDOWEND, but this latter column is not queryable).

So, what is the name of the key column that we can perform lookups against? It
depends. When grouping by a single field in the GROUP BY clause, the name of the key
column will match the name of the grouped field. For example, suppose your query
included the following expression:

GROUP BY title_id
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We could execute a pull query that performed a lookup against the title_id column.
However, our query references two columns in the GROUP BY clause:

GROUP BY title_id, season_id

In this case, ksqlDB will generate a key column for us in the format of KSQL_COL_?
(this is another artifact of the current implementation of ksqlDB that may be chang‐
ing in the future). You can retrieve the column name from the DESCRIBE output:

ksql> DESCRIBE season_length_change_counts ;

Name                 : SEASON_LENGTH_CHANGE_COUNTS
 Field         | Type
------------------------------------------------------------------------
 KSQL_COL_0    | VARCHAR(STRING)  (primary key) (Window type: TUMBLING)
 EPISODE_COUNT | INTEGER
 CHANGE_COUNT  | BIGINT
------------------------------------------------------------------------

In this case, we can perform a lookup against the season_length_change_counts
view using the pull query in Example 11-8.

Example 11-8. An example pull query

SELECT *
FROM season_length_change_counts
WHERE KSQL_COL_0 = '1|+|1' ; 

When grouping by multiple fields, the key is a composite value where the value
of each column is separated by |+|. If we were only grouping by one field (e.g.,
title_id), then we would use WHERE title_id=1.

The IN predicate can also be used in pull queries to match multiple
possible keys (e.g., WHERE KSQL_COL_0 IN ('1|+|1', '1|+|2')).

If we execute the preceding query from the CLI, we will see the following output:

+------------+---------------+--------------+--------------+--------------+
|KSQL_COL_0  |WINDOWSTART    |WINDOWEND     |CHANGE_COUNT  |EPISODE_COUNT |
+------------+---------------+--------------+--------------+--------------+
|1|+|1       |1614160800000  |1614164400000 |2             |8             |
|1|+|1       |1614164400000  |1614168000000 |2             |12            |

As you can see, the two pseudo columns, WINDOWSTART and WINDOWEND, are included
in the output. We can query the WINDOWSTART column as well, using either the Unix
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timestamp or a more readable datetime string. The following two statements demon‐
strate both types of queries:

SELECT * FROM
season_length_change_counts
WHERE KSQL_COL_0 = '1|+|1'
AND WINDOWSTART=1614164400000;

SELECT *
FROM season_length_change_counts
WHERE KSQL_COL_0 = '1|+|1'
AND WINDOWSTART = '2021-02-24T10:00:00';

In this case, the output of the preceding queries is the same:

+-----------+--------------+--------------+--------------+-------------+
|KSQL_COL_0 |WINDOWSTART   |WINDOWEND     |CHANGE_COUNT  |EPISODE_COUNT |
+-----------+-----------------------------+----------------------------+
|1|+|1      |1614160800000 |1614164400000 |2             |8            |

When it comes time to query the data in your materialized views, you will likely want
to issue queries using a client other than the CLI. Let’s explore how to issue a pull
query using curl, since a curl example could easily be extended to a custom client
written in Python, Go, or some other language.

Curl
Perhaps the easiest way to query a ksqlDB server outside of the CLI is with the widely
used command-line utility curl. The following command shows how to execute the
same pull query we created in Example 11-8 from the command line:

curl -X POST "http://localhost:8088/query" \ 
     -H "Content-Type: application/vnd.ksql.v1+json; charset=utf-8" \ 
     --data $'{     
  "ksql":"SELECT * FROM season_length_change_counts WHERE KSQL_COL_0=\'1|+|1\';",
  "streamsProperties": {}
}'

We can execute a pull query by submitting a POST request to the /query end‐
point.

The content type includes the API version v1 and serialization format (json).

Pass the pull query in the POST data. The query is nested in a JSON object, under
a key named ksql.

The output of the preceding command is shown here. It includes both the column
names (see header.schema) and one or more rows:

Pull Queries | 335



[
  {
    "header": {
      "queryId": "query_1604158332837",
      "schema": "`KSQL_COL_0` STRING KEY, `WINDOWSTART` BIGINT KEY, `WINDOWEND`
        BIGINT KEY, `CHANGE_COUNT` BIGINT, `EPISODE_COUNT` INTEGER"
    }
  },
  {
    "row": {
      "columns": [
        "1|+|1",
        1614160800000,
        1614164400000,
        2,
        8
      ]
    }
  },
  ... 
]

Additional rows have been omitted for brevity.

As you can see, it’s very simple to query a ksqlDB server, even outside of the CLI.
Now, let’s learn more about executing push queries.

Push Queries
We’ve already seen many examples of push queries in this book. For example, execut‐
ing a query against the season_length_change_counts stream from the CLI is as
simple as running the following SQL statement:

ksql> SELECT * FROM season_length_changes_enriched EMIT CHANGES ;

So this section will focus on executing push queries from curl.

Push Queries via Curl
Executing a push query using curl is similar to executing a pull query. For example,
we can issue a push query using the following command:

curl -X "POST" "http://localhost:8088/query" \
     -H "Content-Type: application/vnd.ksql.v1+json; charset=utf-8" \
     -d $'{
  "ksql": "SELECT * FROM season_length_changes_enriched EMIT CHANGES ;",
  "streamsProperties": {}
}'

An example response is shown here:
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[{"header":{"queryId":"none","schema":"`ROWTIME` BIGINT, `ROWKEY` INTEGER,
  `TITLE_ID` INTEGER, `CHANGE_COUNT` BIGINT"}},

{"row":{"columns":[1,"Stranger Things",1,12,8,"2021-02-24 10:00:00"]}},
{"row":{"columns":[1,"Stranger Things",1,8,10,"2021-02-24 11:00:00"]}},
{"row":{"columns":[1,"Stranger Things",1,10,8,"2021-02-24 10:59:00"]}},
{"row":{"columns":[1,"Stranger Things",1,8,12,"2021-02-24 11:10:00"]}},
{"row":{"columns":[1,"Stranger Things",1,12,8,"2021-02-24 10:59:00"]}},

]

Note: if you don’t see any output, the consumer offset is likely set to latest, so you
may need to rerun the statements in Example 11-5 to verify.

Unlike pull queries, the connection does not terminate immediately after executing
the query. The output is streamed to the client in a series of chunks, over a long-lived
connection that will continue to emit responses when new data becomes available.
This is possible via HTTP’s chunked transfer encoding.

Now that we know how to query enriched and aggregated data in ksqlDB, we have
completed the last step of our Netflix change-tracking tutorial. Before we close out
this chapter, let’s explore one final topic: functions and operators.

Functions and Operators
ksqlDB includes a rich set of functions and operators that can be used for working
with data. First, let’s take a quick look at some of the operators.

Operators
ksqlDB includes several operators that can be included in your SQL statements:

• Arithmetic operators (+,-,/,*,%)
• String concatenation operators (+,||)
• Subscript operators for accessing array indices or map keys ([])
• Struct dereference operators (->)

We’ve already seen some of these in action (see Example 8-1). We won’t spend a lot of
time looking at the operators in this book, but a full operator reference and example
usage can be found in the official ksqlDB documentation. Now, let’s turn to the more
interesting part of this discussion: functions.
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Showing Functions
One of the most interesting features of ksqlDB is its built-in function library. We’ve
already seen one example of a function, COUNT, but there are many more and the
function library is always growing. To list the available functions, we can use the SHOW
FUNCTIONS statement.

For example:

ksql> SHOW FUNCTIONS ;

The output of the SHOW FUNCTIONS command is quite large, but a truncated example
is shown here:

 Function Name         | Type
-----------------------------------
 ...

 AVG                   | AGGREGATE
 CEIL                  | SCALAR
 CHR                   | SCALAR
 COALESCE              | SCALAR
 COLLECT_LIST          | AGGREGATE
 COLLECT_SET           | AGGREGATE
 CONCAT                | SCALAR
 CONCAT_WS             | SCALAR
 COUNT                 | AGGREGATE
 COUNT_DISTINCT        | AGGREGATE
 CUBE_EXPLODE          | TABLE
 DATETOSTRING          | SCALAR
 EARLIEST_BY_OFFSET    | AGGREGATE
 ELT                   | SCALAR
 ENCODE                | SCALAR
 ENTRIES               | SCALAR
 EXP                   | SCALAR
 EXPLODE               | TABLE
 ...

When viewing the list of built-in ksqlDB functions, you’ll notice three different cate‐
gories listed in the TYPE column. A description of each type is shown in the following
table:

Function type Description

SCALAR A stateless function that operates on a single row at a time, and returns one output value.

AGGREGATE A stateful function that is used to aggregate data. These functions also return one output value.

TABLE A stateless function that takes one input and produces 0 or more outputs. This is similar to the way
flatMap works in Kafka Streams.
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As you’re looking through the function library, you may want more information
about a particular function. We’ll see how to accomplish this in the next section.

Describing Functions
If you want more information about a ksqlDB function, you can always visit the offi‐
cial documentation on the ksqlDB website. However, you don’t need to navigate away
from the CLI to describe a function, because ksqlDB includes a special statement that
will provide the information you need. The syntax for this statement is as follows:

DESCRIBE FUNCTION <identifier>

For example, if you want more information about the built-in EARLIEST_BY_OFFSET
function, you could run the SQL statement in Example 11-9.

Example 11-9. An example of how to describe a function in ksqlDB

ksql> DESCRIBE FUNCTION EARLIEST_BY_OFFSET ;

Name        : EARLIEST_BY_OFFSET
Author      : Confluent
Overview    : This function returns the oldest value for the column,
              computed by offset. 
Type        : AGGREGATE 
Jar         : internal 
Variations  : 

 Variation   : EARLIEST_BY_OFFSET(val BOOLEAN)
 Returns     : BOOLEAN
 Description : return the earliest value of a Boolean column

 Variation   : EARLIEST_BY_OFFSET(val INT)
 Returns     : INT
 Description : return the earliest value of an integer column

 ...

The description of the function.

The type of function (see Table 11-3 for a list of the available function types).

When viewing a built-in function that is included in ksqlDB, the Jar value will
show as internal. We’ll see how to build our own functions in the next section,
which will contain a path to the actual Jar on disk.

The variations section will contain a list of all of the valid method signatures for a
function. This section was truncated for brevity’s sake, but you can see that there
are at least two variations of this function: one variation accepts a BOOLEAN
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argument and returns a BOOLEAN value, while another variation accepts and
returns an INT.

ksqlDB has an impressive number of built-in functions, but it also gives you the free‐
dom to implement your own functions whenever the need arises. So if you scroll
through the output of SHOW FUNCTIONS and don’t find anything that fits your use case,
don’t fret. We’ll explain how to create your own function in the next section.

Creating Custom Functions
Sometimes, you may want to create a custom function to use in your ksqlDB queries.
For example, you may want to apply a specialized mathematical function to a column,
or invoke a machine learning model using inputs from your data stream. Regardless
of how simple or complex your use case is, ksqlDB includes a Java interface that gives
you the power to extend the built-in function library with your own set of user-
defined functions.

There are three different types of user-defined functions in ksqlDB, each one relating
to a built-in function type that we discussed in the previous section (scalar, aggregate,
and table functions). A summary of the user-defined function types is shown in the
following table:

Type Description
User-defined functions, or UDFs These are custom SCALAR functions. UDFs are stateless and return exactly one value.

User-defined Aggregate functions, or
UDAFs

These are custom AGGREGATE functions. UDAFs are stateful and return exactly one
value.

User-defined Table functions, or
UDTFs

These are custom TABLE functions. UDTFs are stateless and return zero or more
values.

To get a better idea of how custom functions work, we will implement a UDF that
removes stop words from a string of text. An example UDAF and UDTF are also
available in the source code for this chapter, but have been omitted from the text
since the development and deployment process is largely the same no matter which
type of function you decide to implement. There are some subtle differences in how
UDFs, UDAFs, and UDTFs are implemented, and we have highlighted these differ‐
ences in the source code for the chapter.

Now let’s learn how to create a user-defined function.

Stop-word removal UDF
A common data preprocessing task is to remove so-called stop words from a string of
text. Stop words are common words (such as “a,” “and,” “are,” “but,” “or,” “the,” etc.)
that don’t add a lot of meaning to the underlying text. If you have a machine learning
or natural language model that attempts to extract information from text, it is
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common to remove stop words from the model input first. Therefore, we will create a
UDF called REMOVE_STOP_WORDS. The process of creating any type of user-defined
function is simple. Here are the steps to follow:

1. Create a Java project that will contain the code of our function.
2. Add the io.confluent.ksql:ksql-udf dependency to our project, which con‐

tains annotations that we need for our UDF class.
3. Add any other dependencies we need to implement our function. For example, if

there is a third-party Maven dependency that you want to leverage in your code,
add it to your build file.

4. Write the logic for our UDF, using the appropriate annotations (we’ll cover these
shortly).

5. Build and package the code as an uber JAR, which combines the source code of
your function, and all of the third-party code it depends on, into a single JAR file.

6. Copy the uber JAR to the ksqlDB extensions directory. This is a configurable file
path on the ksqlDB server, which can be defined using the ksql.extension.dir
configuration property.

7. Restart the ksqlDB server. When the ksqlDB server comes back online, it will
load the new function, making it available for use in your SQL statements.

Now, let’s implement our function using these instructions to show how this works.
First, let’s create a new Java project using Gradle’s init command. The following code
shows how to do this:

mkdir udf && cd udf

gradle init \
  --type java-library \
  --dsl groovy \
  --test-framework junit-jupiter \
  --project-name udf \
  --package com.magicalpipelines.ksqldb

Let’s add the ksql-udf dependency to our build file (build.gradle). This dependency
lives in Confluent’s Maven repository, so we need to update the repositories block
as well:

repositories {
    // ...
    maven {
        url = uri('http://packages.confluent.io/maven/') 
    }
}

dependencies {
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6 The dependencies will need to be packaged into an uber JAR, using a plug-in like the com.github.johnren
gelman.shadow plug-in. See the UDF documentation for more information.

    // ...
    implementation 'io.confluent.ksql:ksqldb-udf:6.0.0' 
}

Add the Confluent Maven repository, which is where the ksql-udf dependency
lives.

Add the ksql-udf dependency to our project. This artifact contains all of the
annotations we need to add to our code, as we’ll see shortly.

Our UDF doesn’t require any third-party code, but if it did, we could have updated
the dependencies block with any other artifacts required by our UDF.6 OK, it’s time
to implement the business logic of our function. In this case, we can create a file
called RemoveStopWordsUdf.java, and add the following code:

public class RemoveStopWordsUdf {

  private final List<String> stopWords =
      Arrays.asList(
        new String[] {"a", "and", "are", "but", "or", "over", "the"});

  private ArrayList<String> stringToWords(String source) { 
    return Stream.of(source.toLowerCase().split(" "))
        .collect(Collectors.toCollection(ArrayList<String>::new));
  }

  private String wordsToString(ArrayList<String> words) { 
    return words.stream().collect(Collectors.joining(" "));
  }

  public String apply(final String source) { 
    ArrayList<String> words = stringToWords(source);
    words.removeAll(stopWords);
    return wordsToString(words);
  }
}

This method converts a string of text to a list of words.

This method converts a list of words back into a string.

This method contains the implementation of our business logic, which removes a
list of stop words from a source string. You can name this method whatever you
like, but it should be nonstatic and have public visibility.
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Now that we have the business logic written for our UDF, we need to add the annota‐
tions that are included in the ksql-udf dependency. These annotations are read by
ksqlDB when it loads the JAR, and provides ksqlDB with more information about the
function, including its name, description, and parameters. As you’ll see shortly, the
values we provide in our annotations will be viewable in the DESCRIBE FUNCTION
output:

@UdfDescription( 
    name = "remove_stop_words", 
    description = "A UDF that removes stop words from a string of text",
    version = "0.1.0",
    author = "Mitch Seymour")
public class RemoveStopWordsUdf {
  // ...

  @Udf(description = "Remove the default stop words from a string of text") 
  public String apply(
      @UdfParameter(value = "source", description = "the raw source string") 
      final String source
  ) { ... }
}

The UdfDescription annotation tells ksqlDB that this class contains a ksqlDB
function that should be loaded into the ksqlDB library on startup. If you are
implementing a UDAF or UDTF, the UdafDescription/UdtfDescription should
be used instead.

The name of our function, as it should appear in the function library. The rest of
the properties (description, version, and author) will appear in the DESCRIBE
FUNCTION output.

The Udf annotation should be applied to a public method that can be invoked by
ksqlDB. You can have multiple methods with the Udf annotation in a single UDF,
and each one will be considered a separate variation of the function, as we dis‐
cussed when looking at the EARLIEST_BY_OFFSET function (see Example 11-9).
Note that UDTFs and UDAFs use different annotations here as well (Udtf and
UdafFactory). See this chapter’s source code for details.

The UdfParameter can be used to provide helpful information for each parame‐
ter in your UDF. This is also surfaced in the DESCRIBE FUNCTION output, in the
Variations section.

Once you’ve written the business logic for your UDF and have added the class-level
and method-level annotations, it’s time to build the uber JAR. With Gradle, this can
be accomplished with the following command:
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./gradlew build --info

The preceding command will create a JAR at the following location, relative to the
root directory of your Java project:

build/libs/udf.jar

In order to tell ksqlDB about our new UDF, we need to place this JAR in the location
specified by the ksql.extension.dir configuration parameter. You can define this
parameter in the ksqlDB server configuration file. For example:

ksql.extension.dir=/etc/ksqldb/extensions

Once we have the location of the ksqlDB extension directory, we can copy the JAR to
this location and restart the ksqlDB server, as shown here:

cp build/libs/udf.jar /etc/ksqldb/extensions

ksql-server-stop
ksql-server-start

Upon restart, we should be able to see our UDF in the output of the SHOW FUNCTIONS
command:

ksql> SHOW FUNCTIONS ;

 Function Name         | Type
-----------------------------------
...
...
REMOVE_STOP_WORDS     | SCALAR 
...
...

The name of our function, defined by the UdfDescription annotation, will
appear in the alphabetized function list.

We can also describe our custom function using the same SQL statement that is used
to describe built-in functions:

ksql> DESCRIBE FUNCTION REMOVE_STOP_WORDS ;

Name        : REMOVE_STOP_WORDS
Author      : Mitch Seymour
Version     : 0.1.0
Overview    : A UDF that removes stop words from a string of text
Type        : SCALAR
Jar         : /etc/ksqldb/extensions/udf.jar 
Variations  :

 Variation   : REMOVE_STOP_WORDS(source VARCHAR)
 Returns     : VARCHAR
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 Description : Remove the default stop words from a string of text
 source      : the raw source string

Note that the Jar value now points to the physical location of the UDF JAR on
disk.

Finally, we can use our function just like any of the built-in functions in ksqlDB. Let’s
create a stream called model_inputs, and insert some test data that we can run our
function against:

CREATE STREAM model_inputs (
    text STRING
)
WITH (
    KAFKA_TOPIC='model_inputs',
    VALUE_FORMAT='JSON',
    PARTITIONS=4
);

INSERT INTO model_inputs VALUES ('The quick brown fox jumps over the lazy dog');

Now, let’s apply our function:

SELECT
  text AS original,
  remove_stop_words(text) AS no_stop_words
FROM model_inputs
EMIT CHANGES;

As you can see from the following output, our new function works as expected:

+---------------------------------------------+--------------------------------+
|ORIGINAL                                     |NO_STOP_WORDS                   |
+---------------------------------------------+--------------------------------+
|The quick brown fox jumps over the lazy dog  |quick brown fox jumps lazy dog  |

Additional Resources for Custom ksqlDB Functions
Creating custom ksqlDB functions is a huge topic, and we could have easily dedicated
multiple chapters to it. However, I have spent a lot of time speaking and even writing
about ksqlDB functions elsewhere, and the official documentation also contains some
great information about this feature. Please check out the following resources for
more information about custom ksqlDB functions:

• “The Exciting Frontier of Custom KSQL Functions” (Mitch Seymour, Kafka
Summit 2019)

• “ksqlDB UDFs and UDAFs Made Easy” (Mitch Seymour, Confluent Blog)
• Official ksqlDB Documentation
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Summary
Despite having a simple interface, ksqlDB supports many intermediate to advanced
stream processing use cases, including joining data in different collections, aggregat‐
ing data, creating materialized views that can be queried using keyed-lookups, and
more. Furthermore, ksqlDB gives us an extensive built-in function library that we can
use for tackling a wide range of data processing and enrichment use cases. Whether
you are looking for common mathematical functions (AVG, COUNT_DISTINCT, MAX, MIN,
SUM, etc.), string functions (LPAD, REGEXP_EXTRACT, REPLACE, TRIM, UCASE, etc.), or
even geospatial functions (GEO_DISTANCE), ksqlDB has you covered.

But where ksqlDB really shines is in its ability to provide this high-level interface,
while still giving developers the option to extend the built-in function library with
their own custom Java functions. This is incredibly important, as it allows you to con‐
tinue building stream processing applications using a simple SQL dialect, even if your
application requires custom business logic. This veers into more advanced usage
since it requires knowledge of Java, but as demonstrated in this chapter, even this
process has been made simple by ksqlDB.

Now that you know how to tackle basic, intermediate, and advanced stream process‐
ing use cases with ksqlDB, let’s move on to the final chapter in this book, where
we will learn how to test, deploy, and monitor our Kafka Streams and ksqlDB
applications.
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PART IV

The Road to Production





CHAPTER 12

Testing, Monitoring, and Deployment

In the previous chapters, we learned how to build a variety of stream processing
applications with Kafka Streams and ksqlDB. In this final chapter, we will learn some
steps we’ll need to take in order to ship our applications to a production environ‐
ment. You may be wondering why we decided to unify the chapter on productioniz‐
ing Kafka Streams and ksqlDB applications. Despite some differences, specifically
with respect to testing, the process is largely the same, and simplifying our mental
model for how we productionize software will improve its maintainability in the long
run (especially in hybrid environments where we use both Kafka Streams and
ksqlDB).

Some of the questions we will answer in this chapter include:

• How can we test Kafka Streams applications and ksqlDB queries?
• How can we run benchmarks against a Kafka Streams topology?
• Which types of monitoring should we have in place?
• What is the process for accessing the built-in JMX metrics in Kafka Streams and

ksqlDB?
• How can we containerize and deploy our Kafka Streams and ksqlDB applica‐

tions?
• What are some of the operational tasks we are likely to encounter?

Let’s start by learning how to test our stream processing applications.
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Testing
Once the initial development of your ksqlDB queries or Kafka Streams application is
complete, you will likely continue shipping updates to your code over time. For
example, a change in business requirements may require an update to your code, you
may identify a bug or performance issue that needs to be fixed, or you may just be
updating software versions.

Each time you make a change, however, you should take steps to ensure you don’t
accidentally introduce a regression that could impact the correctness or performance
of your application. The best way to do this is by establishing good testing practices.
In this section, we will discuss several testing strategies that will help you ensure a
smooth evolutionary path for your stream processing applications.

Testing ksqlDB Queries
Testing ksqlDB queries is very straightforward. The maintainers of ksqlDB have built
a tool called ksql-test-runner, which takes three arguments:

• A file containing one or more SQL statements to be tested
• A file that specifies the data inputs for one or more source topics
• A file that specifies the expected outputs of one or more sink topics

Let’s run through an example to see how this works. First, we’ll create a set of SQL
statements that read data from the users topic and convert each row into a greeting.
The queries we’ll be working with are shown in the following code block, which we
will save to a file called statements.sql:

CREATE STREAM users (
  ROWKEY INT KEY,
  USERNAME VARCHAR
) WITH (kafka_topic='users', value_format='JSON');

CREATE STREAM greetings
WITH (KAFKA_TOPIC = 'greetings') AS
SELECT ROWKEY, 'Hello, ' + USERNAME AS "greeting"
FROM users
EMIT CHANGES;

Once our ksqlDB queries have been created, we need to specify the inputs that should
be used for our tests. In this example, we have a single source topic called users.
Therefore, we’ll save the following content to a file called input.json, which will
instruct the ksql-test-runner to insert two records into the users topic when run‐
ning our test:

350 | Chapter 12: Testing, Monitoring, and Deployment



{
  "inputs": [
    {
      "topic": "users",
      "timestamp": 0,
      "value": {"USERNAME": "Isabelle"
      },
      "key": 0
    },
    {
      "topic": "users",
      "timestamp": 0,
      "value": {"USERNAME": "Elyse"
      },
      "key": 0
    }
  ]
}

Finally, we need to specify the expected outputs of our ksqlDB queries. Since our
queries write to a topic called greetings, we will make assertions about what should
appear in this output topic (after our queries handle the test data) by saving the fol‐
lowing lines to a file called output.json:

{
  "outputs": [
    {
      "topic": "greetings",
      "timestamp": 0,
      "value": {
        "greeting": "Hello, Isabelle"
      },
      "key": 0
    },
    {
      "topic": "greetings",
      "timestamp": 0,
      "value": {
        "greeting": "Hello, Elyse"
      },
      "key": 0
    }
  ]
}

With our three files created, we can now run the tests using the following command:

docker run  \
    -v "$(pwd)":/ksqldb/ \
    -w /ksqldb \
    -ti confluentinc/ksqldb-server:0.14.0 \
    ksql-test-runner -s statements.sql -i input.json -o output.json
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At the time of this writing, the output of the test tool was quite verbose, but you
should see the following text somewhere in the output:

 >>> Test passed!

If you accidentally introduce a breaking change later on, the tests will fail. For exam‐
ple, let’s change the way the greeting column is created. Instead of greeting users with
Hello, we will greet them with Good morning:

CREATE STREAM greetings
WITH (KAFKA_TOPIC = 'greetings') AS
SELECT ROWKEY, 'Good morning, ' + USERNAME AS "greeting"
FROM users
EMIT CHANGES;

If we rerun our tests again, they will fail. Of course, this is expected since we changed
our query without changing the assertions in output.json:

>>>>> Test failed: Topic 'greetings', message 0:
  Expected <0, {"greeting":"Hello, Isabelle"}> with timestamp=0
  but was  <0, {greeting=Good morning, Isabelle}> with timestamp=0

This example is trivial, but the overarching idea is important. Testing your ksqlDB
queries in this way will prevent accidental regressions and is highly advisable before
shipping code changes to production.

If you are leveraging custom ksqlDB functions (i.e., UDFs, UDAFs,
and/or UDTFs), you will likely want to set up unit tests for the
underlying Java code. The process is very similar to the unit testing
strategy we cover a little later in Example 12-1, but for more infor‐
mation, please see my article, “ksqlDB UDFs and UDAFs Made
Easy” on the Confluent blog.

Now, let’s look at how to test Kafka Streams applications, which is a little more
involved (but still relatively simple).

Testing Kafka Streams
When you test a Kafka Streams application, you will need an automated testing
framework for executing your tests. Which framework you work with is ultimately up
to you, but the examples in this section will use JUnit for running the tests, and
AssertJ for improving the readability of our assertions.

In addition to a testing framework, you will want to include the kafka-streams-
test-utils library that is maintained and published as part of the official Kafka
project. This library includes:
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1 For example, a topology test could be defined in a file called src/test/java/com/magicalpipelines/GreeterTopolo‐
gyTest.java.

• A simulated runtime environment for executing Kafka Streams topologies
• Helper methods for reading and writing data in test Kafka topics
• Mock objects that can be used for unit testing processors and transforms

As usual with Kafka Streams projects, using third-party packages is simply a matter
of updating our project’s build file (build.gradle) with the appropriate dependencies.
Therefore, in order to pull each of the aforementioned items into our Kafka Streams
project (the testing framework and helper libraries), we can update our build file as
follows:

dependencies {
  testImplementation "org.apache.kafka:kafka-streams-test-utils:${kafkaVersion}"
  testImplementation 'org.assertj:assertj-core:3.15.0'
  testImplementation 'org.junit.jupiter:junit-jupiter:5.6.2'
}

test {
  useJUnitPlatform()
}

With our test dependencies pulled into our project, we are ready to start writing some
tests. Since there are many ways to test a Kafka Streams application, we will break this
section into smaller subsections, each focused on a different testing strategy. Unless
otherwise specified, the tests we will be creating will live in the src/test/java1 directory
of our project, and can be executed using the following command:

./gradlew test --info

Unit tests
Unit testing involves testing individual pieces of code. When you build a Kafka
Streams topology, the units you will most commonly want to test are the individual
processors that compose your topology. Since processors can be defined in different
ways depending on whether you are using the DSL or the Processor API, your tests
will differ depending on which API you are using. First, let’s look at unit testing
stream processors in the DSL.

DSL.    When using the DSL, a common practice is to pass a lambda to one of the built-
in Kafka Streams operators. For example, in the following topology definition, the
logic for the selectKey operator is defined inline using a lambda function:

public class MyTopology {
  public Topology build() {
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    StreamsBuilder builder = new StreamsBuilder();
    builder
        .stream("events", Consumed.with(Serdes.String(), Serdes.ByteArray()))
        .selectKey(
            (key, value) -> { 
              // ... 
              return newKey;
            })
        .to("events-repartitioned");

    return builder.build();
  }
}

The selectKey logic has been defined inside a lambda.

The logic has been omitted for brevity.

When the code inside the lambda is succinct and straightforward, this works well.
However, for larger or more complicated pieces of code, you can improve the testabil‐
ity of your application by breaking out the logic into a dedicated method. For exam‐
ple, let’s assume the logic we want to define for our selectKey operation spans many
lines, and that we want to test this logic in isolation from the larger topology. In this
case, we can replace the lambda with a method reference, as shown in the following
code:

public class MyTopology {
  public Topology build() {
    StreamsBuilder builder = new StreamsBuilder();
    builder
        .stream("events", Consumed.with(Serdes.String(), Serdes.ByteArray()))
        .selectKey(MyTopology::decodeKey) 
        .to("events-repartitioned");

    return builder.build();
  }

  public static String decodeKey(String key, byte[] payload) {
    // ... 
    return newKey;
  }
}

The lambda has been replaced by a method reference.

The logic that was initially defined in the lambda has been moved to a dedicated
method. This greatly improves the testability of our code. Once again, the actual
logic has been omitted for brevity.
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After the logic has been moved to a dedicated method, it is much easier to test. In
fact, we don’t even need the kafka-streams-test-utils package to test this code,
since we can just use our testing framework to unit test this method, as shown in
Example 12-1.

Example 12-1. A simple unit test for the selectKey topology step, which relies on a
dedicated method called MyTopology.decodeKey

class MyTopologyTest {
  @Test
  public void testDecodeId() {
    String key = "1XRZTUW3";
    byte[] value = new byte[] {};
    String actualValue = MyTopology.decodeKey(key, value); 
    String expectedValue = "decoded-1XRZTUW3"; 
    assertThat(actualValue).isEqualTo(expectedValue); 
  }
}

Our test will invoke the same method that we use in our selectKey processor.
Here, we pass in a hardcoded key and value. We could also use a feature of JUnit
called parameterized tests if we want to execute several iterations of this method
using different key-value pairs.

We define our expectations for what the output of our method should be.

We use AssertJ to assert that the actual value that was returned by the MyTopol
ogy.decodeKey method matches what we expect.

By testing our processing logic in this way, we can have very detailed and narrow test
cases to help us identify and prevent regressions in our code. Furthermore, Kafka
Streams applications are often composed of more than just a collection of processors.
You may have various helper methods, utility classes, or custom Serdes implementa‐
tions that support the topology in other ways. In this case, it’s important to test these
units of code as well, using the same approach we describe here.

This form of testing works really well with applications that use the DSL. However,
when we’re using the Processor API, there are some additional considerations with
how we structure and execute our tests. We’ll cover this in the next section.

Processor API.    With the Processor API, we don’t typically work with lambdas or
method references when we define the logic for our stream processors. Instead,
we work with classes that implement the Processor or Transformer interfaces. So
our testing strategy is a little different because we need to mock the underlying
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ProcessorContext that Kafka Streams passes to these lower-level stream processors
when they are first initialized.

When we refer to stream processors, we are not referring to the
Processor interface. We are using this term in the broader sense to
refer to any code that is responsible for applying data processing/
transformation logic to an input stream. When using the Processor
API, a stream processor can either be an implementation of the Pro
cessor or Transformer interface. If you need a refresher on the
differences between these interfaces, please see “Processors and
Transformers” on page 231.

To demonstrate how we can test a lower-level stream processor, let’s implement a
stateful transformer that tracks the number of records it has seen for each unique key.
The implementation for the transformer we will be testing is shown in the following
code block:

public class CountTransformer
   implements ValueTransformerWithKey<String, String, Long> {

  private KeyValueStore<String, Long> store;

  @Override
  public void init(ProcessorContext context) { 
    this.store =
      (KeyValueStore<String, Long>) context.getStateStore("my-store"); 
  }

  @Override
  public Long transform(String key, String value) { 
    // process tombstones
    if (value == null) {
      store.delete(key);
      return null;
    }

    // get the previous count for this key,
    // or set to 0 if this is the first time
    // we've seen this key
    Long previousCount = store.get(key);
    if (previousCount == null) {
      previousCount = 0L;
    }

    // calculate the new count
    Long newCount = previousCount + 1;
    store.put(key, newCount);
    return newCount;
  }
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  @Override
  public void close() {}
}

Processor and Transformer implementations have an initialization function that
accepts a ProcessorContext. This context is used for various tasks, like retriev‐
ing state stores and scheduling periodic functions.

This transformer is stateful since it needs to remember the count for each unique
key it sees, so we’ll save a reference to the state store.

The transform method contains the logic for this stream processor. The com‐
ments in this code block discuss the implementation details.

With our transformer in place, we can begin writing our unit test. Unlike the simple
method-level tests we implemented in the previous section, this test will require us to
use some helpers in the kafka-streams-test-utils package. Among other things,
this package allows us to create MockProcessorContext objects, which enable us to
access state and schedule punctuations without actually running our topology.

A common approach is to create the MockProcessorContext within a setup function,
which runs before the unit tests are executed. If your processor is stateful, you will
also need to initialize and register your state store. Furthermore, while your topology
may use a persistent state store, it is recommended to use an in-memory store for
unit tests. An example of how to set up a MockProcessorContext and register a state
store is shown in the following code block:

public class CountTransformerTest {
  MockProcessorContext processorContext; 

  @BeforeEach 
  public void setup() {
    Properties props = new Properties(); 
    props.put(StreamsConfig.APPLICATION_ID_CONFIG, "test");
    props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "dummy:1234");
    processorContext = new MockProcessorContext(props); 

    KeyValueStore<String, Long> store = 
        Stores.keyValueStoreBuilder(
                Stores.inMemoryKeyValueStore("my-store"),
                Serdes.String(), Serdes.Long())
            .withLoggingDisabled()
            .build();

    store.init(processorContext, store); 
    processorContext.register(store, null);
  }
}
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We will save the MockProcessorContext object as an instance variable so that we
can reference it later on in our tests.

Our setup method is annotated with JUnit’s BeforeEach annotation, which will
cause this code block to execute before each test.

In order to create a MockProcessorContext, we need to provide some Kafka
Streams properties. Here, we only provide the two required properties.

Instantiate a MockProcessorContext instance.

Our transformer is stateful, so we create an in-memory state store for it to use.

Initialize and register the state store, which primes it for use in our tests.

Once the MockProcessorContext has been created, you can simply instantiate and
initialize your Processor or Transformer class using this context object, and then
perform the unit tests. In the code block that follows, we show how to test our Count
Transformer using this approach. Our test covers the basic counting behavior, and
also the tombstone-processing behavior:

public class CountTransformerTest {
  MockProcessorContext processorContext;

  @BeforeEach
  public void setup() {
    // see the previous section
  }

  @Test 
  public void testTransformer() {
      String key = "123";
      String value = "some value";

      CountTransformer transformer = new CountTransformer(); 
      transformer.init(processorContext); 

      assertThat(transformer.transform(key, value)).isEqualTo(1L); 
      assertThat(transformer.transform(key, value)).isEqualTo(2L);
      assertThat(transformer.transform(key, value)).isEqualTo(3L);
      assertThat(transformer.transform(key, null)).isNull(); 
      assertThat(transformer.transform(key, value)).isEqualTo(1L);
  }
}

JUnit’s Test annotation signals that this method executes a test.

Instantiate our CountTransformer.
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Initialize our CountTransformer instance with the MockProcessorContext that
we initialized in the setup method.

Test the behavior of our transformer. Since our CountTransformer counts the
number of times it has seen each key, we perform a series of tests to ensure the
count increments as expected.

Our transformer also contains logic for processing tombstones (records with a
key and a null value). In Kafka Streams, tombstones are used to signal that a
record should be deleted from a state store. This line, and the one that follows it,
ensures that the tombstone was processed correctly.

There are additional testing capabilities that the MockProcessorContext enables as
well. For example, you can also test processors that rely on a punctuator function for
flushing records to downstream processors. For more examples of how to unit test a
lower-level processor, please see the official documentation.

Behavioral Tests
Unit testing is helpful, but a Kafka Streams topology is usually composed of a collec‐
tion of processors that work together. So how can we test the behavior of an entire
topology? The answer, once again, is provided by the kafka-streams-test-utils
package. This time, we will leverage a simulated runtime environment that is
included in this library.

For demonstration purposes, let’s create a very simple topology that we can use to
build some tests.

The following code block shows a simple Kafka Streams topology that reads user‐
names from a topic called users, and produces a greeting for each user into a topic
called greetings. However, there is one exception: if the user’s name is Randy, we do
not generate a greeting. This filtering condition will give us a slightly more interesting
test scenario (and is not meant to offend anyone named Randy):

class GreeterTopology {

  public static String generateGreeting(String user) {
    return String.format("Hello %s", user);
  }

  public static Topology build() {
    StreamsBuilder builder = new StreamsBuilder();

    builder
        .stream("users", Consumed.with(Serdes.Void(), Serdes.String()))
        .filterNot((key, value) -> value.toLowerCase().equals("randy"))
        .mapValues(GreeterTopology::generateGreeting)
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        .to("greetings", Produced.with(Serdes.Void(), Serdes.String()));

    return builder.build();
  }
}

Next, let’s write a unit test that uses a test driver included in the Kafka Streams library
called the topology test driver. This test driver allows us to pipe data into a Kafka
Streams topology (in this case, the GreeterTopology we just defined), and to analyze
the resulting data that is appended to the output topics. We’ll start by defining a setup
and teardown method for creating and destroying test driver instances, as shown
here:

class GreeterTopologyTest {
  private TopologyTestDriver testDriver;
  private TestInputTopic<Void, String> inputTopic;
  private TestOutputTopic<Void, String> outputTopic;

  @BeforeEach
  void setup() {
    Topology topology = GreeterTopology.build(); 

    Properties props = new Properties(); 
    props.put(StreamsConfig.APPLICATION_ID_CONFIG, "test");
    props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "dummy:1234"); 

    testDriver = new TopologyTestDriver(topology, props); 

    inputTopic =
        testDriver.createInputTopic( 
            "users",
            Serdes.Void().serializer(),
            Serdes.String().serializer());

    outputTopic =
        testDriver.createOutputTopic( 
            "greetings",
            Serdes.Void().deserializer(),
            Serdes.String().deserializer());
  }

  @AfterEach
  void teardown() {
    testDriver.close(); 
  }
}

Build the Kafka Streams topology.

Configure Kafka Streams by supplying the two required configuration parame‐
ters.
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Since our topology will be running in a simulated runtime environment, the
bootstrap servers don’t need to be resolvable.

Create a topology test driver. Test drivers contain several helper methods that
make testing topologies very easy.

The test driver includes a helper method for creating an input topic. Here, we
create the users topic.

The test driver also includes a helper method for creating an output topic. Here,
we create the greetings topic.

Make sure resources are cleaned up properly after each test by calling the Topolo
gyTestDriver.close() method.

With a TopologyTestDriver instance being created for each test case, we can now
write the topology tests. This simply involves piping messages to our input topic, and
checking the output topic for the expected records. An example of this strategy is
shown here:

class GreeterTopologyTest {
  // ...

  @Test
  void testUsersGreeted() {
    String value = "Izzy"; 

    inputTopic.pipeInput(value); 

    assertThat(outputTopic.isEmpty()).isFalse(); 

    List<TestRecord<Void, String>> outRecords =
      outputTopic.readRecordsToList(); 
    assertThat(outRecords).hasSize(1); 

    String greeting = outRecords.get(0).getValue(); 
    assertThat(greeting).isEqualTo("Hello Izzy");
  }
}

Our test case will create a record to pipe into our input topic.

Pipe the test record to our input topic. There is also an overloaded version of the
pipeInput method that accepts a key and a value.

Use the isEmpty() method to assert that the output topic contains at least one
record.
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There are various ways to read the records in the output topic. Here, we read all
of the output records into a list using the readRecordsToList() method. Some
other methods you may want to check out include readValue(), readKey
Value(), readRecord(), and readKeyValuesToMap().

Assert that there was only one output record (topologies that use flatMap opera‐
tors may have a 1:N ratio of input to output records).

Read the value of the output record. There are additional methods for accessing
more record data, including getKey(), getRecordTime(), and getHeaders().

The TestOutputTopic.readRecordsToList() method is useful when working with
streams since it contains the entire sequence of output events. On the other hand,
TestOutputTopic.readKeyValuesToMap() is useful when working with tables as
opposed to streams, since it only contains the latest representation of each key. In
fact, we’ve already discussed the close relationship between streams and lists (both of
which use insert semantics) and tables and maps (both of which use update seman‐
tics) in “Stream/Table Duality” on page 57, and the relationship is modeled in these
methods as well.

Benchmarking
While ksqlDB takes care of composing the underlying Kafka Streams topology for
you, the freedom that comes with using the Kafka Streams DSL or Processor API
directly introduces more vectors for potential performance regressions. For example,
if you accidentally introduce a slow computational step, or rework your topology in a
way that makes it less efficient, it will be much less painful to troubleshoot if you
catch the regression before you ship the change to production.

To protect ourselves against performance regressions, we should run benchmarks
against our code whenever we make changes to our Kafka Streams application. Luck‐
ily for us, we can combine the simulated runtime environment that the kafka-
streams-test-utils package provides with a benchmarking framework like JMH to
achieve this.

The first thing we need to do is simply add the me.champeau.gradle.jmh plug-in to
our build.gradle file, and configure the jmh task that this plug-in creates. An example
of how to do both is shown in the following code block:

plugins {
  id 'me.champeau.gradle.jmh' version '0.5.2'
}

jmh { 
  iterations = 4
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  benchmarkMode = ['thrpt']
  threads = 1
  fork = 1
  timeOnIteration = '3s'
  resultFormat = 'TEXT'
  profilers = []

  warmupIterations = 3
  warmup = '1s'
}

The jmh plug-in supports several configuration parameters. For a full list and
description of these parameters, see the plug-in’s documentation.

Now, let’s create a class for executing the benchmarks. Unlike the other Kafka Streams
test code we’ve developed so far, the benchmarking code is expected to be in the
src/jmh/java directory. Our benchmarking class is shown here:

public class TopologyBench {
  @State(org.openjdk.jmh.annotations.Scope.Thread)
  public static class MyState {
    public TestInputTopic<Void, String> inputTopic;

    @Setup(Level.Trial) 
    public void setupState() {
      Properties props = new Properties();
      props.put(StreamsConfig.APPLICATION_ID_CONFIG, "test");
      props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "dummy:1234");
      props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);

      // build the topology
      Topology topology = GreeterTopology.build();

      // create a test driver. we will use this to pipe data to our topology
      TopologyTestDriver testDriver = new TopologyTestDriver(topology, props);

      testDriver = new TopologyTestDriver(topology, props);

      // create the test input topic
      inputTopic =
          testDriver.createInputTopic(
              "users", Serdes.Void().serializer(), Serdes.String().serializer());
    }
  }

  @Benchmark 
  @BenchmarkMode(Mode.Throughput) 
  @OutputTimeUnit(TimeUnit.SECONDS)
  public void benchmarkTopology(MyState state) {
    state.inputTopic.pipeInput("Izzy"); 
  }
}
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The Setup annotation is used to signal that this method should be executed
before the benchmark. We use this method to set up the TopologyTestDriver
instance and the input topics. The Level.Trial argument tells JMH that this
method should be executed before each run of the benchmark. (Note: this does
not mean the setup will be executed before each iteration.)

The Benchmark annotation signals JMH that this is a benchmark method.

Here, we set the benchmark mode to Mode.Throughput. This will measure the
number of times, per second, this benchmarking method could be executed.

Pipe a test record to the input topic.

Now that the benchmarking code has been created, we can execute the benchmarks
with Gradle, using the following command:

$ ./gradlew jmh

You should see output similar to the following:

Benchmark                         Mode  Cnt       Score       Error  Units
TopologyBench.benchmarkTopology  thrpt    4  264794.572 ± 39462.097  ops/s

Does this mean your application can handle >264k messages per second? Not exactly.
Remember that, like our topology tests in the previous section, our benchmarks are
being executed in a simulated runtime environment. Furthermore, we aren’t making
any network calls to an external Kafka cluster like a production application would,
and benchmarks are often executed on different hardware (e.g., a continuous integra‐
tion server) than production workloads run on. Therefore, these numbers should
only be used to establish a performance baseline for your topology, and to compare
future benchmarking results against.

Kafka Cluster Benchmarking
Whether you’re working with Kafka Streams or ksqlDB, you may also want to run
performance tests at the Kafka cluster level. Kafka includes a couple of console scripts
that can help with this, which allow you to measure read/write throughput, execute
load and stress tests against your cluster, and determine how certain client settings
(batch size, buffer memory, producer acks, consumer thread count) and input charac‐
teristics (record size, message volume) impact the performance of your cluster.

If you want to analyze the performance of producing data to a topic, you can use the
kafka-producer-perf-test command. There are many available options, and the
following example demonstrates several of them:
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kafka-producer-perf-test \
  --topic users \
  --num-records 1000000 \
  --record-size 100 \
  --throughput -1 \
  --producer-props acks=1 \
  bootstrap.servers=kafka:9092 \
  buffer.memory=67108864 \
  batch.size=8196

Another useful version of this command involves specifying a payload file. The
records in this file will be produced to the specified Kafka topic. The following code
block will write three test records to a file called input.json:

cat <<EOF >./input.json
{"username": "Mitch", "user_id": 1}
{"username": "Isabelle", "user_id": 2}
{"username": "Elyse", "user_id": 3}
EOF

Now we can replace the --record-size flag with the --payload-file input.json
argument to run the performance test using our hardcoded input records:

kafka-producer-perf-test \
  --topic users \
  --num-records 1000000 \
  --payload-file input.json \
  --throughput -1 \
  --producer-props acks=1 \
  bootstrap.servers=kafka:9092 \
  buffer.memory=67108864 \
  batch.size=8196

An example performance report is shown here:

1000000 records sent, 22166.559528 records/sec (0.76 MB/sec),
58.45 ms avg latency, 465.00 ms max latency,
65 ms 50th, 165 ms 95th, 285 ms 99th, 380 ms 99.9th.

There is also a console script for running consumer performance tests. An example
invocation is shown in the following code:

kafka-consumer-perf-test \
  --bootstrap-server kafka:9092 \
  --messages 100000 \
  --topic users \
  --threads 1

# example output (modified to fit)
start.time                end.time                  data.consumed.in.MB
2020-09-17 01:23:41:932   2020-09-17 01:23:42:817   9.5747

MB.sec    data.consumed.in.nMsg   nMsg.sec
10.8189   100398
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2 JMX stands for Java Management Extensions, and it is used for monitoring and managing resources. The
Kafka Streams library registers and updates a set of JMX metrics, which provide insight into how the applica‐
tion is performing. Since ksqlDB is built on top of Kafka Streams, it gets these JMX metrics for free.

Final Thoughts on Testing
Consider setting up an automated workflow for running tests whenever you make a
change to your code. An example workflow is as follows:

• All code changes are pushed to a separate branch in your version control system
(e.g., GitHub, Bitbucket).

• When a developer wants to merge a code change, they should open a pull
request.

• When the pull request is opened, the tests are executed automatically using a sys‐
tem like Jenkins, Travis, GitHub Actions, etc.

• If one or more tests fail, merging should be blocked. Otherwise, if the checks
pass, your code is ready for review.

Workflows like this one may be second nature for many readers. But automated tests
play an important role in avoiding code regressions, so it’s worth reviewing our test‐
ing practices and workflows on a regular basis.

Now that we’ve learned how to test ksqlDB and Kafka Streams applications, let’s take
a look at another important prerequisite for shipping software to production:
monitoring.

Monitoring
Monitoring is a huge topic, and often involves many different technologies. There‐
fore, this section will not attempt to cover every approach in detail, but will provide a
checklist for the different types of monitoring you will want to have in place and
some example technologies that you may want to use.

However, there is one piece of the Kafka Streams and ksqlDB monitoring puzzle that
we will cover in technical detail. Both technologies include a set of built-in JMX met‐
rics,2 and being able to extract these metrics will greatly enhance the observability of
our applications and queries. We will cover metric extraction in technical detail a lit‐
tle later. But first, let’s look at the monitoring checklist.
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Monitoring Checklist
The following table shows some monitoring strategies you will likely want to have in
place for your production Kafka Streams and ksqlDB applications:

Monitoring strategy What should you monitor? Example technology
Cluster monitoring • Under-replicated partitions

• Consumer lag
• Offset advancement
• Topic throughput

kafka_exportera

Log monitoring • Total log rate
• Error log rate

ELK, ElastAlert, Cloud Logging

Metric monitoring • Consumption rate
• Production rate
• Process latency
• Poll time

Prometheus

Custom instrumentationb • Business metrics OpenCensus

Profiling • Deadlocks
• Hot spots

YourKit

Visualizations • All of the above Grafana

Alerting • SLOs (service-level objectives) Alertmanager
a See https://github.com/danielqsj/kafka_exporter.
b Primarily used for Kafka Streams.

Extracting JMX Metrics
Both Kafka Streams and ksqlDB expose metrics via Java Management Extensions
(JMX). When you run a Kafka Streams application or ksqlDB server, you can access
these metrics using something called JConsole, and this is the direction most tutorials
take. If you are running JConsole on the same machine as Kafka Streams and/or
ksqlDB, you can simply run the jconsole command without any arguments to
inspect the JMX metrics.

For example, the following code snippet shows how to set various system properties
for enabling remote JMX monitoring, and run ksqlDB with JMX enabled:

docker-compose up 

MY_IP=$(ipconfig getifaddr en0); 

docker run \ 
    --net=chapter-12_default \ 
    -p 1099:1099  \
    -v "$(pwd)/ksqldb":/ksqldb \
    -e KSQL_JMX_OPTS="\ 
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        -Dcom.sun.management.jmxremote \
        -Djava.rmi.server.hostname=$MY_IP \
        -Dcom.sun.management.jmxremote.port=1099 \
        -Dcom.sun.management.jmxremote.rmi.port=1099 \
        -Dcom.sun.management.jmxremote.authenticate=false \
        -Dcom.sun.management.jmxremote.ssl=false" \
    -ti confluentinc/ksqldb-server:0.14.0  \
    ksql-server-start /ksqldb/config/server.properties 

The source code includes a Docker Compose setup for running a Kafka cluster.
Our ksqlDB server instance that we’ll run a couple of lines down will talk to this
Kafka cluster.

Save your IP to an environment variable. We will reference this in the JMX prop‐
erties further down so that we can expose the JMX metrics over this IP.

Run a ksqlDB server instance with JMX enabled.

Since we’re running our ksqlDB server manually outside of Docker Compose, we
can connect to the Docker network using the --net flag.

Set the system properties needed to access the JMX metrics.

Start the ksqlDB server instance.

You can open JConsole with the following command:

jconsole $MY_IP:1099

If you click the MBeans tab, you will see all of the available metrics that are exposed
by your Kafka Streams or ksqlDB application. For example, Figure 12-1 shows the
metric list for a ksqlDB server. Since ksqlDB is built on top of Kafka Streams, and
since Kafka Streams is built on top of the lower-level Kafka Consumer and Kafka
Producer clients, you will see metrics reported by each of the underlying libraries.

Figure 12-1. Kafka Streams–related metric groups as shown in JConsole
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You can drill down into each group to view some metadata and the values for each
metric, as shown in Figure 12-2.

Figure 12-2. A more detailed view of some of the Kafka Streams metrics

While JConsole is great for inspecting metrics on the fly in a testing or development
environment, when it’s time to deploy your software to production, you’ll want a
more robust solution that is capable of storing historical datasets, performing queries
against your data, and integrating with alerting systems.

At the time of this writing, the technology that I recommend for working with Kafka
Streams and ksqlDB JMX metrics is Prometheus. In order to get metrics into Prome‐
theus, you need an exporter that will expose the metrics over an HTTP endpoint. Set‐
ting up the exporter for both Kafka Streams and ksqlDB instances is similar. You’ll
need to:

• Download the Prometheus JMX exporter JAR.
• Start Kafka Streams or ksqlDB with the following flag:

-javaagent:./jmx_prometheus_javaagent-0.14.0.jar=8080:config.yaml

• Configure Prometheus to scrape the HTTP endpoint, which is the IP address or
hostname where your Kafka Streams or ksqlDB application is running, followed
by the port number that was configured to expose the JMX metrics.

The source code for this chapter includes a full example of using Prometheus with
Kafka Streams and ksqlDB. We have omitted the technical details of Prometheus
from this text since it’s an implementation detail, but the main takeaway is that
regardless of whether you use Prometheus or another monitoring system, you should
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3 Docker Hub, Artifactory, and Google Container Registry are some popular container registries.

4 A derivative image would simply specify the official ksqlDB image as the base image using the FROM instruc‐
tion at the top of the Dockerfile. Any customizations to the environment would be specified in the Dockerfile.

export the built-in JMX metrics provided by Kafka Streams and ksqlDB to an exter‐
nal system to improve the observability of your application.

Deployment
Kafka Streams and ksqlDB can run on bare-metal machines, inside VMs, or using
containers. The recommended path, however, is to containerize your application
using Docker. Some of the benefits of this approach include:

• Containers provide a lightweight, isolated runtime environment for your code to
run in.

• Storing, managing, sharing, and maintaining multiple versions of containers is
extremely easy using both private and public container registries.3

• Containers allow you to decouple the underlying infrastructure from your code.
This means you can easily run the same container on-premise, on colocated
servers, on a multitude of cloud platforms, or even on your local machine.

Let’s take a look at how to work with both technologies using containers.

ksqlDB Containers
Confluent has already published official container images for both the ksqlDB server
and CLI. When you are ready to deploy your queries to production, you can use the
official ksqlDB server container image (confluentinc/ksqldb-server) or a deriva‐
tive image if you need to make adjustments to the runtime environment.4

The official ksqlDB server image allows you to specify virtually any of the ksqlDB
configuration properties using an environment variable. However, this has a few
downsides:

• Configuration should be version controlled. Setting all of your ksqlDB properties
using environment variables makes this difficult.

• The commands for running the container image can become large and unwieldy
for configuration-heavy applications.

• Setting environment variables is a shortcut for mounting an actual configuration
file inside a container, but if you are running ksqlDB in headless mode or using
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certain data integration features, you will still need to mount files inside the con‐
tainer.

Therefore, instead of relying purely on environment variables to configure produc‐
tion ksqlDB server instances, I recommend mounting a version-controlled configura‐
tion file inside the container. For example, let’s save our ksqlDB server configuration
to a file called config/server.properties on our local machine. We’ll keep the contents of
this file simple for demonstration purposes, but you can include any of the available
ksqlDB properties in your configuration file (see Appendix B):

bootstrap.servers=kafka:9092
ksql.service.id=greeter-prod

We can mount this configuration inside the official container image, and invoke the
ksql-server-start command:

docker run \
 --net=chapter-12_default \ 
 -v "$(pwd)/config":/config \ 
 -ti confluentinc/ksqldb-server:0.14.0 \
 ksql-server-start /config/server.properties 

This flag is specific to our tutorial, and allows us to connect to the Kafka cluster
running in our Docker Compose environment.

Mount a configuration from our host system to the running container.

Start the ksqlDB server instance with the mounted configuration file.

Recall that there are a couple of ksqlDB configurations that reference another file
path:

ksql.connect.worker.config

An optional configuration that specifies the location of the Kafka Connect
worker configs if running Kafka Connect in embedded mode (see Figure 9-3).

queries.file

When running ksqlDB server in headless mode, this config specifies the location
of the queries file to execute.

Whenever your configuration includes either of these properties, you’ll need to
mount the file referenced by these configs inside your container as well. Now, let’s see
how to run Kafka Streams applications inside containers.
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5 An example of a suitable base image is openjdk:8-jdk-slim.

Kafka Streams Containers
Running Kafka Streams inside a container is slightly more involved, but it’s still pretty
simple. You could easily create your own Docker image using a lower-level base
image.5 However, a simpler option is to use a popular image builder called Jib, which
was developed by Google and simplifies the way Java applications are containerized
and distributed.

In order to use Jib, you’ll need to add the Jib dependency to your build file. Since
we’ve been using Gradle as our build system in this book, we’ll add the following to
our build.gradle file:

plugins {
  id 'com.google.cloud.tools.jib' version '2.1.0'
}

jib {
  to {
    image = 'magicalpipelines/myapp:0.1.0'
  }
  container {
    jvmFlags = []
    mainClass = application.mainClassName
    format = 'OCI'
  }
}

We can use a variety of different naming schemes for our image, depending on
whether or not we want Jib to automatically push our image to a container registry,
and which container registry we want our Docker image pushed to. The official Jib
documentation is the best resource for the available container registries and naming
schemes, but at the time of this writing, the following container registries were
supported:

• Docker Hub
• Google Container Registry (GCR)
• Amazon Elastic Container Registry (ECR)
• Azure Container Registry (ACR)

Once your build file has been updated, you can execute one of the following tasks:
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./gradlew jib

This task will build your container image and push the resulting container image
to a container registry. You must be authenticated to the desired container regis‐
try for this to work.

./gradlew jibDockerBuild

This task will build your container image using the local Docker daemon, and
will not push your image to a container registry. This is the easiest way to test that
your image can be built.

For demonstration purposes, we’ll simply build the Docker image locally by executing
the following command:

./gradlew jibDockerBuild

You should see output similar to the following:

Built image to Docker daemon as magicalpipelines/myapp:0.1.0

The Docker image tag referenced in the output contains our Kafka Streams applica‐
tion, and can be executed on any machine that is capable of running containers. This
brings us on par with ksqlDB at this point since we now have the ability to run either
ksqlDB or Kafka Streams workloads using a container. So how should we execute
these containers? We’ll provide one recommendation in the next section.

Container Orchestration
We strongly believe that the best way to run a Kafka Streams or ksqlDB application
is to use a container orchestration system, like Kubernetes. This has the following
benefits:

• If the node your container is running on fails, then the orchestrator will automat‐
ically move the container to a healthy node.

• It’s easy to scale your workloads by increasing the replica count for your
containers.

• The underlying infrastructure is abstracted away. However, in cases where you
still want some control over where your containers run, you can use node selec‐
tors or affinity rules to gain more control.

• You can easily deploy so-called sidecar containers, which run alongside your
Kafka Streams or ksqlDB containers, to provide services like:
— Collecting and exporting metrics to monitoring systems
— Log shipping
— Communication proxies (for example, if you want to put an authentication

layer in front of a Kafka Streams app where interactive queries are enabled;
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this is much easier than building an authentication and authorization layer
inside your Kafka Streams application)

• It’s easy to coordinate rolling restarts of your application when you push a code
update.

• Support for StatefulSet resources provide persistent and stable storage for stateful
topologies.

Exploring Kubernetes in detail is beyond the scope of this book, but there are many
great resources on this topic, including Kubernetes: Up and Running by Brendan
Burns et al. (O’Reilly).

Operations
In this last section, we will cover a few operational tasks that you are likely to
encounter while maintaining a Kafka Streams or ksqlDB application.

Resetting a Kafka Streams Application
In some cases, you may need to reset a Kafka Streams application. A common use
case is if you discover a bug in your system and need to reprocess all or a subset of the
data in your Kafka topics. To facilitate this, the maintainers of Kafka built an applica‐
tion reset tool, which is distributed with the Kafka source.

This tool can theoretically be used for ksqlDB as well. However,
you need to know the consumer group in order to use this tool. In
Kafka Streams, there is a direct mapping between the applica
tion.id config and the consumer group ID. However, in ksqlDB,
there is not a direct mapping between the service.id and the
consumer group.
Therefore, if you adapt these instructions to reset a ksqlDB applica‐
tion, please be extra careful and ensure that you identify the correct
consumer group for your application (the kafka-consumer-groups
console script can help with this).

This tool does a few things:

• Updates the consumer offset to the specified position on the source topics
• Skips to the end of intermediate topics
• Deletes internal changelog and repartition topics
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Special care must be taken when using this tool with stateful appli‐
cations, since this tool does not reset application state. Please be
sure to read the following instructions in their entirety so you don’t
miss the crucial step.

In order to use the reset tool, follow these steps:

1. Stop all instances of your application. Do not proceed to the next step until the
consumer group is inactive. You can determine whether or not the group is inac‐
tive by running the following command. Inactive consumer groups will show the
state as Empty in the output:

kafka-consumer-groups \
  --bootstrap-server kafka:9092 \ 
  --describe \
  --group dev \ 
  --state

Update the bootstrap server with the host/port pair of one of your brokers.

The group is specified by the application.id setting in Kafka Streams. If
you are resetting a ksqlDB application, there unfortunately isn’t a direct cor‐
relation between ksqlDB’s service.id parameter and the consumer group
name.

2. Run the application reset tool with the appropriate parameters. A full list of
parameters and detailed usage information can be viewed by running the follow‐
ing command:

kafka-streams-application-reset --help

For example, if we wanted to reset the greeter application we created earlier in
this chapter, we could run the following:

kafka-streams-application-reset \
    --application-id dev \
    --bootstrap-servers kafka:9092 \
    --input-topics users \
    --to-earliest

The output will look similar to the following:
Reset-offsets for input topics [users]
Following input topics offsets will be reset to (for consumer group dev)
Topic: users Partition: 3 Offset: 0
Topic: users Partition: 2 Offset: 0
Topic: users Partition: 1 Offset: 0
Topic: users Partition: 0 Offset: 0
Done.
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Deleting all internal/auto-created topics for application dev
Done.

3. If your application is stateless, you can restart your application instances after
running the kafka-streams-application-reset command. Otherwise, if your
application is stateful, you will need to reset your application’s state before restart‐
ing. There are two ways to reset your application state:
• Manually remove each state directory.
• Invoke the KafkaStreams.cleanUp method in your code (Kafka Streams only).

You should only do this the first time you restart your application after the
reset tool has been executed.

Once your application state has been cleaned up using either of the preceding meth‐
ods, you can restart your application.

Rate-Limiting the Output of Your Application
Kafka Streams and ksqlDB are capable of high throughput, but you may find yourself
in a situation where the downstream systems that are processing your output topics
can’t keep up with the volume. In this case, you may want to rate-limit the output of
your application using the record cache.

When using the Kafka Streams DSL or ksqlDB, the record cache can help reduce the
number of output records that are written to state stores and also the number of
records that are forwarded to downstream processors. When using the Processor
API, the record cache is only capable of reducing the number of records that are writ‐
ten to state stores.

Each stream thread (controlled by the num.stream.threads parameter) is allocated
an even share of the total cache size. So if your total cache size is 10485760 (i.e., 10
MB) and your application is configured to run with 10 threads, then each thread will
be allocated approximately 1 MB of memory for its record cache.

This setting is extremely important in improving the performance of not only your
application, but also downstream systems that rely on the data your application pro‐
duces to Kafka. To understand why, let’s consider a topology that needs to count the
number of messages it sees per key. If you have the following sequence of events:

• <key1, value1>

• <key1, value2>

• <key1, value3>
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Then a topology that performs a count aggregation without the record cache disabled
(i.e., with cache.max.bytes.buffering set to 0) would produce the following
sequence of aggregations:

• <key1, 1>

• <key1, 2>

• <key1, 3>

However, if this sequence of updates occurs quickly enough (e.g., within a few milli‐
seconds or seconds of each other), do you really need to know about every single
intermediate state (<key1, 1> and <key1, 2>)? There isn’t a right or wrong answer to
this question, it just depends on your use case and the semantics you wish to achieve.
If you want to rate-limit the application and reduce the number of intermediate states
you see, then you may want to use the record cache.

If you allocate some memory for a record cache using this config, then Kafka Streams
and ksqlDB could potentially reduce the original sequence of aggregations to simply:

• <key1, 3>

The record cache may not always be able to reduce the output records completely
since there are multiple items at play here, including when the cache is flushed and
when the messages arrive. However, this is an important lever that can be used to
reduce the output of your application. When your application writes less, down‐
stream processors in the topology itself, and downstream systems that operate on the
data outside of Kafka Streams and ksqlDB, have less data to process.

Please see the official documentation for more information about this important
setting.

Upgrading Kafka Streams
At the time of this writing, Apache Kafka (including Kafka Streams) was on a time-
based release plan. Therefore, you should expect a new version of Kafka Streams to be
released every four months. The versioning strategy is shown here:

major.minor.bug-fix

In most cases, the four-month release cadence applies to minor versions. For exam‐
ple, 2.5.0 was released in April 2020, and 2.6.0 was released four months later, in
August 2020. In rare cases, you may see a major version bump for more impactful
changes (e.g., changes to the Kafka message format or major changes to the public
API) or when significant milestones are reached in the project. Bug fixes are common
and can occur at any time.
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6 The exact quote from the documentation is: “If you’re running ksqlDB in production, and you don’t yet need
the features or fixes the new version brings, consider delaying any upgrade until either another release has
features or fixes you need, or until ksqlDB reaches version 1.0 and promises backward compatibility.”

Whenever you upgrade Kafka Streams, it’s important to follow the upgrade guide that
is published to the official Kafka website for each release. In some cases, you may be
required to set the upgrade.from parameter to the older version, and then perform a
series of restarts to make sure the upgrade is performed safely. This is especially true
if you wait a while before upgrading (e.g., if you are upgrading from 2.3.0 to 2.6.0).

There are a few options for staying informed of new releases:

• Sign up for one or more of the official mailing lists to receive release announce‐
ments.

• Visit the official GitHub repository for Apache Kafka, and “watch” the project
(there’s a Releases Only option if you want to cut down on the noise). You can
also star the project while you’re at it to support the people who work on Kafka
Streams and the wider Kafka ecosystem.

• Follow @apachekafka on Twitter.

Upgrading ksqlDB
ksqlDB is rapidly evolving, and is likely to have breaking changes from time to time
that make the upgrade path a little more precarious. Taken from the official ksqlDB
documentation:

Until version 1.0 of ksqlDB, each minor release will potentially have breaking changes
in it, which means that you can’t simply update the ksqlDB binaries and restart the
server(s).
The data models and binary formats used within ksqlDB are in flux. This means data
local to each ksqlDB node and stored centrally within internal Kafka topics may not be
compatible with the new version you’re trying to deploy.

—ksqldb.io

In fact, the documentation even goes so far as to discourage upgrades after you’ve
deployed to production, until backward compatibility can be promised.6 However,
this doesn’t mean you shouldn’t upgrade; it just highlights the uncertainty around
what some upgrades entail, how they should be performed, and what (if any) poten‐
tial breaking changes a certain upgrade will bring. You should always consult the offi‐
cial ksqlDB documentation before upgrading a ksqlDB cluster.
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Summary
Both Kafka Streams and ksqlDB include testing utilities that allow us to build confi‐
dence in our code before shipping it to production, and help us avoid unintended
code regressions as we continue to make changes and improvements to our applica‐
tions over time. Furthermore, no matter which technology you are using, it’s easy to
maintain visibility about how the application is operating using the built-in JMX met‐
rics. We can also make our applications highly portable by running them in a con‐
tainerized environment, whether that involves building our own application-specific
Docker images for Kafka Streams applications or using Confluent-maintained images
for running our ksqlDB server and CLI instances.

The additional tips we provided about monitoring, benchmarking, rate-limiting, and
resetting your applications will help you productionize and maintain your stream
processing applications. I am confident that this knowledge, alongside the rest of the
information offered in this book, will help you solve a wide range of business prob‐
lems using two of the best technologies in the stream processing space.

Congratulations, you’ve made it to the end of this book.
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APPENDIX A

Kafka Streams Configuration

Kafka Streams is highly configurable, and the available parameters, as well as their
default values, are a moving target. Therefore, the configuration properties listed in
this appendix should be used as a starting point for familiarizing yourself with the
various configuration parameters, but please refer to the official documentation for
the latest information.

Configuration Management
In this book, we’ve been configuring Kafka Streams applications by creating a Proper
ties instance, and setting the various configuration parameters manually. An exam‐
ple of this strategy is shown in the following code:

class App {

  public static void main(String[] args) {
    Topology topology = GreeterTopology.build();

    Properties config = new Properties();
    config.put(StreamsConfig.APPLICATION_ID_CONFIG, "dev-consumer");
    config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka:9092");

    KafkaStreams streams = new KafkaStreams(topology, config);

    // ....
  }
}

However, when it’s time to ship your application to production, you should consider
loading your configuration from a file, instead of hardcoding the values directly in
your application. Being able to make configuration changes without touching code is
less error-prone, and if the configuration file can be overridden at runtime (e.g., via
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1 You may have multiple deployments if your application needs to process data in multiple Kafka clusters, or if
your application needs to be deployed to different environments (e.g., staging, QA, production).

a system flag), then it’s extremely easy to manage multiple deployments of your
application.1

A full discussion of configuration management strategies for Java applications
(including Kafka Streams) is beyond the scope of this book, but the source code for
this appendix shows how to manage multiple configurations for a single Kafka
Streams application using a library called Typesafe Config.

Regardless of how you manage your configurations, the values you provide for the
configuration parameters in either Kafka Streams or ksqlDB can impact the perfor‐
mance of your application. Therefore, most of this section will focus on the configu‐
ration parameters themselves. Let’s start by looking at the Kafka Streams-specific
parameters.

Configuration Properties
First of all, two parameters are required when configuring your Kafka Streams
application:

application.id

A unique identifier for your Kafka Streams application. You can run multiple
application instances with the same application.id to distribute the workload
across many machines/processes. Under the hood, this identifier is used for sev‐
eral things, including:

• The consumer group ID
• A prefix for internal topic names (i.e., repartition and changelog topics cre‐

ated by Kafka Streams)
• The default client.id prefix for the underlying producers and consumers

used by the Kafka Streams library
• A subdirectory for persistent state stores (see Example 6-1)

bootstrap.servers

A list of host and port pairs corresponding to one or more Kafka brokers. This
will be used to establish a connection to the Kafka cluster.

There are also several optional parameters:

acceptable.recovery.lag

The maximum amount of lag (i.e., number of unread records) a Kafka Streams
task can have on the input partition in order to be considered “warm” and ready
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for a task assignment. When a stateful application instance needs to recover part
or all of its state, you may not want Kafka Streams to assign it work while
it’s recovering. If this is the case, then you can set this parameter to allow applica‐
tion instances to only receive a task assignment when their lag falls beneath this
threshold.

cache.max.bytes.buffering

This controls the size of the record cache in Kafka Streams. We talk about the
record cache in more detail in “Rate-Limiting the Output of Your Application”
on page 376. Setting this to a value greater than 0 will enable the record cache,
and can have the effect of rate-limiting the output of your application.

default.deserialization.exception.handler

The class that should be used for handling deserialization errors. We discuss this
in a tip on “Handling Deserialization Errors in Kafka Streams” on page 75. Built-
in options include LogAndContinueExceptionHandler and LogAndFailExcep
tionHandler. The former is more permissive and allows Kafka Streams to
continue processing records if a deserialization error occurs. The latter will cause
Kafka Streams to log the exception and cease processing. You can also implement
the DeserializationExceptionHandler interface, which is included in the Kafka
Streams library, to define a custom handler.

default.production.exception.handler

The class that should be used for handling errors related to producing data to
Kafka. For example, if a record is too large, the underlying producer will throw
an exception that needs to be handled in some way. By default, the built-in
DefaultProductionExceptionHandler class is used, which will cause Kafka
Streams to fail and shut down. Another option is to use the AlwaysContinuePro
ductionExceptionHandler class, which will allow Kafka Streams to continue
processing data, or to implement ProductionExceptionHandler interface if you
want to provide your own, custom logic.

default.timestamp.extractor

A class that should be used for associating a given record with a timestamp. We
discuss this in detail in “Timestamp Extractors” on page 150.

default.key.serde, default.value.serde
The default class to be used for serializing and deserializing record keys
(default.key.serde) and values (default.value.serde). In this book, we have
mostly defined our Serdes classes inline. For example:

KStream<byte[], Tweet> stream =
    builder.stream(
        "tweets",
        Consumed.with(Serdes.ByteArray(), JsonSerdes.Tweet())); 

Kafka Streams Configuration | 383



Both the key Serdes (Serdes.ByteArray()) and the value Serdes (Json
Serdes.Tweet()) are defined inline in this example.

We could have instead set the default Serdes classes using these two configuration
parameters, and omitted the Consumed.with(...) line, which would have
prompted Kafka Streams to use the default classes specified by these parameters.

max.task.idle.ms

The maximum amount of time a streams task should wait for all of its partition
buffers to contain data. Higher values could increase latency but could prevent
out-of-order data when a task is reading from multiple input partitions (e.g., in
the case of a join).

max.warmup.replicas

The number of replicas (in addition to the num.standbys) that can be used for
warming up a task.

metrics.recording.level

The level of granularity for metrics that are captured by Kafka Streams. This
defaults to INFO, but you can override this to DEBUG if you want more visibility
into your application. Metrics are reported via Java Management Extensions
(JMX), and we discuss how to capture these metrics in “Extracting JMX Metrics”
on page 367.

num.standby.replicas

The number of replicas to create for each state store. This helps reduce down‐
time, since if a stateful task goes offline, Kafka Streams can reassign the work to
another application instance that has the replicated state, thus avoiding the
expensive operation of rebuilding a task’s state from scratch. We talk about
standby replicas in depth in “Standby Replicas” on page 180.

num.stream.threads

As you may recall from “Tasks and Stream Threads” on page 41, stream threads
are what execute the Kafka Streams tasks. Increasing the thread count can help
you take full advantage of the available CPU resources on your machine, and will
improve performance. For example, if your Kafka Streams application is reading
from a single topic that contains eight partitions, then it will create eight tasks.
You can execute these tasks across one, two, or even four threads if you want (the
number is up to you, as long as it’s less than or equal to the number of tasks), but
if you’re running on a machine that has eight cores, then increasing the thread
count to eight will allow you to parallelize work across all of the available cores.

This configuration is especially important for maximizing the throughput of your
application.
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2 This isolation level ensures the consumer will not read any messages from failed/aborted transactions.

3 exactly_once will create a transactional producer per input partition. exactly_once_beta will create a trans‐
actional producer per streams thread. The ability to achieve exactly-once semantics with less producers (using
the exactly_once_beta option) can reduce the application’s memory footprint and reduce the number of net‐
work connections to the brokers.

processing.guarantee

Supported values include:

at_least_once

Records may be redelivered during certain failure conditions (e.g., network‐
ing issues or broker failures that cause a producer to resend a message to a
source topic). However, records are never lost. This is the default processing
guarantee in Kafka Streams and is ideal for latency-sensitive applications
whose correctness is not impacted by reprocessing duplicate records.

exactly_once

Records are processed exactly once using a transactional producer and an
embedded consumer with a read_committed isolation level.2 Your applica‐
tion may be more susceptible to consumer lag with this processing guarantee
(there is a relatively small performance penalty for transactional writes), but
the correctness of some applications requires exactly-once processing. This
option requires your brokers to be on version 0.11.0 or higher.

exactly_once_beta

This option enables exactly-once processing guarantees (see preceding bul‐
let) with improved scalability and reduced overhead for the Streams applica‐
tion.3 This option requires your brokers to be on version 2.5 or higher.

replication.factor

The replication factor for internal changelog or repartition topics created by
Kafka Streams. Remember that not all topologies will result in an internal topic
being created, but if you rekey any records or perform a stateful aggregation (and
have explicitly disabled change logging), then an internal topic will be created
(the name of the topic will be prefixed by the application.id). The recom‐
mended setting is 3, which will allow you to tolerate up to two broker failures.

rocksdb.config.setter

A custom class to be used for configuring RocksDB state stores. This configura‐
tion may be of interest for those who are fine-tuning a stateful application. Con‐
figuring RocksDB using a custom class is generally not needed, but the official
documentation provides an example in case you are interested. This is usually
not the first knob you will turn when trying to optimize for performance, but we
include it here because you should know it’s an option for situations where you
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need to squeeze more performance out of your application and have identified
RocksDB as the bottleneck.

state.dir

A directory name (expressed as an absolute path, e.g., /tmp/kafka-streams) where
state stores should be created. We discuss this configuration in “Persistent Store
Disk Layout” on page 176. The important thing to remember is to never have
multiple application instances with the same application.id writing to the
same state store directory.

topology.optimization

Set this to all (i.e., StreamsConfig.OPTIMIZE) if you want Kafka Streams to per‐
form some internal optimizations (e.g., reducing the number of repartition top‐
ics, which can save network trips, or preventing unnecessary creation of
changelog topics when a KTable is created from a source topic) to make your
code run more efficiently. At the time of this writing, topology optimization was
disabled by default.

upgrade.from

This parameter is used when upgrading Kafka Streams. We discuss this in more
detail on “Upgrading Kafka Streams” on page 377.

Consumer-Specific Configurations
You can also configure the different consumers used by Kafka Streams by using the
following configuration prefixes:

main.consumer.

Use this prefix to configure the default consumer used for stream sources.

restore.consumer.

Use this prefix to configure the restore consumer, which is used for recovering
state stores from changelog topics.

global.consumer.

Use this prefix to configure the global consumer, which is used for populating
GlobalKTable`s.
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1 The official documentation is here: https://docs.ksqldb.io. Some of the configuration descriptions included in
this appendix were derived directly from this documentation.

APPENDIX B

ksqlDB Configuration

ksqlDB accepts most Kafka Streams and Kafka Client (i.e., producer and consumer)
configurations. The recommended pattern is to prefix all Kafka Streams and Kafka
Client configs with ksql.streams. For example, if you want to configure a record
cache using the cache.max.bytes.buffering parameter in Kafka Streams, you
would set the ksql.streams.cache.max.bytes.buffering parameter in your
server.properties file. Furthermore, if you want to configure the auto.offset.reset
Kafka Consumer configuration, this would also be prefixed the same way, and would
become ksql.streams.auto.offset.reset. Technically, the prefix is optional, but
comes as a recommendation from the creators of ksqlDB (Confluent).

In addition to the standard Kafka Streams and Kafka Client configs, ksqlDB also
allows you to specify a Kafka Connect configuration if you are using ksqlDB’s data
integration features (e.g., whenever you are executing a CREATE {SOURCE|SINK} CON
NECTOR statement). We’ve already discussed this in “Configuring Connect Workers”
on page 268, so please see that section for more detail.

Finally, there are several configurations that are specific to ksqlDB. We have grouped
some of the most important configurations into two categories: query configurations
and server configurations. This page should be used as a starting point for configur‐
ing ksqlDB. Please refer to the official documentation for a full list of ksqlDB configu‐
ration parameters.1
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Query Configurations
The following configurations control various aspects of how ksqlDB actually executes
queries:

ksql.service.id

This required property serves a similar purpose as Kafka Streams’ applica
tion.id parameter: it identifies a group of cooperating applications and allows
work to be distributed across all instances that share the same identifier. Unlike
Kafka Streams’ application.id, however, there is not a direct correlation
between ksqlDB’s service.id and the consumer group ID.

Default: no default

ksql.streams.bootstrap.servers

This required property specifies a list of host/port pairs of the Kafka brokers that
should be used for establishing an initial connection to the Kafka cluster.

Default: no default

ksql.fail.on.deserialization.error

Set this to true if you want ksqlDB to stop processing data if it can’t deserialize a
record. By default, this is set to false, which tells ksqlDB to log the deserializa‐
tion error and continue processing. If this sounds similar to Kafka Streams’
default.deserialization.exception.handler, that’s because it is. ksqlDB’s
configuration is used to set the appropriate exception handler class under the
hood.

Default: false

ksql.fail.on.production.error

In rare cases, you may encounter an issue when producing data to a Kafka topic.
For example, a transient networking issue can cause a producer exception. If you
want to keep processing data when a producer exception occurs (not recom‐
mended for most use cases), set this parameter to false. Otherwise, keep the
default.

Default: true

ksql.schema.registry.url

If your queries use a data serialization format that requires Confluent Schema
Registry (see Table 9-1 for a list of these serialization formats), you will need to
set this parameter to the URL where your Schema Registry instance is running.

Default: no default
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2 This is controlled by a Kafka Streams config, and can be set using the ksql.streams.num.standby.replicas
parameter.

ksql.internal.topic.replicas

The replication factor for the internal topics used by the ksqlDB server. For pro‐
duction environments, it is recommended that this value be >= 2.

Default: 1

ksql.query.pull.enable.standby.reads

When standby replicas are >=1,2 this parameter controls whether or not a
standby can be used for serving read requests when the active task (which would
normally handle read traffic) is dead. Setting to true can help ensure high availa‐
bility for pull queries.

Default: false

ksql.query.pull.max.allowed.offset.lag

Controls the maximum amount of lag (i.e., the number of offsets that haven’t
been read for a particular partition) tolerated by a pull query against a table. This
applies to both active and standby tasks. This configuration is only activated
when ksql.lag.reporting.enable is set to true.

Default: Long.MAX_VALUE

Server Configurations
The following properties are used to configure ksqlDB server instances:

ksql.query.persistent.active.limit

The maximum number of persistent queries that may be running at the same
time in interactive mode. If the limit is reached, then users will need to terminate
one of the running persistent queries to start a new one.

Default: Integer.MAX_VALUE

ksql.queries.file

If you want to run ksqlDB in headless mode, set this configuration to an absolute
file path that contains the queries you want to run in your ksqlDB server. See
“Deployment Modes” on page 255 for more information.

Default: no default
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listeners

The REST API endpoint for the ksqlDB server to listen at.

Default: The default listeners is http://0.0.0.0:8088, which binds to all IPv4 inter‐
faces. Set listeners to http://[::]:8088 to bind to all IPv6 interfaces. Update this to a
specific interface to bind only to a single interface.

ksql.internal.listener

The address to bind for internode communication. This is useful if you want to
bind a separate address for internal and external endpoints (for example, if you
want to secure the different endpoints separately at the network level).

Default: The first listener defined by the listeners property

ksql.advertised.listener

The listener this node will share with other ksqlDB nodes in the cluster for inter‐
nal communication. In IaaS environments, this may need to be different from the
interface to which the server binds.

Default: The ksql.internal.listener value or, if not set, the first listener
defined by the listeners property

ksql.metrics.tags.custom

A list of tags to be included with emitted JMX metrics, formatted as a string of
key-value pairs separated by commas. For example, key1:value1,key2:value2.

Default: no default

Security Configurations
With ksqlDB rapidly evolving, and security being an area where it’s important to ref‐
erence the most up-to-date information available, we will not attempt to capture the
entire breadth of security configurations in this text. Instead, please see the official
documentation for a look at ksqlDB’s security features.
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failover, 250
fault tolerance

fault tolerant state stores, 100
in ksqlDB and traditional SQL databases,

250
stateful applications, 177-180

changelog topics, 178
standby replicas, 180

faults, handling by Kafka Streams, 29
field-level data types, 285
filter operator, 76
filtering data, 63, 75-77

in derived streams, 306
filtering and rekeying windowed KTables,

166
in INSERT INTO statement in ksqlDB, 297
ksqlDB statement using WHERE clause, 300

BETWEEN operator, 301
logical operators, 301
wildcards, 300

pull query filtering windowstart value in
ksqlDB, 335

filterNot operator, 76
flatMap operator, 64, 85, 216
flatMapValues operator, 85

verification of results, 93
flattening values, 302, 306
flatTransform operator, 232
flatTransformValues operator, 232
flowing state (of data), 1
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followers (replicated topic partitions), 13
foreach operator, 49
FULL JOIN, 315
functions

aggregate functions in ksqlDB, 323
data transformation in ksqlDB and tradi‐

tional SQL databases, 249
in ksqlDB, 311, 337-346

creating custom functions, 340-345
describing functions, 339
resources for custom functions, 345
showing functions, 338
testing custom functions, 352
types of functions, 338

G
generic records, 83
GlobalKTable class, 58

choosing between KTable and GlobalKTa‐
ble, 107

joins in video game leaderboard project, 114
KStream-GlobalKTable join, 120
source processor for video game leader‐

board project, 109
grace period, 163

defining in ksqlDB, 327
Gradle, 46

adding Kafka Streams dependency to build
file, 47

building JAR for ksqlDB UDF, 343
creating new Java project using init com‐

mand, 341
plug-in generating Java classes from Avro

schema definitions, 84
gradle init command, 46
GROUP BY clause, 323

including window expressions before, 326
nonaggregate columns in SELECT, 324
pull queries and, 333

group coordinator, 14, 181
group leader, 181
groupBy operator, 121

using with tables, 122
groupByKey operator, 122, 159
Grouped object, 122
grouping records, 121

grouping streams, 121
grouping tables, 122

Gson library, 71, 104

H
headers (record), 224
headless mode (ksqlDB), 256
Hello Kafka example, 16
Hello Streams tutorial, 45-53

adding Kafka Streams dependency to Gra‐
dle build file, 47

creating a new project, 46
Processor API for, 51
project setup, 46

Hello, World tutorial (ksqlDB), 257-261
high availability, 250
high-frequency trading (HFT), 63
homogeneous and heterogeneous topics, 9
hopping windows, 156, 325

HOPPING window type in ksqlDB, 327
host and port pairs, retrieving for a key, 200
HostInfo wrapper class, 136

I
IFNULL function, 303, 306
IIoT (industrial IoT), 205
immutability

events as immutable facts, 95, 96, 288
of records in logs, 7
records written to Kafka, 55
of streams, 123

in-memory versus persistent stores, 101
incremental cooperative rebalancing, 187
ingestion time, 148

using to approximate event time, 149
initializers (aggregate and reduce operators),

123
Initializer interface, 124

INNER JOIN, 315, 316
INSERT INTO statements, 260

inserting values into collections, 296
INSERT VALUES statement, 298
instance discovery, 135
INT type, casting to VARCHAR in a join, 317
Integer type, 285
IntegerConverter class, 270
interactive mode (ksqlDB), 255, 258
interactive queries, 100, 102, 129-142, 173

exposing the digital twin records using, 225
local queries, 134
materialized state stores, 129
querying non-windowed key-value stores,

131
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all entries, 133
number of entries, 133
point lookups, 132
range scans, 132

read-only state stores, accessing, 131
remote queries, 134-142

internal state store, 130
IoT (Internet of Things), 205
IoT digital twin service tutorial

accessing record metadata, 223
adding sink processors, 225
adding source processors, 211
adding stateless stream processors, 213
combining Processor API with DSL,

230-230
creating stateful processors, 217-220
creating stateless processors, 214-216
defining data models, 209-211
DSL refactor, putting it all together, 235-236
interactive queries, 225
introduction to, 205-208
periodic functions with punctuator, 221-223
project setup, 208
putting it all together, 226-229
using processors and transformers, 231-235

J
JAR file, building and packaging UDF in, 341
Java

class defining Kafka Streams topology, 67
class to run Kafka Streams application, 68
client for ksqlDB, 333
converting JSON into Java objects with

Gson, 71
custom Java-based functions for ksqlDB,

242
Gradle plug-in generating Java classes from

Avro schema, 84
Kafka Streams library, 30
POJOs for video game leaderboard data

model, 104
Java Management Extensions (see JMX metrics)
Javalin, using to implement REST service, 134
JConsole, 367
JDBC

source connector, connection URL for, 274
source connector, using to stream data from

PostgreSQL to Kakfa, 272
JMH framework, 362

JMX metrics, 384
built in, relating to state stores, 199
extracting, 367

join operator, 97, 112
using for KStream-KTable join, 119

joins
for Kafka Streams, 111-121

co-partitioning, 114
join operators, 112
join types, 113
KStream-GlobalKTable join, 120
KStream-KTable joins, 119
KTables versus GlobalKTables, 107
sliding join windows, 157
stateful operators, 97
timestamp extraction and, 170
value joiners, 117
windowed joins, 98, 167

for ksqlDB, 314-322
casting a column to new data type, 317
data enrichment with, 314
join expressions, 315
join types, 315
persistent joins, 318
repartitioning data before joins, 317
SQL statement joining two collections,

316
windowed joins, 319-322

JoinWindows class, 157
JSON

in IoT digital twin service data models, 209
output.json file, assertions about what

should appear in output topic, 351
record serialization format, 285
serialization/deserialization using Gson

library, 71, 104
serialized record values in CREATE

STREAM, 270
working with in Kafka Streams application,

67
JsonConverter class, 270
JsonSerdes class (example), 210
JSON_SR serialization format, 271

K
Kafka, 1-20

clusters and brokers, 12
communication model, 2-6
consumer groups, 13
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documentation of Connect workers config‐
uration, 268

events, 11
Hello Kafka example, 16
installing, 15
storage of streams, 6

Kafka Connect, 240, 263
integration with ksqlDB, 246

configuring workers, 268-272
external versus embedded mode,

265-268
installling connectors, 272
tutorial, streaming data from Post‐

greSQL and writing data to Elastic‐
search, 272

interacting with Connect cluster directly,
278

primary components, 264
Kafka Improvement Proposal (KIP) for branch‐

ing streams, 78
KAFKA serialization format, 271, 285
Kafka Streams, 23-59

chatbot example, 36
comparison to other systems, 30

Apache Beam, 33
deployment model, 30
Kappa architecture, 32
processing model, 31

configuration, 381-386
containers, 372
deciding when to use ksqlDB instead of, 242
features, 27
Hello Streams tutorial, 45-53

adding Kafka Streams dependency to
Gradle build file, 47

creating a new project, 46
Processor API, 51
project setup, 46

high-level DSL versus low-level Processor
API, 44

integration with ksqlDB, 243
Kafka ecosystem, 23

before Kafka Streams, 24
inception of Kafka Streams, 25

ksqlDB built on top of, 239
operational characteristics, 28

maintainability, 30
reliability, 29
scalability, 28

processor topologies, 35-44
benefits of dataflow programming, 41
depth-first processing, 39
sub-topologies, 37
tasks and stream threads, 41
types of processors in Kafka Streams, 36

resetting an application, 374
SQL engine converting SQL statements into

Kafka Streams topologies, 252
streams and tables, 53-58

KStream, KTable, and GlobalKTable, 57
stream/table duality, 57

testing, 352-362
upgrading, 377
use cases, 33

kafka-avro-console-consumer script, 93
kafka-console-consumer script, 18, 92
kafka-console-producer script, 18, 50, 91
kafka-consumer-perf-test console script, 365
kafka-producer-perf-test command, 364
kafka-streams-test-utils library, 352

combining simulated runtime environment
with benchmarking framework, 362

simulated runtime environment provided
by, 359

kafka-topics command, 259
kafka-topics console script, 17
KafkaStreams.queryMetadataForKey method,

200
KafkaStreams.store method, 131
KAFKA_TOPIC property, 291
Kappa architecture, 32
KEY identifier, aliasing record key column, 291
key-based state stores, 100
key-value stores, 101

fixed-size LRU cache, 193
non-windowed, querying, 131

all entries, 133
number of entries, 133
point lookups, 132
range scans, 132

store builders, 217
windowed, querying, 170

all entries scans, 172
key + window range scans, 170
window range scans, 171

key.converter property, 270
KeyQueryMetadata, 200
keys
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multidimensional keys for windowed KTa‐
bles, 159

rekeying windowed KTables, 166
KeyValueMapper, 120

expected with groupBy operator, 122
KeyValueStore, 130, 201
KGroupedStream, 122
KGroupedTable, 122, 127
KIP (Kafka Improvement Proposal) for branch‐

ing streams, 78
KLIP (ksqlDB improvement proposal), 333
KSQL, 243

(see also ksqlDB)
use of Kafka Streams for push queries, 245

ksql command, 254
ksql-server-start command, 371
ksql-test-runner tool, 350

instructing to add records to users topic,
350

ksql.connect.url property, 266
ksql.connect.worker.config property, 268
ksqlDB

about, 239
architecture, 251-255

clients, 253
REST service, 253
servers, 251
SQL engine, 252

basic stream processing with, 281-309
basic queries, 296-302
collections, 288
conditional expressions, 302-304
data types in ksqlDB, 285
putting it all together, 308
source topics, 284
tutorial, monitoring changes at Netflix,

281-284
working with streams and tables,

292-296
writing results back to Kafka, 304-308

benefits of using, 241
capabilities, 240
CLI, using in Hello, World tutorial, 259
comparison to traditional SQL databases,

247
configuration, 387-390
containers, 370
data integration with (see data integration

with ksqlDB)

deciding when to use over Kafka Streams,
242

deployment modes, 255
headless mode, 256
interactive mode, 255

docs and design proposals, 253
evolution of, 243-247

integration with Kafka Connect, 246
Kafka Streams integration, 243

installing, 257
intermediate and advanced stream process‐

ing, 311-346
aggregations, 322-331
client queries of data, 332
data enrichment, 314-322
functions and operators, 337-346
materialized views, 331-332
pull queries, 333-336
push queries, 336
tutorial, monitoring changes at Netflix,

311-313
precreating topics, 259
running a server, 258
testing queries, 350-352
upgrading, 378

KStream class, 58
joins in video game leaderboard project, 113
source processor for processing Twitter

stream, 66
source processor for video game leader‐

board project, 106
KTable class, 58

joins in video game leaderboard project, 114
source processor for video game leader‐

board project, 107
windowed KTables, filtering and rekeying,

166
Kubernetes, 373

L
Lambda architecture, 32
lambda support for DSL operators, 236
late-arriving data, 161
latency, event-at-a-time processing versus

micro-batching, 31
LATEST_BY_OFFSET function, 323
leader (brokers), 13
LEFT JOIN, 315
leftJoin operator, 97, 112
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LevelDB, 100
LIMIT clause, 261
LIST statement, 292

{ LIST | SHOW } QUERIES, 306
loading data from Kafka into external systems,

264
local queries, 134
local state stores, 99
log.message.timestamp.type, 149
LogAndSkipOnInvalidTimestamp extractor,

151
LogAppendTime type, 149
logical operators, 301
logs, 6

creating, 6
ordered sequence of data in, 8
partitions and, 10
topic partitions modeled as, 11

Long type, 285
LongConverter class, 271
LRU cache, fixed-size, 193

M
maintainability of Kafka Streams, 30
map operator, 79
mapping, 64
mapValues operator, 79
Materialized class, 130, 178, 217
materialized state stores, 129
materialized views, 240, 248, 331-332

clients executing queries against in ksqlDB,
332

pull queries against, 333-336
Materialized.withLoggingEnabled method, 179
Materialized.withRetention method, 190
Maven dependency for UDF in ksqlDB, 341
MAX function, 323
MAX_POLL_RECORDS config, 199
merge operator, 82
merging streams, 64, 81

joins as conditional merges, 111
message.timestamp.type, 149
messages, joining, 111
metadata

accessing record metadata in Processor API,
223

retrieving for key in state store, 200
micro-batching, 31
microservices

building using Kafka Streams, 34
event-driven, push queries for, 240

MIN function, 323
MockProcessorContext object, 357-359
monitoring, 366-370

checklist for, 367
extracting JMX metrics, 367

monitoring changes at Netflix tutorial, 281-309,
311-313
architectural diagram for application, 282,

313
bootstrapping an environment from SQL

file, 312-313
project setup, 284, 312
source topics, 284

N
Natural Language Processing (NLP) libraries,

85
Netflix-inspired tutorial (see monitoring

changes at Netflix tutorial)
network services for ksqlDB and traditional

SQL databases, 248
NOT operator, 301
null checks

CASE statements and, 304
COALESCE function and, 303
IFNULL function, 303

NUM_STANDBY_REPLICAS_CONFIG prop‐
erty, 180

O
observability, joins and, 114
offset order of events at partition level, 161
offsets, 8
OkHttp, using to implement REST client, 134
operations, 374-378

rate-limiting application output, 376
resetting Kafka Streams application, 374
upgrading Kafka Streams, 377
upgrading ksqlDB, 378

operators
data transformation in ksqlDB and tradi‐

tional SQL databases, 249
DSL, using to specify a Serdes, 210
in ksqlDB, 337
in Kafka Streams, 36
leveraging DSL operators for using Pro‐

cessor API, 236
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stateless, 61
stateless and stateful, 62

OR logical operator, 301
ordering of data in topics and partitions, 10
outerJoin operator, 97, 112

P
PAPI (see Processor API)
parsers (SQL), 252
partitions, 8

co-partitioning, 114
data marked for repartitioning, 116
Kafka topics broken into, 9
offset order of events at partition level, 161
partition count in joins, 316
partition groups, 168
partition time for timestamp extractor, 153
PARTITIONS property in WITH clause of

CREATE TABLE, 290
PARTITIONS property in WITH clause of

CREATE { STREAM | TABLE }, 291
repartitioning data before a join, 317
spread across brokers, 12
sticky partition assignment for tasks, 182
StreamPartitioner, 225

partitionTime parameter, 150
patient monitoring application tutorial,

144-173
data models, 147
emitting window results, 161-166
filtering and rekeying windowed KTables,

166
project setup, 146
time semantics, 147-150
time-driven data flow, 168-173
timestamp extractors, 150-154
topology of the application, 144
windowed joins, 167
windowing streams, 154-160

performance regressions
introducing accidentally with changes, 350
protecting against by running benchmarks,

362
periodic functions with punctuator, 221-223
persistent queries, 304-308

persistent joins, 318
persistent state stores

disk layout, 176-177
versus in-memory stores, 101

plain old Java objects (POJOs)
defining class for deserializing tweet

records, 71
for video game leaderboard data model, 104

plugin.path configuration property, 272
POLL_MS_CONFIG setting, 221
position of log records, 8
PostgreSQL, 263

streaming data to Kafka tutorial, 272
creating JDBC source connector using

ksqlDB, 273
describing source connector, 276
dropping the source connector, 277
failed connection of source connector,

276
installing connectors with confluent-

hub, 273
showing the JDBC source connector,

275
verifying the source connector, 277

predicates
using to branch streams, 77
using to filter data, 76

PRIMARY KEY, 286
in joins of collections, 316
specifying in CREATE TABLE, 290

print operator, 68
PRINT statement, 278
process operator, 231
processing a Twitter stream tutorial, 63

adding a sink processor, 90
branching data, 77
empirical verification, 91-93
enriching tweets, 82-87

Avro data class, 83
filtering data, 75-77
merging streams, 81
project setup, 65
running the code, 91
serialization/deserialization, 69-75

building a custom Serdes, 70
building a Tweet Serdes, 74
defining data classes, 71
implementing custom deserializer, 72
implementing custom serializer, 73

serializing Avro data, 87-90
registryless Avro Serdes, 88
Schema Registry–aware Avro Serdes, 88

translating tweets, 79-81
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processing model, Kafka Streams, 31
processing time, 148

use case, 149
Processor API, 203-236

combining with DSL in IoT digital twin ser‐
vice, 230-230

creating for Hello Streams tutorial, 51
deciding when to use, 204
disadvantages of, 204
versus high-level DSL in Kafka Streams, 44
IoT digital twin service tutorial

accessing record metadata, 223
adding sink processors, 225
adding source processors, 211
adding stateless stream processors, 213
creating stateful processors, 217-220
creating stateless processors, 214-216
defining data models, 209-211
DSL refactor, putting it all together,

235-236
interactive queries, 225
introduction to, 205-208
periodic functions with punctuator,

221-223
project setup, 208
putting it all together, 226-229

unit testing, 355-359
using processors and transformers, 231-235

Processor interface, 213
implementation that detects dangerous

wind speeds, 214
implementing for Hello Streams tutorial, 52
process operator and, 231

processor topologies, 35-44
benefits of dataflow processing, 41
building for Hello Streams tutorial, 49
depth-first processing, 39
sub-topologies, 37
tasks and stream threads, 41
for tweet enrichment application, 64
types of processors in Kafka Streams, 36
video game leaderboard application, 127

ProcessorContext class, 214, 223
ProcessorContext#forward method, 215, 232
ProcessorContext#schedule method, 221
ProcessorContext.getStateStore method, 220
processors and transformers (operators),

231-235
ProcessSupplier interface, 213, 218

Producer API, 24
using directly before Kafka Streams, 24

producers, 4, 13
kafka-console-producer script, 17, 50
producing data to a topic, 18
routing related records to a partition, 10

productionizing Kafka Steams and ksqlDB
applications, 349-379
benchmarking Kafka cluster, 364-366
deployment, 370-374
monitoring, 366-370

checklist for, 367
extracting JMX metrics, 367

operations, 374-378
testing, 350-366

final thoughts on, 366
testing Kafka Streams, 352-364
testing ksqlDB queries, 350-352

programming languages supported by Kafka
Consumer and Producer APIs, 24

projection, 63, 72
in SELECT * statement, 299
specifying for combined join record, 117
using to reshape original stream/table, 305

Prometheus, 369
Properties object, 68
PROTOBUF serialization format, 285
ProtobufConverter class, 270
publish-subscribe pattern (pub/sub), 4
pull queries, 240, 333-336

capability of in ksqlDB, 245
flow of data for, 245
and materialized views in ksqlDB, 331
using curl on ksqlDB CLI, 335

punctuation types, 221
punctuator property, 223
push queries, 240, 336

differences between ksqlDB and traditional
SQL databases, 249

in early KSQL, 245
example request submitting via ksqlDB

REST API, 253
executing via curl, 336
flow of data for, 245
simple selects, 298

Q
queries

configuration in ksqlDB, 388-389

402 | Index



example aggregation query in ksqlDB, 323
simple, differing capabilities in ksqlDB and

traditional SQL databases, 250
queries.file ksqlDB server config, 256
QueryableStoreTypes class, 131
queryMetadataForKey method, 137

R
range scans, 132

key + window range, 170
window range, 171

ranges, inclusive, 301
rate limiting

of application output, 376
of updates, 164

rebalancing, 175
effects on interactive queries to state stores,

200
enemy of the state store, 180
and interactive queries to state stores, 200
preventing unnecessary rebalances, 185
reducing impact of, 186-194

controlling state size, 189
incremental cooperative rebalancing,

187
record caches, 376

deduplicating writes to state stores with, 195
record schemas, 83
record stream, 53
records

generic or specific, using with Avro, 83
metadata, accessing in Processor API, 223
serialization formats supported by ksqlDB,

285
reduce operator, 97, 123
redundant state stores, 100
registration

registering streams with timestamp extrac‐
tor, 153

streams and tables, 110
registryless Avro Serdes, 88
regressions (see performance regressions)
rekeying records, 115

in windowed KTables, 166
relational databases, 243
relationships between data in separate tables

and streams, 111
reliability of Kafka Streams, 29
remote queries, 134-142, 173

REMOVE_STOP_WORDS UDF, creating in
ksqlDB, 341-345

removing connectors, 277
repartition operator, 90
repartition topic, 119
replayable communication, 3
REPLICAS property, 291
replication of data (see data replication)
reported and desired state on digital twins, 205
REST APIs

query submission to ksqlDB via, 255
REST endpoint of ksqlDB server, 259
REST service in ksqlDB, 253, 258
service to expose digital twin records, 226
service/client for remote queries, 134

RETENTION property in WINDOW expres‐
sions, 330

RocksDB, 99
number of entries queries on, 133

ROWKEY pseudo columns, 297
ROWTIME pseudo columns, 297
RPCs (remote procedure calls), service/client

for remote queries, 134
RUN SCRIPT statement, 312
runners (execution engines) in Apache Beam,

32
Running state, applications, 200

S
scalability of Kafka Streams, 28
SCALAR functions, 338
schemas

Avro, 83
in serialization of Avro data, 87

converters' storage of record schemas, 270
introspecting managed schemas in Conflu‐

ent Schema Registry, 279
for ksqlDB and traditional SQL databases,

248
more sophisticated management in ksqlDB

vs. traditional SQL databases, 250
running Schema Registy instance, 91
Schema Registry–aware Avro Serdes, 88

season_length custom type, 287
segments (topic), 191
SELECT statements, 72, 298

aggregate functions in, 323
for Hello, World query in ksqlDB, 261
joins and, 117
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ksqlDB statement using WHERE clause to
filter data, 300

SELECT *, 133, 299
SELECT COALESCE, 303
SELECT IFNULL, 303

selectKey operator, 115
sentiment analysis, 63

performing for tweet stream on cryptocur‐
rencies, 85

Serdes classes, 70
Avro, 88

registryless, 88
building a custom Serdes, 70
building a Tweet Serdes, 74
for digital twin and turbine state records,

210
Schema Registry Avro Serdes, 88

Serdes.serdeFrom method, 211
serialization/deserialization

byte streams into higher-level objects, 67
byte streams to/from higher-level objects, 69

being explicit with deserialization errors,
75

building a custom Serdes, 70
building a Tweet Serdes, 74
defining data classes, 71
implementing custom deserializer, 72
implementing custom serializer, 73

converters in Kafka Connect, 270
decoupling of serialization from storage, 99
JSON, using Gson library, 104
key and value format from PostgreSQL

source connector, 278
key and value serializers for sink processor

in IoT digital twins service, 225
record serialization in Processor API, 210
record-level serialization formats supported

by ksqlDB, 285
serializing Avro data, 87-90

registryless Avro Serdes, 88
Schema Registry–aware Avro Serdes, 88

Serializer interface, 73
servers, ksqlDB, 251, 284

configuring, 389-390
queries.file config, 256
REST service, 253
running, 258
SQL engine, 252

session windows, 156, 326

SESSION window type in ksqlDB, 327
session.timeout.ms config, 187
SessionStore interface, 201
shadow copies, 100
SHOW CONNECTORS statement, 275
SHOW FUNCTIONS statement, 338
SHOW QUERIES statement, 306
SHOW STREAMS EXTENDED statement, 293
SHOW STREAMS statement, 293
SHOW TABLES EXTENDED statement, 293
SHOW TABLES statement, 292
SHOW TOPICS command, 259
SHOW TYPES statement, 288
shutDownWhenFull, 165
sides of a join, 113
sink connectors, 264

embedded mode, Kafka Connect integration
with ksqlDB, 267

SQL constructs defining, 246
sink processors, 36, 38

adding to IoT digital twin service, 225
adding to Twitter stream processing, 90
creating for IoT digital twin service, 228

sinks, 241
alerts sink, 170

sliding aggregation windows, 158
sliding join windows, 157

using in windowed joins, 167
source collections, 289
source connectors, 264

embedded mode, Kafka Connect integration
with ksqlDB, 267

SQL constructs defining, 246
verifying, 277

source processors, 36, 38
adding to Hello Streams tutorial, 48
adding to IoT digital twin service tutorial,

211
adding to Twitter stream processing tuto‐

rial, 65
adding to video game leaderboard project,

106-110
GlobalKTable, 109
KStream, 106
KTable, 107

creating for IoT digital twin service, 227
source/sink connectors

creating with ksqlDB, 273
installing, 272

404 | Index



showing, 275
specific records, 83
spilling to disk, 101
SQL

advantages of use in ksqlDB, 244
bootstrapping an environment from SQL

file, 312-313
comparison of ksqlDB to traditional SQL

databases, 247
constructs defining source/sink connectors,

246
early mix of Kafka Streams and traditional

SQL databases in ksqlDB, 243
extension to support streams, 244
high-level interface for ksqlDB, 240
interface in ksqlDB and traditional SQL

databases, 248
statement that joins two collections, 316
statements executed with ksqlDB CLI, 284,

312
stream processing applications expressed in,

242
SQL engines in ksqlDB, 252
stamped records, 152
standby replicas, 180

using during rebalancing, 200
state, 62, 95

advanced management, 175-202
preventing state migration, 181-185
reducing impact of rebalances, 186-194

partitioning across application instances
with time synchronization, 108

reported and desired state on digital twin,
205

state directory, 101, 177
setting using StreamsCon‐

fig.STATE_DIR_CONFIG property, 101
State Listeners, 196, 200
State Restore Listeners, 198
state stores, 98-102

backed by changelog topics, 178
built-in JMX metrics relating to, 199
common characteristics, 99

embedded state stores, 99
fault tolerant state stores, 100
key-based, 100
multiple access modes, 100
persistent versus in-memory stores, 101

controlling size of, 189

using aggressive topic compaction, 191
using fixed-size LRU cache, 193
using tombstones, 189
window retention, 190

custom, 201
deduplicating writes with record caches, 195
interactive queries, 200
leveraged in pull queries in ksqlDB, 245
materialized, 129
monitoring, 196-199

adding State Listeners, 196
adding State Restore Listeners, 198

persistent, disk layout, 176-177
in Processor API, 217-220
read-only, accessing, 131
rebalancing and, 180

stateful operators, 62
preview of, 97
transformers, 232

stateful processing, 95-142
benefits of, 96
preview of stateful operators, 97
state stores, 98-102
stateless processing versus, 62
video game leaderboard tutorial

adding source processors, 106-110
aggregations, 123
data models, 104-105
grouping records, 121
interactive queries, 129-142
introduction to, 102-104
joins, 111-121
project setup, 104
putting it all together, 127-129
registering streams and tables, 110

stateful processors, creating, 217-220
stateless processing, 61-94

processing a Twitter stream tutorial, 63
adding KStream source processor, 65
branching data, 77
empirically verifying the application,

91-93
enriching tweets and performing senti‐

ment analysis, 82-87
filtering data, 75-77
merging streams, 81
project setup, 65
running the code, 91

Index | 405



serialization/deserialization of byte
streams, 69-75

serializing Avro data, 87-90
sink processor, 90
translating tweets, 79-81

versus stateful processing, 62
stateless processors

adding to IoT digital twin service, 213
creating, 214-216

statement-based replication in ksqlDB, 249
StateStore interface, implementing, 201
static membership, 185
sticky partition assignment, 182
stop word removal UDF, creating in ksqlDB,

340-345
storage, 98

(see also state stores)
local and remote, in ksqlDB vs. traditional

SQL databases, 250
store builders, 217
Stores factory class, 217
StoreSupplier interface, 201, 217
stream operator, 53
stream processing, 24

basics with ksqlDB, 281-309
basic queries, 296-302
collections, 288
conditional expressions, 302-304
data types in ksqlDB, 285
putting it all together, 308
source topics, 284
tutorial, monitoring changes at Netflix,
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