
Software

ACM Books

Editors in Chief
Sanjiva Prasad, Indian Institute of Technology (IIT) Delhi, India

Marta Kwiatkowksa, University of Oxford, UK

Charu Aggarwal, IBM Corporation, USA

ACM Books is a new series of high-quality books for the computer science community,
published by ACM in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

The Handbook on Socially Interactive Agents: 20 years of Research on Embodied

Conversational Agents, Intelligent Virtual Agents, and Social Robotics
Volume 1: Methods, Behavior, Cognition
Birgit Lugrin, Julius-Maximilians-Universität of Würzburg
Catherine Pelachaud, CNRS-ISIR, Sorbonne Université
David Traum, University of Southern California
2021

Probabilistic and Causal Inference: The Works of Judea Pearl
Hector Geffner, ICREA and Universitat Pompeu Fabra
Rina Dechter, University of California, Irvine
Joseph Y. Halpern, Cornell University
2021

Event Mining for Explanatory Modeling
Laleh Jalali, University of California, Irvine (UCI), Hitachi America Ltd.

Ramesh Jain, University of California, Irvine (UCI)

2021

Intelligent Computing for Interactive System Design: Statistics, Digital Signal
Processing, and Machine Learning in Practice
Parisa Eslambolchilar, Cardiff University, Wales, UK
Andreas Komninos, University of Patras, Greece
Mark Dunlop, Strathclyde University, Scotland, UK
2021

Semantic Web for the Working Ontologist: Effective Modeling for Linked Data,
RDFS, and OWL, Third Edition
Dean Allemang, Working Ontologist LLC
Jim Hendler, Rensselaer Polytechnic Institute
Fabien Gandon, INRIA
2020

Code Nation: Personal Computing and the Learn to Program Movement
in America
Michael J. Halvorson, Pacific Lutheran University
2020

Computing and the National Science Foundation, 1950–2016:
Building a Foundation for Modern Computing
Peter A. Freeman, Georgia Institute of Technology
W. Richards Adrion, University of Massachusetts Amherst
William Aspray, University of Colorado Boulder
2019

Providing Sound Foundations for Cryptography: On the work of Shafi Goldwasser
and Silvio Micali
Oded Goldreich, Weizmann Institute of Science
2019

Concurrency: The Works of Leslie Lamport
Dahlia Malkhi, VMware Research and Calibra
2019

The Essentials of Modern Software Engineering: Free the Practices from the
Method Prisons!
Ivar Jacobson, Ivar Jacobson International
Harold “Bud” Lawson, Lawson Konsult AB (deceased)
Pan-Wei Ng, DBS Singapore
Paul E. McMahon, PEM Systems
Michael Goedicke, Universität Duisburg–Essen
2019

Data Cleaning
Ihab F. Ilyas, University of Waterloo
Xu Chu, Georgia Institute of Technology
2019

Conversational UX Design: A Practitioner’s Guide to the Natural Conversation
Framework
Robert J. Moore, IBM Research–Almaden
Raphael Arar, IBM Research–Almaden
2019

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran, New York University
2019

Hardness of Approximation Between P and NP
Aviad Rubinstein, Stanford University
2019

The Handbook of Multimodal-Multisensor Interfaces, Volume 3:

Language Processing, Software, Commercialization, and Emerging Directions

Editors: Sharon Oviatt, Monash University
Björn Schuller, Imperial College London and University of Augsburg
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Kru ̈ger, Saarland University and German Research Center for Artificial
Intelligence (DFKI)
2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie, Massachusetts Institute of Technology
2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:

Signal Processing, Architectures, and Detection of Emotion and Cognition

Editors: Sharon Oviatt, Monash University
Björn Schuller, University of Augsburg and Imperial College London
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Kru ̈ger, Saarland University and German Research Center for Artificial
Intelligence (DFKI)
2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University
2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Kru ̈ger, Saarland University and German Research Center for Artificial
Intelligence (DFKI)
2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive
Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business and
Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

Software

A Technical History

Kim W. Tracy
Rose-Hulman Institute of Technology, IN, USA

ACM Books #38

Copyright © 2021 by Association for Computing Machinery

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which the Association of
Computing Machinery is aware of a claim, the product names appear in initial capital or
all capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

Software: A Technical History
Kim W. Tracy

books.acm.org
http://books.acm.org

ISBN: 978-1-4503-8724-8 hardcover
ISBN: 978-1-4503-8725-5 paperback
ISBN: 978-1-4503-8726-2 EPUB
ISBN: 978-1-4503-8727-9 eBook

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/3477339 Book 10.1145/3477339.3477346 Chapter 6
10.1145/3477339.3477340 Preface 10.1145/3477339.3477347 Chapter 7
10.1145/3477339.3477341 Chapter 1 10.1145/3477339.3477348 Chapter 8
10.1145/3477339.3477342 Chapter 2 10.1145/3477339.3477349 Appendix A
10.1145/3477339.3477343 Chapter 3 10.1145/3477339.3477350 Bibliography
10.1145/3477339.3477344 Chapter 4 10.1145/3477339.3477351 Bios/Index
10.1145/3477339.3477345 Chapter 5

A publication in the ACM Books series, #38
Editors in Chief: Sanjiva Prasad, Indian Institute of Technology (IIT) Delhi, India

Marta Kwiatkowksa, University of Oxford, UK
Charu Aggarwal, IBM Corporation, USA

This book was typeset in Arnhem Pro 10/14 and Flama using pdfTEX.

First Edition

10 9 8 7 6 5 4 3 2 1

http://books.acm.org
http://dx.doi.org/10.1145/3477339
http://dx.doi.org/10.1145/3477339.3477346
http://dx.doi.org/10.1145/3477339.3477340
http://dx.doi.org/10.1145/3477339.3477347
http://dx.doi.org/10.1145/3477339.3477341
http://dx.doi.org/10.1145/3477339.3477348
http://dx.doi.org/10.1145/3477339.3477342
http://dx.doi.org/10.1145/3477339.3477349
http://dx.doi.org/10.1145/3477339.3477343
http://dx.doi.org/10.1145/3477339.3477350
http://dx.doi.org/10.1145/3477339.3477344
http://dx.doi.org/10.1145/3477339.3477351
http://dx.doi.org/10.1145/3477339.3477345

To my sons, Robert and Michael

Contents
List of Figures xvii

List of Tables xxvii

Preface xxix

Use of the Book xxxi

Acknowledgments xxxi

Chapter 1 Introduction to Software History 1

1.1 What is “Software”? 1

1.2 Challenges of Software History 3

1.3 Modeling Software Technology Evolution 5

1.4 Computer Hardware History 14

1.5 Computer Hardware Trends and “Laws” 38

1.6 Lessons Learned from Hardware Evolution Affecting Software 41

1.7 Summary 41

1.8 Exercises and Projects 43

1.9 Further Readings and Online Resources 55

Chapter 2 Software History Fundamentals 57

2.1 Overview of Software History 57

2.2 Types of Software 61

2.3 Cultures and Communities of Software 67

2.4 Environment 72

2.5 Influences on Software History 73

2.6 Summary 77

2.7 Exercises and Projects 78

2.8 Further Readings and Online Resources 81

xiv Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Operating Systems 83

3.1 Operating Systems and Their Evolution 83

3.2 Operating Systems Scope 88

3.3 Operating Systems Case Study: Pipes in the UNIX System 104

3.4 Lessons Learned from Operating System Software 107

3.5 Summary 109

3.6 Exercises and Projects 109

3.7 Further Readings and Online Resources 114

Programming Languages 117

4.1 Definitions 118

4.2 Types of Programming Languages 123

4.3 Prehistory of Programming Languages and Compilers 140

4.4 Influences on Programming Language Change 142

4.5 Case Study: APL 143

4.6 Lessons Learned from Programming Languages 144

4.7 Exercises and Projects 146

4.8 Further Readings and Online Resources 152

Programming Environments, Tools, and Methodologies 153

5.1 Early Programming Environments and Tools 153

5.2 Evolution of Programmer Tools Over Time 158

5.3 Large Projects and the Software “Crisis” 163

5.4 Reflections on Programming Tools and Environments 165

5.5 Case Study: SAGE 167

5.6 Case Study: GNU Emacs 169

5.7 Case Study: AUTOFLOW 174

5.8 Lessons Learned from Programming Tools and Environments 176

5.9 Exercises and Projects 178

5.10 Further Readings and Online Resources 186

Networking Software 187

6.1 Overview of the Evolution of Data Networking 187

6.2 Networking Protocols 201

6.3 Getting to TCP/IP 202

6.4 Network Software and Applications 204

6.5 Case Study: Minitel 209

6.6 NCSA httpd and Apache Web Server 209

6.7 Networking Influences 213

Contents xv

6.8 Lessons Learned from Networking Software 214

6.9 Exercises and Projects 215

6.10 Further Readings and Online Resources 219

Chapter 7 Database Management Systems 221

7.1 Overview of Database Systems and Their Evolution 222

7.2 Early Database History 227

7.3 Types and Evolution of Database Systems 230

7.4 Relational DBMSs 234

7.5 System R: Sample Code 239

7.6 Factors Affecting Change of Database Software 241

7.7 Lessons Learned from Database Software 242

7.8 Exercises and Projects 243

7.9 Further Readings and Online Resources 247

Chapter 8 Software Futures and Overall Trends 249

8.1 Overview of Software History 249

8.2 Trends 251

8.3 Perpetual Challenges of Software Development 254

8.4 Emerging Software Trends 256

8.5 Other Areas of Software 257

8.6 Software History’s Relevance 263

8.7 Exercises and Projects 265

8.8 Further Readings and Online Resources 270

Appendix A Appendix—Source Code 271

A.1 UNIX Pipe.c 271

A.2 System R Where Clause Code 276

Bibliography 279

Author’s Biography 299

Index 301

List of Figures

1.1	 A hierarchy of technology domains and subdomains. 8

1.2	 An example agenda from Michael Mahoney’s papers, related

to computing models. (Source: Image courtesy of the Charles

Babbage Institute Archives, University of Minnesota Libraries,

Minneapolis.) 9

1.3	 A sample influence diagram: Programmers’ Toolsets. 10

1.4	 A high-level view of computer hardware before EDSAC and EDVAC. 15

1.5	 The Chicago Long-Distance (Toll) Office in 1929. (Source: Courtesy

of AT&T Archives and History Center.) 18

1.6	 Bell Labs Complex Number Computer, which used relays for

logical operations (1939). (Source: Courtesy of AT&T Archives and

History Center.) 19

1.7	 H. L. Marvin operating the Bell Labs Complex Number Computer

teletype interface (1939). (Source: Courtesy of AT&T Archives and

History Center.) 21

1.8	 Bell Labs relay computers in use at Langley Research Center (1947)

by female “computers” who performed mathematical computa­
tions for male staff. Note: the actual relay computer is not shown

(these are the input/output devices). (Source: NASA, credit: NACA

Langley.) 22

1.9	 Stibitz reconstruction of Bell Labs “Kitchen” Model, original built

in 1936. (Source: Courtesy of AT&T Archives and History Center.) 23

1.10	 Betty Jennings (left) and Frances Bilas (right) operating the ENIAC’s

main control panel at the Moore School at the Univ. of Penn­
sylvania. (Source: US Army photo from the archives of the ARL

Technical Library.) 24

xviii List of Figures

1.11 General view of the Harvard Mark II calculator frontispiece.
(Source: Courtesy of Grace Murray Hopper Collection, Archives
Center, National Museum of American History, Smithsonian Insti­
tution.) 25

1.12 Mark I Problem L paper tape with “patches.” (Source: Courtesy
of Grace Murray Hopper Collection, Archives Center, National
Museum of American History, Smithsonian Institution.) 25

1.13 One of Grace Hopper’s paper tapes used on the Harvard Mark

I (tape 1 of 4 for Problem “L,” Bessel function tables). (Source:
Author’s photograph of paper tape courtesy of the Grace Hopper
Murray Collection, Archives Center, National Museum of American

History, Smithsonian Institution.) 26

1.14 IBM ASCC (or Harvard Mark I, undated). (Source: Courtesy of
International Business Machines Corporation, ©International
Business Machines Corporation.) 27

1.15 The Atanasoff–Berry Computer’s memory drum—the sole surviv­
ing component. (Source: Iowa State Univ. Library Special Collec­
tions and Univ. Archives.) 28

1.16 Herman Hollerith punched card as used in the 1890 US census.
This card had only 22 columns and used round holes (IBM cards
later were 80 columns and used rectangular holes). (Source: Cour­
tesy of International Business Machines Corporation, ©Interna­
tional Business Machines Corporation.) 29

1.17 The IBM Card-Programmed Electronic Calculator was the first dig­
ital computer used by the US space program. (Source: Courtesy
of International Business Machines Corporation, ©International
Business Machines Corporation.) 30

1.18 Early computer timeline showing selected major projects. 31

1.19 The Atanasoff–Berry Computer (ABC) with a drum memory (circa

1942). (Source: Iowa State Univ. Library Special Collections and

Univ. Archives.) 31

1.20 Using IBM punched card equipment with the ENIAC (1946). Betty
Jennings (left) and Frances Bilas (right). (Source: Photo from

Hagley Library, photo courtesy of Unisys Corp.) 32

1.21 The EDVAC as installed in the US Army Ballistic Research Lab­
oratory (BRL). Richard Bianco at the paper tape; unknown man

at console. (Source: US Army Photo from the archives of the ARL

Technical Library.) 33

List of Figures xix

1.22	 A closer view of Project Whirlwind’s core memory. (Source: Cour­
tesy MIT Museum.) 34

1.23	 Disruptive technologies after the commercialization of computers
stimulated division into different classes of computers. 35

1.24	 MOSFET transistor counts for microprocessors against dates of
introduction from 1971 to 2018. (Source: https://ourworldindata.
org/uploads/2019/05/Transistor-Count-over-time-to-2018.png

licensed under CC-BY-SA by the author Max Rosen.) 40

1.25	 Bug entry in Harvard Mark II logbook held at the Smithsonian.
(Source: Courtesy of Division of Medicine and Science, National
Museum of American History, Smithsonian Institution.) 44

1.26	 The IBM 704 is where FORTRAN, LISP, and the SHARE Operating

System were developed (circa 1954). (Source: Courtesy of Interna­
tional Business Machines Corporation, ©International Business
Machines Corporation.) 45

1.27	 The Jacquard loom-produced silk woven picture of Jacquard and a

loom using punch-card mechanism. (Source: Courtesy of Smithso­
nian Institution, bequest of Richard Cranch Greenleaf in memory
of his mother, Adeline Emma Greenleaf.) 46

1.28	 The ABC’s overall design. (Source: Iowa State Univ. Library Special
Collections and Univ. Archives.) 48

1.29	 Clifford Berry with the ABC. (Source: Iowa State Univ. Library Spe­
cial Collections and Univ. Archives.) 48

1.30	 Grace Hopper’s plug diagram for the Harvard Mark I, for Prob­
lem “L.” (Source: Courtesy of Grace Murray Hopper Collection,
Archives Center, National Museum of American History, Smithso­
nian Institution.) 50

1.31	 Grace Hopper’s 1958 diagram showing computer influences.
(Source: Courtesy of Grace Murray Hopper Collection, Archives
Center, National Museum of American History, Smithsonian Insti­
tution.) 53

1.32	 Stibitz’s relay computer at Bell Labs (1940). (Source: Courtesy of
AT&T Archives and History Center.) 54

2.1	 8K BASIC compiler paper tape for Heathkit H11 Computer (1978).
(Source: Photo taken by author of personally owned tape.) 58

2.2	 Burroughs BALGOL 220 compiler excerpt. (Source: Courtesy of the

Computer History Museum.) 59

https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png
https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png

xx List of Figures

2.3	 ENIAC programming before the von Neuman architecture: Stand­
ing: Marlyn Wescoff; crouching: Ruth Lichterman. (Source: US

Army Photo from the archives of the ARL Technical Library.) 62

2.4	 A proposed United Airlines reservation system agent terminal for

UNIVAC in 1957 from Alan Perlis’s papers. (Source: Image courtesy

of the Charles Babbage Institute Archives, University of Minnesota

Libraries, Minneapolis.) 64

2.5	 The Analog Computing Machine in the Fuel Systems Building

of the Lewis Flight Propulsion Laboratory (1949). (Source: NASA;

credit: NACA.) 65

2.6	 A software technology taxonomy. 66

2.7	 Major influences on software technology. 74

2.8	 Professor A.W.H. (Bill) Phillips with the Phillips Machine, aka

MONIAC. He was also known for the Phillips curve. Circa 1958–

1967. (Source: Courtesy of LSE Library.) 80

3.1	 IBM 704 at NASA’s Jet Propulsion Laboratory in 1959 with an

unknown human “computer” seated at the console with a card

reader/punch to the right. (Source: Courtesy of International Busi­
ness Machines Corporation, ©International Business Machines

Corporation.) 85

3.2	 A high-level evolution of operating systems. 86

3.3	 Influences to changes in operating systems. 87

3.4	 IBM System/360 model 40 with woman at console and assorted

disk drives, tape drives, and card reader, circa 1964. (Source: Cour­
tesy of International Business Machines Corporation, ©Interna­
tional Business Machines Corporation.) 99

3.5	 Members of Dartmouth’s Glee Club using DTSS for an early form

of computer dating with women from California. (Source: Adrian

N. Bouchard/Dartmouth College, Courtesy of Dartmouth College

Library.) 101

3.6	 UNIX and C pioneers, Dennis Ritchie (standing) and Ken Thomp­

son (sitting) at a PDP-11/20 (undated, likely circa 1972). (Source:

Courtesy of AT&T Archives and History Center.) 102

3.7	 Doug McIlroy’s 1964 Bell Labs memorandum summary page with

goals for pipes and operating systems. (Source: Image courtesy of

the Charles Babbage Institute Archives, University of Minnesota

Libraries, Minneapolis.) 105

3.8	 Pipes default operation example in Bourne shell. 105

List of Figures xxi

4.1	 Logo of the History of Programming Languages I Conference in

1978 with the languages represented. (Source: SIGPLAN Notices,

Volume 13, Number 8, August 1978 ©ACM 1978, New York, NY.) 118

4.2	 Generations of programming languages and environments. 121

4.3	 Flow of compiling a program to become a process running in

memory. 122

4.4	 Influences on programming language change. 143

4.5	 A simple example of the use of APL to invert a 3×3 matrix. 144

5.1	 Grace Hopper’s BINAC code card (labeled as “first”), circa 1949.

(Source: Courtesy of Grace Murray Hopper Collection, Archives

Center, National Museum of American History, Smithsonian Insti­
tution.) 154

5.2	 Grace Hopper’s UNIVAC quick reference card, 1951. (Source: Cour­
tesy of Grace Murray Hopper Collection, Archives Center, National

Museum of American History, Smithsonian Institution.) 155

5.3	 1949 Flowchart from Eckert–Mauchly Corp for Matrix Inversion

Program on BINAC computer. (Source: Courtesy of Grace Murray

Hopper Collection, Archives Center, National Museum of Ameri­
can History, Smithsonian Institution.) 156

5.4	 An IBM 701 setup form from 1956, Florence Anderson papers.

(Source: Image Courtesy of the Charles Babbage Institute Archives,

University of Minnesota Libraries, Minneapolis.) 157

5.5	 1949 Coding form from Eckert–Mauchly Corp. for matrix multipli­
cation program on BINAC computer. (Source: Courtesy of Grace

Murray Hopper Collection, Archives Center, National Museum of

American History, Smithsonian Institution.) 158

5.6	 An IBM 704 coding form, 1956, Florence Anderson papers. (Source:

Image courtesy of the Charles Babbage Institute Archives, Univer­
sity of Minnesota Libraries, Minneapolis.) 159

5.7	 A Control Data Corporation 6400 with a 405 card reader in fore­
ground, 1965. (Source: Image courtesy of the Charles Babbage

Institute Archives, University of Minnesota Libraries, Minneapolis.) 160

5.8	 IBM card cartons (2000 cards each) in Federal Records Center,

Alexandria, VA, November 4, 1959. (Source: US National Archives,

https://catalog.archives.gov/id/12169529.) 161

5.9	 Evolution of programmer tools over time. 162

https://catalog.archives.gov/id/12169529

xxii List of Figures

5.10	 IBM System 360 Model 91 being used at NASA Goddard Flight Cen­
ter in Greenbelt, MD, January 16, 1968. (Source: Courtesy of Inter­
national Business Machines Corporation, ©1968 International

Business Machines Corporation.) 164

5.11	 An example layering of abstractions allowing programmers to be

functional at a higher level of abstraction. 166

5.12	 Influences on programmer tools. 167

5.13	 SAGE AN/FSQ-7 programs overview. (Source: ACM, Eastern Com­
puter Conference Proceedings, 1957, p. 152, figure 9.) 168

5.14	 SAGE static program organization from Everett et al. [1983]. (Source:

ACM, Eastern Computer Conference Proceedings, 1957, p. 152, fig­
ure 11.) 169

5.15	 GNU (GNU’s Not UNIX) project logo. (Source: Aurélio A. Heckert,

GNU Logo, 2003, https://www.gnu.org/graphics/heckert_gnu.html.) 170

5.16	 AUTOFLOW example output. (Source: Martin A. Goetz, US Patent

3,380,029.) 175

5.17	 An enlarged punched card showing the encoding of portion of an

80-column Job Control Language Statement JOB card. (Source:

Photograph by author.) 179

5.18	 An example level 1 data flow diagram from structured systems

analysis for a DVD rental system. 182

5.19	 The SAFEGUARD System for detecting and responding to missile

attacks. (Source: Reused with permission of Nokia Corporation

and AT&T Archives.) 184

5.20	 The SAFEGUARD System data processing components. (Source:

Reused with permission of Nokia Corporation and AT&T Archives.) 185

6.1	 A 1939 Bell System advertisement describing the number of calls

handled per day. (Source: Courtesy of AT&T Archives and History

Center.) 189

6.2	 Two of the communications networks communities that con­
tributed to data networking. 192

6.3	 Teletypewriter torn tape messaging system. (Source: US Govern-

ment/Teletype Corp., Nick England (www.navy-radio.com), DoD

publication MIL-HTBK-161.) 195

6.4	 Teletypewriter torn tape relay center in operation in Guam, 1969.

(Source: Courtesy of Nick England and http://www.navy-radio.com,

US Navy Photo.) 196

https://www.gnu.org/graphics/heckert_gnu.html
http://www.navy-radio.com
http://www.navy-radio.com

List of Figures xxiii

6.5	 An AM211 CXR Anderson Jacobson acoustic modem (French ver­
sion) and the phone handle (almost) plugged in. (Source: Olivier
Berger, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/
3.0, via Wikimedia Commons and with permission of CXR Ander­
son Jacobson.) 197

6.6	 High-level timeline of data networking stages. 198

6.7	 IBM Series/1 (4959), introduced in 1976 and usable as a network

gateway between DECnet and SNA. (Source: Courtesy of Rhode

Island Computer Museum, https://www.ricomputermuseum.org/.) 199

6.8	 A front-end processor (MM-16) to communicate to a DEC PDP-11
for the MERIT network at University of Michigan in 1982. (Source:
Courtesy of MERIT Network.) 200

6.9	 The topological map for the ARPANET in 1973. (Source: Image

courtesy of the Charles Babbage Institute Archives, University of
Minnesota Libraries, Minneapolis. (John Day Papers).) 204

6.10	 Community memory, public terminal for BBS in Berkeley, CA,
1975. (Source: Mark Richards. Courtesy of the Computer History
Museum.) 206

6.11	 Some influences that have affected the direction of data networking. 214

7.1	 The IBM 350 disk storage unit stored 5 million 6-bit characters in

1956. Note the actual disk platters are in the back right and were

visible though the window. (Source: Courtesy of International Busi­
ness Machines Corporation, ©International Business Machines
Corporation.) 222

7.2	 A high-level overview of databases over time. 224

7.3	 Hanford/RPG family of report generators (from Fry and Sibley
[1976, p. 21]). (Source: James P. Fry and Edgar H. Sibley. 1976. Evo­
lution of data-base management systems. ACM Comput. Surv. 8, 1
(March 1976), 7–42. DOI: https://doi.org/10.1145/356662.356664.) 229

7.4	 Bachman/I-D-S family of DBMS (from Fry and Sibley [1976, p. 23]).
(Source: James P. Fry and Edgar H. Sibley. 1976. Evolution of data­
base management systems. ACM Comput. Surv. 8, 1 (March 1976),
7–42. DOI: https://doi.org/10.1145/356662.356664.) 231

7.5	 This drawing includes showing how the database would be able

to access data in different ways and eventually evolved into the

CODASYL data model for network-model databases. (Source:
Image courtesy of the Charles Babbage Institute Archives, Univer­
sity of Minnesota Libraries, Minneapolis). 232

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://www.ricomputermuseum.org/
https://doi.org/10.1145/356662.356664
https://doi.org/10.1145/356662.356664

xxiv List of Figures

7.6	 Bachman’s drawing showing the concept of a data base. (Source:
Image courtesy of the Charles Babbage Institute Archives, Univer­
sity of Minnesota Libraries, Minneapolis.) 233

7.7	 IDMS/CODASYL Family of DBMS (from Fry and Sibley [1976, p. 26]).
(Source: James P. Fry and Edgar H. Sibley. 1976. Evolution of data­
base management systems. ACM Comput. Surv. 8, 1 (March 1976),
7–42. DOI: https://doi.org/10.1145/356662.356664.) 234

7.8	 IMS family of DBMS (from Fry and Sibley [1976, p. 27]). (Source:
James P. Fry and Edgar H. Sibley. 1976. Evolution of data-base man­
agement systems. ACM Comput. Surv. 8, 1 (March 1976), 7–42. DOI:
https://doi.org/10.1145/356662.356664.) 235

7.9	 Inverted file family of DBMS (from Fry and Sibley [1976, p. 28]).
(Source: James P. Fry and Edgar H. Sibley. 1976. Evolution of data­
base management systems. ACM Comput. Surv. 8, 1 (March 1976),
7–42. DOI: https://doi.org/10.1145/356662.356664.) 235

7.10	 Commercial server/mainframe RDBMS relationships over time.
(Source: 2013 IEEE. Reprinted, with permission, from A. Mendel­
sohn. The Oracle story: 1984–2001. In IEEE Ann. Hist. Comput. 35,
2, 10–23, April–June 2013, DOI: http://dx.doi.org/10.1109/MAHC.
2012.56.) 236

7.11	 Relational query languages and their influences on each other. 238

7.12	 Factors influencing change in database systems. 242

8.1	 SEAC on August 14, 1959, demonstrating the HAYSTAQ program for
searching chemical literature (Ethel Marden). (Source: NIST.) 259

8.2	 The IBM 7030 STRETCH in the late 1960s at IBM Poughkeepsie

just prior to its shipment to the Los Alamos National Laboratory.
(Source: Courtesy of International Business Machines Corpora­
tion, ©1968 International Business Machines Corporation.) 260

8.3	 Arthur Samuel demonstrating his checkers program on an IBM

7090 on television on Feb. 24, 1956. (Source: Courtesy of Interna­
tional Business Machines Corporation, ©1956 International Busi­
ness Machines Corporation.) 261

8.4	 SRI’s Shakey, the first mobile robot that could make decisions
about how to move in its surroundings (1972). (Source: Courtesy of
SRI International.) 262

8.5	 IBM System 360 Model 40 demonstrating a drawing system using

a lightpen. (Source: Courtesy of International Business Machines
Corporation, ©International Business Machines Corporation.) 263

https://doi.org/10.1145/356662.356664
https://doi.org/10.1145/356662.356664
https://doi.org/10.1145/356662.356664
http://dx.doi.org/10.1109/MAHC.2012.56
http://dx.doi.org/10.1109/MAHC.2012.56

List of Figures xxv

8.6	 IBM’s Shoebox could do simple arithmetic in 1962 in response to

spoken commands. (Source: Courtesy of International Business
Machines Corporation, ©1962 International Business Machines
Corporation.) 268

8.7	 Grace Murray Hopper’s original printout from the UNIVAC’s
accurate prediction of Eisenhower’s 1952 win. (Source: Courtesy
of Grace Murray Hopper Collection, Archives Center, National
Museum of American History, Smithsonian Institution.) 269

List of Tables

3.1 Operating system generations 86

4.1 MIPS machine code instruction types 120

Preface

Software professionals and students are focused on creating new technologies
involving software. As a result, many may view software history as not directly
relevant to their work or studies. This text makes the argument that current and

future software systems are influenced by the software of the past, the lessons
learned in its creation, and even the historical software code base. A good exam­
ple is computer security, where security professionals must include knowledge of
any software that may be compromised and that often includes older software and

knowledge of older protocols and vulnerabilities that may still be in the core of
modern software systems.

Furthermore, legacy software systems are notoriously difficult to replace. As
noted in Charette [2020] and as experienced by this author as a chief information

officer, legacy systems take considerable effort and money to replace and tend to be

built upon, rather than replaced. So, those working on systems for complex orga­
nizations are likely to have to deal with these existing software systems. Charette

[2020] also cites examples such as the US Social Security Administration still run­
ning some 60 million lines of COBOL and 20 million lines of assembly code. The

US Internal Revenue Service has original master tax file systems that were installed

in the 1960s and have had additional layers of other software as well as many other
software systems connected to them. This building of dependencies on legacy soft­
ware further entrenches its use. Other systems used by the US government have

software sub-systems that are about 50 years old such as in the Departments of
Education and Transportation [Charette 2020]. Extreme events such as security
breaches or system failures to adjust to new requirements are often required in

order to get funding to replace and upgrade these systems. So, knowing about older
software technologies has a practical element as well as an understanding of lessons
from software’s history element.

Software is a relatively recent creation, having taken shape as a distinct con­
cept in the 1950s. Software has rapidly evolved and has developed its own related

xxx Preface

disciplines including computer science and software engineering, among others.
Software continues to evolve rapidly and to become increasingly complex with

many programs and many layers of software being commonly used in a single

device. While dependent on physical computers to actually run, software domains
now evolve largely independently of the computing hardware. Abstractions have

been built that allow software’s theoretical basis of what is computable and effi­
cient to be analyzed independently of any specific hardware. Technology students
today rarely get a complete picture of how software has changed over time. This
text attempts to give that overview of how software has evolved in several important
domains. Besides that overview, specific examples in these domains are provided

to illustrate the issues and the solutions that have been developed for that domain.
A quote from historian Michael Mahoney (see Mahoney [2011, p. 65]), originally

published in a 2005 paper “The Histories of Computing(s)” makes the point of the

nascent state and importance of software history:

But we [historians] remain largely ignorant about the origins and develop­
ment of the dynamic processes running on those devices [computers], the

processes that determine what we do with computers and how we think

about what we do. The histories of computing will involve many aspects, but
primarily they will be histories of software.

It is easy to get wrapped up in a specific story of software history and to get dis­
tracted by details, particularly if there is a reason to reminisce about that software.
In covering every detail, it is easy to miss the forest for the trees. However, it’s
those stories that make the history of software interesting and relevant. This book

attempts to strike a balance between the high-level “forest” of software and the

lower-level “trees” of specific stories and examples. So, the book covers the broad

breadth of software and chooses detailed examples. It is only with these detailed

examples that software history not only comes alive but that students can develop

an understanding of how software technology has evolved and responded to the

demands placed on it over time. Even at that, most of these detailed examples can­
not include every detail as a complete understanding of a very complex software

system might take a lifetime.
In the last couple of decades, software has gotten attention as a distinct topic

from computer history. In particular there are wide-scoping works on the software

industry (such as CampbellKelly [2003] and Cortada [2012]) and the professionaliza­
tion of the programmer community (such as Ensmenger [2010]). There’s also been

work on the history of computer science as a field and how theoretical computer
science evolved (such as Mahoney [2011] and Priestley [2011]).

Preface xxxi

The intended audience for this book is students of technology who have some

background in software development. They need not be expert programmers, but
to get the most from this book they should be able to read and understand source

code for various programming languages and have a basic understanding of how

computers work.
The included exercises vary from those that are relatively easy to those that will

take an extensive effort. Those taking extensive effort are identified as “Projects”
and those that are easier to accomplish are identified as “Exercises.”

Use of the Book
This book is intended to be used in an upper-division undergraduate course where

students have some background in writing software. It need not be extensive, but
students need to be able to read source code and have an ability to understand

differing computing architectures. It is structured such that the first two chapters
should be covered first. These two chapters introduce the overall issues and ways
that the history of software is approached in this book. Chapters 3 to 8 are meant
to stand by themselves, with Chapters 3 to 7 covering software topics that are foun­
dational in nature, generally closer to the system level. It is anticipated that later
editions or volumes will add chapters related to higher-level software history such

as artificial intelligence, graphics, security, enterprise applications, among others.
Chapter 8 summarizes the lessons learned from earlier chapters and is intended

to solidify the goals of the course.
Exercises and Projects are included in every chapter. The intent is that “Exer­

cises” are relatively straightforward problems that require only a paragraph or so

to respond. It quickly became evident that many of the more interesting problems
in software history require much more work and investigation and are included as
“Projects.” Projects may require a great deal of work and some could form the basis
for undergraduate research projects, master’s projects, or even doctoral theses in

software history.
Additional resources are available online at software-history.net.

Acknowledgments
Undoubtedly, this work does not contain every important detail about software or
its development. The intent is to cover the most important details for students
of software technology. Certainly, entire books could be written on each of the

chapters included here or even on single topics, and some have been written. I
know that others will find details missing which they believe important and I wel­
come any feedback to that effect. While I’ve sought out information and advice

http://software-history.net/

xxxii Preface

from many on the details included here, any errors are purely my own. For help­
ing me improve the quality of the book, my thanks go to the editorial staff at ACM

Books and Compuscript Ltd including but not limited to Bernadette Shade, Ashley
Petrylak, Scott Delman, Barbara Ryan, Achi Dosanjh, and Karen Grace.

I would like to especially thank many of the people consulted for this work and

the help provided by several archives. In particular, the Smithsonian’s National
Museum of American History, the Computer History Museum archives, the

Charles Babbage Institute, the archives at the Massachusetts Institute of Technol­
ogy, and the archives at Stanford University have provided a great deal of help­
ful archival sources. The Linda Hall Library and Hagley Library also held helpful
resources. Individuals including Burton Grad, Peggy Kidwell, Paul McJones, Guy
Fedorkow, Tom Misa, R. Arvid Nelsen, Greg Singleton, Jeff Ullman, John Hennessy,
and Donald Knuth have also had helpful insights. Many others have reviewed vari­
ous drafts including Babu Ranganathan, Peter Capek, Joy Stockwell, and numerous
students.

I would also like to thank my many students at the Rose-Hulman Institute

of Technology (RHIT) and at Michigan Technological University who have pro­
vided helpful insights, revisions, and interest in the topic. Several former RHIT

students produced content for the software history website, including Brock Grin-
stead, Austin Gassert, and Leela Pakaneta. ACM’s Special Interest Group for Com­
puter Science Education (SIGCSE) is appreciated for providing a grant to support
work on the software history website where additional materials are being housed,
including source code and supporting documentation for several examples.

A number of institutions have allowed me to reuse images including ACM, IBM,
AT&T, SRI International, Charles Babbage Institute, The Smithsonian National
Museum of American History, NASA, NIST, US National Archives, US Navy, US Army,
Rhode Island Computer Museum, the London School of Economics, Iowa State

University, MIT, and UNISYS. These images and figures help students understand

the environment and details in which software was built.

Kim W. Tracy
tracy@rose-hulman.edu or tracy@cs.stanford.edu

Terre Haute, Indiana

January 2021

http://software-history.net/
http://software-history.net/
mailto:tracy@rose-hulman.edu
mailto:tracy@cs.stanford.edu

1titioners are sometimes repeating mistakes of the past and often relearning how

to build successful systems. Additionally, some areas of software require a work­
ing knowledge of previously deployed software systems and their design decisions,
such as software security. When reusing existing software, it is wise to evaluate the

relevance of the techniques and assumptions that were used in building that origi­
nal software. This book focuses on software as a technology and how it has evolved

over time. We will look at the trends, important innovations, and events, as well as
the ever-broadening world of software.

This chapter includes a definition of software and uses techniques from histo­
rians of technology on how to structure this history. Additionally, early computer
hardware history is covered as a background. In Chapter 2, software is further
defined and categorized into types. Key types of software (structured into domains)
will then be covered as individual chapters, with the last chapter looking at the

entire span of software technology and the lessons that can be learned from the

history of software.
In this book, we focus on the technical basis of software, its types, and how it

changes over time.

Introduction to Software
History

Software is a relatively recent technology, really only beginning in its own right in

the 1950s. In the time since then, it’s taken many forms, evolved immensely in the

tools used, and in the purposes to which it has been put. Interestingly, software has
become so varied and so complex that many current students of technology do not
have a basic knowledge of the history of software. As a result, students and prac­

1.1 What is “Software”?
Software really didn’t exist as a separate concept or term until the late 1950s. When

higher-level languages (such as FORTRAN, LISP, and COBOL) were created, the

notion of software being separate from the computer became more commonplace.

2 Chapter 1 Introduction to Software History

This book is focused on software as a separate entity, even though there is obvi­
ously (especially in the early days of computing) a close relationship to the specific
computational device used. Before software was a separate concept from a partic­
ular computer, considerable effort was expended on how to use these devices to

solve problems and how to program them (see Wilkes et al. [1951], Goldstine and

von Neumann [1948], and Campbell-Kelly and Williams [1985]). These earlier efforts
significantly impacted how we approach programming and the tools that we use

to make those programs. Reusable concepts and designs influenced the design of
later software and systems throughout the history of software. A working definition

of software is given here as:

Software is the set of programs, concepts, tools, and methods used to produce a

running system on computing devices.

This definition deserves more explanation. Programs and applications are the mani­
festations that most people encounter as software. The first printed use of the word

software is generally thought to have been by John Tukey in 1958.1 The source code,
libraries, executables, and comments make up a single program, but a program

does not exist in isolation and usually includes a number of other programs to

solve a problem or to run as a system. Additionally, a number of tools (many of
which are software as well) such as compilers, assemblers, flowcharts, design tools,
simulators, and architectural diagrams are used to create and make the software a

running system. The methods used to produce software include analysis and design

methodologies as well as evolving best practices of creating complex software sys­
tems. The concepts used to produce a software system are some of the most reusable

components. We will see in later chapters that these concepts drive the evolution

of software over time. A concept can be reused and built upon independently from

the hardware or other project-specific details. As an example, while early database

systems defined many database concepts and were implemented in many systems,
very little of those early systems are reusable today. Those database concepts, how­
ever, have been expanded and have become a large subfield of software. Another
example is the use of software patterns, where rather than encoding the details
of an implementation the bare essentials are specified so that the pattern can be

reused to address similar problems.
So, this rather broad definition of software is used throughout this book in order

to explore how software has changed over time.

1. See Shapiro [2000] for more discussion on the origin of the term software. Tukey is also credited

for coining the term bit, meaning binary digit.

3 1.2 Challenges of Software History

As an example, the UNIX® operating system2 is a set of many programs, with

some that manage processes, some that manage the file system, and others that
manage the system’s memory. For a running UNIX system, many of these programs
are required for the system to be usable as an operating system. UNIX was also cre­
ated with the idea that a set of programming tools would be built to better support
the UNIX programming environment over time. Those tools began with the DEC

PDP-7 assembler, and quickly moved to using the recently developed C program­
ming language and associated compiler. Eventually, UNIX included a broad set of
programming tools including C, lex, yacc, sed, vi, awk, grep, and many others. UNIX

was initially created by a small, highly collaborative group of developers without a

lot of formal methodology. All of these parts are essential to understanding how

UNIX was developed, and also to be able to learn from the successes and failures
of the system.

Most of the focus of this text will be on concepts and programs, particularly
those that are still used, are reusable in modern systems, or are embedded in

modern systems.

1.2 Challenges of Software History
Software, as defined previously, is a non-tangible technology. That is, there are no

physical artifacts in the same way as computational devices. As a result, it can be

less obvious how early software functioned, how ideas were shared and changed,
and how such software was created. Additionally, software has become extremely
malleable. It changes as the needs change, better ideas are explored, and, unfor­
tunately, rendering software easy to destroy or dispose of.3 Often software, even

though theoretically changeable, becomes so entrenched that there’s a fear of “if
it isn’t broke, don’t fix it.” This can result in software lasting for decades with

the details of such legacy code and how to fix it all but forgotten. The breadth

of software is huge and constantly growing by being applied to new application

areas. This book focuses on key underlying software systems such as operating

systems, database management systems, and programming languages, but there

is an extreme diversity of application and specialization that has developed. Many
current software practitioners have a narrow perspective of software that focuses
only on their specialty.

Current students of technology are generally taught computing history sporadi­
cally and even less is taught on software history. So, the challenge is understanding

2. UNIX is a registered trademark of the Open Group.

3. This is becoming somewhat less true as many copies of current software systems are being

made as well as many versions being preserved in software change control systems, such as GIT

or SVN.

4 Chapter 1 Introduction to Software History

this amorphous mass of constantly evolving and constantly expanding software.
There are a number of reasons for current students and practitioners to be aware

of software history:

∙	 Persistence. Software has become more persistent than particular genera­
tions or models of computers. Old software can often run on new machines
and computer hardware vendors have a vested interest in reducing the iner­
tia of moving to a new machine. There is also a tendency not to want to

rewrite a solution when the existing solution works just fine. As a result,
there’s a tremendous amount of software that was written a long time ago

that is still being actively used. This sort of “lock-in” can lead to a resistance

to change the software and hardware that is working.4 Software and hard­
ware vendors can benefit from this inertia to change and continue to charge

for enhancements and support for very old software.

∙	 Concepts. Concepts used to develop software are shared across many differ­
ent kinds of software. These concepts evolve over time and many of these

concepts continue to have relevance. Two examples are the concepts of
buffering and caching. Buffering and caching have been used in many types of
software and hardware to solve issues of differing speeds of operation and to

make communication work more efficiently, ranging from CPU instructions,
memory, paging, TCP sockets, data caching, and web caching. Web caching

has expanded to also include content delivery networks (CDNs) that cache

web content from around the globe in order to enhance the response time of
web requests.

∙	 Specialization. Many students and professionals, particularly in the last few

decades, have become very specialized and have a deep but not necessarily
broad view of software. Many students of technology and computing are no

longer taught underlying topics such as assembler language, file systems,
and other topics, yet these still form the basis for the systems we use today.

∙	 Trends and success factors. Viewing the changes and trends in the software

world can help to predict future trends and the direction of existing tech­
nologies. Furthermore, there are numerous failures and successes that are

applicable to situations one experiences today.

4. As an example, there still exists a lot of COBOL code written in the 1960s and 1970s embedded

in business software that is running today. An estimate from 2009 for COBOL’s 50th anniversary
puts the lines of running COBOL at over 250 billion lines of code, with Forrester noting that 32%

of enterprises still use Cobol for development or maintenance. See Scott Colvey’s article: “Cobol
hits 50 and keeps counting,” in The Guardian, April 9, 2009, https://www.theguardian.com/techno

logy/2009/apr/09/cobol-internet-programming.

https://www.theguardian.com/technology/2009/apr/09/cobol-internet-programming
https://www.theguardian.com/technology/2009/apr/09/cobol-internet-programming

5 1.3 Modeling Software Technology Evolution

∙	 Dependence. Current software depends on prior generations of software, both

for concepts but also to run upon and with. The trajectory of future soft­
ware depends on preexisting software. In particular, what is possible today
is because of the preexisting software and other technology that already
exists. Many systems are built on top of existing layers of software and are

dependent on that software to remain stable.5

Software history is complex but is important to understanding the concepts and

components of current systems. In particular, the environments and assumptions
of earlier software systems can be very different from those of a newer system that
is reusing or building upon the earlier software.

1.3 Modeling Software Technology Evolution
Software does not have a preexisting model for how its history should be orga­
nized. Because efforts are just beginning for the study of software history, there

is no extant, single model for organizing the study of its history. Here it is argued

that software is a technology, and a model is put forth for how to structure software

history. The model presented here uses ideas from Arthur’s [2009] work. Additional
ideas used here come from Parayil [1999] and Constant [1980].6

1.3.1 Software As a Technology
Arthur [2009] notes7 that technologies should have three defining characteristics:

1. A linkage to an underlying physical phenomenon that the technology lever­
ages.

2. A structure such that the technology is built from other components.

3. These other components are, themselves, technologies.

Software and other technology components are then assembled into larger sub­
systems and systems that may include software from many different component
technologies.

Software fits this model well. These three parts of the definition are addressed

in turn as they apply to software.

5. That is, to remain stable in its interface or to have the interface be capable of being emulated

by newer software. This is also true in reverse in a sense, where emulators are being built where

older software can run again even though the hardware it was dependent upon is long gone.

6. Constant created a model for the Turbojet (based on Thomas Kuhn’s [1962] earlier work)
that contained many interesting concepts that are generally useful for software technologies,
including normal technology, traditions of practice, and other useful concepts.

7. Arthur also notes several other definitions for technology, such as fulfilling a human need, that
are not used here.

6 Chapter 1 Introduction to Software History

1.3.1.1	 Linking Software to Physical Phenomena

Software leverages physical phenomena related to computation. The software

must be connected to and run on some physical device(s) that can implement
the various aspects of computation. If there’s no physical device at all, that means
there’s no device for the software to run on. In particular, software runs on a com­
putational device and may use other physical devices such as displays, sensors,
storage devices, and output devices. Each of these pieces of hardware leverages
different physical phenomena. However, software is often abstracted from these

physical devices by other pieces of software such as the operating system, firmware,
and compilers. The more portable the software is to other devices and hardware,
the more useful it tends to be. As a result, software’s tie to the specific physical phe­
nomena that it exploits is loose as different hardware technologies can be used as
a basis for computation. So, while software technology depends on physical phe­
nomena, it is often abstracted from those phenomena. Often more important are

the underlying concepts that software exploits in other layers of software. As an

example, an application program written to read and write from a file does not
worry about what kind of storage media is used to store that data; it uses the operat­
ing system’s provided functions to read and write to and from the file. In fact, that
underlying phenomenon may be different depending on where the file is stored

(say a flash drive versus a disk drive versus a DVD versus paper tape). While the

earliest computers did not specify an explicit programming interface such as an

instruction set architecture with explicit opcodes (see Haigh et al. [2016] for how

the ENIAC was programmed), it was quickly recognized that a specific instruction

set (or “initial orders” as it was sometimes called) was helpful in creating a pro­
gramming interface. As a result, there is an explicit abstraction from the hardware

and the phenomena on which the hardware relies.

1.3.1.2	 Software Is Built from Other Components

New software is often built from preexisting software components and technolo­
gies. When it’s not created by reusing other software (say creating firmware for a

device), it is still leveraging and using other technologies in order to produce some­
thing useful. So, typically new software systems will reuse other preexisting pieces
of software along with newly built software in order to produce a running system.
Software is often built as part of a system,8 such as that defined in Hughes [2004,
chapter 4, pp. 77–79]. As a system, software may be built with numerous subsystems
and work with and interact with other non-software subsystems. So, a system such

8. As in Hughes [2004], systems are built to solve large problems and Hughes notes an emphasis
on systems and the creation of a “systems age” that supplanted the machine age.

7

1.3.1.3

1.3.2

1.3.3

1.3 Modeling Software Technology Evolution

as an operating system is often broken down into component subsystems such as
a process subsystem, memory subsystem, and a file management subsystem.

Software Components Are Technologies

The last point that these components are also technologies is a largely recursive

point: most of the time, our components (or subsystems) are also software. When

we are integrating hardware more directly, these hardware components are also

technologies. This is also consistent with the concept of systems and subsystems
as in Hughes [2004]. Software systems behave in a similar way to other technology
systems by creating an interdependency between the components as well as being

dependent on the social context for what is built and how it is built.

Software Domains
The concept of technology being composed of technology leads to the concept of
domains. See Figure 1.1. The entirety of software technology could be considered a

technology domain that is used by other areas of technology.9 However, software

technology itself is composed of domains of specific technology. This book is struc­
tured using these domains of software technology. Domains (see Arthur [2009, pp.
69–76]) are “any cluster of components drawn from in order to form devices or
methods, along with its collection of practices and knowledge, its rules of com­
bination, and its associated way of thinking.” So, for software technologies one

such grouping would be operating systems, which has its own methods and collec­
tions of practices and knowledge. Furthermore, such a domain’s software history
is interrelated to the extent that it provides a relatively cohesive evolutionary story.
Another way to conceptualize a software domain is as the body of knowledge and

expertise that someone working in that field should know to work effectively in that
field.

Other Terms and Techniques
Besides segmenting software technology into domains, there are other important
influences and terms used throughout this book.

Agendas [Mahoney 2011, pp. 165–169]10 have been used by historians to indi­
cate a shared sense in the community of practitioners of the problems that need

to be solved and the interrelationships between work done by different groups.

9. Before software was a separate concept, it was in the same technological domain as comput­
ing hardware and therefore part of the computer hardware domain until the 1950s. That is, it
was highly dependent on a particular computer architecture and difficult to directly apply to a

different computer.

10. See also the definition of paradigms in Kuhn [1962] as relates to “normal science.”

8 Chapter 1 Introduction to Software History

All Technologies

Software
Computer

Hardware
Other

Technologies

Subdomains

Programming

Languages

Networking

Software
Operating Systems

Figure 1.1 A hierarchy of technology domains and subdomains.

At any given point in time, there are hot problems in the area that are driven

by need, funding, and the potential to solve. See Figure 1.2 for an example from

Mahoney.11 As an example, in the early 1950s it was clear that a more effective

method was needed to program than writing assembler code or machine code.
So, many groups were working to develop higher-level languages and compilers.
At the same time, computers were becoming powerful enough and with enough

memory to actually help in translating source code to machine code. There was
also a need at the time to increase the productivity of programmers which would

only become more important as computers became even more powerful. So, high-
level agendas are used here to show some of the changes in focus of software over
time. Standard engineering (see Arthur [2009, pp. 90–95] and Russell [2014]) is a

term used by some historians to indicate (alternatively called normal technology
in Constant [1980, p. 10]) the use of methods, devices, and principles that are

known and widely accepted. Standard engineering in terms of software is using

existing techniques, tools, and methods to solve new problems. The vast major­
ity of software is of this standard engineering type. This book is mostly about
when those tools, methods, and techniques are replaced with new concepts in soft­
ware. Even in standard engineering, there are often new problems to be solved that
result in new tools, methods, or techniques being developed that may eventually
have a much larger impact. An example of standard engineering for software is
the use of existing systems (database, operating systems, web servers, program­
ming language, etc.) in order to write a new application program to allow online

sales of a product. The techniques for solving this problem are well known. In the

11. From Michael Mahoney’s papers at the Charles Babbage Institute.

9 1.3 Modeling Software Technology Evolution

John von Neumann

Computer as calculator

Numerical analysis

IAS Meterological

Project

Programming

EDVAC Report

General and Logical Theory of Automata

Finite automata

theoretical CS

stability

self-replication

evolution

Computer as artificial organism

Numerical models

1970s: supercomputers on

JvN model and variants

1980s: computer graphics

lead to resurgence of CAs

Ulam > cellular automata

Burks at Michigan

Toffoli
CA machine

Holland
complex adaptive systems

genetic algorithms

A New Kind of ScienceLangton
synthetic biology

Artificial Life

Dynamical systems

Chaos

Wolfram
CAs in physics

msm 2000

SANTA FE

Figure 1.2	 An example agenda from Michael Mahoney’s papers, related to computing mod­
els. (Source: Image courtesy of the Charles Babbage Institute Archives, University
of Minnesota Libraries, Minneapolis.)

course of writing this program, the programmer may notice a way to improve the

compiler and invent a new technique or tool to help improve the way it oper­
ates. This change may be widely needed by others and eventually influence other
systems.
Non-standard engineering, on the other hand, is creation of a new method, tech­

nique, tool, or system that influences the course of other software. There are many
examples of where programmers are put in a situation where non-standard engi­
neering must occur in order to solve the problem. A good example of this was the

Semi-Automatic Ground Environment (SAGE) system in the 1950s. This system was
built as part of the US government’s air defense systems. One of its functions was
to take input from a large number of radar stations and produce a single image

for the North American Aerospace Defense Command (NORAD). Besides being a

large software system to develop, it also had to operate a network of computers,
integrate input from them, and display the information in graphical form. All of

10 Chapter 1 Introduction to Software History

these tasks were unsolved problems at the time and at the early stage of develop­
ment. The SAGE project had to solve these problems in order to produce a working

system, making much of the project groundbreaking.
Events can often have a significant impact on the agendas and directions for

the software community. An example event that had a significant impact is the 1988

Morris Internet Worm. At that time, only a small subset of commercial entities even

had network firewalls, and there was not a large focus on network security outside

of the military. After the Morris Worm brought down many hosts on the Internet,
commercial companies (particularly those on the Internet at the time) began to

take security seriously and to develop methods to protect their enterprise. Some

software domains are more affected by the occurrence of specific events, such as
security.

Influence diagrams (see Figure 1.3) are used to indicate the primary factors affect­
ing change in a particular software technology domain or subdomain. These vary
according to the domain and are intended as a mechanism to consider what is
impacting the evolution of that domain. As an example, programmer tools have

had direct influences from computer science in the theory of computation and the

development of compiler technology and programming languages. Also, program­
mers’ tools have been dependent on the sufficiency of the computational speed of
the underlying computer, where techniques such as software development environ­
ments (SDE) weren’t practical until computers had the computational capacity to

run them. These tools were additionally dependent on the widespread availability
of networking, graphical displays, and pointing devices such as mice. The evolu­
tion of programming methodologies to areas such as object-oriented design and

Programmers’

Toolsets

Machine

Capabilities

Computer

Science

Programming

Methodologies

Support for

Networked teams

Programming Languages,

Compilers, and

Theory of Computation

Human-Computer

Interaction advances

Figure 1.3 A sample influence diagram: Programmers’ Toolsets.

1.3 Modeling Software Technology Evolution 11

Agile programming techniques contributed to redesigning how these tools worked

and how teams used them. The intent of these diagrams is to help identify what
influenced change in this area in the past and what might influence change in the

future.
Environments are the circumstances and conditions under which software runs

and is developed. This can include funding and social conditions for the develop­
ment of software. However, it can also refer to the technical environment within

which the system runs. This can have a great influence on the ability of the

software to work at all, perform reliably, be secure, etc. An example of the fund­
ing environment that stimulated network software came from the US Advanced

Research Project Agency (ARPA, becoming the US Defense Advanced Research

Projects Agency [DARPA]) and the funding for Advanced Research Projects Agency
Network (ARPANET) and Internet-related software. This funding was very influ­
ential in producing protocols such as TCP/IP, FTP, and others. The existence of
ARPANET (and other networks including the Internet and UUCP) contributed to

an environment that facilitated research and information sharing between those

universities and research labs that were connected to it. ARPANET was justified

and envisioned (see Licklider [1963] for Licklider’s memorandum on “intergalactic
computer networks”) as a network that would facilitate information sharing and

research. ARPANET did (along with additional ARPA funding and other networks)
stimulate and support significant research in programming languages, artificial
intelligence, electronic mail, early social networking as well as many other research

areas.
The technical environment for software can include the operating system, con­

figurations, the computer itself, and peripherals. An unsecured environment can

lead to the software’s security being circumvented. Events can cause the environ­
ment to change, such as the funding environment may change in response to an

event. As an example, the 1988 Internet Worm caused federal funding to be issued

to create the Computer Emergency Response Team (CERT) among other efforts to

improve security.

1.3.4	 How Software Technology Evolves
Software is constantly changing and programmers for a particular software system

pick tools and reuse software based on many factors and influences. Those influ­
ences for what to use for a particular system range from the ease-of-use, fit to the

software being developed, corporate standards, and many others. However, there

are some common drivers to develop new techniques. These are certainly not the

only ways software evolves but give a perspective from the history of technology
point-of-view.

12 Chapter 1 Introduction to Software History

(1)	 Functional failure. Constant [1980, pp. 12–13] defines a functional failure to be

when a technology fails under new or more stringent conditions. In terms of
software, one might call this a functional inadequacy. As a result, new tech­
niques are required in order to meet these new conditions. An example of
this in software is when electronic business (sales over the Internet) became

popular in the mid-1990s. In the rush to get sales on the Internet going, many
systems were repurposed with a web front-end and still used the same back-
end system. The problem was that the security and reliability conditions had

changed for the back-end system and many systems failed as a result. As a

small example, this author recalls a survey system that granted a gift cer­
tificate at the end of the survey to an online book seller. At the end of the

survey, it gave an error message, so I reloaded the page. In another window,
in came two gift certificates to the online book seller. Another reload of the

error page, another gift certificate came in. It quickly became a way to print
money at the survey giver’s expense. New techniques had to be developed to

better control the interchange between the back-end systems and users on

the web (such as web application servers and securing eXtensible Markup

Language [XML]).

(2)	 Combination. Arthur [2009] cites the combination of technologies as one of
the major ways that technology evolves. Certainly, for software this has also

been the case. An example of this sort of change is the introduction of Global
Positioning System (GPS) hardware on many devices.12 As a result, software

has used the results from GPS to offer many location-based services through

software such as real-time alerts of traffic problems in your vicinity. Entire

areas of software and computing have been created to reflect the combi­
nation of software and computing technologies with another field, such as
computational biology, computational chemistry, etc.

(3)	 Technological co-evolution. Constant [1980, pp. 13–15] defines the notion of
technological co-evolution where multiple technologies are dependent on

one another. For software, the evolution of computing hardware has been co-
evolutionary with software. Faster computers have allowed the use of tech­
niques that were not viable in the past, thereby releasing their use. A good

example of this has been voice recognition. Many of the actual techniques
used in voice recognition have been available for some time, but it has been

difficult to deploy due to the amount of computing resources required. Other

12. GPS works with a series of satellites that provide location data to GPS receivers and was devel­
oped for military navigation systems but is useful anytime that location is informative for an

application.

1.3 Modeling Software Technology Evolution 13

examples include the creation of graphic displays to allow a method for dis­
playing graphics and the ability to use machine learning on large datasets.
Software has also sometimes affected the evolution of hardware. The advent
of recursion in programming languages influenced the design of later com­
puter instruction sets such as the support of stacks and reentrant procedure

call mechanisms.

(4)	 Structural deepening. Arthur [2009, pp. 131–143] also notes that structural
deepening defines new technologies by creating more complex subdomains
and making them more useful. This certainly happens with software tech­
nologies. For example, operating systems started off with a minimal set of
features to ease working with the computer and its devices, but have since

added many features such as virtual memory, multi-processing, multi-user,
and support for myriad devices. As a result, operating systems have a lot
of subdomains such as memory management that can be called software

technology domains in their own right.

Domain specialization is a form of structural deepening where a specific vari­
ant is developed for a specific use or market. Using operating systems as
an example, real-time operating systems have been developed to be able to

respond to real-world events in a predictable amount of time. Real-time oper­
ating systems often are preemptive and will force processes to terminate or
give up the CPU in order to meet the time requirements.

(5)	 Innovation and inventions. Occasionally, new software domains and new soft­
ware technologies are created by a new invention, or more commonly by
improving an existing technology by finding an innovative use or making

a small improvement. Even new software inventions are generally based

on existing technologies and usually have a need or pressure to resolve a

problem. As an example, the first database (Charles Bachman’s Integrated

Data Store) emerged in the early 1960s as the result of a need for such a

system as well as being based on existing file systems and reporting sys­
tems. Many software systems have been driven by an economic or oppor­
tunistic drive to beat the competition or to enter new, potentially lucrative

markets.

Another example of the application of innovation to software change is that
there has been a desire and push to deploy computers to new sets of users, par­
ticularly as computers have become less expensive. This has driven a need to

innovate how that software will be used by a wider variety of users, many of
whom will have less technical knowledge. An innovation that fits this model is the

14 Chapter 1 Introduction to Software History

Internet browser13 that expanded the use of the Internet dramatically to new sets
of users. The proliferation of widespread wireless data networks along with smart-
phones has brought the Internet and data applications to an even broader set of
users.

Timelines showing major changes and events will also be used to show how a

particular domain has changed over time.

1.4 Computer Hardware History
The capabilities and power of computer hardware directly influence software’s
capabilities and power. This section provides a brief overview of computing hard­
ware history, from a software capability point of view. Figure 1.4 shows how calcu­
lating devices evolved into basic computers with major milestones. It shows some

of the influences that significantly impacted later stages of development. Figure 1.4

spans hundreds of years beginning with the development of methods of computa­
tion and mechanical calculators. Making numerical computation more efficient
and more accurate is what drove many of the innovations in Figure 1.4.

In this text, the distinction of being before the von Neumann architecture is sig­
nificant because how these machines were programmed was heavily intertwined

with the design of the hardware. After the von Neumann architecture was imple­
mented (first in the United Kingdom), the program as a concept became more

distinct from the hardware and was fed into the computer, rather than being part
of the computer. With that change, the notion of having a fixed instruction set in

the computer that the program would use to encode its operations took hold.

1.4.1 Hardware Before the von Neumann Architecture
Figure 1.4 shows a high-level diagram of computing hardware before the Elec­
tronic Numerical Integrator and Computer (ENIAC) and the development of von

Neumann architecture machines. For centuries, devices that could automate com­
putation and eliminate the drudgery and inaccuracy of manual computation had

been attempted and achieved. In Figure 1.4 some of the most important and influ­
ential achievements that led to the creation of fully electronic, fully programmable

computers are included. For a more complete view of this history, please see other
works such as Williams [1997].

Numbering systems were critical to the ability to make computation more effi­
cient and accurate. Logarithms and, specifically, John Napier’s Bones were very
influential to early computational devices in the 16th and 17th centuries. With the

concept of logarithms, devices such as slide rules could be built that leveraged

13. Attributed to Sir Tim Berners-Lee with the creation of the WorldWideWeb browser in 1990.

1.4 Computer Hardware History 15

N
u
m

b
e
r

S
y
s
te

m
s

M
e
c
h
a
n
ic

a
l

C
a
lc

u
la

ti
n
g

M
a
c
h
in

e
s

(P
a
s
c
a
lin

e
,

a
d
d
in

g

m
a
c
h
in

e
s
,e

tc
.)

1
6
4
0
–
1
9
7
0
s

N
a
p
ie

r’
s
 B

o
n
e
s

1
6
1
7
–
1
8
9
0
s

a
n
d

S
lid

e
 R

u
le

s

1
6
2
0
–
1
9
7
0
s

B
a
b
b
a
g
e

D
if
fe

re
n
c
e

E
n
g
in

e
s

1
8
2
2
 –

1
8
4
9
 n

o
t

c
o
m

p
le

te
ly

 b
u
ilt

 a
t

th
e
 t
im

e
,
e
x
c
e
p
t

d
if
fe

re
n
c
e
 e

n
g
in

e
 0

B
a
b
b
a
g
e

A
n
a
ly

ti
c
a
l

E
n
g
in

e

1
8
3
7

(c
o
n
c
e
p
t
o
n
ly

)

J
a
c
q
u
a
rd

L
o
o
m

1
8
0
1
–
p
re

s
e
n
t

B
e
ll

L
a
b
s

R
e
la

y
-

b
a
s
e
d

C
o
m

p
u
te

rs

1
9
3
7
–
1
9
5
0
s

IB
M

/A
ik

e
n
’s

M
a
rk

 I
 –

IV

A
t
H

a
rv

a
rd

1
9
4
4
–
1
9
5
2

Z
u
s
e
’s

 Z
1
 –

Z
4

1
9
3
8
–
1
9
5
9

T
u
ri
n
g

C
o
lo

s
s
u
s

1
9
4
3
–
1
9
4
5

IB
M

/C
a
rd

-

b
a
s
e
d

T
a
b
u
la

to
r

a
n
d

a
c
c
o
u
n
ti
n
g

M
a
c
h
in

e
s

1
8
9
0
–
1
9
8
0
s

R
e
g
is

te
rs

,

M
a
c
h
in

e

C
o
d
e
,
c
a
rr

y

m
e
c
h
a
n
is

m
s
,

P
a
p
e
r

T
a
p
e

A
B

C

1
9
4
2

E
N

IA
C

1
9
4
6
–
1
9
5
5

E
D

V
A

C

A
u
g
.1

9
4
9
–
1
9
6
2

E
D

S
A

C
 I

M
a
y
 1

9
4
9
–
1
9
5
8

P
u
n
c
h
 c

a
rd

 a
n
d

ta
b
u
la

ti
n
g

m
a
c
h
in

e
 i
n
d
u
s
tr

y

1
8
9
0
–
1
9
4
0
s

M
a
n
c
h
e
s
te

r

“B
a
b
y
”

1
9
4
8

A
n
a
lo

g

D
if
fe

re
n
ti
a
l

A
n
a
ly

z
e
rs

1
9
2
8
–
1
9
4
0
s

M
a
n
c
h
e
s
te

r

M
a
rk

 1

1
9
4
8
–
1
9
5
0

L
o
g
a
ri
th

m
-b

a
s
e
d

c
a
lc

u
la

ti
o
n

C
a
rd

 I
/O

C
a
rd

sC
a
rd

s

G
e
a
ri
n
g

G
e
a
ri
n
g
,

R
e
g
is

te
rs

,

C
a
rr

y
 m

e
c
h
a
n
is

m
s

G
e
a
ri
n
g
,

R
e
g
is

te
rs

,

C
a
rr

y
 m

e
c
h
a
n
is

m
s

Fi
gu
re

 1
.4

A
hi
gh
-le
ve
l v
ie
w

 o
f c
om

pu
te
r
ha
rd
w
ar
e
be
fo
re

 E
D
SA
C

 a
nd

 E
D
VA
C
.

16 Chapter 1 Introduction to Software History

the computational properties of logarithms. Many calculating devices were built
in the 17th and 18th centuries such as Schickard’s calculator, Pascal’s calculating

machine, and Leibniz’s calculating machine, among others. Descriptions of these

machines and their evolution is well described in Williams [1997]. Sophisticated

gearing mechanisms and mechanisms designed to carry a one to the next higher
decimal place for addition (and multiplication) were reused for larger scale com­
putational devices in the 19th century, in particular Charles Babbage’s difference

engine. Babbage also designed (but did not get to function at the time) the Ana­
lytical Engine (around 1840), which had some programmability and contained a

number of ideas that would later be implemented for electronic computers. The

Analytical Engine had a number of features that increased the flexibility of the

device: in particular, having programmability via cards (see http://www.fourmila

b.ch/babbage/cards.html) and, interestingly, the ability to produce graphical out­
put (in a plotter-like way). A simulator of the Analytical Engine and a compendium

of other related material can be found at http://www.fourmilab.ch/babbage/conte

nts.html. The Analytical Engine used many ideas that were rediscovered 100 years
later, in particular separating data from the program control. While those build­
ing computers in the 1930s and 1940s were aware of Babbage’s earlier work, the

direct influence of his work on them is minimal, at best. Howard Aiken at Harvard

University was aware of Babbage’s work and it may have impacted his work on the

Harvard Mark I to Mark IV computers.
The history of electronic, programmable computers really begins in the late

1930s with a number of competing efforts and are briefly covered here. These

efforts included the work at AT&T Bell Telephone Laboratories on relay-based

machines by George Stibitz, Howard Aiken’s Mark I (IBM ASCC) computers at
Harvard University, Konrad Zuse’s Z1 to Z4 in Germany, and IBM’s extensive work

on tabulating machines. Turing also developed the concept of a universal Turing

machine during the 1930s.
A brief description of each of these efforts in the late 1930s follows:

∙	 Turing machine concept. Turing published a now famous paper in 1936

describing a theoretical model for a universal computing machine [Turing

1936]. This paper was in response to a problem proposed by mathematicians
Hilbert14 and Ackermann in 1928 known as the Entscheidungsproblem (deci­
sion problem), which was also worked on by Alonzo Church (best known for
lambda calculus). The Turing machine concept has since become the founda­
tion of computation theory. This paper possibly influenced von Neumann’s

14. David Hilbert also proposed a set of unsolved mathematical problems in 1900 including #2

that led to Kurt Gödel’s Second Incompleteness Theorem.

http://www.fourmilab.ch/babbage/cards.html
http://www.fourmilab.ch/babbage/cards.html
http://www.fourmilab.ch/babbage/contents.html
http://www.fourmilab.ch/babbage/contents.html

1.4 Computer Hardware History 17

work and may have influenced Turing’s thinking in the design of later com­
puters, such as the National Physical Laboratory (NPL) Pilot ACE (Automatic
Computing Engine). There is very little direct influence of this paper on early
computers, but the paper had a large influence in proving what could and

could not be computed by computers.

∙	 Bell Labs relay computers. One of the primary drivers for AT&T at this time was
to be able to automate telephone switching.15 Telephone usage was growing

rapidly and quickly overtaking the feasibility of using human operators for
every call (see Figure 1.5). Figure 1.5 shows some of the difficulties in scaling

manual telephone switching already occurring in 1929 with a large number
of operators needed and messengers on skates collecting billing for each

call. The practical limit on how many lines a single operator could man­
age was about 10,000, limited by how far an operator could reach (see Bell
Laboratories [1977, p. 189]), which also caused increasing costs as the number
of telephone lines and calls increased. George Stibitz used electromechani­
cal relays16 to design a series of machines beginning in 1938 with a machine

called the Complex Number Calculator (CNC) designed to perform arith­
metic operations on complex numbers. This machine was later called the

Model 1. The CNC (or Model 1) used a teletype interface as in Figure 1.7. Bell
Labs continued work on specialized computers (many for the military) into

the 1950s. See Figure 1.6 for a photo of the AT&T Bell Labs CNC and Figure 1.9

for Stibitz’s reconstruction of Model “K” (for “kitchen”) model that Stibitz
built to demonstrate the concept of using relays for addition. AT&T Bell Tele­
phone Laboratories continued to develop a number of specialized computers
(see Figure 1.8), particularly those related to telephone switching. See Irvine

[2001] and Andrews [1982a, 1982b] for more on the Bell Labs relay computers.

∙	 Differential analyzers. The Massachusetts Institute of Technology’s Vannevar
Bush and Harold Locke Hazen developed an analog machine designed to

integrate differential equations in 1928 and went on to use the device for
many years. Other devices for integration had been built and proposed by

15. In 1907, Theodore Vale as president of AT&T adopted the slogan of “One Policy, One Sys­
tem, Universal Service,” which drove it to begin to develop a nationwide monopoly. In 1913,
AT&T entered into an out-of-court agreement known as the Kingsbury Commitment, which was
replaced by the 1921 Willis–Graham Act that established telephone companies as natural monop­
olies. There were already 18,522,767 telephone stations in the United States by 1927 [Daggett 1931]
with 13,726,056 of them controlled by the Bell System.

16. A relay is an electrically operated switch, as relays had been successfully used in other parts
of the Bell System. Claude Shannon (see Shannon [1940]) described how to use relays to design

digital circuits that implement logical functions.

18 Chapter 1 Introduction to Software History

Figure 1.5	 The Chicago Long-Distance (Toll) Office in 1929. (Source: Courtesy of AT&T Archives
and History Center.)

Lord Kelvin in the 1870s. Numerous other differential analyzers were built
around the world, including in Norway, Japan, Canada, and England, and

continued to be used into the 1940s.

∙	 Harvard Mark I. Aiken at Harvard University proposed a general-purpose

electromechanical computer in 1937 that was designed, built, and funded

by IBM in 1939. IBM named it the Automatic Sequence Controlled Calcu­
lator (ASCC) and it began work for the US Navy Bureau of Ships in 1944.
The Mark I used tapes and was built using switches and relays. Aiken con­
tinued work on additional machines named the Harvard Mark II (see Fig­
ure 1.11), Harvard Mark III (or Aiken Dahlgren Electronic Calculator, ADEC),
and Harvard Mark IV. See Cohen and Welch [1996] for more on Aiken and

the Harvard computers and http://www-03.ibm.com/ibm/history/exhibits/m

arkI/markI_reference.html for IBM’s ASCC site. See Figure 1.14 for a photo of

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html
http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

1.4 Computer Hardware History 19

Figure 1.6 Bell Labs Complex Number Computer, which used relays for logical operations (1939).
(Source: Courtesy of AT&T Archives and History Center.)

20 Chapter 1 Introduction to Software History

the ASCC,17 Figure 1.13 for an example of one of Grace Hopper’s tapes used

on the Harvard Mark I (ASCC), and Figure 1.12 for a closer look at this tape

and the “patches” used to correct the tape.

∙	 Zuse’s Z1 to Z4. In Germany, Konrad Zuse began construction of his Z1
machine in 1936, which was a programmable, digital mechanical device with

no relays or vacuum tubes. In 1939, Zuse created the Z2, which did use relays
for computation. In 1941, Zuse completed the Z3, which was used by the

German Aircraft Research Institute to perform statistical analyses. The Z3
used 2,000 relays. The Z4 design was completed just before the end of World

War II but was not used until after the war. See http://zuse.zib.de/ for details
from the Konrad Zuse Internet Archive. Zuse continued to develop a line of
computers after the end of World War II.

∙	 IBM tabulating equipment. While not directly in the computer business at
this time,18 IBM had created a lot of the peripherals that would be reused

in computing, in particular card punching and reading equipment. IBM had

built a business out of these devices. Based on Herman Hollerith’s machines
that were used in the 1890 US census (see Truesdell [1965] and Figure 1.16),
IBM developed tabulating equipment with the ability to also do calculations.
These include subtraction (1928), multiplication (1931), the IBM 805 Test
Scoring Machine (1937), and the IBM 801 (1934) that was able to clear bank

checks. These sorting and tabulating machines were complex, electrome­
chanical devices that performed many business functions and established

the market for mechanization of business functions. In addition, IBM won

the 1935 contract with the US government to support the implementation of

17. As described by IBM: “This undated view of the ASCC shows (at right) its three interpolators—

the value tape mechanisms which automatically selected values required in interpolating

processes—next to which are (from right to left) the functional counters, multiplying-dividing

unit and storage counters.”

18. IBM was actually heavily involved in exploring computing in the 1930s and 1940s, particularly
with work at Harvard with the Mark I. The Mark I was built by IBM as noted above. In addition,
IBM established the Watson Scientific Computing Laboratory in 1945 at Columbia University,
clearly focused on computing and built the Selective Sequence Electronic Calculator (SSEC) that
first operated in 1948. IBM had been working with Columbia University with the establishment of
the Thomas J. Watson Astronomical Computing Bureau in 1937. IBM was also named the primary
computer hardware vendor for the SAGE project in 1953. In 1952, IBM produced a very successful
computer, the IBM 701, which propelled it into the computer business. IBM was able to leverage

its embedded base of tabulating equipment to quickly enter the computer market.

http://zuse.zib.de/

1.4 Computer Hardware History 21

Figure 1.7 H. L. Marvin operating the Bell Labs Complex Number Computer teletype interface
(1939). (Source: Courtesy of AT&T Archives and History Center.)

22 Chapter 1 Introduction to Software History

Figure 1.8	 Bell Labs relay computers in use at Langley Research Center (1947) by female “comput­
ers” who performed mathematical computations for male staff. Note: the actual relay
computer is not shown (these are the input/output devices). (Source: NASA, credit:
NACA Langley.)

the Social Security Act. IBM was also working with the Columbia University
Statistical Bureau and built a complex tabulator in 1931 that was called the

“Columbia Machine.” Another example is the IBM Card-Programmed Elec­
tronic Calculator, announced in 1949, that was used in the space program

and aided in the development of the Redstone rocket that was used in the

Mercury space program (see Figure 1.17). IBM had a number of items that
were readily reusable as computer input/output equipment, as was the case

for computers such as the Atanasoff–Berry Computer (ABC) and the ENIAC,
described below. See Yost [2011], Pugh [2009], and Maney et al. [2011] for more

on IBM’s role. Some excellent resources showing the evolution of IBM’s early
computers is Bashe et al. [1981, 1985]. An excellent resource covering the

breadth of IBM’s business and technical history is Cortada [2019].

This work in the late 1930s was critical in preparing to build general-purpose

computers in the 1940s. Besides developing basic computational devices, they also

1.4 Computer Hardware History 23

Figure 1.9	 Stibitz reconstruction of Bell Labs “Kitchen” Model, original built in 1936. (Source:
Courtesy of AT&T Archives and History Center.)

developed key components that would be helpful in later phases such as the use

of paper tape and punched cards for input and output. In the 1940s, much of the

work on computers was funded by and in support of the military and continued

through World War II. These included the work by Turing and team at Bletchley
Park on the code-breaker machines Bombe and Colossus, as well as work by Eckert
and Mauchly on the ENIAC at the Moore School at the University of Pennsylvania.
Atanasoff and Berry worked on the ABC at Iowa State University (then Iowa State

College) before World War II. Atanasoff discontinued work on the ABC when he

took a post supporting the war effort.
Figure 1.18 shows the early computers described in this chapter on a timeline

beginning in the late 1930s into the early 1950s. Efforts from the United Kingdom

are shown in blue, from the United States in green, and from Germany in red.19 As
indicated in Figure 1.18, computers were beginning to be sold to businesses.

This work from the early 1940s is briefly described below:

∙	 Bombe and Colossus. This work was created to break German encryption algo­
rithms during World War II. The original breakthrough came from Poland,
and the creation of the Polish “bomba” to break the German Enigma encryp­
tion device. This work continued with the creation of the UK Bombe to con­
tinue to work on various versions of Enigma. The Bombe essentially worked

19. This diagram gives a rough timeline that is not meant to be precise (with a granularity of a

year, so efforts that occurred in the same year are shown as occurring at the same time).

24 Chapter 1 Introduction to Software History

Figure 1.10	 Betty Jennings (left) and Frances Bilas (right) operating the ENIAC’s main control
panel at the Moore School at the Univ. of Pennsylvania. (Source: US Army photo from
the archives of the ARL Technical Library.)

by simulating a number of Enigma machines in order to find the current code

used.20 Other governments, including France and the United States, were

also involved in this work. Colossus was a machine built by T. H. Flowers in

order to break the Lorenz Schlüsselzusatz cipher in Bletchley Park. Colossus
was a much more sophisticated code-breaking machine built specifically to

process ciphertext.21,22

20. See a paper by Fredrich Bauer for more on Bombe, which is included in De Leeuw and Bergstra

[2007, pp. 381–446].

21. See a paper by B. Jack Copeland in De Leeuw and Bergstra [2007, pp. 447–477] for a description

of Colossus and how it impacted later computers including the Automatic Computing Engine

(ACE) and the Manchester “Baby,” among other UK computers.

22. Also see http://www.alanturing.net/ for an archive of Turing-related documents including the

Bombe, Robinson, Colossus, ACE, and others. The Turing Digital Archive includes scans of many
of Turing’s papers and papers related to Turing’s work at http://www.turingarchive.org/.

http://www.alanturing.net/
http://www.turingarchive.org/

1.4 Computer Hardware History 25

Figure 1.11	 General view of the Harvard Mark II calculator frontispiece. (Source: Courtesy of Grace
Murray Hopper Collection, Archives Center, National Museum of American History,
Smithsonian Institution.)

Figure 1.12	 Mark I Problem L paper tape with “patches.” (Source: Courtesy of Grace Murray Hop­
per Collection, Archives Center, National Museum of American History, Smithsonian
Institution.)

∙	 Atanasoff–Berry Computer (ABC). John Atanasoff had developed a number
of computing devices before the ABC, notably an analog calculator called

the “laplaciometer.” His proposal for funding of what would become the

ABC came to the Iowa State College in March 1939 (see http://jva.cs.iastate.
edu/img/Computing%20machine.pdf for a scan of the original proposal).
The ABC was targeted at solving large systems of linear algebraic equations.
Mauchly had visited Atanasoff in Iowa and was aware of his ideas. With the

entry of the United States into World War II after Pearl Harbor, Atanasoff (and

his graduate assistant, Berry) joined the war effort and work on the ABC was
halted. Atanasoff had filed a patent for the ABC via Iowa State College and

http://jva.cs.iastate.edu/img/Computing%20machine.pdf
http://jva.cs.iastate.edu/img/Computing%20machine.pdf

26 Chapter 1 Introduction to Software History

Figure 1.13	 One of Grace Hopper’s paper tapes used on the Harvard Mark I (tape 1 of 4 for Problem
“L,” Bessel function tables). (Source: Author’s photograph of paper tape courtesy of
the Grace Hopper Murray Collection, Archives Center, National Museum of American
History, Smithsonian Institution.)

this patent became involved in a complex patent dispute with Eckert and

Mauchly’s ENIAC patents. The case was eventually resolved in ABC’s favor
in 1972.23 See Figure 1.19, which shows the drum memory (based on capaci­
tance, so it needed to be refreshed periodically) used by the ABC as well as
a partial view of the tubes used for the accumulator and other circuits. The

drum memory is the sole surviving component of the ABC computer and is
shown in Figure 1.15.

∙	 Electronic Numerical Integrator and Computer (ENIAC). The ENIAC was built
in response to the need for accurate firing tables to be used in World War II.

23. Note that this case really didn’t resolve the technical dispute of who created the first general
purpose computer. Certainly, Atanasoff’s ideas were important and the ABC exhibited a number
of firsts, but there are still arguments about which computer was the “first” to fully exhibit all the

properties of being electronic, programmable, and digital.

1.4 Computer Hardware History 27

Figure 1.14	 IBM ASCC (or Harvard Mark I, undated). (Source: Courtesy of International Business
Machines Corporation, ©International Business Machines Corporation.)

The original contract to the Moore School of the University of Pennsylvania

was in June 1943 for “research and development of an electronic numerical
integrator and computer and delivery of a report thereon.”24 The ENIAC was
a huge, vacuum tube-based, special-purpose computer that used IBM cards
for input and output. It had 18,000 vacuum tubes and 1,500 relays and was
the largest computing effort ever completed up to that time. As a result, the

ENIAC became the turning point for the creation of a computing industry by
Eckert and Mauchly. The experiences from ENIAC led to more advanced and

general-purpose systems including the BINAC, EDVAC (see Figure 1.21), and

the formation of the Eckert–Mauchly Computer Corporation (which was sold

to Remington Rand in 1950). Please see Figure 1.10 for a photo of the ENIAC

control panel and Figure 2.3 for an image showing how the ENIAC was pro­
grammed during its early use. Also see Figure 1.2025 for an example of using

punched cards with the ENIAC in 1946.

24. See Haigh et al. [2016] and the accompanying http://eniacinaction.com for more about ENIAC’s
story.

25. Hagley ID: 1985261_001_001_023, Box/folder number, Sperry Corporation, UNIVAC Division

photographs and audiovisual materials (Accession 1985.261), Audiovisual Collections and Digital
Initiatives Department, Hagley Museum and Library, Wilmington, DE 19807.

http://eniacinaction.com

28 Chapter 1 Introduction to Software History

Figure 1.15 The Atanasoff–Berry Computer’s memory drum—the sole surviving component.
(Source: Iowa State Univ. Library Special Collections and Univ. Archives.)

1.4 Computer Hardware History 29

Figure 1.16	 Herman Hollerith punched card as used in the 1890 US census. This card had only
22 columns and used round holes (IBM cards later were 80 columns and used rect­
angular holes). (Source: Courtesy of International Business Machines Corporation,
©International Business Machines Corporation.)

These machines in the early 1940s were influential and important but program­
ming them was a challenge. Many were not really general purpose and programs
were hardly a separate concept until machines began to be built with a common

concept of computer design in the late 1940s. This common concept separated

out the program as a separate component that was stored in memory and fed to

a computational unit.

1.4.2 The von Neumann Architecture
John von Neumann produced a report called the First Draft of a Report on the EDVAC

in 1945 that established what is now called the “von Neumann Architecture.” This
heavily influenced the design of later computers, in particular Wilkes’ Electronic
Delay Storage Automatic Calculator (EDSAC) at Cambridge University, Standards
Eastern Automatic Computer (SEAC), and Standards Western Automatic Computer
(SWAC) at the US National Bureau of Standards, Manchester “Baby” (followed by
the Mark 1) at Manchester University, Turing’s Pilot ACE, Binary Automatic Com­
puter (BINAC), and the UNIVersal Automatic Computer I (UNIVAC I). This report
included the notion of a stored-program concept. In this report (see von Neumann

[1945]), he defines three primary components:

∙	 Arithmetic unit: This unit would be responsible for executing arithmetic oper­
ations and was called the “central arithmetical” (CA) unit. This essentially
corresponds to what became an arithmetic logic unit and eventually part of
a central processing unit.

30 Chapter 1 Introduction to Software History

Figure 1.17	 The IBM Card-Programmed Electronic Calculator was the first digital computer used
by the US space program. (Source: Courtesy of International Business Machines
Corporation, ©International Business Machines Corporation.)

∙	 Central control (CC): This is the ability to store a program and to control
what gets sent to the CA unit as well as input and output.

∙	 Memory (M): The report notes that “considerable memory” will be needed.

The components, CA, CC, and M, were then used to define a logical structure

to work together. Many of these ideas had been known and theorized (such as in

Babbage’s Analytical Engine) but this draft report synthesized the ideas into a log­
ical framework (von Neumann was a mathematician) that then heavily influenced

many later machines.
Computers beginning in the late 1940s more clearly separated the program from

the machine. This was a critical turning point for computers becoming capable

1.4 Computer Hardware History 31

Figure 1.18 Early computer timeline showing selected major projects.

Figure 1.19 The Atanasoff–Berry Computer (ABC) with a drum memory (circa 1942). (Source: Iowa
State Univ. Library Special Collections and Univ. Archives.)

32 Chapter 1 Introduction to Software History

Figure 1.20	 Using IBM punched card equipment with the ENIAC (1946). Betty Jennings (left) and
Frances Bilas (right). (Source: Photo from Hagley Library, photo courtesy of Unisys
Corp.)

of being fully programmable and separating the notion of program from the

hardware. Machines such as the BINAC, Pilot ACE, Manchester Baby, Cambridge

EDSAC, and Eckert and Mauchly’s BINAC26 and UNIVAC were built on the von Neu­
mann model. Even the ENIAC was retrofitted to a form of this architecture to be

more easily programmed.

1.4.3 Computers After the von Neumann Architecture
The Manchester Small-Scale Experimental Machine, nicknamed “Baby” in 1948,
was the first computer that used the von Neumann architecture. This was fol­
lowed by the Manchester Mark 1 in 1949. The EDSAC was built at the University
of Cambridge in 1949, again using the von Neumann architecture.

26. The BINAC is often cited as the first commercially available computer, though only one was
sold to Northrup Aircraft Company in 1949.

1.4 Computer Hardware History 33

Figure 1.21	 The EDVAC as installed in the US Army Ballistic Research Laboratory (BRL). Richard
Bianco at the paper tape; unknown man at console. (Source: US Army Photo from the
archives of the ARL Technical Library.)

34 Chapter 1 Introduction to Software History

Figure 1.22 A closer view of Project Whirlwind’s core memory. (Source: Courtesy MIT Museum.)

See Figure 1.23 for a high-level description of the changes in computer hard­
ware since the EDSAC and EDVAC (see Figure 1.21) and the commercialization of
computers. This description focuses mostly on “computer classes” as described

in Bell [2008]. Commercialization of computers was initiated by sales of the UNI­
VAC, which was followed by a number of companies entering the market including

IBM. Most of these manufacturers were building large machines intended for large

companies and government installations. Through the 1950s and 1960s, the US

mainframe market was divided between IBM and primarily seven other companies
that became known as the “seven dwarfs.” These “seven dwarfs” were UNIVAC, Con­
trol Data Corporation (CDC), National Cash Register (NCR), General Electric (GE),
Honeywell, Burroughs, and Radio Corporation of America (RCA). Other companies

1.4 Computer Hardware History 35

IBM

NCR
Control

Data Corp

Honeywell
General

Electric

UNIVAC

Mainframes

Mainframes

Minicomputers

Mainframes
Midrange Servers

Personal

Computing

PDAs

D
is

ru
p
ti
v
e

T
e
c
h

n
o
lo

g
ie

s
 &

In
fl
u
e

n
c
e

s Stored Program

Control

“von Neuman”

1940s

Commercialization

1950s
Ferrite Core

Memory

Mid 1950s

Transistors

Late 1950s
Direct Access

Storage (DASD)

Late 1950s

Integrated

Circuits

1960s

Battery Tech.

1980s -

Hobbyists

1970s

VLSI

Late 1970s

and 1980s

RFID

1990s

Wireless Data

1990s

Mobile

Computing

Burroughs

Digital

Equipment

Corp.

RCA
Others

(Ferranti,

LEO, etc.)

Time

D
iv

e
rg

in
g
 C

o
m

p
u

te
r

C
la

s
s
e
s

Hewlett

Packard

Sensory

Nets

Figure 1.23	 Disruptive technologies after the commercialization of computers stimulated division
into different classes of computers.

also competed in the mainframe market such as Philips and Ferranti, among many
others. As new classes of computers were developed, new competitors entered the

market. An example of this is Digital Equipment Corporation and Hewlett Packard

that entered the market primarily with minicomputers, along with many other
companies. Similarly, many new companies entered the market with the personal
computer (PC) class of computers, including Apple, Commodore, Compaq, Dell,
and Gateway. At the bottom of Figure 1.23 is a set of events and changes that helped

push forward to the next phase. These are as follows:

∙	 Stored program concept (1945). As described earlier, this helped usher forth a

set of computers that clearly separated the program from the machine. This
concept helped to make machines easier to program and was adopted by
commercial computer companies. The ENIAC was also retrofitted to adhere

more closely to this model.

36 Chapter 1 Introduction to Software History

∙	 Early commercialization (1947–1951). The intent of the formation of the

Eckert–Mauchly Computer Company, who then called their computer UNI­
VAC (Universal Automatic Computer), was to build commercial computers
that could be sold to government and businesses. The first UNIVAC was
installed in 1951 for the US Census Bureau by Remington Rand corporation.
The Eckert–Mauchly Computer Company also produced the BINAC, which

was delivered to Northrop Aircraft Company in 1949 (and is considered the

first commercial computer sold). The BINAC was not a commercial success,
but the UNIVAC I was a commercial success and eventually sold 46 units. As
noted above, IBM and the “seven dwarfs” competed to serve the emerging

mainframe market. Commercialization also occurred early in Great Britain

with the Ferranti line based on Manchester University’s machines and LEO

(Lyons Electronic Office) based on Cambridge University’s machines. Other
early British computer companies included the British Tabulating Company
LTD and the Elliott Brothers. See Lavington [1980] for more on early British

computing.

∙	 Magnetic-core (ferrite) memory and transistors. Magnetic-core memory (some­
times called “ferrite core” or just “core”) was developed and first success­
fully deployed in the Massachusetts Institute of Technology’s Whirlwind

computer.27 See Figure 1.22 that shows how each memory element was
woven into the core. The transistor was created in 1947 at Bell Telephone

Laboratories. Both of these inventions became critical to the expansion of
a computer’s power as well as significantly reducing its size. These both

became widely used technologies in the mid-1950s and spurred the creation

of affordable computers and widespread implementation in the late 1950s.
This period of the late 1950s is when compilers began to appear as well as
operating systems.

∙	 Direct access storage and integrated circuits.28 The creation of affordable disk

drives and integrated circuits led to another dramatic increase in power as

27. Note that a patent for core memory was first filed in 1947 by amateur inventor Frederick Viehe.
An Wang and Way-Dong Woo (at Harvard University) filed a core memory patent in 1949. RCA

(1950) and MIT (1951) filed additional patents for core memory. MIT’s Whirlwind project was the

first to demonstrate its performance in a computer with a 32 by 32 “plane” of memory in August
1953. The Whirlwind project had a separate computer called the Memory Test Computer (MTC)
to demonstrate and refine core memory.

28. Note that direct access storage was often called direct access storage devices (DASD), particu­
larly in the context of IBM mainframe storage devices and included not only disk drives but also

drums and other storage devices where information could be retrieved directly without reading

through other information, such as in magnetic and paper tape. The first disk drive was the IBM

1.4 Computer Hardware History 37

well as the ability to reduce usable computers to a size and cost that could

be accommodated by a department or workgroup. A distinct new class of
computers (called minicomputers) was created as a result. Companies such

as Digital Equipment Corporation (as well as many others) created minicom­
puters, such as the PDP and VAX series. The PDP-8 was introduced in 1965 and

is considered to be one of the first commercially successful minicomputers.

∙	 Hobbyists. Hobbyists were highly influential in the early days of PCs in the

mid- to late-1970s. Parts and components were cheap enough that an elec­
tronics hobbyist could afford to buy the parts and build their own computer.
The development of microprocessors that were affordable (such as the MOS

Technology 6502, Zilog Z80, and the Intel 8080) were key to making it afford­
able. Kits were developed such as by Heath Company (Heathkit brand) and

Micro Instrumentation and Telemetry Systems (MITS) famously29 created

the Altair 8800 (based on Intel 8008 CPU and used the S-100 bus) both as
a kit and an assembled unit.

∙	 VLSI. Very large-scale integrated (VLSI) circuits were another level of minia­
turization of the technology and again dramatically reduced costs. This led

to other classes of computers such as personal digital assistants (PDAs),
sensory networks, and smartphones.

∙	 Battery technology. Battery technology has become cheap enough, power­
ful enough, small enough, and long-lasting enough to make mobile devices
such as smartphones, tablets, and PDAs affordable and usable. The trends in

battery technology are well documented in an article by Koomey et al. [2010],
which has become known as “Koomey’s Law.” Koomey expressed the trend

as “at a fixed computing load, the amount of battery you will need will fall by
a factor of two every year and a half.” This trend has been remarkably stable

since the 1950s.

∙	 Wireless data. The pervasiveness of wireless data networks were also a key
factor in the widespread use of mobile computing devices.

∙	 RFID. Radio frequency identification (RFID) has been an important tech­
nology for the deployment of sensors and sensory networks, though other

350 RAMAC disk storage unit announced in 1956, which would store 5 million 6-bit characters.
RAMAC stands for “Random Access Method of Accounting and Control.”

29. Note that it is for the MITS Altair (named “Altair” based on a planet from a Star Trek episode)
that Micro-Soft (as Microsoft was named at that time, standing for “microcomputer software”)
created its first product, a BASIC compiler.

38 Chapter 1 Introduction to Software History

technologies (such as pervasive Wi-Fi and cellular data networks) are also

being used for sensory networks.

1.5 Computer Hardware Trends and “Laws”
Bell’s Law (after Gordon Bell while at Digital Equipment Corporation in 1972 [Bell
2008a]) states:

Roughly every decade a new, lower priced computer class forms based on a new

programming platform, network, and interface resulting in new usage and the
establishment of a new industry.

These classes of computers correspond to mainframes, minicomputers, PCs,
PDAs, mobile devices, etc. Most of these classes of computers have continued but
some of these classes became subsumed by others. Minicomputers have been sup­
planted by “midrange servers,” though one could argue that this really is just a

different name for the same class of computer. PDAs have almost entirely died

as a class of computers, with mobile devices such as smartphones and tablets
supplanting PDAs (and perhaps even PCs).

Bell argues that the creation of each of these new classes creates its own new

industry with new programming and software environments. This has largely held

true. One of the reasons for this is that a truly new class of computers allows an

opportunity to introduce a new or better programming environment. The intro­
duction of smartphones is a good case in point where it allowed the introduction

of Apple’s iOS, Google’s Android, and RIM’s Blackberry operating systems into the

market, along with their programming environments which were different from

prior classes of computers. New classes of computers have allowed a largely green­
field approach that is less burdened by the mass of previously developed software

for other preexisting classes of computers. A good example of this effect was the

creation of the PC class of computers. With PCs, new operating systems were devel­
oped such as CP/M and PC-DOS, as well as new programming language compilers
(such as the BASIC compiler for the MITS Altair and popularization of the Pascal
programming language with UCSD Pascal, Turbo Pascal and Macintosh Pascal).
Even completely new types of tools such as spreadsheets (VisiCalc) were developed

that took advantage of the special features of a PC-type machine (personalized and

dedicated).
Over time, computing hardware has experienced an exponential increase in

power while also seeing much cheaper prices. This fact alone has stimulated a

lot of the churn in replacing systems as we are often able to deploy new systems

1.5 Computer Hardware Trends and “Laws” 39

that are not only more powerful, but cheaper—often to the extent of being able to

replace them at less than the maintenance cost of the current system. This is the

primary observation30 that Gordon Moore made in 1965 (see Moore [1965]) in the

form of integrated circuits:31 It is amazing that this observation has held largely
true since Gordon Moore made it in 1965, but technology is rapidly approaching

physical limits where this trend may no longer apply.

the number of transistors per chip will double every two years.

This observation has also held true in the size and cost of memory as well as in

disk storage cost. See Figure 1.24 for how this has applied to the number of transis­
tors in microprocessors. Note that the transistor count scale is a logarithmic scale,
making the exponential increase appear linear in Figure 1.24.

The impact on software of Moore’s Law has been dramatic. The constant
changes in computing devices has driven economic and expediency incentives to

reuse software and to have software that is portable to a wide variety of computers.
Additionally, the increased use of computers has often led to a shortage of time or
programmers to create all the needed programs. The increased computing power
has helped enable the creation of a number of abstract layers as performance

became less of a constant concern. New computer lines were created with the abil­
ity to reuse software as a major design requirement. A famous example is the devel­
opment of the IBM System/360 mainframe series of computers where binary com­
patibility was a design requirement. Later generations of IBM mainframes kept
this ability to run old software; this was a major selling point. One of the factors
in the design of MULTICS32 and UNIX operating systems was the design for porta­
bility of code. This portability comes at some performance cost and the fact that
computers were rapidly becoming more powerful made this cost easy to absorb.
Moore’s Law is also seen to have a negative effect on software in the creation of
what has been disparagingly called bloatware. The argument is: because there is
little incentive to be efficient, why not develop software in the quickest manner

30. While this is called a “law,” it really is just an observation that fits the trend. Most of these

“laws” are just observations.

31. Note that this is sometimes stated as doubling every 18 months, but that was attributed to

another Intel executive.

32. MULTICS is an acronym for Multiplexed Information and Computing Service. UNIX is not an

acronym but more of a pun on the MULTICS name. Portability was not a strong design factor for
MULTICS but was a factor in choosing to use PL/I for most of the coding to allow more of the

system to be independent from the hardware. At the same time, MULTICS was also using several
hardware features not generally available, making it difficult to port.

40 Chapter 1 Introduction to Software History

Figure 1.24	 MOSFET transistor counts for microprocessors against dates of introduction from 1971
to 2018. (Source: https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-ti
me-to-2018.png licensed under CC-BY-SA by the author Max Rosen.)

and in effect waste processing and memory capacity? An example of this has been

systems such as Microsoft Windows, where the current estimate is roughly 50 mil­
lion lines of code in Windows 10 (according to https://code.org/loc and Microsoft’s
Facebook Windows page at https://www.facebook.com/windows/ in 2019). While

lots of new functionality has been introduced to Windows, some would argue that
the operating system is overly complex, leading to bugs as well as using more of
the computer’s processing power than it really needs to. Apple’s iTunes has also

been similarly criticized.33

33. See http://gizmodo.com/5335754/itunes-9-will-be-a-bloated-social-monster for an example of
Apple iTunes 9 being criticized as “bloated.”

https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png
https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png
https://code.org/loc
https://www.facebook.com/windows/
http://gizmodo.com/5335754/itunes-9-will-be-a-bloated-social-monster

1.7	 Summary 41

1.6 Lessons Learned from Hardware Evolution Affecting Software
The evolution and changing of hardware has directly affected software in a num­
ber of ways. Some of these lessons that continue to affect how we develop software

include:

∙	 Hardware advances have let software grow. As Moore’s Law has continued,
software has been able to grow without having to be as concerned with per­
formance or size. With early computers, the constraints of system perfor­
mance and memory size restricted the problems that could be solved and

how they were solved. If this hardware growth in performance and memory
capacity do not continue to grow at the same rate, software may be forced to

be more efficient and live within memory constraints in order to solve ever
larger problems.

∙	 Hardware implementations of software have more limited lifespans. There have

been many examples of implementations of software in hardware and most
of these have had very limited lifespans. Examples include the development
of database machines and artificial intelligence machines that were designed

to implement these systems in hardware. While databases and AI continue

to be developed, these sorts of specialized computing devices come and go,
often driven by a desire for better system performance.

∙	 Hardware stimulates software development. New hardware devices and new

hardware capabilities encourage the development of additional software to

utilize those features. Besides just faster computing, the development of
additional hardware capabilities (like graphical displays and sensors) and

devices (like mice and network interfaces) have required software to leverage

those new capabilities.

∙	 Abstracting software from the computational engine stimulates software develop­
ment. The ability to write software that isn’t heavily dependent on a particular
computer makes that software likely more valuable and useful. This makes
it more worthwhile to write software that may be used by more people and

companies. This abstraction of software has also made it more possible for
that software not to need to change every time the hardware changes as well
as allowing higher levels of software abstraction to be built on top of it.

1.7 Summary
This chapter introduces a definition of software that includes not only the program

but the concepts and methods to build it. The definition assumes software is part

42 Chapter 1 Introduction to Software History

of a running system and not just a theoretical construct. This chapter defined the

terms and structures that will be used in Chapter 2 to build a specific model for
software history and evolution.

This chapter gives a very brief outline of computer hardware history, focused

on the computer itself. Specifics of other hardware (such as networking) will be

included in other chapters as needed. This chapter also focused on early computer
history. Other computers will be brought in as appropriate to later chapters.

Some of the key points about how software has been impacted by computing

history are:

∙	 The von Neumann architecture allowed for computers to be more easily pro­
grammed and separated the program from the machine. This eventually
allowed for layers of software to be developed and software to become its
own separate concept.

∙	 New computer classes generate an opportunity for new programming envi­
ronments and software. As an example, with the creation of the PC class,
Microsoft created a BASIC compiler for the MITS Altair, and in winning a

deal with IBM to produce the BASIC compiler (and the operating system)
for the IBM PC, helped to create an industry for PC software. In Microsoft’s
case, they created new programming environments, leveraging the new PC

class. Another example is the introduction of the Android and iOS operating

systems for the mobile computing class. New computer classes are able to

create new markets with much less of an embedded software base, and as a

result, new ways of programming and new software systems can be adopted

more quickly.

∙	 Many efforts have been less influential (Zuse, Babbage, ABC, etc.) than they
could have been, and in some cases, should have been. For example, Zuse

developed a sophisticated programming language, Plankalkül, but it was not
published for decades, losing the influence it could have had over the devel­
opment of programming languages. Babbage’s Analytical Engine had many
interesting ideas that were similar to what was rediscovered in the develop­
ment of programmable, electronic computers. Work on the ABC was dropped

before it could be very influential.

∙	 The speed of computation continues to increase while its unit cost decreases.
This has led to the ability to create much more complex software systems
(and some would argue bloatware). Additionally, this ability to do more with

less cost has led software to new areas of application, often with the introduc­
tion of new classes of computation. For example, the creation of mobile apps

1.8 Exercises and Projects 43

is an example of where having a new computing class allows for additional
areas of application (using features characteristic of that class: e.g., mobility,
always connected, and personalization). Another impact of the expansion of
the use of software is the continued drive to reuse software. This drive to

reuse is partially because there has often not been enough programmers to

write all the programs needed at that time. So, drives to increase productivity
for writing new software as well as to increase the usability of existing soft­
ware through reuse and portability have been recurrent since the late 1950s.
This has led to terms such as “software crisis” being coined to reflect the

bottleneck that writing software is often perceived as being.

Lastly, a few models were introduced to begin to look at the larger scope of
computer evolution, such as Bell’s Law and Moore’s Law.

1.8 Exercises and Projects

1.8.1 Exercises
1. Why does the definition of software in this text include “related methods and

tools?” What does knowing about the methods and tools used to develop

software tell us about the software?

2. Give an example of a specific physical phenomenon that software depends
on in order to run. Can a different physical phenomenon be used? If so, give

another example phenomenon. If not, explain why that’s the only physical
phenomenon that can be used.

3. A software	 engineering project might include both standard and non­
standard engineering components. Give an example of a software engineer­
ing project where this would be appropriate.

4. Give an example of two kinds of software that have a technical co-evolution

relationship. Explain how they have co-evolved.

5. Williams–Kilburn (or sometimes just called Williams) tubes were used for
early memory storage, such as in the Manchester Baby. Explain what memory
technology replaced them and why.

6. The notion of a program is different from that of software as defined here.
Explain how a program can be machine dependent while the definition of
software defines it as distinct from the machine.

7. The term “bug” is often ascribed to Grace Hopper having found a moth in

a relay in the Harvard Mark series machines and pasting it in the logbook.

44 Chapter 1 Introduction to Software History

Figure 1.25	 Bug entry in Harvard Mark II logbook held at the Smithsonian. (Source: Courtesy of
Division of Medicine and Science, National Museum of American History, Smithsonian
Institution.)

Find a paper or resource that refutes this origin of the term “bug” and

explain the origin from your source’s point of view. Hint: the logbook is at
the Smithsonian National Museum of American History (see Figure 1.25).

8. Investigate the System Development Corporation (SDC; founded in 1955 in

Santa Monica), which is considered one of the first software development
companies. Find and explain at least one innovation that is attributed to

SDC.

9. The IBM 704 computer has an interesting place in software history as being

the machine on which FORTRAN and LISP were both developed. Explore why
the IBM 704 had such an influence on software. What are the characteristics
of the IBM 704’s hardware as well as the market position that made it more

likely to be the system that many used to develop innovative software systems
in the mid-1950s? See Figure 1.26.

10. The Jacquard loom had a notion of “programmability.” Find an example

of the “program” for a Jacquard loom and document it. In your documen­
tation explain the purpose of the program and each element of the cards
used to implement the “program.” An example of a mid-19th century woven

1.8 Exercises and Projects 45

Figure 1.26	 The IBM 704 is where FORTRAN, LISP, and the SHARE Operating System were
developed (circa 1954). (Source: Courtesy of International Business Machines
Corporation, ©International Business Machines Corporation.)

picture of Joseph-Marie Jacquard along with a picture of a Jacquard loom

using punched cards is in Figure 1.27.

11. Konrad Zuse developed a language called Plankalkül (calculus of programs)
at the same time as his early computers (Z1, Z2, Z3, and Z4) between 1942

and 1945. Plankalkül was designed but not implemented at that time; it was
implemented much later. Find an example program in this language and

explain how it works. See http://zuse.zib.de/ for an archive of his papers and

examples of Plankalkül.

http://zuse.zib.de/

46 Chapter 1 Introduction to Software History

Figure 1.27	 The Jacquard loom-produced silk woven picture of Jacquard and a loom using punch-
card mechanism. (Source: Courtesy of Smithsonian Institution, bequest of Richard
Cranch Greenleaf in memory of his mother, Adeline Emma Greenleaf.)

1.8 Exercises and Projects 47

12. Compare the instruction set of the Burroughs 5000 with that of the IBM 704.
Note the similarities and differences. Explain why such differences existed

in these machine languages.

13. Ada, Countess of Lovelace, is often noted as the “first programmer,” having

worked with Charles Babbage on the Analytical Engine. In particular, she

developed ways to use the Analytical Engine that used looping. Find an actual
example in her writings where she noted this concept. Argue whether or not
what she created was software by the definition given in this chapter. An excel­
lent reference that explores Ada’s contributions is Hammerman and Russell
[2015].

14. The ENIAC used a method of patch cords to change the configuration of the

“program” it was to run. Find an example of how these plugs were config­
ured and explain how it implemented a particular function. Hint: There is a

Java-based simulator for ENIAC and its operation is well-described in Haigh

et al. [2016]. Explain how this configuration of the ENIAC is different from a

modern program that would accomplish the same task.

15. Look up the US Patent number US2293127A (Computing Device). This patent
was filed in 1937 by Howard Fishack, Loren Miller, and John Shively. Find out
what other important patents this patent influenced and speculate why this
patent was referenced.

16. Investigate whether Koomey’s Law (for battery technology) is still holding for
current battery technology. Are battery technologists worried about an end

to Koomey’s Law or do they see it lasting another decade or more? Create a

graph showing Koomey’s Law and project it into the future based on what
battery technologists are predicting.

17. The ABC was credited to be the first electronic digital computer via the

resolution of the Honeywell v. Sperry Rand lawsuit in 1973 and Atanasoff
was declared the inventor of the computer. The ABC, however, was a spe­
cial purpose computer that wasn’t really programmable and not Turing-
complete. The ABC did demonstrate a number of critical ideas such as
using binary digits, using electronics to perform calculations, and having

separated computation from memory. The ABC also had an arithmetic logic
unit that was completely electronic. Determine the entire class of problems
that can be solved using the ABC. Formally define what problems it can and

cannot solve. Iowa State University has archives and documentation on the

ABC. A good place to start is the website https://jva.cs.iastate.edu/history.
php. The overall design of the ABC is in Figure 1.28 and a photo of Clifford

Berry at the original ABC is in Figure 1.29.

https://jva.cs.iastate.edu/history.php
https://jva.cs.iastate.edu/history.php

48 Chapter 1 Introduction to Software History

Figure 1.28 The ABC’s overall design. (Source: Iowa State Univ. Library Special Collections and
Univ. Archives.)

Figure 1.29	 Clifford Berry with the ABC. (Source: Iowa State Univ. Library Special Collections and
Univ. Archives.)

18. Bell’s Law [Bell 2008b] predicted a new class of computing roughly every
decade. Looking at recent types of computer classes, show whether new

classes are still occurring every decade or significantly more or less fre­
quently than every decade. Explain with examples and a timeline to justify
your answer.

1.8 Exercises and Projects 49

19. Corbató’s34 Law states that “The number of lines of code a programmer can

write in a fixed period of time is the same, independent of the language

used.” Find any proof (research or formal studies) that indicate whether this
was true or false. Is the “law” largely true or false? What was the motivation

behind this law?

20. Bill Joy (co-founder of Sun Microsystems) formulated that the peak computer
speed roughly doubles each year and thereby can be determined by a func­
tion of time. He expressed it as: S = 2Y−1984 (where Y is the year). This formula

has since become known as Joy’s Law. Compare Joy’s Law to Moore’s Law and

determine which has been more accurate since 2010.

21. Some have predicted that the traditional PC is being replaced by mobile

devices such as smartphones and tablets. Show data for how the sales
of desktop and laptop PCs are changing over time. Can you support the

argument that they are being replaced by mobile devices? Why or why not?

22. Look up the US Patent number US2192612A (Multiplying Machine). This
patent was filed in 1937 by IBM and refers to multiplying numbers using

binary notation. Did this patent influence others to use binary? Is it refer­
enced as prior art in later binary machines?

23. The Harvard Mark I used a method of plug boards and paper tape in order to

be programmed. Grace Hopper was involved in programming this machine

and produced plug diagrams as in Figure 1.30. This plug diagram is for Prob­
lem “L,” generating Bessel function tables. Determine what this problem was
trying to solve and describe what was the use of the problem’s solution.

24. One of the key early decisions in computing hardware was the separation of
the CPU from the memory (or the mill from the store in the Babbage Ana­
lytical Engine), with the memory storing instructions for the program and

results. Explain why that made it easier to create computers that were more

easily programmed for a wide variety of tasks. Be sure to compare it to a

design that does not make this separation.

25. One argument is that because of Moore’s Law being largely true the last few

decades software has not had to evolve to become fundamentally more effi­
cient. Give an example of a particular software system that would have had

to have been more efficient if the hardware had not sped up nearly as quickly

34. Fernando Corbató at MIT and Project MAC will be mentioned again in connection with the

CTSS and MULTICS operating systems.

50 Chapter 1 Introduction to Software History

Figure 1.30	 Grace Hopper’s plug diagram for the Harvard Mark I, for Problem “L.” (Source:
Courtesy of Grace Murray Hopper Collection, Archives Center, National Museum of
American History, Smithsonian Institution.)

1.8.2

1.8 Exercises and Projects 51

as it did. That is, the example software system as designed would not have

worked well or not worked at all because of the unavailability at the time of
cheap, fast hardware. Explain why.

26. Consider what would happen if we had a large-scale move to a fundamentally
different computing mechanism, such as quantum computing. By “large

scale,” I mean that any new, meaningful software development or deploy­
ment will likely use the new technology. What would this do to software as a

whole? Would you expect this to dramatically change most existing software

or to have a marginal effect on most software? Explain how you would expect
the existing software base to change and how future software might evolve

differently.

27. Binary representations of integers and floating point took some time to stan­
dardize. One example of an alternative representation was the use of ones’
complement to represent negative integer numbers on UNIVAC 1100 com­
puters. A side effect of using ones’ complement is that it is possible to have

a “minus zero” representation. Explain how this could make programming

such a machine more complex than using two’s complement.

Projects
1. Pick ten different computers from the late 1950s. Get the complete list of
machine instructions for these and compare them. Identify unique instruc­
tions and explain why they were useful. Compare these to Intel’s Pentium

microprocessor machine instruction set and explain how these old machine

instructions were either subsumed, replaced, or no longer needed.

2. There have been many predictions that Moore’s Law is about to end. That is,
processors’ transistor counts will not be able to continue to grow at the same

rate as predicted by Moore’s Law. Investigate the factors that are limiting the

growth of Moore’s Law and produce a report detailing the different mech­
anisms and techniques that may allow Moore’s Law to continue to predict
growth in transistor density over the next few decades. Include in your report
predictions on computing cost and whether that will continue to decline at
the same rate. See resources such as Mack [2011], Schaller [1997], Mollick

[2006], and Ceruzzi [2005].

3. Reliability for tube-based machines was a real challenge as tubes have a

relatively high failure rate (compared to relays, transistors, and integrated

circuits). As a result, many of these early tube-based machines were lucky to

run for an entire day. Investigate the failure rate of tubes, transistors, ICs,
and memory DIMMs. Based on this investigation, determine the probable

52 Chapter 1 Introduction to Software History

failure rates of machines using tubes, transistors, ICs, and VLSI for memory
and processing. What is the point (i.e., how many elements) where comput­
ers based on each of these technologies becomes untenable (say, fails every
30 minutes or less without a way to recover) based on the current failure

rates? Apply the same analysis to CPUs (i.e., How many CPUs will produce

a machine with a failure every 30 minutes or sooner?).

4. Consider the tablet computer as a new “class” of computers and investi­
gate how well that fits the model described by Bell [2008]. In particular,
investigate the efforts to develop tablet computers such as the RAND tablet
(1963), Xerox PARC’s DynaBook [Kay 1972], the Linus Technologies Write-
Top (1987), and the University of Illinois at Urbana-Champaign’s winning

entry in the PC of the Year 2000 competition (1987, sponsored by Apple Com­
puter Corporation).35 Given the long history of tablets, why have they become

popular only recently? What other factors were involved in making them

viable?

5. Investigate the origins of an accumulator. This usually manifests itself as a

particular register that is identified as an accumulator. Track the history of
accumulators through the earliest devices and into card tabulating accumu­
lators (such as the IBM 514), and as a register of early computers. Explain

how accumulators have changed in function over time and why they are not
needed in the same way they once were in mechanical devices.

6. In Figure 1.31, Grace Hopper diagrams important computers and their influ­
ences on each other in a tree she presented in 1958. Compare her tree to those

from more modern histories of computing noting those that are either not
mentioned or rarely mentioned in these modern histories (such as Ceruzzi
[2003], Ceruzzi and Haigh [2021], Mahoney [2011], and Williams [1997]). Com­
puters that you may find are less referenced include those such as the BARK,
RAYDAC, Elecom, among others on her diagram. Determine what contri­
butions to computing these less referenced computers had and whether
those contributions were critical. Also, note the computers that have since

become more significant in more recent diagrams and speculate as to why
she didn’t include them in her diagram. This might include computers such

as the Robinson machines and Colossus computers. Another detailed tree is
at https://ftp.arl.army.mil/ftp/historic-computers/png/comp-tree.png where

35. See http://www.computerhistory.org/atchm/yesterdays-tomorrows-the-origins-of-the-tablet/
for a good starting article on tablets.

https://ftp.arl.army.mil/ftp/historic-computers/png/comp-tree.png
http://www.computerhistory.org/atchm/yesterdays-tomorrows-the-origins-of-the-tablet/

1.8 Exercises and Projects 53

Figure 1.31	 Grace Hopper’s 1958 diagram showing computer influences. (Source: Courtesy of Grace
Murray Hopper Collection, Archives Center, National Museum of American History,
Smithsonian Institution.)

the decades are shown and influences of computers from the US Army’s
perspective until the mid-1960s.

7. Using only relays as switching devices, such as in the Bell Labs relay com­
puters (see Figure 1.32), design and build a multiplier circuit that will take

as input two 4-bit numbers and output the result. Refer to Shannon [1940]
or other resources (there are several YouTube videos as well) on how to build

logic circuits using relays and then assemble those gates into logic circuits
to build the relay multiplier.

8. After Babbage’s	 design of his Analytical Engine but before electronic
computers were developed, there were several other efforts to design analyti­
cal computing devices such those by Ludgate, Torres, and Bush as described

in Randell [1982]. Using Randell [1982], Haigh and Priestley [2016], Babbage

54 Chapter 1 Introduction to Software History

Figure 1.32	 Stibitz’s relay computer at Bell Labs (1940). (Source: Courtesy of AT&T Archives and
History Center.)

[1864], and Babbage [1889] as starting points, detail how the concept of a

program and programmable device evolved from Babbage’s description of
the Analytical Engine to digital devices such as the Colossus computers,
ENIAC, and Manchester Mark 1. Explore the direct influence of Babbage’s

1.9 Further Readings and Online Resources 55

ideas and how those ideas influenced the concepts of program and

programmability.

1.9 Further Readings and Online Resources
The history of technology, and in particular studies in how technology evolves,
can be found in Constant [1980], Parayil [1999], and Arthur [2009]. A good book to

understand the changes in programmer culture is Ensmenger [2010].
Computing hardware history has been studied and documented widely such as

in Williams [1997], Mahoney [2011], Ceruzzi [1983, 2003] (updated as Ceruzzi and

Haigh [2021]), Bruderer [2015], and Campbell-Kelly et al. [2013]. For more informa­
tion on the ENIAC, see http://www.seas.upenn.edu/about-seas/eniac/ for the Uni­
versity of Pennsylvania’s ENIAC site and Haigh et al. [2016]. Please see Hook et al.
[2002] for a broad reference on the history of computing and telecommunications.
See Lazou [1988] for descriptions of various supercomputers and techniques used

to program them. The National Research Council [1966] provides a perspective into

how universities affected computing and were beginning to use computing in the

1960s.
The evolution and growth of the software industry has been well documented

in works such as Cortada [2012] and Campbell-Kelly [2003]. For details on Moore’s
Law see Mollick [2006] and Mack [2011].

There are many substantial history of computing resources available in archives
and online, some of the more significant ones are as follows:

∙	 The Charles Babbage Institute (CBI). See http://www.cbi.umn.edu/ for their
main site. The CBI houses a vast number of archives related to computing, as
well as oral histories and online, digital collections. The CBI houses a large

collection of resources in its physical archives of computing-related material
including the papers of many pioneers of computing.

∙	 The Computer History Museum (CHM). See http://www.computerhistory.org/.
CHM has a large museum in Mountain View, CA, as well as a large num­
ber of online resources including oral histories at: http://www.computerhi
story.org/collections/oralhistories/. Affiliated with the CHM is the Software

Preservation Group, which houses a number of important software systems
at: http://www.softwarepreservation.org/projects/. The CHM also houses a

physical archive of resources relating to computing history.

∙	 Bit Savers. See http://www.bitsavers.org/ for a large repository of software and

manuals. This repository is replicated at several mirror sites and contains
complete scanned manuals as well as actual software.

http://www.seas.upenn.edu/about-seas/eniac/
http://www.cbi.umn.edu/
http://www.computerhistory.org/
http://www.computerhistory.org/collections/oralhistories/
http://www.computerhistory.org/collections/oralhistories/
http://www.softwarepreservation.org/projects/
http://www.bitsavers.org/

56 Chapter 1 Introduction to Software History

∙	 The Smithsonian Institution. The Smithsonian has a number of online

resources available through http://www.smithsonian.com/ and their
archives. They also house a number of oral histories. The Smithsonian

archives contain the papers of several computing pioneers as well as physical
artifacts related to computing.

∙	 Society for Industrial and Applied Mathematics (SIAM). SIAM has a number
of oral histories focused on scientific computing and numerical analysis
housed at http://history.siam.org/oralhistories.htm.

∙	 IEEE Global History Network. The IEEE global history network houses a num­
ber of oral histories at: http://www.ieeeghn.org/wiki/index.php/Oral-History:
IEEE_Oral_History_Collection. The IEEE Global History Network houses a

number of other resources related to the history of computing, engineering,
and technology.

∙	 UK National Archive for the History of Computing. See http://www.chstm.ma

nchester.ac.uk/research/nahc/ for this archive housed at the University of
Manchester that holds a large number of items related to computing in

the UK.

http://www.smithsonian.com/
http://history.siam.org/oralhistories.htm
http://www.ieeeghn.org/wiki/index.php/Oral-History:IEEE_Oral_History_Collection
http://www.ieeeghn.org/wiki/index.php/Oral-History:IEEE_Oral_History_Collection
http://www.chstm.manchester.ac.uk/research/nahc/
http://www.chstm.manchester.ac.uk/research/nahc/

2For the earliest computing devices, such as the Harvard Mark I and the ENIAC,
programming consisted of placing plugs in the right positions in order to com­
pute the functions in the order you needed to solve a particular problem. The

“software,” which at this point wasn’t even coined as a term, consisted of descrip­
tions of how to configure the patch cables and how to configure the initial starting

conditions. Even for later computers, there was no software at all that came with

the computer—no compilers or operating system. You had to somehow key in

machine instructions (in binary) either through a panel or read them in using a

tape or cards. You might first input the command to read the tape through the

panel and then read in the loader from a tape or cards. Then run the loader to read

in your program, all in binary. So, your program was all in machine code, using

the instructions available on that computer. Software at this stage consisted of
paper forms encoding the instructions and the actual tapes. As we’ll discuss in

the coming chapters, assemblers, interpreters, and libraries of functions and pro­
cedures were developed in order to allow a level of programming using mnemonic
codes. By the late 1950s, compilers and operating systems were being developed

and deployed, allowing a level of programming and software more like we see

today.

Software History
Fundamentals

This chapter covers material about the nature of software history and how it can be

difficult to capture and describe. This chapter also covers the general structure of
software, types of software, and cultures and groups of software developers. Soft­
ware has rapidly evolved to have a diverse breadth of types, and different types of
software have different factors affecting their change over time.

2.1 Overview of Software History
Software systems can be very difficult to understand. The obstacles include not
knowing the context in which the system was built, nor the technologies that were

58 Chapter 2 Software History Fundamentals

Figure 2.1	 8K BASIC compiler paper tape for Heathkit H11 Computer (1978). (Source: Photo taken
by author of personally owned tape.)

used, and not having documentation. Systems no longer in use can be even harder
to understand as we often do not have a way of running the system to see how

it behaves at runtime. Consider the BASIC compiler in Figure 2.1 from 1978 and

designed for a 16-bit Heathkit H11 hobbyist computer. To load the tape, we’d need

a suitable paper tape reader. We’d need to know how it was encoded. We’d need

to know the assembly language for the Heathkit H11 on which it ran. And that’s
just to get it loaded, let alone understand the software, its design, and the context
for which it was used. Ideally, we’d also have a working version of the H11 (and its
operating system, HT-11) in order to actually run it in the way it was originally used.
Consider this portion of code from Burroughs Corporation’s BALGOL compiler in

2.1 Overview of Software History 59

Figure 2.2	 Burroughs BALGOL 220 compiler excerpt. (Source: Courtesy of the Computer History
Museum.)

Figure 2.2.1 This is a page from the assembler code for a compiler written in 1961.
This code is written in Burroughs Assembler language for the B2202 computer.

The comments in this code are extremely helpful and show that this part of
the code was used to recognize function calls (among other things) in programs
being compiled. In order to understand this, one needs to also understand the

1. The complete listing can be found at http://archive.computerhistory.org/resources/text/Knuth_

Don_X4100/PDF_index/KnuthDigitalArchive-Index.html. Note that this code is unusually well-
documented. Donald Knuth documented this for Burroughs. In a personal discussion with Don

Knuth, he noted this was no easy task, even at the time.

2. Originally called the Datatron 220, before Datatron was purchased by Burroughs. An emulator
for this computer can be found at http://datatron.blogspot.com/2018/.

http://archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/KnuthDigitalArchive-Index.html
http://archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/KnuthDigitalArchive-Index.html
http://datatron.blogspot.com/2018/

60 Chapter 2 Software History Fundamentals

assembly language for the Datatron 220.3 So “CLL” refers to the “clear location”
instruction, “LDB” refers to the “Load Register B” instruction, “DLB” refers to the

“Decrease Field Location, Load Register B” instruction, and so on. Furthermore,
one would need to know the architecture of the machine and how operations were

processed (registers, stacks, memory structure, etc.). As an example, one would

need to understand memory overlays (as referenced in line 025-91 Figure 2.2).
One might also need to understand the hardware configuration of the machine,
interrupts, and peripherals to understand how it ran. In addition, there may be

other bits of software that the system depends on such as the operating system

that often provides system calls support but is code outside the program itself. As
software has become more abstracted from the details of the computer(s) it runs
on, the easier it is to understand a piece of software in isolation. However, soft­
ware is always somewhat hardware-dependent4 and also has an ever-increasing

software environment on which it depends. This environment can include oper­
ating systems, compilers, networking, standards, formats, and other software

systems.
Besides being difficult to interpret and understand, software is also vast. Mil­

lions of programmers continue to crank out programs of every type. With thou­
sands of programming languages, thousands of different computers, and a huge

variety of programs, it’s impossible to cover every variety of software. There are also

few constraints on the variability of software beyond those in the environment in

which it must run. Furthermore, there are many environments in which software

may run, further increasing the replication of similar solutions and applications.
For example, there are a large variety of mobile devices, most of which run a variety
of web browsers, each of which is a little bit different depending on the device, the

operating system, and the version.
So, which software is important and which is not? Software that has had a big

influence on the direction of other, later software or fulfills a critical niche obvi­
ously is. Other software has implemented a key concept or algorithm and has
been influential to other software systems. Software that is widely used impacts
many people and organizations. Systems that use standard engineering, as defined

in the last chapter, are implementing previously known techniques and solutions.
Even though there are a lot of software systems that are standard engineering

(such as payroll systems), our focus will be on how software has changed. We

3. See http : / /www.bitsavers .org /pdf /burroughs/electrodata /B220/5006_Datatron_220_

Instructions_1957.pdf for documentation of the machine language.

4. Though that dependence has become less and less direct as software has become more portable

and often running in virtualized environments.

http://www.bitsavers.org/pdf/burroughs/electrodata/B220/5006_Datatron_220_Instructions_1957.pdf
http://www.bitsavers.org/pdf/burroughs/electrodata/B220/5006_Datatron_220_Instructions_1957.pdf

2.2 Types of Software 61

will therefore focus on those systems that use non-standard engineering and invent
new techniques, concepts, or principles that are likely to influence, and often have

influenced, past and future software systems.

2.2 Types of Software
This section describes the scope of software and describes a taxonomy for struc­
turing the study of software.

For early machines, the programs developed were highly dependent on the par­
ticular computers for which they were developed. As a result, that software which

was developed was not a general solution nor easily portable to a different com­
puter. As machines became more powerful, it became helpful to use some of the

extra power to aid in processing software, and specialized software such as operat­
ing systems was developed. As this sort of “structural deepening” or specialization

occurred, we have a number of software specialties that have been created. A num­
ber of these have become technology domains in their own right. The structure of
this book is around major and fundamental domains of software.5

The highest level of categorization of software is based on the type of compu­
tational device upon which it runs. While in Chapter 1 we mostly discussed those

that use electronic computation using a von Neumann-type architecture, there are

other computational devices that have been used or are in an experimental stage.
This book only covers the first type (von Neumann). The other types have, so far,
required and used different algorithms and different types of computation, but at
some point they may be used as an abstract computing engine with an interpretive

layer between existing software and the computational engine. Some of the types
of these computational engines are listed here:

∙	 von Neumann. This is the type described in Chapter 1 that almost all comput­
ers are now using. This is the model of a separate memory, computational
component, and stored program that controls the running of the computer.
Furthermore, this is almost entirely implemented as an electronic device

using binary representation.6 Most computers tend to be general purpose

5. Domains covered here were chosen by their relevance to current students of software. Some

domains, such as scientific computing and embedded systems, are not yet covered here due to

space and time but are influential and continue to be relevant.

6. Note that not all early computers used binary. ENIAC and others used decimal, notation,
binary-coded decimal (BCD), and bi-quinary coded decimal. Bi-quinary coded decimal was
used in the Colossus. Three-valued logic (trinary) has also been proposed and used in some

computers.

62 Chapter 2 Software History Fundamentals

Figure 2.3	 ENIAC programming before the von Neuman architecture: Standing: Marlyn Wescoff;
crouching: Ruth Lichterman. (Source: US Army Photo from the archives of the ARL
Technical Library.)

and are computationally complete.7 All of the following chapters will assume

this type of computational basis.

∙	 Pre–von Neumann. Computers such as ENIAC and the Harvard Mark I used

plug boards and did not really separate the program from the machine. They
are included here for completeness. See Figure 2.3 for a photo of plugging in

cables to program the ENIAC.

∙	 Biocomputers. An emerging class of computation using systems of biolog­
ically derived molecules and processes as a basis for computation. They
use these biocomputers to store, retrieve, and process data. Nanobiotech­
nology is an enabling technology that allows the design and assembly of
biomolecular systems. DNA computing and peptide computing are some

7. That is, they are Turing complete and can perform every computation that a universal Turing

machine can complete. Very simple computational machines can be Turing complete. As exam­
ples, systems such as the Minecraft game and Conway’s Game of Life have been shown to be

Turing complete.

2.2 Types of Software 63

methods being explored. Interestingly, scientists recently exhibited the abil­
ity to create a transistor-like device, dubbed a transcriptor.8 It is unclear what
software will eventually look like for biocomputers, but the field has been

assigned the term wetware.

∙	 Quantum computation. Quantum computation makes use of quantum-
mechanical phenomena to perform operations on data. Quantum comput­
ers use what are called qubits. These qubits can be in what is called a super­
position of states. So, a qubit’s state is only set when it is observed. This yields
a very different kind of algorithm and fundamental basis for building a com­
puter. Small quantum computers have been built using a variety of different
techniques. The D-Wave 2000Q quantum chip was introduced in 2017 and

supports 2000 qubits. A quantum Turing machine has been built as a theo­
retical basis for this model of computation. See Nielsen and Chuang [2011]
and Mermin [2007] for more information on quantum computation.

∙	 Optical (or photonic) computation. Partially driven by the desire to make opti­
cal fiber communications all-optical, rather than having to translate back

to electrical at every switching point, optical computation has been work­
ing to build optical switches, routers, and computers. So, optical computing

uses optical fiber and then optical transistors to produce logic gates to build

computers. So far, optical computing has not been cost effective. Software

for optical computers would likely be the same (above the operating system)
as in electronic computers. See Tucker [2010], McAulay [1991], and Karim and

Awwal [1992] for more on optical computation. Some have argued that optical
computing is dead, such as in Beeler [2009].

∙	 Analog computers. Analog computers take many forms; there are mechani­
cal, electro-mechanical, electrical, and digital–analog hybrid computational
devices. Usually, analog computers deal with continuous functions rather
than discrete values as binary computers do. There’s also some who view

them as analogous to their problem domain (hence “analogues”) and look

at them as modeling techniques (see Care [2010]). One of the more success­
ful types was the differential analyzer machines such as those used at MIT in

the 1920s and 1930s under Vannevar Bush’s9 group there. Many others were

8. Note the transcriptor was invented by a team in 2013 led by D. Endy at Stanford University. It was
hailed as the last component needed to build biological computers. See http://openwetware.org/
wiki/Endy_Lab for more on Endy’s lab’s work.

9. Vannevar Bush was very influential and is famous for having proposed the memex as a way to

store and access a vast amount of information. He also founded Raytheon and was involved in

the initial stages of the Manhattan Project.

http://openwetware.org/wiki/Endy_Lab
http://openwetware.org/wiki/Endy_Lab

64 Chapter 2 Software History Fundamentals

Figure 2.4	 A proposed United Airlines reservation system agent terminal for UNIVAC in 1957 from
Alan Perlis’s papers. (Source: Image courtesy of the Charles Babbage Institute Archives,
University of Minnesota Libraries, Minneapolis.)

built and used in the US and around the world, including at the University
of Pennsylvania’s Moore School (which would also build the ENIAC). These

machines were built to solve differential equations. See Rekoff [1967] for a

description of programming electronic differential analyzers to solve differ­
ential equations. One example of an analog computer out of the many in

operation is the machine used by the Lewis Flight Propulsion Laboratory
(now John R. Glenn Research Center) in 1949 as in Figure 2.5.

Focusing on software for electronic, von Neumann style computers, this book

categorizes software by domain type. Using the notion of a technology domain,
software is structured into domains as in Figure 2.6. As the highest level, soft­
ware is usually driven by trying to create a functioning application to solve a

real-world problem. As a result, many of the core technology domains listed in

2.2 Types of Software 65

Figure 2.5	 The Analog Computing Machine in the Fuel Systems Building of the Lewis Flight
Propulsion Laboratory (1949). (Source: NASA; credit: NACA.)

this figure are pushed and refined by requirements and demands coming from

varied applications. In addition, note that other domains exist in each high-level
domain classification. In Figure 2.6, there are three main classifications of software

domains10:

1.	 Core domains. The bulk of this book focuses on core domains. These are tech­
nologies that have evolved over time and are critical to the ability to build

meaningful software applications. Many of these are collections of tech­
niques, tools, concepts, and software components that have a natural rela­
tionship in trying to solve common problems or serve a common function.
These domains have many possible subdomains that correspond to software

that has a shared evolution (for example, artificial intelligence might have

10. Note that this model is introduced here as a way of structuring the history of software into

parts that are logically related and tend to evolve and mature over time within the domain.

66 Chapter 2 Software History Fundamentals

Software

Programming

Languages &

Tools

Networking

Software

Operating

Systems
Graphics

and HMI

Applications

Artificial

Intelligence

Security

Programming Methodologies

Databases

Business

Applications

Scientific and

Engineering

Embedded

Systems

Personal

Applications

Computational models

Core

Software

Technology

Domains

Software

Application

Technology

Domains

Software-

wide

Technology

Domains

Figure 2.6 A software technology taxonomy.

subdomains corresponding to topics such as machine learning, knowledge
representation, etc.).

2.	 Application domains. Software applications are generally built using compo­
nents from the core domains and depend on the technology from those core

domains to develop solutions and approaches in the application domain.
Application software domains are where the bulk of software has been devel­
oped. See Figure 2.4 for an example of an early airline reservation system

proposed for the UNIVAC.

3.	 Software-wide domains. There are some aspects of software technology that
are pervasive to many core and application domains. Some of these are

software security and the evolution of security technologies. Another one

is software development methodologies and software engineering tech­
niques. Such software-wide domains impact many other software technol­
ogy domains. As an example, consider the impact of software security on

2.3 Cultures and Communities of Software 67

other domains. Networking software and operating system software are

heavily impacted by the need to respond to security threats and have been

re-architected to be much more secure. In software development method­
ologies, a methodology change such as an Agile software development
methodology tends to impact the way many different types of software are

developed.

While the intent of choosing domains and subdomains is to tell a cohesive

story of how the domain has changed over time, these domains are also interre­
lated. Many domains are affected by what has happened in other domains. As an

example, consider the time of the late 1950s when many new, much more power­
ful machines were being introduced. At this time the first compilers came out and

the first operating systems. The ability to write in a high-level language (such as
FORTRAN or ALGOL) as well as to have an operating system to make the machine

more usable stimulated the use of the computer for a wide variety of applications.
Especially in the early days of software, it was common to have the same set of
people working on these different aspects, such as programming languages and

operating systems. So, particularly when the domain is new, it is highly interre­
lated with other domains until it starts to have a life of its own and build its own

complexity.
This textbook focuses on the core software domains. The intent is to cover the

core topics and put in context more detailed topics, particularly those dealing with

applications that are specific to industries or functional types. As an example, soft­
ware gaming applications have become an industry of their own and have a lively
and influential history covered only briefly in this text.

2.3 Cultures and Communities of Software
Throughout this book, there will be references to professional societies, user
groups, research labs, technology companies, and government agencies. While

the scope of this book is not to cover these communities directly,11 they have

had a profound influence on sharing ideas, software, and providing structure and

motivation for advancing software.

2.3.1 Professional Societies
Professional societies have given a place to share ideas by organizing confer­
ences and publications. Some of these are noted below as well as their relevance

to software history. Many of these are currently active in preserving the history

11. See Ensmenger [2010] for an excellent portrayal of many of these communities and how they
developed.

68 Chapter 2 Software History Fundamentals

of the technologies they helped create (including software) through publications
about that history and the collection of information before it disappears, such as
collecting oral histories from technology pioneers.

∙	 ACM.12 ACM was founded in 1947 as an organization focused on comput­
ing. It remains one of the leading scientific and professional societies for
computing. ACM has been extremely influential through its special interest
groups (SIGs) that focus on a particular aspect of computing. As an example,
SIGGRAPH (on computer graphics) has been extremely influential in sharing

and publishing advances in computer graphics. ACM also awards the A. M.
Turing Award13 every year to those who have had a significant impact in com­
puting. The A. M. Turing Award lectures provide a good source of insightful
lectures. The A. M. Turing Award has become known as “the Nobel Prize of
computing,” and carries with it a substantial monetary prize ($1,000,000 as
of this writing). Since 1966, the Turing Award (see https://amturing.acm.org/)
has bestowed prizes for notable contributions to computing such as to Edgar
(Ted) Codd in 1981 (relational database model), Ken Iverson in 1979 (APL

programming language), Ivan Sutherland in 1988 (computer graphics), Fer­
nando Corbató (time sharing operating systems) in 1990, and Frances Allen

in 2006 (compiler optimization). Many of the contributions of Turing Award

winners are discussed in the following chapters.

∙	 IEEE Computer Society and IEEE as a whole. The IEEE14 was formed in 1963
with the merger of the American Institute of Electrical Engineers (founded

in 1884) and the Institute of Radio Engineers (founded in 1912), and was
involved in computing before the 1963 merger. The AIEE had a Subcommittee

on Large-Scale Computing, established in 1946, and the IRE had a Profes­
sional Group on Electronic Computers, established in 1951. After the creation

of IEEE, these groups eventually became the IEEE Computer Society in 1971.
IEEE is organized by technical societies such as the Computer Society, but
also relevant to software are the IEEE Communications Society, the Compu­
tational Intelligence Society, the Information Theory Society, Robotics and

Automation Society, Signal Processing Society, and the Systems, Man, and

Cybernetics Society. The IEEE Computer Society continues to be the focal

12. ACM originally meant the “Association for Computing Machinery” but now prefers to go by
just the acronym ACM.

13. See http://amturing.acm.org/ for information about the winners and the award. Also see

http://amturing.acm.org/lectures.cfm for the A. M. Turing Award lectures.

14. Originally incorporated in 1963 as “The Institute for Electrical and Electronics Engineers,” but
now officially named just “IEEE.”

https://amturing.acm.org/
http://amturing.acm.org/
http://amturing.acm.org/lectures.cfm

2.3 Cultures and Communities of Software 69

point for most IEEE computer-related activity including publications and

conferences. IEEE also has a number of computing-related awards such as
the John von Neumann Medal that has been awarded since 1992 to peo­
ple such as Donald Knuth in 1995 (contributions to computer science and

programming), Douglas Englebart in 1999 (interactive, personal computing),
and Fred Brooks in 1993 (computer architecture, software engineering, and

education). These contributions are noted in later chapters.

∙	 American Federation of Information Processing Societies (AFIPS). From 1951
until 1961, its precursor was called the National Joint Computer Committee

and held the Western Joint Computer Conference (WJCC) and Eastern Joint
Computer Conference (EJCC). AFIPS was formed in 1961 as a federation of
societies (primarily, ACM, AIEE, and IRE) to replace the National Joint Com­
puter Committee and held the Spring and Fall Joint Computer Conferences,
and then the National Computer Conferences. AFIPS was dissolved in 1990

and some of its remaining functions were absorbed by the largest of its mem­
bers, ACM and the IEEE Computer Society. AFIPS first published the Annals
of the History of Computing, which is the most prestigious journal related to

computing history. The Annals of the History of Computing moved to the IEEE

Computer Society when AFIPS was dissolved. The conference proceedings
(WJCC, EJCC, and NCC) provide a wealth of historical information.

∙	 Society for Industrial and Applied Mathematics (SIAM). SIAM was formed in

1951 around the industrial uses of mathematics. SIAM is particularly influ­
ential in numerical computation and numerical analysis. SIAM publishes
journals such as the SIAM Journal on Numerical Analysis, the SIAM Journal on

Computing, and the SIAM Journal on Scientific Computing.

∙	 AITP and DPMA. In 1949, the AITP was formed as the National Machine

Accountants Association (NMAA) in Chicago as a society focused on informa­
tion technology education for business professionals. In 1962, the name was
changed to the Data Processing Management Association (DPMA), which it
had until 1996, when it was changed to the Association of Information Tech­
nology Professionals (AITP). In 1962, they began offering certifications such

as the Certificate in Data Processing (CDP).

∙	 Society for Information Management (SIM). SIM began in 1968 and was called

the Society for the Management of Information Systems (SMIS). In 1982,
the name was changed to the Society for Information Management (SIM).
SIM focuses on the managerial aspects of computing and management of
information technology in support of an organization.

70 Chapter 2 Software History Fundamentals

Other organizations also award significant prizes for computing, such as the

Inamori Foundation in Japan that has awarded the Kyoto Prize since 1985 to

several computing-related awardees.15 The Kyoto Prize rotates over a number of
fields other than computing. Awardees of the Kyoto Prize related to software have

included Claude Shannon in 1985 (mathematical sciences), John McCarthy in

1988 (information science), Maurice Wilkes in 1992 (information science), C. A. R.
(Tony) Hoare in 2000 (information science), and Alan Kay in 2004 (information

science).

2.3.2 Other Infiuential Groups
Besides professional societies, a number of other groups have had influences over
what software has been developed and how it was developed. This section describes
a number of those other influential groups.

∙	 User groups. Computer and software sharing groups have a long tradition

of sharing information and sometimes of creating and disseminating soft­
ware. These groups also can help users influence the software or hardware

vendor by centralizing complaints and requirements. As an example, the

SHARE IBM users’ group16 was responsible for the SHARE Operating Sys­
tem (SOS) as well as having been influential in the development of the first
database management systems. Another example is the Digital Equipment
Computer Users’ Society (DECUS), which was influential from 1961 for Dig­
ital Equipment Corporation’s (DEC) customers until the company merged

with Compaq in 1998. These users’ groups continue to be active but are less
directly involved in creating and modifying the software itself. See the Inde­
pendent Oracle Users Group (IOUG, http://www.ioug.org/) and the Hewlett
Packard Corporation users’ group (http://www.connect-community.org/) for
some examples of current groups.

∙	 Open-source communities. Open-source communities are focused on produc­
ing software that is shareable and free to its users. Richard Stallman started

the GNU project in 1983 out of frustration with the legal limitations that were

being placed on software. GNU is a recursive acronym that stands for “GNU’s
Not UNIX.” The limitations that Stallman was concerned about include the

increasing amount of proprietary software that limited the ability of the

15. The current amount of the prize is 100 million Japanese yen (the equivalent of more than

$900,000) along with a 20-karat gold medal.

16. For other IBM users’ groups see GUIDE (formed in 1956 as Guidance of Users of Integrated

Data-Processing Equipment) and COMMON (see http://www.common.org/), which was formed

in 1960 as a professional association of IBM technology users.

http://www.ioug.org/
http://www.connect-community.org/
http://www.common.org/

2.3 Cultures and Communities of Software 71

users of that software to change or even access the source code. The intent of
the GNU project was to produce an entire suite of software that could be used

for free by users. Open source has come to include many projects (including

the Linux operating system) well beyond GNU. See Tozzi [2017], Raymond

[1999], Moody [2001], and Kelty [2008] for more on the open-source culture

and history.

∙	 Research labs. University research labs as well as industrial research labs
have often created technologies that have had significant influence in soft­
ware. Xerox’s Palo Alto Research Center (PARC) formed a computing group

in 1970 that implemented many technologies including personal comput­
ing, windowing systems, and object-oriented programming languages (i.e.,
Smalltalk). See Hiltzik [1999] and Smith and Alexander [1999] for descrip­
tions of Xerox PARC. Bell Telephone Laboratories had significant impact
on computing in implementation of systems to support the phone system,
as well as specific developments such as the UNIX operating system and

the C and C++ programming languages. See Gehani [2003], Gertner [2012],
and Bell Laboratories [1977] for more on Bell Laboratories. Labs such as SRI
(originally, Stanford Research Institute) were very influential with a focus on

government-funded research and produced many interesting developments
such as the computer mouse with Doug Engelbart’s group. Current univer­
sity and corporate labs continue to produce software advances. There are a

large number of examples that are noted in later chapters.

∙	 Computer and software companies. Companies actually in the business of pro­
ducing computers and software have a vested interest in producing software

that sells (or helps sell) computers, consulting, or other devices. As a result,
companies such as IBM, NCR, GE, DEC, Sperry-UNIVAC, HP, Sun Microsys­
tems, Tandem, Microsoft, Oracle, Sybase, Novell, and many others have pro­
duced software and influenced their user bases. These companies have built
a culture and community that often extends beyond the life of the company
and its products. So, one can find employee groups and passionate users that
restore old models of computers and preserve the history and culture of the

company. Some of the larger companies will also support corporate archives
to preserve their history, such as AT&T, HP, and IBM.

∙	 Government support. Government support and software in support of mili­
tary applications have also had a great deal of influence on software, though

often only within the military community. Given the security constraints,
some advances did not directly become known to the rest of the com­
puter community until much later. Some projects such as those funded

72 Chapter 2 Software History Fundamentals

by the Advanced Research Projects Agency (ARPA), later known as Defense

Advanced Research Projects Agency (DARPA), had a great influence beyond

the defense community, such as in funding Internet and expert systems
research.

2.4 Environment All software is written in the context of an environment. The environment includes
the required context that the software needs in order to run. For example, an oper­
ating system depends on the hardware on which it runs. So, the hardware is part
of the required environment on which the operating system depends. The hard­
ware presents an interface for the types of commands that it accepts and how it
can be programmed as part of this environment as well as particular limits and

capabilities such as the amount of memory, how long it takes for commands and

operations to complete, and particular peripherals that are available. Turning this
around, if we have an operating system that can present an environment just like

the hardware, then we have a virtual machine. Software applications are dependent
on the environment presented by the operating system and may be interdependent
with other applications in order to work correctly.

Software is dependent on its environment to run. To understand a piece of
software, one has to understand its environment. Some software (such as the

example in Figure 2.2) is heavily dependent on the hardware environment in which

it runs and couldn’t run in any other circumstance that doesn’t account for that
specific hardware. In this example, even small hardware changes, such as adding or
removing memory, could require the program to be modified to still work. Under­
standing historical software depends on understanding the environment on which

it was run.
Over the years, efforts have been made to make the environment more stan­

dardized so that software can be more easily ported to other environments. So,
efforts to standardize the operating system interface that is presented to applica­
tions are intended to help reduce the variance in the environment presented by
different operating systems. An example of this is the POSIX17 standard, but there

are many others. However, as one part of the environment may be standardized

many others are not. There are also many more different places the software can

run such as running on an embedded computer, a mobile device, a personal com­
puter, and many other forms of computers, each with its own operating system and

other software and operational constraints.

17. The Portable Operating System Interface standard is an IEEE standard designed to facilitate

application portability across different UNIX operating system implementations.

2.5 Influences on Software History 73

For example, suppose you are running a game in your Internet browser. That
game assumes a particular interface with the browser and may also depend on

programming language details (such as a particular version of Java). There are

many choices of browsers that could be used. There are many choices of devices
(each with a different operating system). The browser may be running in a virtual
machine, that is then running on top of another operating system that is running

on a particular machine. Each of these layers has dependencies and configura­
tions that make up the environment. Security and reliability of software is par­
ticularly sensitive to changes in the environment. For example, one could restrict
the amount of memory available to the virtual machine in the game example until
it starts behaving erratically. This could also lead to finding and compromising

security vulnerabilities in that game or in the browser.
Besides the hardware and software environment, there are also assumptions

and design decisions that went into designing any software system. These are not
always documented or well known, particularly when the system is very old and

assumptions have changed and the designers are no longer available to ask. Very
often in older systems, system memory was a significant constraint. In the BALGOL

compiler example in Figure 2.2, overlays18 are a result of that assumption. Mod­
ern systems may assume that there are no real memory constraints and that their
program will never run out of memory. When it does, it can lead to catastrophic
failures of the system.

2.5 Infiuences on Software History

Looking at software as a set of technologies, we’ve discussed a number of large fac­
tors that cause software to evolve and to change. Some of those are in Figure 2.7.

These influences include:

∙	 Computer science. Computer science is about the study of computation and

software, so it is no surprise that it has had a strong influence on software.
Computer science helps understand the formality of computation, limits of
what can be done, and building theoretical models that will stand the test of
time. Computer science also has a deep influence from mathematics such

as the building of formal computational, logic, and more specific models,
such as formal security models. Computer science is not the same as soft­
ware as we have defined it. Software refers to programs and related artifacts

18. Overlays are a technique used to partition a program into several parts because it cannot all fit
in memory at once. Those overlays are then brought into memory when needed and overwriting

the previous one. This resulted in programs being split into parts that were called overlays.

74 Chapter 2 Software History Fundamentals

Software

Computer

Science

Computer/Hardware

Capabilities

Software

Engineering

Events

Funding and

Environmental

Pressures

Existing

Software &

Methods

Standards

Figure 2.7 Major influences on software technology.

that describe those programs, while computer science refers to the concepts
and study of software.

∙	 Computer and hardware capabilities. The actual capabilities of the machine

have had a liberating effect on software. When new hardware items are intro­
duced, such as a graphical display, this has allowed graphics software to

exploit that capability. Additionally, as memory and processing capabilities
increased, this allowed software to grow and to tackle tougher problems
without having to artificially subdivide the problem. Advancing speed and

capabilities have allowed for techniques to be widely used that may have

been impractical in the past, for example, supporting interpretive languages.
Additionally, it is often argued that this increased speed and lowered cost
of computing has allowed inefficient software to be built and supported

software bloat.

∙	 Funding and environmental pressures. Funding has helped shape the research

agenda, particularly when it comes to projects like the Internet and secu­
rity software that had been funded by the US government. Software and

hardware companies have incentives to increase their revenue, which often

results in software with new capabilities, or just software to make their hard­
ware worth buying. Pressures such as adhering to laws and regulations,
patching security vulnerabilities, and reducing liability can also drive the

direction of system implementation and evolution of software systems.

∙	 Events. Occasionally, an event can change the direction of software and

encourage more development. A good example is the 1988 Morris Internet

2.5 Influences on Software History 75

Worm that affected a lot of systems19 on the Internet. Before this, there

were firewalls but only a few companies had deployed them. Many security
projects were initiated shortly after 1988 as a result of the Internet Worm

event.

∙	 Software engineering. Software engineering affects the way in which software

is developed. The “software crisis” of the 1960s spurred a lot of effort in

creating software engineering tools and methods with the hope of building

software more quickly and reliably. The “software crisis” was coined to indi­
cate that programmers could not effectively keep up with all the new, much

more powerful computers that were being deployed by many organizations
wanting to use them for many applications.20

∙	 Existing software and methods. What has already been developed influences
future software in many ways. Besides providing inertia for change and a

resistance to change what is working, there is a real cost to having to mod­
ify a base of software, train programmers and staff, as well as building new

techniques and creating new concepts that depend on concepts that have

been previously defined. As an example, it was easier to build new program­
ming languages when one saw the success of FORTRAN and had techniques
to formalize the writing of compilers.21 Large software systems are often very
difficult to replace, particularly if the services it provides need to remain up

and running. An example of this type is an air traffic control system. These

systems involve not only software subsystems but business processes, hard­
ware subsystems, and an entrenched user base. Changing to a new system

introduces uncertainties about the safety of the system, retraining for air
traffic controllers, and rolling out the system in such a way that it can still
interoperate with parts running on the old system.

So, for the most part existing software and methods slow down changes in

the software that might have occurred otherwise.

19. The 1988 Internet Worm is roughly estimated to have infected 10% of the computers on the

Internet, which was about 6,000 of the 60,000 computers attached to the Internet.

20. Edsger Dijkstra stated the following in The Humble Programmer, his A. M. Turing Award lec­
ture in 1972: The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines, programming was
no problem at all; when we had a few weak computers, programming became a mild problem, and now

we have gigantic computers, programming has become an equally gigantic problem.

21. Here, I’m referring to techniques such as the Backus-Naur Form (BNF), compiler generators,
and formal parsing techniques.

76 Chapter 2 Software History Fundamentals

∙	 Standards. Standards are especially critical in areas where interoperability
including the interchange of data is important. An example is in networking

software, which has to communicate with other networking software. Stan­
dards are also a two-edged sword. While they can stimulate change and

encourage software development by creating a dependable base, they can

also inhibit change by having an almost impossible to change installed base.
As an example, consider the standards around TCP/IP protocols. These pro­
tocols have proved difficult to change and improve (such as moving to IPv6

from IPv4, which is taking decades to complete) as the protocols are now

embedded in millions of devices and systems.

These are the major factors that contribute to the change of software. As we

look at more-specific software domains in the coming chapters, we will investigate

what the major changes are for each domain. Note that the influences vary in time

and by domain.

2.5.1 Software Change Due to Invention
Software, as opposed to other technologies, tends to reuse and adapt preexist­
ing software to interface to a new software technology. Most other technologies
tend to dispose of the old technology and are eventually forced by economics to

do “fork-lift upgrades.”22 Software (as a whole) has exhibited a resistance to such

replacement and instead usually tends to persist for a long time and may eventually
get re-written as time allows and economics encourages. This has been particularly
true since software has become more portable to different physical computers and

as computer vendors support backwards compatibility.
Many examples of this kind of inertia in the change of software have occurred

and are very likely to reoccur with new inventions. One property of software is that
interfaces can be built to do a transformation of the inputs and outputs such that
there is no need to rewrite the underlying software. Using this property, it is often

vastly less expensive to create the transformational interface rather than to rewrite

the existing software base.
One example was the invention of the World Wide Web where there was a drive

to move a large number of interactions to use the Web and to provide an interface

to customers, businesses, and employees. Rather than rewriting all the software,
interfaces were built to expose and integrate the technology such that the user

22. Some technologies have tended to stick with old, proven designs. In particular, aircraft designs
are slow to change, and we are still flying B-52s, C-130s, and Cessnas that were designed in the

1950s, along with the Boeing 737s and 747s that were designed in the 1960s. US airlines have just
recently retired the 747.

2.6 Summary 77

interface could be browser-based. Over time, much of the newly built software has
been based on web technologies, while older software has gradually been changed,
if at all.

Another example has been the support for networking protocols. Once there

has been a large enough deployment of a particular protocol, it becomes econom­
ically unattractive to do a wholesale replacement of that protocol. Instead, we can

develop an interface or encapsulation of that protocol and gradually phase it out
over time. The Internet Protocol was designed to internetwork between networks
that may have different underlying protocols. We continue to support IPv4 over
IPv6 networks even today because it’s possible to do so, as well as the economics
makes it expensive to quickly eliminate IPv4.

2.5.2 Software Change Due to Functional Failure
As opposed to changes due to invention, changes to software due to a widespread

functional failure are less smooth. While there have not been too many examples
of a widespread functional failure of software, one example was the Year 2000 prob­
lem. This issue was enabled by the fact that older software did not have to be

replaced because of hardware changes due to portability and vendors supporting

backward compatibility. The Year 2000 problem (or “bug,” depending on your per­
spective) was caused by software being written using only the last two years of the

date (so “80” for “1980”). It really didn’t matter for most software until dates after
the year 2000 needed to be included. When much of that software was being writ­
ten, it was difficult for programmers to envision that the software would run for
30 or 40 years, particularly because earlier software had not tended to last due to a

lack of portability. For software that was critical, it had to be modified and a lot of
older software systems were replaced rather than fixing their Year 2000 issues.

2.6 Summary
This chapter looks at software as a technology domain that is then composed of
subdomains. We looked at the high-level categories of software that depend on

the actual computational engine that is used (such as biocomputers, quantum

computers, optical computers, etc.). We will focus our efforts on the vast major­
ity of current software that is based on a von Neumann type of computational
engine.

In Figure 2.6, we define the subdomains of software that we will study further
in later chapters. These include areas such as operating systems, networking, pro­
gramming languages, software methodologies and tools, and databases. These

domains have a relatively cohesive story to be told, involve a common scope, and

usually involve similar pressures and communities.

78 Chapter 2 Software History Fundamentals

2.7 Exercises and Projects

2.7.1 Exercises
1. A key to making computers easier to build and to use simpler compo­
nents was the use of binary. Early computers (such as the ENIAC) used

decimal notations rather than binary. Describe how this shift occurred to

binary and include Claude Shannon’s MIT MS thesis and the development
of components and theory that made that work. Explain in a few paragraphs
the key developments and how early machines leveraged the transition to

binary.

2. Biocomputers have recently gained some momentum. Explore why some

have high hopes for biocomputers. Take a position on whether biocomputers
will survive the next 20 years as a viable medium and defend it.

3. Optical computers have fallen out of favor in the last few decades. Deter­
mine if they are currently viewed as a promising area. How would optical
computing affect software development?

4. Find a quantum computing algorithm for sorting (such as Lov Grover’s algo­
rithm described at http://en.wikipedia.org/wiki/Grover%27s_algorithm).
Explain how this algorithm works on a quantum computing device.

5. USENIX (see	 https://www.usenix.org/) is a UNIX operating system users’
group. Examine how this group has influenced the design and implemen­
tation of the UNIX operating system.

6. Define the environment for the	 Angry Birds mobile app running on an

Android device. What is required of the environment to be able to effectively
run Angry Birds? If you were only given the source code for the Angry Birds
app, what more would you need to know to understand the code and whether
it would run?

7. Amdahl Corporation produced a line of computers that were perfectly “plug

compatible” with IBM mainframes and also had a users’ group (the Amdahl
Users’ Group). Find information about this group and how it influenced

Amdahl computers. Investigate the relationship of Amdahl Corporation’s
founder, Gene Amdahl, to IBM.

8. Investigate	 the 1968 NATO Software Engineering Conference held in

Garmisch, Germany. How did this conference affect the creation of a software
engineering discipline? When and where were the first software engineering

undergraduate programs established? Why was this conference held?

http://en.wikipedia.org/wiki/Grover%27s_algorithm
https://www.usenix.org/

2.7.2

2.7 Exercises and Projects 79

9. Give an example of a technology for which software is a component. Describe

why that technology is a technology (based on a physical phenomenon, built
out of other components, and those components are also technologies).

10. The term software is used in a 1953 report by RAND Corporation.23 Look up

this use of software and explain how it has nothing to do with computer
programming or software as we have defined it.

Projects
1. Investigate a software domain relating to embedded systems. Define the scope

of this domain and determine if it is a subdomain of those described here.
Is the domain of embedded systems cohesive enough to tell a story about
its evolution or is it so fragmented as to not have a story that can be easily
modeled in terms of influences and evolution?

2. Biocomputers’ software is just being defined as of this writing. Investigate

the different models being defined for biocomputing software. Is there an

approach to bridge between traditional software and biocomputer software?
What will be needed to make that bridge complete?

3. An interesting type of analog computer is based on the use of water and

water flows to perform computations. An example of this type of machine

is one built by New Zealand economist William Phillips called the MONIAC

(Monetary National Income Analogue Computer), created in 1949. Investi­
gate whether so-called “fluidic logic” could theoretically produce a general
computer (i.e., could one build a NAND gate or other logic gates) and whether
it could ever be Turing complete. The MONIAC (see Figure 2.8) was built
to model flows of money and economic processes at the national level. See

Reserve Bank Museum [2008, p. 10–12] for a short description of the MONIAC

at the Reserve Bank of New Zealand Museum.24 If it is possible to build a Tur­
ing complete water computer, show how those circuits could be built and

programmed. Explain why this has not been pursued beyond small control
systems.

4. Many analog computing devices have been built that use many different
techniques in order to solve problems. One unique device is the FERMIAC

(sometimes called Fermi’s trolley or the Monte Carlo trolley). This device

23. See A Survey of the Current Status of the Electronic Reliability Problem (U), by R. R. Carhart, August
14, 1953, Report RM-1131, p. 69. https://www.rand.org/content/dam/rand/pubs/research_memora

nda/2013/RM1131.pdf.

24. There is another one at the Science Museum in London.

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2013/RM1131.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2013/RM1131.pdf

80 Chapter 2 Software History Fundamentals

Figure 2.8	 Professor A.W.H. (Bill) Phillips with the Phillips Machine, aka MONIAC. He was also
known for the Phillips curve. Circa 1958–1967. (Source: Courtesy of LSE Library.)

was designed by Enrico Fermi to help with calculations needed for creat­
ing nuclear bombs using the Monte Carlo method before the ENIAC could

be used for this purpose (See Haigh and Priestley [2016] for a description of
how this was implemented on the ENIAC). Write a paper that shows how the

FERMIAC was used to solve problems. Include a sample problem and indi­
cate each step in order to arrive at a solution. Optionally, create a simulator
that allows problems to be set up and solved as they would be on a FERMIAC

device. See also Metropolis [1987].

5. The ENIAC did not originally separate out the program from the circuitry of
the machine, but it was later retrofitted to allow a von Neumann-like archi­
tecture so that it could be more easily programmed. This was described in

an Aberdeen Proving Ground Ballistic Research Laboratories report [Clip­
pinger 1948] where the move was called from “local programming” to

2.8 Further Readings and Online Resources 81

“central programming.” Analyze the new “orders,” which are like machine

instructions, and determine which ones were dependent on the ENIAC’s
prior architecture and which ones were more independent from the ENIAC’s
architecture. Compare the modified ENIAC’s orders to the instruction set
from the Small-Scale Experimental Machine (SSEM or the Manchester Baby,
which had seven instructions) as described in Burton [2005].

2.8 Further Readings and Online Resources
This chapter builds a model for software to categorize the history of software into

domains based on Arthur [2009] with some ideas building on those in Mahoney
[2011], Kuhn [1962], and Constant [1980].

More can be found on communities and organizations that still exist such

as for ACM (see http://www.acm.org/), IEEE (see http://www.ieee.org/index.html),
SIAM (see http://www.siam.org/), SIM (see http://www.simnet.org/), and AITP

(http://www.aitp.org/).
For information related to the use of history in the teaching of computing, see

Lee [1996] and Impagliazzo et al. [1998]. Von Neumann [1958] discusses how the

brain can be viewed as a computing machine and discusses issues and research

directions.

http://www.acm.org/
http://www.ieee.org/index.html
http://www.siam.org/
http://www.simnet.org/
http://www.aitp.org/

3to the development of features like virtual memory, multi-programming, multi­
processing, and time-sharing, and have contributed to a set of features that we

expect of almost every operating system.

Operating Systems

The history of operating systems has been closely aligned with hardware history
until relatively recently with the proliferation of hypervisors and virtual machines.1

The history of operating systems includes how they have evolved to become more

portable and useful. The subject ranges from mainframe operating systems such

as IBM’s OS/360, to other influential systems such as MULTICS2 and UNIX®,3

to mobile device operating systems such as Apple’s iOS and Google’s Android.
The drive to make computing hardware more effective and easier to use has led

3.1 Operating Systems and Their Evolution
Operating systems can be defined, as in Silberschatz et al. [2012, p. 3], as a “program

that manages the computer hardware.” That is, operating systems have been built
to make the computer hardware more efficient and easier to use.4 More recently,
one might argue that virtualized operating systems are less about managing com­
puter hardware than providing an execution environment that eventually bridges
to the hardware. Nonetheless, operating systems are built not as an end within

themselves but as a way to make it easier to get more out of the computer and not

1. Virtual machines are an older concept as IBM’s VM/370 was developed in 1972 (which was
based on the earlier CP-67/CMS IBM System/360 operating system), but the proliferation of VMs
occurred more recently in the late 1990s and 2000s.

2. See http://www.multicians.org/ for more on MULTICS and its history.

3. “UNIX” is a registered trademark of the Open Group, http://www.unix.org/.

4. A 1970 definition in Katzan [1970a, p. 8] states that “An operating system is an integrated set of
control programs and processing programs designed to maximize the overall operating effective­
ness of a computer system.” At that time, the focus was on effective utilization of an expensive

machine.

http://www.multicians.org/
http://www.unix.org/

84 Chapter 3 Operating Systems

having to worry about all the hardware details in our programs, as early comput­
ers’ programmers were forced to do. Operating systems have taken over many tasks
that programmers previously had to include in their programs, including memory
management, process management, synchronization, and file and device manage­
ment. Operating systems have become a domain of software technology in their
own right with many specialized types of operating systems and exhibit a structural
deepening of the concepts and related technology.

Operating systems were not developed in a straightforward evolutionary pro­
cess. Instead, they were developed amidst concern about how much processing

capacity was used by the operating system versus how it really improved the

throughput of the computer. There is some contention about what was the first
operating system, but certainly one of the earliest was the monitor that General
Motors Research Laboratories produced for the IBM 701 in 1953 (see Weizer [1981]
and Rosin [1969]). General Motors Research created an operating system for the

IBM 704, called General Motors/North American Monitor (see Patrick [1987] for a

description of the systems developed for the IBM 701 and 704). Shortly thereafter,
the SHARE IBM user group developed their own operating system for the IBM 704

(see Figure 3.1) called the SHARE Operating System (SOS). During this early time,
it was common for companies using the computers to develop their own operating

system rather than depending on the computer vendor.
These early operating systems did little more than to simplify the input, out­

put, and transition between jobs. Each program would utilize the entire machine

and in order to make efficient use of the expensive computer, the operating sys­
tem would help reduce the time between these jobs to keep the machine as busy as
possible. This generation of operating systems relates to the “First” generation in

Table 3.15 and are often referred to as “Monitors” due to their relative simplicity. In

the 1960’s, operating system began to evolve into what we think of them as today. In

the “Second” generation in Table 3.1, types of operating systems evolved into batch,
transaction processing (such as the American Airlines SABRE system), real time,
and time-sharing. The “Third” generation of operating systems contained many
more complex modes of operation and the ability to support batch, time-sharing,
and other modes of operation such as real-time. During this third generation,
every computer manufacturer developed their own operating system with its own

unique features. In the late 1960s, work began on a number of systems designed

5. These generations are modeled after [Weizer 1981] but are modified. His fourth generation

reflected more of a move to firmware for operating system features. That has happened to a large

extent, but the moves to portability and virtualization reversed some of that trend by abstracting

the operating system from the hardware.

3.1 Operating Systems and Their Evolution 85

Figure 3.1	 IBM 704 at NASA’s Jet Propulsion Laboratory in 1959 with an unknown human
“computer” seated at the console with a card reader/punch to the right. (Source:
Courtesy of International Business Machines Corporation, ©International Business
Machines Corporation.)

to be portable to multiple, different manufacturers of computers. Systems such as
MULTICS (as part of project MAC at MIT) and others were developed with one of
the primary design goals of being portable and easily modifiable (see Corbató and

Vyssotsky [1965] for the reasoning behind their choice of the PL/I programming

language). This “Fourth” generation of operating systems ended up coalescing the

general-purpose operating system market to a few players. The “Fifth” generation

is the move to virtualized operating systems. While IBM’s VM operating system was
developed in the early 1970s, the concept of virtualized computers and hypervisors
was not widely adopted beyond IBM until the late 1990s. Please also see Figure 3.2

for a diagram of the interrelationship of these generations. Operating systems also

are closest to the hardware and have a natural co-evolution with hardware. As a

result, one of the strongest influential factors has been the availability of hardware

to support the changes in operating systems. These influences on operating sys­
tem change (see Figure 3.3) include hardware speed advances that enabled enough

spare processing capacity to be able to run an operating system in addition to run­
ning a user’s program. Another key hardware advance that profoundly affected

operating systems was having reliable disk storage. This allowed for programs to

86 Chapter 3 Operating Systems

Table 3.1 Operating system generations

Generation Timeframe Description

First 1955–1962	 Simple monitors: Batch system whose primary
function is to provide job to job linkage with no

multi-programming and works on a single

computer type.
Second 1960–1968	 Single mode: A single mode of operation (batch,

time-sharing, real-time, etc.) was supported by
the system. Designed to operate on a single

computer type.
Third 1965–Present	 Complex multi-mode: Has the ability to support

multi-processing and multi-programmed

computers and designed to operate on a family
of computer systems, including the introduction

of multi-threaded systems.
Fourth 1970–Present	 Portable: Can be ported to multiple machines

with different hardware architectures.
Fifth 1970–Present	 Virtual, hypervisors: Built to host other operating

systems and to abstract hardware for use by
virtual machines.

te
x
t

Panel Input of

Machine Code

Complete set of

program

instructions using

Cards/Paper tape

Loader

Operating

Systems based

on a single user

One Program One Program

Batch Operating

System

Many Programs

at once

(all Batch)

Multi-user/Multi-

functional

Operating

System

Many Programs

at once

(some Batch,

others interactive)

Time-

Shared

OS

Real-

Time OS

Embedded

OS

Many Programs

at once

(some Batch,

others interactive)

Third Generation plusSecond GenerationFirst GenerationNo Operating Systems

Figure 3.2 A high-level evolution of operating systems.

3.1 Operating Systems and Their Evolution 87

Operating Systems

Machine

Capabilities

& Power

Computer

Science

Device types

(handhelds)

Key Operating

Systems (Multics,

UNIX, OS/360,

etc.)

Core technologies, ideas

(deadlock detection, distributed systems)

Industry-driven

features

(virtual memory,

memory

management,

process

management, virtual

machines, etc.)

Figure 3.3 Influences to changes in operating systems.

be efficiently brought in and out of memory and the feasibility of efficient virtual
memory.

Academic computer science departments have had significant influence in

many of the key concepts in operating systems, particularly in the development
of core technologies such as deadlock detection, process synchronization, and dis­
tributed operating systems. They have also developed some key operating systems
such as ATLAS, MULTICS, and THE that demonstrated new, groundbreaking fea­
tures. Many of the features of operating systems were even more driven by those

who were using them in industry and wanted to make efficient use of them. As
a result, many features were developed and refined in industry and by computer
manufacturers in order to make the machines more efficient, more useful, and

easier to sell or buy.
Several key operating systems have influenced operating systems as a whole

and will be covered in a later section of this chapter. These key operating systems
not only produced an interesting system but have affected the later evolution of
operating system software.

Lastly, operating systems have been affected by having different types (or
“classes” as per Bell’s Law) of computers. Whenever a new type of computer is
introduced, it gives the opportunity to leverage the unique features of that new

class of computer and to introduce a new operating system or to modify an existing

88 Chapter 3 Operating Systems

one to take advantage of those features. An example would be the introduction

of the Android operating system that was designed to work on smartphone-type

devices (and has since expanded to other mobile devices). Apple’s iOS builds off
its success with MacOS and utilizes some of the same features. These new types of
devices introduce an opportunity to re-think what the operating system should do

for those kinds of devices.
Operating systems evolved over time from very simple monitors, which did lit­

tle more than make the use of a computer more efficient, to protecting data and

programs from one another, and to providing a major portion of the user interface.
As computers became more powerful and less expensive, the ability to use some of
those computing cycles for managing the resources of the machine became more

palatable and feasible.

3.2 Operating Systems Scope
Operating systems have a significant number of types and many operating systems
have come and gone over time. This section details some of the major types of oper­
ating systems, major features, as well as describes several operating systems that
had a significant influence on later systems.

3.2.1 Operating System Types
Throughout most of this chapter, an “operating system” refers to a general-purpose

operating system that is meant to be put to a wide variety of uses. However, there

are a number of specialized operating systems that have been honed to specific
purposes. Some of these are described below.

∙	 Resident monitors are one of the simplest forms of an operating system. They
are called “resident” as they always reside in memory and their primary task

is to transfer control from one program to the next. The resident monitor
would be started when the computer was booted, and it would then transfer
control to the first program. When complete, the first program would then

transfer control back to the resident monitor who could then start the next
program, and so on. The concept of job control was introduced with moni­
tors to have a way to instruct the monitor as to which job to do next via control
cards that evolved into job control languages (such as IBM’s JCL). Monitors
would interpret these cards and then load the program into memory to be

run. The monitor was made up of a control card interpreter, a method to

transfer control and sequence the jobs, and a loader to bring the program

into memory. Besides these components, device drivers were built to control

3.2 Operating Systems Scope 89

the input and output devices. These device drivers were generally shared

between the user program and the resident monitor.

∙	 Real-time operating systems are built to have well-defined time constraints
that must be met. Systems dealing with real-world time constraints are

often built on real-time operating systems. Examples are phone systems,
weapon systems, safety-critical systems (such as medical devices or life-
support systems), and other device control systems (such as automobile

or other embedded systems). There are two general categories of real-time

operating systems. Soft real-time operating systems provide a way to identify
critical tasks and to prioritize these over other tasks. Many general-purpose

operating systems provide soft real-time features. Hard real-time systems are

those where the tasks must be completed within specific time constraints
or the system is considered to have failed. Generally, those time constraints
are attached to external events. For example, picking up a landline phone

handset may have a requirement to give a dial-tone within 30 milliseconds.
If the system cannot always produce a dial tone in 30 milliseconds for every
line, then it has failed. Examples of a hard real-time operating system are

VxWorks (see http://www.windriver.com/), Intel’s iRMX, and Duplex Multi
Environment Real Time (DMERT, later named UNIX Real-Time Reliable,6 see

Wallace and Barnes [1984]).

∙	 Embedded operating systems are those that run within a device to operate

that device. They are sometimes real-time operating systems, but not nec­
essarily. An example would be an operating system that runs on a cellular
phone (non-smart).7 The operating system will run the device but the user
generally does not interact with the operating system directly. An embedded

system is generally defined to be a system that is part of a larger system such

that the existence of the system is not obvious to the user. So, the numer­
ous systems (and operating systems within those) within an automobile are

examples of embedded systems. Generally, embedded systems are tuned to

perform some specific task. The operating system of such embedded systems
can be heavily modified to meet the requirements of the device more specif­
ically. For example, a network firewall will be running its own operating

6. Note that MERT, DMERT and UNIX RTR were not directly based on UNIX but were more influ­
enced by systems such as Dijkstra’s THE operating system. They did run a UNIX emulator to be

able to run UNIX programs.

7. Smartphone operating systems such as iOS and Android have become more like general-
purpose operating systems than an embedded one.

http://www.windriver.com/

90 Chapter 3 Operating Systems

system, often a customized version of Linux to be more secure and to meet
performance and real-time requirements.

∙	 Distributed operating systems provide a single interface to a group of loosely
coupled computers over the network so users access remote resources in the

same way as local resources. This gives the distributed operating system the

ability to allocate resources based on availability and requirements, rather
than just location. So, the distributed operating system can move data and

processes between the computers in such a way as to better meet the needs
of the users. Bell Labs’ Plan 9 and Inferno operating systems are examples of
systems built to be distributed.

∙	 Network operating systems are those that provide an environment where users
can access remote resources on other computers on the network. More

specifically, there have been several operating systems developed just to

manage network resources in a client/server architecture such as Banyan

VINES, Windows Server, and Novell NetWare.8

∙	 Secure operating systems are those that are designed with security require­
ments built in and enforced by the operating system. Recently called trusted

operating systems and evaluated using the Common Criteria (see http://www.
commoncriteriaportal.org/), these types of systems are evaluated and given

different levels of security assurance. Before the Common Criteria, the US

Department of Defense used what was called the “Orange Book”–Trusted

Computer System Evaluation Criteria (TCSEC) to assign security levels to

operating systems. An example is Security-Enhanced Linux (SELinux) that
can support mandatory access controls, which is one of the key criteria for
secure operating systems.

∙	 Hypervisors and virtual machines support multiple different operating sys­
tems on a single physical machine. The software that supports virtual
machines has come to be called a hypervisor.9 Hypervisors (such as VMware,
Xen, or IBM VM/370) provide an interface that looks like a real machine to

other operating systems. As such, hypervisors are operating systems them­
selves, managing the underlying hardware. Hypervisors also come in two

basic types. Type 1 are those that run on the physical hardware without

8. Note that the term “network operating system” also sometimes refers to the operating systems
used by network devices like routers, switches, and firewalls, and includes examples like Cisco’s
Internet Operating System (IOS), Juniper’s JunOS, and Extreme Networks’ ExtremeXOS.

9. A hypervisor is a supervisor of the supervisor, where supervisor is another term for an operating

system.

http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/

3.2.2

3.2.2.1

3.2 Operating Systems Scope 91

any other operating system. VMware ESXi and Xen are Type 1. Type 2 are

those that run on top of another operating system and then run its virtual
machines within the hypervisor. VMware Fusion (which runs on MacOS) and

Oracle’s VirtualBox are examples of Type 2 hypervisors.10

These more specialized types of operating system give some idea of the diversi­
fication of operating systems, but does not cover all specializations.

Operating System Features
A brief background is provided of some operating systems features that are refer­
enced in later sections. This section is not meant to take the place of a full course in

operating systems and there are a large number of features not covered here. The

focus in this section is on those features that have improved operating systems’
ability to make the system easier to use, particularly for programmers.

Memory Management
One of the core functions for operating systems has been to manage the mem­
ory of the computer. Improvements in memory management have freed pro­
grammers from having to go to extraordinary means to make their programs fit
within memory. While it was quite simple with a resident monitor as defined in

Section 3.2, it also restricted the system to running a single program at a time and

a program was bound by the physical memory in the machine.
One early concept that aided programmers was that of relocatable code. With

relocatable code, the program would be placed in memory by the operating system

and the program itself would not have to be concerned with physical (or, absolute)
memory addresses. This concept of relocatable code became particularly impor­
tant when the address space began to be used concurrently by multiple programs,
such as being placed in different physical memory segments. Multi-programming
(multiple programs running concurrently on the same computer) was introduced

to significantly improve the job throughput of early machines and began as a way
to use the CPU more effectively.

The way memory has been allocated to programs has changed significantly. Ini­
tially, with resident monitors a single program was allocated all of whatever was left
of memory outside of what the resident monitor was taking. Many operating sys­
tems segmented memory into blocks and would bring in a program into a block

10. It’s possible to nest hypervisors so that one could install a type 1 hypervisor, run operating

systems on it, then run a type 2 hypervisor in one of the operating systems, and so on. However,
performance will degrade quickly due to the overhead of the hypervisors and the consumption of
memory.

92 Chapter 3 Operating Systems

in which it fit. This, however, led to a problem of memory fragmentation as the

program would often be too small for the segment and waste the remaining por­
tion. The opposite problem of a program being too big for its segment resulted

in having to split a program (often in an artificial manner) into overlays. A pro­
gram would then start with the first segment and then when it was ready bring in

the second segment, and so on. The problems of wasted memory from fragmenta­
tion and of having to split your program into often artificial overlays were almost
completely solved by the introduction of paging. Paging segmented memory into

fixed size and relatively small parts, called “pages.” These pages could then be man­
aged by the operating system and only active pages need stay in physical memory.
So, pages could be put on a disk (or other “backing store”) and entire processes
could be swapped in and out as needed. Needless to say, anytime a needed page

had to be brought back into memory it took time, so it was desirable to make that
as infrequent as possible. The concept of a “working set” of pages (see Glass [1998,
pp. 250–271]) identified the pages and the number of pages required to keep the

system performing well.
Virtual memory is the ability of a process to use more memory than the computer

physically contains. Virtual memory separates logical memory from physical mem­
ory and the operating system is tasked with implementing that logical memory
model in a physical memory. So, the virtual address space, or the memory loca­
tions that a program can reference, is separated from the physical address space
that refers to the physical memory locations on a particular computer. Paging has
become the most common manner in which this is done, though earlier systems
provided virtual memory using a combination of segmentation and paging (such

as MULTICS). The size of the address space became an issue as programs and their
requirements for memory grew. So, the ability to offer a 32-bit byte-addressable

space would be able to address four gigabytes of memory.11 Performance of the vir­
tual memory use was managed by the operating system, freeing programmers from

having to constantly worry about their program size or physical location. Mem­
ory management support has relied a great deal on hardware support for memory
management and most modern systems have significant hardware support for
memory management.

11. While most computers are now byte-addressable, many earlier computers were “word”
addressable. That is, rather than an address pointing to a byte, addresses would point to a “word.”
Word-length varied and could be 36 bits (DEC PDP-10) or 60-bits (CDC 6600) or whatever the

designers chose. So, the address used to reference these words could be a different size (like 18

bits in the PDP-10), making the addressable memory space word size * 2address size bits.

3.2.2.2

3.2.2.3

3.2 Operating Systems Scope 93

Process Management
Another key function of an operating system is managing the programs and pro­
cesses to ensure the programs complete, perform sufficiently, and are cleaned up

in order to make way for other programs and processes. The way this has been

done in operating systems has changed from no real process management to sup­
port for multiple CPU cores and running thousands of concurrent processes in a

single system.
Early operating systems only supported a batch mode of operation where either

one job was done at a time or multiple jobs were loaded into memory and run

in a multi-programming mode. The reason for this was primarily one of mak­
ing efficient use of the expensive computing resources available at the time. The

SAGE air defense system included a form of specialized time-sharing and inter­
activity as did some other real-time systems. In 1959, John McCarthy proposed in

a memo that MIT develop its own time-sharing system based on the IBM 709.12

As a result, a number of time-sharing systems were created that provided for an

interactive user experience by giving each user a time-slice of processing at regu­
lar intervals, making it appear to be responding to everyone in a predictable and

consistent amount of time. The MIT Compatible Time-Sharing System (CTSS) sys­
tem was developed (and described below) as well as several other systems in the

mid-1960s. This development gave programmers an interactive interface in which

to build their programs.

Virtual Machines

Virtual machines provide a virtualized view of the underlying computer hardware

that enables the running of multiple, even disparate, operating systems on the

same device at the same time. This ability has enabled operating system makers
and users to run different operating systems more easily and has enabled more

flexibility in how computing hardware is used.
First developed for the IBM System/360-67 in 1966 as the CP-67 operating sys­

tem and formally defined by Popek and Goldberg with formal requirements in

Popek and Goldberg [1974], it is only since the mid- to late-1990s that machine

virtualization has really been deployed on a wide scale. IBM’s CP-67 was mod­
ified and deployed as VM/370 in 1972 where it became widely used as a main­
frame operating system. One of the motivations at the time IBM deployed VM/370

12. This “Memorandum to P.M. Morse,” dated January 1, 1959, details the hardware requirements
and recognizes the impact of developing time sharing for general use. See http://www-formal.
stanford.edu/jmc/history/timesharing-memo.html for a copy of this memo.

http://www-formal.stanford.edu/jmc/history/timesharing-memo.html
http://www-formal.stanford.edu/jmc/history/timesharing-memo.html

94 Chapter 3 Operating Systems

was to ease the migration from one operating system to another.13 VM/370 pro­
vided a way to virtualize the hardware so that different operating systems could be

installed on top of VM/370. This virtualization required another layer of software

that provides the appearance of multiple dedicated sets of hardware to multiple

operating systems on top of a single set of physical hardware. Today, we have a

number of virtualization hypervisors ranging from VMware and the open-source

XEN hypervisor.

3.2.3 General Operating System Technologies
Many of the features in the previous section are actually specific solutions that can

be applied to more general problems. Some of the problems that operating systems
have addressed that are more generally applicable to other systems include:

∙	 Synchronization and deadlock: Operating systems have had to solve the

problem of synchronizing access to devices and other shared resources and

in the process have created mechanisms such as semaphores.14 Semaphores
are variables used to prevent processes from using the same resource at the

same time incorrectly. In particular, the way semaphores were approached

by Dijkstra (see Dijkstra [1965]) in the THE operating system [Dijkstra

1967] influenced the way others implemented process synchronization using

semaphores.15 When a cycle of processes is each waiting on another pro­
cess in the cycle to release a resource such that none can proceed, a

deadlock condition occurs. Detecting and preventing these deadlock condi­
tions was of critical importance to operating systems as not only could a

deadlock condition prevent the processes involved from completing, they
eventually could starve the entire system of critical resources. As a result,
many techniques have been developed to detect and prevent deadlock

conditions.

∙	 Buffering and caching: Issues of performance, particularly between input
and output devices and the CPU have honed the techniques used for
buffering of content and for caching the most-likely-to-be-used content. In

particular, this was exacerbated by the different speeds that devices could

13. See presentation by Jim Elliott at a 2004 SHARE users’ group, August 17, 2004, http://www.
linuxvm.org/Present/SHARE103/S9140jea.pdf.

14. Note other techniques have also been used as hardware solutions such as the testandset()
operation or using simple software locks.

15. In particular, the wait() and the signal() operations on semaphores were called P and V from

the Dutch words “proberen” (to attempt) and “verhogen” (to increase), respectively.

http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf.
http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf.

3.2 Operating Systems Scope 95

communicate and how quickly the CPU could process information. This dif­
ference meant that either the CPU had to wait for the device to either deliver
or receive data or that a means was needed to make input/output process­
ing more independent of computation. This other means was buffering. The

ability of a device to pre-load its information so that the CPU could process
it or for the device to get its information without delaying the CPU drove the

usage of many buffering mechanisms. Many of these mechanisms are imple­
mented in hardware, such as the use of additional processors to manage the

I/O16 or the use of a direct memory access mechanism that allows a device

to read and write directly into main memory. Caching of information has
been critical to the performance of virtual memory (such as in the working

set model) as well as in many other areas of the operating system.

∙	 Scheduling and prioritization: Since the advent of multi-programming (and

then, multi-user systems using time sharing), the ability to pick what to do

next has been critical to operating systems. As a result, process scheduling

and CPU scheduling have a long history of techniques. With only batch-
oriented multi-programming systems, the issue is which job to run next
and for how long (to completion, until it is waiting for I/O, etc.). With time­
sharing systems, the issue is giving each user enough CPU capacity to be

useful and to respond to the user within a reasonable amount of time. With

real-time operating systems this scheduling needs to consider the time con­
straints the system must meet. As a result, operating systems have developed

a set of techniques and algorithms that are useful in many other scheduling

and prioritization problems.

∙	 Fragmentation and re-use of a resource: Main memory is one example where

fragmentation occurs and the resource needs to be re-used by many. Another
example is the use of magnetic disk storage where files are erased and

written, and the resource needs to be re-used efficiently.

∙	 Virtualization and abstraction of a resource: The ability to abstract and gen­
eralize an interface has been a goal of operating systems from early on and

can be seen in the desire to treat files and devices with the same interfaces
(such as in UNIX). IBM’s VM/370 (based on IBM’s CP-40 and CP-70) prod­
uct virtualized the physical device. We now see virtualization in networking,
storage, and other technologies. These different sorts of technologies lend

16. See the CRAY 1 supercomputer (1977) that would use another computer as a front end as well
as the CRAY 1S, which further separated the I/O processing from the rest of the computer. See

http://archive.computerhistory.org/resources/text/Cray/Cray.Cray1.1977.102638650.pdf.

http://archive.computerhistory.org/resources/text/Cray/Cray.Cray1.1977.102638650.pdf

96 Chapter 3 Operating Systems

themselves to different degrees and kinds of virtualization. For example, disk

drives are relatively easy to partition into smaller units, whereas tapes are

impractical to virtualize due to their inability to be used by multiple users at
the same time.

These sorts of problems have often been addressed first in operating systems
due to their criticality in the running of the overall system. Since operating systems
software was needed early in the history of software, these sorts of coordination,
synchronization, and resource management problems were solved for operating

systems first. As a result, other types of software were able to re-use and leverage

these techniques from operating systems.

3.2.3.1 Migration of Operating System Features

Features in operating systems, over time, have often followed the various classes
of computers. That is, a feature developed in an earlier class of computers (such

as mainframes) will often eventually show up in a later class of computers (such as
personal computers). The reasons for this are really two-fold:

1.	 More power in the newer computer class. For example, as personal comput­
ers became more powerful, they had a need to support multiple processors,
multi-tasking, and even time-sharing types of features.

2.	 More sophistication and maturity of the usage of the new class. As the class
of computers becomes more widely used and popular, there is a demand

for more operating system features. Some of these features just take time

to develop and aren’t really worth developing until the market has grown

enough and there is real demand for more advanced features in the operating

system.

So, let’s examine a feature like multi-processor support. In mainframes, we saw

multi-processor support in the 1960s. This was followed by similar support in mini­
computers in the late 1980s. We then saw multi-processor support for personal
computers in the mid-1990s and for handheld and mobile computers in the late

2000s. The example of multi-processor support in the operating system is directly
tied to the hardware advances for each type of device.

Another example less tied to hardware developments is the support for mul­
tiple simultaneous interactive users. We saw this in mainframes in the 1960s
with efforts like Dartmouth Time-Sharing System (DTSS), CTSS,17 and others. For

17. CTSS was termed “compatible” as it was meant to be compatible with IBM’s FORTRAN Monitor
System (FMS). See Larner [1987]. Interestingly, MIT also had an operating system called ITS, which

stood for “Incompatible” Timesharing System, that was used by the MIT artificial intelligence lab

during the same time period.

3.2 Operating Systems Scope 97

minicomputers this feature became popular in the 1970s. For desktop comput­
ers, multiple users were supported in the 1980s though this has never become a

very popular way to use personal computers. For mobile and handheld devices, it
is unclear that the support for multiple simultaneous interactive users will ever
make sense (though one could imagine sharing that processing capacity with local
sensors or other devices).

Other features have been so successful that new classes of computers have those

features from the start. An example is virtual memory. While virtual memory took

some time to perfect in mainframes and minicomputers, almost any new device or
class of computer will support virtual memory.

Another way to look at this development of features is to look at a single,
portable operating system over time. For example, when the UNIX operating

system was developed it was a relatively simple operating system run only on

minicomputers. Over time, as UNIX became more popular other features were

developed including UNIX on mainframes, UNIX on personal computers, real-time

UNIX, multi-processor support, fault-tolerant UNIX, and distributed versions of
UNIX.

3.2.4	 Infiuential Operating Systems
A few operating systems are described below. These are included as they were par­
ticularly influential in some way to later operating systems. Some of them were

commercially successful. Many of them were not commercially successful but
implemented ideas that were included in many systems.

∙	 ATLAS—The ATLAS operating system developed at the University of Manch­
ester (see Kilburn et al. [1961]) was one of the earliest systems to contain many
of the features we expect from operating systems. In particular, it had a form

of virtual memory that it used in order to greatly extend the address space

beyond that contained in the core memory. At the time, the system had 16 KB

words of core (with 48-bit words). Pages were defined as 512 words each. The

system also used page replacement algorithms and kept track of access to

pages in memory in order to know if the page had been used recently.

∙	 THE—The THE multi-programming system was developed by a team led by
Edsger Dijkstra at Eindhoven University of Technology.18 THE was a batch

system but did support multiple processes using a form of memory segmen­
tation. The system was most noted for its clean design and its separation

of the system into distinct layers that were sometimes called an onion-skin

18. Note that “THE” stood for “Technische Hogeschool Eindhoven,” the name (in Dutch) of
Eindhoven University of Technology at the time.

98 Chapter 3 Operating Systems

design. The system made use of semaphores for process synchronization.
The layers were structured as follows:

Layer 0: CPU allocation and interrupts.

Layer 1: Allocating processes to memory.

Layer 2: Communication to the system console.

Layer 3: I/O management.

Layer 4: User programs for compiling, execution of programs, and

printing.

See Dijkstra [1968] for more on the THE operating system.

∙	 MULTICS (Multiplexed Information and Computing Service) was a project
started in 1964 as a cooperative effort between General Electric Company,
Bell Telephone Laboratories, and Project MAC of MIT. MULTICS is a great
example of a commercial failure that had a large impact on the develop­
ment of operating systems. The intent was to develop a successor to the CTSS

operating system (described below).19

MULTICS’s goals were not small and were summarized by Corbató and

Vyssotsky in their paper initially describing the project as “The overall design

goal of the MULTICS system is to create a computing system which is capa­
ble of comprehensively meeting almost all of the present and near-future

requirements of a large computer service installation.” The system was writ­
ten in the PL/I programming language and designed to be largely machine-
independent. It used virtual memory (using segmentation and paging),
used a hierarchical file system, and was built to be a time-sharing system.
MULTICS influenced operating system development both directly and indi­
rectly, such as through UNIX. Bell Labs had hoped to obtain a usable sys­
tem for use within Bell Labs, but when it became clear that wasn’t going to

happen anytime soon Bell Labs decided to drop out in 1969.20

19. See http://www.multicians.org/history.html for lots of material about MULTICS and its history.

20. The same people who had been working on MULTICS at Bell Labs started work on UNIX shortly
thereafter as this quote from ftp://cm.bell-labs.com/who/dmr/trib/2.html states: “Over time, hope

was replaced by frustration as the group effort initially failed to produce an economically useful
system. Bell Labs withdrew from the effort in 1969 but a small band of users at Bell Labs Com­
puting Science Research Center in Murray Hill – Ken Thompson, Dennis Ritchie, Doug McIlroy,
and J. F. Ossanna – continued to seek the Holy Grail.” McIlroy places some of the reason for Bell
Labs’ exit on the need for the newly formed computation centers to be cost-effective and they’re

the organization that then owned the computers, rather than Bell Labs Research (per Mahoney
interview in 1989, https://www.princeton.edu/~hos/mike/transcripts/mcilroy.htm).

http://www.multicians.org/history.html
ftp://cm.bell-labs.com/who/dmr/trib/2.html
https://www.princeton.edu/~hos/mike/transcripts/mcilroy.htm

3.2 Operating Systems Scope 99

Figure 3.4	 IBM System/360 model 40 with woman at console and assorted disk drives, tape drives,
and card reader, circa 1964. (Source: Courtesy of International Business Machines
Corporation, ©International Business Machines Corporation.)

∙	 The IBM OS/360 (see Figure 3.4 for a picture of the console) was announced in

1964 to cover a family of different-sized computers and was a batch-oriented

system. IBM did offer a separate time-sharing operating system (TSS/360,
Time Sharing System for the IBM System 360), but it was never widely suc­
cessful as an official product.21 OS/360, TSS, and DOS/360 have been put in

the public domain and can be found at http://www.ibiblio.org/jmaynard/.
One can run these operating systems using the Hercules emulator (see

http://www.hercules-390.eu/). OS/360 was viewed as something of a failure

at the time, mostly for being over budget and late. Some potential users were

21. TSS is a good example of how difficult it is to discontinue software. AT&T was still running TSS

well into the 1990s as it had been used for a particular product that had to be supported for a long

time as part of the phone system.

http://www.ibiblio.org/jmaynard/
http://www.hercules-390.eu/

100 Chapter 3 Operating Systems

also disappointed by its lack of virtual memory, a feature that had come to

be expected by 1964. However, in the long run, the approach of developing

a single operating system for a line of computers with application compat­
ibility22 was very successful for IBM and eventually solidified IBM’s posi­
tion as the leading provider of mainframe, business computing. See Boyer
[2004] for IBM’s view of the IBM 360 project. Fred Brooks, who managed the

development of OS/360, has published many learnings from the System/360

project (and TSS) in Brooks [1975, 1986] and has had significant impact on the

practice of software engineering. The CP-40 system introduced the ground­
breaking idea of using a virtual machine on the S/360-40 in 1966, which

was released externally as CP-67 in 1966. This system separated the control
program (CP) that managed the resources of the machine from the individ­
ual user environment CMS (Cambridge Monitor System, later re-named the

Conversational Monitor System).

∙	 DTSS was an early time-sharing system that became operational in 1964.23

It is noted as an early large-scale deployment (hundreds of simultaneous
users) of time sharing. It is also noted as having been the platform on

which the BASIC programming language was first created and deployed as
an interactive programming environment. Dartmouth University has a page

describing its history with links to simulators to run DTSS (see http://dtss.
dartmouth.edu/) as well as an article in Time that discusses DTSS and BASIC

(see McCracken [2014]). See Figure 3.5 for a photo of students using DTSS for
a form of computing dating.

∙	 CTSS was the system developed at MIT before MULTICS and was used as the

initial system in developing MULTICS. It was one of the first time-sharing

systems, initially demonstrated in 1961. As a result, it influenced many other
time-sharing systems including MULTICS and UNIX. CTSS proposed an early
email system in late 1964 or early 1965.24 See Corbató et al. [1962] for an early
description of CTSS. CTSS was influenced by other efforts at the time, such

as other early time-sharing systems being developed. CTSS not only heavily
influenced MULTICS but also UNIX as many of the Bell Labs UNIX developers
had worked on MULTICS.

22. One can still run many OS/360 applications in a modern IBM system.

23. DTSS was inspired by a time-sharing system built at BBN on the DEC PDP-1, see Walden and

Nickerson [2011].

24. See http://www.multicians.org/thvv/psn-39.pdf for a copy of the proposed CTSS mail
command.

http://dtss.dartmouth.edu/
http://dtss.dartmouth.edu/
http://www.multicians.org/thvv/psn-39.pdf

3.2 Operating Systems Scope 101

Figure 3.5	 Members of Dartmouth’s Glee Club using DTSS for an early form of computer
dating with women from California. (Source: Adrian N. Bouchard/Dartmouth College,
Courtesy of Dartmouth College Library.)

∙	 The UNIX operating system was developed initially at Bell Telephone Labo­
ratories in 1969 by some of the same people (see Figure 3.6) who had been

working on MULTICS.25 However, the influence of UNIX has been far beyond

just that initial system. UNIX has a long and complex history and has influ­
enced directly and indirectly a large number of systems such as Apple’s
MacOS (via NeXT NeXTSTEP and the Mach Kernel), Linux (via Minix), and

Android (via Linux). A really nice diagram created by Éric Lévénez that shows
these complex linkages can be found at http://www.levenez.com/unix/. It
covers the history from 1969 up to 2019 (as of this writing). That diagram,
even including many UNIX versions, is still not complete and many other

25. Some of the internal Bell Labs’ story can be found at ftp://cm.bell-labs.com/who/dmr/trib/2u.
html such as finding a little-used DEC PDP-7 to re-write the computer game “Space Travel” that
had first been written on MULTICS.

http://www.levenez.com/unix/
ftp://cm.bell-labs.com/who/dmr/trib/2u.html
ftp://cm.bell-labs.com/who/dmr/trib/2u.html

102 Chapter 3 Operating Systems

Figure 3.6	 UNIX and C pioneers, Dennis Ritchie (standing) and Ken Thompson (sitting) at a
PDP-11/20 (undated, likely circa 1972). (Source: Courtesy of AT&T Archives and History
Center.)

UNIX versions have been created that are not included in the diagram. So

what made UNIX so influential? This can be explained by many factors,
partially technical and partially because of the legal constraints placed on

it. Bell Labs really had little interest in making money on UNIX and had

released it to many universities in the 1970s. However, at the same time

AT&T retained strict copyright and trademark restrictions on the source code

as well as the name “UNIX.” Technically, it was written in a portable lan­
guage (C) and was relatively easy to port to a number of different machines
and architectures. Also, it was relatively simple (compared to MULTICS)
and technically appealing to programmers in its simplicity and tool-based

3.2 Operating Systems Scope 103

approach. The legal restrictions were rigorously enforced by AT&T and, as
a result, it was often easier to develop a new version of a UNIX-like system

rather than trying to get official permission to use the Bell Labs code.26 The

development of Berkeley UNIX is an example of a major UNIX offshoot.

∙	 RC 4000 Monitor (1969) was mostly known for its architecture that broke

down an operating system into a group of interacting programs that used

message passing between them to operate the system. The operating sys­
tem kernel had functions of scheduling the CPU, initiation and control
of programs, transfer of messages between program, and initiating data

transfers (see Brinch-Hansen [1970] and http://brinch-hansen.net/papers/
1969a.pdf).

∙	 Digital Equipment Corporation’s TOPS-20 Operating system began in 1969 as
the TENEX (TEN-EXtended—it was written for the PDP-10 computer) oper­
ating system at BBN (Bolt, Beranek and Newman). TENEX was developed

to support the research at BBN, particularly in artificial intelligence. Vir­
tual memory using paging was the primary need that drove the develop­
ment of TENEX at BBN. Dan Murphy provides a detailed history of TENEX

and its move to DEC and renaming to TOPS-20 at http://tenex.opost.com/
hbook.html.

∙	 Personal Computer Operating Systems have also had a complex history.
Before 1981 and the introduction of the IBM Personal Computer, most per­
sonal computers either came with Digital Research’s CP/M (Control Pro­
gram/Monitor) operating system, Apple’s operating systems27 (Apple DOS,
ProDOS, or GS/OS for the Apple II), or none at all. CP/M was developed begin­
ning in 1973 by Gary Kildall while at Intel (see Kildall [1980] for his description

of how CP/M was developed). CP/M-86 was one of the choices for the ini­
tial operating system but licensing concerns delayed the availability of it on

IBM PCs (as well as increased the cost), so most IBM PCs were shipped with

Microsoft’s PC-DOS.28 CP/M’s contribution to computing is noted in an IEEE

milestone plaque placed in 2014 that states:

26. The release of Lions’ Commentary on UNIX [Lions 1976a, 1976b] stimulated interest in UNIX as
it contained the source code for UNIX Research Version 6.

27. The Apple I did not have an operating system.

28. Note that University of California–San Diego’s p-System was another option for the IBM

PC. PC-DOS was based on 86-DOS (or QDOS, Quick and Dirty Operating System) and originally
purchased from Seattle Computer by Microsoft.

http://brinch-hansen.net/papers/1969a.pdf
http://brinch-hansen.net/papers/1969a.pdf
http://tenex.opost.com/hbook.html
http://tenex.opost.com/hbook.html

104 Chapter 3 Operating Systems

IEEE Milestone in Electrical Engineering

and Computing

The CP/M Microcomputer Operating System, 1974

Dr. Gary A. Kildall demonstrated the first working

prototype of CP/M (Control Program for Microcom­
puters) in Pacific Grove in 1974. Together with his
invention of the BIOS (Basic Input Output System).
Kildall’s operating system allowed a microprocessor-
based computer to communicate with a disk drive

storage unit and provided an important foundation

for the personal computer revolution.

April 2014

Another excellent diagram created by Éric Lévénez for the evolution of Microsoft
Windows (and related operating systems) is at http://www.levenez.com/windows/
and details the interrelationships between various versions (including embedded

versions, automotive versions, server versions, and Windows mobile).

3.3 Operating Systems Case Study: Pipes in the UNIX System
Pipes or pipelines were introduced29 into the UNIX operating system as a method

for inter-process communication and gave a common mechanism that could be

used by any program using the UNIX system. The concept is expressed in a 1964

memorandum by Doug McIlroy in Figure 3.7. Effectively, it is an elegant buffering

mechanism. A pipe in UNIX is a type of file that does not have permanent stor­
age (like a regular file would) but one that allows two processes to communicate.
A pipeline is formed by a shell statement (or by otherwise using pipes to connect
the output and input of processes) that connects two or more commands with the

binary operation “|”. As a simple example, one can use pipes in the Bourne com­
mand shell such as in Figure 3.8. In this example, the who, cut, and less commands
are strung into a pipeline using the “|” character with the intent of printing out only
the login names of everyone that is currently logged onto the system. Piping works

29. Doug McIlroy is credited with the introduction of software pipelining into the UNIX sys­
tem and a posting by Dennis Ritchie (see http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html
from Ritchie [1984]) shows the goals that Doug McIlroy expressed in 1964 for pipes.

http://www.levenez.com/windows/
http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

3.3 Operating Systems Case Study: Pipes in the UNIX System 105

Figure 3.7	 Doug McIlroy’s 1964 Bell Labs memorandum summary page with goals for pipes and
operating systems. (Source: Image courtesy of the Charles Babbage Institute Archives,
University of Minnesota Libraries, Minneapolis.)

who

cut

less

Keyboard

input

Display

output

STDIN

O
u

tp
u

t o
f

w
h

o

Output of cut

S
T

D
E

R
R

a
n
d

S
T

D
O

U
T

STDERR

STDERR

Figure 3.8 Pipes default operation example in a Bourne shell.

106 Chapter 3 Operating Systems

by taking the initial standard input (STDIN) from the terminal and then taking the

standard output (STDOUT) from each command and feeding it the STDIN of the

next one in the pipeline. Standard error (STDERR) feeds by default to the terminal
display.

1 who | cut −f 1 −d” ” | l e s s

So why was the introduction of pipes into UNIX important? They were really
introduced to make it easier for the programmer to use the system. The origin of
pipes goes back at least to 1964, as Dennis Ritchie refers to an October 11, 1964,
memo of concerns from M. Doug McIlroy: “1. We should have some ways of con­
necting programs like garden hose—screw in another segment when it becomes
necessary to massage data in another way. This is the way of IO also.”30 Pipes have

since been used in some form by many operating systems. Many of the tools devel­
oped for use on UNIX systems were developed with the idea of pipes in mind. As
a result, there are many small tools that do one task very well and when linked

together via pipes with other tools produce a very powerful and flexible way to

accomplish large tasks. Tools such as grep (general regular expression parser), sed

(stream editor), and awk31 (text processing, interpretive programming language)
are excellent examples of this “do one thing well” approach.

The introduction of pipes in the UNIX operating system was implemented in

197232 and this version is from 1979 (Bell Labs Research version 7). Pipes not only
made shell programming more elegant, they were an integral part of the operating

system and philosophy of UNIX. See Appendix—Source Code, Section A.1 for the

source code listing of pipe.c.
This code (Section A.1) for pipes is fairly typical of UNIX code at the time. The

intent was that it be readable and understandable. In fact, courses teaching UNIX

internals within Bell Labs would use the source code to teach how UNIX operated

along with books on UNIX design such as Bach [1986]. In order to read the code,
there are a number of environmental factors to consider. First, UNIX had been

re-written almost completely in the C programming language. At about this same

30. Note that this is the precise wording from the memo with the duplicate phrase “when

it becomes. “IO” refers to Input/Output. See http://cm.bell-labs.com/cm/cs/who/dmr/mdm

pipe.pdf.

31. Stands for “Aho, Weinberger, and Kernighan,” the authors of the language.

32. See http://cm.bell-labs.com/cm/cs/who/dmr/hist.html for more on the history of pipes in

UNIX. As noted on this site, DTSS did something similar to pipes.

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.pdf
http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.pdf
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html

3.4 Lessons Learned from Operating System Software 107

time, UNIX was being shared with a number of universities.33 Additionally, there

was an explicit project within Bell Labs to make UNIX portable.34 All of these fac­
tors led to the need to make the code portable, readable, and consistent with the

UNIX, tool-based mindset.
So, looking at the source code file for pipes (A.1, line 17), one sees that the only

constant that is locally defined is the size of the pipe. The rest are all from sys­
tem header files included as shown in A.1, lines 1 to 7. The remainder of the code

is concerned with reading, writing, and locking the pipe to prevent concurrent
access. Fairly consistently in UNIX source code, fp is used to refer to file pointer,
with “i-nodes” (short for “index node”) being used as the data structure to define

files.

3.4 Lessons Learned from Operating System Software
A number of lessons have been learned from the creation and modification of
operating systems that are generally applicable to other software systems. These

include the following:

∙	 Sharing resources efficiently: A fundamental aspect of operating systems is
that they manage the resources of the machine with the expectation that
this will increase the utility of the machine. As a result, one of the lessons
that has been learned is how to manage those resources efficiently, partic­
ularly for shared resources such as memory and disk drives. This not only
makes operating systems more efficient but has been used as models for
how to share other computing resources such as for database transactions
and other higher-level software systems. An example is how fragmentation

of these shared resources, such as memory and disk storage, is managed so

that the continued re-use of them doesn’t result in pieces that are of sizes
that aren’t easily re-used.

∙	 Managing time and speed differences: The necessity of an operating system

to manage difference in timing and to synchronize work has resulted in a

number of techniques that have general applicability in software systems.
Operating systems have had to manage differences in speed between devices
such as the difference in speed of RAM, disk drives, and other storage

33. UNIX was shared with universities with a number of restrictions on its use. This is part of what
encouraged Richard Stallman, then at MIT, to start the GNU (GNU’s Not UNIX) project.

34. Note that Wollongong University ported Research version 6 to an Interdata 7/32 computer in

1977. Bell Labs also ported a version to an Interdata 8/32 computer at about the same time. Prince­
ton University also adapted UNIX to run on an IBM VM/370 in a virtual machine. See Johnson and

Ritchie [1978] for more.

108 Chapter 3 Operating Systems

devices. This resulted in refinement of techniques such as caching that are

used in many other kinds of software outside of operating systems.

∙	 Portability is important: The ability to run the same operating system on dif­
ferent computers allowed operating systems to have longer lives and for
functionality to be added in a more permanent manner than in the past.
This involved adding the ability to abstract from the hardware to minimize

the changes necessary to get the operating system to run on additional com­
puter types. Why was this important? Because it allowed other software built
on top of that operating system to not have to substantially change when a

new computer was needed.

∙	 Platform stability engenders other advances: Related to portability of operating

systems is the resulting stability of the operating system platform and inter­
faces that can more effectively be maintained over a long period of time over
different types and generations of computer equipment. The relative stabil­
ity of IBM’s System/360, UNIX, and Microsoft Windows across generations
of computer hardware has helped enable other software to also be relatively
stable as well freed up programming resources that might have otherwise

been spent on porting software between different computers.

∙	 Virtualization is a key tool for abstraction: Virtualization, which first emerged

in the context of operating systems with IBM, has proven to be a very use­
ful tool for the abstraction of many types of computing system components
including storage, networking, and even data centers. This has led to the abil­
ity to build on those abstracted components so that the underlying hardware

can more easily be replaced. It has also led to enhanced stability in those

higher-level, virtualized abstractions that allow them to have a longer life

cycle.

∙	 Ability to scale: One of the first places where software has needed to scale to

larger environments has been in the area of operating systems. As a result,
the design of operating systems has evolved so that the same operating sys­
tem can be run on computers that range in power from small devices to

supercomputers. This was a key principle in the design of IBM’s System/360

operating system and has become true with operating systems such as UNIX

and Linux as they were ported to a number of different environments and

devices. In order to scale to very large computers, operating systems had

to be designed to support thousands of concurrent users, many different
configurations of peripherals, and to work with many other systems over a

network.

All of these lessons have been applied to other software systems.

3.6 Exercises and Projects 109

3.5 Summary
Hundreds (and likely thousands) of operating systems have been written, and as
systems become more powerful, the more work operating systems are allowed to

perform. Clearly, this chapter is just the tip of the iceberg of information about
operating systems history. Early operating systems had to be extremely modest in

what they performed and not waste system resources. As systems became more

powerful, operating systems allowed multiple programs to simultaneously use

the computer (multi-programming), multiple simultaneous users (time sharing),
and eventually to include additional sophisticated graphical user interfaces and

application functionality, such as web browsers.
A number of operating systems have had long-lasting impact on operating sys­

tem development, re-use of concepts, and re-use of source code including UNIX,
MULTICS, CTSS, DTSS, THE, and many others. These are briefly described in this
chapter with some of their impact. The features in operating systems have evolved

to become much more sophisticated and many are now taken for granted as being

part of almost any modern operating system (such as virtual memory, process
synchronization).

Operating systems are not only software that makes the computer easier to

use, but through their development, we’ve learned how to solve problems of syn­
chronization, performance, and reliability that is also applicable to other software

systems.

3.6 Exercises and Projects

3.6.1 Exercises
1. Real-time operating systems have some of the oldest roots. Examine the real-
time features and requirements of the MIT Whirlwind I computer system.
Identify what made them real-time requirements.

2. The SAGE (Semi-Automatic Ground Environment) system also was built with

a number of real-time requirements. Identify five of the real-time require­
ments.

3. A feature called the “Fair Share Scheduler” was developed for the UNIX oper­
ating system (see Henry [1984] and Kay and Lauder [1988]). This feature

allowed the processor capacity to be shared among groups and prevented

one group from taking more than their established percentage. Investigate

the origins of this feature and describe why it was an important development
for UNIX at the time.

110 Chapter 3 Operating Systems

4. Before virtual memory was a standard feature of operating systems, a system

problem was thrashing. Thrashing occurs when processes (or parts of pro­
cesses such as segments or pages) are swapped in and out of memory to the

extent that that’s what the system is spending most of its time doing, rather
than doing effective work in running processes. Peter Denning (see “Before

Memory was Virtual” in Glass [1998, pp. 250–271]) describes how the prob­
lem of thrashing was alleviated by development of a “Working Set Model”
of pages required in a multi-programmed system. Explain the working set
model, how it alleviated thrashing, and how it could apply to other system

problems such as storage.

5. Microkernels have been used several times in an attempt to simplify the

architecture of operating systems. The Mach operating system developed at
Carnegie Mellon University was a particularly influential system designed as
a microkernel. Determine what modern operating systems were influenced

by the Mach kernel.

6. TinyOS	 (http://www.tinyos.net/) is an open-source operating system

designed for very small devices such as sensory networks. Investigate the

current feature set and postulate what operating system features might be

useful when those small devices have more processing capacity.

7. Plan 9 was a distributed operating system introduced by Bell Labs in 1992 and

included a grid computing platform for using a set of distributed computers
together to solve large problems. Compare Plan 9 to the GLOBUS Toolkit for
grid computing. Explain why GLOBUS Toolkit was more widely used for grid

computing than Plan 9.

8. Investigate the features for the Apple II operating system, Apple DOS 3.1
(June 1978), and compare its features to those available with CP/M at the time.

9. Berkeley System Distribution (BSD) UNIX was used as the basis for the first
versions of the SUN Microsystems SunOS operating system. Explain why this
version was chosen and used rather than some other version of UNIX or other
operating system.

10. The Cray Research Cray 1 supercomputer used an operating system called

COS, Cray Operating System. Describe the unique features of this oper­
ating system. COS (version 1.17) is available at https://archive.org/details/
Cos1.17DiskImageForCray-1x-mp and the COS 1.0 (1978) manual at http://
www.bitsavers.org/pdf/cray/COS/2240011E_Cray-OS_Ver_1.0_Reference_Jul
78.pdf.

http://www.tinyos.net/
https://archive.org/details/Cos1.17DiskImageForCray-1x-mp
https://archive.org/details/Cos1.17DiskImageForCray-1x-mp
http://www.bitsavers.org/pdf/cray/COS/2240011E_Cray-OS_Ver_1.0_Reference_Jul78.pdf
http://www.bitsavers.org/pdf/cray/COS/2240011E_Cray-OS_Ver_1.0_Reference_Jul78.pdf
http://www.bitsavers.org/pdf/cray/COS/2240011E_Cray-OS_Ver_1.0_Reference_Jul78.pdf

3.6 Exercises and Projects 111

11. Investigate the personal computer operating system OS/2, originally a joint
development between IBM and Microsoft. Determine how OS/2 was intended

to be better than PC DOS and why it did not survive.

12. The Burroughs MCP operating system was the first to be written in a higher-
level, system-programming language. Investigate why Burroughs decided to

implement MCP in 1961 in ESPOL (Executive Systems Programming Lan­
guage, an extension of ALGOL).

13.	 Lions’ Commentary on UNIX 6th Edition, with Source Code [Lions 1976a, 1976b]
was important in the popularization of the UNIX operating system and was
often illegally copied. Explain how this book influenced the spread of UNIX.
Find a copy of this book and the part of the UNIX source code (in slp.c) that
has a comment of “You are not expected to understand this.” Explain why
this comment was reasonable according to Dennis Ritchie.

14. The Inferno operating system was developed in 1995 as a distributed operat­
ing system that followed Plan 9 and used a virtual machine (called Dis) and

introduced a programming language called Limbo.35 Inferno did not survive

as a commercially viable operating system. Find out why it did not succeed

and identify what succeeded instead.

15. An interesting story is the development of many different operating systems
for the Control Data Corporation CDC 6600.36 The CDC 6600 was one of the

fastest machines of its time and supported multiple CPUs. Be sure to cover
the Chippewa (aka COS), SIPROS, SCOPE, MACE, and Kronos operating sys­
tems for the 6600 and describe why there were so many operating systems for
this machine. Wikipedia and a CDC document (at http://bitsavers.org/pdf/
cdc/cyber/CDC_Operating_System_History_Mar76.pdf will give an excellent
start along with the references in the footnote.

16. Investigate the type of operating system being used for the Apple Watch

device (being called WatchOS, as of this writing). How is it different from the

operating system being used for larger devices such as on iPhones and iPads?
What operating system features are distinct from the other Apple platforms?

35. Inferno is now released as free software and maintained by Vita Nuova. The source code can

be found at: https://code.google.com/p/inferno-os/.

36. The manuals for the hardware and the Chippewa, Kronos, and SIPROS operating systems can

be found at http://www.bitsavers.org/pdf/cdc/cyber/cyber_70/. The SCOPE operating system man­
uals are at http://www.bitsavers.org/pdf/cdc/cyber/scope/. The CAL Timesharing System as well as
source code are at http://www.mcjones.org/CalTSS/.

http://bitsavers.org/pdf/cdc/cyber/CDC_Operating_System_History_Mar76.pdf
http://bitsavers.org/pdf/cdc/cyber/CDC_Operating_System_History_Mar76.pdf
https://code.google.com/p/inferno-os/
http://www.bitsavers.org/pdf/cdc/cyber/cyber_70/
http://www.bitsavers.org/pdf/cdc/cyber/scope/
http://www.mcjones.org/CalTSS/

112 Chapter 3 Operating Systems

17. Find an example outside of operating systems where a shared re-usable

resource is managed between many users (similar to memory or magnetic
disk storage in operating systems software). Was it managed in a manner
similar to the way operating systems manage it? Is there any evidence that
they borrowed their techniques from what was learned in the development
of operating systems software?

18. Making operating systems portable has reduced the variety of operating sys­
tems that are in mainstream use. Explain why this has been the case and

whether the variety of operating systems is likely to increase or decrease in

the future. Please be sure to justify your reasoning.

19. While the RC 4000 Monitor operating system (see	 Brinch-Hansen [1970,
1973]) was largely a commercial failure, explain how it influenced future

operating systems and what modern-day operating systems still show its
influence.

20. This chapter states that the stability of operating systems was a great boon to

software. This was in contrast to when the hardware was changing drastically
every few years as well as having very different operating systems provided by
each computer manufacturer. Explain how rapidly changing hardware and

operating systems limited the ability to create higher-level, stable software

layers.

21. Find out the relationship between MIT AI Lab’s ITS (Incompatible Timeshar­
ing System) and the GNU (GNU’s Not UNIX) project. How did the culture and

usage environment of ITS encourage projects like GNU?

3.6.2 Projects
1. In Hoare [1974], C.A.R. Hoare proposes using the monitor concept based

on Brinch-Hansen’s concept of monitor. Show how Hoare’s monitor con­
cept built on Brinch-Hansen’s concept and how it influenced further operat­
ing system design. Another reference that may be helpful is Brinch-Hansen

[2001]. Are there concepts in Hoare’s paper that did not get adopted by the

general operating system community? Explain why. What concepts were

adopted and why?

2. Research the “PenPoint” Operating System developed by GO Corporation

in the early 1990s. Compare this to more modern tablet and device operat­
ing systems (such as Apple iOS and Google Android) and determine which

features of this operating system were influential.

3.6 Exercises and Projects 113

3. The Berkeley Timesharing System (later called the Scientific Data Systems,
SDS, Timesharing System) began development in 1964 at the University of
California, Berkeley. Investigate the internals of the Berkeley Time-Sharing

System and how it compared to contemporary time-sharing systems such

as DTSS at Dartmouth and CTSS at MIT. Were there features of the system

that were different from these other systems? How did this system affect the

development of the TENEX operating system at BBN and UNIX at Bell Labs?

4. Using the emulator provided at	 https://github.com/pkimpel/retro-b5500,
build a running version of Burroughs MCP operating system. Using that sys­
tem, compile and run a small program in ALGOL. Prepare documentation

and a presentation that describes your experiences with MCP and how to

use it.

5. Many times, programs that were once considered applications have become

part of the operating system. A classic example of this is the web browser
where it was created as an application but is now (especially in personal
computers and mobile devices) expected to be delivered as part of the oper­
ating system. Google’s Chrome OS provides the Chrome browser as the inter­
face to the user. Explore what other applications have been absorbed by the

operating system and examine the pluses and minuses of each application’s
inclusion as part of the OS.

6. Download and install Bell Labs’ Plan 9 operating system and install within

a VM. See http://plan9.bell-labs.com/plan9/download.html for the software.
Run the system and compare its features and performance to a version of
Linux using the same size of virtual machine.

7. Download and install the Haiku operating system as a virtual machine. Inves­
tigate the features and determine the differences with other free operating

systems such as Linux. Is there any compelling reason for anyone to use

Haiku? When would such an operating system be useful?

8. Databases need to schedule transactions and also need to support sharing

of the database. Examine the history of these techniques and explain how

operating systems did (or didn’t) influence database transaction scheduling

and concurrency.

9. The use of threads in operating systems as a way to support “light-weight
processes” has a long history and are now part of almost every modern oper­
ating system. Investigate the progression of threads from early implementa­
tions such as in Mesa (see Lampson and Redell [1980]) and the Thoth system

https://github.com/pkimpel/retro-b5500
http://plan9.bell-labs.com/plan9/download.html

114 Chapter 3 Operating Systems

(see Cheriton [1982]) to how threads were implemented in UNIX (see Valhalia

[1996]), Linux, Microsoft Windows, and other operating systems.

10. Examine the ability of operating systems to be fault tolerant. That is, having

the ability to withstand failures and continue to operate. Determine where

this sort of feature was first developed and how it became more sophisticated

over time and used in different systems.

11. Use the Hercules emulator (see http://www.hercules-390.eu/) in order to run

and install an OS/360 operating system. Compile and run a short program.
Document and prepare a presentation that shows what had to be learned in

order to accomplish this task.

12. Investigate the history of Microsoft’s Windows CE for automotive embedded

operating system. Map the evolution of its features and how those features
exist (or not) in other Microsoft operating systems.

13. Investigate the “Direct Couple” extension to IBSYS for the IBM 7090. Docu­
ment how the features of Direct Couple influenced features of IBM OS/360.
See http://www.softwarepreservation.org/projects/os/dc.html for a starting

point.

14. Time-sharing in operating systems went through a definition phase as do

many new technologies. It was recognized by the early 1960s in many places
as an idea worth pursuing. Investigate the many variants of time-sharing

that were proposed before 1965. Use resources such as Trimble [1968] and

Bullynck [2019] to find the various efforts that were undertaken for time­
sharing. Determine the scope of the variants and produce a paper that shows
what ideas won and lost in the effort to define time-sharing. Be sure to

include early efforts not otherwise mentioned in this chapter such as the

Ferranti Orion monitor system where time-sharing was proposed in 1961
(see Goodman [1961]) as well as university-led projects like CTSS, ITS, DTSS,
and SDS.

3.7 Further Readings and Online Resources
Operating systems have a long and complex history and a good place to begin is in

current operating systems textbooks such as Silberschatz et al. [2012] with a sub­
stantial section on operating system history. Bullynck [2019] provides a look at early
systems and how they evolved through the 1950s and 1960s. In the last decade or
so, many old operating systems have been open sourced, and the source code can

be found online. These include old versions of UNIX, MULTICS, OS/360, and many
others. Rosen [1967] includes a collection of papers describing several important

http://www.hercules-390.eu/
http://www.softwarepreservation.org/projects/os/dc.html

3.7 Further Readings and Online Resources 115

early operating systems including CTSS, OS/360, MULTICS, and the ATLAS Super­
visor. Additionally, simulators to run these old systems have been built and many
are available online for free (such as http://www.hercules-390.eu/forOS/360 and

https://code.google.com/p/retro-b5500/ for Burroughs’s MCP). Binaries for some

operating systems are available at BitSavers.org such as TENEX (see http://www.
bitsavers.org/bits/BBN/Tenex/).

http://www.hercules-390.eu/ for OS/360
https://code.google.com/p/retro-b5500/
http://www.bitsavers.org/bits/BBN/Tenex/
http://www.bitsavers.org/bits/BBN/Tenex/

4interact with computers. As a result, there have been a number of conferences
devoted to the history of programming languages (see Wexelblat [1981], Bergin and

Gibson [1996], and Hailpern [2007]).1

Since the late 1950s, thousands of programming languages have been devel­
oped, most of which are no longer in widespread use. However, a few of those early
programming languages remain in widespread use. Languages such as FORTRAN,
COBOL, and LISP were some of the earliest programming languages and they con­
tinue to be used. Other languages that were popular for a period of time have not
remained in widespread use, such as BCPL, SNOBOL, PL/I, and ALGOL. Yet many
of those languages have had a substantial impact on later programming languages.
In this chapter, we will look at a number of languages and why they continued to

be used or why they fell into disuse. Some readers of this text may not have heard

of these influential languages as they are rarely covered in their courses, including

modern courses on programming languages.
Figure 4.1 shows the logo used for the first ACM conference in 1978 for the

History of Programming Languages. Some of the languages included there con­
tinue to survive in some form, while the others are no longer in use but were unique

and/or influential.

Programming Languages

Programming languages have a rich and highly interrelated history. This chapter
deals with how compilers and interpreters evolved as well as concepts such as
object-oriented programming. Programming language history is the most well-
documented areas of software history, partially because programming languages
are so central to the creation of software and the primary tool of programmers.
Programming languages are the media that programmers use in order to imple­
ment algorithms and solve problems, making them key to the way programmers

1. A nice summary of the ACM History of Programming Languages (HOPL) conferences is in

Bergin [2007]. Jean Sammet was also instrumental in the documenting of the early history of
programming languages, such as in Sammet [1969] and also see Donald Knuth’s [2003] summary
of the early history.

118 Chapter 4 Programming Languages

Figure 4.1	 Logo of the History of Programming Languages I Conference in 1978 with the languages
represented. (Source: SIGPLAN Notices, Volume 13, Number 8, August 1978 ©ACM 1978,
New York, NY.)

4.1 Definitions
What is and what is not a programming language is surprisingly not well-defined.
Some people include any method that could be used to write a program including

machine code and assembly language. In this book, we’ll define a programming

language along the same lines as Jean Sammet [1969]. The term higher-level lan­
guages will be considered equivalent to the term programming languages for the

purpose of this book.
Programming languages will be defined to have the following characteristics:2

∙	 Machine code knowledge is not necessary. Programming languages should

be at a higher-level than machine code and abstract from the machine.
Furthermore, a programmer using a programming language should not
need to know anything about the machine-level instructions and architec­
ture of the computer on which the programs are run.

∙	 Potential for conversion (i.e., porting) to other computers. Similar to the need not
to know the machine code of the computer you are using, a program written

in a programming language should be portable to other computers.

2. These are the same four characteristics used in Sammet [1969]. However, here we won’t be quite

as rigid as Sammet.

4.1.1

4.1 Definitions 119

∙	 Instruction explosion. This requirement refers to the ability of a higher-level
programming language to be translated into many more machine instruc­
tions. That is, it should be able to express programs more concisely than

machine code. So, when a program is compiled in a programming language

it should create many more machine instructions.

∙	 Problem-oriented notation. This last requirement is the hardest to rigorously
decide whether or not a given programming language meets. The idea is that
it should be closer to human language so that someone reading the program

can understand the problem being solved and the algorithm used to do it
without a lot of detailed knowledge of the particular computer or machine

code.

The first three of these requirements are trying to force a programming lan­
guage to be more abstract than the machine language level of the computer. The

last requirement is looking for another definition of “high-level” that makes a pro­
gram more understandable by humans and closer to a problem domain. So, some

early languages such as FORTRAN, COBOL, and LISP clearly met this definition,
which other early languages such at IT (Internal Translator), A-0, A-1, A-2, IBM

Speedcoding, and Univac Short Code are much less clear.3

Machine Language
Machine language4 is the direct numerical language that the computer uses to

operate. This is usually binary and specifies the hardware instruction to be used

as well as the data for the instruction. As an example, the Microprocessor without
Interlocked Pipeline Stages (MIPS) architecture has machine code instructions that
are always 32 bits long and of the form of a 6-bit operation code (opcode) followed

by arguments in the following forms depending on the type of instruction (R-type,
I-type or J-type) as given in Table 4.1. MIPS, (see Patterson and Hennessy [2013])
being a relatively simple and regular machine instruction set, makes a good exam­
ple. MIPS is designed for reduced instruction set computers (RISC) so its instruc­
tion set was designed to be simple. It has three formats for machine instructions:
R-type (register instructions), I-type (Immediate), and J-type (jumps). These three

3. However, many of these early programming languages did have significant dependencies on the

specific machine, where the word length might affect types such as INTEGER and REAL as well
as the system libraries and often the language implementation itself was different on different
machines.

4. Sometimes called a “first generation language” for programming; however, it is not a program­
ming language by the definition for programming and high-level languages in Section 4.1.

120 Chapter 4 Programming Languages

Table 4.1 MIPS machine code instruction types

Instruction Type opcode

#bits 6 5 5 5 5 6

R-type op rs rt rd shamt funct
I-type op rs rt address/immediate

J-type op target address

formats5 are all 32 bits long and their formats are specified in Table 4.1. Instruction

sets and machine architectures vary widely. In MIPS machine language, rs, rt, and

rd refer to registers values. shamt refers to a shift amount. funct is used to specify a

specific operation in an R-type instruction.
A specific example of an instruction for a MIPS processor is an R-type instruc­

tion with an opcode of zero that will add the contents of register 1 (binary 00001)
and 3 (binary 00011) and put the result in register 7 (binary 00111). Binary 100000

(as the “funct” equal to decimal 32) indicates addition for the R-type instruction.

1 000000 00001 00011 00111 00000 100000

Listing 4.1 A binary R-type instruction for a MIPS processor.

4.1.2 Assembly Language
An assembler generally takes code written with mnemonics representing machine

instructions and translates that into machine code that is executable.6 These

mnemonics generally are one-to-one representations of the machine instructions
(i.e., no code explosion) and form assembly language. So, to represent the MIPS add

instruction one uses:

1

2

3

4

l i $t1 , 1 # $ t 1 = 1 (” load immediate ”)
l i $t3 , 3 # $ t 3 = 3
l i $t7 , 7 # $ t 7 = 7

add $t1 , $t3 , $t 7 # Adds r e g i s t e r 1 to r e g i s t e r 3 = r e g i s t e r 7

Listing 4.2 MIPS assembly instructions.

This corresponds to the MIPS machine code listed above, but I added the use

of variables ($t1, $t3, and $t7) to store the values of the register numbers to be used

in the add instruction. Assemblers added readability by the mnemonics (like add

and li) but also in the use of memory location names and variable names.

5. Here, we only talk about the 32-bit MIPS format, not other varieties of MIPS.

6. These are sometimes called second generation languages, with machine language being 1st
generation.

4.1 Definitions 121

4.1.3 Compilers and Automatic Coding and Programming
The notion of a programming language compiler was not precisely defined dur­
ing the early years of computers until FORTRAN was released for the IBM 704.
There was a great deal of activity to create those initial compilers as is covered

in Section 4.3. In particular, there was a drive towards creating automatic coding,
often also called automatic programming. This drive was to make it possible for reg­
ular users of the machine to precisely define their problems such that they could

be solved by the computer by automatic coding or programming. This eventually
became called “compilers,” but later efforts to make programming more automatic
continued.7 We will define compilers to be “the program(s) that transform source

code written in a programming language into object or machine code.”
Part of that drive for automatic coding came from the recognition that the

timely creation of programs was becoming a bottleneck for effective use of com­
puters. Coding directly in binary or even assembly was difficult to master and

involved significant translation from an algorithmic level of problem solving. So,
the desire was to allow more people to be able to produce programs. Another key
driver came from the recognition that many of these solutions would be needed on

many different types of computers and having to reprogram a known solution for
each machine needing it was redundant effort that a portable, higher-level form

of automatic coding would help solve. One way to show the change in program­
ming languages to a higher level of abstraction is in the diagram in Figure 4.2.
Machine code can be called first generation programming, with assembly language

programming second generation, and third generation programming languages
referring to general-purpose languages such as Java or C. Fourth generation can

Machine Language (1GL)

Only binary/machine code

No support structure

Assemblers (2GL)

A mnemonic represendation of 1GL

Macro-assemblers allowed functions/procedures

Not portable

Specialized (4GL)

Usually for a particular function

Example: Structured Query Lang (SQL) for databases

Not general purpose like 1GL–3GLs

Machine-Independent PL (3GL)

Development of programs not based directly on machine code

Basic types: Procedural, Functional, Logic

Other subtypes: object-oriented, scripting,

Compilers and Interpreters built to optimize

Libraries of prebuilt code used to reduce development time

Other Higher-level Environments

Visual Programming environments built on 3GLs

Robotics Programming Environment/Lang

Agent-oriented Programming

Needed

something

to simplify
Used similar techniques to build languages

Built on

3GLs

Needed to allow more people to program

without worrying about all machine details

Figure 4.2 Generations of programming languages and environments.

7. See Chapter 5 on programming environments and tools where efforts such as computer-aided

software engineering (CASE) are discussed.

122 Chapter 4 Programming Languages

refer to higher-level languages that serve a given purpose, such as Structured Query
Language (SQL). Additionally, there are other types of languages that take a higher-
level abstraction such as agent-oriented programming to create intelligent agents.
Additionally, Japan started a Fifth Generation Computer Systems project in 1982 (see

Shapiro [1983]) that was meant to leverage massively parallel computing and the

use of concurrent logic programming. This project’s name loosely built on the

existing four levels of programming levels of programming languages and three

levels of hardware and was intended to produce a dramatic step forward. Another
project that termed itself as “fifth generation” was the Kronos Research Group’s
Kronos computer that began in 1984 and focused on building a machine that would

be well-suited to running the Modula-2 programming language.

4.1.4	 Source Code, Object Code, Linkers, Loaders, Libraries, and
Executables
Programs and programming languages are part of an overall system to produce

running processes in a computer. In this section, we define those terms that are

central to compiling a program. In Figure 4.3, we have the process beginning with

source code, which is what most programmers will consider their program, which

consists of the lines of code they have written in the programming language. The

compiler’s job is to translate this program into machine code. In general, the pro­
gram does not contain all the functions and routines directly in the program itself,

Compiler

Loader

Linker

Relocatable Executable

Libraries

Source

Code

Computer

Relocatable

Object

Code

Running

Executable

In Memory

Figure 4.3 Flow of compiling a program to become a process running in memory.

4.2 Types of Programming Languages 123

but instead relies on libraries of prewritten and compiled routines that can be

included in their program. The object code (also stored as a file) will be machine

code that is relocatable. Being relocatable means that it can be placed somewhere

in memory, and when it is the references to memory addresses will be modified

so that they refer to the actual (or virtual memory) addresses the program needs
to run. The linker is used to resolve the references to external libraries and sys­
tem calls. The loader is the program used to load the relocatable executable to the

computer’s memory so that the operating system can execute the program. The

loader will resolve the memory address references so that the program’s executable

can run.

4.2 Types of Programming Languages
There are many ways to categorize programming languages. One of the most com­
mon is to categorize them by programming paradigm. A programming paradigm is
a fundamental way of building the structure and elements of computer programs.
The four programming paradigms most commonly described are: imperative/
procedural, logic, functional, and object-oriented.8 In this section we will use these

four programming paradigms. However, other dimensions are also valuable in

looking at programming languages, such as how declarative or imperative the lan­
guage is. A declarative language specifies what to solve, not how to solve it. An

imperative language specifies how the program will be executed. For example, logic
paradigm-based languages (such as Prolog) tend to be more declarative rather than

a language such as C++, which is imperative.
Using programming paradigms certainly does not give a complete or even a

necessarily clear taxonomy of programming languages. Many languages support
multiple programming paradigms (such as C++ supports object-oriented and by
supporting C programs, more purely procedural paradigms). It is not clear what
precisely makes up a programming paradigm and when a new one should be

declared as importantly distinct from the existing paradigms. Also, one can often

use a programming language designed for one paradigm and use it in another
paradigm. For example, a framework can be built in C++ to implement logic-based

programming. With that said, paradigms still give a rough idea of the diversity of
programming languages. Each of the next four sections describe these paradigms

8. Note that our focus here is on Turing-complete languages that can implement any program that
could run on a Turing machine. So, we are not including languages that are less general in this
section, such as data definition and query languages like SQL (for databases) that are not Turing

complete.

124 Chapter 4 Programming Languages

and describe several of the more important examples from that paradigm and why
each was important.

4.2.1 Imperative and Procedural Languages
The earliest programming languages were all imperative, meaning that a program

would dictate how the problem is solved via a set of statements that change the

program state. The program statements implement an algorithm to solve the prob­
lem at hand. Being a procedural programming language refers to programs being

written subdivided into parts referred as procedures, methods, routines, or subrou­
tines. Procedural programming is often associated with structured programming

techniques but is really older than the advent of structured programming. Most
programming languages tend to be of this category.

4.2.1.1 FORTRAN

FORTRAN (FORmula TRANslation), being one of the first programming languages,
has been very influential.9 It grew out of the desire to be able to express problems
and algorithms in mathematical notation.10 IBM assembled a team led by John

Backus to ensure that the compiler would work correctly and be efficient enough

to ensure acceptance. The original release of the initial version of FORTRAN was
started in 1954 and was released for the IBM 704 in spring 1956. FORTRAN II was
released in 1958 and included the ability to define subroutines. FORTRAN III was
never fully developed, but FORTRAN IV was implemented in 1962 for the IBM 7090.
Also in 1962, the American Standards Association (a precursor to the current Ameri­
can National Standards Institute, ANSI) began the process of developing a standard

for FORTRAN using FORTRAN IV. FORTRAN has continued to evolve with other
standards including FORTRAN 66, FORTRAN 77, FORTRAN 90, FORTRAN 95, FOR­
TRAN 2003, FORTRAN 2008, and FORTRAN 2018. FORTRAN continues to be used

widely, particularly among the scientific and numeric computing community.

1

2

3

4

5

6

DIMENSION X(20) , RCIPX (20)

SUMX=0.

DO 5 I =1 , 20

IF (X (I)) 3 , 2 , 3

2 RCIPX (I) = 0.

C Example program in FORTRAN 2

9. See http://softwarepreservation.org/projects/FORTRAN/ for much more on the history of
FORTRAN.

10. An influential effort in the movement toward expressing problems in mathematical notation

(though not directly influencing FORTRAN) was the Internal Translator (IT) project at Purdue and

then Carnegie Mellon (see Chipps et al. [1956]).

http://softwarepreservation.org/projects/FORTRAN/

4.2 Types of Programming Languages 125

7 GO TO 5

8 3 RCIPX (I) = 1 . / X (I)
9 5 SUMX=SUMX+RCIPX (I)
10 STOP

Listing 4.3 FORTRAN II example using an arithmetic if statement.

The code above is from FORTRAN II. In it, you’ll note on line 5 an if statement
of the form:

IF (expression) LINE1, LINE2, LINE3

Here, if the expression results in a negative value, then control is transferred to

LINE1. If it’s zero, then control is transferred to LINE2 and if it’s positive to LINE3.
So, in this example, if the X(I) is either negative or positive we go to line 3 and

if it’s zero to line 2. This form of “arithmetic if” was a primary control structure

for programming in FORTRAN II and was replaced with an IF–THEN structure in

later versions of FORTRAN. Debugging other people’s programs in FORTRAN II
was very difficult.11 FORTRAN was written with an assumption of being encoded

on punched cards and used the columns on the card for formatting the FORTRAN

source code. FORTRAN (for many versions) expected certain columns to be used

for specific uses. The first column could contain a “C” to represent a comment (as
in line 1 above). The next 4 columns would represent the line number (“2,” “3,” and

“5” in the above) and the 5th column if filled with a “*” would allow a statement to

continue to the next line.

4.2.1.2 COBOL

COBOL (COmmon Business-Oriented Language) was formed as a result of the Con­
ference/Committee on Data Systems Languages (CODASYL). CODASYL was formed

in 1959 to guide the development of a standard business programming language.
The US government and industry partnered to form CODASYL out of an interest
to create a portable programming language. The first ANSI standard for COBOL

was adopted in 1968 with the first CODASYL version being defined in 1960. Three

primary languages were considered as options for what would become COBOL:
FLOW-MATIC, AIMACO, and COMTRAN. FLOW-MATIC was being developed at
Sperry Rand with Grace Murray Hopper. FLOW-MATIC supported long variable

names and had an English-like syntax.12 COMTRAN was being developed at IBM

11. The author notes that he had the task early in his career of debugging a large FORTRAN II
program without any comments and found it extremely difficult to debug and enhance.

12. B-0 (which was renamed FLOW-MATIC by Sperry Rand) was the business-oriented language

that Grace Murray Hopper worked on while at Remington Rand for the UNIVAC. Named B-0 as

126 Chapter 4 Programming Languages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

with Bob Bemer. Some features from COMTRAN were included in the eventual
standard for COBOL.

CODASYL went on to develop other standards, most notably the CODASYL data

model for network data model databases. The source code listing below is for a

“Hello World” program ran on the Hercules OS/370 simulator on Linux. In that
example, you can see the verbose nature of COBOL and some of the warnings. This
example also includes Job Control Language (JCL) cards at the beginning and end

of the COBOL listing.

/ / COB. SYSIN DD *

00000* VALIDATION OF BASE COBOL INSTALL

01000 IDENTIFICATION DIVISION .

01100 PROGRAM−ID. ’HELLO ’ .

02000 ENVIRONMENT DIVISION .

02100 CONFIGURATION SECTION .
02110 SOURCE−COMPUTER. GNULINUX .
02120 OBJECT−COMPUTER. HERCULES .
02200 SPECIAL−NAMES .
02210 CONSOLE IS CONSL .

03000 DATA DIVISION .

04000 PROCEDURE DIVISION .
04100 00−MAIN .

04110 DISPLAY ’HELLO, WORLD’ UPON CONSL .
04900 STOP RUN.

/ / LKED . SYSLIB DD DSNAME=SYS1 . COBLIB , DISP=SHR

/ /COBUCLG JOB (0 0 1) , ’COBOL BASE TEST ’ ,
/ / CLASS=A , MSGCLASS=A , MSGLEVEL = (1 , 1)
/ / BASETEST EXEC COBUCLG

/ / DD DSNAME=SYS1 . LINKLIB , DISP=SHR

her earlier languages were A-0, A-1, and A-2. The design of B-0 was done on flowcharts written on

drafting blueprint paper (as had been the case since the ENIAC and at Eckert–Mauchly Computer

Corp) and filled hundreds of pages.

4.2 Types of Programming Languages 127

21

22

Listing 4.4

1

2

3

4

5

6

7

8

9

10

11

12

Listing 4.5

4.2.1.3

/ /GO. SYSPRINT DD SYSOUT=A

/ /

COBOL program with Job Control.

The output of that same COBOL program is given below, which generates some

errors such as expecting cards to define the card punch device.

1 9 . 5 2 . 4 8 JOB 3 $HASP100 COBUCLG ON READER1 COBOL BASE TEST

1 9 . 5 2 . 4 8 JOB 3 IEF677I WARNING MESSAGE(S) FOR JOB COBUCLG ISSUED

1 9 . 5 2 . 4 8 JOB 3 $HASP373 COBUCLG STARTED − INIT 1 − CLASS A − SYS

BSP1
1 9 . 5 2 . 4 8 JOB 3 IEC130I SYSPUNCH DD STATEMENT MISSING

1 9 . 5 2 . 4 8 JOB 3 IEC130I SYSLIB DD STATEMENT MISSING

1 9 . 5 2 . 4 8 JOB 3 IEC130I SYSPUNCH DD STATEMENT MISSING

1 9 . 5 2 . 4 8 JOB 3 IEFACTRT − Stepname Procstep Program Retcode

1 9 . 5 2 . 4 8 JOB 3 COBUCLG BASETEST COB IKFCBL00 RC= 0000

1 9 . 5 2 . 4 8 JOB 3 COBUCLG BASETEST LKED IEWL RC= 0000

1 9 . 5 2 . 4 8 JOB 3 +HELLO, WORLD

1 9 . 5 2 . 4 8 JOB 3 COBUCLG BASETEST GO PGM= * .DD RC= 0000

1 9 . 5 2 . 4 8 JOB 3 $HASP395 COBUCLG ENDED

COBOL program output.

COBOL continues to evolve with numerous standards since its initial definition

in 1959 to 1960 (called COBOL 60). Other standards include COBOL-65, COBOL-68,
COBOL-74, COBOL-85, COBOL 2002, and COBOL 2014. In 2002, COBOL added the

ability to support object-oriented programming. As a result of its large, embed­
ded base and continued evolution, COBOL is still being used by many companies
around the world.

ALGOL

In 1958 in Zurich, a committee met to create an international algebraic language

using the emerging techniques for programming language design. Originally
called IAL (International Algebraic Language), the ALGOL 58 version of ALGOL

(ALGOrithmic Language) was created. In 1960, this committee met again to cre­
ate a new version of ALGOL called ALGOL 60 that significantly revised the version

from 1958 and became the basis for the ALGOL standard going forward. ALGOL

never supplanted FORTRAN in the United States but did gain significant popularity
in Europe through the 1960s and 1970s. ALGOL has probably had more influence

on procedural languages than any other single language. ALGOL was defined by
a precise syntax using Backus–Naur Form (BNF) and introduced notions of block

128 Chapter 4 Programming Languages

structure and scope of names. It also included features such as dynamic storage

allocation and recursive procedures.
Some of the languages directly or indirectly influenced by ALGOL include Pas­

cal, Modula, C, Java, PL/I, B, ICON, and many others. ALGOL has had a lasting

impact on procedural programming. The code sample below shows how readable

ALGOL is as so many current-day languages borrowed from its syntax.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure Absmax (a) S i z e : (n , m) Result : (y) S u bs c r i p t s : (i , k) ;
value n , m; a r r a y a ; i n t e g e r n , m, i , k ; r e a l y ;

comment The absolute g r e a t e s t element of the matrix a ,
of s i z e n by m i s t r a n s f e r r e d to y , and

the s u b s c r i p t s of t h i s element to i and k ;
begin

i n t e g e r p , q ;
y : = 0 ; i : = k : = 1 ;
f o r p : = 1 step 1 u n t i l n do

f o r q : = 1 step 1 u n t i l m do

i f abs (a [p , q]) > y then

begin y : = abs (a [p , q]) ;
i : = p ; k : = q

end

end Absmax

Listing 4.6 An ALGOL program to get the absolute greatest element of a matrix.

4.2.1.4 PL/I
PL/I (Programming Language One) is a language that was proposed by the SHARE

users group (as New Programming Language) and developed by IBM in 1965. The

intent was to develop a more modern language that could possibly take the place of
both FORTRAN and COBOL. As a result, PL/I included a number of features to make

it easier to interface with IBM file systems as well as advanced process synchroniza­
tion mechanisms. Through the 1960s, PL/I compilers were often inefficient and

unreliable. PL/I was a complex language and compilers were relatively difficult to

build. The Project MAC group at MIT decided to adopt PL/I for the MULTICS oper­
ating system project. In addition, PL/I adopted many of the well-liked features from

ALGOL including its block structure, recursion support, and many other features.
The PL/I standard language semantics were expressed using formal operational
semantics (see Wegner [1972]) using an abstract machine with translation rules.
These were named the Vienna Definition Language (VDL), as VDL was designed by
IBM in Vienna.

4.2 Types of Programming Languages 129

PL/I’s syntax drew heavily from ALGOL as you can see in the code below.

1

2

3

4

5

6

7

8

9

10

11

12 get ed i t (pat tern) (L) ;
13 l ine no = 1 ;
14 do f o r e ve r ;
15 get ed i t (l i ne) (L) ;
16 i f index (l ine , pat tern) > 0 then

17 put skip l i s t (l ine no , l i ne) ;
18 l ine no = l ine no + 1 ;
19 end ;

/ * Read in a l ine , which contains a s t r i n g ,
/ * and then p r i n t e ve r y subsequent l i n e

/ * th a t contains t h a t s t r i n g . * /

f i n d s t r i n g s : procedure options (main) ;
d e c lare p at ter n c h a r ac t er (1 0 0) v a r y in g ;
d e c lare l i n e c h a r ac t er (1 0 0) v a r y in g ;
d e c lare l in e n o f i x e d binary ;

on e n d f i l e (s y s i n) stop ;

Listing 4.7 A very small program in PL/I.

4.2.1.5 C

The programming language C’s development has been intimately tied with that of
the UNIX operating system. The UNIX development team had recently been work­
ing on Multics, which was using PL/I to develop the Multics operating system. Prior
to that, they had been working on the CTSS operating system at MIT that used the

MAD programming language. While UNIX was originally developed using assem­
bly language, UNIX was completely rewritten in C by 1972. UNIX was also built to

be tuned to the needs of programmers, so an efficient compiler was needed. C was
developed based on earlier experiences from the B programming language, BCPL,
and MAD. The popularity of UNIX and Linux has spurred the popularity of C as
well. It was standardized in 1989 by ANSI. Below is a simple program that generates
a random number and asks a user to guess the value when given hints of “high”
or “low.”

1 # include < s td io . h>

2 # include < s t d l i b . h>

3 # include <time . h>

4 /

5

10

15

20

25

30

35

40

45

130 Chapter 4 Programming Languages

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

26

27

28

29

31

32

33

34

36

37

38

39

41

42

43

44

46

47

48

49

/ * Guessing game with no parameters
* g enerates a random number between

* 1 and 20 (i n c l u s i v e) and then

* responds with ” too high ” or ” too low ” or
* ” c o r r e c t ” and number of guesses taken / * * /
def ine DAYS 7

i n t main (void) {
i n t guess ;
i n t guess t imes = 0 ;
/ *

* use the system time to s e t the randomizer seed value

* use rand () funct ion to get a random number
* and then take modulo 20

* add one to make i t between 1 and 20

* /
srand (time (NULL)) ;
i n t r = rand () % 2 0 ; r ++ ;
/ *

* Give a prompt to s t a r t the game .
* /
p r i n t f (”We\ ’ re s t a r t i n g the guessing game ! Enter your \

guesses f o r a number between 1 and 20 (i n c l u s i v e) . \ n”) ;
/ *

* Loop f o r e v e r u n t i l they guess
* Note they may guess more than 20 times as they might
* not be paying a t t e n t i o n to t h e i r previous guesses
* /
while (0 < 1) {

p r i n t f (”What \ ’ s your guess of the number ? \ n”) ;
/ * get t h e i r guess * /
scanf (”%d” , &guess) ;
/ * how many times they have guessed * /
guess t imes ++ ;
/ * i f t h e i r guess i s c o r r e c t , then say so ,

g i v e them t h e i r count of guesses and e x i t * /
i f (guess == r) {

p r i n t f (” Correct ! What \ ’ s you \ ’ re s e c r e t ? \ n”) ;
p r i n t f (”You made %d guesses . \ n” , guess t imes) ;
return (0) ;

}
/ * otherwise check i f too high or too low

* and s p i t out hint * /
e l s e i f (guess > r) p r i n t f (”Too High ! \ n”) ;

e l s e p r i n t f (”Too Low ! \ n”) ;

4.2 Types of Programming Languages 131

50 }
51 return 0 ;
52 }

Listing 4.8 A simple guessing game written in C.

4.2.2 Functional Programming Languages
Languages supporting the functional paradigm really began with LISP in 1958. LISP

has since splintered into many variants, including MIT’s Scheme along with Com­
mon LISP. Other, more recently developed languages such as ML (Meta Language)
and Haskell are also functional in nature.

4.2.2.1 LISP Dialects

Functional programming languages began with John McCarthy and the definition

of LISP. LISP’s syntax is distinctly different from languages such as FORTRAN or
ALGOL, being fully parenthesized prefix notation.13 LISP stood for “LISt Process­
ing” and was built to manipulate lists. Even LISP programs are lists of items that
can be manipulated by other LISP programs. LISP was influenced by the Informa­
tion Processing Language developed by Newell, Shaw, and Simon a couple of years
earlier. LISP was built to handle symbolic (rather than numeric) information in

order to be useful for artificial intelligence programming. LISP continues to enjoy
usage in the artificial intelligence community, particularly in the United States.

LISP has many different variants including Common LISP, Scheme, and Racket.
The following LISP program is by John McCarthy and recovered from files in his

archives held at Stanford University. It uses what he called “pure” LISP with only
functional constructs.

1

2

3

; ; ; block3 . l sp [f83 , jmc] Block s t a c k e r with fn c a l l s and opportunism

; ; ; The opportunism c o n s i s t s of moving a block to i t s f i n a l
d e s t i n a t i o n

; ; ; inste ad of the t a b l e during c l e a r operat ions i f t h i s i s p o s s i b l e .

13. A myth is that LISP was directly inspired by Alonzo Church’s lambda calculus, but McCarthy
clarified that in the History of Programming Language I conference in 1978 [Wexelblat 1981] and

stated at that conference:

Now, having borrowed this notation, one of the myths concerning LISP that people think

up or invent for themselves becomes apparent, and that is that LISP is somehow a realiza­
tion of the lambda calculus, or that was the intention. The truth is that I didn’t understand

the lambda calculus, really.

5

10

15

20

25

30

35

40

45

132 Chapter 4 Programming Languages

4

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

26

27

28

29

31

32

33

34

36

37

38

39

41

42

43

44

46

(defun build (s t ruc tu re s)
(i f (nul l s t ruc tu re)

s
(bui ld (cdr s t ruc tu re)

(bui ld1 s t ruc tu re (r e ve r se (car s t ruc tu re)) ’ t ab l e

s))))
(defun bui ld1 (s t rtower l oca t ion s)

(i f (nul l rtower)
s
(bui ld1 s t (cdr rtower) (car rtower)

(move s t (car rtower) l oca t ion s))))
(defun move (s t block l oca t ion s)

(i f (on block l oca t ion (car s))
s
(immove block

l oca t ion

(c l e a r s t block (c l e a r s t l oca t ion s)))))
(defun immove (block l oca t ion s)

(cons (update

(car s)
(l i s t block l oca t ion))
(cons (l i s t block l oca t ion) (cdr s))))

(defun c l e a r (s t block s)
(i f (or (nul l block) (eq block ’ t ab l e))

s
(c l e a r 1 s t block (f ind block (car s)) s)))

(defun update1 (s1 pai r)
(cond

((or (nul l s1) (and (nul l (car pai r)) (nul l (cadr pai r))))
s1)
((eq (caar s1) (car pai r))
(cons (cdar s1) (update1 (cdr s1) pai r)))
((eq (caar s1) (cadr pai r))
(cons (cons (car pai r) (car s1))

(update1 (cdr s1) (l i s t (car pai r) n i l))))
(t
(cons (car s1) (update1 (cdr s1) pai r)))))

(defun update (s1 pai r)
(update2 (i f (eq (cadr pai r) ’ t ab l e)

(cons (l i s t (car pai r)) (update1 s1 (cons (car
pai r) n i l)))

(update1 s1 pai r))))
(defun update2 (s1) (cond

((nul l s1) n i l)
((nul l (car s1)) (cdr s1))

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

4.2 Types of Programming Languages 133

(t (cons (car s1) (update2 (cdr s1))))))
(defun f ind (b s1) (i f (member b (car s1)) (car s1) (f ind b (cdr s1)))

)
(defun c l e a r 1 (s t b tower s)

(i f (eq b (car tower))
s
(c l e a r 1
s t
b

(cdr tower)
(immove

(car tower)
((lambda (w) (i f (member w (car s)) (car w) ’ t a b l e))
(dest (car tower) s t))

s))))
(defun dest (b s t) (dest2 b (des t 1 b s t)))
(defun d e s t 1 (b s t) (i f (member b (car s t)) (car s t) (d e s t 1 b (cdr s t)

)))
(defun dest2 (b tower) (i f (eq (car tower) b)

(i f (n u l l (cdr tower)) ’ t a b l e (cdr tower))
(dest2 b (cdr tower))))

(defun i s c l e a r (b s t) (eq b (car (d e s t 1 b s t))))
(defun on (a b s1) (on1 a b (f ind a s 1)))
(defun on1 (a b tower)

(and (not (nul l tower))
(or (and (eq (car tower) a)

(or (and (eq b ’ t a b l e) (nul l (cdr tower)))
(and (not (nul l (cdr tower))) (eq (cadr tower

) b))))
(on1 a b (cdr tower)))))

; ; ; t e s t s
(setq t 1 ’ ((a b) (c)))
(setq t 2 ’ ((a b c)))
(setq s0 (cons t 1 n i l))
(setq t t 0 ’ (b c))
(immove ’ a ’ c s0)
(move t 2 ’ a ’ c s0)
(immove ’ a ’ t a b l e s0)
(b u i ld 1 t 2 ’ (c) ’ a s0)
(b u i ld 1 t 2 ’ (c b) ’ t a b l e s0)
(build t 2 s0)
(setq t 3 ’ ((a b c) (d e) (f)))
(setq t4 ’ ((a b c d f) (e)))
(build t 4 (cons t 3 n i l))

134 Chapter 4 Programming Languages

89 (setq t 5 ’ ((c b) (a d e) (f)))
90 (build t 5 (cons t 3 n i l))
91 (setq t6 ’ ((c b) (a d) (e f)))
92 (build t6 (cons t 3 n i l))

Listing 4.9 LISP program by John McCarthy for rules on moving blocks in a Blocks World.

4.2.3 Logic Programming Languages
Prolog14 was originally developed circa 1973 and is considered a declarative lan­
guage where one specifies formal logic statements that are then fed to a specialized

theorem prover in order to generate conclusions. So, a declarative programming

language specifies the problem to be solved rather than how to solve it. Other
declarative logic programming languages have been developed based on concepts
from Prolog including Gödel, ALF, and Datalog. Prolog was written to be an inter­
preter when a question is asked, and the Prolog theorem prover then tries to find an

instance where it is true by instantiating variables. For example, in the code below

are a number of Prolog predicates. Note that the program is composed of facts that
end in a period with no “:-”. Rules contain the “:-”, which is read as “if.”

In the example Prolog program given below, the program is run by asking

“main” to be proven which will try to prove the items on the right-hand-side

(solve_canibal, reverse, and show_states) to solve the missionaries and cannibals
problem as a search problem. This particular problem was commonly used in arti­
ficial intelligence such as by Saul Amarel to show various ways of representing

knowledge [Amarel 1968]. The missionaries and cannibals problem is a classic logic
problem involving making sure the cannibals never outnumber the missionaries
when they try to cross the river in a boat. There are three missionaries and three

cannibals on one side of the river, and they wish to cross the river in a boat that
holds one or two people. The problem is to cross the river and never violate the rule

(i.e., never have more cannibals than missionaries on either side of the river or the

boat). The set of successful states are put into the Solution list and then reversed to

get the proper ordering once it is found. Prolog also is used mostly with recursive

predicates.

1 % CANNIBAL . PL

2 % This program s o l v e s the cannibals and mi ss ion ar i es puzzle .
3

4 main :−

5 s o l v e c a n n i b a l ([s t a t e (3 , 3 , l)] , Solut i on) ,
6 r e v e r s e (Solution , [] , OrderedSolution) ,

14. Please see http://www.softwarepreservation.org/projects/prolog for more on Prolog history.

http://www.softwarepreservation.org/projects/prolog

10

20

30

40

50

7

8

9

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

49

4.2 Types of Programming Languages 135

show states (OrderedSolution) .

so l ve canniba l ([s t a t e (M2, C2 , l) , s t a t e (M1, C1 , r)

%

% s o l v e c a n n i b a l (+ Sofar ,− So lu t ion)
% searches f o r a Solut ion to the cannibals and miss io n ar i es
% puzzle t h a t extends the sequence of s t a t e s in So f ar .
%

s o l v e c a n n i b a l ([s t a t e (0 , 0 , r) | P r i o r S t a t e s] ,
[s t a t e (0 , 0 , r) | P r i o r S t a t e s]) .

s o l v e c a n n i b a l ([s t a t e (M1, C1 , l) | P r i o r S t a t e s] , Solut ion) :−

member ([M, C] , [[0 , 1] , [1 , 0] , [1 , 1] , [0 , 2] , [2 , 0]]) ,
% One or two persons cross the r i v e r .

M1 >= M,
C1 >= C ,
% The number of persons c ro ss i ng the r i v e r i s
% l i m i t e d to the number on the l e f t bank .

M2 i s M1 − M,
C2 i s C1 − C,
% The number of persons remaining on the l e f t bank

% i s decreased by the number t h a t c r o ss the r i v e r .
member ([M2, C2] , [[3 ,] , [0 ,] , [N,N]]) ,
% The mi ss ionar ies are not outnumbered on e i t h e r
% bank a f t e r the cros s in g .

not member(s t a t e (M2, C2 , r) , P r i o r S t a t e s) ,
% No e a r l i e r s t a t e i s repeated .

s o l v e c a n n i b a l ([s t a t e (M2, C2 , r) , s t a t e (M1, C1 , l) | P r i o r S t a t e s] ,
Solut ion) .

s o l v e c a n n i b a l ([s t a t e (M1, C1 , r) | P r i o r S t a t e s] , Solut ion) :−

member ([M, C] , [[0 , 1] , [1 , 0] , [1 , 1] , [0 , 2] , [2 , 0]]) ,
% One or two persons cross the r i v e r .

3 − M1 >= M,
3 − C1 >= C,
% The number of persons c ro ss i ng the r i v e r i s
% l i m i t e d to the number on the r i g h t bank .

M2 i s M1 + M,
C2 i s C1 + C,
% The number of persons remaining on the r i g h t bank

% i s decreased by the number t h a t c r o ss the r i v e r .
member ([M2, C2] , [[3 ,] , [0 ,] , [N,N]]) ,
% The mi ss ionar ies are not outnumbered on e i t h e r
% bank a f t e r the cros s in g .

not member(s t a t e (M2, C2 , l) , P r i o r S t a t e s) ,
% No e a r l i e r s t a t e i s repeated .

136 Chapter 4 Programming Languages

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

| P r i o r S t a t e s] , Sol ution) .

sho w state s ([]) .
sho w state s ([s t a t e (M, C, Location) | L a t e r S t a t e s]) :−

w r i t e n t i m e s (’M’ ,M) ,
w r i t e n t i m e s (’C ’ ,C) ,
N i s 6 − M − C,
w r i t e n t i m e s (’ ’ ,N) ,
draw boat (Location) ,
MM i s 3 − M,
CC i s 3 − C,
w r i t e n t i m e s (’M’ ,MM) ,
w r i t e n t i m e s (’C ’ ,CC) ,
nl ,
show sta tes (L a t e r S t a t e s) .

w r i t e n t i m es (Item , 0) :− ! .
w r i t e n t i m es (Item ,N) :−

w r i t e (Item) ,
M i s N − 1 ,
w r i t e n t i m e s (Item ,M) .

draw boat (l) :− w r i t e (’ () ’) .
draw boat (r) :− w r i t e (’ () ’) .

member(X , [X|]) .
member(X , [|Y]) :− member(X , Y) .

r e v e r s e ([] , L i s t , L i s t) .
r e v e r s e ([X| T a i l] , SoFar , L i s t) :−

r e v e r s e (Tai l , [X| SoFar] , L i s t) .

Listing 4.10 The missionaries and cannibals problem in Prolog—a classic AI problem.

4.2.4 Object-Oriented Programming Languages
Major languages supporting an object-oriented programming paradigm were

Simula I in 1964, followed by Simula 67 in 1967. Simula 67 introduced many of the

concepts considered central to object-oriented programming including objects,
classes, a class hierarchy, and inheritance. The next major language to take up an

object orientation was Smalltalk in 1971. In the early 1980s, there was a push to

move development towards an object-oriented approach. As a result, many lan­
guages started adding object-oriented extensions resulting in languages such as
C++, Objective C, C with Classes, and Common LISP Object System (CLOS). In

4.2 Types of Programming Languages 137

addition to the development of object-oriented programming languages, object-
oriented system analysis and design began to change how systems were defined.
Other technologies such as databases to store objects (sometimes called object
bases) were developed to specifically support systems built with object-oriented

programming languages. In the 2000s, enthusiasm waned somewhat as new devel­
opment methodologies emerged (such as Agile) and object-oriented databases
were reabsorbed back into largely relational databases.

4.2.4.1	 Simula

The Simula I programming language was developed as a language to support sim­
ulations by Ole-Johan Dahl and Kristen Nygaard in the early 1960s in support of
discrete event simulations. Most modern object-oriented languages take a simi­
lar approach to the object approach taken by the version developed in 1967 called

Simula 67. An example of Simula 67 code from Dahl et al. [1970] includes classes,
subclasses, and virtual functions in the following listing:15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Begin

Class MyClass ;
V i r t u a l : Procedure p r i n t I s Procedure p r i n t ;

Begin

End ;

MyClass Class Char (char) ;
Character char ;

Begin

Procedure p r i n t ;
OutChar (char) ;

End ;

MyClass Class Line (elements) ;
Ref (MyClass) Array elements ;

Begin

Procedure p r i n t ;
Begin

I n t e g e r i ;
For i : = 1 Step 1 U n t i l UpperBound (elements , 1) Do

elements (i) . p r i n t ;
OutImage ;

End ;
End ;

15. See http://www.edelweb.fr/Simula/ for a scan of the “Common Base Language” by Dahl,
Myhrhaug, and Nygaard, Norwegian Computing Center, Publication No. S-22, October 1970.

http://www.edelweb.fr/Simula/

138 Chapter 4 Programming Languages

25

26 Ref (MyClass) myitem ;
27 Ref (MyClass) Array myitems (1 : 3) ;
28

29 ! Main program ;
30 myitems (1) :− New Char (’ z ’) ;
31 myitems (2) :− New Char (’ y ’) ;
32 myitems (3) :− New Char (’ y ’) ;
33 myitem:− New Line (myitems) ;
34 myitem . p r i n t ;
35 End ;

Listing 4.11 Classes in Simula 67.

It should be noted that SIMULA 67 shares many of the same features as ALGOL

and the intent was to make SIMULA “ALGOL-based.” For an excellent study of how

SIMULA came about, see Holmevik [1994].

4.2.4.2 Smalltalk

Smalltalk is an object-oriented programming language that was developed in the

1970s by Alan Kay and his team at Xerox Palo Alto Research Center (PARC). It
stemmed from work in “human–computer symbiosis” with Doug Englebart devel­
oping new ideas on how computers could augment a human’s ability to get work

done.16 Below is a Smalltalk 71 program from Kay [1993], defining a factorial
function and a membership function:

1 to ’ f a c t o r i a l ’ 0 i s 1
2 to ’ f a c t o r i a l ’ : n do ’n* f a c t o r i a l n−1 ’
3

4

5

6 to : e ’ i s −member−of ’ [] do F

7 to : e ’ i s −member−of ’ : group

8 do ’ i f e = f i r s t o f group then T e l s e e i s −member−of r e s t of group ’

to ’ f a c t ’ : n do ’ to ’ f a c t ’ n do f a c t o r i a l n . ^ f a c t n ’

Listing 4.12 A factorial example in Smalltalk.

Note how the functions are recursive here and with objects being used as vari­
ables (with a “:” in front). An important aspect of Smalltalk is that the programming

environment is integral to using Smalltalk and is modified by the objects that
are created. Squeak and Pharo are modern, open-source variants that also have

integrated development environments.

16. See Kay [1993] for a good history of how work in Smalltalk tied to and was influenced by other
earlier work.

4.2.4.3

1

2

3

4

5

6

7

8

9

10

11

12

Listing 4.13

4.2 Types of Programming Languages 139

Java

Java was developed as a pure object-oriented language, as opposed to a language

like C++ that was developed as an extension to a non-object-oriented language, C.
Jim Gosling, Mike Sheridan, and Patrick Naughton at Sun Microsystems started

Java in 1991 as a language called Oak, which was being developed for set-top boxes.
Eventually, Java 1.0 was released in 1995. Java used the Java Virtual Machine (aka

JVM) and rather than compiling to machine code, compiled Java to “byte code,”
designed to run on the JVM. So, Java was built to have extremely portable code that
would port to any device that would run the JVM. This was branded as “Write Once,
Run Anywhere.” Java became one of the most popular programming languages,
partially due to the language itself and partially due to the timing of Java’s release.
Being released in 1995, web programmers were searching for a programming envi­
ronment that could be used on a variety of devices. When the JVM was included

in Internet browsers, this made Java a natural choice for developing web-based

applications.
Today, Java remains one of the most popular programming languages and is

most commonly taught in high schools and as the core language in many university
computer science programs.

Below is a small excerpt of an Oak program, which shows the influence of earlier
procedural languages as well as using the object-oriented concepts in SIMULA 67.
See FirstPerson [1994].

Class Foo {
i n t x ;
f l o a t y ;
Foo () { x =0 ; y = 0 . 0 ; }
Foo (i n t a) { x=a ; y = 0 . 0 ; }
Foo (f l o a t a) { x =0 ; y=a ; }
Foo (i n t a , f l o a t b) { x=a ; y=b ; }

}
Foo obj1 = new Foo () ;
Foo obj2 = new Foo (4) ;
Foo obj3 = new Foo (4 . 0) ;
Foo obj4 = new Foo (4 , 4 . 0) ;

A trivial example in Oak (precursor to Java).

This excerpt from the Oak specification shows how similar Oak was to what
eventually became Java. The example shows the different constructors that are

used based on the parameters used to create the new object.

140 Chapter 4 Programming Languages

4.3 Prehistory of Programming Languages and Compilers
The history of the development of compilers and compiler technology is worthy of
a book in its own right. Here, we will briefly discuss the background required to

understand later sections as well as the influence compilers had on the develop­
ment of programming languages.

4.3.1 Automatic Coding and Programming
It had been recognized since at least the days of Babbage that machine trans­
lation from human-readable algorithms to machine-executable instructions was
desirable. A quote from Babbage written in his journal on July 9, 1836, reads (see

Randell [1973] and Knuth [2003, p. 5]):

This day I had for the first time a general but very indistinct conception of
the possibility of making an engine work out algebraic developments. I mean

without any reference to the value of the letters. My notion is that as the cards
(Jacquards) of the Calc. engine direct a series of operations and then recom­
mence with the first so it might perhaps be possible to cause the same cards
to punch others equivalent to any given number of repetitions. But there

hole [sic] might perhaps be small pieces of formulae previously made by the

first cards.

While this quote from Babbage shows that the hopes for an easier way to program

a computer had existed for some time, when actual computers were developed

the means and mechanism for doing this were by no means obvious or easy. The

effort to develop programming languages and compilers was substantial. A few

of those efforts are described here.17 Significantly, these developments span more

than a decade and involve significant efforts from many large organizations. Also

significant, these efforts involved many different regions of the world.
Much of the effort was in how to specify algorithms in an unambiguous manner

that could be automatically translated. Efforts such as Zuse’s Plankalkül were way
ahead of their time and not implemented when conceived, and, in Zuse’s case, not
influential at the time.18 Doing so took over a decade from 1945 to the late 1950s to

culminate in the development of FORTRAN. After this period, the number and vari­
ety of languages exploded into a large variety of languages including LISP and the

effort to develop COBOL as a standard business-oriented programming language.

17. This section is derived from Knuth [2003, p. 76], where he also gives subjective ratings of each

of these as well as detailed descriptions of them and their importance.

18. Zuse’s work was quite extensive but wasn’t officially published until 1972.

4.3 Prehistory of Programming Languages and Compilers 141

Many of these early efforts are not compilers in the sense defined in Section 4.1.
Instead, they represent incremental improvements. The first compiler in the

sense of translating algebraic statements into machine language was Glennie’s
AUTOCODE (see Knuth [2003, p. 34–35] and Glennie [1952]).19 Other efforts at
around the same time (such as Hopper’s A-0 and Backus’s IBM 701 Speedcoding

System) were more focused on assembling the parts such as preexisting code for
functions and procedures and producing an executable more quickly. However,
Glennie’s AUTOCODE appears to have had little influence at the time on other
efforts.

One of the earliest efforts to have a long-lasting impact on programming was
Goldstine and von Neumann’s Flow Diagrams (see Goldstine and von Neumann

[1948]). In reviewing many early programs from the 1950s, one will see a pervasive

use of flow diagrams and flowcharts to design these programs. Goldstine and von

Neumann’s flow diagrams set a common framework for designing programs.
Early programming languages were not only struggling to define what a com­

piler should do but also what would make a useful programming language. Knuth

[2003] rates these early languages and compilers by several factors including read­
ability, control structures, data structures, and machine independence. These early
languages varied widely by those criteria and in their influence and application.
Another interesting example that was influential was Perlis’s Internal Translator
(IT) programming language in 1956 which produced a successful compiler that also

influenced the development of ALGOL. Many of these early languages would link

together libraries of prebuilt modules and had more of the feel of a linker than

actual compiler.
An interesting source of effort in compilers was the compiler effort at Reming­

ton Rand. While Remington Rand’s compiler effort (led by Grace Murray Hopper)
put a tremendous amount of effort into their compilers, many of those efforts
had little long-lasting impact. One such effort was the development of the MATH­
MATIC programming language (aka Algebraic Translator 3, AT-3) led by Katz at
Remington Rand, circa 1956. The A-0, A-1, A-2, and A-3 (aka ARITH-MATIC) com­
pilers were earlier compilers also by Hopper’s group at Remington Rand that were

really more like macro-expanders that were more like macro-assemblers than com­
pilers as we think of them today. By the time of MATH-MATIC, other efforts such

as FORTRAN were taking hold as efficient compilers. Another line of compilers at
Remington Rand did have a long-lasting influence. This was the business-oriented

19. Note that Alick E. Glennie’s AUTOCODE is generally prefaced with “Glennie’s” as another
slightly later AUTOCODE (1954) was by Brooker. Both AUTOCODEs were built for the Manchester
Mark I computer.

142 Chapter 4 Programming Languages

compiler FLOW-MATIC (aka Business Language Version 0, B-0), which was one of
the primary influences on COBOL and the CODASYL standard for COBOL.

A key factor for progress in automatic coding and compilers was to develop com­
pilers that were able to produce executable machine code that was close to what
could be achieved by an excellent assembly language programmer. Because com­
puters were so expensive and machine time so expensive, any significant degra­
dation of performance by a compiler would significantly reduce its acceptance. At
the same time, the desire to increase the number of available programmers and to

make them more efficient drove the desire to build usable compilers. As a result,
there were a number of concurrent efforts to build efficient and usable compilers
in the mid- to late-1950s, many of which are well-described and analyzed in Knuth

[2003].
Compiler development continued after this initial period with many success­

ful programming languages being developed outside of computer manufacturers.
After the definition of ALGOL in 1958, a number of variants were supported that
became popular in their own right. Two examples of these were the MAD (Michigan

Algorithm Decoder) and JOVIAL (Jules Own Version of the International Algebraic
Language). MAD was developed in 1959 and was widely used for writing operating

systems such as CTSS and the Michigan Terminal System (MTS). JOVIAL was devel­
oped in 1959 at the System Development Corporation. JOVIAL was extensively used

for real-time applications in the defense industry and eventually was standardized

in 1973 with the standard MIL-STD-1589.
Many examples of the quest for automatic coding and being able to gener­

ate systems more easily without highly technical knowledge continue to this day.
Some more modern-day examples are using computer-aided software engineering

(CASE) tools where part of the goal was to generate working systems from system

requirements, or using techniques such as model-driven development. While these

techniques have proven useful for many systems, they are often oversold and have

significant limitations on increases in productivity or the system types for which

they are applicable.

4.4 Infiuences on Programming Language Change
The changes that have occurred to programming languages involves a broad set
of factors, some of which are in Figure 4.4. One of the factors driving change

in programming languages is the need to solve particular problems better, that
is, application needs. The drive to create languages such as LISP or SNOBOL

came from needing the ability to process lists and strings. For LISP, it was also a

need to address problems in artificial intelligence. Computer science has been an

enabler for creating the science around formal language and compiler design that

4.5 Case Study: APL 143

Programming

Languages

Application

Needs

Computer

Science

Previous

Programming

Languages

Standards

Compilers, formal languages

Paradigms &

Practices

Figure 4.4 Influences on programming language change.

has made compiler development easier. Clearly, previous programming languages
have had significant influence on future languages. ALGOL’s influence shows up

in a wide number of programming languages. Programming language standards
have helped programs become more portable. Paradigms and practices have also

influenced new programming language design. A clear example was that with the

advent of object-oriented programming, object-oriented programming was added

to a number of existing languages such as C (to C++ and Objective C), COBOL, and

LISP.
Another influence has been the support of the vendor community in support­

ing a given language. With PL/I, IBM supported PL/I for many years and without
that support it is not likely that it would have survived as long as it did. With Java,
the support from Sun Microsystems helped to entrench Java as a programming

language.

4.5 Case Study: APL
Ken Iverson’s APL\360 for the IBM/360 is best described as a revolutionary language

that took a very different approach to programming and programming lan­
guages. Initially described in Iverson’s 1962 book (see Iverson [1962]), APL\360

was conceived of first as a mathematical notation by Iverson in 1956. Eventually,
this matrix-oriented notation became known as “Iverson’s Notation.” The source

code for APL\360 is available through the Computer History Museum at https://
computerhistory.org/blog/the-apl-programming-language-source-code/. The sys­
tem is written entirely in 360 Assembly language and took control of the entire

machine to provide an interactive environment through its included timeshar­
ing operating system. See also the implementation of APL\360 using the Hercules
emulator at http://wotho.ethz.ch/mvt4apl-2.00/.

https://computerhistory.org/blog/the-apl-programming-language-source-code/
https://computerhistory.org/blog/the-apl-programming-language-source-code/
http://wotho.ethz.ch/mvt4apl-2.00/

144 Chapter 4 Programming Languages

Figure 4.5 A simple example of the use of APL to invert a 3×3 matrix.

A simple example of the use of APL is in Figure 4.5. This example inverts a three­
by-three matrix. In the first line, the matrix elements (1, −2, 3, 3, 5, 2, −1, 3, and 4)
are reshaped by the 𝜌 character into an array with dimensions of 3×3. Operations
are performed from right to left by default. So, one would read the first line of cre­
ate a matrix called Example that is reshaped to be a 3×3 matrix with the elements
of 1, −2, 3, 3, 5, 2, −1, 3, and 4. The second line applies the inverse operator (a

domino-like symbol with two dots) to the Example matrix and stores the result into

ExampleInv. Just to check the result the two matrices are multiplied together to see

if we get the identity matrix. The line with just I is printing that result and we can

see a bit of a round-off error in the first element of the second row (it should be

zero).
APL was notoriously difficult to understand and the example (from https://

computerhistory.org/blog/the-apl-programming-language-source-code/) is a ver­
sion of John H. Conway’s “Game of Life,” which is a two-dimensional array of cells
that each live or die based on a set of simple rules. However, it has an appeal to

those desiring a concise, precise mathematical notation to describe what the pro­
gram should produce. This ability to be very concise makes the language powerful
in the sense that a few lines of code can do a lot of calculations compared to other
programing languages. See also the Dyalog APL version of the Game of Life as
described at https://tryapl.org and in the video at https://www.youtube.com/watch?
v=a9xAKttWgP4fmt=18.

Even with APL’s unusual syntax and use of a different character set, APL gained

a steady level of acceptance and is still used in modern variants such as program­
ming languages J and K. Even though APL was designed initially at IBM, other
companies also developed their own versions of APL such as the 1973 version devel­
oped at Xerox (see http://www.livingcomputermuseum.org/Online-Systems/User-
Documentation/CP-V-(Sigma-9)/7_APL_Manual.aspx for the manual).

4.6 Lessons Learned from Programming Languages
A number of lessons have been learned from the creation and modification of
programming languages that are generally applicable to other software systems.

https://computerhistory.org/blog/the-apl-programming-language-source-code/
https://computerhistory.org/blog/the-apl-programming-language-source-code/
https://tryapl.org
https://www.youtube.com/watch?v=a9xAKttWgP4fmt=18
https://www.youtube.com/watch?v=a9xAKttWgP4fmt=18
http://www.livingcomputermuseum.org/Online-Systems/User-Documentation/CP-V-(Sigma-9)/7_APL_Manual.aspx
http://www.livingcomputermuseum.org/Online-Systems/User-Documentation/CP-V-(Sigma-9)/7_APL_Manual.aspx

4.6 Lessons Learned from Programming Languages 145

Programming languages come and go based on a wide variety of factors. However,
we can learn from the languages that have stood the test of time and those that
haven’t. Even highly influential languages have often not survived the test of time.

Some of the reasons that programming languages have failed to have

widespread use include the following reasons:

∙ Usage.

Some languages never get used enough to even have a realistic chance to sur­
vive. Often this is because other entrenched languages are sufficiently filling

the need and the cost of retraining and moving the existing codebase is too

high.

∙ They don’t evolve.

Successful programming languages like FORTRAN, COBOL, and LISP have

all evolved to incorporate new features such as object-oriented program­
ming. Having a base of support so the language can grow over time is
critical.

∙ Too niche.

Some programming languages fulfill too narrow of a need to get broad accep­
tance. A good example is a language such as APL that has a loyal but small
following.

∙ Too complex.

A number of programming languages had complex definitions and as a

result their implementations were complex. Languages such as PL/I and Ada

were complex and implementing compilers was difficult at the time, slowing

down the availability of compilers for the language. When these compilers
were also buggy, this also slowed acceptance.

∙ Loss of support.

When the primary backers of a language no longer support enhancement or
use of the language, the language’s use will take a serious blow. For example,
when Ada was no longer required to win US government contracts, its use

dropped significantly. There’s still a smaller community that uses Ada for
reliable, real-time systems and has developed an Ada 2012 language standard.

Languages are more likely to succeed when the new language fits an emerging

need such as Java’s use in web browsers and its adoption in the Microsoft Internet
Explorer browser. When companies push and support a language, it can clearly
help its acceptance. Many of these reasons also apply to the continued usage of
other software systems.

146 Chapter 4 Programming Languages

Some more general lessons learned from programming language history
include:

∙ Even widely used programming languages can decline.

While programming languages can become very entrenched, their popular­
ity does change over time and even relatively popular languages that enjoy
lots of hype and adoption have declined in use over time. PL/I and Ada

are good examples of this. Other languages were more entrenched earlier
and have continued to have widespread use, such as FORTRAN and COBOL.
Even FORTRAN and COBOL are gradually declining in use, especially for new

systems, though there are still some pockets where they are popular.

∙ Formalism of compiler theory stimulated growth.

Breakthroughs in parsing theory allowed the development of tools that made

compiler development easier and helped to stimulate a proliferation of pro­
gramming languages (see Knuth [1965]). In general, a formal breakthrough

in an area can stimulate the development of software in that area.

∙ Performance key to acceptance.

Particularly for early programming languages such as FORTRAN, being able

to produce executable programs that were close to the performance of hand-
coded assembly was critical to the acceptance of FORTRAN. Performance is
often a key factor in the acceptance of software systems, which we’ve seen in

operating systems and will see in databases as well as other software systems.
Software systems where the system is viewed as overhead and independent
of the application programs are often expected to minimize the amount of
processing that they use. These systems often have a broad effect on the

performance of the system as a whole or on a large number of user-level
application programs.

4.7 Exercises and Projects

4.7.1 Exercises
1. Short Code (originally developed for the BINAC computer and then for the

UNIVAC I) was not a compiler but could be considered an interpreter. Find

out more about Short Code and explain why it is an interpreter.

2. The MAD programming language was widely used in the late 1950s and early
1960s but did not attain widespread usage after that. Explain why this lan­
guage did not survive and what the programmers who would have been

4.7 Exercises and Projects 147

predisposed to using MAD (perhaps by having used it on CTSS) used instead

in the late 1960s and beyond.

3. The Pascal programming language was used for many years as a teaching

language, and in many universities was the primary programming language

of instruction. Investigate what programming language replaced Pascal for
those universities that were using Pascal as their primary programming

language. What did they replace it with and why?

4. Brian Kernighan wrote a short paper criticizing the Pascal programming

language (see Kernighan [1981]). Find a copy of that paper and determine

if Kernighan’s criticisms were justified. Could any of the criticisms also be

made about the C programming language (which Kernighan is known for)?

5. PL/I was used for many years by many companies. Why was PL/I used? Why
was its use discontinued?

6. RPG (Report Program Generator) and its later versions RPG II, RPG III, and

RPG IV have retained a following of programmers, particularly on some IBM

systems. Explain RPG’s origins and why it continues to have a following.

7. The SNOBOL programming language was originally designed as a string-
manipulation language that evolved into a more general-purpose language

by SNOBOL4. The language was taught in a number of universities into

the 1970s. However, very few people use SNOBOL today. Explain what made

SNOBOL innovative at the time and why SNOBOL is no longer in use.

8. Investigate the development of SAP’s (Systemanalyse und Programmen­
twicklung) special-purpose language called ABAP (Advanced Business Appli­
cation Programming). Why did SAP use its own language rather than an

already established programming language? Is there any relationship or
influence with COBOL? If so, show what features are similar between ABAP

and COBOL. If not, explain the differing approaches between COBOL and

ABAP.

9. Find and read a copy of C.A.R. Hoare’s paper “Record Handling.” This was
part of a series of lectures delivered at the NATO Summer School, Villard­
de-Lans, September 1966, and published by Academic Press. Show how the

ideas in this paper influenced the object-oriented ideas in Simula 67.

10. Compare IBM 370 machine code to that of the MIPS processor. IBM Sys­
tem/370 is considered a complex instruction set computer (CISC) while

MIPS is considered a reduced instruction set computer (RISC). Compare

the number of instructions, the complexity of instructions, and the types
of instructions.

148 Chapter 4 Programming Languages

11. Command shell programming languages such as UNIX’s Bourne shell (sh),
Korn Shell (ksh), and csh have developed a number of features that allow the

development of complex programs using them. Why did command shells
introduce general-purpose programming features? What are their limita­
tions? When might they be better than a compiled programming language?

12. The AWK programming language (named after Al Aho, Peter Weinberger,
and Brian Kernighan) was designed to do text processing and operates on

a stream of textual data. Considering the context of being developed as part
of the UNIX toolset, why was a language like AWK useful?

13. Look up the agent-oriented programming paradigm. Is this distinct enough

from other paradigms to justify being named a “programming paradigm?”
Justify your position.

14. Some paradigms are proposed to be independent of the programming lan­
guage, such as event-driven programming where the program is designed

around events happening external to the program (such as a user clicking

a mouse or system interrupts). Should a programming paradigm have a

language implementation to be a “programming paradigm?” Defend your
position.

15. Railroad diagrams are an alternative method used to describe the grammar
of programming languages. They are often used to describe context-free lan­
guages instead of Backus–Naur Form (BNF). Find out how they came about
and explain if they are still used.

16. An important finding was the development of efficient left-to-right parsing

algorithms to allow parsers to be built from a Backus–Naur Form defined

grammar. This allowed tools to be built for creating parsers for LR(k) gram­
mars. See Knuth [1965]. Describe how this development as well as the tools to

build compilers that followed (such as the UNIX operating system’s lex and

yacc and later tools such as flex and bison) made it easier to develop compilers
and catalyzed the development of programming languages.

17. Using the	 http://hopl.info/ website, find information about the Internal
Translator (IT) programming language developed at Purdue University in

1955 for the Burroughs Datatron 205. Follow the trail of influences to find

the newest programming language(s) that can claim an influence from IT.
Follow the “evolution of” links as well as any links where IT “influenced”
a later language. Explain what language IT influenced the most to have the

most long-lasting impact. That is, what highly influential language did IT

influence?

http://hopl.info/

4.7.2

4.7 Exercises and Projects 149

18. Edsgar Dijkstra [1975] is quoted as having said that the APL programming

language “creates a new generation of coding bums.” Find the full quote,
determine what he meant by it, and evaluate whether you agree or not with

his statement.

19. While most programming languages die a very slow death and continue with

some limited usage, some completely die and have no real usage. Examples
of languages that are completely dead (in this author’s view) include B, BCPL,
SNOBOL, JOVIAL, Concurrent C, and ALGOL. Examples that continue with

some limited usage are APL, ADA, and PL/I.

Choose a language whose usage has completely died out (either from the

above list or another one) and describe what factors influenced the dramatic
decline of your example’s usage.

20. Give an example of a programming language that was not highly commer­
cially successful at the time but ended up having an important impact on

later programming language(s). Note why it failed to be widely used and suc­
cessful at the time, what the impact of the language was, and why that impact
was then successful in a later programming language(s).

Projects
1. One could argue, based on programmer efficiency in assembly language,
that a CISC such as IBM 360 Assembly would be more productive for the

programmer than a RISC such as MIPS. Summarize and find arguments
to this effect in the time that RISC architectures were proposed and built.
Was there any evidence to show that a CISC architecture could be more pro­
ductive for an assembly language programmer? How might a similar argu­
ment be used for more complex higher-level general-purpose programming

languages versus less complex high-level languages?

2. The IBM 650 computer used a drum-based memory and had an assembly
program called SOAP II (Symbolic Optimal Assembly Program) that took into

account the rotation of the drum in how it placed instructions on it to help

optimize the assembly. This program is described and contained in IBM

[1957], also at http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf.
In a private discussion with Donald Knuth, he described the implementa­
tion of SOAP II as elegant and more like “music” in how it was written.
Using IBM [1957] and Andree [1958], explain why this code is so elegant in

comparison to other assembly language programs from that time. A useful
comparison would be with the IT, a compiler written at Purdue and Carnegie

http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf

150 Chapter 4 Programming Languages

Institute of Technology for the same machine, the IBM 650 (see http://www.
bitsavers.org/pdf/ibm/650/CarnegieInternalTranslator.pdf for the code for
the IT). Explain how the elegance of programming in assembly language as
exhibited by the 650’s SOAP II implementation can translate to elegance in

the programming of higher-level languages.

3. Bauer and Samelson’s US Patent number 3,047,228 specifies a formula-
controlled computer and provides an interesting approach of how to build

and program a computer. Find and read the patent to determine if any of the

ideas have survived in modern computers or compilers. If not, explain which

ideas are still viable and which are not viable and why.

4. Investigate the inclusion of recursive procedures within programming lan­
guages. Describe the negotiations between the various computing communi­
ties and the different approaches that were tried, and which survived. A good

place to start is by reading van den Hove [2014] and Daylight [2011] for ALGOL

and Sammet [1969, pp. 589–602] and Wexelblat [1981, pp. 173–197] for histories
of LISP. Daylight [2011] states that John McCarthy wanted to include recur­
sion in FORTRAN but was unable to do so, so McCarthy invented LISP as a

result. Write a paper describing the different forms of recursion considered

up until 1965 and the controversy over including recursion at all (such as in

ALGOL 60).20

5. Refer to the diagram at http://www.levenez.com/lang/lang.pdf that shows the

relationship and evolution of major programming languages. In that dia­
gram, the Ruby programming language begins in 1993 with influences from

all of the following programming languages: Python, CLU, Eiffel 2, Smalltalk

80, Common LISP, and Perl. Investigate the history of Ruby and find out what
features and concepts were used from those languages and explain why the

developers of Ruby thought it necessary to develop Ruby.

6. Investigate the worldwide development and use of programming languages
for artificial intelligence. Explain why LISP was so widely used in the United

States while other languages such as Prolog were used in Europe and Japan.

7. PL/I’s use of formal operational semantics to define the meaning of the pro­
gramming language resulted in a complex specification written in another
language called Vienna Definition Language (VDL) [Wegner 1972] that many
found hard to understand and use. Find out if the use of VDL impacted the

20. C.A.R. Hoare, in an oral history interview with ACM for ACM Turing awardees, noted that the

mention of recursion in the ALGOL report gave him the inspiration to complete the definition of
Quicksort using recursion.

http://www.bitsavers.org/pdf/ibm/650/CarnegieInternalTranslator.pdf
http://www.bitsavers.org/pdf/ibm/650/CarnegieInternalTranslator.pdf
http://www.levenez.com/lang/lang.pdf

4.7 Exercises and Projects 151

ability to produce working versions of PL/I compilers and whether it made it
easier or harder to create PL/I compilers. Give evidence from contemporary
sources in the 1970s.

8. An early description of “automatic coding” is a lecture given by Glennie at
the University of Cambridge in early 1953 (see Glennie [1952]). Obtain a copy
of these lecture notes (the Computer History Museum has a scanned copy
at https://archive.computerhistory.org/resources/text/Fortran/102653981.05.
01.acc.pdf) and compare the description of automatic coding to what it
became a few decades later.

9. Packed decimal was a number format that allowed the precise specification

of decimal numbers so that round-off errors could be avoided (rather than

using a floating-point representation). This notation stores two digits in an

8-bit byte, so each digit is stored in 4-bits (termed a nibble); hence, two num­
bers are “packed” into a byte. Is this format still in use? If so, why is it still
in use? What programming languages support(ed) a packed decimal repre­
sentation? What computer manufacturers supported this representation in

hardware? Are there benefits other than precision to this notation?

10. Investigate the Forth programming language’s history. Charles Moore cre­
ated Forth in 1968 on the IBM 1130, but in the 1980s Forth became popular
as a development language for microcomputers. Describe how the features
of the Forth programming language evolved over time and its use of stack-
based notation including reverse Polish notation for its syntax. How did

Forth influence other languages? Why is Forth no longer widely used?

11. The notion of programming paradigms is relatively fuzzy. Research and inves­
tigate the creation of new programming paradigms. In particular, focus on

the development of object-oriented paradigm and how it evolved from the

days of Simula, through Smalltalk, and for C++ and Java. Develop a paper
that describes the evolution of the object-oriented paradigm from previ­
ously existing paradigms. Include information about the promises made of
the object-oriented paradigm for improving software development time and

reuse and detail how those promises were met or not.

12. Consider the development of “programming languages” for items other than

computing. For example, investigate the difficulty in specification and in cre­
ating implementable and unambiguous designs that are to be printed on

3D printers. Describe any existing languages, problems in specification, and

problems in translating it to something that the 3D printer can produce.

https://archive.computerhistory.org/resources/text/Fortran/102653981.05.01.acc.pdf
https://archive.computerhistory.org/resources/text/Fortran/102653981.05.01.acc.pdf

152 Chapter 4 Programming Languages

13. Consider the problem of typesetting. Similar to writing a program, one speci­
fies the constraints and requirements of a document that is then “compiled”
into a printed page. Look at examples such as troff, TEX, Metafont, and

MetaPost. Investigate the issues that occurred in translation, ambiguity, and

determination of the language to be used. Compare these issues to those in

the creation of programming languages.

14. The APL\360 source code (in IBM 360 Assembly language) has been released

to the public (see http://www.computerhistory.org/atchm/the-apl-programm

ing-language-source-code/). As noted by the Computer History Museum on

that page, this (amazingly short—only 37,567 lines in 90 files) program took

complete control of the IBM 360 and built its own time-sharing environment.
Take the source code and get it to operate in either an IBM 360 emulator
or an IBM Virtual Machine environment.21 Also, run a version of the K pro­
gramming language, which has many elements of APL and is considered a

descendant of APL. Write a program in both APL\360 and in K to compute the

inverse of an N × N matrix. Compare the notation and ease of use of the two

languages.

4.8 Further Readings and Online Resources
The history of programming languages is very well-documented and there are

many resources that are available. A good starting point are the ACM History
of Programming Languages (HOPL) conferences I (1978), II (1993), and III (2007)
with proceedings Wexelblat [1981], Bergin and Gibson [1996], and Hailpern [2007],
respectively. Those conferences contain papers describing the history of individual
languages, usually by one of the principals involved in its development. Sammet
[1969] is an early programming languages and history textbook that does a good

job synthesizing the history to that point. Sammet [1972] is a short article that
condenses early programming history. An excellent website that shows the influ­
ences of programming languages as well as many references for each programming

language is the http://hopl.info/ site maintained by Diarmuid Pigott.
An excellent collection of papers on computer languages by Donald Knuth are

in Knuth [2003]. This collection includes a description of the early development of
programming languages from Plankalkül, Flow Diagrams, Short Code, FORTRAN

and 16 other early programming languages. This collection also includes many
other papers with early developments of ALGOL and SOL. Chapter 20 (p. 439) of
this text is “A History of Writing Compilers,” expanded from a talk given in 1962.

21. Also see Jürgen Winkelmann’s version at http://wotho.ethz.ch/mvt4apl-2.00/ where he has
Windows, Mac, and Linux versions.

http://www.computerhistory.org/atchm/the-apl-programming-language-source-code/
http://www.computerhistory.org/atchm/the-apl-programming-language-source-code/
http://hopl.info/
http://wotho.ethz.ch/mvt4apl-2.00/

5Programming
Environments, Tools, and
Methodologies

Beyond programming languages, programmers have built environments and pro­
gramming toolsets to help make programming more efficient. These have changed

dramatically over time along with the advent of software engineering and develop­
ment methodologies. Initially, most of the support processes were based on paper
processes, reference cards, and forms. It was quickly recognized that the use of the

computer to help automate rote tasks was desirable.
Programming environments and the tools we use to build systems have

changed radically—from the use of switches on the backplane to the use of mod­
ern software development environments. While our productivity has gone up

tremendously, many positive features of those historical programming environ­
ments (such as the care that had to be taken when using punched cards with batch

processing) are worth re-envisioning in today’s programming toolset.

5.1 Early Programming Environments and Tools
As more computers were sold and deployed to companies and enterprises in the

mid-1950s, many organizations developed paper-based tools to help in the design

and implementation of software. Even before that time, ENIAC programmers had

used a form of flowchart to help define how their program would operate (see

Haigh et al. [2016] for a detailed description of ENIAC flowcharts). Flowcharts con­
tinued to be heavily used, such as the example in Figure 5.3. In that example from

the Eckert–Mauchly Computer Corporation, they used blueprint drawing paper to

create their flowcharts.
In the decades that followed many organizations developed their own form to

help document what was being done as well as to communicate to others involved

154 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.1	 Grace Hopper’s BINAC code card (labeled as “first”), circa 1949. (Source: Courtesy
of Grace Murray Hopper Collection, Archives Center, National Museum of American
History, Smithsonian Institution.)

in the process. As an example, see Figure 5.4 for an example batch job setup form

for the IBM 701. It was used to communicate between the programmer and the

computer operator any special instructions needed to set up the job and anything

else that the operator needed to do to support the running of the job. This 1956

form also includes a handwritten request to change the binary deck to “octonary”
or octal, base 8 numeral system. DUET is also checked on this form and refers to

coding the program using a floating-point interpretive system that permitted inter­
mingling of machine code with interpretive code (originally called DUAL1). Coding

forms have been used since the earliest days of computing, such as this form (see

Figure 5.5) for the BINAC in 1949 that shows a portion of the program used to per­
form matrix multiplication by segmenting the matrix into smaller matrices that
the BINAC could handle. Another example form (see Figure 5.6) for the IBM 704

shows a form developed by the SHARE user group specifically designed for the IBM

704 SHARE assembly language code (SAP). In this 1956 programming classroom

example, the comments describe what the assembly code is designed to do.
Besides forms, programmers made extensive use of paper quick reference and

code cards in order to have a handy reference for the details they needed. One exam­
ple is in Figure 5.1 where this card for BINAC codes was labeled as the “first code

card” for BINAC developed at the Eckert–Mauchly Computer Corporation. Another
example in Figure 5.2 is a quick reference card for UNIVAC I’s instruction set.

Most computers in the 1950s and 1960s used either paper tape or punched

cards for input. IBM heavily used punched cards and had built its business on the

1. See “The North American 701 Monitor,” by Owen Mock, published in the National Computer
Conference proceedings, 1987, pp. 791–795.

5.1 Early Programming Environments and Tools 155

Figure 5.2	 Grace Hopper’s UNIVAC quick reference card, 1951. (Source: Courtesy of Grace
Murray Hopper Collection, Archives Center, National Museum of American History,
Smithsonian Institution.)

tabulation of data and had produced many products using cards before they were

used as input and output for computers. So, when IBM did enter the computer
business, they leveraged their use of punched cards and many other manufactur­
ers also used punched cards. Other computers would use paper tape and leveraged

the preexisting industry in punched tape. A typical IBM punched card was an 80­
character card that was meant to hold a single line of a program or data. Program­
ming languages at the time were also designed with punched cards in mind. The

FORTRAN standard also used the 80-character format with specific meaning for
particular positions in the 80 columns on the card. Here, one can see that each

156 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.3	 1949 Flowchart from Eckert–Mauchly Corp for Matrix Inversion Program on BINAC
computer. (Source: Courtesy of Grace Murray Hopper Collection, Archives Center,
National Museum of American History, Smithsonian Institution.)

character is represented by a number of punched holes in the column beneath it
(see Figure 5.17). Cards were punched by a card punch and read into a card reader
such as in Figure 5.7. Programmers would either punch their own cards or would

fill out coding sheets (as in Figure 5.6) that were sent to a set of employees known as
“coders” or as “data entry” or even as “key punch operators.” In large organizations,
these employees would punch the cards for programmers and then return the card

deck to the programmers. So, a programmer would fill out the coding form, get
the cards punched by the key punch operators, and then fill out job instructions
(such as on Figure 5.4). This all led to long lead times before a programmer would

receive any output from their program, which could end up being a simple syntax

5.1 Early Programming Environments and Tools 157

Figure 5.4	 An IBM 701 setup form from 1956, Florence Anderson papers. (Source: Image Cour­
tesy of the Charles Babbage Institute Archives, University of Minnesota Libraries,
Minneapolis.)

error. As a result, programmers of this era were extremely careful to check their
program, cards, and associated coding and instruction forms before submitting

their job to the computer. Depending on the turnaround time at the particular
organization’s data center, this wait could be extensive. As an example, a number
of universities had no computers and would send their batch jobs to another uni­
versity, often resulting in a turnaround time of several days or a week. All this paper
led to extensive efforts to organize and store programs such as in Figure 5.8 where

the US National Archives Record Service Warehouse was already filling large ware­
houses in 1959 with boxes of punched cards. A common story from programmers

158 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.5	 1949 Coding form from Eckert–Mauchly Corp. for matrix multiplication program on
BINAC computer. (Source: Courtesy of Grace Murray Hopper Collection, Archives
Center, National Museum of American History, Smithsonian Institution.)

that used punched cards was of dropping a box of punched cards, resulting in them

getting out of order and requiring a long time to re-order.

5.2 Evolution of Programmer Tools Over Time
Programmers are always looking for ways to build better and more efficient sys­
tems and programs. As computers became more powerful, more and more tools
could be developed to help aid the programming process. This section looks at
the high-level changes that have occurred to these tools. Many factors have con­
tributed to the changes in the programmer interface that have enhanced and

5.2 Evolution of Programmer Tools Over Time 159

Figure 5.6	 An IBM 704 coding form, 1956, Florence Anderson papers. (Source: Image cour­
tesy of the Charles Babbage Institute Archives, University of Minnesota Libraries,
Minneapolis.)

changed the way that programmers use the computer. These are summarized in

Figure 5.9. The first row of Figure 5.9 shows how the mode of interaction has
changed over time. Initially, the mode of interaction was direct and only a single

program could be run at a time. Programmers used patch panels and the direct
keying of machine code programs, often with very little, if any, operating system

to help. As computers became more commonplace in the late 1950s, businesses
and organizations with expensive computers wanted to keep them as busy as pos­
sible to maximize their investment. This led to systems based on a batch model of
interaction where the focus was on maximizing the computer throughput of jobs.
Operating systems were developed to support this model as noted in Chapter 3.
Jobs for these were often submitted as decks of cards or otherwise queued to be run

when time was available on the batch computer. With this process, programmers
were encouraged to make every run of their program count. Usually, program­
mers carefully designed and error checked their programs before ever submitting

160 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.7	 A Control Data Corporation 6400 with a 405 card reader in foreground, 1965. (Source:
Image courtesy of the Charles Babbage Institute Archives, University of Minnesota
Libraries, Minneapolis.)

them to be run. Interactive, usually time-sharing–based operating systems were

developed that changed the way that programmers approached programming. As
noted in Chapter 3, these time-sharing systems were developed in the mid- to

late-1960s.
The change was in the fact that programmers could get the results from their

program immediately rather than having to wait for the job to be submitted via

batch and the results returned, often days or weeks later. So, this allowed a num­
ber of programmers to simultaneously run their programs and let the computer’s
compilers check the draft program’s syntax. In the late 1980s the precise com­
puter one was working on became less critical as networks of computers worked

in a distributed computing scheme. This allowed programs to be compiled and

run from any of the distributed set of computers. Programming tools were also

developed to support this distributed computing environment to help synchro­
nize programmers’ efforts, such as source code (or version) control systems that
could be used by a distributed team of programmers to work on the same set of
code.

The second row of Figure 5.9 refers to the programming methodology. In

the early 1950s, there really wasn’t a methodology for building systems, but as
more and larger software systems were developed it became clear that a method

was needed to help many programmers work together. Large projects such as

5.2 Evolution of Programmer Tools Over Time 161

Figure 5.8	 IBM card cartons (2000 cards each) in Federal Records Center, Alexandria, VA,
November 4, 1959. (Source: US National Archives, https://catalog.archives.gov/id/
12169529.)

SAGE, Apollo, and SAFEGUARD2 developed methodologies that were based on a

waterfall-type methodology. This methodology was based on having one phase

(such as requirements) be completed and then followed by each successive phase,
in turn. This worked reasonably well for very large projects where other parts (such

as hardware) were being managed in a similar fashion. Structured programming

and related methodologies also became popular during this same time period.
These methodologies were focused on designing methodologies that would help

build systems that met defined requirements and were maintainable. The next big

shift in methodologies came with object-oriented programming’s popularity in the

late 1980s. With this shift, the hope was that by taking an object-oriented approach,
programs would be more maintainable, easier to build, and easier to build compo­
nents that could be re-used. Structured systems analysis and design was gradually
replaced by object-oriented analysis and design. Later in this cycle, frustration with

2. The SAFEGUARD Program was a United States anti-ballistic missile system designed to protect
the Minutemen Intercontinental Ballistic Missiles (ICBM) and has its origins dating back to the

mid-1950s at Bell Telephone Laboratories.

https://catalog.archives.gov/id/12169529
https://catalog.archives.gov/id/12169529

162 Chapter 5 Programming Environments, Tools, and Methodologies

Direct

1950 2015

Batch

Interactive

Team-based, distributed

None

Structured prog. methodologies

OOA&D

Extreme/Scrum, etc

Machine Lang.

Assembler/Assembly/MacroASM

3rd Generation Programming Languages

4th Generation and Specialized Languages

Visual IDEs

Command-line-based IDEs

1990 200019801970 2010

Paper-based

CLI-based

CASE tools

Methodology/team-based

1960

Analysis and

Design

Toolset

Programming

Languages

Programming

Methodology

Mode of

Interaction

w/

Computer

Figure 5.9 Evolution of programmer tools over time.

heavyweight methodologies that were burdensome, especially for small projects,
led to the development of new methodologies with a focus on responsiveness
to customers and changing requirements. These resulted in methodologies tech­
niques often labeled “agile” being grouped into methodologies such as “Extreme”
or “Scrum.”

Programming languages have also had a significant impact on programmer
productivity. It was recognized early that programming in machine language was
not only difficult but time-consuming and very specialized. This resulted in the

need for highly trained programmers who understood the details of a particular
computer. Assemblers were developed to make the generation of machine code

slightly easier, but it was recognized that a form of “automatic programming” that
would allow less–highly trained users to build their own programs would be of
great value. So, in the mid- to late-1950s, building a reliable and efficient com­
piler was a priority for companies like IBM and Remington Rand. IBM’s FORTRAN

and CODASYL’s COBOL made it clear that higher-level languages were possible

and worth pursuing to help increase programmer productivity. While they did not
result in users always being able to write their own programs, they did result in a

productivity increase for professional programmers. After this time, a large variety

5.3 Large Projects and the Software “Crisis” 163

of programming languages, as well as more specialized programming languages,
were developed, as described in Chapter 4.

Toolsets were built around compilers that included editors, debuggers, and

associated tools into what could (in retrospect) be called command-line-based inte­
grated development environments (IDEs). These toolsets, such as the Programmer’s
Workbench (PWB), developed alongside the UNIX operating system, solidified the

notion that programmers did desire a set of tools to be more productive. These

evolved into graphical IDEs that are called Visual IDEs in the diagram, which

include toolsets such as Eclipse, Microsoft’s Visual Studio, among many others.
The tools used to specify the requirements, the design, and documentation have

also evolved. These began as diagrams such as flowcharts. Interestingly, the ENIAC

programs used a form of flowcharts and this technique was shared with many
involved in computing at the time. Flowcharts evolved into many other diagrams
used to specify many different aspects of the system such as file formats, runtime

behavior, and architecture of the system. Many organizations and companies had

a number of different types of forms used to specify these different aspects of the

system. As one might expect, these diagrams were supportive of the programming

methodology and usually closely related to the methodology being used. Some

command-line interface (CLI) tools were developed to help structure these require­
ments and designs. In the mid- to late-1980s, Computer-aided software engineering

(CASE) tools were being developed with the focus on supporting the methodology
as well as keeping all the system aspects consistent with one another. CASE tools
evolved into having some parts that were called upperCASE (to support the system

definition and design) and others that were called lowerCASE (to support the auto­
matic creation of a running system). Such CASE tools were used for large projects,
particularly those using structured analysis and design techniques. As newer Agile-
related methodologies emerged such as Extreme and Scrum, team-based tools that
supported a distributed team with changing requirements became more the norm.

5.3 Large Projects and the Software “Crisis”
A number of projects in the late 1950s and into the 1960s made it clear that software

was difficult to develop and that there were not enough programmers to fulfill the

needs of all the burgeoning projects requiring software. Projects such as SAGE (see

Section 5.5 and Sackman [1967]) used a high percentage of the number of available

programmers and contributed to the types of methodologies and programming

techniques that would be used. Companies such as the System Development Cor­
poration (SDC) were formed in order to help build the SAGE system. SAGE, being

a real-time system and employing many programmers, had to solve new prob­
lems. SAGE programmers had a shared experience and methodology and used that

164 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.10	 IBM System 360 Model 91 being used at NASA Goddard Flight Center in Greenbelt, MD,
January 16, 1968. (Source: Courtesy of International Business Machines Corporation,
©1968 International Business Machines Corporation.)

experience when working on other projects. As more large projects involving soft­
ware were attempted such as Apollo (see Figure 5.10), SABRE3 and SAFEGUARD,
it became clear that it was difficult to deliver such complex projects and that the

supply of qualified programmers was low compared to the demand. Edsger Dijk­
stra put it well in his Turing Award lecture in 1972, “The Humble Programmer,”
where he states the major cause of the software crisis as:

the major cause is … that the machines have become several orders of mag­
nitude more powerful! To put it quite bluntly: as long as there were no

machines, programming was no problem at all; when we had a few weak

computers, programming became a mild problem, and now we have gigantic
computers, programming had become an equally gigantic problem.

This concern led to the October 1968 NATO Conference on Software Engineer­
ing in Garmisch, Germany. At the conference, it was openly acknowledged that a

crisis existed and the four major points from highlights of the report from that
conference4 were (verbatim):

3. Semi-Automated Business Research Environment (SABRE) was developed to automate reserva­
tions for American Airlines; started in 1957 leveraging IBM’s SAGE experience and was initially
deployed in 1960.

4. Available online at http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

5.4 Reflections on Programming Tools and Environments 165

∙	 the problems of achieving sufficient reliability in the data systems which

are becoming increasingly integrated into the central activities of modern

society

∙	 the difficulties of meeting schedules and specifications on large software

projects

∙	 the education of software (or data systems) engineers

∙	 the highly controversial question of whether software should be priced

separately from hardware.

So, the conference was worried about software reliability, building large soft­
ware systems reliably, having enough programmers, and, finally, the emerging

trend to sell software separately from the hardware. While this conference had

a relatively small number of attendees (around 50), it was highly influential and

resulted in an increased focus on adding engineering principles to software pro­
duction. The first two items have become large areas of emphasis for software

engineering.
Another large project also in the same time frame was the IBM/360 System

project mentioned in Chapter 3. Fred Brooks (project manager for the IBM/360)
wrote an influential book in 1975 called The Mythical Man-Month [Brooks 1975],
where he made the persuasive argument that one could not simply add program­
mers to a project and expect it to complete earlier. From the experience on OS/360,
he relayed many practices that were widely adopted by the software engineering

community.

5.4 Refiections on Programming Tools and Environments
Over time, and by design, programming environments and tools have become

more abstract and have developed layers of abstraction. This has allowed larger
and more complex problems to be solved and more complex systems to be success­
fully built. At the same time, there are many programmers that are only taught at
higher levels of abstraction. Most of the time these programmers can be extremely
effective, but if an unexpected interaction between the layers of abstraction occurs,
these programmers are not able to fix it. As systems as a whole become more

complex, they become more difficult to diagnose and fix with complex hierar­
chies of abstraction and of technologies. In Figure 5.11, there are several layers
of abstraction including hardware, a virtual machine hypervisor, various virtual
machines, and then further abstractions build on those. So, one could develop a

mobile app that works in the simulator using that device’s model, but if there’s
an issue where the simulator is different than the actual device, then it may not

166 Chapter 5 Programming Environments, Tools, and Methodologies

Simulators

Device1

Model

Hypervisor

VM3’s

OS

VM2’s

OS

SW

Development

Environment

Hardware

VM1’s

OS

Device2

Model

Figure 5.11	 An example layering of abstractions allowing programmers to be functional at a higher
level of abstraction.

work properly. Such full-stack problems can be difficult to solve, particularly for
programmers who are only aware of the level in which they wrote the program. Fur­
thermore, complex systems integrate a number of these environments, each with

its own levels of abstraction to manage complexity. Stability in abstraction levels
has been helpful in making progress. For example, for many years programmers
would have to contend with very different operating systems and to re-write their
software to deal with a new operating system interface. With the consolidation to

a few commonplace operating systems, this has allowed programmers to have a

relatively stable interface to an operating system such as UNIX, Linux, or Windows.
With Figure 5.12, we can see a number of major factors that have changed

the programmers’ toolset. One of those is computer science, which has provided

techniques to enable tools such as programming language parsers and compil­
ers to be created more easily. Early on, large, government-run projects such as
SAGE heavily influenced how projects were managed and the resulting devel­
opment methodologies. Development methodologies have also stimulated the

5.5 Case Study: SAGE 167

Programmers’

Toolsets

Machine

Capabilities

Computer

Science

Programming

Methodologies

Support for

Networked teams

Programming Languages,

Compilers, and

Theory of Computation

Human-Computer

Interaction advances

Figure 5.12 Influences on programmer tools.

development of programming tools such as the development of CASE tools. CASE

tools were driven by the underlying methodology, such as structured systems anal­
ysis and design. As networking support became more prevalent in operating sys­
tems and bandwidth became less of a concern, distributed systems and program­
ming teams became more common. Supporting these teams required more tools
to better enable communication and synchronization of work across time zones
and cultures. As computing power increased, there was sufficient power to sup­
port programmers’ tools without impacting other work as significantly. Human

computer interfaces and graphical user interfaces enabled programmers to build

more sophisticated and graphical programming environments such as IDEs.

5.5 Case Study: SAGE
As noted earlier in this chapter, the SAGE (Semi-Automatic Ground Environment)
Project (see Sackman [1967]) was an early, real-time system with a large software

component.5 This large project was built to help the North American Aerospace

Defense Command (NORAD) respond to a possible Soviet air attack. This huge

project was one of the first large projects to computerize a defense system. By
its nature, it was a real-time system that had to detect and respond to events as
they occurred. SAGE was a multi-billion-dollar project that consumed a large per­
centage of the available programmers in the United States but also gave them a

5. Also see a US government promotional video on the SAGE project at https://www.youtube.co

m/watch?v=vzf88oM9egk and a 1983 issue of Annals of the History of Computing including Everett
et al. [1983] and Jacobs [1983].

https://www.youtube.com/watch?v=vzf88oM9egk
https://www.youtube.com/watch?v=vzf88oM9egk

168 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.13	 SAGE AN/FSQ-7 programs overview. (Source: ACM, Eastern Computer Conference
Proceedings, 1957, p. 152, figure 9.)

shared experience, methodology, and approach to large computerized systems.
This shared experience led to some commonality in approach with later real-time

large systems, particularly with the involvement of one large consulting company,
Systems Development Corporation, that used the experience on other projects.
The SAGE project was started in 1953, when the USAF chose the SAGE concept and

began development of a prototype by MIT’s Lincoln Laboratory. It was initially built
using IBM’s AN/FSQ-7 computer. This prototype was called the Experimental SAGE

Subsector. The first operational site was the New York Air Defense Sector in June

1958. SAGE was initially conceived as tracking Soviet aircraft, and with the emerg­
ing threat of intercontinental ballistic missiles (ICBMs), other systems had to be

added to deal with the ICBM threat.
The AN/FSQ-7 computer was quite advanced for its time and the system

included many advanced features, leveraging the work done on Whirlwind com­
puters at the MIT Lincoln Lab. SAGE was built as a redundant system and to operate

24×7. The AN/FSQ-7 was physically very large: weighing 113 tons, consuming 1,500

kilowatts of power, and occupying an entire floor. In terms of processing capacity,
it was very small by today’s standards: 58,000 vacuum tubes, 69,000 (began with

8,000) words of memory, and 12 magnetic drums, each with a capacity of 150,000

words. The operational real-time program grew to around 100,000 instructions and

was partitioned into 40 subprograms. See Figure 5.13 and Figure 5.14.

5.6 Case Study: GNU Emacs 169

1

I3

2

3

4

5

6

7

1

P1

2

3

4

5

6

7

1

P4

2

3

4

5

6

7

1

P3

2

3

4

5

6

1

O1

2

3

4

5

6

1

B2

2

3

4

5

6

1

O3

2

3

4

5

1

B3

2

3

4

5

1

I1

2

3

4

5

6

1

I2

2

3

4

1

I4

2

3

1

B1

2

3

4

1

C2

2

3

4

1

P2

2

3

4

1

C1

2

3

1

O2

2

3

PROGRAMS

80 PROGRAMS

100,000

INSTRUCTIONS

INPUT OUTPUT CONTROL PROCESSING

BOOK-

KEEPING

ISOLATED

TABLES

1,000 ITEMS

CENTRAL

TABLES

1,000 ITEMS

Figure 5.14	 SAGE static program organization from Everett et al. [1983]. (Source: ACM, Eastern
Computer Conference Proceedings, 1957, p. 152, figure 11.)

The methodology used was largely a waterfall-type model, with one phase feed­
ing into the next. The time it took a program from the time of initial development
until it became operational was between 13 and 52 months. Besides being a tech­
nical challenge, SAGE was viewed as a system that included people and computer­
ized resources. The concern was that the operation of the entire system (including

people) behaved as it should.
SAGE ended up hiring a large number of programmers. The techniques used

there were then brought with those programmers when they went to other projects
and companies. As a result, the effects of SAGE were long-lasting and reflected in

many other large projects.

5.6 Case Study: GNU Emacs
The Emacs text editor has a long history dating back to 1976. Originally standing for
Editor MACroS, it was written in support of the TECO editor on the Incompatible

170 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.15	 GNU (GNU’s Not UNIX) project logo. (Source: Aurélio A. Heckert, GNU Logo, 2003,
https://www.gnu.org/graphics/heckert_gnu.html.)

Timesharing System (ITS) being used by the Artificial Intelligence Lab at MIT.6 The

idea of WYSIWYG (What You See Is What You Get) editors was starting to become

popular and Richard Stallman had seen an editor called “E” (see Samuel [1980]) at
the Stanford Artificial Intelligence lab in the early 1970s that was a full-screen edi­
tor. Stallman had previously modified the TECO editor to allow the entire file to

edited at once in a single buffer as well as adding WYSIWYG functionality. Also in

1976, Bill Joy while at University of California–Berkeley wrote the vi (“visual”) editor
that became part of the UNIX operating system standard toolset. vi was based on

features from the Bravo WYSIWYG editor produced in 1974 by Xerox PARC for the

Xerox Alto personal computer and considered the first WYSIWYG document prepa­
ration system. As a result, UNIX programmers after this time were often very partial
to either Emacs or vi, but not both, setting up a semi-religious dichotomy of editor
preference.

Richard Stallman began development of GNU (a recursive acronym for GNU’s
Not UNIX) Emacs in 1984 in order to produce a free software alternative to propri­
etary versions of Emacs. This development was critical to the beginnings of the

“free software” movement that produced the set of GNU tools (for the project logo

see Figure 5.15) which, along with the Linux operating system, gave a complete

toolset to programmers that was non-proprietary and free to modify. As part of

6. TECO (Text Editor & Corrector) was originally developed in 1962 for Digital Equipment Cor­
poration computers and was written for the PDP-1 by Dan Murphy while he was a student at
Massachusetts Institute of Technology.

https://www.gnu.org/graphics/heckert_gnu.html

5.6 Case Study: GNU Emacs 171

this desire to make Emacs and other software free to use, Stallman included with

Emacs the notice below that he required be carried with any distribution of the

source code and was the beginning of what Stallman calls a “copy-left” protection

notice (see Listing 5.1), which preserves the rights to re-use and modify the code.7

By requiring the inclusion of this notice, it propagates the ability to freely modify
and use the source code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

GNU Emacs copying permission no t i c e Copyright (C) 1985 Richard M. Stallman
Verbatim co p i es of t h i s document , i ncl u ding i t s c o p y r i g h t notice ,
may be d i s t r i b u t e d by anyone in any manner .
D i s t r i b u t i o n with m o dif i c a t io n s i s not permitted .

GNU Emacs i s d i s t r i b u t e d in the hope t h a t i t w i l l be us eful ,
but without any warranty . No author or d i s t r i b u t o r
acc e pt s r e s p o n s i b i l i t y to anyone f o r the consequences of using i t
or f o r whether i t s e r v e s any p a r t i c u l a r purpose or works a t a l l ,
unles s he s ay s so in w r i t i n g .

Everyone i s granted permission to copy , modify and r e d i s t r i b u t e
GNU Emacs under the f o l l o w i n g co n di t io n s :

Permission i s granted to anyone to make or d i s t r i b u t e verbatim co pie s
of GNU Emacs source code as r e c e i v e d , in any medium , provided t h a t a l l
c o p y r i gh t n o t i c e s and permission and nonwarranty n o t i c e s a re preserved ,
and t h a t the d i s t r i b u t o r g r a n ts the r e c i p i e n t permission
f o r f u r t h e r r e d i s t r i b u t i o n as permitted by t h i s document ,
and g i v e s him and p oi nts out to him an e x a c t copy of t h i s document
to inform him of h i s r i g h t s .

Permission i s granted to d i s t r i b u t e modified v e r s i o n s
of GNU Emacs source code , or of p or t io n s of i t ,
under the above conditions , provided a l s o t h a t a l l
changed f i l e s c a r r y prominent n o t i c e s s t a t i n g who l a s t changed them
and t h a t a l l the GNU−Emacs−der i v e d materi al , inc l ud in g e v e r y t h i n g
packaged t o g e t h e r with i t and not independently usable , i s
d i s t r i b u t e d under the c o n d i t i ons s t a t e d in t h i s document .

Permission i s granted to d i s t r i b u t e GNU Emacs in
compiled or e x e c u t a b le form under the same co n di t io n s appl y ing
f o r source code , provided t h a t e i t h e r
A . i t i s accompanied by the corresponding machine−re ada ble

source code , or
B . i t i s accompanied by a w r i t t e n o f f e r , with no time l i m i t ,

to g i v e anyone a machine−re ada b le copy of the corresponding
source code in r e t urn f o r reimbursement of the c o s t of d i s t r i b u t i o n .
This w r i t t e n o f f e r must permit verbatim d u p l i c a t i o n by anyone .

C . i t i s d i s t r i b u t e d by someone who r e c e i v e d only the
e x e c u t a b l e form , and i s accompanied by a copy of the
w r i t t e n o f f e r of source code which he r e c e i v e d along with i t .

In other words , you are welcome to use , share and improve GNU Emacs
You ar e forbidden to f o r b i d anyone e l s e to use , share and improve
what you g i v e them . Help stamp out softwar e−hoarding !

Listing 5.1 Stallman’s rights-preserving notice included with Emacs source code.

7. The version included in these listings is from Emacs 16.56 released on July 15, 1985, with source

code from that release extracted from https://github.com/larsbrinkhoff/emacs-16.56/blob/maste

r/src/emacs.c.

https://github.com/larsbrinkhoff/emacs-16.56/blob/master/src/emacs.c
https://github.com/larsbrinkhoff/emacs-16.56/blob/master/src/emacs.c

172 Chapter 5 Programming Environments, Tools, and Methodologies

In Listing 5.2 is part of the source code for the emacs.c file written in C. In this

file, you’ll see a number of references to the LISP programming language (such as

in lines 26, 93, and 125) and the use of DEFUN, which comes from the Common LISP

programming language. Emacs included a number of features that made it easier

to edit LISP source code as well as having been first created for AI programmers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
 ”FDump as f i l e : \ nfWith symbols from f i l e : ” ,

/* F u l l y e x t e n s i b l e Emacs , running on Unix , intended f o r GNU.
Copyright (C) 1985 Richard M. Stallman .

This f i l e i s p a r t of GNU Emacs .
GNU Emacs i s d i s t r i b u t e d in the hope t h a t i t w i l l be us eful ,
but without any warranty . No author or d i s t r i b u t o r
acc e pt s r e s p o n s i b i l i t y to anyone f o r the consequences of using i t
or f o r whether i t s e r v e s any p a r t i c u l a r purpose or works a t a l l ,
unles s he s ay s so in w r i t i n g .
Everyone i s granted permission to copy , modify and r e d i s t r i b u t e
GNU Emacs , but only under the co n di t io n s de s crib ed in the
document ”GNU Emacs copying permission n o t i c e ” . An e x a c t copy
of the document i s supposed to have been give n to you along with
GNU Emacs so t h a t you can know how you may r e d i s t r i b u t e i t a l l .
I t should be in a f i l e named COPYING . Among other things , the
c o p y r i g h t n o t i c e and t h i s n o t i c e must be prese r ved on a l l co pie s . * /
.
.
.
. / / P a r t of f i l e e x t r a c t e d by t h i s t e x t ’ s author
.
.
.
DEFUN (” k i l l −emacs” , Fk i l l ema cs , S ki l l e m a cs , 0 , 1 , ”P” ,

” E x i t the Emacs job and k i l l i t . Arg means no query . ”)
(arg)

L i s p O b j e c t arg ;
{
L i s p O b j e c t answer ;
i n t modbufcount ;

i f (f e o f (s t d i n))
arg = Qt ;

i f (NULL (arg) && (modbufcount = ModExist ())
&& (answer = Fy e s o r n o p (format1 (

”%d modified b u f f e r%s e x i s t%s , do you r e a l l y want to e x i t ? ” ,
modbufcount , modbufcount == 1 ? ” ” : ” s ” ,
modbufcount == 1 ? ” s ” : ” ”)) ,

NULL (answer)))
ret u r n Qnil ;

i f d e f subprocesses
i f (NULL (arg) && c o u n t a c t i v e p r o c e s s e s ()

&& (answer = Fy e s o r n o p (format1 (
” Subprocesses a re execu t i n g ; k i l l them and e x i t ? ”)) ,

NULL (answer)))
ret u r n Qnil ;

k i l l b u f f e r p r o c e s s e s (Qnil) ;
end i f

F do au to save (Qt) ;
f f l u s h (stdout) ;
RstDsp () ;
e x i t (0) ;

}

DEFUN (”dump−emacs” , Fdump emacs , Sdump emacs , 2 , 2 ,

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

5.6 Case Study: GNU Emacs 173

”Dump c u r ren t s t a t e of Emacs in t o ex e c u t a b l e f i l e FILENAME . \ n \
Take symbols from SYMFILE (presumably the f i l e you executed to run Emacs) . ”)

(intoname , symname)
L i s p O b j e c t intoname , symname ;

{
r e g i s t e r unsigned char *a name = 0 ;
e x t e r n i n t my edata ;
L i s p O b j e c t tem ;
e x t e r n s t a r t () ;

CHECK STRING (intoname , 0) ;
intoname = Fexpand f i le name (intoname , Qnil) ;
i f (! NULL (symname))
{
CHECK STRING (symname , 0) ;
i f (XSTRING (symname)−>s i z e)
{
symname = Fexpand f i le name (symname , Qnil) ;
a name = XSTRING (symname)−>data ;

}
}

tem = V p u r i f y f l a g ;
V p u r i f y f l a g = Qnil ;

f f l u s h (stdout) ;
m a l l o c i n i t (& my edata) ; /* T e l l malloc where s t a r t of impure now i s * /
unexec (XSTRING (intoname)−>data , a name , &my edata , 0 , s t a r t) ;

V p u r i f y f l a g = tem ;

r e t u r n Qnil ;
}

L i s p O b j e c t
decode env path (evarname , d e f a l t)

char *evarname , * d e f a l t ;
{
r e g i s t e r char *path , *p ;
e x t e r n char * index () ;

L i s p O b j e c t l p at h ;

path = (char *) getenv (evarname) ;
i f (! path)
path = d e f a l t ;

lpa th = Qnil ;
while (1)
{
p = index (path , ’ : ’) ;
i f (! p) p = path + s t r l e n (path) ;
l p at h = Fcons (p − path ? make string (path , p − path) : Qnil ,

l p at h) ;
i f (*p)
path = p + 1 ;

e l s e
break ;

}
r e t u r n Fn r e ve r s e (l pa t h) ;

}

syms of emacs ()
{
defsubr (& Sdump emacs) ;
defsubr (& S k i l l e m a c s) ;

DefLispVar (”command−l in e−arg s ” , &Vcommand line args ,

174 Chapter 5 Programming Environments, Tools, and Methodologies

126

127

128

129

130

131

132

133

134

” Args passed by s h e l l to Emacs , as a l i s t of s t r i n g s . ”) ;

DefLispVar (” system−t y pe ” , &Vsystem type ,
” Symbol i n d i c a t i n g t y p e o f opera t ing system you a re using . ”) ;

Vsystem type = i n t e r n (SYSTEM TYPE) ;

DefBoolVar (” n o n i n t e r a c t i v e ” , & n o n i n t e r a c t i v e ,
”Non−n i l means Emacs i s running without i n t e r a c t i v e te rmin al . ”) ;

}

Listing 5.2 Source code excerpt of Emacs from file emacs.c.

Emacs and its ability to edit the whole file at once (such as being able to do

global replaces) in a WYSIWYG manner forms the basis of how modern text editors
work. GNU Emacs was a reaction to the inability to freely use and modify propri­
etary software and was a stimulus for the free software and open-source software

movements.

5.7 Case Study: AUTOFLOW
One of the first software patents was issued in 1970 to Martin Goetz for a program

that would analyze source code and produce a flowchart as output.8 With the AUT­
OFLOW patent application (US Patent number 3,533,086), he included the assembly
language source code for the entire program written for an RCA 501 computer.
With this software tool and the associated patent issued to Applied Data Research,
AUTOFLOW became the first stand-alone commercial software product. RCA and

other mainframe manufacturers did not license AUTOFLOW, so Goetz decided to

sell it directly to RCA mainframe customers and it was eventually ported to several
other mainframe systems, becoming a commercial success and proving that the

stand-alone software model was feasible.
Flowcharts as a method for describing the design of computer programs had

been popular since the ENIAC [Haigh et al. 2016] and continued to have a wide vari­
ety of uses in describing programs, among other things [Ensmenger 2016]. Being

so ingrained in the way programs were designed at the time, AUTOFLOW was a

helpful program to document already existing programs by using flowcharts.
The patent for AUTOFLOW uses the AUTOFLOW program itself to document

the code for AUTOFLOW. This intriguing self-application of the program to itself
lives on as a test of many programming tools. Programming language compilers

8. The first US software patent was Martin Goetz’s earlier patent for a sorting program, issued

on April 23, 1968, US Patent number 3,380,029. An even earlier British patent (GB1039141A) for A

Computer Arranged for the Automatic Solution of Linear Programming Problems was issued to British

Petroleum Company on August 17, 1966, and was concerned with using the simplex algorithm on

a Ferranti Mercury computer in a memory efficient manner.

5.7 Case Study: AUTOFLOW 175

Figure 5.16 AUTOFLOW example output. (Source: Martin A. Goetz, US Patent 3,380,029.)

are often tested to see if you can write a compiler for the language in the same lan­
guage. An example of the program flow from the AUTOFLOW patent as produced

by the AUTOFLOW documentation program is in Figure 5.16. This example shows
part of the program’s processing of the code to produce the layout of the output.
It uses character (rather than graphics) representations of the flowchart boxes and

connections to other parts of the flowchart. Processing boxes are rectangular, deci­
sion boxes are diamond-shaped, and connections to other flowchart diagrams are

round. The RCA 501 assembly language source code included in the patent uses the

comment fields of each command as well as REMARK (RMK) assembly language

instructions to document the code and to use as input to the program.
The AUTOFLOW product was an early example of the demand for program­

ming tools and an example of the popularity of tools that would help automate

176 Chapter 5 Programming Environments, Tools, and Methodologies

the creation of program documentation. Software patents, on the other hand, have

had a turbulent history with results such as the US Supreme Court deciding in 1981
that “a claim drawn to subject matter otherwise statutory does not become non-
statutory simply because it uses a mathematical formula, computer program, or
digital computer.” By the early 1990s, the US laws more clearly allowed software

patents and added that the “practical application of a computer-related invention

is statutory subject matter.” This resulted in a number of software patents being

issued such as the “One Click” patent (US Patent 5960411A, Method and System

for Placing a Purchase Order Via a Communications Network) issued to Amazon

on September 20, 1999. The One Click patent was viewed as controversial due to

the simple nature of the patent and many considered it simply a business method

rather than a novel use of software.

5.8 Lessons Learned from Programming Tools and Environments
Programming languages’ toolsets and methodologies continue to change and

evolve as we struggle to build systems in a predictable manner. Along with pro­
gramming languages themselves, these environments and methodologies are cen­
tral to how we build systems and as a result a great deal of effort has been put into

them.
Some of the specific lessons learned from programming tools, environments,

and programming methodologies include:

∙ Engineering methods from other disciplines have had mixed results.

With the software crisis and since the beginning of software engineering

in the 1960s, there have been attempts to re-use a lot of the engineering

techniques that have been successful in other areas of engineering such as
building interchangeable components, having standard engineering mod­
els, and other techniques re-tooled to try to use in software. These have had

mixed results. The issue with software is that the level of change is very high,
with programming languages, toolsets, and underlying hardware changing

very rapidly. This has made it difficult to build long-lasting, re-usable soft­
ware components. However, we have been able to use general architecture

and design concepts practices, much of which has been borrowed from other
engineering disciplines and architecture.9 The idea of design patterns has
produced a reliable way to propagate use of good software design. Software

architectural patterns and reference architectures have also been a way to

re-use ideas and approaches from prior successful software systems.

9. From architecture, Christopher Alexander (see Alexander et al. [1977]) has been influential in

the idea of creating design patterns as well as agile software development techniques.

5.8 Lessons Learned from Programming Tools and Environments 177

CASE techniques had limited success with particular classes of applications,
but their limitations proved to hamper their utility and resulted in their
decline in use. Many other techniques to automatically build systems from

formal specifications, methods, and designs are promising and is an area

of research that many have high hopes will be able to produce large-scale,
provably correct systems.

Another issue with software that makes it difficult to apply techniques from

other engineering disciplines is that software is often faced with novel prob­
lems to be solved that have no grounding in physics. After all, why would

an organization give high salaries to programmers that are not solving new

problems? That is, new algorithms are often needed to solve a new prob­
lem and the way it is solved by software is not constrained by forces in the

real world (as a bridge would be). This freedom from physical constraints
can enable myriad ways to solve the new problem, each of which has its own

pluses and minuses.

∙ Very large systems have stressed tools and methodologies.

Very large software projects have not only reinforced the need for methodolo­
gies but have also made clear the weaknesses in our methodologies. Many of
these large projects were often way over budget and took much longer than

expected because of the difficulties and unpredictable nature of software.
These large projects have also stressed software in other ways such as main­
tainability, performance, availability, reliability, and security. Large projects
have also required large numbers of people to participate and helped to

design and clarify how to use systems such as source code control systems
and methodologies and design practices that separate system development
into individual tasks that can be more reliably integrated into a large system.

∙ Some methodology is very helpful (as compared to no methodology).

We’ve also learned that some software development methodology is help­
ful for any project involving multiple people. Even with Agile and eXtreme

programming methods, there is some structure that helps the project have

a better chance of success. Too often organizations will apply a methodol­
ogy without trying to tune it to the particular project(s) using it and increase

the frustration of the teams by including work that the team cannot see as
valuable.

∙ Programmer toolsets and methodologies change often.

Programmer toolsets have changed often and tend to be an object of tinker­
ing by programmers interested in improving their own efficiency. IDEs have

178 Chapter 5 Programming Environments, Tools, and Methodologies

often been focused on a particular programming language, which tended

to reduce their useful lifespan. IDEs that have allowed modules or plug-
ins to deal with specific programming languages have (so far) tended to

have a longer useful lifespan. Other toolsets, such as UNIX-like program­
ming commands and tools, have tended to have a longer lifespan due to the

propagation and use of UNIX and Linux operating systems.

We’ve also seen methodologies change dramatically over time with the desire

to build systems better. Much of that drive has been to build more reliable

systems or to better reflect the customer’s needs. With the ENIAC (and for
many years after), programming designs were done as flowcharts, often on

blueprint paper. Flowcharting continued to be a technique taught to pro­
grammers even in the 1980s. Eventually, we found that flowcharts were less
than optimal and may actually cause bad program design by encouraging

the ability to jump (i.e., GOTO) to any other point in the program. Along

with structured analysis and design, flowcharts became less popular. An

interesting example of this was the programming language B-0 (a precursor
to COBOL)10 whose implementation was completely defined by flowcharts.
Still, flowcharts have some utility if one is trying to reverse-engineer and

understand how an old system works, particularly if it is written in assembly
language or otherwise allows GOTO statements or arbitrary jumps.

Given the rate of past change in methodologies and programmer toolsets,
it’s very likely that we’ll continue to see change, particularly to improve sys­
tem reliability, predictable development, and verifiable adherence to user
requirements.

5.9 Exercises and Projects

5.9.1 Exercises
1. Investigate the problems that programmers had with paper tape and the

lengths they went to repair and maintain them. Explain why paper tape was
used for such a long period of time (until at least into the 1980s).

2. Punched cards, such as Hollerith cards, were very widely used into the 1980s.
Investigate the efforts to standardize punched card formats. Why were IBM

10. The complete flowcharts are included in Jean Sammet’s papers held at the Charles Babbage

Institute archives and are almost 100 pages of flowcharts to define the B-0 language for the

UNIVAC.

5.9 Exercises and Projects 179

Figure 5.17	 An enlarged punched card showing the encoding of portion of an 80-column Job
Control Language Statement JOB card. (Source: Photograph by author.)

cards often 80 characters in width, such as the one in Figure 5.17? Note that
this card is encoded in Extended Binary Coded Decimal Interchange Code

(EBCDIC), which was heavily used on IBM computers, so a C is encoded as
C3 in hexadecimal and A as C1 in hex. Was it in the best interest of computer
manufacturers to standardize the character encoding format and card size

in the 1970s? Why or why not?

3. Investigate the relationship of paper tape and card coding formats with net­
work and character codes. For example, how did the Baudot code evolve

into use on paper tape? What’s the relationship of character standards
such as EBCDIC and ASCII to the codes used on punched paper tape and

cards?

180 Chapter 5 Programming Environments, Tools, and Methodologies

4. An important programming tool for UNIX systems is the AWK programming

tool. Find a use of the AWK11 programming language and explain why AWK

was a good choice for the problem.

5. Find information on IBM’s VM-CP (Virtual Machine Control Program) CMS

(Conversational Monitor System) and explain its usage from a programmer’s
point-of-view. Did VM/CMS help programmers be more productive? Can

you find contemporary references that detail the benefits and drawbacks of
VM/CMS? Summarize what you found.

6. Was UNIX’s SCCS (Source Code Control System, 1972) the first source code

management system? How did you determine that? What is your basis for
reaching that conclusion?

7.	 lex and yacc were instrumental in the development of other programming

tools beyond compilers. Explain how they were used for non-compiler tools.

8. UNIX’s SCCS was originally written in the programming language SNOBOL.
Why was SNOBOL used for this task?

9. The Software Engineering Body of Knowledge (SWEBOK) is an effort driven

primarily by the IEEE Computer Society. Find a copy of the SWEBOK and

detail the process that is used (or not) to keep it up to date.

10. Investigate the relationship between information engineering as in Martin

[1990] and CASE. Which came first? How did the first one influence the one

that followed?

11. One technique used in structured systems analysis is the data flow diagram

(DFD). Find out more about DFDs and write an interpretation of what the

DFD in Figure 5.18 means. This particular drawing is for a DVD rental system

and uses syntax similar to Kowal [1988]. DFD syntax varies somewhat, but this
syntax is a typical example.

12. Find Clive Finkelstein’s series of six articles from Computerworld written in

June 1981 about information engineering. Why was information engineering

considered necessary at that time?

13. The Unified Modeling Language (UML) was an important consolidation of
object-oriented modeling languages. Give an example of where the repre­
sentations were different in Booch’s, Jacobson’s, and Rumbaugh’s object-
oriented modeling languages. These three earlier representations were

“unified” by UML.

11. AWK was named for its authors: Aho, Weinberger, and Kernighan.

5.9.2

5.9 Exercises and Projects 181

14. Find information on DEC’s VMS programming environment and explain its
usage from a programmer’s point-of-view. Did VMS help programmers be

more productive compared to other systems available at the same time? Can

you find contemporary references that detail the benefits and drawbacks of
VMS’s programming environment? Summarize what you found.

15. On October 18, 2007, Ivar Jacobson published in his blog (see http://blog.ivarj
acobson.com/category/ivarblog/architecture/ which you may have to find via

http://archive.org) an entry called “Enterprise Architecture failed big way!”
Read this blog entry and comment on how these reasons for failures can

apply to other architectural techniques.

16. Consider a very large software project being done today that involves thou­
sands of people and hundreds of millions of lines of code. To pick a specific
example, consider a space defense system that involves thousands of geocen­
tric satellites, control centers on the ground, and other active components
(missiles, probes, sensors on ships/aircraft, etc.). So, this system needs to

work as a single, integrated system.

Given the state of current technologies, would this project be easier or harder
than SAGE was during the 1950s and 1960s? If you argue that it’s easier, then

identify what advances have been made since SAGE that will help make it
more likely to succeed. If you argue that it’s going to be harder to complete,
then argue why this project would be more difficult to successfully complete

than SAGE.

17. A particular set of software components can show a lot of re-use for a while,
but over time the ability to re-use those components degrades. Explain why
a particular library or set of “re-usable” components becomes less re-usable

over time and is often abandoned for something else.

Projects
1. Investigate the concept of	 “structured programming” such as in Linger
et al. [1979] and its relationship to structured systems analysis and design

methodologies such as in DeMarco [1978]. How did the structured analysis
and design methodologies live up to the goals of structured programming?
How did the methodologies stray from the intent of structured program­
ming? How are structured programming concepts represented in object-
oriented analysis and design methodologies? Write a paper that shows the

relationships between these related topics.

http://blog.ivarjacobson.com/category/ivarblog/architecture/
http://blog.ivarjacobson.com/category/ivarblog/architecture/
http://archive.org

182 Chapter 5 Programming Environments, Tools, and Methodologies

d
s1

C
as

h
-b

o
x

d
s2

P
ai

d
-b

o
x

B
an

k
 D

ep
o
si

ts
R

ej
ec

t

C
u
st

o
m

er
 N

am
e

D
V

D

P
ay

m
en

t/
C

as
h

R
ec

ei
v

e
re

ce
ip

t

R
ec

ei
v
e

re
ce

ip
t

D
V

D
s

4
.0

T
o

ta
l-

ch
ar

g
es

d
s3

C
u
st

o
m

er
s

d
s4

D
V

D
 R

ec
ei

p
ts

D
V

D
-r

eq
u
es

t

C
u
st

o
m

er
 i

n
fo

R
E

JE
C

T

R
E

JE
C

T

C
u

st
o

m
er

D
ep

o
si

t

N
ew

 c
u
so

te
r

si
g

n
-u

p

1
.0

*

P
ro

v
id

e
D

V
D

s

3
.2

*

D
V

D
D

V
D

A
v
ai

la
b

le

D
V

D
s

C
u
st

o
m

er
 N

am
e

R
en

ta
l

R
ec

ei
p
t

d
s8

D
V

D
 L

ib
ra

ry
d
s5

D
V

D
 i

n
v

en
to

ry

d
s7

A
v

ai
la

b
le

 D
V

D
s

N
ew

 D
V

D
 p

ay
m

en
ts

N
ew

 D
V

D

In
v
o

ic
e

N
ew

 D
V

D

R
ec

ei
p
t

2
.1

*
C

al
ls

 a
n

d
 i

n
q

u
ir

ie
s

d
s6

R
F

ID
 c

h
ip

s
P

ay
 B

il
ls

2
.2

*

d
s9

D
V

D
-I

d
en

ti
fi

er
s

d
s1

0
In

v
o
ic

e-
in

-b
o
x

d
s

1
1

G
en

er
al

 L
ed

g
er

d
s1

2
P

ai
d

 i
n
v
o

ic
es

E
n

d
-o

f-
d
ay

d
ep

o
si

t

5
.0

*

Is
 D

V
D

av
ai

la
b
le

ch
ec

k
?

3
.1

*

Fi
gu
re

 5
.1
8

An
 e
xa
m
pl
e
le
ve
l 1

 d
at
a
fl
ow

 d
ia
gr
am

 fr
om

 s
tr
uc
tu
re
d
sy
st
em

s
an
al
ys
is

 fo
r
a
D
V
D

 r
en
ta
l s
ys
te
m
.

5.9 Exercises and Projects 183

2. Find out more about the software and overall project methodology used

by the SAFEGUARD Project12 The resulting methodology impacted other
projects undertaken at Bell Labs after SAFEGUARD. For the overall purpose

of SAFEGUARD see Brown et al. [1975] and other articles in that issue of
the Bell System Technical Journal. Like the SAGE project, SAFEGUARD was
an antiballistic missile system that was designed to respond to attacks by
ICBMs. Its subsystems include: a missile subsystem, a radar subsystem, and

a data processing and control subsystem. The idea is that incoming missiles
would be detected by SAFEGUARD and then destroyed by defensive missiles.
See Figure 5.19 and Figure 5.20 for a high-level view of the system.

Write a report that details the software methodology used, how the SAGE

project methodology was related and detail any cross-communication of
methodology ideas, and how the SAFEGUARD methodology influenced

other large software projects at Bell Labs and elsewhere.

3. Software design patterns (for example see Rising [1998]) have become one of
the most successfully re-used concepts for software development. These pat­
terns are re-usable solutions to commonly occurring problems within a given

context. Examine how these were developed and how they have changed

over time. Examine the motivations for the initial creation of design pat­
terns and what was attempted before them. Create a timeline explaining their
relevance and surmise how they might evolve in the future.

4. A method of structured analysis and design was called composite design, as
recorded in books such as Myers [1975]. Investigate this technique and how

it was used and why it is no longer used. What other techniques did it influ­
ence? What previous techniques influenced it? Why was it expected to help

produce more reliable software?

5. There is a relationship between structured analysis and design, informa­
tion engineering, CASE, and enterprise architecture. Produce a report that
explains the interrelationships and how this set of techniques evolved over
time.

6. Investigate how modern tools are attempting to add more careful design and

review back into the process of creating software. While the punched card

and tape era forced a careful process, it also imposed the keeping track of
many details better done by computerized processes. Techniques such as

12. One good reference is the 1975 Bell System Technical Journal (see Brown et al. [1975])
supplement that was focused on the SAFEGUARD Data-Processing System and is available at
http://srmsc.org/pdf/005213p0.pdf.

http://srmsc.org/pdf/005213p0.pdf

184 Chapter 5 Programming Environments, Tools, and Methodologies

Figure 5.19	 The SAFEGUARD System for detecting and responding to missile attacks. (Source:
Reused with permission of Nokia Corporation and AT&T Archives.)

model-driven development and other tools encourage solving the problem

at a more abstract level that are then translated to running programs. Write

a paper that describes how careful design in the age of paper tape and cards
can be and already is being re-introduced into the software development
process.

7. The AUTOFLOW program used the comments and RMK instructions in the

program itself as well as analyzing the instructions to determine where deci­
sions were made to create flowcharts for the program being analyzed. Using

the code included with the US patent number 3,533,086, map the places in the

program that correspond to Figure 5.16 by showing the lines of code that cor­
respond to each block (with line numbers from the patent) and the assembly
language instructions that correspond to the decision boxes.

5.9 Exercises and Projects 185

Figure 5.20	 The SAFEGUARD System data processing components. (Source: Reused with
permission of Nokia Corporation and AT&T Archives.)

8. A batch compilation processing using cards and/or tape along with coding

forms led to a natural tendency to be careful about the program’s design

and syntax in order to maximize the usefulness of each attempt. Moving to

a time-shared environment allowed programmers to be more dependent on

the compiler and other tools to find syntax errors and to more quickly test a

program. Programmers came to depend on the programming methodology
to enforce careful architecture and detailed system design, which often were

supported with explicit steps in waterfall, structured analysis and design,
and object-oriented systems analysis and design. With Agile methodolo­
gies programmers may not be required to create the entire system architec­
ture early and detailed design is often spread over sprints and may not be

well-documented. Document the different approaches used for architecture

and design as applied to Agile methodologies and evaluate them based on

their ability to create a reliable software architecture and detailed software

186 Chapter 5 Programming Environments, Tools, and Methodologies

design. Consider alternatives such as attribute-driven design as in Cervantes
and Kazman [2016].

5.10 Further Readings and Online Resources
For sets of classic papers in software engineering, see Yourdon [1979] and Yourdon

[1982]. For the methods and explanations of the diagrams used for the ENIAC, see

Haigh et al. [2016]. Sackman [1967] contains many details on SAGE and its develop­
ment methods. Kernighan and Plauger [1976] details the UNIX toolset, particularly
those that manipulate text files.

6tems, and hosted services such as infrastructure as a service (IaaS), platform as a

service (PaaS), and application as a service (AaaS) have all depended on networking

to be feasible. Advances in data networking have enabled those types of systems
to be built by becoming more pervasive, inexpensive, higher bandwidth, and lower
latency. Developments such as the popularization of the Internet have irrevocably
changed the way programming is done. The popularity of the Internet drove appli­
cations to be written for it as well drove a standardization on the Internet Protocol
(IP), replacing a number of other competing protocols.

This chapter covers networking software and how it has evolved over time,
including influences from different areas such as telecommunications, computer
networking, and broadcast networks.

Networking Software

The desire to quickly send information over long distances has a long history (see

Holzmann and Pehrson [2003]). This history has colored how computer data net­
working has evolved and techniques used to send information before computer
networking has impacted the methods for sending information over computer
networks. Data networking has had significant influence over software systems
and how they are architected, as well as how the data networking software itself is
built. Software architectures such as client–server, peer-to-peer, cloud-based sys­

6.1 Overview of the Evolution of Data Networking
The ability to accurately send information over long distances has been needed in

order to command armies and to rule over empires. These efforts led to techniques
to ensure the accuracy, secrecy, and timeliness of information sharing. This sec­
tion discusses some of that early history as well as influential information-sharing

networks that impacted how computer networking was implemented.

6.1.1 Information Networking Before Computers
In ancient times, urgent information was often carried by runners and relays of
runners and horse-riders. Homing pigeons were also used for delivery of messages.

188 Chapter 6 Networking Software

Another method was the use of mirrors and flags to send messages between points
within direct line of sight. For data communication, this is where it begins to be

interesting as this required the use of a particular code that was understood by
each party involved in the communication. Beacons (such as fire beacons or light­
houses) also required some commonly understood way of encoding the message

being relayed. These sorts of “telegraph” networks required not only a message

encoding scheme but also a common protocol for all parties to follow that would

specify the beginning and ending of a message, determining who goes first, han­
dling garbled messages, etcetera. These networks began to look more like data

communication networks with their protocols, message formats and encoding,
synchronization methods, and methods of routing and quality assurance. Send­
ing reliable messages quickly between distant cities became possible with repeater
stations and common protocols.

An important example was the semaphore (optical) telegraph that was con­
structed in the latter part of the 18th century in France with the direction of Claude

Chappe (see Holzmann and Pehrson [2003]). The first line between Paris to Lille

was completed in 1794 and was regularly transmitting messages the 120 miles
(190 km) between the two cities. The network was later expanded to a number of
cities into the 1850s and developed an extensive code for both messages and pro­
tocols for message control. The electrical telegraph was developed in the 1830s by
Samuel Morse, but France was not ready to invest in the new technology at that
time. Familiar themes of the cost of installing an inferior technology (it depended

on a physical electrical connection, where the optical telegraph was wireless and

more difficult to cut). Interestingly, when the Foy–Bréguet electrical telegraph was
deployed in France it utilized the already used Chappe codes from the optical
telegraph.

The deployment of various telegraph technologies around the world contin­
ued as described in Holzmann and Pehrson [2003]. In the late 1800s, telephone

networks began to appear with the inventions of Alexander Graham Bell and

Elisha Gray.1 Telephone networks quickly spread and with the formation of the

Bell System regulated monopoly in the United States after AT&T was nationalized.
The promise of AT&T’s president Theodore Vale of “universal service” ushered

a rapid expansion of phone networks and technology in order to serve all parts
of the US. This rapid expansion of the span of the telephone network as well as
increased usage made the solutions to issues such as call routing and managing

1. Elisha Gray did similar work on telephone devices but lost to Bell in numerous court deci­
sions on the telephone patent. He also helped form Western Electric that eventually became the

manufacturing arm of AT&T. See Adams and Butler [1999].

6.1 Overview of the Evolution of Data Networking 189

large numbers of calls a challenge. Figure 6.1 shows a Bell System ad indicating

that 70 million calls a day were already occurring on the AT&T network by 1939.

6.1.2	 Communications Networks Contributing to Computer Networking
Sending information over long distances has a long history that colors and

contributes to the way that data networking technology developed as well as
the current efforts to consolidate networks largely around TCP/IP (Transmission

Control Protocol/Internet Protocol). Each of these earlier efforts not only con­
tributed technologies and approaches but many also built networks that produced

their own inertia to change. In particular, networks to send and receive data have

Figure 6.1 A 1939 Bell System advertisement describing the number of calls handled per day.
(Source: Courtesy of AT&T Archives and History Center.)

190 Chapter 6 Networking Software

been developed in separate industries and communities, each of which had differ­
ing motivations and requirements. Some of the most influential areas have been

the following:

∙	 Telecommunications. Stemming from telegraph and earlier efforts to send

messages long distances, telecommunications evolved with the ability to cre­
ate large-scale, worldwide networks that were extremely reliable and able to

handle large volumes of voice traffic. However, much of this work was done

before, and then in parallel with the effort to build computer networks. The

earliest computer networks would use the preexisting telecommunications
networks in order to provide long-distance connections between computers.
Telephone networks also required a method of addressing and routing of
calls. Teletypes were developed to run over the telephone network and used

modems as well as their own routing techniques.2

∙	 Radio and television. Broadcast networks, such as radio and television, also

developed independently from other networks and excelled at wireless as
well as the ability to disseminate large amounts of information, albeit in a

unidirectional manner. These eventually transformed into multiple methods
of distribution including over coaxial cable networks and others. These net­
works gradually transformed into providing a base for access networks into

homes.

∙	 Satellite. The launching of Sputnik 1 by the Soviet Union on October 4, 1957,
significantly accelerated the space race with the United States during the

Cold War. While Sputnik 1 only broadcast a radio pulse, it was detectable by
amateur radio operators around the world. The United States then launched

the SCORE (Signal Communications for Orbiting Relay Equipment) satel­
lite, which is considered the first communications satellite and was a direct
response to the launch of Sputnik. Interestingly, SCORE was the first project
for the newly formed Advanced Research Projects Agency (ARPA). SCORE

used a store and forward method to broadcast a message. It is relatively

2. Teletypes would print information on tapes that could then be received by a central routing

facility that would send it on to the next hop on the way to its eventual destination. These were

heavily used in the military to send messages and developed into “torn tape” routing systems
where the tape would be torn from a receiving teletype and then send on to the next hop at a

sending station. These were eventually turned into a way to automatically route teletype tapes
(such as in Western Electric’s Plan 55-A, see https://en.wikipedia.org/wiki/Plan_55-A) and were an

inspiration to Leonard Kleinrock in his 1962 Ph.D. thesis, “Message Delay in Communication Nets
with Storage.” Kleinrock went on to work on packet switching and the Internet, along with other
people.

https://en.wikipedia.org/wiki/Plan_55-A

6.1.3

6.1 Overview of the Evolution of Data Networking 191

well-known because of the broadcast of President Eisenhower’s Christmas
message in 1958.3 More sophisticated communication satellites then fol­
lowed, including the ECHO 1 in 1960. ECHO 1 was a simple satellite that
reflected microwaves, allowing communications over long distances by pas­
sively bouncing microwaves off the reflective surface. ECHO 1 is often called

the first global communications satellite. The Telstar 1 satellite in 1962

relied on an agreement between the United States, the United Kingdom, and

France, and was able to relay both telephone calls and television signals and

launched modern satellite communications.4

∙	 Computer networks. In the late 1960s, as computers started to proliferate

so did efforts to network them together. As early as 1963, people such as
J.C.R. Licklider recognized the need to network together a set of time-sharing

computers.5 Those early efforts evolved into a number of operational, pro­
prietary computer networks while ARPANET was being developed. Those

proprietary networks included IBM’s System Network Architecture (SNA) and

Digital Equipment Corporation’s DECnet as well as many others.

Figure 6.2 shows two of these areas: computer networking and telecommunica­
tions. Each of these areas originated a number of standards and protocols that
were suited to their area. Over time, these two areas increased their overlap and

much of the modern telecommunications infrastructure now uses protocols origi­
nally built for data networks (such as TCP/IP). This shift has taken decades to occur
as factors such as a large installed base as well as data protocols were not initially
designed to support voice traffic.

Wireless Networks
The development of wireless data networking is an example of one of these dif­
ferent camps in data networking. Wireless data networking developed primarily

3. You can listen to this message at: https://upload.wikimedia.org/wikipedia/commons/c/cf/
SCORE_Audio.ogg. Interestingly, Eisenhower’s message was carried via a physical audio tape onto

the SCORE satellite.

4. See http://www.smecc.org/james_early___telstar.htm for James Early’s recollections of the

launch of Telstar 1. He includes interesting details such as the “Starfish Prime” test of a hydrogen

bomb in the upper atmosphere the day before the launch of Telstar 1.

5. See J.C. R. Licklider’s note published while he was with ARPA to “Members and Affiliates of the

Intergalactic Computer Network” where he details a vision for a computer network that eventu­
ally evolved into ARPANET and the Internet. The note is reproduced here: http://www.kurzweilai.
net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network.

https://upload.wikimedia.org/wikipedia/commons/c/cf/SCORE_Audio.ogg
https://upload.wikimedia.org/wikipedia/commons/c/cf/SCORE_Audio.ogg
http://www.smecc.org/james_early___telstar.htm
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network

192 Chapter 6 Networking Software

Computer

Community

Telecommunications

Community
Frame

Relay
TCP/IP

Cellular

Data

ATMWi-Fi

WiMax

T1/T3/

E1/E3,

etc.X.25

Token

Ring

Ethernet

OC3/

48, etc.

Figure 6.2	 Two of the communications networks communities that contributed to data
networking.

in three different industries:6 telecommunications, TV and radio, and computer
networking. Those networks have eventually all merged to be all data networks,
largely using TCP/IP.

Telecommunications has been attempting to deploy wireless phone service for
some time. In 1946, AT&T deployed a radio-based system in St. Louis, MO, to sup­
port wireless phone usage. This system was based on using a single radio frequency
and as a result only one call could be made at a time. In 1976 in Chicago, IL,
the first trial cellular network was deployed that made widespread use of wireless
calling possible. This system used multiple frequencies in cells such that mul­
tiple radio frequencies were used in individual cells. These cells then formed a

honeycomb pattern. The problem was then to switch moving users over seam­
lessly as they moved between these cells. This system (AT&T’s Advanced Mobile

Phone System, AMPS) allowed the possibility of supporting a large number of
users simultaneously. Data was added to this network over time—initially, by
encoding data by supporting cellular modems that encoded data, much like the

wireline modems did for wired phone networks. Eventually, the underlying proto­
cols and systems became more data aware and were able to support higher data

transmission rates. For code division multiple access (CDMA)-based networks,
the first such digital cellular technology standard was Interim Standard 95 (IS-95)
developed by Qualcomm. Global System for Mobile Communications or Groupe

Spécial Mobile (GSM) developed similar standards to support data. Generally, net­
works that did not transmit data were considered first-generation cellular networks
(such as AMPS). Second-generation cellular networks support limited data such as

6. Satellite could be considered a fourth.

6.1 Overview of the Evolution of Data Networking 193

IS-95 on CDMA networks. As mobile data using cellular networks became more

in demand, third-generation networks were envisioned and standards developed

based on CDMA and GSM. For CDMA, the 1×EV-DO (Evolution-Data Optimized

or Evolution-Data Only) was developed. For GSM, the Universal Mobile Telecom­
munications System (UMTS) was developed. These third-generation networks were

developed to support relatively high data speeds in the 100s of kilobits per second

and up to speeds in the megabits per second range. GSM- and CDMA-based7 net­
works composed the vast majority of cellular telephone networks at this time (the

mid-1990s), and part of the goal was to eventually make these networks interoper­
ate. However, the technical challenges of developing these third-generation cellular
networks delayed their deployment. As a result, several interim technologies were

created to increase data transmission speeds and these were collectively called

second-generation transitional (or 2.5G, 2.75G) networking technologies. These

included CDMA’s 1×RTT (One times Radio Transmission Technology), GSM’s
GPRS (General Packet Radio Service) and EDGE (Enhanced Data rates for GSM Evo­
lution), among others.8 Fourth-generation cellular networks are largely based on

LTE (Long Term Evolution) Advanced. Fifth-generation cellular technologies are

currently under research and development.
Television had been broadcasting analog signals for decades before the push

to move to a packet-based format came with HDTV (High-definition Television) in

the late 1980s and into the 1990s.9 Even with lots of effort, it took years to develop

and deploy HDTV. Part of this difficulty was the turmoil and change in US TV

manufacturers as well as the need to displace spectrum so that HDTV could be

broadcast concurrently with analog stations during the switchover. In addition to

this effort, there were standards such as Multichannel Multipoint Distribution Ser­
vice (MMDS) that were used to distribute cable services using facilities such as
microwave.

For data networking, the University of Hawaii created a networked called

AlohaNet in 1971 that formed the basis of some of the technology used in Ethernet.
In 1985, network spectrum was released for unlicensed use that resulted in the

7. Other standards and networks existed such as Integrated Digital Enhanced Network (iDEN),
developed by Motorola and largely used by Nextel Communications. Another example was iMode,
developed in Japan, that supported not only packet-switched data but also some other services
such as web access and email.

8. Another interesting example are data networks built on shortwave radio/ham radio. AX.25 is a

standard built for amateur radio that uses X.25 type packet data.

9. Note that there were other, earlier analog uses of the term HDTV. Here the reference is to the

United States Digital HDTV Grand Alliance that became official in 1993 and was comprised of
AT&T Bell Labs, General Instruments, Phillips, Sarnoff, Thomson, Zenith, and MIT.

194 Chapter 6 Networking Software

development of systems such as WaveLan at the National Cash Register unit of
AT&T in The Netherlands in 1991. This eventually became the basis for the set of
standards known as IEEE 802.11 and using the Wi-Fi label. The intent of WaveLan

and Wi-Fi were to focus on serving a building or local area, rather than large areas
as TV and telephone were attempting to do.

So, these three different types of wireless networking (telecommunications, TV,
and computer data) developed separately over time. They developed their own tech­
niques to solve problems, but eventually all began to merge in the form of all
being computer data networks. The advantages of doing so enabled a flexibility
of content delivered and provided the ability to build large and shared backbone

networks. Even so, this merging of these different networks is still occurring as old

networks get replaced and problems are solved to make the transition profitable

for companies.

6.1.4 Some Networking Hardware
Networking has been very hardware-centric and many different types of network­
ing hardware have been developed over the years. As a result, the software used to

run networking protocols on top of that hardware was often hardware-specific. Net­
working hardware is varied and everchanging, but some hardware advances have

shaped how future hardware and software were built. A few of those follow in this
section. This section is not meant to be complete, but just to show a few interesting

examples of networking hardware of which many readers may not be aware.
One such example includes torn-tape systems that were used to send and receive

messages, particularly in military applications. These messages could be transmit­
ted to a relay center that could then re-transmit the message to another hop until
it finally reached its destination. These systems became quite sophisticated and

eventually were able to route messages automatically without the need of an oper­
ator to determine the next hop. Figure 6.3 shows one such system that was used in

the US military, along with some of the details of its operation. As noted earlier in

this chapter, this automatic routing was directly referenced in the development of
Leonard Kleinrock’s contributions to packet switching methods. Figure 6.4 shows
a torn tape relay operation in Guam on September 11, 1969.

The development of acoustic modulator/demodulators (better known as
“acoustic modems”) allowed data to be sent over the public phone system, using

regular phones and regular phone lines. You can see in Figure 6.5 that such

modems were designed to have a phone handset placed into the couplings. The

modem could then use audible tones (as that’s what the phone system supported)
in order to encode and decode messages.

6.1 Overview of the Evolution of Data Networking 195

Figure 6.3	 Teletypewriter torn tape messaging system. (Source: US Government/Teletype Corp.,
Nick England (www.navy-radio.com), DoD publication MIL-HTBK-161.)

Modems continued to increase their speed as well as to work over different
underlying physical transport networks, such as cable, radio, and optical fiber.

6.1.5 Overview of Data Network History
Data networking between general purpose computers really did not begin in

earnest until the mid- to late-1960s when there were enough computers to make

networking worthwhile. One could argue that there were data networks of var­
ious kinds before this, such as the telephone network, emerging satellite net­
working, and other messaging such as teletypes. The earliest networks were

direct computer-to-computer (what’s referred to as “host-to-host” in Figure 6.6).

http://www.navy-radio.com

196 Chapter 6 Networking Software

Figure 6.4	 Teletypewriter torn tape relay center in operation in Guam, 1969. (Source: Courtesy of
Nick England and http://www.navy-radio.com, US Navy Photo.)

Large computer companies began to develop their own proprietary networks in

order to support their customers’ ever-growing need to network the computers
they own as well as to connect to other organizations’ computers. Networks such

as IBM’s SNA and Digital Equipment Corporation’s DECnet became predominant.
These proprietary networks continued to be supported until the Internet became a

viable replacement and TCP/IP became the de facto standard for data networking.
With the popularity of the World Wide Web (WWW) in the mid-1990s, Internet ser­
vices rapidly matured to allow the migration of legacy and proprietary networks to

TCP/IP and the Internet.
One can also look at the evolution of network technology from the type of net­

work it supports. That is, the technologies supporting wide-area networks (WANs)
to interconnect computers across a large geographic distance evolved mostly

http://www.navy-radio.com

6.1 Overview of the Evolution of Data Networking 197

Figure 6.5	 An AM211 CXR Anderson Jacobson acoustic modem (French version) and the
phone handle (almost) plugged in. (Source: Olivier Berger, CC BY-SA 3.0 https://
creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons and with permis­
sion of CXR Anderson Jacobson.)

from telecommunications technologies and began using the telephone network.
Technologies supporting local-area networks (LANs) evolved to support in-building

networking and had very different characteristics from telephony-based WAN tech­
nologies. Similarly, there are different technologies to support metropolitan-area

networks (MANs) and personal-area networks (PANs). As an example, technologies
such as Token Ring and Fiber Distributed Data Interface (FDDI) were developed as
LAN protocols and used techniques that are difficult to use over long distances (i.e.,
tokens passing around a ring). Though the development of optical ring networks
came from telecommunications to support metropolitan area networks, such as

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

198 Chapter 6 Networking Software

Internet, ArpaNet
HTML, browsers, etc.

Related applications:

telnet, ftp, DNS,

Archie, Gopher,

WAIS, etc.

No Data

Networking

(up to mid 1960s)

Host-to-host

Networks (up to

early 1970s)

Proprietary

Networks (SNA,

DECnet, etc.)

(up to mid 1980s)

Packet-based

Networking

(routing/

switching)

Standardized

Networks on

TCP/IP

(early 1990s)

WWW-based

Application

standardization

Figure 6.6 High-level timeline of data networking stages.

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy
(SDH) rings.

6.1.6 Proprietary Networks
Proprietary computer data networks were developed and supported by large com­
puter companies and other organizations in order to have a robust data network

that could be supported. There was no viable open-standards–based alternative.
So, IBM developed the Systems Network Architecture while DEC developed DEC­
net. Additionally, some companies developed and supported their own network­
ing protocols such as the Bell Labs Network (BLN) developed by Bell Telephone

Laboratories to connect Western Electric facilities and Bell Labs R&D sites.

6.1.6.1 One Example: IBM’s SNA

SNA was introduced in 1974 as a propriety networking system centered on IBM

mainframe environments. SNA went through many enhancements and lasted into

the 2010s in order to support mostly legacy mainframes and their applications.
SNA was developed as a propriety alternative to the International Standards Orga­
nization (ISO) Open Systems Interconnection (OSI) set of emerging protocols. As
a result, it does not strictly adhere to the 7-layer stack proposed by ISO OSI and

includes protocols such as the Synchronous Data Link Control Protocol, which

was a packet-based protocol. SNA included the communication between IBM ter­
minals, communications processors, and between systems. See bitsavers.org for
a number of SNA documents, including http://www.bitsavers.org/pdf/ibm/sna/GA

27-3102-0_SNA_General_Information_Jan75.pdf.

6.1.6.2 The Problem of Bridging or Connecting Disparate Networks

One of the issues that many faced in trying to deploy networks was the need to

interconnect disparate networks. Large companies and organizations were buying

a number of computers, each of which may only support its own, often proprietary

http://www.bitsavers.org/pdf/ibm/sna/GA27-3102-0_SNA_General_Information_Jan75.pdf
http://www.bitsavers.org/pdf/ibm/sna/GA27-3102-0_SNA_General_Information_Jan75.pdf

6.1 Overview of the Evolution of Data Networking 199

network. As a result, companies would also deploy specialized computers as “gate­
ways” in order to translate between the two networks. For example, it was common

for a large company to support both DECnet and SNA and to buy another computer
to serve as the gateway to connect those networks. An example of this need was
the need for users on the DEC computers connected via DECnet to submit batch

computing jobs on the IBM mainframes. So, there was often a method to send a

job to be executed on the mainframe (often called Remote Job Entry, RJE) with the

results being delivered back to the DECnet user. This author used an IBM Series/1
minicomputer for just this purpose as in Figure 6.7.

Figure 6.7	 IBM Series/1 (4959), introduced in 1976 and usable as a network gateway between
DECnet and SNA. (Source: Courtesy of Rhode Island Computer Museum, https://www.
ricomputermuseum.org/.)

https://www.ricomputermuseum.org/
https://www.ricomputermuseum.org/

200 Chapter 6 Networking Software

6.1.6.3	 Front-end Processors

One component that was used to manage a computer’s connection to a network

(or networks) was to use a separate computer to manage that connection. This
computer was often called a front-end processor (FEP) or a communications pro­
cessor. Figure 6.8 shows the use of a DEC PDP-11 as a FEP to connect to the MERIT

(Michigan Educational Research Information Triad) network at the University of
Michigan’s Computer Center in 1982. These FEPs would help to buffer traffic han­
dle errors and manage the connection to the network, much like a router or switch

would do today. MERIT was an early network proposed in 1968 and continued to

be involved in the evolution of the network including participating in NSFNET.

6.1.7 Packet Networking and Internetworking
Two concepts were central to the evolution of the Internet and its associated

protocols. Those concepts are packet networking and internetworking. Packet net­
working involves splitting data communication into separate units, called packets.
These packets have a header and a termination. Packet networking was very dif­
ferent from what was provided by telephone companies, which was a dedicated

circuit connection between two points–on the same model as a phone call. Various

Figure 6.8 A front-end processor (MM-16) to communicate to a DEC PDP-11 for the MERIT network
at University of Michigan in 1982. (Source: Courtesy of MERIT Network.)

6.2 Networking Protocols 201

inventors contributed to the development of packet-based networking including

Baran at Bolt Beranek & Newman, Kleinrock at the University of California at Los
Angeles, and Davies at the National Physical Laboratory in the United Kingdom.10

The concept of packet switching allows the routing of those packets to be inde­
pendent of each other and to use the best available route to deliver the packet.
Internetworking is a concept developed to make it easier to connect disparate

networks. The concept formed while trying to connect local area networks over
a wide-area network. The term catenet was used by Pouzin in 1974.11 This was even­
tually replaced by the term internet to represent the connection of multiple packet
networks.

6.2 Networking Protocols
Networking has been driven by the availability of networking hardware and the

development of protocols. Networking and networking software are heavily depen­
dent on having standard ways of sending information between nodes on the

network. These nodes are often built on different hardware and using different
operating systems, which makes the use of well-defined protocols even more criti­
cal. Additionally, once a protocol is in place devices using that protocol often need

to be supported through the transition to newer versions of that protocol or to

new protocols. As a result, many of the protocols and software that implements
those protocols also has a high amount of inertia. Newer devices often support
older protocols in order to make that transition to new protocols practical.

Network protocols tend to be organized in a couple of ways. First there are

vendor-specific protocols. Second there are open protocols such as those from

ISO and TCP/IP. The various layers of these protocols are then related to their lay­
ers in the ISO 7-layer model (discussed below). For an example see this chart at
http://i.imgur.com/MZHN3.gif or otherwise search for a “network protocol chart.”
Some charts will include other data protocols such as from telecommunications
and others focus on more computer-centric standards.

6.2.1 OSI 7-Layer Reference Model
The ISO OSI 7-layer model12 is used as a conceptual model for layering network

protocols. In the late 1970s the model was developed as a combination of one

10. Note that there is controversy around the contributions of each of these inventors, though all
were definitely involved and contributed to the development of the ideas and technologies used.

11. See “A Proposal for Interconnecting Packet Switching Networks,” L. Pouzin, Proceedings of
EUROCOMP, Brunel University, May 1974, pp. 1023-36.

12. Charles Bachman, mostly known for his work on database systems, is also credited (and

noted in Bachman’s oral history interview at http://ethw.org/Oral-History:Charles_Bachman)
with adding a layer to the 6-layer IBM Systems Network Architecture (SNA) while creating the

http://i.imgur.com/MZHN3.gif
http://ethw.org/Oral-History:Charles_Bachman

202 Chapter 6 Networking Software

from the International Telegraph and Telephone Consultative Committee (CCITT,
which eventually became the International Telecommunications Union, ITU) and

ISO. These two models were merged in 1983 to form the Basic Reference model for
OSI. This model has seven layers with the idea being that each higher layer uses
only the layer below and serves only the layer above it. Additionally, different pro­
tocols can be used at each layer if different functionality is needed at that layer. The

layers starting at the lowest, hardware layer are, in order:

1. Physical layer: transmission and reception of raw bits

2. Data link: reliable transmission of data between two nodes

3. Network: addressing and routing of data between a network of nodes

4. Transport: reliable transmission of a data across network

5. Session: managing communication sessions

6. Presentation: translation of data between the network and the application

7. Application: high-level networking applications such as resource sharing

Note that few networks strictly adhere to this model but it is used to show where

network functionality is implemented. Most networking hierarchies (or “stacks”)
roughly follow this model, though even TCP/IP does not strictly follow this model. A

new protocol will often be mapped to these layers, as in network protocol reference

charts.

6.3 Getting to TCP/IP
The process of getting to TCP/IP from a number of proprietary and other networks
was relatively complicated. It involved the transition to packet-based networking as
well as the displacement of a number of older network protocols. It also involved

the creation of a number of research networks including ARPANET, along with two

in Europe: France’s CYCLADES and the National Physical Laboratory Network in

the United Kingdom. ARPANET began in 1969 and was well-funded by the US fed­
eral government along with a number of other ARPA projects such as Stanford

Research Institute’s Augmentation Research Center Lab (Englebart), Shakey the

Robot (Nilsson), and other artificial intelligence research. There was also a lot of
trepidation in moving from what had become relatively reliable networks to using

Honeywell Distributed Network Architecture that modeled the same layers as the OSI 7-layer
reference model.

6.3.1

6.3.2

6.3 Getting to TCP/IP 203

TCP/IP and ARPANET. A good example of this is a quote from Robert Metcalfe from

the 1972 International Conference on Computer Communications:13

They gave me the job of escorting ten AT&T vice-presidents around. So I
was demoing the system, and for the only time in that whole show, the TIP

crashed. The only time. It went down for about ten or twenty seconds. It
finally came back up again. We reestablished connection and it never went
down again. But this was a very enlightening moment for me because when I
looked up, you know, they were happy that it crashed. They made no point of
hiding their joy. Because this confirmed for them that circuit switching was
better and more reliable than packet switching, which was flaky and would

never work. And I had been working on this for two or three years, and it
really pissed me off.

It wasn’t until the mid- to late-1980s that TCP/IP began to replace legacy network

protocols and then not until the 1990s and 2000s that TCP/IP began to replace the

legacy protocols in the telecommunications network. That transition is still not
complete and many legacy protocols still run. As an example, there still exist many
wired phones that are not using TCP/IP (i.e., Voice over IP, VoIP), but the high-speed

backbone telecommunications networks are largely TCP/IP.

UUCPNET
Besides the Internet and proprietary networks, there were also other data net­
works. An example is UUCPNET, which was the network of computers connected

using UNIX-to-UNIX Copy (uucp). UUCPNET was used to relay email beginning in

1978 and was released as part of the UNIX® operating system by Bell Labs in 1979.
So, email and news could be exchanged between hosts on UUCPNET. Email on

UUCPNET used a “bang path” notation. Such as “...ihnp4!ihlpa!tracy” would give

a routing path for forwarding email to my account on the computer called “ihlpa”
and routing through computer “ihnp4.” So, “ihnp4” had to be well known enough

for other systems to know how to reach it. Systems were set up to send email from

UUCPNET to the Internet using Internet-aware gateways that were also connected

to UUCPNET, such as at some universities.

ARPANET
As noted above, the ARPANET started being developed in 1969 with the awarding

of the contract to Bolt Beranek & Newman. The evolution of the ARPANET to what

13. See http://www.historyofcomputercommunications.info/Book/BookIndex.html, chapter 4,
which gives more details of the demo and the conference.

http://www.historyofcomputercommunications.info/Book/BookIndex.html

204 Chapter 6 Networking Software

Figure 6.9	 The topological map for the ARPANET in 1973. (Source: Image courtesy of the Charles
Babbage Institute Archives, University of Minnesota Libraries, Minneapolis. (John Day
Papers).)

has since become the global Internet is well-documented in works such as Abbate

[2000]. See Figure 6.9 for a diagram of the ARPANET nodes and their connections
in 1973. Of interest in this text is this network also gives a good idea of those doing

computer science research in 1973 and the centers of activity.

6.4 Network Software and Applications
Networking protocols, while necessary, are only a part of the story. Data networking

became much more pervasive and useful as applications were built using under­
lying network protocols and developing their own application-level protocols and

applications. This section describes some of those applications, how broadly they
were used, and their impact on later applications. Network applications software

added to the value of connecting to the network for users and organizations. As a

6.4.1

6.4.2

6.4 Network Software and Applications 205

result, the development of additional network applications helped to increase the

use of computers as well as the network.

Electronic Bulletin Board Systems
Electronic bulletin board systems14 (BBS) were first created in the 1970s as a way
for hobbyists to share information via dial-up systems. These began as local sys­
tems that could be connected to via dial-up modems in a particular region, but
over time became networked and were able to share messages between users. In

the United States, these were placed in regions where a BBS’s users could place a

free local call to the BBS. This made it cheap for its users to use frequently as well
as BBS operators could charge for the service. This was well before public Inter­
net access was available, which was why they were able to attract enough users to

actually have profitable businesses. These systems were largely limited to text and

using slow modems such as 110 baud (running at 110 bps). Demand was such that
even public, pay-per-use terminals were put in some communities such as “Com­
munity Memory,” which was a terminal connected to a BBS put in several locations
in Berkeley, CA, in 1973 (see Figure 6.10).

Networks for BBSs, such as FidoNet, became a way for content to be shared

around the world between BBSs.

Email
Email has long been a tool used to send messages between users on a computer
system. The first known large scale message system is the AUTODIN network that
was used by the US General Services Administration (GSA) on 2,500 terminals in

1962. MIT’s CTSS operating system also provided a “MAIL” system for inter-user
messaging in 1965. Sending email messages over a data network was first done

in 1971 by Ray Tomlinson and documented on BBN’s site at https://ds.bbn.com/
tomlinso/ray/firstemailframe.html. After this, other network email systems were

developed, including one for UUCPNET as described above in 1978. The PLATO

system (in PLATO IV) developed a note-passing system in 1974.15

14. See https://archive.org/details/BBS.The.Documentary for an excellent documentary on BBS

from their birth to their demise with the consumer availability of the Internet.

15. The PLATO system was an early system design for online education and originated in the early
1960s at the University of Illinois. By the 1970s it could support over a thousand simultaneous
users. See http://platohistory.org/.

https://ds.bbn.com/tomlinso/ray/firstemailframe.html
https://ds.bbn.com/tomlinso/ray/firstemailframe.html
https://archive.org/details/BBS.The.Documentary
http://platohistory.org/

206 Chapter 6 Networking Software

Figure 6.10	 Community memory, public terminal for BBS in Berkeley, CA, 1975. (Source: Mark
Richards. Courtesy of the Computer History Museum.)

6.4.3 The WELL
The WELL (http://well.com) began in 1985 as a dial-up BBS and stands for Whole

Earth ‘Lectronic Link, in reference to the Whole Earth Catalog. It is a paid mem­
bership model and still operating. It’s an interesting example of community build­
ing on the Internet. Stewart Brand (one of the founders) and his impact on

Cyberculture is described in Turner [2008] and inspired Krol [1992].

6.4.4 Usenet and NetNews
Usenet developed as a news and communication service on top of UUCPNET. The

intent was to be able to develop subscribe-and-read content that was of interest
to users. Much of the content was technical in nature but also included lots of

http://well.com

6.4.5

6.4.6

6.4 Network Software and Applications 207

other topics where users could share opinions and questions. News was divided

into a hierarchical set of categories such as comp.ai, which represented the artifi­
cial intelligence news group within the computing news area. Additional categories
could be added that were more specific such as comp.ai.prolog for sharing interests
about the Prolog programming language. NetNews established many of the pro­
tocols and traditions (like emoticons) for online communication. In many ways,
NetNews was similar to a BBS in the way that information was relayed between

sites and users.

FTP Archives
As the Internet grew, one of the significant stores of content became File Trans­
fer Protocol (FTP) archives. These archives held files that could be shared across
the Internet and were vital stores of information before other methods such as the

WWW and web search engines became popular. For example, users could use the

FTP protocol to connect to an archive such as ftp.wustl.edu16 to download free com­
puter games for their personal computer. However, they did have to know that the

archive existed, how to connect to it, what they were looking for, and where it was on

the archive. In the late 1980s and pre-WWW this was how many files were shared

and proliferated. Most of these sites allowed anonymous access to the archives,
sometimes requesting your email address as the password, but were otherwise

open to anyone on the Internet. The Internet Archive holds copies of many FTP

sites at https://archive.org/details/ftpsites.

Gopher, Archie, and Veronica
The Gopher protocol (appropriately developed at the University of Minnesota—

the gopher is their mascot) was designed to search and retrieve documents over
the Internet. It was a menu-based system, first developed in 1991. It was text-based

but provided many of the same sorts of abilities that the WWW would provide a

couple of years later in organizing content. Gopher used the Wide Area Informa­
tion Server (WAIS) as its base for searching documents. Services called Archie and

Veronica were developed as search engines for Gopher. One could easily argue that
Gopher could have easily become the basis of the WWW rather than Berners-Lee’s
Hypertext Transfer Protocol (HTTP) if it had included graphics earlier and been

more freely disseminated.

16. Referred to the ftp archive at Washington University in St. Louis, a large archive that no longer
exists.

https://archive.org/details/ftpsites

208 Chapter 6 Networking Software

6.4.7

6.4.8

World Wide Web
In 1989, when Tim Berners-Lee was creating the concept of the WWW, it was in the

context of supporting the sharing of physics research done at CERN and around

the world using the Internet. Additionally, this was also the time that personal
computers were becoming commonplace, Internet service providers were becom­
ing common, and telephone modems were reaching speeds where simple graphics
could be downloaded. As a result, when more publicly available versions of web

browsers became available in 1993 (i.e., in particular, Mosaic from the National
Center for Supercomputing Applications, NCSA, at the University of Illinois at
Urbana-Champaign), it took off like wildfire. The Mosaic web browser’s simpler
interface made it possible for users to easily access web pages containing graph­
ics. So, while there were earlier services providing similar functionality (such as
Gopher), the WWW took off with being able to provide interesting content (espe­
cially graphics) with an interface that was simpler and accessible via the data

rates supported by ISPs over dial-up modems.17 As users clambered onto the Inter­
net, websites proliferated and the demand for faster data access speeds increased

the incentive to produce faster modems. These modems quickly reached near the

Shannon Limit for data channel capacity.18

Network Operating Systems
In order to make early networks more useful, a number of so-called network oper­
ating systems were developed to make it easier to perform higher level functions
over a local area network. This included features such as file sharing, print spool­
ing, and email. Many of these were widely used such as Banyan VINES and Novell
NetWare. Apple’s AppleTalk network included a number of features to make the

AppleTalk network easier to use that were also in the same spirit.
Here we will explore Banyan VINES (Virtual Integrated Network Service) as an

example of this class of network software. Banyan VINES was developed to be used

specifically with AT&T’s UNIX System V operating system by Banyan Systems. It was
first introduced in 1984 and used a low-level protocol called VIP (VINES Internet­
work Protocol). VINES included a set of routing algorithms to help route and con­
trol network traffic. It provided a number of network features that would become

standard Internet features, such as address resolution and a control protocol for
error messages.

17. Data speeds for modems in 1992 were getting better as the quality of phone lines improved as
well as modems. Speeds of 28.8Kb/s were becoming common in 1994.

18. The Shannon Limit defines how many bits can be transmitted over a particular bandwidth

channel. See https://www.youtube.com/watch?v=Wq1-Iq9Vm28 for a video about the Shannon

Limit.

https://www.youtube.com/watch?v=Wq1-Iq9Vm28

6.6 NCSA httpd and Apache Web Server 209

VINES, as most network operating systems did, provided a number of high-
level services over the network. These included file services, print services, and

a directory service.
As the Internet matured and the WWW drove usage to the Internet, the need

for the services provided by Banyan VINES (as well as other network operating

systems) declined as the Internet was able to provide the same kind of services
in a non-proprietary environment. Similar Internet-based services (such as email)
became the de facto standard for these sorts of services.

6.5 Case Study: Minitel
The Minitel system was a very successful videotex online service that was first
deployed in 1980 (see Mailland and Driscoll [2017]). The service was deployed

to millions of French homes and provided services such as telephone directory
searching, stock price checking, email inbox, chat capabilities, and the ability
to make reservations and purchases. The system was officially retired by France

Telecom in 2012. See this French video advertisement of Minitel in 1988: https://
youtu.be/Xl2MFGI2i40.

The Minitel was built on a packet data network called TRANSPAC that was based

on the X.25 protocol. The TRANSPAC network was developed by the French PTT

(Post, Telephone and Telegraph) and influenced by the earlier French PTT RCP

experimental network. RCP was virtual circuit-based and influenced the X.25 stan­
dard. The French CYCLADES research network was based on datagram packets,
much like the ARPANET. CYCLADES was demonstrated in 1973. TRANSPAC started

operation in 1978 with Minitel being a service added a couple of years later.
The model was to lend the Minitel terminal (called “Teletel”) without charge to

telephone subscribers and by not providing a printed telephone directory, thereby
saving the cost of printing it. The system required use of a modem and was text
based but became very popular. Many other countries tried to replicate France’s
success but were largely unsuccessful for a variety of reasons, including compet­
ing services such as BBS and the emergence of dial-up Internet service providers.
Some argue that the success of the Minitel system slowed the deployment of the

WWW in France, but one could also argue that it prepared a large percentage of
the French population for using online data services.

6.6 NCSA httpd and Apache Web Server
The NCSA at the University of Illinois built a freely available web server shortly after
Tim Berners-Lee’s server became available. The NCSA httpd (Hypertext Transfer
Protocol Daemon) was initially written by Rob McCool at NCSA and quickly became

popular and widely deployed in 1993 and 1994. As a result, it was instrumental in

https://youtu.be/Xl2MFGI2i40
https://youtu.be/Xl2MFGI2i40

210 Chapter 6 Networking Software

making practical web server software available. The NCSA took up the project and

continued to work on it up until 1995, when the Apache Foundation took over the

project as the Apache Web Server, which quickly replaced the NCSA versions of the

system as the Apache Foundation continued to add desirable features to the server
that gave web servers additional features and better performance. The 1.51 version

of the NCSA httpd can be found at GitHub.19 The decode_request function from

the http_request.c shows how an HTTP request is decoded.
HTTPd is described by the UNIX manual page from October 1995 as:

is the NCSA HTTPd (HyperText Transfer Protocol daemon) server. The server
may be invoked by the Internet daemon inetd(1M) each time a connection

to the HTTP service is made, or alternatively it may run as a daemon. As a

result, each connection to the server would run as a separate httpd process. A

web server with lots of requests would result in many httpd processes being

spawned.

The overall source code, written in C, often appears to be hastily written and full
of ifdef ’s to support various architectures and tools. This bit of code (see Listing 6.1)
also uses strcpy and strcmp (rather than the more secure strncpy and strncmp) which

was common at the time.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

/ * decode request ()
* given an HTTP request l i n e as a s t r i ng , decodes i t in to

* METHOD URL?ARGS PROTOCAL

* Then c a l l s g e t h t t p h e a d e r s () to get the r f c 8 2 2 s t y l e headers
* /
void decode request (p er re q u es t * reqInfo , char * request)
{

char * p r o t oc a l ;
char *method , * u r l ;
char *chp ;

/ * e x t r a c t the method * /
method = s t r t o k (request , ” \ t ”) ;
i f (method) {

i f ((reqInfo −>method = MapMethod (method)) == M INVALID)
die (reqInfo , SC BAD REQUEST , ” I n v a l i d or unsupported method .

”) ;
}
e l s e

die (reqInfo , SC BAD REQUEST , ” I n v a l i d or unsupported method . ”) ;

19. See https://github.com/TooDumbForAName/ncsa-httpd.

https://github.com/TooDumbForAName/ncsa-httpd

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

6.6 NCSA httpd and Apache Web Server 211

/ * e x t r a c t the URL, and args i f present * /
u r l = s t r t o k (NULL, ” \ t \ r ”) ;
i f (! u r l) die (reqInfo , SC BAD REQUEST , ” Incomplete request . ”) ;
i f (u r l && (chp = s t r c h r (url , ’ ? ’))) {

*chp++ = ’ \ 0 ’ ;
s t r c p y (reqInfo −>args , chp) ;

}
s t r c p y (reqInfo −>url , u r l) ;

p r o t oc a l = s t r t o k (NULL, ” \ r ”) ;

i f (! p ro t o ca l) {
reqInfo −>h t t p v e r s i o n = P HTTP 0 9 ;

}
e l s e {

/ * On an HTTP / 1 . 0 or HTTP / 1 . 1 request , respond with 1 . 0 * /
i f (! strcmp (protocal , p r o t o c a l s [P HTTP 1 0]))

reqInfo −>h t t p v e r s i o n = P HTTP 1 0 ;
e l s e i f (! strcmp (protocal , p r o t o c a l s [P HTTP 1 1]))

reqInfo −>h t t p v e r s i o n = P HTTP 1 0 ;
e l s e i f (! strcasecmp (protocal , p r o t o c a l s [P SHTTP 1 1]))

reqInfo −>h t t p v e r s i o n = P SHTTP 1 1 ;
e l s e i f (! strcasecmp (protocal , p r o t o c a l s [P SHTTP 1 2]))

reqInfo −>h t t p v e r s i o n = P SHTTP 1 2 ;
e l s e reqInfo −>h t t p v e r s i o n = P OTHER ;

/ * dummy c a l l to e at LF at end of p r o to c a l * /
s t r t o k (NULL, ” \ n”) ;
g e t h t t p h e a d e r s (reqInfo) ;

}

Listing 6.1 NCSA httpd decode_request function from version 1.5.1 from 1995.

With the Apache Web Server project, a number of organizations contributed

to the code and re-organized it to be more maintainable as well as contributing

substantial effort to making sure the web server was useful. The following code

from the 1995 version of the Apache Web Server 1.0.0 shows the substantial re­
organization of the code and use of a better structure to accomplish much the

same purpose as the snip-it of code given above for the NCSA httpd.20 Note that
it does use parsing techniques rather than just comparing strings (some of which

is contained in other parts of the Apache Web Server code).

20. This code is still available through the Apache Web Server project on github.com at https://
github.com/apache/httpd/tree/1.3/APACHE_1_0_0/src.

https://github.com/apache/httpd/tree/1.3/APACHE_1_0_0/src
https://github.com/apache/httpd/tree/1.3/APACHE_1_0_0/src

5

10

15

20

25

30

35

40

212 Chapter 6 Networking Software

1

2

3

4

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

26

27

28

29

31

32

33

34

36

37

38

39

41

42

43

44

r e q u e s t r e c * r e a d request (conn rec *conn)
{

r e q u e s t r e c * r = (r e q u e s t r e c *) p c a l l o c (conn−>pool , s i z e o f (
r e q u e s t r e c)) ;

r−>connection = conn ;
r−>s e r v e r = conn−>s e r v e r ;
r−>pool = conn−>pool ;

r−>headers in = make table (r−>pool , 5 0) ;
r−>subprocess env = make table (r−>pool , 50) ;
r−>headers out = make table (r−>pool , 5) ;
r−>e r r h e a d e r s o u t = make table (r−>pool , 5) ;
r−>notes = make table (r−>pool , 5) ;

r−>r e q u e s t c o n f i g = c r e a t e r e q u e s t c o n f i g (r−>pool) ;
r−>p e r d i r c o n f i g = r−>ser ve r −>lo ok u p d e fau l t s ; / * For now . * /

r−>b y t e s s e n t = −1;

r−>s t a t u s = 20 0; /* U n t i l f u r t h e r n ot ic e .
* Only changed by die () , or (ble tch !)
* s c a n s c r i p t h e a d e r . . .
* /

/ * Get the request . . . * /

hard timeout (” read ” , r) ;
i f (! r e a d r e q u e s t l i n e (r)) retu rn NULL ;
i f (! r−>assbackwards) get mime headers (r) ;
k i l l t i m e o u t (r) ;

i f (! strcmp (r−>method , ”HEAD”)) {
r−>header only = 1 ;
r−>method number = M GET ;

}
e l s e i f (! strcmp (r−>method , ”GET”))

r−>method number = M GET ;
e l s e i f (! strcmp (r−>method , ”POST”))

r−>method number = M POST ;
e l s e i f (! strcmp (r−>method , ”PUT”))

r−>method number = M PUT ;
e l s e i f (! strcmp (r−>method , ”DELETE”))

r−>method number = M DELETE ;
e l s e

6.7 Networking Influences 213

45

46

47

48

r−>method number = M INVALID ; / * Will e v e n t u a l l y croak . * /

return r ;
}

Listing 6.2 Apache Web Server httpd read_request function from file http_protocol.c, version 1.0.0.

The Apache Web Server project continued to evolve the web server, becoming

an exemplar open-source project that eventually produced a stable web server that
was heavily used for over a decade and continues to be used today. The open-source

nature of the project is well described by Kelty [2008] and Raymond [1999], where

the distributed nature of the project was both a blessing and a curse, particularly
when the Apache Web Server needed to be re-architected to be able to scale to

support a large number of simultaneous connections.
The NCSA httpd and the Apache Web Server were an important project to help

make the WWW a reality. Besides their core role in providing key web components,
the Apache Web Server project became an example for how organizations could col­
laborate on open-source software projects. In addition, by looking at the source

code for these projects, one can see that it was often done quickly and needed

to support a wide variety of different computer operating systems and underly­
ing instruction sets. While this software went through many modifications, it still
had a number of design assumptions that pervaded through many versions of the

Apache Web Server, which continues to power a large number of web servers. As
noted in many places in the source code, there are many places where multiple ver­
sions of the HTTP protocol need to be supported concurrently and often the code to

support those old versions of protocols remains in these systems even after active

use of the protocol disappears, which can leave additional security vulnerabilities.

6.7 Networking Infiuences
Many factors have influenced the change of data networking over time, as exhib­
ited in Figure 6.11. As computers proliferated, it became clear that data networking

between these computers was beneficial. This “network effect” became encoded

as Metcalfe’s Law, named after Robert Metcalfe, an inventor of Ethernet. While cast
in terms of the number of connected devices at the time, this concept has also

been applied to the possible communications between users of a network. The

term network effect is also used in business to indicate the value of a project or ser­
vice increasing with its number of users. Metcalfe’s Law states that the number
of possible connections between devices on the network increases proportionally
with the square of the number of devices. So, as the number of computers and com­
puter users grew, so did the possible value of establishing a network. Much of the

214 Chapter 6 Networking Software

Figure 6.11 Some influences that have affected the direction of data networking.

Internet’s value is because of the high number of connected computers, devices,
and people.

Other factors that have influenced the use of data networking include factors
such as the personalization of computing. These increased the number of comput­
ers and people quickly realized that their value would be increased if applications
and data could be shared with other computers and users of those computers. Sym­
biotically, people began to use and depend on services over the network as more

network services were built. Services such as email, file-sharing, and the ability to

perform transactions increased the value of networking to computer users. These

network services in turn increased the value of connecting to the network, as well
as stimulated the purchase of personal computers. Over time, these services have

changed the way people work and helped support team work across the globe.
Networking protocols and related standards were critical in achieving and

increasing the use of networks. Without a standard way of connecting, each con­
nection required customized programming and standards began to make it pos­
sible to connect a wide variety of computers to a single network. Standards at
a minimum made the building of large data networks quicker than would have

occurred without standards.

6.8 Lessons Learned from Networking Software
Networking software has different characteristics from other areas of software that
yield different lessons from other types of software. In order to be most effective

and useful, networking software includes more communicating parties and ben­
efits from the network effect (as you might expect). The network effect in essence

says that the value of a product or service increases according to the number of
parties (endpoints, nodes, or users) using it. So, network software becomes very
entrenched as a result of being used by many parties and cannot be removed until
all those parties quit using it. This not only keeps existing protocols and other

6.9 Exercises and Projects 215

network software in place for long periods of time, it often results in newer net­
work software continuing to support the older protocols to ease the transition to

newer protocols, standards, and techniques. Furthermore, even when use of a par­
ticular protocol or standard is effectively zero, it’s often not worth removing that
support for the older protocol or standard. This can result in these old protocols,
standards, and techniques being extant in modern software and increasing the

attack surface for possible security attacks. Some other lessons from networking

software include:

∙ Timing and the speed of light are important.

The variance in networks’ speeds has made it clear that network protocols
need to be able to support this wide variance in speeds and the ability to

throttle and cache network traffic has become critical to making distributed

systems function properly. Additionally, as networks expanded around the

world, the fundamental limit of the speed of light has been a limiting fac­
tor of performance. While the speed of light allows light to travel (approxi­
mately) 7.5 times around the world in 1 second, that still means that it takes
over 100ms to get to the other side of the world, which becomes a limiting fac­
tor for many applications. In practice, that limitation is more than 100ms due

to network data being translated, passing through devices such as routers
and switches, as well being translated between light and electricity.

∙ Errors are unpreventable.

While errors occur in all types of software, with networking software they
cannot be completely eliminated as data in transit can be affected by all kinds
of interference, errors in devices, failure of transmission lines, and many
other types of errors. As a result, networking software has internalized the

ability to deal with errors and to still provide reliable transmission (as in the

Transmission Control Protocol, TCP, among many other protocols).

∙ Protocols are critical to coordination.

Without network protocols that define what messages are sent and what are

valid responses, data networking would be very difficult. This notion of using

protocols to define communication has been used by other areas of software

as well, such as security protocols and higher-level application protocols.

6.9 Exercises and Projects

6.9.1 Exercises
1. The TCP and IP protocols do not map directly onto the ISO OSI 7-layer Refer­
ence model, published in 1984 as the ISO 7498 standard. Explain how TCP and

216 Chapter 6 Networking Software

IP don’t map directly to this model. Why did it not matter much for TCP/IP

to map to the ISO 7498 standard in 1984? Would a direct mapping have eased

the later convergence of telecom and data networking?

2. Investigate AX.25 (amateur radio packet data standard). Is it still used by ama­
teur radio operators? How is it different from the X.25 protocol on which

it is based? A good place to start is Brian Kantor’s paper, “A Brief Look at
Internet Networking over Amateur Radio,” July 2011, http://www.ampr.org/
wp-content/uploads/brieflook.pdf.

3. Find an example Minitel application. How did that application work? Was it
a good fit for a Minitel application or were there better options at the time

the application was created?

4. Many cities have attempted to install citywide Wi-Fi networks but most of
these networks have not survived. Find a city that has attempted to install
such a citywide network that failed. Explain why it failed in this case and

whether citywide Wi-Fi will likely be tried again.

5. Investigate the features of Gopher’s search engines of Archie, Jughead, and

Veronica. How do they compare to the features of early WWW search engines
such as Lycos and WebCrawler? Did the Gopher search engines influence web

search engine approaches and techniques?

6. Another network operating system was Novell NetWare. Compare the fea­
tures in Novell NetWare with those of Banyan VINES. Also detail the changes
in Novell NetWare and why it survived longer than Banyan VINES.

7. Investigate the use of an argument for a network effect in Theodore Vale’s
arguments for building a nationwide telephone network for AT&T in the early
1900s. Find an example where AT&T made the argument that the more users
on the network, the more valuable it would be. Did this take the numerical
form (proportional to the square of users) that Metcalfe’s Law took?

8. A surviving remnant of network operating systems are directory services
such as Active Directory by Microsoft and Novell’s NetWare Directory
Services. Examine the roots of directory services in network operating

systems and explain why that service has survived while others (such as
email) provided by network operating systems have not.

9. Investigate the Wireless Application Protocol (WAP) and how it was used as a

base for data applications over a cellular network. Why was another protocol
necessary at the time? What has effectively replaced WAP? Does a modern

iPhone or Android phone still support WAP?

http://www.ampr.org/wp-content/uploads/brieflook.pdf
http://www.ampr.org/wp-content/uploads/brieflook.pdf

6.9.2

6.9 Exercises and Projects 217

10. Networking protocols are often difficult to completely eliminate due to the

nature of their usage (connecting many devices to one another). Take a look

at the Asynchronous Transfer Mode (ATM) protocol and examine its past and

current usage. Is ATM still in use? Where? Why?

11. Find out more about the fixed wireless system called Motorola Canopy
that was developed to provide wireless Internet service and competes with

WiMAX and cellular data. Why was this alternative developed? Is it still in

use?

12. The Digital Enhanced Cordless Telecommunications (DECT) standard was
developed to create cordless telephone systems in homes and businesses.
DECT was a widely used standard in Europe, but in the United States other
standards such as the 900MHz and the 2.5GHz standards were more preva­
lent for cordless telephones. With DECT, DECT Packet Radio Services (DPRS)
were also developed. Find out why DPRS was not more successful and

speculate (or better yet, find evidence) as to why it failed.

13. Find the first Request for Comment (RFC) for FTP and compare that to the

current FTP specification. What changed? What has remained the same?

14. The GOPHER protocol was popular during its time and is an early method

for organizing and finding information on the Internet. Examine why the

GOPHER protocol did not become the basis for the WWW.

15. It seems highly unlikely that a new camp would form in data networking such

as those we discussed: computer, telecommunications, radio, and TV. Recall
that a new “camp” developed its own technologies, perhaps in distinct ways
from the other camps and based on different fundamental requirements.

Do you agree that it’s highly unlikely? Explain why or why not.

16. The current drive to replace IPv4 with IPv6 has been driven by the need for
more IP addresses. Do you expect that there will be a new set of protocols
that replace TCP and IPv6 at some point in the future? If so, explain what
sort of drivers there would be to such a change and what constraints there

would be on its deployment.

If not, explain the resilience of IP and TCP to change and how it can

withstand drastic changes in other technologies.

Projects
1. Investigate the rise and fall of Integrated Services Digital Network (ISDN).
Write a paper that discusses how ISDN originated, how it was used, why it

218 Chapter 6 Networking Software

became popular, and what has displaced it. Describe the plans for evolving

ISDN to higher bandwidth services and why those didn’t happen as planned.
See Stallings [1992] for background information on ISDN.

2. Review John Day’s 2012 talk21 where he argues about some of the design flaws
of the TCP/IP protocols. In that talk he discusses some protocol changes that
would help the Internet perform better and scale better. Can any of those

changes ever happen (he argues “no”) anytime soon? What would have to

happen to replace the base protocols of the Internet? Will that happen?

3. Find the code for a Wireless Application Protocol (WAP) application and

explain how it worked. Compare that code to a modern application’s code

built for a similar use. What has remained the same? What has changed?

4. The consolidation of cellular wireless networks took many years as well
as being a difficult technical challenge. Investigate and write a report
detailing how the change from second-generation to third-generation to

fourth-generation cellular networks was achieved. Is the migration to fifth-
generation wireless progressing more easily? Point out the challenges and

roadblocks that occurred (and are occurring) both technically, globally, and

business-wise.

5. Investigate Japan’s iMode cellular data service and how it was different from

other options deployed elsewhere. Write a paper detailing its origination and

demise. Why did Japan develop their own standard and service? How did its
existence make it more difficult for Japan to transition to third-generation

cellular networks?

6. Write a paper about the history of Amateur Radio Digital Communications
(AMPR), which manages AMPRNet, a TCP/IP network for amateur radio.
Investigate how it started, how much and what sort of traffic it supports, and

its current state.

7. Investigate the various contributions of Baran at Bolt Beranek & Newman,
Kleinrock at the University of California at Los Angeles, and Davies at the

National Physical Laboratory in the United Kingdom to packet switching.
Write a paper that details each of their contributions to packet switching and

develop an argument as to who is most responsible for the idea and develop­
ment of packet switching. Include why there is controversy about this topic

21. “How in the Heck do you Lose a Layer,” Future Network Architectures Workshop, University
of Kaiserslautern, Germany, 2012, available at http://rina.tssg.org/docs/JohnDay-LostLayer120306.
pdf.

http://rina.tssg.org/docs/JohnDay-LostLayer120306.pdf
http://rina.tssg.org/docs/JohnDay-LostLayer120306.pdf

6.10 Further Readings and Online Resources 219

and why there is a lack of total clarity on who is most responsible for the

development of packet switching.

8. Investigate the sharing of ideas between IBM’s SNA and the protocols mak­
ing up the Internet. Are there any protocols from SNA that influenced or were

used in the Internet? Document the relationship of SNA to the set of Internet
protocols. Document how IBM responded by modifying SNA because of the

popularity of TCP/IP in the 1980s and 1990s.

9. Investigate the struggle to develop open protocols. That is, those protocols
that can be used without license. Read books such as Russell [2014]. Which

protocols from the ISO OSI set of protocols have survived and why did those

survive while others did not become as popular and widely used? Why has
it been difficult to create useful but open networking protocols? What can

doom such an attempt to failure? What makes an attempt successful? Detail
an example of a successful new open protocol.

6.10 Further Readings and Online Resources
An excellent book that describes early data communications is Holzmann and

Pehrson [2003] up to the time of the telegraph. Another short book that briefly
describes modern communication history is IEEE Communications Society [2002],
which focuses on events since 1952 and includes a number of oral histories from

notable participants. An interesting perspective of the scope of the Bell System in

the United States is provided by Bell Laboratories [1977], with a history from an

AT&T Bell System perspective in Millman [1984]. Russell [2014] provides a thorough

description of the emergence of open network standards and the interrelation­
ship between telecommunications standards and those developed for computer
data networking. A large collection of resources related to network history can be

found in Hook and Norman [2002]. More specific books on the Internet include

Abbate [2000], which describes the history behind the Internet’s development,
with books such as Hafner and Lyon [1998] providing a more popular version. An

unpublished history discussing the impact of Usenet with the Internet is Hauben

and Hauben [1997]. Krol [1992] describes the resources available on the Internet
in 1992 and provides a glimpse of the culture around the emerging popularity of
computing and the Internet. A set of networking and computing milestones is pro­
vided in Moschovitis et al. [1999]. Pelkey [2019] provides a compilation of computer
communications technologies in the context of business needs and evolution.

7by many applications that were being built. With the advent of more online stor­
age such as IBM’s 305 RAMAC1 system in 1956 (see Figure 7.1), systems that relied

on data became more feasible. By the 1960s, ways to efficiently store, change,
and report on data took the form of file systems that evolved into what became

known as database management systems (DBMSs). These DBMSs took several dif­
ferent architectural approaches that will be discussed in this chapter. By the 1980s,
the relational approach began to take hold, and by the 1990s, became the most
common database architecture.

The amount of online file storage available to systems has increased at an

incredible pace since the first online systems. Online files are those that can be

immediately referenced and used without human intervention. In the early 1960s,
systems able to access files of thousands of millions of bits (gigabits or 100s of
megabytes) were considered very large [Martin 1977, p. 3]. By the early 1970s, the

largest systems were able to access files of hundreds of thousands of millions of
bits (100s of gigabits or 10s of gigabytes). By the early 1980s, larger systems were able

to access tens of millions of millions of bits (10s of terabits or terabytes). This expo­
nential growth trend of increased online file capacity has continued to increase

by a factor of about 100 every decade, with systems in the 2010s exceeding hun­
dreds of terabytes and moving well into petabyte and exabyte territory. Databases

Database Management
Systems

The management of data is key to the development of any modern, large-scale

system. But that wasn’t always the case during the history of computing as early
computers focused on numerical problem solving and didn’t have direct access
to a lot of online data. As computer systems became larger and more widely avail­
able, it was clear that a reliable way to store, change, and report on data was needed

1. RAMAC stood for “Random Access Method of Accounting and Control.” The 305 RAMAC sys­
tem (see Figure 7.1) came with the IBM 350 disk storage unit that could store about 3.75 megabytes
(5 million 6-bit characters).

222 Chapter 7 Database Management Systems

Figure 7.1	 The IBM 350 disk storage unit stored 5 million 6-bit characters in 1956. Note the actual
disk platters are in the back right and were visible though the window. (Source: Courtesy
of International Business Machines Corporation, ©International Business Machines
Corporation.)

have had an interesting history that directly influences how systems perform,
their reliability, and their scale. This chapter describes how databases evolved

from varying approaches to largely consolidate on the relational data model and

the widely used Structured Query Language (SQL). Databases also evolved dur­
ing a time when standardization via the Conference/Committee on Data Systems
Languages (CODASYL) was active and influential, having established the COBOL

programming language standard previously.

7.1 Overview of Database Systems and Their Evolution
The early drivers and objectives of DBMSs are described in the March 1976 issue of
ACM’s Computing Surveys (see Fry and Sibley [1976, p. 8]) as having the following

objectives:

∙	 to make an integrated collection of data available to a wide variety of users;

∙	 to provide for quality and integrity of the data;

∙	 to insure retention of privacy through security measures within the system;
and

7.1 Overview of Database Systems and Their Evolution 223

∙	 to allow centralized control of the data base, which is necessary for efficient
data administration.

These objectives show that more than an indexed filesystem was needed in

order to achieve these objectives. In fact, all four of these objectives were at a higher
level than filesystems and provided enhanced services to those needing access to

the data in the database.2

Another key objective of DBMSs is that of data independence. The notion of data

independence (as in Fry and Sibley [1976]) is two-fold:

1.	 Physical data independence where the programs that access the data are

relatively independent of the storage or access methods, and

2.	 Logical data independence where the programs that access the data are rela­
tively independent of logical changes to the database.

File systems and some early database systems had not been independent from

the physical data storage methods and equipment, often so that they could per­
form adequately for the time. Having that tight dependency made it possible for
those systems to maximize their performance and minimize response time for the

particular data transactions they needed to support for a given application. So,
making them more independent was at the cost of system performance. Similar
to the development of programming languages’ compilers, the performance cost
of a DBMS had to be small enough to make the level of abstraction added by a

DBMS worthwhile.
These notions of data independence are other hallmarks of what makes a

database distinct from the underlying storage, the access methods, as well as
the logical structure of the data. The intent of all these objectives was to make

data more usable and maintainable by creating a system whose purpose was to

manage data. These objectives are still at the core of what makes a DBMS, with

additional notions becoming more explicit such as the support for database con­
sistency through the use of transactions. These transactions are groups of database

actions such that the database is valid before any of the actions and valid after all
the actions have completed. So, if a transaction is only partially completed, then

the database “rolls back” to the state before the transaction started.
To get a high-level picture of how databases have evolved, see Figure 7.2. In the

1950s, needs increased for data to be stored and retrieved as well as relatively afford­
able devices to be able to store large amounts of data.3 So, many different efforts

2. Note that “database” was often spelled differently, particularly in the early days of databases,
such as “data-base” or “data base.” Both of these latter versions were used in Fry and Sibley [1976].

3. Note that “large” here meant in the megabytes range.

224 Chapter 7 Database Management Systems

0102000207910691 1980 1990

Flat files

Indexed file systems

Network databases (IDMS)

Hierarchical databases (IMS)

System R

(IBM)

Relational databases
Database

Machines

Codd’s

paper on

RDBMS

Chen’s

paper on \

E-R

diagrams

Object databases

Current

Legacy

PDA Databases
PC Databases
Data Warehousing

Data Warehousing

machines

Data Mining

Unstructured DBs

Logic DBs

In-memory DBs

Multi-media DBs

Geographical Info Sys (GIS)

Human Genome DB

M
a
s
s

S
to

ra
g
e

A
ffo

rd
a
b
le

Integrated

Data Store

(GE)

Figure 7.2 A high-level overview of databases over time.

evolved to support the storage and retrieval of data that is called “flat files” here.
“Flat files” was a general term used to describe files that had very little inherent
structure and therefore were “flat.” These eventually converged to three models of
database systems that all had internal structuring of the data and different ways of
organizing data. These were the following:

∙	 Hierarchical databases that structured data with a tree-like structure and was
exemplified by the very successful IBM product, Information Management
System, usually abbreviated as IMS.

∙	 Network databases that structured data with sets used to collect records and

was exemplified by the product IDMS first produced at B.F. Goodrich.

7.1 Overview of Database Systems and Their Evolution 225

∙	 Inverted file systems structured data using indexes built to speed up retrieval
of data. One of the successful products in this space was Adabas (Software

AG).

The intent of the dashed lines is to show that there is still usage of these legacy
technologies, while the solid lines represent production usage for new systems
during that time.

The next major shift came in the 1980s as relational databases began to become

practical, particularly in terms of performance. Relational databases were based on

a table interface that was intended to allow any query to be run, independent of the

underlying data storage methods. E.F. Codd wrote his seminal paper on relational
DBMSs in 1970, along with another paper written by P. Chen on entity-relationship

data modeling that drove the desire for real, operational systems. IBM’s System

R was a research system based on Codd’s relational model that showed such sys­
tems could be developed. As those systems improved in performance, they began

to take off in the 1980s and are still the basis of most databases used in applica­
tions today. During the early part of relational database systems, there was also a

short period of time when expensive database machines were developed to help

make relational technology perform at the needed levels. These died out as rela­
tional database technology improved. Object databases (or just object bases) that
store objects as created by object-oriented programming languages such as C++

and Smalltalk had a brief run, but now most relational database system have cre­
ated facilities to store more complex data items including Binary Large OBjects
(BLOBs) and object-like features. So, pure object-oriented databases are rarely used

for modern applications. On the lower half of Figure 7.2 are a set of database-
related technologies that show some of the diversity of database technologies that
have been created, largely in the context of relational database technologies. They
are not meant (by any means) to be all-inclusive of the technologies that have

evolved. These are described below to give a flavor for the varied types of database

technologies:

∙	 PDA databases: Personal digital assistant (PDA) databases were specially
designed databased to allow PDA applications to store data locally. These

have evolved into small DBMSs such as SQLite that runs on smartphones
and other smaller devices.

∙	 PC databases: Personal computer (PC) databases were initially developed

largely independently of larger system DBMSs. Databases such as FoxPro

(Fox Software) and dBase (Ashton-Tate) were developed in the early 1980s and

served to help in building PC applications.

226 Chapter 7 Database Management Systems

∙	 Data warehousing and data warehousing machines: As the number of
databases grew in a particular organization, there was more demand to use

that data together to better understand what was occurring in the organi­
zation. So, data warehouses were built in varying models to support that
integration of data across multiple origin databases in order to do that type

of analysis.

∙	 Data mining: Data mining is a technique that grew from trying to extract
interesting patterns from large datasets, such as data warehouses. There are

a wide variety of techniques for doing this including statistical, visual, and

machine learning-based techniques.

∙	 Unstructured DBs/NoSQL: As the amount of unstructured data continued to

grow with web data and traffic and the need to handle data not structured in

tables, such as eXtensible Markup Language (XML), database systems were

developed to handle this data. The re-emergence of non-relational databases
in the 1990s have been generically called “NoSQL” databases, meaning they
did not use SQL as their query language. Many of these now also support
SQL, which has altered the meaning of NoSQL from “no SQL” to “not only
SQL.”

∙	 Deductive databases: As the need to store knowledge grew, several deductive

databases were developed to be able to use logical inference to reason about
the knowledge it contained. One of the most popular query languages for
deductive databases is Datalog, which uses Prolog-like syntax.

∙	 In-memory databases: In-memory databases use main memory rather than

disk storage as the primary home for the database, making it much faster.
This has increasingly become economically feasible as the costs of memory
have declined, thereby making it possible to store the entire database in main

memory. These databases usually still support transactional concepts and

other core, database concepts.

∙	 Geographical Information Systems (GIS) and spatial databases: Some appli­
cation areas, such as GIS, have developed database systems to meet their
specialized needs. With GIS systems, one need is to represent topographi­
cal data and to do queries related to spatial information (where objects are

in space) in an efficient manner. Spatial databases have developed a number
of techniques to optimize spatial queries.

∙	 Genome database: An example of a database created to help drive re­
search and information dissemination about human and other organisms’
genomes is the genome database. One such database is housed at the US

7.2 Early Database History 227

National Institutes of Health’s (NIH) National Center for Biotechnology
Information website: https://www.ncbi.nlm.nih.gov/genome/. This database

is optimized to make it easier to find information about any particular part of
a genome and to share that data. While this database relies on other database

technology, it has developed a number of mechanisms specific to the prob­
lem of sharing genetic information and for matching genetic sequences to

those in the genome database.

These types of databases and DBMSs are intended to be illustrative of the types
and how database systems developed to meet more specialized needs. From the

above, one can see that the capabilities of the system have driven some special­
ized databases (like PDA databases). Others have been driven by the needs of the

user base (like GISs and genome databases), and others are driven by performance,
such as in-memory databases. Fundamentally new functionality has driven some

of these changes, such as with object bases and deductive databases.
In summary, database technology has gone through a formative period, which

is detailed in the next section, followed by several competing types (hierarchical,
inverted file, and network) that were then largely replaced by relational technolo­
gies. Since that coalescence into relational technology, we have had several other
technologies that build on relational database technology, while others diverge

from some relational principles (such as NoSQL databases).

7.2 Early Database History
Several technologies contributed to the development of DBMSs. These include

the development of data definition languages in some of the earliest systems, the

development of report generators, and the developing of indexing and file system

technologies.

7.2.1 Data Definition Languages
The intent of data definition languages was to begin to abstract the layout and

access of data from the physical devices and layout on storage media. The abil­
ity for programmers to access data by name and not to have to re-define the

structure of the data for every program led to efforts to build data definition

languages.
One of the first data definition languages was COMPOOL (COMmunications

POOL), which was developed for the SAGE air defense system by RAND, System

Development Corporation, and MIT Lincoln Laboratory. COMPOOL was a set of
common data that had a dictionary of shared data names, locations, and defini­
tions. COMPOOL was included in the JOVIAL programming language (Jule’s Own

https://www.ncbi.nlm.nih.gov/genome/

228 Chapter 7 Database Management Systems

Version of International Algebraic Language4). From the JOVIAL perspective, it
freed the programmer from having to find data items and they could just reference

them by name, as this segment from Cheatham [1978] shows how one could ref­
erence “ITEM” in COMPOOL using assembly language instructions in a JOVIAL

program (see Listing 7.1):

1 CLA ITEM

2 ETR ITEM

3 POS ITEM

Listing 7.1 SAGE COMPOOL ITEM definitions.

This sequence (see Listing 7.1) first moves ITEM to the accumulator, then ANDs
it with a mask, and finally positions the least significant bit to be rightmost. So,
ITEM’s value ends up in the accumulator, without the program having to find it
and load it from wherever it might be stored.

COBOL was also defined to have an explicit DATA DIVISION that was used to

separate the data definition from the rest of the COBOL program and was included

as part of the CODASYL definition of COBOL.
Additional work was done by CODASYL with the Stored-Data Definition and

Translation Task Group in 1969 and work continued to formalize data definition

models over time. Around the same time methods of systems analysis began to

use data definition techniques to define system requirements into the 1970s and

1980s.

7.2.2 Report Generator Systems
Getting data out of these systems became a common problem, so report genera­
tors were developed to make that task easier and to automate some of the work

that was needed. Writing a program to produce a report using only a program­
ming language would result in having to possibly process large volumes of data

that processes each input line, processes the buffer and interprets the internal for­
mats, and outputs the appropriate values to an output device. A report generator
could generate a report by performing complex data transformations and produce

usable reports by automating the process and using a relatively simple command

input file.
Fry and Sibley [1976] categorizes this set of systems as the Hanford/RPG family

of early databases and their precursors in Figure 7.3. The “Hanford” comes from

the work done at the Atomic Energy Commission at its Hanford site in Washing­
ton state where General Electric Company created a report generator in 1956 for

4. See Schwartz [1981] for a description of how the “J” was prefixed to OVIAL, “Our Version of the

International Algebraic Language,” as OVIAL sounded to be related to the birth process.

7.2 Early Database History 229

Figure 7.3	 Hanford/RPG family of report generators (from Fry and Sibley [1976, p. 21]). (Source:
James P. Fry and Edgar H. Sibley. 1976. Evolution of data-base management sys­
tems. ACM Comput. Surv. 8, 1 (March 1976), 7–42. DOI: https://doi.org/10.1145/356662.
356664.)

the IBM 702 called “Mark I.” The IBM user group SHARE took these routines and

expanded on them and created routines for the IBM 704 and 709 in 1959. These were

later adapted by IBM to become the RPG (Report Program Generator) series of pro­
gramming languages that were also central to the later class of turn-key5 machines
such as the IBM System/3, System/32, System/34, System/36, System/38, and the

AS400. Notably, this work also feeds into the Integrated Data Store (I-D-S) system at
General Electric, usually considered the first DBMS. Additionally, SHARE’s SURGE

system developed for the IBM 704 contributed to the ideas in the Generalized Infor­
mation Retrieval and Listing System (GIRLS) developed for the IBM 7090 used by
Informatics. The Informatics branch is not included here but is in Fry and Sibley
[1976, p. 23].

5. So called “turn-key” because they were meant to be smaller computers that did not require a lot
of additional programming and included the programs that a small to medium business would

need.

https://doi.org/10.1145/356662.356664
https://doi.org/10.1145/356662.356664

230 Chapter 7 Database Management Systems

7.3 Types and Evolution of Database Systems
This section details some of the efforts and projects related to early database-like

and database systems. It is significant in that a large number of organizations
were working on such systems and that these efforts were interrelated due to data

sharing at conferences and in publications. The large number of organizations
working on this indicate the significance of the data management problem and the

widespread need to have reliable database management capabilities that could be

re-used without tremendous effort.
After the early evolution described above and before the emergence of relational

database systems, three database models were prevalent:

∙	 Hierarchical: See Figure 7.8 and epitomized by the IBM IMS database man­
agement system.

∙	 Network: See Figure 7.7 and epitomized by the IDMS database system (Cul­
linane Database Systems renamed Cullinet in 1983 and purchased by Com­
puter Associates in 1989).

∙	 Inverted File: See Figure 7.9 and eventually epitomized with products such

as Software AG’s Adabas product.

7.3.1 I-D-S: The First DBMS?
As with many new technologies, precisely identifying which is “first” is difficult. At
the time that databases and their DMBSs were being developed, it was becoming

clear that systems like a DBMS would be useful. So, many people and organizations
were involved as noted in the early database history section (Section 7.2).

However, one effort seems to coalesce much of the thinking at the time and is
often called the first DBMS. That one is the I-D-S by Charles Bachman while at Gen­
eral Electric.6 I-D-S was conceived and designed in 1962 with the first running pro­
totypes in the summer of 1963. One of Bachman’s I-D-S drawings is included here

as Figure 7.5, where it displays the basic concepts of a networked database linking

records in a set. From the author’s review of Bachman’s papers, it’s clear that there

was a lot of coordination with SHARE, the IBM user group. Many organizations
were struggling with a similar problem of how to store structured information in a

reliable and high-performance manner. See Figure 7.4 for developments that I-D-S

influenced and how it traveled with Bachman to General Electric. It should also be

6. See “How Charles Bachman invented the DBMS, a foundation of our digital world.” Thomas
Haigh, Commun. ACM, 59, 7, 25–30.

7.3 Types and Evolution of Database Systems 231

Figure 7.4	 Bachman/I-D-S family of DBMS (from Fry and Sibley [1976, p. 23]). (Source: James P. Fry
and Edgar H. Sibley. 1976. Evolution of data-base management systems. ACM Comput.
Surv. 8, 1 (March 1976), 7–42. DOI: https://doi.org/10.1145/356662.356664.)

noted that the reference to “APL” in Figure 7.4 has no relation to the APL program­
ming language (which was also developed on the IBM System/360), but instead to a

system called Associative PL/I developed by General Motors for data management
in a computer-aided design (CAD) environment. Bachman’s I-D-S was heavily influ­
ential in early database thinking and its network data model became central to

the CODASYL data model standardization efforts. See Figure 7.6 for how Bachman

presented the concept of a data base as a bunch of pigeon holes. The CODASYL

DBTG (Data Base Task Group) was a subcommittee of the same body that earlier
developed the COBOL programming language standard. A description of how these

systems evolved and standards were developed is in Haigh [2009]. The network

data model allowed parent records to have multiple child records linked to them,
called “set types” in the CODASYL standard. This model, while flexible, turned out
to be relatively complex to implement and many organizations instead chose to

implement the somewhat simpler hierarchical model championed by IBM. Bach­
man’s I-D-S drove the network model. A relatively popular network-model database

was IDMS (Integrated Data Management System) by Cullinet. Figure 7.7 shows this
relationship of Bachman’s I-D-S to IDMS.

https://doi.org/10.1145/356662.356664

232 Chapter 7 Database Management Systems

Figure 7.5	 This drawing includes showing how the database would be able to access data in
different ways and eventually evolved into the CODASYL data model for network-
model databases. (Source: Image courtesy of the Charles Babbage Institute Archives,
University of Minnesota Libraries, Minneapolis.)

7.3.2 IBM’s IMS and Hierarchical Databases
IBM built on efforts from working on database systems for the Apollo space

program to build a system based on a hierarchical structure for information. This
hierarchical data model was also complex, but was well-supported by IBM and

became popular on IBM systems with the evolution as in Figure 7.8. The GUAM

system was developed for Apollo with DL/1 (Data Language 1), then developed

as a more general-purpose data management system, eventually renamed as IMS

(Information Management System). IMS was widely used for many production

systems and built to leverage IBM’s file system products such as ISAM (Index
Sequential Access Method) and VSAM (Virtual Sequential Access Method).

7.3 Types and Evolution of Database Systems 233

Figure 7.6	 Bachman’s drawing showing the concept of a data base. (Source: Image courtesy of the
Charles Babbage Institute Archives, University of Minnesota Libraries, Minneapolis.)

A well-designed IMS database could perform very well for the purposes for
which it was designed. One of the issues with IMS (and IDMS for that matter) was
that if different purposes for the data were later needed it could be very difficult to

make those perform well as the hierarchical (and network) structure may not fit the

query that was needed or store the relationships between data elements that was
needed. So, the performance of a particular query against the database was highly
dependent on the precise implementation of the data hierarchy (or network).

7.3.3 Inverted File Systems
Inverted file systems were built to find values in records. So one could use a key­
word to find all records that contain that particular keyword. Figure 7.9 shows the

234 Chapter 7 Database Management Systems

Figure 7.7 IDMS/CODASYL Family of DBMS (from Fry and Sibley [1976, p. 26]). (Source: James
P. Fry and Edgar H. Sibley. 1976. Evolution of data-base management systems. ACM
Comput. Surv. 8, 1 (March 1976), 7–42. DOI: https://doi.org/10.1145/356662.356664.)

early years and development of this type of database. Early systems such as Soft­
ware Development Corporation’s (SDC) TDMS development are described in Haigh

[2009]. This type of system continued to be used into the 1980s with systems such as
Adabas, which stood for “adaptable database system.” Adabas still has some use (in

the 2010s) particularly with Software AG’s Natural query language. Adabas is used

for some high-performance applications where relational database features aren’t
needed. As an example, the widely used enterprise resource planning system, SAP,
had an option to use a version of Adabas (Adabas D) called MaxDB.

7.4 Relational DBMSs
Edgar (Ted) F. Codd’s paper on relational database system came out in 1970 [Codd

1970], yet the first products began to come out only in 1979 with INGRES and

https://doi.org/10.1145/356662.356664

7.4 Relational DBMSs 235

Figure 7.8	 IMS family of DBMS (from Fry and Sibley [1976, p. 27]). (Source: James P. Fry and Edgar
H. Sibley. 1976. Evolution of data-base management systems. ACM Comput. Surv. 8, 1
(March 1976), 7–42. DOI: https://doi.org/10.1145/356662.356664.)

Figure 7.9	 Inverted file family of DBMS (from Fry and Sibley [1976, p. 28]). (Source: James P. Fry
and Edgar H. Sibley. 1976. Evolution of data-base management systems. ACM Comput.
Surv. 8, 1 (March 1976), 7–42. DOI: https://doi.org/10.1145/356662.356664.)

Oracle, with IBM also releasing their product based on System R shortly thereafter.
The relational database model described in Codd’s paper was appealing and there

was wide agreement that it was the direction to go. Two major factors made the

relational model different than previous models:

https://doi.org/10.1145/356662.356664
https://doi.org/10.1145/356662.356664

236 Chapter 7 Database Management Systems

Britton-Lee

POSTGRES

Commercial INGRES

Tandem

ESVEL

IBM

System R

1979 1990 2001

SQL/DS

DB2 MVS

DB2 AS400

DB2 UWO

Informix

INGRES

Sybase

Microsoft

Illustra

Figure 7.10	 Commercial server/mainframe RDBMS relationships over time. (Source: 2013 IEEE.
Reprinted, with permission, from A. Mendelsohn. The Oracle story: 1984–2001. In IEEE
Ann. Hist. Comput. 35, 2, 10–23, April–June 2013, DOI: http://dx.doi.org/10.1109/MAHC.
2012.56.)

∙ The separation of the data model from how the data was stored.

∙ Basis of operations and model on a mathematical model (relations).

As relational databases began to be built (see Figure 7.10), Codd felt a need to

clarify what was meant by the relational model and how it should be implemented

in a DBMS. The relational model had taken hold and systems were being developed

that interpreted the model in different ways. Different companies were making

assumptions and having different priorities on what to include in an RDBMS. So,
he developed a list of 13 rules (or 12 + the zeroth rule) defining what it meant to be

relational. As the author of the relational model, E.F. Codd created these rules for
RDBMS in order to refine and coalesce the RDBMS products into a common per­
spective of what it meant to be a RDBMS. For the most part, Codd was successful
in getting most RDBMS products to adhere to most of these rules, often because

customers of these products would evaluate their products using these rules.
Codd’s 13 rules for RDBMS:

∙ Rule 0: The foundation rule

∙ Rule 1: The information rule

∙ Rule 2: The guaranteed access rule

http://dx.doi.org/10.1109/MAHC.2012.56
http://dx.doi.org/10.1109/MAHC.2012.56

7.4.1

7.4 Relational DBMSs 237

∙ Rule 3: Systematic treatment of null values

∙ Rule 4: Dynamic online catalog based on the relational model

∙ Rule 5: The comprehensive data sublanguage rule

∙ Rule 6: The view updating rule

∙ Rule 7: High-level insert, update, and delete

∙ Rule 8: Physical data independence

∙ Rule 9: Logical data independence

∙ Rule 10: Integrity independence

∙ Rule 11: Distribution independence

∙ Rule 12: The non-subversion rule

Codd continued to refine the model and added further details, producing a

“Version 2” of the relational model. During the mid- to late-1990s, OnLine Analyti­
cal Processing (OLAP) systems were becoming popular and again Codd established

a set of rules to define what it meant to be a database system that supported OLAP.7

Relational databases continue today to be the primary database architecture used,
though over time extensions have been added to the relational model to support
objects and other data types.

SQL Standardization
The now standardized query language for relational databases was not the only
choice as mainstream relational databases took shape in the late 1970s. As noted

in Figure 7.10, there were two primary RDBMS products built at around the same

time: IBM’s System R (see Chamberlin et al. [1981]) and University of California­
Berkeley’s INGRES (see Stonebraker [1980]). The evolution of SQL is detailed in

Deutsch [2013]. The CODASYL network database standard was not applicable to

relational databases, though some of the terms established there such as data

manipulation language (DML) and data definition language (DDL) were also used

in the context of relational database query language standards.
In Figure 7.11 the relationships between the various relational query languages

are given. Two mathematical models were the basis for competing relational query
languages.8 The models are relational calculus and relational algebra. Relational

7. OLAP systems were systems built to do analysis and were often de-normalized so that queries
involving large subsets of the data would run efficiently. This term was meant to distinguish such

systems from OnLine Transaction Processing (OLTP) systems, which focused on serving users
adding, changing, and removing data with individual transactions.

8. These two models are essentially equivalent in power as per what is called Codd’s Theorem.

238 Chapter 7 Database Management Systems

Figure 7.11 Relational query languages and their influences on each other.

calculus9 focuses on characterizing what the result of the query is and is thereby
more declarative in nature. Relational algebra specifies operations on relations and

specifies how to get the result, making it more procedural in nature. Two major
query languages were produced, one for System R and another for INGRES. SQL

was created for System R, which has a basis more in relational algebra and can be

translated to relational algebra. However, SQL was created to not directly be based

on relational algebra and is more declarative than relational algebra due to this
abstraction.10 So System R could choose an execution plan for how to execute the

query. INGRES produced a language called QUEL, which was based on relational

9. There are actually two varieties of relational calculus. One is tuple relational calculus and the

other is domain relational calculus.

10. Interestingly, Codd, the creator of the relational model who worked for IBM, is said to have

preferred relational calculus over a relational algebra-based query language.

7.5 System R: Sample Code 239

calculus and specified the characteristics of the result rather than how to produce

the result.11

As described in Deutsch [2013], these two competing relational query languages
were the basis of determining a standard query language. When Oracle created the

first commercial implementation of SQL (IBM’s System R was a proof of concept,
rather than a product at that point), this supported the case for SQL becoming

the standard. Even though QUEL had considerable support on the standardiza­
tion committee [Deutsch 2013, p. 73], no one from the INGRES project participated

on the committee so QUEL was never seriously considered by the standardization

committee. The committee took the SQL language from System R as the base and

then made it more orthogonal, intuitive, and symmetric.
Another method for querying relational databases was Zloof’s Query-by-

Example (QBE), which used a method of specifying constraints and values to get
the data that you wanted to retrieve. QBE (see Zloof [1975]) is used (usually in con­
junction with SQL) in some systems today, such as Microsoft’s Access database

product.

7.5 System R: Sample Code
IBM’s System R was developed to show the feasibility of the relational model and

it’s hard to argue that it wasn’t widely successful at doing that. While not strictly
the first relational system built, it was highly influential and stimulated the indus­
try. System R implemented a number of new features including query optimization

and a recovery manager. Query optimization was critical to show that the relational
model could have usable query performance. Since System R implements SQL,
when an SQL statement was interpreted and translated to searching an actual table,
a query plan could be created that would decide what order to perform the relational
operations as there are several different ways that a query can be implemented and

that order can have a large impact on the performance of the query. One example is
the code from System R that was used to process SQL WHERE clauses and written

by Pat (Griffiths) Selinger.
This code is well-documented and written in PL/I. The following snip-it

(Listing 7.2) are the leading comments for this file (XWHERE.PLIOPT).12 It’s not

11. QUEL was based on a language suggested by Codd called Data Sub-Language ALPHA, defined

in Codd [1971].

12. Note that this code was acquired from the Computer History Museum in line with their
agreement with IBM and is actual code from the 1977 version of System R.

240 Chapter 7 Database Management Systems

surprising that System R was written in PL/I, given its use as a systems program­
ming language at the time and the importance of PL/I at IBM as a programming

language.
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23
24
25
26
27
28
29
30

/* 0 4 / 1 3 / 7 7 PPG MMA */ XWH00010
/* 5 / 4 / 7 7 DON’ T PRINT %INCLUDES */ XWH00020
XWH00030
/* XWHERE I S THE PROCEDURE WHICH EXAMINES THE WHERE PREDICATE XWH00040
TREE . ON THE FIRST PASS IT COLLECTS COLUMN NAMES, PUSHES XWH00050
NOT NODES DOWN THROUGH BOOLEAN NODES AND XWH00060
(EVENTUALLY) REMOVES NOTNODES IF ALL PREDICATES BELOW THEM XWH00070
ARE SARGABLE (COMPATIBLE WITH THE ’COL COMPOP LIT ’ FORMAT) . XWH00080
ALSO ON THE FIRST PASS , IF ONLY ONE SIDE OF A PREDICATE HAS XWH00090
A COLUMN, THEN WE WILL PUT IT IN THE LHS OF THE RELATIONAL XWH00100
OPERATOR AND ADJUST THAT OPERATOR ACCORDINGLY . (> BECOMES XWH00110
< , ETC .) . ON THE SECOND PASS , XWHERE PROPAGATES DATA TYPES XWH00120
AND SPECLENS IN THE PREDICATES , TESTS FOR DNF STATE , AND XWH00130
FINDS BT ’ S AND ENTERS THEM INTO BTARRAY . A BT IS A XWH00140
PREDICATE OR A SUBTREE HEADED BY AN ORNODE AND MUST BE XWH00150
THE WHERE TREE ROOT OR MUST BE CONNECTED TO THE ROOT ONLY XWH00160
BY ANDNODES AND MUST BE SARGABLE . XWH00170
A PREDICATE BT MAY BE REPLACED BY AN ACCESS XWH00180
PATH SELECTION . A BT THAT IS IN DNF MAY BE XWH00190
REPLACED BY SEARCH ARGUMENTS. A BT THAT I S NOT IN XWH00200
DNF MAY SOME DAY BE PUT INTO DNF AND REPLACED BY SEARCH XWH00210
ARGUMENTS. XWH00220
XWH00230
XWHERE MARKS THE NODES AS FOLLOWS : XWH00240
BOOLEAN P1 INDEX OF PARENT NODE XWH00250
P2 NUMBER OF NODES BELOW, INCLUDING THIS ONE XWH00260
NOTNODE P1 INDEX OF PARENT NODE XWH00270
PREDICATE P1 1 IF SARGABLE , ELSE 0 XWH00280
P2 NUMBER OF NODES XWH00290
XWH00300

Listing 7.2	 Comments about query optimization PL/I code for WHERE clause in SQL for IBM
System R.

In the above comments (Listing 7.2) for this file that process SQL WHERE

clauses, it is described how the code parts of the WHERE are disassembled. Later
in the code (Listing 7.3), we have the following snip-it of PL/I code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

IF ¬FIRSTPASS THEN XWH01670
IF P4=ANDCODE THEN NEWANDONLY=ANDONLY ; XWH01680
ELSE NEWANDONLY= ’ 0 ’B ; XWH01690

CALL XWHERE(P3 , NODEIND, OPPTR , FIRSTPASS ,NEWANDONLY, LEFTSARGABLE , XWH01700
LEFTDNF , LORCHILD, NLEFTNODES, STACKINDS , BQPTR ,CHKMODE, XWH01710
RUNTIMEMODE, CURSEXECMODE, AUTHID) ; XWH01720

TESTCODE ; XWH01730
IF OPTLEVEL > 2 THEN XWH01740
DISPLAY (’RETURNED FROM XWHERE CALL ON LHS WITH LSARG= ’ XWH01750

| | LEFTSARGABLE) ; XWH01760
CALL XWHERE(P5 , NODEIND, OPPTR , FIRSTPASS ,NEWANDONLY, RIGHTSARGABLE , XWH01770

RIGHTDNF, RORCHILD, NRIGHTNODES, STACKINDS , BQPTR ,CHKMODE, XWH01780
RUNTIMEMODE, CURSEXECMODE, AUTHID) ; XWH01790

TESTCODE ; XWH01800
IF OPTLEVEL> 2 THEN XWH01810
DISPLAY (’RETURNED FROM XWHERE ON RHS WITH RSARG= ’ | | XWH01820

RIGHTSARGABLE) ; XWH01830
SARGABLE=LEFTSARGABLE & RIGHTSARGABLE ; XWH01840
IF ¬FIRSTPASS THEN XWH01850
DO; XWH01860

P2 , XWH01870
NUMNODES = NLEFTNODES + NRIGHTNODES + 1 ; XWH01880
IF NLEFTNODES > NRIGHTNODES THEN XWH01890
DO; XWH01900

XWH01910
/* INTERCHANGE LEFT AND RIGHT TO PUT SIMPLER PREDICATES XWH01920

ON LEFT*/ XWH01930
XWH01940

TEMPIND = P3 ; XWH01950
P3 = P5 ; XWH01960
P5 = TEMPIND ; XWH01970

END /* OF INTERCHANGE */ ; XWH01980
DNFFLAG=LEFTDNF & RIGHTDNF ; XWH01990
IF P4=ANDCODE THEN DNFFLAG=DNFFLAG & ¬LORCHILD & ¬ RORCHILD ; XWH02000
IF P4=ORCODE THEN ORCHILD= ’ 1 ’B ; XWH02010
ELSE ORCHILD= ’ 0 ’B ; XWH02020
IF P4=ORCODE & ANDONLY & SARGABLE THEN XWH02030

/* ENTER INTO BTARRAY */ XWH02040

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

7.6 Factors Affecting Change of Database Software 241

CALL XFILBT (NODEIND, PARIND , OPPTR , DNFFLAG , ORTREEKIND , XWH02050
’ 0 ’B , /* CORRELATION NOT APPLICABLE */ XWH02060
NT, STACKINDS , BQPTR , BTTABIND) ; XWH02070

END ; /* ¬FIRSTPASS */ XWH02080
RETURN ; XWH02090

END; /* BOOLEANNODE */ XWH02100
XWH02110

ELSE IF NT=NOTNODE THEN XWH02120
DO; XWH02130

IF OPTLEVEL>2 THEN DISPLAY (’XWHERE FOUND NOTNODE ’) ; XWH02140
/* TEST */ XWH02150
IF P5=0 THEN XWH02160
DO; XWH02170

CALL XSYSTEM (PNAME,−101,−901, ’ ’) ; XWH02180
GOTO QUIT ; XWH02190

END; XWH02200
/* ENDTEST */

Listing 7.3 Query optimization PL/I code snip-it for WHERE clause in SQL for IBM System R.

In this segment of the code we can see efforts to simplify the clauses by re­
arranging predicates included in the WHERE clause, such as from lines 26–32

where predicates are swapped. This code also goes through multiple passes and

has options for different levels of optimization.

7.6 Factors Affecting Change of Database Software
As a highly practical need, DBMSs grew from a common system requirement: stor­
ing, accessing, and storing data. Exactly how this could best be done has evolved

over time, partially because of the increasing power of computers and data stor­
age systems. This was only one factor that contributes to how database systems
have changed (see Figure 7.12). Early systems tried a number of different ways of
structuring the data and its access including hierarchical, network, and inverted

file data models. Given the speed of systems at that time, these models were able

to provide acceptable performance for specific applications. When the relational
data model was proposed in 1970 by Codd, the data model was cleanly separated

from the physical implementation and allowed for many different uses of the

same database. Over time, relational databases have improved in performance,
now mostly obviating the need for a data model more closely tied to the physi­
cal data storage. Other influences that have changed database technology include

the types of items being stored. When databases were needed to store objects in

support of object-oriented programming languages, special database systems were

built to store those objects (sometimes called object bases). Other examples include

the storage of semi-structured data, such as the storage of XML files and other
data that has a flexible format. Very large objects such as video and audio files will
often also use a different type of database. Being a practical technology, DBMSs
have been driven by projects that have a need for such technology. Projects such

as those at General Motors that wanted to store CAD files or the Apollo project’s
need to store data helped drive the improvement of database software. Perfor­
mance of database systems has always been (and continues to be) a concern for

242 Chapter 7 Database Management Systems

Database Systems

Data Models and

Trends

Data Types

Needed

Performance

Machine

Capabilities

& Power

Large Project

Needs

Figure 7.12 Factors influencing change in database systems.

database systems. Performance was an issue for early relational database systems
and slowed their adoption until the performance could be addressed. Similarly,
performance has also been a driver for the use of de-normalized data and NoSQL

databases. Database technology was driven by a practical need to store and man­
age data and thus industry and computer manufacturers drove the development
of database technology. However, significant advances have come from theoretical
advances in database technology such as optimization, data storage technologies,
and data models.

7.7 Lessons Learned from Database Software
Lessons from databases that have had a broad impact on other types of software

include the following:

∙ Data abstraction and program maintainability.

Perhaps the biggest lesson from database software has been the importance

of abstraction to enhance program maintainability. Abstracting a program

from the details of how the data is stored has freed the program from having

to be changed every time we change the way data is stored. Even in the days
of SAGE’s use of COMPOOL, it was important to alleviate the program from

having to know all the details of data storage. Over time, this abstraction

has become a core feature of DBMSs by presenting a logical view of the data

rather than requiring programs to know anything about the physical storage

of that data.

7.8 Exercises and Projects 243

Presenting a logical view or abstraction of a part of the system that may
change has become a core way to design software systems that are more

maintainable than they otherwise would be.

∙ Atomic transactions.

The need to keep the data consistent drove the all-or-nothing approach to

bundling a set of data operations into transactions. This idea is used in

other systems where there is a need to bundle a set of actions so that an

intervening failure doesn’t leave the system in an unwanted or unstable

state.

∙ Need for system applications.

When Bachman wrote I-D-S, it was not a common practice by any means to

have a system application that was distinct from the operating system and

application programs. As he describes in a talk he gave at the Computer His­
tory Museum,13 he was working on an application and over time realized that
many applications could re-use this system application, which became the

concept of a DBMS. This layering of system applications has since become

common with many such system applications that are used by many appli­
cation programs. Other examples include web servers, email servers, and

network-based services.

7.8 Exercises and Projects

7.8.1 Exercises
1. As stated at the beginning of this chapter, online file sizes for real systems
has historically grown by a factor of about 100 per decade. This was derived

from data in Martin [1977, p. 3] and knowledge of database systems since

his data (1980s onward). Is such rapid growth sustainable? What factors will
inhibit the growth of the size of databases? What do you predict the size of
the largest systems will be in 20 years? A hundred years?

2. Helping to enable database systems to grow in size has been the drop in the

cost of storing information online. The amount of data that can be stored

per dollar has increased exponentially due to reduction in the cost of storage

technology as well as many other factors. Determine a rough range in bits
that can be stored for a dollar since the year 2000. How has this trend changed

13. See https://www.youtube.com/watch?v=iDVsNqFEkB0 for the talk he gave in 2002 at the

Computer History Museum.

https://www.youtube.com/watch?v=iDVsNqFEkB0

244 Chapter 7 Database Management Systems

when compared to the earlier years such as in Martin [1977, p. 4]?14 If there’s
a change in the trend, what is causing this change?

3. DBMSs tend to have a long life time of use due to their embedded nature

in the systems that are built around them. Examine the usage of the Fox-
Pro database, a PC DBMS that evolved over a number of versions. Find out
when the last version was delivered and see if you can find any running appli­
cations that still use FoxPro. Are there good reasons for these applications
not to use FoxPro? If so, explain what the reasons are. Are there reasons to

migrate from using FoxPro? If so, explain those reasons.

4. One of Codd’s relational rules that many vendors did not implement to

Codd’s satisfaction was Rule 3: Systematic treatment of null values. Find out
why vendors often did not precisely follow this rule and whether it is still an

issue today.

5. Handheld devices have often had databases developed for them to enable

additional applications to be more easily built. One example was Palm, Inc.’s
Palm OS that had a number of databases developed for its PDAs. Investigate

the features of one of these databases developed for PalmOS. Most of these

had so few features they were difficult to call “databases.” Argue whether the

one you found should be called a database or not and why.

6. Databases specifically built for PCs were built with different requirements
from those for large scale systems. Investigate version II of Ashton-Tate’s
dBase software. What features did it have that a large-scale, mainframe rela­
tional DBMS such as Informix did not have at the time? What features did

Informix have that dBase II did not have? Explain why and how dBase could

still be successful.

7. There have been several attempts to integrate the storage of knowledge in

support of artificial intelligence systems with database systems. The intent
of such systems has been to leverage the efficiency that drove the creation

and enhancement of databases and to make it easier to store and access
knowledge. One of these efforts was known as Expert Database Systems and

was prevalent in the early 1990s. The idea was to use the data in a database

to help make inferences and to support the rule-driven nature of an expert
system. Investigate and explain why Expert Database Systems have fallen out
of mainstream use.

14. Martin stated that in the 1960s one could store tens of thousands of bits for a dollar and in the

1970s that had increased to about 100 million bits per dollar.

7.8.2

7.8 Exercises and Projects 245

8. Find out about the TDMS (time-shared data management system) database

system that was built by Systems Development Corporation for the IBM

System/360 in 1969. Describe as much as you can find about why it was cre­
ated. It used an inverted file type of database model. Speculate (or better,
find data) as to why inverted file type databases did not survive long past the

1970s.

9. ISAM continues to survive in various forms, such as MySQL’s MyISAM.
Explain why ISAM has survived so long.

10. Investigate the INGRES RDBMS’s use of QBE. Explore the use of QBE in

Microsoft Access in its query interface. Describe what parts were kept in the

Access interface and what parts were not. Are there any of the missing parts
of the INGRES QBE that might be helpful to Access’s interface? If so, explain

a missing QBE feature and how it might be useful for the Access interface.

11. We discussed a number of different database models including hierarchi­
cal, network, relational, inverted file, object, multidimensional, and NoSQL.
While there has been occasional stability of the model used (like relational
was used for a long time and continues to be at the core of many DBMSs),
there has been a continuing drive for changes to the data model.

Identify at least two factors that impact the change of data models underly­
ing database systems and give examples of how these factors have affected

change.

Projects
1. Find out more about General Motors’ project (called Associative PL/I or
APL15) that created an early system for CAD and included several database

concepts. Find out what those concepts were and how they compared to

Bachman’s I-D-S system. Associative PL/I was presented at the AFIPS Fall
Joint Computer Conference in 1966 with a paper called “APL–A language

for associative data handling in PL/I,” by Dodd. Find this paper and write

a paper comparing APL to I-D-S and its database-related concepts. Bachman

and Williams had presented a paper at the same conference two years earlier
(1964) with a paper called “A general purpose programming system for ran­
dom access memories.” In your paper describe how the concepts presented

were related and what was different. Include what concepts in APL survived

to modern database systems and which did not.

2. Investigate and compare the evolution and history of DBMSs specifically to

support large data warehouses. Examples include Teradata and Red Brick

15. Not to be confused with the APL programming language.

246 Chapter 7 Database Management Systems

(now IBM). These DBMSs often support features such as drill-up/drill-down,
summarization of data, and sometimes used de-normalized data. Their focus
is on analysis rather than operational transactions and the kind of sup­
port they provide is sometimes called On-Line Analytical Processing (OLAP).
Relay how these evolved and why these evolved as a separate software sys­
tem from relational database systems. That is, why weren’t normal relational
DBMSs good enough for this purpose?

3. Many forms of database data modeling have been proposed and gotten some

traction such as Chen’s Entity–Relationship (ER) modeling and Hammer
and McLeod’s Semantic Object Model. Find more of these data models and

compare their characteristics as well as their motivations. Explain why ER

modeling has been successful and the difficultly of other models to replace it.

4. One could argue that DBMS features are migrated to smaller classes of com­
puters, just like operating systems’ features have been migrated to smaller
classes of computing over time. Find data to show (or disprove) that DBMS

features are migrated to smaller classes of computers over time. Look at
features such as multi-user support, support for advanced relational fea­
tures, database types (like initial support of relational), optimization tech­
niques, analysis features, and object support. Produce a report that shows
your results of this analysis.

5. One of the arguments alluded to in this chapter was that the use of databases
using a network or hierarchical model were almost necessary for the time

in which they were used. This was because of the computing power avail­
able and the need to tune the system to specific use cases. The chapter also

alludes to the fact that this slowed the adoption of relational databases until
their performance could rival that of earlier database systems. Find data to

support this argument and write an in-depth paper that shows how prere­
lational data models were optimized to the system capabilities of the time.
Also, give evidence and examples for how performance was a key issue in

replacing legacy databases with the relational model.

6. MUMPS (Massachusetts General Hospital Utility Multi-Programming Sys­
tem) was first developed in the mid-1960s and supported hierarchical data

storage as part of the language. MUMPS (sometimes called just “M”) was
widely adopted, particularly in the medical community. MUMPS was devel­
oped with portability as a goal and many versions were developed along

with an ANSI standard. MUMPS requires a separate data schema. Describe

the hierarchical data storage used by MUMPS and compare it with the

structured, hierarchical database from IBM’s IMS. Also explain why MUMPS

7.9 Further Readings and Online Resources 247

has survived so long. Compare Ruby on Rails to MUMPS and how it
approached a similar integration of database functionality with the program­
ming language.

7. During the early years of relational DBMSs, it was difficult to get sufficient
performance for many applications. As a result, a market developed for
database machines, which were specialized hardware devices built to house

relational databases. Investigate the vendors that provided such database

machines in the 1980s and 1990s. Show how they delivered better perfor­
mance than was available on general purpose computers and how and when

these types of database engines went out of fashion. Compare this to the

more recent database machines being built as special-purpose hardware to

support databases such as Oracle’s Exadata database machine. Are there par­
allels between what happened in the 1980s and 1990s? Is it the same drivers
that are driving these newer database machines?

8. In Fry and Sibley [1976] they also discuss a family of early database systems
they call the “Formatted File/GIS” family. This set of systems was mostly
derived from uses in the US federal government. Explore this family of sys­
tems and how it was different from other contemporary systems. The Gen­
eralized Information System (GIS) was developed as an IBM product for the

System/360 and many of these systems were used by the intelligence com­
munity. Explore this family of systems and describe their varying features in

a report. Include how these systems influenced later systems, particularly in

the defense and intelligence community.

9. In Fry and Sibley [1976] they also discuss a family of early database systems
called the “Postly/Mark IV” family. This set of systems was exemplified by
the Informatics16 company and their Mark IV product, which was the first
software product to have cumulative sales over $10 million. Investigate the

Mark IV product, its uses, and how its technology was different from contem­
porary database systems. A good reference to begin is Bauer [1996]. Write a

report that analyzes the Mark IV system and explain the technology involved.
Explain any unique features that might be valuable for modern-day DBMS

systems.

7.9 Further Readings and Online Resources
Fry and Sibley [1976] provides a detailed history of DBMSs from their earliest begin­
nings that shows the evolution from various file system technologies into network,

16. Note that the term “informatics” has since become widely used in a number of other contexts
since this company existed.

248 Chapter 7 Database Management Systems

hierarchical, and inverted file type DBMSs. Stonebraker [1988] has a number of
important papers in database history, a number of which have been cited in this
chapter. Haigh [2009] details the formation of DBMSs through the 1950s and 1960s.
Chamberlin et al. [1981] details the history of IBM’s System R RDBMS and Har­
ris and Nicol [2013] gives an overview of how IBM’s System R evolved into IBM’s
SQL/DS RDBMS. Grier [2012] provides context on the formation of the relational
database and information system concepts, particularly in the context of infor­
mation retrieval systems. IBM’s RDBMS story is further explored from the DB2

perspective in Haderle and Saracco [2013]. The story of the Informix DBMS is told

by the founder in Sippl [2013]. The story of Sybase is well told by one of its founders
in Epstein [2013]. The early days of the INGRES DBMS are discussed by its founder
in Stonebraker [1980]. How SQL became a standard is relayed from the National
Bureau of Standards (NBS) point of view in Deutsch [2013].

Early database textbooks also contain information regarding early database

systems, such as Date [1975], Martin [1977], and Ullman [1980].

8
and affect future software systems. In addition, the development of software has
had persistent challenges such as the development of bug-free, highly available,
highly scalable, secure, and safe software systems. Several of these challenges are

explored here as well in the context of examples that we’ve seen in earlier chapters.

Software Futures and
Overall Trends

Software has been affected by long-running trends, many of which are explored in

this chapter. Software has some unique characteristics as a technology that help

support these trends such as the ability to abstract and build on existing software

by building an interface, building adapters to interconnect existing systems, and to

encapsulate it in a virtual machine. These sort of characteristics are likely to persist

8.1 Overview of Software History
While software began being specific to a particular computer and of direct use only
on that machine, most modern software is built and runnable on a wide variety of
different computing platforms. In large part, this ability comes from the stabil­
ity of lower levels of software, many of which we’ve discussed in earlier chapters,
such as operating systems, databases, and networking. With the definition and

de facto- or explicit-standardization of these lower software layers, other software

can depend on a relatively stable base that doesn’t radically change. When each

vendor’s operating system was very different from every other vendor’s operating

system, it was difficult to write higher level software that was portable to machines
of a different type. Similarly with early networking software, beginning with many
distinct, proprietary networks, it was a barrier to porting or selling software across
different computing platforms. Databases also went through a similar standardiza­
tion where relational databases became the norm and produced SQL as a standard

query language. This stability of a relatively small number of portable operating

250 Chapter 8 Software Futures and Overall Trends

systems, all using TCP/IP as the networking standard and relational databases,
has produced the ability to create software that could be run on a wide variety of
different hardware. This makes it much more appealing to develop that software

(as more money can often be made and have more impact) and easier to main­
tain. Such stabilization has enabled other efforts, such as open-source software

initiatives, to take hold. While LINUX was a key component to further enable the

open-source movement by completing a full open-source programming environ­
ment, the ability to produce open-source tools for all UNIX variants was previously
enabled by a relatively stable and portable UNIX operating system.1

A trend related to stability is the ability to successfully abstract systems into

multiple layers of abstraction. While abstraction is a feature of programming lan­
guages that allows modularization and improved program structure, abstraction

extends well beyond the programming language level. This ability to build a virtual
component of a software system has been heavily used in a number of systems.
A relatively simple example is a simulator. In this text, we’ve mentioned simula­
tors and emulators that allow for the running of old software such as the Hercules
emulator,2 which allows one to run virtual IBM 370 hardware architecture and then

install software intended for IBM 360/370 machines. This ability has become a

fixture in the way that large systems are built, often using virtual machines that
may be running a simulator or virtual machines. As long as the virtualized system

produces a correct interface to other software, it can be replaced or enhanced with­
out affecting other layers of the system. This virtualization has also been applied

to storage software, networking software, and other many system components.
There’s also work on having virtual data centers that present a large number of
servers, storage, and networking as a bundle that can be managed as a data center
(such as failing over to another, virtual data center).

Partially because of the long-term trends of stabilization (with standardization

and portability) and abstraction, software continues to become more complex and

able to solve more sophisticated problems. Software will continue to become more

complex and be even more integrated with existing software. While there are many
continuing challenges, some of which are described later in this chapter, more

complex problems will continue to be tackled with software.
One of the key concepts that this text relays is that different software domains

have had different influences and patterns of development and evolution. Some

1. There were a number of variants to UNIX, but it was possible to build tools that would compile

across the major varieties relatively easily. That ability was further enabled by standard interface

definitions such as POSIX.

2. See http://www.hercules-390.eu/.

http://www.hercules-390.eu/

8.2 Trends 251

software domains have been heavily influenced by practical, industry needs such

as databases and operating systems. At the same time, some key developments
in those areas have come from academia. In the areas of databases and operat­
ing systems, research contributions such as relational database theory and virtual
memory were initially inspirational. That is, while these two ideas were conceptu­
ally appealing to industry, they took some time to become commonplace due to

factors of performance and cost-effectiveness. Other areas such as artificial intelli­
gence have been largely driven by academic research until relatively recently. This
identification of how different software domains have evolved differently because

of the different influences and communities of development is important in pre­
dicting how new software types may be influenced and how those influences may
change over time.

Throughout this text there have been opportunities to examine software list­
ings of important software systems. The intent of this is two-fold. First, the ability
to understand the actual code, context, design decisions, and methodology gives
a lot of insight into how that software was developed. Secondly, the hope is that
there is the ability to recognize some of these bits of code as seminal in nature.
That is, they made an important contribution to how software was developed or
how it functioned. This insight into how an important software innovation and

contribution was made may help others find new innovations.3

8.2 Trends
There have been several persistent trends throughout much of software develop­
ment history. Some of those trends are the following:

(1) A drive for increased programmer productivity

As we’ve seen in many different sections of this text, there has been a long­
time need for programmers to be more productive. In the development of
compilers, there was a need to develop more software systems than the cur­
rent set of programmers was capable of doing. Operating systems became

successful when their benefit of increased user and programmer produc­
tivity outweighed their overhead cost. Similarly, FORTRAN was more easily
accepted as a replacement for assembly language programming because it
produced efficient machine code.

(2) Desire for higher-performance software

3. Though, admittedly, unique software insights are often hard to fully understand how they came

about, even by the innovator.

252 Chapter 8 Software Futures and Overall Trends

Caching, buffering, OSs, and networking have seen a drive for higher per­
formance helping propel their improvement. Alternatively, the initial lack

of acceptable performance delayed the acceptance of many software tech­
niques such as virtual memory, TCP/IP, and relational databases.

(3) Re-use of architectural models and patterns

Techniques such as separating data from the control mechanism, such as
in the von Neumann model, have continued to be successfully applied in

other software systems such as Expert Systems, MVC4 architecture-based

systems, and other systems. The re-use of these sorts of architectural ideas
and patterns has helped to build more sophisticated systems on top of these

tried-and-tested techniques.

(4) Increasing levels of abstraction to deal with increased problem complexity

Abstraction is the ability to build a higher-level model and use it to build soft­
ware based on those higher-level concepts without having to explicitly worry
about lower-level details. In that manner, we can directly build on others’
work and tackle more complex problems. With the relative stability of plat­
forms such as instruction set architecture (ISA), networking protocols, and

operating systems, additional levels of abstraction are being used to support
virtual machines, virtual data centers, software platforms, and other layers
of abstraction. These lower layers tend to be older, more stable software.

As this trend continues, it’s likely there will be more of these older lay­
ers of software that could cause issues in the overall system. Those issues
can involve latent bugs in the software that are only exposed when stressed

by a higher-level system, differences in assumptions between the layers of
abstraction, or trying to get the underlying system to do something that it
wasn’t designed to do. For example, this author experienced a system per­
formance issue that involved a large course management system which was
using a file-caching solution over a load balancer to gradually move the sys­
tem and all its supporting files to another data center. This system involved

not only the software for the course management system but also the depen­
dence on other software in the file-caching solution, load balancer, storage

area network, and storage arrays. The response time of the system was terri­
ble for some customers, and it was very difficult to solve even with bringing

in experts from each of the companies involved. No single person or com­
pany knew enough about all the software to quickly diagnose the problem.

4. Model–view–controller (MVC) is a popular software architectural pattern often used with

web-based systems that support different views for clients such as browsers and mobile devices.

8.2 Trends 253

The performance issues in this case involved not only the assumptions in the

design of the software system but bugs in some of the underlying systems
that hadn’t been identified yet. It was eventually fixed by re-designing the

course management software to eliminate bottlenecks, adding metrics and

monitors for system performance, and fixing the bugs in the underlying

software.

(5) Varied software deployment models based on hardware and technical infras­
tructure, particularly network characteristics

The focus of where the majority of software is developed has changed over
time, often in response to how reliable and fast the data network is at that
time. The other major factor has been the availability and processing speed

of other computing devices, such as personal computers (PCs) and mobile

devices. Software was initially written on a single, central computer that
all users shared. Networks were developed that allowed these computers to

share information and tasks but the networks were relatively slow, although

it did support the ability to use terminals to remotely connect to those com­
puters. Eventually, with PCs and mobile devices software was written for
these other, smaller computing devices. With the advent of more pervasive

and higher-speed networking, software has again tended to centralize with

devices accessing these centralized services. Mobile apps are a good exam­
ple of where many mobile apps depend on a centralized service in order
to provide a broader experience. This cycle of centralizing software system

versus distributing software to endpoints is likely to continue as the advan­
tages of centralizing versus distributing change over time. Additionally, sys­
tems utilizing Application as a Service (AaaS) models are a good example of
where centralization of the core software system outweighs the benefits of
PC-based applications.5

(6) Backward compatibility

The ability to support old software on newer hardware and software systems
it depends on is known as backward compatibility. If one can avoid having

to re-write, re-build, re-test, and sometimes re-architect a system in order to

use more modern or faster hardware or software, then they can save a lot of
money, time, and effort as well as expect the system to work the way it did

5. The idea of computing as a utility has been around since the early 1960s and has recently re­
emerged in the form of cloud computing. See Parkhill [1966] and John McCarthy’s notion of “The

Home Information Terminal,” Man and Computer. Proc. int. Conf., Bordeaux, 1970, (pp. 48–57),
1972. S. Karger publisher at http://jmc.stanford.edu/articles/hoter2.html.

http://jmc.stanford.edu/articles/hoter2.html

254 Chapter 8 Software Futures and Overall Trends

before. With IBM’s System/360 this became more of a reality and an expecta­
tion from computer vendors. The ability to port code using higher-level pro­
gramming languages also helped support backward compatibility though

tweaking and testing of the ported code on the new system was still required.
The design for backward compatibility is also a driver for using operating

system virtualization and containerization so that the system doesn’t need

to be modified. The support for backward compatibility helps enable soft­
ware’s inertia by providing a mechanism for it to remain usable without the

need to change the software.

8.3 Perpetual Challenges of Software Development
Some challenges have been more difficult than others for the software industry to

solve. This section contains some of those challenges that have plagued software

and are often the focus of software engineering. These include software quality,
reliability, scalability, re-usability as well other areas such as software safety, avail­
ability, security, and performance. Here, we discuss quality, reliability, scalability,
and re-usability.

8.3.1 Software Quality and Reliability
High software quality has long been a goal of software as any software fault costs
money and time to fix. A software fault found after the software has been deployed

to customers is generally the most expensive to fix. These faults can be the result
of a typo, an ill-conceived design, a misunderstood requirement, a failure to catch

an error during testing, or some combination. While many other engineering fields
have matured to the point where quality can be effectively managed, software engi­
neering has found that difficult. Software quality is also important for companies
and their customers. One of the challenges is that software is handwritten using

tools that cannot guarantee quality. That is, a new software system generally has its
own requirements that are quite often different from any other software. Program­
mers are known to vary greatly in the quality of software they produce. Software,
as noted earlier, is becoming increasingly complex, making complete testing not
only impractical but not even possible. While techniques continue to be developed

that may help, such as model-driven architecture and formal proofs of correctness,
this is a hard problem that is unlikely to be solved any time soon.

Reliability is related to quality because if you cannot determine the faults in your
software then you can’t determine their impact or respond to them. Techniques of
building redundant systems have helped improve reliability, as well as methodolo­
gies and tools that try to find errors in the process as soon as possible. Being able

8.3 Perpetual Challenges of Software Development 255

to fail over to another piece of software that does the same thing (but uses a dif­
ferent algorithm and different source code) requires the ability to determine there

has been a failure and to be able to switch to the redundant code. See texts such as
Musa [2004] and Bauer [2012, 2010] for more on how to engineer reliable software

systems.6

8.3.2	 Software System Scalability
The ability to scale systems to a large number of users or to process a lot more

data has been a challenge for many software systems but has had a better outcome

than quality or reliability. The development of scalable software architectures that
can add components to address additional load, as well as the ability to abstract
system components, has resulted in the ability to scale some systems to billions
of users. For example, the ability to distribute the system to allow local handling

of some of the system’s functions allows the system to scale to a large number of
users, such as the Internet or the phone system. However, not every system has the

characteristic of being able to distribute functionality or to add a new instance of a

component to meet demand. Systems that have an inherent bottleneck are usually
difficult to scale, such as a system that depends on a single module to approve all
transactions.

8.3.3 Software Re-usability
A continuing challenge is to be able to re-use the design and implementation of
prior software systems. One of the more useful techniques to re-use design knowl­
edge has been to encode successful design approaches as patterns. Both design

patterns (see Gamma et al. [1995] and Rising [1998]) and architectural patterns
(see Cervantes and Kazman [2016]) have helped re-use previously successful design

approaches. However, there have been many other approaches over the years to

re-use software that have proven less robust and long-lasting.
One example of such an approach that did not last was software components. In

the early 1990s, there was an effort to develop prefabricated components that could

be assembled into useful programs. Many of these were quite successful such as
Microsoft’s Object Linking and Embedding (OLE) and Component Object Model
(COM). Though one can argue that they never became the prefab components that
could be re-used as broadly as had been hoped at the time.

Software components grew out of the popularity of object-oriented program­
ming, which has many of the same hopes of building re-usable objects. It turns out

6. Software availability is also closely related to its quality. However, the availability may also be

affected by additional factors such as being overwhelmed by more usage than expected, security
attacks, and other factors not directly related to the quality of the software.

256 Chapter 8 Software Futures and Overall Trends

to be very difficult to create generally usable and robust classes and objects. The

primary issue is that if you create a general object with lots of options in how it can

be used it quickly becomes impractical to test all combinations of those options.
As a result, these generalized objects are likely to have untested future uses and as
a result be less reliable. In addition, just creating a truly general object is hard to

do. As software technologies and hardware capabilities evolve, it’s often the case

that these “general” object libraries become out of date as they don’t support a new

technology. For example, as augmented reality and virtual reality hardware became

more available, many graphics software libraries did not support them. As a result,
the library must be augmented to support these technologies or be replaced or re­
written. Often a new library is created that supports these newer technologies and

the old libraries become gradually less relevant.
An example where a software library has been successful for a long time

has been FORTRAN libraries for calculations supporting numerical analysis tech­
niques. These libraries supported floating point operations that were widely used

and relatively efficient. So, there hasn’t been a great need to re-write these libraries
in other programming languages and many were used for decades without signifi­
cant modifications. Only in the last couple of decades, as scientists and engineers
are being trained in other programming languages such as MATLAB and R, have

we seen these libraries be replaced or re-written in other languages.

8.4 Emerging Software Trends
Some software challenges are becoming more difficult as software systems become

larger, are more complex, and are being applied to new areas and problems.
One of those challenges is security. Software is being deployed to perform more

functions and to run on more devices, increasing the likelihood that the software

will be attacked. One example is the proliferation of devices that are networked

and controllable, such as those characterized as the Internet of Things (IoT). Many
of these devices are created with a legitimate use in mind, but often are not well
secured. One example was an IoT baby monitor that allowed parents to use their
Wi-Fi network to connect the baby monitor to other devices (like phones) and to

communicate with the baby as well as hear and see the baby respond. There have

been numerous reports of these baby monitors being hacked.7

7. Such as one mother saying the camera was being controlled by others and other cases where the

monitor was used by unknown persons to communicate with the baby. Many baby monitors have

had such issues, such as the iBaby Monitor M6S, as detailed in CNET’s “iBaby monitor vulnerable

to hacking,” March 2, 2020, by Queenie Wong.

8.5 Other Areas of Software 257

Software systems are becoming increasingly complex and issues with those sys­
tems can be very difficult to solve. They may involve several systems interacting,
each of which is very complex. The ability to diagnose the issue may require experts
from each of those various systems and be a challenge to replicate, let alone solve.
While the interfaces between those systems should be straightforward and help to

isolate the problem, they are not always perfect and result in systems interacting in

unpredictable ways that involve a number of the systems, each of which may have

errors impacting the symptoms seen.
Another problem is that software systems are increasingly being built on tech­

niques that can produce unpredictable results. An example of this is a system that
is built on machine learning or pattern recognition where decisions may be made

automatically based on the current dataset. Autonomous vehicles depend on data

from their sensors in order to make decisions on how to control the vehicle. The

data is rarely going to be the same and may contain small variants that cause the

behavior to be unpredictable. While this is a contrived example, suppose that a per­
son is wearing a bear suit and is crossing a road. How can the vehicle determine

what is crossing the road and make a valid inference? In most cases, it won’t mat­
ter, but if the car has to make a decision to either hit the “bear” or veer into the

ditch, it might matter greatly. Systems that rely on highly variable datasets to make

decisions will become increasingly hard to debug.

8.5 Other Areas of Software
This book has covered many foundational domains of software technology, with

many more domains that deserve a detailed history. In particular, we haven’t yet
covered important software domains such as artificial intelligence, games, numer­
ical methods, graphics, human–computer interaction, and application domains
such as PC and enterprise computing. Other areas that have a broad impact on

many areas of software are security and computational models.
Each of these areas have their own unique history and have influences and

motivations that are different from those we have already explored earlier in this
text. Application areas also have a complex history. One of the challenges is that
many of these histories are interwoven, particularly in the first few decades of
software history where distinctions between different types of software were not
made or often not relevant. As an example of how interwoven these areas can be,
Charles Bachman in a lecture describing creating the first database management
system notes that there was no operating system on the computer he was using to

develop a business application. In his case, the business application was the goal

258 Chapter 8 Software Futures and Overall Trends

but along the way he needed to develop something to help manage the data and

system.8

For example, consider security software. Software security (outside of the mil­
itary and some industries) was often an afterthought. After the Morris Worm

(or Internet Worm) in 1988, industries connected to the Internet at the time real­
ized that they were vulnerable to attack. The security industry grew rapidly as
those industries purchased firewalls and built more security into their systems.
Another important catalyst to the development of secure systems and software

was when the World Wide Web enabled companies to augment systems to enable

direct sales to customers over the Internet. Quickly, companies began to experi­
ence attacks over the Internet, and this again stimulated the security software and

hardware industry to develop additional responses to the evolving threats.9 So, the

security software business was stimulated by particular events, where other areas
of software such as operating systems and databases had the goal of improving

performance and productivity.
Numerical methods and computing were initially drivers for the purchase of

computers and many of the larger computer users in the 1940s and 1950s were

concerned with numerical computation such as those used in engineering, astron­
omy, scientific research, and weather. Early computers such as Standards Eastern

Automatic Computer (SEAC) in Figure 8.1 and Standards Western Automatic Com­
puter (SWAC) used at the US National Bureau of Standards were heavily used for
numerical computation. The US space program made use of computers such as
the IBM 360 in Figure 8.5 and Figure 5.10 during the Apollo program (Apollo 5 test­
ing the lunar module launched on January 22, 1968, about a week after the photo

in Figure 5.10 was taken). Supercomputers have often been driven by the needs of
scientific computing, such as the IBM 7030 Stretch (the first transistorized super­
computer and designed to meet requirements formulated by Edward Teller), which

was the world’s fastest computer in 1961 until the CDC 6600 eclipsed that title in

1964. The IBM Stretch in Figure 8.2 was installed at Los Alamos National Laboratory
for the Atomic Energy Commission.

8. See https://www.youtube.com/watch?v=iDVsNqFEkB0 for his April 16, 2002, talk at the

Computer History Museum on “Assembling the Integrated Data Store.”

9. An example experienced by this author was a web-based survey sent to the author by Fat Brain

(a now defunct web-based book seller). Once the survey was completed, this author hit submit
and got an error in response, so he hit “refresh.” He then noticed that he had received two emails
containing gift certificates as rewards for the survey. Curious, he reloaded the survey several more

times, each time receiving a corresponding email with a new gift certificate, effectively printing

money. After a few days, he received another email asking about whether he had trouble with the

survey…

https://www.youtube.com/watch?v=iDVsNqFEkB0

8.5 Other Areas of Software 259

Figure 8.1	 SEAC on August 14, 1959, demonstrating the HAYSTAQ program for searching chemical
literature (Ethel Marden). (Source: NIST.)

Artificial intelligence (AI) software was often stimulated by the quest to push

computing to new areas and has often had a research-driven agenda. AI has often

had an inspirational role for what computing would become. In the summer of
1956, a seminar organized by John McCarthy was held at Dartmouth College that
set a number of goals for AI and the proposal for that seminar is usually credited

with coining the term “artificial intelligence.” The programming language LISP

was created after this conference in 1958 with the Information Processing Language

(IPL) developed in 1956. Both IPL and LISP were built with a focus on symbolic
processing rather than on numeric processing with the expectation they would

be better languages for working on AI-type problems. The hopes and expectations
around this time were gradually dashed as the solutions were more difficult than

anticipated. As a result, AI experienced what has become known as an “AI winter.”
Failures such as the difficulties of automatic machine translation of documents
between different human languages was one of the reasons, as well as the lack of
progress in other areas anticipated in the 1950s. Another early success in AI was
Arthur Samuel’s checkers program that was able to improve its play dramatically

260 Chapter 8 Software Futures and Overall Trends

Figure 8.2	 The IBM 7030 STRETCH in the late 1960s at IBM Poughkeepsie just prior to its shipment
to the Los Alamos National Laboratory. (Source: Courtesy of International Business
Machines Corporation, ©1968 International Business Machines Corporation.)

by using an early form of machine learning and was originally developed on the

IBM 701 (see Figure 8.3 for Samuel using the IBM 7090 to run his checkers pro­
gram). AI experienced a resurgence in the early 1980s with the success of expert
systems. Building on the success of early expert systems such as Dendral (identified

unknown organic molecules by analyzing mass spectra), expert systems became

very popular and applied to a wide variety of problems. Expert systems were again

overhyped and were good at a limited set of problems where if–then rules could

correctly categorize and solve problems. After expert systems failed to live up to

the hype, another AI winter began in the late 1980s. In the 1990s, techniques such

as machine learning became successful at solving a number of problems where

large datasets are available. This, combined with advances in computing speed,
cost, and robotics has led to an increased expectation for AI to solve a wide vari­
ety of problems. An important example of robotic planning is Shakey, developed

8.5 Other Areas of Software 261

Figure 8.3	 Arthur Samuel demonstrating his checkers program on an IBM 7090 on television
on Feb. 24, 1956. (Source: Courtesy of International Business Machines Corporation,
©1956 International Business Machines Corporation.)

at Stanford Research International (now simply called SRI), which was able to ana­
lyze its environment and develop a plan (see Figure 8.4). While machine learning

is powerful, experience with these previous AI winters suggests that some sort of
expectation burst could occur again. So, AI has a rather unique history compared to

many of the other software domains discussed in this text, being driven by research

and by representing aspirations for what computing can become.
The use of graphics to display results and to interact with applications has long

been a desire and challenge for computing systems. Systems such as the SAGE were

already using graphical displays in the late 1950s. Other systems such the Sketch­
pad system developed by Ivan Sutherland in 1963 focused on the interaction of a

user with a drawing system. The IBM 360 Model 40 (see Figure 8.5) was also used

to support a drawing system using a lightpen in the mid-1960s.
Application software varies widely in what drives its creation and change over

time. For example, consider Enterprise Resource Planners (ERP), which are gen­
erally large, data-oriented systems that support the back-office (and sometimes
front-office) operations for companies. As you might expect, many companies have

purchased this type of software in order to manage payroll, sales, employees, bud­
gets, and the like. Initially, companies often wrote their own software for these type

262 Chapter 8 Software Futures and Overall Trends

Figure 8.4	 SRI’s Shakey, the first mobile robot that could make decisions about how to move in
its surroundings (1972). (Source: Courtesy of SRI International.)

of back-office functions, but as these business functions became more complex
it was not worth writing and maintaining their own software for these functions.
Vendors (including computer vendors, such as IBM) would sell computers with

bundled business software. In the mid-1960s, software to support manufacturing

processes was created, called material requirements planning (MRP), and was fol­
lowed in the mid-1980s by manufacturing resource planning (called MRP II), which

added a number of other processes that it supported. This became a large segment
of the software industry, and in the 1990s these expanded to what is called enter­
prise resource planning (ERP), in recognition that the systems support more than

the manufacturing industry. These systems have grown to become very large sys­
tems, often with a number of optional modules that a company can buy if they need

them such as supply chain management, procurement, or an enterprise data ware­
house. These systems have been almost entirely driven by industry needs, with a

8.6 Software History’s Relevance 263

Figure 8.5	 IBM System 360 Model 40 demonstrating a drawing system using a lightpen. (Source:
Courtesy of International Business Machines Corporation, ©International Business
Machines Corporation.)

heritage in manufacturing industries. As of this writing, ERP companies are evolv­
ing to be cloud-based vendors supporting either all ERP functions or specializing

in a specific function. So, many companies are moving what was ERP functionality
to multiple, cloud-based vendors that are integrated to support the business as a

whole.

8.6 Software History’s Relevance
Throughout this text, we’ve studied how software changes, what caused it to

change, and how it may change going forward. Clearly, a lot of old software is

264 Chapter 8 Software Futures and Overall Trends

still running, often embedded in modern systems. Old software is often replaced

because of evolving technology, the difficultly in providing support for it, or events
(think Y2K or the Internet Worm). Even after replacing the old software, the

assumptions and overall design may remain the same. These underlying design

assumptions can also influence new software as ideas and techniques are repli­
cated, particularly those ideas or techniques that have worked in the past. People

who are currently building software systems can better anticipate issues or oppor­
tunities by better understanding the history of the software they may use or
modify.

Legacy software systems written many decades ago continue to be an issue, par­
ticularly when stressed in ways unanticipated by the original designers. A recent
example is that during the COVID-19 pandemic in 2020 many states in the United

States were faced with large numbers of people applying for unemployment. Many
of these systems were written decades ago using COBOL on IBM mainframes, yet
have continued to serve their function for the states through more normal levels of
unemployment claims. Numerous states made urgent pleas for anyone who knew

COBOL.10 Even though the reports only mentioned COBOL, those systems were

built with an array of other technologies from the period including file systems
such as VSAM, as well as likely dependent on other IBM mainframe technologies.
While many of these unemployment systems will likely be replaced after this expe­
rience, there are many other similar systems still in operation that have no urgent
need to be replaced at this time. This pattern of software surviving decades is likely
to continue as the effort to keep this software running is often much less than

completely rewriting it using more modern tools and environments.
An even clearer example of the relevance of software history is for those who

are attempting to build secure systems. It is often easier to take an existing set of
software and build on top of that. That previous software may contain a number
of vestigial features. While those features may have been relevant and worked per­
fectly when they were used, they may now provide no worthwhile function to the

new software system. Furthermore, they may provide affordances to those wish­
ing to attack the system. That is, they provide entry points where legitimate use

of the no-longer-relevant feature may lead to the ability to compromise the larger
system. One example of such as technology is UUCP (UNIX-to-UNIX Copy), which

was a common protocol in the 1980s for communication with and between UNIX

10. Such as the report by CNN from April 8, 2020, “Wanted urgently: People who know a

half century-old computer language so states can process unemployment claims,” by Alicia

Lee, https://www.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey­
trnd/index.html. In that report, some of the states mentioned were New Jersey, Kansas, and

Connecticut, all needing COBOL programmers.

https://www.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey-trnd/index.html
https://www.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey-trnd/index.html

8.7 Exercises and Projects 265

systems. Other operating systems developed the ability to support UUCP, including

MS-DOS and classic MAC OS, among others. Furthermore, UUCP was used in many
early bulletin board systems (BBS), which, if still running, might inadvertently still
support it. So, versions of UUCP may still be running on some UNIX and Linux
systems and allow an entry point that might be unexpected to the owners of those

systems.
While much of the software that has been developed has had a short lifespan,

some software has persisted well beyond the expectations of the original authors.
Understanding why some software has persisted and how software concepts and

domains originate and evolve helps to understand how future software will evolve.
Such understanding helps software developers predict and avoid pitfalls for unsuc­
cessful software and to attempt to replicate the success of long-lived software

systems.
While this text has provided a technical history of well-established software

domains, it is hoped that this text can serve as a foundation for documenting

further software domains and the implications of software including the societal,
ethical, and global impacts of software. Additionally, this text has not focused on

the people involved, but software is written by people and many people have con­
tributed to advances in software. So, it is hoped that this text can help provide

technical context for the contributions of individuals and, as is so often the case in

software, teams.

8.7 Exercises and Projects

8.7.1 Exercises
1. Graphics libraries have come and gone over the years. One example is the

Programmers’ Hierarchical Interactive Graphics System (PHIGS). PHIGS had

a standard application programmer interface (API) across a number of com­
puting platforms that developed libraries to support PHIGS, such as IBM,
SUN, and DEC. Explain why PHIGs was replaced by other standards.

2. Investigate the term software factory. Much of the intent of the software fac­
tory was to make the process of creating software as dependable and reli­
able as a factory making a particular product. Find out how, why, and when

software factories failed.

3. Explain why libraries of functions and procedures are difficult to make gen­
eral enough to be used in a very broad array of applications over an extended

period of time.

266 Chapter 8 Software Futures and Overall Trends

4. Investigate where early uses of the Flyweight design pattern were successful
(see Gamma et al. [1995, pp. 195–206]) and explain why this is a useful design

pattern.

5. Investigate the Telnet protocol and explain its current uses and its security
vulnerabilities.

6. The BAAN ERP was a popular ERP system in the 1980s and 1990s. Find out
what happened to BAAN and whether is it still supported and run by some

companies.

7. Determine if the current, stable release of Ubuntu Linux supports UUCP. If
so, is it turned on by default? Describe how having UUCP turned on might be

a security vulnerability by investigating the UUCP feature and how it could

be used.

8. Find the paper that discusses the General Problem Solver (GPS) by Newell
and Simon.11 The GPS was a highly influential system and introduced sev­
eral key ideas. From the paper, identify one of the key ideas that continues to

be used for some AI systems. Find and quote that section of the paper where

the idea is described.

9. With	 so much software being created, only a portion of it becomes
entrenched. Choose a particular software system. Explain at least three fac­
tors that increase the likelihood of this particular piece of software becoming

entrenched and being in continued use for decades. Explain why each of your
three factors increases the likelihood of the software becoming entrenched.

10. Andy Grove (Intel) was known to complain that Intel wouldn’t get the proper
credit for a new processor’s enhanced performance as it was often absorbed

by new versions of Microsoft Windows. This became known as Andy and Bill’s
Law, where the enhanced CPU performance that Andy created, Bill taketh

away. Would you expect to see this same dynamic in server and enterprise

software? Why or why not?

11. One could argue (as does Charette [2020, p. 30]) that the IoT is likely to cre­
ate a new embedded base of software running on these IoT devices that
will become legacy systems and difficult to replace. What aspects of the IoT

makes this likely? Do you believe we’re likely to have future problems with

legacy IoT software? Explain.

11. “A variety of intelligent learning in a general problem solver,” A. Newell, J. Shaw, and H. Simon,
The RAND Corporation, P-1742, July 6, 1959.

8.7.2

8.7 Exercises and Projects 267

12. The US Defense Advanced Projects Agency (DARPA) has funded a program

called Building Resource Adaptive Software Systems (BRASS) since 2015.
See https://www.darpa.mil/program/building-resource-adaptive-software­
systems. This program’s goal is to create software systems that have useful
lifespans of 100 or more years by being resistant to changes in the envi­
ronment. Investigate the BRASS program and summarize its approach in a

paragraph or two. List the fundamental challenges of this program. Do you

believe this program will be successful for any of the software domains
they’ve identified? Why or why not?

Projects
1. The IoT has produced a demand for new software not only for the devices
themselves but also for software infrastructure to support those devices.
Investigate how the use of older software has sometimes made these

devices less secure. Give examples of IoT devices where its software was
derived from previously existing software and how the change in usage vio­
lated the previously existing software’s assumptions and helped to cause

security vulnerabilities in the IoT devices.

2. Many software providers have tried to provide “platforms” where develop­
ers can more easily develop applications that work with their application.
Examples are systems such as those at Salesforce.com, Facebook.com, and

many others. Argue based on earlier platform-like systems whether these are

likely to be a stable platform for decades to come or not. If so, explain how

these could evolve to be a stable platform. If not, explain how these may be

replaced by other technologies.

3. The problem of voice recognition has long been a challenge to develop reli­
able software that could understand spoken human language. One of the

earliest examples was IBM’s “shoe-box” system introduced in 1962 that could

recognize a limited set of words (16), see Figure 8.6. The IBM Shoebox was
developed by William Dersch and was able to respond to commands to do

simple arithmetic. Many other systems have been created since that time and

gradually improvements have accumulated so that systems such as Amazon’s
Alexa and Apple’s Siri are quite usable. Explore these efforts and document
the projects, their relationships, failures, and key technologies that have

persisted to modern voice recognition systems. Document this as a report.

4. Programmer efficiency has been a long-desired aspect and driver for devel­
opment of programming languages and related tools. Investigate the cur­
rent set of technologies that promise significant increases in programmer

https://www.darpa.mil/program/building-resource-adaptive-software-systems
https://www.darpa.mil/program/building-resource-adaptive-software-systems

268 Chapter 8 Software Futures and Overall Trends

Figure 8.6	 IBM’s Shoebox could do simple arithmetic in 1962 in response to spoken com­
mands. (Source: Courtesy of International Business Machines Corporation, ©1962
International Business Machines Corporation.)

productivity and evaluate them based on their ability to succeed. For the tech­
nology that you identify as most likely to succeed, identify why it is distinct
from the others and what factors will help it succeed.

5. With the increasing complexity of software systems, there is an increasing

possibility of emergent behavior. That is, behavior that is not expected or
explicitly designed into the system. Since this behavior was not a require­
ment, it is usually viewed as a bug or software fault. Explore cases where

such behavior has caused system failures. Find a case where this unexpected

behavior has been beneficial.

6. Research and evaluate current approaches to increase productivity of soft­
ware development. Evaluate the approaches based on their likelihood of
increasing the productivity of individual programmers and of decreasing the

time frame to deliver a complex application. Does the approach affect other

8.7 Exercises and Projects 269

aspects of the software such as its quality and reliability? Based on previous
approaches to improved productivity, evaluate each approach’s chances of
surviving 5, 10, and 20 years into the future as viable techniques.

7. Find the June 15, 1956, paper by Allen Newell and Herb Simon called “The

logic theory machine—A complex information processing system.” This
paper generated a lot of hope that AI could reason and solve general prob­
lems, as well as further work by Newell and Simon on systems such as the

General Problem Solver (GPS). The code contained in this paper was hoped

to be able to solve logic problems. Explain why these techniques in the end

proved insufficient to solve general problems but were able to generate a lot
of hope.

Figure 8.7	 Grace Murray Hopper’s original printout from the UNIVAC’s accurate prediction of
Eisenhower’s 1952 win. (Source: Courtesy of Grace Murray Hopper Collection, Archives
Center, National Museum of American History, Smithsonian Institution.)

270 Chapter 8 Software Futures and Overall Trends

8. For the 1952 US presidential election, CBS Television News and Remington

Rand used the relatively new UNIVAC computer to help process and predict
the election. Figure 8.7 shows the printout from the UNIVAC’s early predic­
tion of the outcome at around 8:30PM Eastern time election night. CBS News
was reluctant to air this result (which turned out to be accurate within 1%)
and didn’t air what was viewed as an unlikely prediction. CBS had to admit
that it had an accurate prediction from the UNIVAC hours before but had not
aired it at the time. The software was written Max Woodbury, who had been

blacklisted as pro-Communist and had to work on this covertly. Additionally,
this success also stimulated the public’s interest and expectations for com­
puters. See if you can find the actual software used to predict the 1952 election

and analyze the techniques used to predict the election. Whether or not you

find the software, analyze the shifts in software techniques used for presi­
dential election prediction that has been the norm since 1956 after UNIVAC’s
successful prediction in 1952. Document techniques that have persisted as
well as those that have been abandoned.

8.8 Further Readings and Online Resources
Further information is provided via the accompanying website: https://software­
history.net/. That site includes larger software source code examples as well as
numerous links to relevant videos and resources. Books on AI history include

Nilsson [2010], McCorduck [1979], and Kurzweil [1990]. November [2012] covers
biomedical computing’s history. Halvorson [2020] and Campbell-Kelly [2003] give

insights on PC software history. A general book with a collection of well-written

articles on a wide variety of computing topics including software history is Ralston

and Reilly [1983].

https://software-history.net/
https://software-history.net/

A
Caldera International Inc. 2001-2002. All rights reserved.” This version comes from

Bell Labs Research Version 7 in 1979 and is included without any modification. This
version was extracted from http://minnie.tuhs.org/cgi-bin/utree.pl on October 14,
2014, as the file sys/pipe.c. Other historical UNIX source code can be found on that
site as well as others such as http://v6.cuzuco.com/v6.pdf or at http://www.tamaco

m.com/tour/kernel/unix/.
UNIX pipes were initially included in Bell Labs Research Version 6 of UNIX and

part of a larger re-write of UNIX to regularize the commands and system in the C

programming language (except for a very small, machine-specific bit of required

code). See Lions [1976a, 1976b, 1977, 1996] for the Bell Labs 6th edition of the pipes
implementation in C and its description.

One of the hallmarks of early UNIX System code was the simplicity of the source

code. The C programming language is a relatively small language that is able to be

efficient by being close to the system. The initial code base was also written by
a small set of programmers and shows a regularity that helps in understanding

the code. Within Bell Labs, UNIX was taught (including to this author) by directly
reviewing the UNIX source code and understanding how it worked. Pipes, as ini­
tially proposed by Doug McIlroy in 1964,1 were key to the simplification of the user
interface of UNIX. With pipes, UNIX commands would default to stdin and stdout,
making it easy to string them together to process more complex operations. As a

Appendix—Source Code

This appendix includes some longer samples of source code for systems mentioned

in the text.

A.1 UNIX Pipe.c
This source code is referred to in Chapter 3, Section 3.3, Operating Systems. Note

that this source code was released as a fee free license by Caldera Software in

2002 (see http://www.tuhs.org/Archive/Caldera-license.pdf) and is “Copyright(C)

1. See http://doc.cat-v.org/unix/pipes/ for a copy of McIlroy’s 1964 description of the vision for
pipes.

http://www.tuhs.org/Archive/Caldera-license.pdf
http://minnie.tuhs.org/cgi-bin/utree.pl
http://v6.cuzuco.com/v6.pdf
http://www.tamacom.com/tour/kernel/unix/
http://www.tamacom.com/tour/kernel/unix/
http://doc.cat-v.org/unix/pipes/

272 Appendix A Appendix—Source Code

result, many UNIX commands were good at only one thing so that they could be

combined with other tools in order to perform more complex operations. Several
of these tools were simple programming languages that were tuned to a particu­
lar task such as eqn (equation formatting), lex (lexical analysis), yacc (parsing, Yet
Another Compiler Compiler), awk (a text pattern-matching language named after
its authors: Aho, Weinberger, and Kernighan), and grep (general regular expression

parsing).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

include ” . . / h / param . h”
include ” . . / h / systm . h”
include ” . . / h / d i r . h”
include ” . . / h / user . h”
include ” . . / h / inode . h”
include ” . . / h / f i l e . h”
include ” . . / h / reg . h”

/ *

* Max al lo w abl e b u f f e r i n g per pipe .
* This i s a l s o the max s i z e of the

* f i l e crea te d to implement the pipe .
* I f t h i s s i z e i s bigg er than 51 20 ,
* pipes w i l l be implemented with l a r g e

* f i l e s , which i s probably not good .
* /

def ine PIPSIZ 4096

/ *

* The sys−pipe e n t r y .
* A l l o c a t e an inode on the root de v i c e .
* A l l o c a t e 2 f i l e s t r u c t u r e s .
* Put i t a l l t ogeth e r with f l a g s .
* /

pipe ()
{

r e g i s t e r s t r u c t inode * ip ;
r e g i s t e r s t r u c t f i l e * r f , *wf ;
i n t r ;

ip = i a l l o c (pipedev) ;
i f (ip == NULL)

return ;
r f = f a l l o c () ;
i f (r f == NULL) {

iput (ip) ;
return ;

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

A.1 UNIX Pipe.c 273

}
r = u . u r . r v a l 1 ;
wf = f a l l o c () ;
i f (wf == NULL) {

r f −>f co u nt = 0 ;
u . u o f i l e [r] = NULL ;
i p u t (ip) ;
re t ur n ;

}
u . u r . r v a l 2 = u . u r . r v a l 1 ;
u . u r . r v a l 1 = r ;
wf−> f f l a g = FWRITE| FPIPE ;
wf−>f i no d e = ip ;
r f −> f f l a g = FREAD| FPIPE ;
r f −>f i no d e = ip ;
ip −>i c o un t = 2 ;
ip −>i mode = IFREG ;
ip −> i f l a g = IACC | IUPD |ICHG ;

}
/ *

* Read c a l l d i r e c t e d to a pipe .
* /

readp (fp)
r e g i s t e r s t r u c t f i l e * fp ;
{

r e g i s t e r s t r u c t inode * ip ;

ip = fp−>f i n ode ;

loop :
/ *

* Very c o n s e r v a t i v e locking .
* /

plock (ip) ;
/ *

* I f nothing in the pipe , wait .
* /
i f (ip −> i s i z e == 0) {

/ *

* I f there are not both reader and

* w r i t e r a c t i v e , return without
* s a t i s f y i n g read .
* /
p re l e (ip) ;
i f (ip −>i co u n t < 2)

274 Appendix A Appendix—Source Code

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

return ;
ip −>i mode |= IREAD ;
s l eep ((ca d d r t) ip +2 , PPIPE) ;
goto loop ;

}
/ *

* Read and return

* /
u . u o f f s e t = fp−>f un . f o f f s e t ;
readi (ip) ;
fp−>f un . f o f f s e t = u . u o f f s e t ;
/ *

* I f reader has caught up with w r i t e r , r e s e t
* o f f s e t and s i z e to 0 .
* /
i f (fp−>f un . f o f f s e t == ip −> i s i z e) {

fp−>f un . f o f f s e t = 0 ;
ip −> i s i z e = 0 ;
i f (ip −>i mode & IWRITE) {

ip −>i mode &= ~IWRITE ;
wakeup ((ca d d r t) ip + 1) ;

}
}
pr e l e (ip) ;

}
/ *

* Write c a l l d i r e c t e d to a pipe .
* /
writep (fp)
r e g i s t e r s t r u c t f i l e * fp ;
{

r e g i s t e r c ;
r e g i s t e r s t r u c t inode * ip ;

ip = fp−>f i n ode ;
c = u . u count ;

loop :
/ *

* I f a l l done , return .
* /

plock (ip) ;
i f (c == 0) {

p re l e (ip) ;
u . u count = 0 ;

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

A.1 UNIX Pipe.c 275

return ;
}
/ *

* I f there are not both read and

* w r i t e s i d e s of the pipe a c t i v e ,
* return e r r o r and s i g n a l too .
* /
i f (ip −>i c oun t < 2) {

p re l e (ip) ;
u . u e r r o r = EPIPE ;
ps ign al (u . u procp , SIGPIPE) ;
re t ur n ;

}
/ *

* I f the pipe i s f u l l ,
* wait f o r reads to d eplet e

* and t r u nc at e i t .
* /

i f (ip −> i s i z e >= PIPSIZ) {
ip −>i mode |= IWRITE ;
p re l e (ip) ;
s l eep ((ca d d r t) ip +1 , PPIPE) ;
goto loop ;

}

/ *

* Write what i s p o s s i b l e and

* loop back .
* I f w r i t i n g l e s s than PIPSIZ , i t always goes .
* One can t h e r e f o r e get a f i l e > PIPSIZ i f w r i t e

* s i z e s do not d i v i d e PIPSIZ .
* /

u . u o f f s e t = ip −> i s i z e ;
u . u count = min ((unsigned) c , (unsigned) PIPSIZ) ;
c −= u . u count ;
w r i t e i (ip) ;
pr e l e (ip) ;
i f (ip −>i mode&IREAD) {

ip −>i mode &= ~IREAD ;
wakeup ((cadd r t) ip +2) ;

}
goto loop ;

}
/ *

276 Appendix A Appendix—Source Code

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193 pre le (ip)
194 r e g i s t e r s t r u c t inode * ip ;
195 {
196 ip −> i f l a g &= ~ILOCK ;
197 i f (ip −> i f l a g &IWANT) {
198 ip −> i f l a g &= ~IWANT;
199 wakeup ((caddr t) ip) ;
200 }
201 }

* Lock a pipe .
* I f i t s a l re a d y locked ,
* s e t the WANT b i t and s lee p .
* /

plock (ip)
r e g i s t e r s t r u c t inode * ip ;
{

while (ip −> i f l a g &ILOCK) {
ip −> i f l a g |= IWANT ;
s l eep ((ca d d r t) ip , PINOD) ;

}
ip −> i f l a g |= ILOCK ;

}
/ *

* Unlock a pipe .
* I f WANT b i t i s on ,
* wakeup .
* This r o ut ine i s a l so used

* to unlock inodes in general .
* /

Listing A.1 pipe.c—Pipe source code from Bell Labs UNIX Research Version 7.

A.2 System R Where Clause Code
The following code is from IBM’s System R and is a subset of the PL/I code that
processes WHERE clauses for SQL queries. This is an early implementation of SQL

optimization and was critical to the success of relational databases. While rela­
tional databases had a much easier to use and understand interface (tuples, tables,
and matching based on values), their initial performance was much slower than

legacy database options available at the time. As a result, being able to improve the

performance was critical to the adoption of relational databases.
The file is called XWHERE.PLIOPT and this snip-it was obtained from the Com­

puter History Museum in line with their agreement with IBM. The PLIOPT file

extension indicates this is a file containing source code for the PL/I Optimizing

A.2 System R Where Clause Code 277

Compiler. The file contains line numbers (XWHnnnnn) and you’ll also note it con­
tains a few non-ASCII characters, such as ¬. One will also note terms such sargable
(Search ARGument ABLE) in the code (such as at line 61, XWH01840) , which indi­
cates that the condition in the query can take advantage of an index and thereby
have a good chance of improving performance. The file also indicates the selective

processing of AND and OR nodes in an attempt to reduce the number of tuples
returned in the intermediate result set. While modern relational database SQL

optimizations are much more sophisticated today, these methods (using indexes
and trying to reduce the size of the tuple set) are still at the core of RDBMS SQL

optimization methods.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

/* 0 4 / 1 3 / 7 7 PPG MMA */ XWH00010
/* 5 / 4 / 7 7 DON’ T PRINT %INCLUDES */ XWH00020

XWH00030
/* XWHERE IS THE PROCEDURE WHICH EXAMINES THE WHERE PREDICATE XWH00040

TREE . ON THE FIRST PASS IT COLLECTS COLUMN NAMES, PUSHES XWH00050
NOT NODES DOWN THROUGH BOOLEAN NODES AND XWH00060
(EVENTUALLY) REMOVES NOTNODES IF ALL PREDICATES BELOW THEM XWH00070
ARE SARGABLE (COMPATIBLE WITH THE ’COL COMPOP LIT ’ FORMAT) . XWH00080
ALSO ON THE FIRST PASS , IF ONLY ONE SIDE OF A PREDICATE HAS XWH00090
A COLUMN, THEN WE WILL PUT IT IN THE LHS OF THE RELATIONAL XWH00100
OPERATOR AND ADJUST THAT OPERATOR ACCORDINGLY . (> BECOMES XWH00110
< , ETC .) . ON THE SECOND PASS , XWHERE PROPAGATES DATA TYPES XWH00120
AND SPECLENS IN THE PREDICATES , TESTS FOR DNF STATE , AND XWH00130
FINDS BT ’ S AND ENTERS THEM INTO BTARRAY . A BT IS A XWH00140
PREDICATE OR A SUBTREE HEADED BY AN ORNODE AND MUST BE XWH00150
THE WHERE TREE ROOT OR MUST BE CONNECTED TO THE ROOT ONLY XWH00160
BY ANDNODES AND MUST BE SARGABLE . XWH00170
A PREDICATE BT MAY BE REPLACED BY AN ACCESS XWH00180
PATH SELECTION . A BT THAT IS IN DNF MAY BE XWH00190
REPLACED BY SEARCH ARGUMENTS. A BT THAT I S NOT IN XWH00200
DNF MAY SOME DAY BE PUT INTO DNF AND REPLACED BY SEARCH XWH00210
ARGUMENTS. XWH00220

XWH00230
XWHERE MARKS THE NODES AS FOLLOWS : XWH00240
BOOLEAN P1 INDEX OF PARENT NODE XWH00250

P2 NUMBER OF NODES BELOW, INCLUDING THIS ONE XWH00260
NOTNODE P1 INDEX OF PARENT NODE XWH00270
PREDICATE P1 1 IF SARGABLE , ELSE 0 XWH00280

P2 NUMBER OF NODES XWH00290
XWH00300

XWHERE CALLS XEXPRTR TO WALK OPERAND EXPRESSION TREES . XWH00310
AFTER THE FIRSTPASS , XWHERE NEEDS COLFLAG AND SARGABLE . XWH00320
ALL RETURN PARAMETERS ARE NEEDED AFTER PASS 2 XWH00330

XWH00340
DNF STATE I S A FUNCTION OF THE AND/OR/NOT SEQUENCE */ XWH00350

XWH00360
XWHERE: PROC(NODEIND, PARIND , OPPTR , FIRSTPASS , ANDONLY, SARGABLE , DNFFLAG, XWH00370

ORCHILD ,NUMNODES, STACKINDS , BQPTR,CHKMODE,RUNTIMEMODE, XWH00380
CURSEXECMODE, AUTHID) RECURSIVE REORDER OPTIONS (REENTRANT) ; XWH00390

XWH00400

.

.
IF ¬FIRSTPASS THEN XWH01670

IF P4=ANDCODE THEN NEWANDONLY=ANDONLY ; XWH01680
ELSE NEWANDONLY= ’ 0 ’B ; XWH01690

CALL XWHERE(P3 , NODEIND, OPPTR , FIRSTPASS ,NEWANDONLY, LEFTSARGABLE , XWH01700
LEFTDNF , LORCHILD, NLEFTNODES, STACKINDS , BQPTR ,CHKMODE, XWH01710
RUNTIMEMODE, CURSEXECMODE, AUTHID) ; XWH01720

TESTCODE ; XWH01730
IF OPTLEVEL > 2 THEN XWH01740
DISPLAY (’RETURNED FROM XWHERE CALL ON LHS WITH LSARG= ’ XWH01750

| | LEFTSARGABLE) ; XWH01760
CALL XWHERE(P5 , NODEIND, OPPTR , FIRSTPASS ,NEWANDONLY, RIGHTSARGABLE , XWH01770

RIGHTDNF, RORCHILD, NRIGHTNODES, STACKINDS , BQPTR ,CHKMODE, XWH01780
RUNTIMEMODE, CURSEXECMODE, AUTHID) ; XWH01790

TESTCODE ; XWH01800
IF OPTLEVEL> 2 THEN XWH01810
DISPLAY (’RETURNED FROM XWHERE ON RHS WITH RSARG= ’ | | XWH01820

RIGHTSARGABLE) ; XWH01830
SARGABLE=LEFTSARGABLE & RIGHTSARGABLE ; XWH01840
IF ¬FIRSTPASS THEN XWH01850
DO; XWH01860

P2 , XWH01870
NUMNODES = NLEFTNODES + NRIGHTNODES + 1 ; XWH01880
IF NLEFTNODES > NRIGHTNODES THEN XWH01890

278 Appendix A Appendix—Source Code

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

DO; XWH01900
XWH01910

/* INTERCHANGE LEFT AND RIGHT TO PUT SIMPLER PREDICATES XWH01920
ON LEFT*/ XWH01930

XWH01940
TEMPIND = P3 ; XWH01950
P3 = P5 ; XWH01960
P5 = TEMPIND ; XWH01970

END /* OF INTERCHANGE */ ; XWH01980
DNFFLAG=LEFTDNF & RIGHTDNF ; XWH01990
IF P4=ANDCODE THEN DNFFLAG=DNFFLAG & ¬LORCHILD & ¬RORCHILD ; XWH02000
IF P4=ORCODE THEN ORCHILD= ’ 1 ’B ; XWH02010
ELSE ORCHILD= ’ 0 ’B ; XWH02020
IF P4=ORCODE & ANDONLY & SARGABLE THEN XWH02030

/* ENTER INTO BTARRAY */ XWH02040
CALL XFILBT (NODEIND, PARIND , OPPTR , DNFFLAG , ORTREEKIND , XWH02050

’ 0 ’B , /* CORRELATION NOT APPLICABLE */ XWH02060
NT, STACKINDS , BQPTR , BTTABIND) ; XWH02070

END ; /* ¬FIRSTPASS */ XWH02080
RETURN ; XWH02090

END; /* BOOLEANNODE */ XWH02100
XWH02110

ELSE IF NT=NOTNODE THEN XWH02120
DO; XWH02130

IF OPTLEVEL>2 THEN DISPLAY (’XWHERE FOUND NOTNODE ’) ; XWH02140
/* TEST */ XWH02150
IF P5=0 THEN XWH02160
DO; XWH02170

CALL XSYSTEM (PNAME,−101,−901, ’ ’) ; XWH02180
GOTO QUIT ; XWH02190

END; XWH02200
/* ENDTEST */
.
.
.

Listing A.2 System R SQL WHERE clause optimization code, XWHERE.PLIOPT.

Bibliography

J. Abbate. 2000. Inventing the Internet. Inside Technology Series. The MIT Press.
DOI: http://hdl.handle.net/2027/spo.3310410.0003.321.

S. B. Adams and O. R. Butler. 1999. Manufacturing the Future: A History of Western Electric.
Cambridge University Press.

A. V. Aho and J. D. Ullman. 1972. The Theory of Parsing, Translation and Compiling, Volume 1:
Parsing. Prentice-Hall.

A. V. Aho and J. D. Ullman. 1973. The Theory of Parsing, Translation and Compiling, Volume 2:
Compiling. Prentice-Hall.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis of Computer
Algorithms. Addison-Wesley.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers: Principles, Techniques, and
Tools (2nd. ed.). Addison-Wesley.

J. Alderman, D. Spicer, and M. Richards. 2007. Core Memory: A Visual Survey of Vintage
Computers. Chronicle Books.

C. Alexander, S. Ishikawa, and M. Silverstein. 1977. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press.

R. A. Allan. 2001. A History of the Personal Computer: The People and the Technology. Allan
Publishing.

S. Amarel. 1968. On representations of problems of reasoning about actions. In D. Michie
(Ed.), Machine Intelligence-3. Elsevier/North-Holland, 131–171.

J. A. Anderson and E. Rosenfeld (Eds.). 1998. Talking Nets: An Oral History of Neural
Networks. The MIT Press. DOI: https://doi/org/10.1109/TNN.1998.712193.

R. V. Andree. 1958. Programming the IBM 650 Magnetic Drum Computer and Data-Processing
Machine. Holt, Rinehart, and Winston.

E. G. Andrews. January 1982a. Use of the relay digital calculator. In IEEE Ann. Hist. Comput.
4, 1, 5–13.

E. G. Andrews. January 1982b. Telephone switching and the early Bell Laboratories com­
puters. In IEEE Ann. Hist. Comput. 4, 1, 13–19.

B. Arden, B. Galler, and R. Graham. April 1965. The Michigan Algorithm Decoder (MAD)
Manual. University of Michigan.

http://hdl.handle.net/2027/spo.3310410.0003.321
https://doi/org/10.1109/TNN.1998.712193

280 Bibliography

W. B. Arthur. 2009. The Nature of Technology: What It Is and How It Evolves. Free Press.

W. R. Ashby. 1956. An Introduction to Cybernetics. Chapman & Hall.

W. F. Aspray, Jr. 1980. From Mathematical Constructivity to Computer Science: Alan Turing,
John Von Neumann, and the Origins of Computer Science in Mathematical Logic. PhD disser­
tation. University of Wisconsin-Madison.

W. F. Aspray, Jr. 1990a. John Von Neumann and the Origins of Modern Computing. The MIT
Press.

W. F. Aspray, Jr. 1990b. Computing Before Computers. Iowa State University Press.

Association for Computing Machinery. 1987. ACM Turing Award Lectures: The First Twenty
Years, 1966–1985. ACM Press, Addison-Wesley.

AT&T Bell Telephone Laboratories. 1987a. UNIX System, Readings and Applications. Vol. 1.
Prentice-Hall.

AT&T Bell Telephone Laboratories. 1987b. UNIX System, Readings and Applications. Vol. 2.
Prentice-Hall.

S. Augarten. 1984. Bit by Bit: An Illustrated History of Computers. Ticknor & Fields. Also avail­
able online at https://ds-wordpress.haverford.edu/bitbybit/.

C. Babbage. 1864. Passages from the Life of a Philosopher. Longman, Green, Longman,
Roberts & Green, London. DOI: https://doi.org/10.1017/CBO9781139103671.

H. P. Babbage (Ed.). 1889. Babbage’s Calculating Engines: A Collection of Papers. E. & F. N.
Spon, 1889. Reprinted by Tomash.

M. J. Bach. 1986. The Design of the UNIX Operating System. Pearson Education.

B. Bagnall. 2005. On the Edge: The Spectacular Rise and Fall of Commodore. Variant Press.

Ballistic Research Laboratories. September 1949. Preparation of Problems for the BRL
Calculating Machines. Ballistic Research Laboratories, Aberdeen Proving Ground, Tech­
nical Note No. 104.

T. Bardini. 2000. Bootstrapping, Douglas Englebart, Coevolution, and the Origins of Personal
Computing. Stanford University Press.

A. Barr and E. A. Feigenbaum (Eds.). 1981. The Handbook of Artificial Intelligence. Volumes I
and II. William Kaufmann.

A. Barr, P. R. Cohen, and E. A. Feigenbaum (Eds.). 1989. The Handbook of Artificial Intelli­
gence. Volume IV. Addison-Wesley.

W. A. Barrett and J. D. Couch. 1979. Compiler Construction: Theory and Practice. Science
Research Associates.

D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon, and C. Strachey. 1963. The main features
of CPL. Comput. J. 6, 2, 134–143. DOI: https://doi.org/10.1093/comjnl/6.2.134.

G. Basalla. 1988. The Evolution of Technology. Cambridge University Press.

C. J. Bashe, W. Buchholz, G. V. Hawkins, J. J. Ingram, and N. Rochester. September 1981.
The architecture of IBM’s early computers. IBM J. Res. Dev. 25, 5, 363–376. DOI: https://
doi.org/10.1147/rd.255.0363.

https://ds-wordpress.haverford.edu/bitbybit/
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1093/comjnl/6.2.134
https://doi.org/10.1147/rd.255.0363
https://doi.org/10.1147/rd.255.0363

Bibliography 281

C. J. Bashe, L. R. Johnson, J. H. Palmer, and E. W. Pugh. 1985. IBM’s Early Computers. The
MIT Press.

W. F. Bauer. April–June 1996. Informatics: An early software company. IEEE Ann. Hist.
Comput. 18, 2, 70–76.

E. Bauer. 2010. Design for Reliability: Information and Computer-Based Systems. Wiley-IEEE
Press. DOI: https://doi/org/10.1002/9781118075104.

E. Bauer. 2012. Reliability and Availability of Cloud Computing. Wiley-IEEE Press.

C. Baum. 1981. The System Builders, The Story of SDC. System Development Corporation.

C. Beeler. February/March 2009. All-optical computing and all-optical networks are dead.
ACM Queue 7, 3, 10–11. DOI: https://doi.org/10.1145/1530818.1530830.

G. Bell. January 2008a. Bell’s Law for the birth and death of computer classes. Commun.
ACM 51, 1, 86–94. DOI: https://doi.acm.org/10.1145/1327452.1327453.

G. Bell. Fall 2008b. Bell’s Law for the birth and death of computer classes: A theory of the
computer’s evolution. IEEE Solid-State Circuits Soc. Newsl. 13, 4, 8–19. DOI: https://doi.
org/10.1109/N-SSC.2008.4785818.

Bell Telephone Laboratories. 1977. Engineering and Operations in the Bell System. Bell
Laboratories.

J. Bentley. 1986. Programming Pearls. Addison-Wesley.

P. Berger and T. Luckmann. 1966. The Social Construction of Reality. Doubleday.

T. J. Bergin (Ed.). September 2000. 50 Years of Army Computing, From ENIAC to MSRC. A
Record of a Symposium and Celebration, November 13 and 14, 1996. Army Research Lab.

T. J. Bergin. May 2007. A history of the history of programming languages. Commun. ACM
50, 5, 69–74.

T. J. Bergin and R. G. Gibson. 1996. History of Programming Languages. Vol. 2. ACM Press.

A. W. Biermann. 1997. Great Ideas in Computer Science: A Gentle Introduction (2nd. ed.). The
MIT Press.

T. J. Biggerstaff and A. J. Perlis (Eds.). 1989a. Software Reusability: Volume 1: Concepts and
Models. Addison-Wesley. DOI: https://doi.org/10.1145/73103.

T. J. Biggerstaff and A. J. Perlis (Eds.). 1989b. Software Reusability: Volume 2: Applications and
Experience. Addison-Wesley. DOI: https://doi.org/10.1145/75722.

G. Booch. 1983. Software Engineering with Ada. Benjamin/Cummings.

L. Böszömenyi. 2007. MEDICHI 2007—Methodic and Didactic Challenges of the History of
Informatics. Austrian Computer Society.

B. V. Bowden (Ed.). 1953. Faster than Thought: A Symposium on Digital Computing Machines.
Pitman.

C. Boyer. April 2004. The 360 Revolution. IBM Corporation.

P. Braffort and D. Hirschberg (Eds.). 1963. Computer Programming and Formal Systems.
North-Holland.

https://doi/org/10.1002/9781118075104
https://doi.org/10.1145/1530818.1530830
https://doi.acm.org/10.1145/1327452.1327453
https://doi.org/10.1109/N-SSC.2008.4785818
https://doi.org/10.1109/N-SSC.2008.4785818
https://doi.org/10.1145/73103
https://doi.org/10.1145/75722

282 Bibliography

P. Brinch-Hansen. April 1970. Structured multiprogramming. Commun. ACM 13, 4, 238–241
and 250. DOI: https://doi.org/10.1145/362258.3622.

P. Brinch-Hansen. 1973. Operating System Principles. Prentice Hall.

P. Brinch-Hansen (Ed.). 2001. Classic Operating Systems: From Batch Processing to Distributed
Systems. Springer-Verlag.

P. Brinch-Hansen (Ed.). 2002. The Origin of Concurrent Programming: From Semaphores to
Remote Procedure Calls. Springer Science+Business Media. DOI: https://doi.org/10.1007/
978-1-4757-3472-0.

R. N. Britcher. 1999. The Limits of Software: People, Projects, and Perspectives. Addison
Wesley Longman.

M. L. Brodie (Ed.). 2019. Making Databases Work: The Pragmatic Wisdom of Michael Stone­
braker. Association for Computing Machinery and Morgan & Claypool.

F. P. Brooks. 1975. The Mythical Man-Month. Addison-Wesley.

F. P. Brooks, Jr. 1986. No silver bullet—Essence and accidents of software engineering. In
Information Processing, v86, H. J. Kugler (Ed.). Elsevier Science Publishers, 1069–1076.

N. H. Brown, M. P. Fabisch, and C. J. Rifenberg. 1975. SAFEGUARD data-processing system:
Introduction and overview. Bell Syst. Tech. J. 54, 10, S9–S25. DOI: https://doi.org/10.1002/
j.1538-7305.1975.tb03291.x.

H. Bruderer. 2015. Meilensteine der Rechentechnik. De Gruyter Oldenboug.

W. Buchholz (Ed.). 1962. Planning a Computer System: Project Stretch. McGraw-Hill.

M. Bullynck. January 2018. What is an operating system? A historical investigation (1954–
1964): Historical and philosophical aspects. In L. De Mol and G. Primiero (Eds.),
Reflections on Programming Systems: Historical and Philosophical Aspects, Vol. 133, 2019.
Springer, 49–79. ISBN: 978-3-319-97225-1. DOI: https://doi.org/10.1007/978-3-319-97226-8_3.

A. R. Burks. 2003. Who Invented the Computer? The Legal Battle that Changed Computing
History. Prometheus Book.

C. P. Burton. July/September 2005. Replicating the Manchester Baby: Motives, methods,
and messages from the past. IEEE Ann. Hist. Comput. 24, 3, 44–60. DOI: https://doi.org/
10.1109/MAHC.2005.42.

J. N. Buxton and B. Randell (Eds.). April 1970. Software Engineering Techniques, Report on
a conference sponsored by the NATO Science Committee, Rome, Italy, October 27th to
31st, 1969. NATO Science Committee.

M. Campbell-Kelly. July 1990. EdsacSystem: A Tutorial Guide to the Warwick University EDSAC
Simulator. University of Warwick.

M. Campbell-Kelly. 2003. From Airline Reservations to Sonic the Hedgehog: A History of the
Software Industry. The MIT Press.

M. Campbell-Kelly and M. R. Williams (Eds.). 1985. The Moore School Lectures: Theory and
Techniques for Design of Electronic Digital Computers. The MIT Press and Tomash Pub­
lishers, Cambridge, MA; London, England; Los Angeles, CA; San Francisco, CA. ISBN
0-262-03109-4.

https://doi.org/10.1145/362258.3622
https://doi.org/10.1007/978-1-4757-3472-0
https://doi.org/10.1007/978-1-4757-3472-0
https://doi.org/10.1002/j.1538-7305.1975.tb03291.x
https://doi.org/10.1002/j.1538-7305.1975.tb03291.x
https://doi.org/10.1007/978-3-319-97226-8_3
https://doi.org/10.1109/MAHC.2005.42
https://doi.org/10.1109/MAHC.2005.42

Bibliography 283

M. Campbell-Kelly, W. Aspray, N. Ensmenger, and J. R. Yost. 2013. Computer, A History of the
Information Machine (3rd. ed.). The MIT Press.

C. Care. 2010. Technology for Modeling: Electrical Analogies, Engineering Practice, and the
Development of Analogue Computing. Springer-Verlag. DOI: https://doi.org/10.1007/978-1­
84882-948-0.

W. Carlson. 2017. Computer Graphics and Computer Animation: A Retrospective Overview.
Retrieved in 2019, not specifically dated, from https://ohiostate.pressbooks.pub/
graphicshistory/. The Ohio State University.

J. W. Carr III (Ed.). 1958. Computer Programming and Artificial Intelligence, An Intensive
Course for Practicing Scientists and Engineers. Lectures given at the University of
Michigan, Summer 1958, University of Michigan, College of Engineering.

B. E. Carpenter and R. W. Doran. 1986. A. M. Turing’s ACE Report of 1946 and Other Papers.
The MIT Press.

P. E. Ceruzzi. 1983. Reckoners: The Prehistory of the Digital Computer, from Relays to the Stored
Program Concept. Greenwood Press.

P. E. Ceruzzi. 2003. A History of Modern Computing (2nd. ed.). The MIT Press.

P. E. Ceruzzi. July 2005. Moore’s law and technical determinism. Technol. Cult. 46, 3,
584–593. DOI: https://doi.org/10.1353/tech.2005.0116.

H. Cervantes and R. Kazman. 2016. Designing Software Architectures: A Practical Approach.
Addison-Wesley.

D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay,
R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger, M. Schkolnick, D. R. Slutz,
I. L. Traiger, B. W. Wade, and R. A. Yost. October 1981. A history and evaluation of System
R. Commun. ACM 24, 10, 632–646. DOI: https://doi.org/10.1145/358769.358784.

R. N. Charette. September 2020. No one notices the creaky software systems that run the
world—Until they fail. IEEE Spectr. 57, 9, 24–30. DOI: https://doi.org/10.1109/MSPEC.2020.
9173899.

T. E. Cheatham, Jr. August 1978. A brief description of JOVIAL. ACM SIGPLAN Not. 13, 8,
201–202. DOI: https://doi.org/10.1145/960118.808384.

D. R. Cheriton. 1982. The Thoth System: Multi-Process Structuring and Portability. North-
Holland.

J. Chipps, M. Koschmann, S. Orgel, A. Perlis, and J. Smith. 1956. A mathematical language
compiler. In ACM National Computer Conference Proceedings. 114–117. DOI: https://doi.
org/10.1145/800258.808963.

N. Chomsky. 1975. The Logical Structure of Linguistic Theory. Plenum Press.

C. W. Churchman. 1971. The Design of Inquiring Systems: Basic Concepts of Systems and
Organizations. Basic Books.

R. F. Clippinger. 1948. A Logical Coding System Applied to the ENIAC. Ballistic Research
Laboratories, Report No. 673, Aberdeen Proving Ground, MD, July 30.

https://doi.org/10.1007/978-1-84882-948-0
https://doi.org/10.1007/978-1-84882-948-0
https://ohiostate.pressbooks.pub/graphicshistory/
https://ohiostate.pressbooks.pub/graphicshistory/
https://doi.org/10.1353/tech.2005.0116
https://doi.org/10.1145/358769.358784
https://doi.org/10.1109/MSPEC.2020.9173899
https://doi.org/10.1109/MSPEC.2020.9173899
https://doi.org/10.1145/960118.808384
https://doi.org/10.1145/800258.808963
https://doi.org/10.1145/800258.808963

284 Bibliography

E. F. Codd. June 1970. A relational model of data for large shared data banks. Commun.
ACM 13, 6, 377–387. Also in Stonebraker [1988]. DOI: https://doi.org/10.1145/362384.
362685.

E. F. Codd. 1971. A data base sublanguage founded on the relational calculus. In
Proceedings of the 1971 ACM SIGFIDET Workshop on Data Description, Access and Control.
San Diego, 35–68. DOI: https://doi.org/10.1145/1734714.1734718.

E. F. Codd. 1990. The Relational Model for Database Management: Version 2. Addison-Wesley
Longman.

P. R. Cohen and E. A. Feigenbaum (Eds.). 1982. The Handbook of Artificial Intelligence.
Vol. III, Addison-Wesley.

I. B. Cohen and G. Welch (Eds.). 1996. Howard H. Aiken: Computer Pioneer. The MIT Press.

I. B. Cohen, W. T. Harwood, and M. I. Jackson. 1986. The Specification of Complex Systems.
Addison-Wesley.

E. Constant II. 1980. The Origins of the Turbojet Revolution. Johns Hopkins University Press.

F. J. Corbató, M. M. Daggett, and R. C. Daley. May 1962. An experimental time-sharing sys­
tem. In Proceedings of the Spring Joint Computer Conference. Computation Center, MIT,
335–344. DOI: https://doi.org/10.1145/1460833.1460871.

F. J. Corbató and The MIT Computation Center. 1963. The Compatible Time-Sharing System,
A Programmer’s Guide. The MIT Press.

F. J. Corbató and V. A. Vyssotsky. 1965. Introduction and overview of the Multics system.
In Proceedings of the Fall Joint Computer Conference. 185–196. DOI: https://doi.org/10.1145/
1463891.1463912.

J. W. Cortada. 1996. A Bibliographic Guide to the History of Computer Applications, 1950–1990.
Greenwood Press.

J. W. Cortada. 2012. The Digital Flood: The Diffusion of Information Technology Across the
U.S., Europe, and Asia. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/
9780199921553.001.0001.

J. W. Cortada. 2019. IBM: The Rise and Fall and Reinvention of a Global Icon. The MIT Press.

H. F. Craig. 1955. Administering a Conversion to Electronic Accounting: A Case Study of a Large
Office. Division of Research, Graduate School of Business Administration, Harvard
University.

D. Crevier. 1993. AI: The Tumultuous History of the Search for Artificial Intelligence. Basic
Books.

M. Croarken. 1990. Early Scientific Computing in Britain. Oxford Science Publications.

J. Cullinane. 2014. Smarter Than Their Machines: Oral Histories of Pioneers in Interactive
Computing. ACM Books.

M. A. Cusumano. 1991. Japan’s Software Factories. Oxford University Press.

S. Daggett. 1931. Telephone consolidation under the Act of 1921. J. Land Public Util. Econ. 7,
1 (Feb. 1931), 22–35. University of Wisconsin Press.

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/1734714.1734718
https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1145/1463891.1463912
https://doi.org/10.1145/1463891.1463912
https://doi.org/10.1093/acprof:oso/9780199921553.001.0001
https://doi.org/10.1093/acprof:oso/9780199921553.001.0001

Bibliography 285

O. Dahl, B. Myhrhaug, and K. Nygaard. October 1970. Common Base Language. Norwegian
Computing Center, Publication No. S-22.

O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. 1972. Structured Programming. Academic
Press.

C. J. Date. 1975. An Introduction to Database Systems (1st. ed.). Addison-Wesley.

M. Davis. 2000. The Universal Computer: The Road from Leibniz to Turing. W. W. Norton &
Company.

E. G. Daylight (alias for Karel Van Oudheusden). 2011. Dijkstra’s rallying cry for general­
ization: The advent of the recursive procedure, late 1950s–early 1960s. Comput. J. 54, 11,
1756–1772. DOI: https://doi.org/10.1093/comjnl/bxr002.

E. G. Daylight (alias for Karel Van Oudheusden). 2015. Towards a historical notion of
‘Turing—The father of computer science’. Hist. Philos. Logic 36, 3, 205–228. DOI: https://
www.tandfonline.com/doi/full/10.1080/01445340.2015.1082050.

T. DeMarco. 1978. Structured Analysis and System Specification. Yourdon Press, New York.

D. E. R. Denning. 1982. Cryptography and Data Security. Addison-Wesley. DOI: https://dl.
acm.org/doi/book/10.5555/539308.

P. J. Denning (Ed.). 1990. Computers Under Attack: Intruders, Worms, and Viruses. Addison-
Wesley. DOI: https://doi.org/10.1177/0894439306292346.

K. De Leeuw and J. Bergstra. 2007. History of Information Security: A Comprehensive
Handbook. Elsevier, Oxford.

M. L. Dertouzos and J. Moses. 1979. The Computer Age: A Twenty-Year View. The MIT Press,
Cambridge, MA. DOI: https://doi.org/10.7551/mitpress/2034.001.0001.

D. R. Deutsch. April-June 2013. The SQL standard: How it happened. IEEE Ann. Hist.
Comput. 72–75. DOI: https://doi.org/10.1109/MAHC.2013.30.

Deutsches Museum, München. Workshop: Technohistory of Electrical Information
Technology, Held at Deutsches Museum, München, 15th to 19th December 1990,
Preliminary Papers. Deutsches Museum, München, February 1991.

E. W. Dijkstra. 1965. Solution of a problem in concurrent programming control. Commun.
ACM 8, 9, 569. DOI: https://doi.org/10.1145/365559.365617.

E. W. Dijkstra. 1967. The structure of the ‘THE’ multiprogramming system. In Proceedings
of the first ACM symposium on Operating System Principles. DOI: https://doi.org/10.1145/
800001.811672.

E. W. Dijkstra. May 1968. The structure of the ‘THE’-multiprogramming system. Commun.
ACM 11, 5, 341–346. DOI: https://doi.org/10.1145/363095.363143.

E. W. Dijkstra. June 18, 1975. How Do We Tell Truths That Might Hurt? University of Texas
Dijkstra Papers, EWD498. Available online at http://www.cs.utexas.edu/users/EWD/
transcriptions/EWD04xx/EWD498.html.

J. J. Donovan. 1972. Systems Programming. McGraw-Hill.

A. R. Earls. 2004. Digital Equipment Corporation. Arcadia Publishing.

G. Emery. 1986. BCPL and C. Blackwell Scientific Publications.

https://doi.org/10.1093/comjnl/bxr002
https://www.tandfonline.com/doi/full/10.1080/01445340.2015.1082050
https://www.tandfonline.com/doi/full/10.1080/01445340.2015.1082050
https://dl.acm.org/doi/book/10.5555/539308
https://dl.acm.org/doi/book/10.5555/539308
https://doi.org/10.1177/0894439306292346
https://doi.org/10.7551/mitpress/2034.001.0001
https://doi.org/10.1109/MAHC.2013.30
https://doi.org/10.1145/365559.365617
https://doi.org/10.1145/800001.811672
https://doi.org/10.1145/800001.811672
https://doi.org/10.1145/363095.363143
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html

286 Bibliography

N. Ensmenger. 2010. The Computer Boys Take Over: Computers, Programmers, and the Politics
of Technical Expertise. The MIT Press. DOI: https://www.jstor.org/stable/j.ctt5hhjdh.

N. Ensmenger. 2016. The multiple meanings of a flowchart. Inf. Cult. J. Hist. 51, 3, 321–351.
DOI: https://doi.org/10.1353/lac.2016.0013.

R. Epstein. April–June 2013. History of Sybase. IEEE Ann. Hist. Comput. 35, 31–41.
DOI: https://doi.org/10.1109/MAHC.2012.52.

T. Erickson and D. McDonald (Eds.). 2008. HCI Remixed: Reflections on Works That Have
Influenced the HCI Community. The MIT Press. DOI: https://dl.acm.org/doi/book/10.5555/
1355297.

J. Essinger. 2004. Jacquard’s Web: How a Hand-Loom Led to the Birth of the Information Age.
Oxford University Press.

R. R. Everett, C. A. Zraket, and H. D. Benington. 1983. SAGE–A data processing system for
air defense. Ann. Hist. Comput. 5, 4, 330–339. DOI: https://doi.org/10.1109/MAHC.1983.
10096.

E. A. Feigenbum and J. Feldman (Eds.). 1963. Computers and Thought. McGraw Hill.
DOI: https://dl.acm.org/doi/book/10.5555/601134.

A. Finerman (Ed.). 1968. University Education in Computer Science. Academic Press.

FirstPerson, Inc. 1994. Oak Language Specification. FirstPerson, Inc., Palo Alto, CA, Retrieved
from: http://www.javaspecialists.eu/archive/files/OakSpec0.2.ps.

F. M. Fisher, J. W. McKie, and R. B. Mancke. 1983. IBM and the U.S. Data Processing Industry:
An Economic History. Praeger Publishers. DOI: https://doi.org/10.1017/S0022050700031752.

K. Flamm. 1988. Creating the Computer: Government, Industry and High Technology. Brook­
ings Institution. DOI: https://dl.acm.org/doi/10.5555/42173.

I. Flores. 1960. Computer Logic: The Functional Design of Digital Computers. Prentice-Hall.

J. D. Foley and A. Van Dam. 1982. Fundamentals of Interactive Computer Graphics. Addison-
Wesley. DOI: https://dl.acm.org/doi/10.5555/6684.

M. Frauenfelder. 2007. The Computer: An Illustrated History. Carlton Publishing Group.

P. A. Freeman, W. R. Adrion, and W. Aspray. 2019. Computing and the National Science
Foundation, 1950–2016: Building a Foundation for Modern Computing. ACM Books.
DOI: https://doi.org/10.1145/3336323.

J. P. Fry and E. H. Sibley. March 1976. Evolution of data-base management systems. ACM
Comput. Surv. 8, 1, 7–42. DOI: https://doi.org/10.1145/356662.356664.

R. P. Gabriel. 1996. Patterns of Software: Tales from the Software Community. Oxford
University Press. DOI: https://dl.acm.org/doi/10.5555/235167.

E. Gade. May 2011. Naming the Net: The Domain Name System, 1983–1990, MA/MSc
Dissertation, Columbia University and The London School of Economics and Political
Science.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley.

N. Gehani. 2003. Bell Labs: Life in the Crown Jewel. Silicon Press.

https://www.jstor.org/stable/j.ctt5hhjdh
https://doi.org/10.1353/lac.2016.0013
https://doi.org/10.1109/MAHC.2012.52
https://dl.acm.org/doi/book/10.5555/1355297
https://dl.acm.org/doi/book/10.5555/1355297
https://doi.org/10.1109/MAHC.1983.10096
https://doi.org/10.1109/MAHC.1983.10096
https://dl.acm.org/doi/book/10.5555/601134
http://www.javaspecialists.eu/archive/files/OakSpec0.2.ps
https://doi.org/10.1017/S0022050700031752
https://dl.acm.org/doi/10.5555/42173
https://dl.acm.org/doi/10.5555/6684
https://doi.org/10.1145/3336323
https://doi.org/10.1145/356662.356664
https://dl.acm.org/doi/10.5555/235167

Bibliography 287

F. Genuys. 1968. Programming Languages: NATO Advanced Study Institute. Academic Press,
Inc.

J. Gertner. 2012. The Idea Factory: Bell Labs and the Great Age of American Innovation.
Penguin Press. DOI: https://doi.org/10.1162/LEON_r_00497.

T. B. Glans, B. Grad, and D. Holstein. 1968. Management Systems (1st. ed.). Holt, Rinehart,
and Winston. DOI: https://doi.org/10.1145/1480083.1480160.

R. L. Glass. 1998. In the Beginning: Recollections of Software Pioneers. IEEE Computer Society
Press. DOI: https://doi.org/10.1145/3282517.3282521.

A. C. Glennie. Automatic Coding of an Electronic Computer. Notes for lecture given at
University of Cambridge, February 1953. Notes dates December 1952. Copy at Computer
History Museum (Computer History Museum Lot X2677.2004).

H. H. Goldstine. 1972. The Computer from Pascal to von Neumann. Princeton University
Press.

H. H. Goldstine and J. von Neumann. April 1948. Planning and Coding of Problems for an
Electronic Computing Instrument: Report on the Mathematical and Logical Aspects of an
Electronic Computing Instrument. Part II, Volume II. The Institute for Advanced Study,
Princeton University. Available online at http://bitsavers.org/pdf/ias/Planning_and_Cod
ing_of_Problems_for_an_Electronic_Computing_Instrument_Part_II_Volume_II_Apr
48.pdf.

H. P. Goodman. September 1961. The simulation of the Orion time-sharing system on
Sirius. Comput. Bull. 5, 2, 51–55.

S. Gorn. July 1957. Standardized programming methods and universal coding. J. ACM 4, 3,
254–273. DOI: https://doi.org/10.1145/320881.320883.

D. A. Grier. October-December 2012. The relational database and the concept of the infor­
mation system. IEEE Ann. Hist. Comput. 34, 4, 9–17. DOI: https://doi.org/10.1109/MAHC.
2012.70.

R. L. Grossman. 2012. The Structure of Digital Computing: From Mainframes to Big Data.
Open Data Press.

D. J. Haderle and C. M. Saracco. April–June 2013. The history and growth of IBM’s DB2.
IEEE Ann. Hist. Comput. 54–66. DOI: https://doi.org/10.1109/MAHC.2012.55.

K. Hafner and M. Lyon. 1998. Where Wizards Stay Up Late: The Origins of the Internet. Simon
& Schuster.

T. Haigh. October–December 2009. How data got its base: Information storage software
in the 1950s and 1960s. IEEE Ann. Hist. Comput. 31, 4, 6–25. DOI: https://doi.org/10.1109/
MAHC.2009.123.

T. Haigh and M. Priestley. January 2016. Where code comes from: Architectures of auto­
matic control from Babbage to ALGOL. Commun. ACM 59, 1, 39–44. DOI: https://doi.org/
10.1145/2846088.

T. Haigh and P. E. Ceruzzi. 2021. A New History of Modern Computing. ISBN: 9780262542906.
Published.

T. Haigh, M. Priestley, and C. Rope. 2016. ENIAC in Action. The MIT Press.

https://doi.org/10.1162/LEON_r_00497
https://doi.org/10.1145/1480083.1480160
https://doi.org/10.1145/3282517.3282521
http://bitsavers.org/pdf/ias/Planning_and_Coding_of_Problems_for_an_Electronic_Computing_Instrument_Part_II_Volume_II_Apr48.pdf
http://bitsavers.org/pdf/ias/Planning_and_Coding_of_Problems_for_an_Electronic_Computing_Instrument_Part_II_Volume_II_Apr48.pdf
http://bitsavers.org/pdf/ias/Planning_and_Coding_of_Problems_for_an_Electronic_Computing_Instrument_Part_II_Volume_II_Apr48.pdf
https://doi.org/10.1145/320881.320883
https://doi.org/10.1109/MAHC.2012.70
https://doi.org/10.1109/MAHC.2012.70
https://doi.org/10.1109/MAHC.2012.55
https://doi.org/10.1109/MAHC.2009.123
https://doi.org/10.1109/MAHC.2009.123
https://doi.org/10.1145/2846088
https://doi.org/10.1145/2846088

288 Bibliography

B. Hailpern. 2007. HOPL III. In Proceedings of the Third ACM SIGPLAN Conference on History
of Programming Languages. ACM Press. DOI: https://doi.org/10.1145/1238844.1411838.

M. Hally. 2005. Electronic Brains: Stories from the Dawn of the Computer Age. Joseph Henry
Press. DOI: https://doi.org/10.17226/11319.

M. J. Halvorson. 2020. Code Nation: Personal Computing and the Learn to Program Movement
in America. ACM Books. DOI: https://doi.org/10.1145/3368274.

R. Hammerman and A. L Russell. 2015. Ada’s Legacy: Cultures of Computing from the
Victorian to the Digital Age. ACM Books. DOI: https://doi.org/10.1145/2809523.

H. Harris and B. Nicol. April-June 2013. SQL/DS: IBM’s first RDBMS. IEEE Ann. Hist.
Comput. 35, 2, 69–71. DOI: https://doi.org/10.1109/MAHC.2013.28.

U. Hashagen, R. Keil-Slawik, and A. Norberg (Eds.). 2002. History of Computing: Software
Issues. Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-04954-9.

R. Hauben and M. Hauben. 1997. Netizens Netbook, unpublished DRAFT. http://www.
columbia.edu/˜hauben/book-pdf/, Accessed January 5, 2015. A version was published as
Netizens: On the History and Impact of Usenet and the Internet, IEEE Computer Society.

S. J. Heims. 1991. The Cybernetics Group. The MIT Press.

F. Helwig (Ed.). October 1957. CODING for the MIT-IBM 704 Computer. Massachusetts
Institute of Technology.

J. Hendry. 1989. Innovating for Failure: Government Policy and the Early British Computer
Industry. The MIT Press.

G. J. Henry. October 1984. The UNIX system: The fair share scheduler. AT&T Bell Lab. Tech. J.
63, 8, 1845–1857. DOI: https://doi.org/10.1002/j.1538-7305.1984.tb00068.x.

B. Higman. 1967. A Comparative Study of Programming Languages. American Elsevier.

A. M. Hilton. 1963. Logic, Computing Machines, and Automation. Meridian Books.
DOI: https://doi.org/10.2307/2272108.

M. A. Hiltzik. 1999. Dealers of Lightning. HarperBusiness.

C. A. R. Hoare. October 1969. An axiomatic basis for computer programming. Commun.
ACM 12, 10, 576–583. DOI: https://doi.org/10.1145/363235.363259.

C. A. R. Hoare. October 1974. Monitors: An operating system structuring concept.
Commun. ACM 17, 10, 549–557. DOI: https://doi.org/10.1145/355620.361161.

C. A. R. Hoare and C. B. Jones (Eds.). 1989. Essays in Computing Science. Prentice Hall.

B. D. Holbrook and W. S. Brown. 1984. A history of computing research at Bell Laboratories
(1937–1975). In A History of Science and Engineering and Science in the Bell System, Volume:
Communications Sciences. AT&T Bell Laboratories.

J. R. Holmevik. 1994. Compiling SIMULA: A historical study of technological genesis. IEEE
Ann. Hist. Comput. 16, 4, 25–37.

G. J. Holzmann and B. Pehrson. 2003. The Early History of Data Networks. IEEE Computer
Society Press.

D. H. Hook and J. M. Norman. 2002. Origins of Cyberspace : a Library on the History of Com­
puting, Networking, and Telecommunications. Historyofscience.com.

https://doi.org/10.1145/1238844.1411838
https://doi.org/10.17226/11319
https://doi.org/10.1145/3368274
https://doi.org/10.1145/2809523
https://doi.org/10.1109/MAHC.2013.28
https://doi.org/10.1007/978-3-662-04954-9
http://www.columbia.edu/~hauben/book-pdf/
http://www.columbia.edu/~hauben/book-pdf/
https://doi.org/10.1002/j.1538-7305.1984.tb00068.x
https://doi.org/10.2307/2272108
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/355620.361161
Historyofscience.com

Bibliography 289

D. H. Hook, J. M. Norman, and M. R. Williams. 2002. Origins of Cyberspace: A Library on the
History of Computing, Networking and Telecommunications. Norman Publishing, Novato,
Calif.

J. E. Hopcroft and J. D. Ullman. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

R. C. Houghton, Jr. May 1983. Software development tools. IEEE Comput. 16, 5, 63–70.
DOI: https://doi.org/10.1109/MC.1983.1654382.

J. K. Hughes. 1969. Programming the IBM 1130. John Wiley & Sons.

T. P. Hughes. 2004. Human-Built World: How to Think about Technology and Culture.
University of Chicago Press.

IEEE Communications Society. 2002. A Brief History of Communications. IEEE.

G. Ifrah. 2002. The Universal History of Computing: From the Abacus to the Quantum
Computer. Wiley.

International Business Machines. 1957. SOAP II for the IBM 650 Data Processing System. IBM
Press. Available at http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf.

International Business Machines. 1964. IBM System/360 Principles of Operation. IBM Press.

J. Impagliazzo, M. Campbell-Kelly, G. Davies, J. A. N. Lee, and M. R. Williams. October
1998. History in the Computing Curriculum. IFIP, TC3/TC9 Joint Task Group.

M. M. Irvine. July–September 2001. Early digital computers at Bell Telephone Laboratories.
IEEE Ann. Hist. Comput. 23, 3, 22–42. DOI: https://doi.org/10.1109/85.948904.

K. E. Iverson. 1962. A Programming Language. John Wiley & Sons.

J. F. Jacobs. 1983. SAGE overview. Ann. Hist. Comput. 5, 4, 323–329.

J. F. Jacobs. 1986. The SAGE Air Defense System: A Personal History. The MITRE Corporation.

L. Johnson. 2003. ADAPSO Reunion Transcript, May 2–4, 2002. iBusiness Press.

S. C. Johnson and D. M. Ritchie. 1978. Portability of C programs and the UNIX system. Bell
System Tech. J. 57, 6, 2021–2048.

D. Kahn. 1996. The Codebreakers: The Comprehensive History of Secret Communication from
Ancient Times to the Internet, revised and updated edition. Scribner.

M. A. Karim and A. A. S. Awwal. 1992. Optical Computing: An Introduction. Wiley-
InterScience.

H. Katzan, Jr. 1970a. Advanced Programming: Programming and Operating Systems. Reinhold
Book Corporation.

H. Katzan, Jr. 1970b. APL Programming and Computer Techniques. Van Nostrand Reinhold.

A. Kay. August 1972. A personal computer for children of all ages. In Proceedings of the ACM
National Conference. Xerox Palo Alto Research Center, Boston.

A. Kay. 1993. The early history of Smalltalk. History of Programming Languages II.
Association for Computing Machinery. posted at http://gagne.homedns.org/˜tgagne/
contrib/EarlyHistoryST.html.

https://doi.org/10.1109/MC.1983.1654382
http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf
https://doi.org/10.1109/85.948904
http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html
http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html

290 Bibliography

J. Kay and P. Lauder. January 1988. A fair share scheduler. Commun. ACM 31, 1, 44–55.
DOI: https://doi.org/10.1145/35043.35047.

C. M. Kelty. 2008. Two Bits. Duke University Press.

A. Kent and J. G. Williams. 1987. Computers in Spaceflight: The NASA Experience. NASA
(under contract NASW-3714).

B. W. Kernighan. July 18 1981. Why Pascal Is Not My Favorite Programming Language.
Computing Science Technical Report No. 100. AT&T Bell Telephone Laboratories.

B. W. Kernighan. October 2019. UNIX: A History and a Memoir. Independently published.

B. W. Kernighan and P. J. Plauger. 1976. Software Tools. Addison-Wesley. DOI: https://doi.
org/10.1145/1010726.1010728.

P. A. Kidwell and P. E. Ceruzzi. 1994. Landmarks in Digital Computing: A Smithsonian Pictorial
History. Smithsonian Institution Press.

T. Kilburn, D. J. Howarth, R. B. Payne, and F. H. Sumner. 1961. The Manchester University
Atlas operating system. Part 1: Internal organization. Comput. J. 4, 3, 222–225.

G. A. Kildall. January 1980. The evolution of an industry: One person’s viewpoint. Dr. Dobb’s
J. Comput. Calisthenics & Orthodontia 5, 1, 6–7.

B. Klein, R. A. Long, K. R. Blackman, D. L. Goff, S. P. Nathan, M. M. Lanyi, M. M. Wilson,
J. Butterweck, and S. L. Sherrill. 2012. An Introduction to IMS: Your Complete Guide to IBM
Information Management System (2nd. ed.). IBM Press.

D. E. Knuth. June 1965. On the translation of languages from left to right. Inf. Control 8,
607–639.

D. E. Knuth. December 1970. Von Neumann’s first computer program. ACM Comput. Surv.
2, 4, 247–260. DOI: https://doi.org/10.1145/356580.356581.

D. E. Knuth. 1986. The TeXbook. Addison-Wesley.

D. E. Knuth. 1993. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-
Wesley.

D. E. Knuth. 2003. Selected Papers on Computer Languages. Center for the Study of Language
and Information, Stanford University.

J. Koomey, S. Bernard, M. Sanchez, and H. Wong. March 29 2010. Implications of histori­
cal trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput. 33, 3, 46–54.
DOI: https://doi.org/10.1353/ahc.2011.0028.

J. A. Kowal. 1988. Analyzing Systems. Prentice-Hall.

R. A. Kowalski. January 1988. The early years of logic programming. Commun. ACM 31, 1,
38–43. DOI: https://doi.org/10.1145/35043.35046.

E. Krol. 1992. The Whole Internet: User’s Guide & Catalog. O’Reilly & Associates.

T. S. Kuhn. 1962. The Structure of Scientific Revolutions. University of Chicago Press.

R. Kurzweil. 1990. The Age of Intelligent Machines. The MIT Press.

G. Laing. 2005. Digital Retro: The Evolution and Design of the Personal Computer. Variant
Press.

https://doi.org/10.1145/35043.35047
https://doi.org/10.1145/1010726.1010728
https://doi.org/10.1145/1010726.1010728
https://doi.org/10.1145/356580.356581
https://doi.org/10.1353/ahc.2011.0028
https://doi.org/10.1145/35043.35046

Bibliography 291

L. Lambert, C. Woodford, H. Poole, and C. J. P. Moschovitis (Eds.). 2005. The Internet: A
Historical Encyclopedia. Three Volumes. ABC-CLIO.

B. W. Lampson and D. D. Redell. February 1980. Experience with processes and monitors in
Mesa. Commun. ACM 23, 2, 106–117.

C. G. Langton (Ed.). 1989. Artificial Life. Addison-Wesley.

R. A. Larner. 1987. FMS: The IBM FORTRAN monitor system. In AFIPS Proceedings of the
1987 National Computer Conference. AFIPS, 815–820.

S. H. Lavington. 1980. Early British Computers: The Story of Vintage Computers and the People
Who Built Them. Digital Press.

C. Lazou. 1988. Supercomputers and Their Use. Revised Edition. Oxford University,
Clarendon Press.

J. A. N. Lee. 1992. Whiggism in Computer Science: Views of the Field. Computer Science
Technical Report TR 92-17. Virginia Polytechnic Institute and State University.

J. A. N. Lee. 1996. “Those who forget the lessons of history are doomed to repeat it”: Or,
why I study the history of computing. IEEE Ann. Hist. Comput. 18, 2, 54–62.

J. C. R. Licklider. April 23 1963. Memorandum for Members and Affiliates to the Intergalactic
Computer Network. Advanced Research Project Agency, Memorandum.

J. C. R. Licklider. 1965. Libraries of the Future. The MIT Press, Cambridge, MA.

R. C. Linger, H. D. Mills, and B. I. Witt. 1979. Structure Programming: Theory and Practice.
Addison Wesley.

J. Lions. 1976a. Lions’ Commentary on UNIX 6th Edition, with Source Code. The University of
New South Wales, Australia.

J. Lions. 1976b. A Commentary on the Sixth Edition UNIX Operating System, Booklet for
Students. The University of New South Wales, Australia.

J. Lions. 1977. A Commentary on the Sixth Edition UNIX Operating System. Department of
Computer Science, The University of New South Wales.

J. Lions. 1996. Lions’ Commentary on UNIX 6th Edition with Source Code. Peer-To-Peer Commu­
nications. Inc., San Jose, CA.

S. Lohr. 2001. Go To: The Story of the Math Majors, Bridge Players, Engineers, Chess Wizards,
Maverick Scientists and Iconoclasts: The Programmers Who Created the Software Revolution.
Basic Books.

B. Longo. 2015. Edmund Berkeley and the Social Responsibility of Computer Professionals.
ACM Books. DOI: https://doi.org/10.1145/2787754.

D. E. Lundstrom. 1987. A Few Good Men from Univac. The MIT Press.

C. A. Mack. May 2011. Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24, 2,
202–207. DOI: http://dx.doi.org/10.1109/TSM.2010.2096437.

M. S. Mahoney. 1980. The roots of software engineering. In N. Metropolis, J. Howlett, and
G.-C. Rota (Eds.), A History of Computing in the Twentieth Century: A Collection of Essays.
Academic Press, 3–9.

https://doi.org/10.1145/2787754
http://dx.doi.org/10.1109/TSM.2010.2096437

292 Bibliography

M. S. Mahoney. 1988. The history of computing in the history of technology. Ann. Hist.
Comp. 10, 2, 113–125. DOI: https://doi.org/10.1109/MAHC.1988.10011.

M. S. Mahoney. 2011. Histories of Computing. Harvard University Press.

J. Mailland and K. Driscoll. 2017. Minitel: Welcome to the Internet. The MIT Press.
DOI: https://doi.org/10.7551/mitpress/10728.003.0001.

K. Maney, S. Hamm, and J. O’Brien. 2011. Making the World Work Better: The Ideas That
Shaped a Century and a Company. IBM Press.

K. Mannheim. 1946. Ideology and Utopia. Harcourt, Brace & Company.

F. F. Martin. 1968. Computer Modeling and Simulation. John Wiley & Sons.

J. Martin. 1977. Computer Data-base Organization. Prentice-Hall.

J. Martin. 1990. Information Engineering, Book II: Planning and Analysis. Prentice Hall.

A. D. McAulay. 1991. Optical Computer Architectures: The Application of Optical Concepts to
Next Generation Computers. Wiley-InterScience.

S. McCartney. 1999. ENIAC: The Triumphs and Tragedies of the World’s First Computer. Walker
and Company.

P. McCorduck. 1979. Machines Who Think. W. H. Freeman and Company.

D. D. McCracken. 1961. A Guide to IBM 1401 Programming. John Wiley & Sons.

H. McCracken. April 29 2014. Fifty years of BASIC, the programming language that made
computers personal. Time. https://time.com/69316/basic/.

W. M. McKeeman, J. J. Horning, and D. B. Wortman. 1970. A Compiler Generator. Prentice-
Hall.

A. Mendelsohn. April–June 2013. The Oracle story: 1984–2001. IEEE Ann. Hist. Comput. 35, 2,
10–23. DOI: https://doi.org/10.1109/MAHC.2012.56.

N. D. Mermin. 2007. Quantum Computer Science: An Introduction. Cambridge University
Press. DOI: https://doi.org/10.1017/CBO9780511813870.

N. Metropolis. 1987. The beginning of the Monte Carlo method. Los Alamos Sci. Special
Edition 125–130. https://fas.org/sgp/othergov/doe/lanl/pubs/00326866.pdf.

N. Metropolis, J. Howlett, and G-C Rota, (Eds.). 1980. A History of Computing in the
Twentieth Century: A Collection of Essays. Academic Press.

S. Millman (Ed.). 1984. A History of Engineering and Science in the Bell System (1st. ed.). AT&T
Bell Laboratories.

M. L. Minsky. 1986. The Society of Mind. Simon & Schuster.

M. L. Minsky and S. A. Papert. 1988. Perceptrons, Expanded Edition. The MIT Press.

T. J. Misa. 2016. Communities of Computing: Computer Science and Society in the ACM. ACM
Books.

E. Mollick. July–September 2006. Establishing Moore’s law. IEEE Ann. Hist. Comput. 28, 3,
62–75. DOI: https://doi.org/10.1109/MAHC.2006.45.

G. Moody. 2001. Rebel Code: Inside Linux and the Open Source Revolution. Perseus
Publishing.

https://doi.org/10.1109/MAHC.1988.10011
https://doi.org/10.7551/mitpress/10728.003.0001
https://time.com/69316/basic/
https://doi.org/10.1109/MAHC.2012.56
https://doi.org/10.1017/CBO9780511813870
https://fas.org/sgp/othergov/doe/lanl/pubs/00326866.pdf
https://doi.org/10.1109/MAHC.2006.45

Bibliography 293

G. E. Moore. April 19 1965. Cramming more components onto integrated circuits.
Electronics 114–117.

C. J. P Moschovitis, H. Poole, T. Schuyler, and T. M. Senft. 1999. History of the Internet, A
Chronology, 1843 to the Present. ABC-CLIO Publishers.

R. Mueser. 1979. Bell Laboratories Innovation in Telecommunications, 1925–1977. Bell
Laboratories.

C. J. Murray. 1997. The Supermen: The Story of Seymour Cray and the Technical Wizards
Behind the Supercomputer. Wiley.

J. D. Musa. 2004. Software Reliability Engineering: More Reliable Software, Faster and Cheaper
(2nd. ed.). Author House.

G. J. Myers. 1975. Reliable Software Through Composite Design. Petrocelli/Charter.

S. G. Nash (Ed.). 1990. A History of Scientific Computing. ACM Press.

National Research Council (US). Committee on Uses of Computers. 1966. Digital

Computer Needs in Universities and Colleges. National Academy of Sciences, National

Research Council.

P. Naur. 1992. Computing: A Human Activity. ACM Press, Addison-Wesley.

P. Naur and B. Randell. 1969. Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968. NATO Science
Committee.

A. Newell and H. A. Simon. 1972. Human Problem Solving. Prentice-Hall.

M. Nielsen and I. Chuang. 2011. Quantum Computation and Quantum Information. (10th.
Anniversary ed.). Cambridge University Press.

N. J. Nilsson. 2010. The Quest for Artificial Intelligence: A History of Ideas and Achievements.
Cambridge University Press.

J. November. 2012. Biomedical Computing: Digitizing Life in the United States. Johns Hopkins
Press. DOI: https://doi.org/10.1353/book.14634.

P. Oman and T. Lewis. 1990. Milestones in Software Evolution. IEEE Computer Society Press.

A. Oram and G. Wilson. 2007. Beautiful Code: Leading Programmers Explain How They Think.
O’Reilly Media.

G. O’Regan. 2016. Introduction to the History of Computing, A Computing History Primer.
Springer.

M. A. Padlipsky. 1985. The Elements of Networking Style: And Other Essays and Animadver­
sions on the Art of Intercomputer Networking. Prentice-Hall.

G. Parayil. 1999. Conceptualizing Technological Change. Rowman & Littlefield.

D. F. Parkhill. 1966. The Challenge of the Computer Utility. Addison-Wesley.

R. L. Patrick. January 1987. General Motors/North American Monitor for the IBM 704
Computer. RAND Corporation, P-7316. https://www.rand.org/pubs/papers/P7316.html.

D. A. Patterson and J. L. Hennessy. 2013. Computer Organization and Design: The Hardware/­
Software Interface (5th. ed.). Morgan Kaufmann Publishers.

https://doi.org/10.1353/book.14634
https://www.rand.org/pubs/papers/P7316.html

294 Bibliography

J. Pelkey. 2019. Entrepreneurial Capitalism and Innovation: A History of Computer
Communications 1968–1988. http://www.historyofcomputercommunications.info/ Book,
to be published late 2021 by ACM Books.

D. Pessel. 2006. A Brief History of Computer Time: 60 Years of Computer Technology and the
People Who Helped Make It Happen. IEEE Computer Society Press.

C. Pettijohn. March 1986. Achieving quality in the development process. AT&T Tech. J. 65, 3,
85–93. DOI: https://doi.org/10.1002/j.1538-7305.1986.tb00296.x.

C. Petzold. 1999. Code: The Hidden Language of Computer Hardware and Software. Microsoft
Press.

J. R. Pierce. 1980. An Introduction to Information Theory: Symbols, Signals, and Noise
(2nd. ed.). Dover.

R. P. Polivka and S. Pakin. 1975. APL: The Language and Its Usage. Prentice-Hall.

G. J. Popek and R. P. Goldberg. July 1974. Formal requirements for virtualizable third gen­
eration architectures. Commun. ACM 17, 7, 412421. DOI: https://doi.org/10.1145/361011.
361073.

M. Priestley. 2011. A Science of Operations: Machines, Logic and the Invention of Programming.
Springer-Verlag.

E. W. Pugh. 2009. Building IBM: Shaping an Industry and Its Technology. The MIT Press.
DOI: https://doi.org/10.7551/mitpress/1687.001.0001.

E. W. Pugh, L. R. Johnson, and J. H. Palmer. 1991. IBM’s 360 and Early 370 Systems. The MIT
Press.

A. Ralston and E. Reilly, Jr (Eds.). 1983. Encyclopedia of Computer Science and Engineering
(2nd. ed.). Van Nostrand Reinhold.

B. Randell. 1973. The Origins of Digital Computers: Selected Papers. Springer.

B. Randell. 1976. The COLOSSUS. Computing Laboratory Report Number 90. University of
Newcastle upon Tyne.

B. Randell. October 1982. From analytical engine to electronic digital computer: The con­
tributions of Ludgate, Torres, and Bush. Ann. Hist. Comput. 4, 4, 327–341. DOI: https://
doi.org/10.1109/MAHC.1982.10042.

E. S. Raymond. 1999. The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly.

M. G. Rekoff, Jr. 1967. Analog Computer Programming. Charles E. Merrill Books.

Reserve Bank of New Zealand. 2008. About the Reserve Bank Museum. Reserve Bank of New
Zealand.

J. Rice and R. A. DeMillo (Eds.). 1994. Studies in Computer Science: In Honor of Samuel D.
Conte. Plenum Press.

C. Rich and R. C. Waters. 1990. The Programmer’s Apprentice. Addison-Wesley.

L. Rising. 1998. The Patterns Handbook: Techniques, Strategies, and Applications. Cambridge
University Press.

http://www.historyofcomputercommunications.info/
https://doi.org/10.1002/j.1538-7305.1986.tb00296.x
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://doi.org/10.7551/mitpress/1687.001.0001
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042

Bibliography 295

D. M. Ritchie. October 1984. The evolution of the UNIX time-sharing system. AT&T Bell
Labs. Tech. J. 63, 6, Part 2, 1577–1593. DOI: http://cm.bell-labs.com/cm/cs/who/dmr/
hist.htm

R. Rojas and U. Hashhagen. 2002. The First Computers: History and Architectures. The MIT
Press.

S. Rosen. 1967. Programming Systems and Languages. McGraw-Hill.

S. Rosen. 1968. Electronic Computers, A Historical Survey. Computer Sciences Department
Technical Report TR25. Purdue University.

S. Rosenberg. 2008. Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and
One Quest for Transcendent Software. Three Rivers Press.

R. F. Rosin. 1969. Supervisory and monitor systems. ACM Comput. Surv. 1, 1 (March 1969),
37–54. DOI: https://doi.org/10.1145/356540.356544.

A. L. Russell. 2014. Open Standards and the Digital Age: History, Ideology, and Networks.
Cambridge University Press.

H. Sackman. 1967. Computers, System Science, and Evolving Society: The Challenge of Man–
Machine Digital Systems. John Wiley & Sons.

J. E. Sammet. 1969. Programming Languages: History and Fundamentals. Prentice-Hall.

J. E. Sammet. July 1972. Programming languages: History and future. Commun. ACM 15, 1,
601–610.

A. Samuel. March 1980. Essential E. Stanford Artificial Intelligence Laboratory. Computer
Science Department, Memo: AIM-335, Report No. CS-TR-80-796. http://infolab.stanford.
edu/pub/cstr/reports/cs/tr/80/796/CS-TR-80-796.pdf.

R. R. Schaller. June 1997. Moore’s law: Past, present and future. IEEE Spectr. 34, 6, 52–59.
DOI: https://doi.org/10.1109/6.591665.

E. H. Schein, P. J. Kampas, P. S. Delisi, and M. M. Sonduck. 2004. DEC is Dead, Long Live
DEC: The Lasting Legacy of Digital Equipment Corporation. Berrett-Koehler Publishers.

J. I. Schwartz. 1981. JOVIAL session. In History of Programming Languages. ACM, 369–388.

Scientific American. 1966. Information. ISBN-13: 978-0716709671, W. H. Freeman and
Company.

R. Sethi. 1989. Programming Languages, Concepts and Constructs. Addison-Wesley.

C. E. Shannon. 1940. A symbolic analysis of relay and switching circuits. Results previously
published in AIEE Transactions 57, 1938, pp. 713–723. MS thesis. Massachusetts Institute
of Technology.

C. E. Shannon and J. McCarthy (Eds.). 1956. Automata Studies. Princeton University Press.

E. Y. Shapiro. September 1983. The fifth generation project—A trip report. Commun. ACM
26, 9, 637–641. DOI: https://doi.org/10.1145/358172.358179.

F. R. Shapiro. April–June 2000. Comments, queries, and debate. IEEE Ann. Hist. Comput.
69–71.

D. P. Siewiorek, C. G. Bell, and A. Newell. 1971. Computer Structures: Principles and Examples.
McGraw-Hill Computer Science Series.

http://cm.bell-labs.com/cm/cs/who/dmr/hist.htm
http://cm.bell-labs.com/cm/cs/who/dmr/hist.htm
https://doi.org/10.1145/356540.356544
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/80/796/CS-TR-80-796.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/80/796/CS-TR-80-796.pdf
https://doi.org/10.1109/6.591665
https://doi.org/10.1145/358172.358179

296 Bibliography

A. Silberschatz, P. B. Galvin, and G. Gagne. 2012. Operating System Concepts (18th. ed.). John
Wiley & Sons.

J. Singh. 1966. Great Ideas in Information Theory, Language and Cybernetics. Dover.

R. Sippl. April–June 2013. Informix: Information management on UNIX. IEEE Ann. Hist.
Comput. 35, 2, 42–53.

N. J. A. Sloane and A. D. Wyner (Eds.). 1993. Claude Elwood Shannon Collected Papers. IEEE
Press.

D. K. Smith and R. C. Alexander. 1999. Fumbling the Future: How Xerox Invented, Then
Ignored, the First Personal Computer. iUniverse.

W. Stallings. 1992. ISDN and Broadband ISDN (2nd. ed.). Macmillan.

W. E. Steinmueller. 1995. The U.S. software industry: An analysis and interpretive history.
In D. C. Mowery (Ed.), The International Computer Software Industry. Oxford University
Press.

M. Stonebraker. June 1980. Retrospection on a database system. ACM Trans. Database Syst.
5, 2, 225–240. DOI: https://doi.org/10.1145/320141.320158.

M. Stonebraker (Ed.). 1988. Readings in Database Systems. Morgan Kaufmann Publishers,
San Mateo.

M. Swain and P. Freiberger. 2014. Fire in the Valley, The Birth and Death of the Personal
Computer (3rd. ed.). The Pragmatic Bookshelf.

A. Svoboda and H. M. James (Eds.). 1964. Computing Mechanisms and Linkages, Boston
Technical Publishers.

A. Tatnall (Ed.). 2012. Reflections on the History of Computing: Preserving Memories and Shar­
ing Stories. IFIP Advances in Information and Communication Technology (Book 387).
Springer.

A. Tatnall, T. Blyth, and R. Johnson (Eds.). June 2013. Making the history of computing
relevant. In IFIP WG 9.7 International Conference, HC 2013, London, UK, Springer. DOI:
https://doi.org/10.1007/978-3-642-41650-7.

M. Tedre. 2015. The Science of Computing: Shaping a Discipline. CRC Press.

C. Tozzi. 2017. For Fun and Profit: A History of the Free and Open Source Software Revolution.
The MIT Press.

K. W. Tracy and P. M. Bouthoorn. 1997. Object-Oriented Artificial Intelligence Using C++.
Computer Science Press, an imprint of W. H. Freeman and Company.

G. R. Trimble, Jr. May 1968. Bibliography 14: A time-sharing bibliography. ACM Comput. Rev.
291–301.

L. E. Truesdell. 1965. The Development of Punch Card Tabulation in the Bureau of the Census
1890–1940, with Outlines of Actual Tabulation Programs. US Department of Commerce,
Bureau of the Census.

A. B. Tucker. 1977. Programming Languages. McGraw-Hill, Inc.

R. S. Tucker. July 2010. The role of optics in computing. Nat. Photon. 4, 7, 405.

https://doi.org/10.1145/320141.320158
https://doi.org/10.1007/978-3-642-41650-7

Bibliography 297

A. M. Turing. 1936. On computable numbers, with an application to the
Entscheidungsproblem. (Received May 28, 1936), Proc. London Math. Soc. Ser. 2, 43, 1.
230–254.

J. Tukey. 1958. The teaching of concrete mathematics. Am. Math. Mon. 65, 1, 19.
DOI: https://doi.org/10.1080/00029890.1958.11989128.

F. Turner. 2008. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth
Network, and the Rise of Digital Utopianism. University of Chicago Press.

J. D. Ullman. 1980. Principles of Database Systems (1st. ed.). Pitman.

U. Valhalia. 1996. UNIX Internals: The New Frontiers. Prentice-Hall.

G. van den Hove. December 2014. On the origin of recursive procedures. Comput. J. 58, 11,
2892–2899.

J. von Neumann. 1958. The Computer and the Brain. Yale University Press.

J. von Neumann. 1945. First Draft of a Report on the EDVAC. Contract No. W-670-ORD­
4926 between the United States Army Ordnance Department and the University of
Pennsylvania, June 30, 1945. IEEE Ann. Hist. Comput. 15, 4, 27–43.

D. Walden and R. Nickerson (Eds.). 2011. A Culture of Innovation: Insider Accounts of
Computing and Life at BBN. Waterside Publishing.

E. L. Wallace. 1961. Management Influence on the Design of Data Processing Systems. Division
of Research, Graduate School of Business Administration, Harvard University.

J. J. Wallace and W. W. Barnes. Aug 1984. Designing for ultrahigh availability: The Unix
RTR operating system. IEEE Comput. 17, 8, 31–39. DOI: https://doi.org/10.1109/MC.1984.
1659215.

P. Wegner. 1968. Programming Languages, Information Structures, and Machine Organization.
McGraw-Hill Book Company.

P. Wegner. 1972. The Vienna definition language. ACM Comput. Surv. 4, 1, 5–63.
DOI: https://doi.org/10.1145/356596.356598.

G. M. Weinberg. 1971. The Psychology of Computer Programming. Van Nostrand Reinhold.

J. Weizenbaum. 1976. Computer Power and Human Reason. W. H. Freeman and Company.

N. Weizer. January 1981. A history of operating systems. Datamation. 118–126.

R. L. Wexelblat. 1981. History of Programming Languages. ACM Monograph Series. Academic
Press.

L. R. Wiener. 1993. Digital Woes: Why We Should Not Depend on Software. Addison-Wesley.

N. Wiener. 1948. Cybernetics, or Control and Communication in the Animal and Machine
(1st. ed.). John Wiley & Sons.

N. Wiener. 1956. I Am a Mathematician. The MIT Press.

M. V. Wilkes. 1995. Computing Perspectives. Morgan-Kaufmann Series in Computer
Architecture and Design. Morgan Kaufmann.

M. V. Wilkes, D. J. Wheeler, and S. Gill. 1951. The Preparation of Programs for an Electronic
Digital Computer. Addison-Wesley.

https://doi.org/10.1080/00029890.1958.11989128
https://doi.org/10.1109/MC.1984.1659215
https://doi.org/10.1109/MC.1984.1659215
https://doi.org/10.1145/356596.356598

298 Bibliography

M. R. Williams. 1997. A History of Computing Technology (2nd. Ed.). IEEE Computer Society
Press.

J. R. Yost. 2011. The IBM Century: Creating the IT Revolution. IEEE Computer Society Press.

E. N. Yourdon. 1979. Classics in Software Engineering. Yourdon Press.

E. N. Yourdon. 1982. Writings of the Revolution: Selected Readings on Software Engineering.
Yourdon Press.

J. Ziman. 2000. Technological Change as an Evolutionary Process. Cambridge University
Press.

M. M. Zloof. May 1975. Query by example. In Proceedings of the National Computer
Conference, Anaheim, CA.

Author’s Biography

Kim W. Tracy
Kim W. Tracy has a long and varied history in

many different aspects of software. Trained as a

second-generation computer scientist with many of
his professors being first-generation computer sci­
entists, he’s worked on a wide variety of software

ranging from system software (UNIX® at Bell Labs)
to database systems and expert systems. While at
Bell Labs, he worked on a number of different prod­
ucts including the 5ESS® Telephone Switch, as well
as consulting for clients around the world. He has
since served as Chief Information Officer at North­

eastern Illinois University and oversaw all aspects of the technology used by the

university. He’s also taught many courses in computer science that range over tra­
ditional computer science, software engineering, and information technology. He

currently teaches computer science and software engineering full-time at Rose-
Hulman Institute of Technology. He is co-author of the textbook Object-Oriented

Artificial Intelligence Using C++.
He’s also been involved with university-level computing program accreditation

with ABET for several decades. He’s a senior member of ACM and IEEE and a mem­
ber of the Society for the History of Technology. He serves on the ACM History
Committee and has served as editor-in-chief of IEEE Potentials magazine as well as
other IEEE boards and committees.

Index

A. M. Turing Award, 68

AaaS. See Application as a service

(AaaS)

ABC. See Atanasoff–Berry Computer

(ABC)

Abstraction, 250, 252

Abstraction of resource, 95

Access database, 239

Accumulator, 52

ACE. See Automatic Computing

Engine (ACE)

Ackermann, 16

ACM, 68. See Association for

Computing Machinery
(ACM)

Acoustic modems, 194

Ada, Countess of Lovelace, 47

Adabas, 234

ADEC. See Aiken Dahlgren Electronic

Calculator (ADEC)

Advanced Mobile Phone System

(AMPS), 192

Advanced Research Projects Agency

(ARPA), 72, 190

AFIPS. See American Federation of
Information Processing

Societies (AFIPS)
Agendas, 7–8

Agent-oriented programming, 122

Agile programming techniques, 11

Agile software development, 67

Aho, Al, 148, 272

AI. See Artificial intelligence (AI)

AI winter, 259, 261

Aiken, Howard, 16

Aiken Dahlgren Electronic Calculator

(ADEC), 18

AIMACO, 125

AITP. See Association of Information

Technology Professionals

(AITP)

ALGOL. See ALGOrithmic Language

(ALGOL)

ALGOrithmic Language (ALGOL), 67,

117, 127–128

ALPHA, Data Sub-Language, 239

AM211 CXR Anderson Jacobson

acoustic modem, 197

American Airlines SABRE system, 84

American Federation of Information

Processing Societies (AFIPS),
69

American National Standards

Institute (ANSI), 124

AMPS. See Advanced Mobile Phone

System (AMPS)

AN/FSQ-7 programs, 168

Analog computers, 63

302 Index

Analog Computing Machine, 65

Analytical Engine, 16, 30

Android, 89, 101

operating systems, 38, 88

Andy and Bill’s Law, 266

ANSI. See American National

Standards Institute (ANSI)

Apache Web Server, 209–213

Apache Web Server 1.0.0, 211

API. See Application programmer

interface (API)

APL (A Programming Language), 68

APL\360, 143

Apollo Program, 161, 258

Apple

computer, 35

DOS, 103

II, 103, 110

iOS, 83

iTunes, 40

MacOS, 101

Watch device, 111

WatchOS, 111

AppleTalk network, 208

Application as a service (AaaS), 187,

253

Application programmer interface

(API), 265

Applications, 2

domains, 66

Archie, 207

Architectural pattern, 176, 255

Architecture, von Neumann, 14, 16,

29–32, 42, 61, 80

ARITH-MATIC compilers, 141

Arithmetic unit, 29

ARPA. See US Advanced Research

Project Agency (ARPA)

ARPANET, 202–204

Artificial intelligence (AI), 65, 259

ASCC. See Automatic Sequence

Controlled Calculator

(ASCC)

ASCII, 179

Assemblers, 162

Assembly language, 120–121

Association for Computing

Machinery (ACM), 68

Association of Information

Technology Professionals

(AITP), 69

Atanasoff, John, 25

Atanasoff–Berry Computer (ABC), 22,

25–26

Clifford Berry with, 48

with drum memory, 31

overall design, 48

Atanasoff–Berry Computer’s memory

drum, 28

ATLAS operating system, 87, 97

Atomic transactions, 243

AUTOCODE, 141

Glennie’s, 141

AUTODIN network, 205

AUTOFLOW, 174–176

Automatic coding and programming,

121–122, 140–142

Automatic Computing Engine (ACE),

17, 24

Automatic programming, 121, 162

Automatic Sequence Controlled

Calculator (ASCC), 18, 20

AWK programming language, 3, 106,

148

B programming language, 129

BAAN ERP, 266

Babbage, Charles, 16

Analytical Engine, 16

Difference Engine, 16

quote, 140

Bachman, Charles, 230, 257

Backus, John, 124

Backus-Naur Form (BNF), 75, 127

Backward compatibility, 253–254

BALGOL compiler, 58–59, 73

Banyan VINES, 90, 208

VIP protocol, 208

BASIC, 38, 42, 58, 100

Basic Input Output System (BIOS), 104

Battery technology, 37

Baudot, 179

BBN. See Bolt, Beranek and Newman

(BBN)
BBS. See Bulletin board systems

(BBS); Electronic bulletin

board systems (BBS)
BCD. See Binary-coded decimal (BCD)

BCPL, 117

Beacons, 188

Bell, Alexander Graham, 188

Bell, Gordon, 38

Bell Labs relay computers, 17

Bell System advertisement, 189

Bell Telephone Laboratories, 16–17,

36, 71, 98, 101, 198

AT&T Bell Telephone

Laboratories, 17

Complex Number Calculator, 17

Model K (Kitchen), 17

relay computers, 17, 22

Bell’s Law, 38

Bemer, Bob, 126

Berkeley System Distribution (BSD),

110

Berkeley Timesharing System, 113

Berners-Lee, Tim, 208–209

Index 303

Berry, Clifford, 47

Bi-quinary coded decimal, 61

Bilas, Frances, 24

BINAC. See Binary Automatic

Computer (BINAC)

Binary Automatic Computer (BINAC),
29, 32, 36, 154

Binary-coded decimal (BCD), 61

Binary Large OBjects (BLOBs), 225

Biocomputers, 62–63

BIOS. See Basic Input Output System

(BIOS)

Bison, 148

Bit, 2

Bit Savers, 55

Blackberry operating systems, 38

Bletchley Park, 23–24

Bloatware, 39, 42

BLOBs. See Binary Large OBjects

(BLOBs)

BNF. See Backus-Naur Form (BNF)

Bolt, Beranek and Newman (BBN), 103

Bombe, 23–24

Booch, Grady, 180

Bourne command shell, 104

Brand, Stewart, 206

BRASS. See Building Resource

Adaptive Software Systems
(BRASS)

Bravo WYSIWYG editor, 170

BRL. See US Army Ballistic Research

Laboratory (BRL)

Broadcast networks, 190

BSD. See Berkeley System Distribution

(BSD)

BSD UNIX, 110

Buffering, 4, 94–95

Bug, Mark I, 229

304 Index

Building Resource Adaptive Software

Systems (BRASS), 267

Bulletin board systems (BBS), 265

Burroughs, 34

Datatron 220, 60

MCP operating system, 111

Bush, Vannevar, 17, 63

C programming language, 129–131, 271

C with Classes, 136

C++, 136, 225

CA unit. See Central arithmetical unit

(CA unit)

Caching, 4, 94–95

CAD. See Computer-aided design

(CAD)

Caldera Software, 271

California-Berkeley, University of, 237

Cambridge, University of, 29, 36

Cambridge Monitor System (CMS),

100

card

Hollerith, 178

IBM, 178

punched, 178

Carnegie Mellon University, 110

CASE. See Computer-aided software

engineering (CASE)

Catenet, 201

CBI. See Charles Babbage Institute

(CBI)
CC. See Central control (CC)
CDC. See Control Data Corporation

(CDC)
CDMA. See Code division multiple

access (CDMA)
CDNs. See Content delivery networks

(CDNs)

CDP. See Certificate in Data

Processing (CDP)
Cellular technologies

first generation, 192

second generation, 193

third generation, 193

fourth generation, 193

fifth generation, 193

Central arithmetical unit (CA unit), 29

Central control (CC), 30

CERT. See Computer Emergency

Response Team (CERT)

Certificate in Data Processing (CDP),
69

Chappe, Claude, 188

Charles Babbage Institute (CBI), 55

Chen, Peter, 225

CHM. See Computer History Museum

(CHM)

Church, Alonzo, 16

CISC. See Complex instruction set

computer (CISC)

Claude Shannon, 70

CLI. See Command-line interface

(CLI)

Client/server architecture, 90

Client–server architecture, 187

CLOS. See Common LISP Object

System (CLOS)

Cloud-based systems, 187

CMS. See Cambridge Monitor System

(CMS)
CNC. See Complex Number

Calculator (CNC)

Co-evolution, technological, 12

COBOL. See Common

Business-Oriented Language

(COBOL)

CODASYL. See
Conference/Committee on

Data Systems Languages
(CODASYL)

Codd, E. F., 225

Codd’s Theorem, 237

rules for RDBMS, 236

Code

ASCII, 179

Baudot, 179

EBCDIC, 179

portability of, 39

relocatable, 91, 123

Code division multiple access

(CDMA), 192–193
Coders, 156

Colossus, 23, 52

Columbia Machine, 22

COM. See Component Object Model
(COM)

Combination of technologies, 12

Command-line interface (CLI), 163

Command-line-based integrated

development environments,

163

Commodore computer, 35

Common Criteria, 90

Common LISP Object System (CLOS),
136

Common Business-Oriented

Language (COBOL), 125–127

COBOL, 1, 117, 119, 127, 264

COBOL-60, 127

COBOL-65, 127

COBOL-68, 127

COBOL-74, 127

COBOL-85, 127

code, 4

Index 305

Communications networks
contributing to computer
networking, 189–191

COMmunications POOL (COMPOOL),
227

Community memory, 206

Compaq computer, 35

Compatible Time-Sharing System

(CTSS), 93

Compilers, 121–122

Complex instruction set computer

(CISC), 147

Complex Number Calculator (CNC),

17

Complex Number Computer, 19, 21

Component Object Model (COM), 255

Components, 5

COMPOOL. See COMmunications

POOL (COMPOOL)

Composite design, 183

Computer companies, 71

Computer Emergency Response

Team (CERT), 11

Computer hardware, 14

computers after von Neumann

architecture, 32–38

hardware before von Neumann

architecture, 14–29

trends and laws, 38–40

von Neumann Architecture, 29–32

Computer History Museum (CHM),
55, 143

Computer networks, 191

Computer science, 73–74

Computer-aided design (CAD), 231

Computer-aided software engineering

(CASE), 121, 163

lowerCASE, 163

tools, 142

306 Index

upperCASE, 163

Computing devices, 57

COMTRAN, 125–126

Concepts, 4

Conference/Committee on Data

Systems Languages

(CODASYL), 125–126, 222

Data Base Task Group, 231

Content delivery networks (CDNs), 4

Control cards, 88

Control Data Corporation (CDC), 34

Control program (CP), 100

CP-40 system, 100

Control Program for Microcomputers

(CP/M), 104

operating system, 103

Conversational Monitor System. See

Cambridge Monitor System

(CMS)
Conway’s Game of Life, 62

Copyright (C), 271

Corbató, Fernando, 68

Corbató’s Law, 49

Core domains, 65

COS. See Cray Operating System (COS)

CP. See Control program (CP)

CP/M. See Control Program for

Microcomputers (CP/M)
Cray

1, 110

1S, 110

Cray Research Inc., 110

Cray Research Cray 1

supercomputer, 110

CTSS. See Compatible Time-Sharing

System (CTSS)

CYCLADES network, 202

D-Wave 2000Q quantum chip, 63

Dahl, Ole-Johan, 137

DARPA. See US Defense Advanced

Research Projects Agency
(DARPA)

Dartmouth College, 259

Dartmouth Time-Sharing System

(DTSS), 96

Dartmouth University, 100

DASD. See Direct access storage

devices (DASD)
Data abstraction and program

maintainability, 242

Data Base Task Group (DBTG), 231

Data definition language (DDL),

227–228, 237

Data entry, 156

Data flow diagram (DFD), 180

Data independence, 223

Data Language 1 (DL/1), 232

Data management, 221

Data manipulation language (DML),

237

Data mining, 226

Data networking, 187

communications networks

contributing to computer

networking, 189–191

data network history, 195–198

evolution, 187

information networking before

computers, 187–189

networking hardware, 194–195

packet networking and

internetworking, 200–201

proprietary networks, 198–200

wireless networks, 191–194

Data Processing Management

Association (DPMA), 69

Data warehousing, 226

machines, 226

Database

deductive, 226–227

FoxPro database, 225

genome, 226–227

in-memory, 227

NoSQL, 226–227

Oracle, 71

VirtualBox, 91

personal computer, 253

spatial, 226

Database management systems

(DBMSs), 221

data definition languages,

227–228

database systems and evolution,

222–227

early database history, 227

factors affecting change of

database software, 241–242

I-D-S system, 230–232

IBM 350 disk storage, 222

IBM’s IMS and Hierarchical

Databases, 232–233

inverted file systems, 233–234

lessons learned from database

software, 242–243
online resources, 247–248

relational DBMSs, 234–239

report generator systems,
228–229

System R, 239–241
types and evolution of database

systems, 230

Datalog, 226

Datatron 220, 59

Day, John, 218

dBase database, 225

Index 307

DBMSs. See Database management

systems (DBMSs)

DBTG. See Data Base Task Group

(DBTG)

DDL. See Data definition language

(DDL)

Deadlock, 94

detection, 87

DEC. See Digital Equipment

Corporation (DEC)

Declarative language, 123

DECnet, 191, 196

DECUS. See Digital Equipment

Computer Users’ Society
(DECUS)

Deductive databases, 226

Defense Advanced Research Projects

Agency (DARPA). See
Advanced Research Projects
Agency (ARPA)

Dell computer, 35

Dendral expert system, 260

Denning, Peter, 110

Design pattern, 255

DFD. See Data flow diagram (DFD)

Diagrams

influence, 10

Differential analyzers, 17

Digital Equipment Computer Users’

Society (DECUS), 70

Digital Equipment Corporation

(DEC), 35, 70–71

PDP-1, 100

PDP-7, 3

PDP-7, 37

VAX, 37

VMS operating system, 181

Dijkstra, Edsger, 94, 97, 164

308 Index

Direct access storage and integrated

circuits, 36

Direct access storage devices (DASD),

36

Distributed operating systems, 87, 90

DL/1. See Data Language 1 (DL/1)

DMERT. See Duplex Multi

Environment Real Time

(DMERT)
DML. See Data manipulation

language (DML)

Domain relational calculus, 238

Domain specialization, 13

Domains, 7

Domains of software, 61

DPMA. See Data Processing

Management Association

(DPMA)

DTSS. See Dartmouth Time-Sharing

System (DTSS)

Duplex Multi Environment Real Time

(DMERT), 89

DynaBook, 52

Early commercialization, 36

Eastern Joint Computer Conference

(EJCC), 69

EBCDIC. See Extended Binary Coded

Decimal Interchange Code

(EBCDIC)
Eckert, J. Presper, 26

Eckert–Mauchly Computer

Corporation, 27, 36, 153–154

Eclipse, 163

EDGE. See Enhanced Data rates for

GSM Evolution (EDGE)
EDSAC. See Electronic Delay Storage

Automatic Calculator
(EDSAC)

Eindhoven University of Technology,
97

EJCC. See Eastern Joint Computer
Conference (EJCC)

Electromechanical relays, 17

Electronic bulletin board systems

(BBS), 205

Electronic Delay Storage Automatic

Calculator (EDSAC), 29

Electronic Numerical Integrator and

Computer (ENIAC), 14,

26–29, 57

IBM punched card equipment

with, 32

programmers, 153

Emacs text editor, 169–174

Embedded operating systems, 89–90

Engineering

non-standard, 61

standard, 8

Englebart, Doug, 69, 138

Enhanced Data rates for GSM

Evolution (EDGE), 193

ENIAC. See Electronic Numerical

Integrator and Computer
(ENIAC)

Enterprise Resource Planners (ERP),

261, 262

Entscheidungsproblem (decision

problem), 16

Environments, 11

ERP. See Enterprise Resource

Planners (ERP)
ESPOL. See Executive Systems

Programming Language

(ESPOL)
Events, 10, 74–75

Executables, 122–123

Executive Systems Programming

Language (ESPOL), 111

Experimental SAGE Subsector, 168

Expert Database Systems, 244

Extended Binary Coded Decimal
Interchange Code (EBCDIC),
179

eXtensible Markup Language (XML),

12, 226

ExtremeXOS, 90

Failure, functional, 12

Fair Share Scheduler, 109

FDDI. See Fiber Distributed Data

Interface (FDDI)
FEP. See Front-end processors (FEP)
Ferranti, 35

Orion monitor, 114

Fiber Distributed Data Interface

(FDDI), 197

FidoNet, 205

Fifth Generation Computer Systems

project, 122

File systems, 223

File Transfer Protocol archives (FTP

archives), 207

Finkelstein, Clive, 180

Flex, 148

Flow diagrams, 141

FLOW-MATIC, 142

Flowers, T. H., 24

FMS. See FORTRAN Monitor System

(FMS)
FORmula TRANslation (FORTRAN), 1,

45, 67, 75, 117, 119, 124–125,

155, 251, 256

66, 124

77, 124

90, 124

Index 309

95, 124

II, 124–125

III, 124

IV, 124

Forth, 151

FORTRAN. See FORmula TRANslation

(FORTRAN)

FORTRAN Monitor System (FMS), 96

Fourth-generation cellular networks,

193

Fragmentation, 95

“Free software” movement, 170

Front-end processors (FEP), 200

FTP archives. See File Transfer

Protocol archives (FTP

archives)

Functional failure, 12

Functional inadequacy, 12

Functional programming languages,

131

LISP Dialects, 131–134

Gateway computer, 35

GE. See General Electric (GE)

General Electric (GE), 34, 71

General Motors, 231

General operating system

technologies, 94–97

General Packet Radio Service (GPRS),
193

General Problem Solver (GPS), 266

general regular expression parser. See

grep (general regular
expression parser)

Generalized Information Retrieval
and Listing System (GIRLS),
229

Genome database, 226

310 Index

Geographical Information Systems

(GIS), 226

Gigabytes, 221

GIRLS. See Generalized Information

Retrieval and Listing System

(GIRLS)

GIS. See Geographical Information

Systems (GIS)

Glennie, A. E., 141

Global System for Mobile

Communications, 192

GLOBUS Toolkit, 110

GNU

GNU Emacs, 169–174

GNU project, 70

Gödel, Kurt, 16

Goetz, Martin, 174

Goldstine, Herman, 2, 141

Google

Android, 83

Chrome OS, 113

Gopher, 207

Gosling, Jim, 139

Government support, 71

GPRS. See General Packet Radio

Service (GPRS)

GPS. See General Problem Solver

(GPS)

Grammar, 148

LR(k), 148

Gray, Elisha, 188

grep (general regular expression

parser), 106

Groupe Spécial Mobile (GSM), 192–193

Grove, Andy, 266

GS/OS for Apple II, 103

GSA. See US General Services

Administration (GSA)

GSM. See Groupe Spécial Mobile

(GSM)

Haiku operating system, 113

Hard real-time systems, 89

Harvard Mark I, 18, 49, 57

Grace Hopper’s paper tapes used

on, 26

Mark I Problem L paper tape with

patches, 25

plug diagram for, 50

Selective Sequence Electronic

Calculator (SSEC), 20

Harvard Mark II, 18, 25

Harvard Mark III, 18

Harvard Mark IV, 18

Harvard University, 16

Haskell, 131

HAYSTAQ program, 259

Hazen, Harold Locke, 17

HDTV. See High-definition Television

(HDTV)

Heathkit H11 Computer, 58

Hercules emulator, 143

Hewlett Packard (HP), 35, 71

Hierarchical databases, 224

High-definition Television (HDTV),

193

Higher-level languages, 1, 67, 118

Hilbert, David, 16

History of Programming Languages

(HOPL) conference, 117–118,

152

Hoare, C. A. R., 147

Hobbyists, 37

Hollerith, Herman, 20

punched card, 29

Honeywell, 34

HOPL. See History of Programming

Languages (HOPL)
conference

Hopper, Grace, 20, 26, 43, 49, 154–155

Computer History diagram, 52–53

Hosted services, 187

HP. See Hewlett Packard (HP)

HTTP. See Hypertext Transfer

Protocol (HTTP)
httpd. See Hypertext Transfer Protocol

Daemon (httpd)

Human–computer symbiosis, 138

Hypertext Transfer Protocol (HTTP),

207

Hypertext Transfer Protocol Daemon

(httpd), 209–210

NCSA, 209–213

Hypervisors, 90

I-D-S system. See Integrated Data

Store system (I-D-S system)
I-type instructions. See MIPS

instruction types
IaaS. See Infrastructure as a service

(IaaS)
IAL. See International Algebraic

Language (IAL)
IBM, 71

350 disk storage, 222

360 Model 40, 261, 263

701, 84

7030 Stretch, 258, 260

704, 45, 85, 154, 159

7090, 261

801, 20

805 Test Scoring Machine, 20

AN/FSQ-7, 168

ASCC, 27

card cartons, 161

Index 311

Card-Programmed Electronic
Calculator, 22, 30

CMS, 180

Columbia Machine, 22

DOS/360, 99

FMS, 96

IBSYS, 114

JCL, 88

mainframes, 264

OS/360, 83, 99

Personal Computer, 96

punched card equipment with

ENIAC, 32

Series/1, 199

SNA, 191

System/360, 99, 164

tabulating equipment, 20

TDMS, 234

TSS, 99

VM/370, 90

ICBM. See Intercontinental Ballistic
Missiles (ICBM)

ICON, 128

iDEN. See Integrated Digital

Enhanced Network (iDEN)

IDEs. See Integrated development
environments (IDEs)

IDMS. See Integrated Data

Management System (IDMS)
IEEE

802.11, 194

Computer Society, 68

Global History Network, 56

Milestone Plaque, 103

Illinois, University of, 208

Imperative languages, 124

IMS. See Information Management

System (IMS)

In-memory databases, 226

312 Index

Incompatible Timesharing System

(ITS), 112, 169–170

Independent Oracle Users Group

(IOUG), 70

Index Sequential Access Method

(ISAM), 232

Inferno operating system, 111

Influence diagrams, 10

Information Engineering, 180

Information Management System

(IMS), 224

Information networking before

computers, 187–189

Information Processing Language

(IPL), 259

Infrastructure as a service (IaaS), 187

INGRES, 234, 237–239, 245

Innovation, 13

Instruction explosion, 119

Instruction set architecture (ISA), 252

Integrated Data Management System

(IDMS), 231

Integrated Data Store system (I-D-S

system), 229, 230–232

Integrated development

environments (IDEs), 163

command-line based, 163

Eclipse, 163

graphical, 163

Microsoft Visual Studio, 163

visual, 163

Integrated Digital Enhanced Network

(iDEN), 193

Integrated Services Digital Network

(ISDN), 217

Intel

8080, 37

iRMX, 89

Intercontinental Ballistic Missiles
(ICBM), 161, 168

Interdata, 107

Internal Telecommunications Union

(ITU), 202

Internal Translator (IT), 141

International Algebraic Language

(IAL), 127

International Standards Organization

(ISO), 198

International Telegraph and

Telephone Consultative

Committee (CCITT), 202

Internet, 201

Internet Archive, 207

Internet browser, 14

Internet of Things (IoT), 256

Internet Operating System (IOS), 90

Internet Protocol (IP), 77, 187

Internet Worm, 11, 75, 258

Morris, 258

Internetworking, 200–201

Inventions, 13

Inverted file systems, 225, 233–234

iOS, 38, 89

IOS. See Internet Operating System

(IOS)
IoT. See Internet of Things (IoT)
IOUG. See Independent Oracle Users

Group (IOUG)
IP. See Internet Protocol (IP)
IPL. See Information Processing

Language (IPL)
ISA. See Instruction set architecture

(ISA)
ISAM. See Index Sequential Access

Method (ISAM)
ISDN. See Integrated Services Digital

Network (ISDN)

ISO. See International Standards
Organization (ISO)

IT programming language. See
Internal Translator (IT)

ITS. See Incompatible Timesharing

System (ITS)
ITU. See Internal

Telecommunications Union

(ITU)
Iverson, Ken, 143

Iverson’s Notation, 143

J-type instructions. See MIPS

instruction types

Jacobson, Ivar, 181

Jacquard loom, 44–45

Java, 139

byte code, 139

Java Virtual Machine (JVM), 139

JCL. See Job Control Language (JCL)

Jennings, Betty, 24

Job Control Language (JCL), 126

JOVIAL. See Jules Own Version of

International Algebraic

Language (JOVIAL)

Joy, Bill, 49

Joy’s Law, 49

Jules Own Version of International

Algebraic Language

(JOVIAL), 142, 228

JunOS, 90

JVM. See Java Virtual Machine (JVM)

Kantor, Brian, 216

Kelvin, Lord, 18

Kernighan, Brian, 147–148

Key punch operators, 156

Kildall, Gary, 103

Kleinrock, Leonard, 194

Index 313

Knowledge representation, 66

Knuth, Donald, 59, 69, 140

Koomey’s Law, 37

Kyoto Prize, 70

Language

assembly, 149

machine, 150

LANs. See Local-area networks (LANs)

Laplaciometer, 25

Leibniz, Gottfried Wilhelm, 16

Leibniz’s calculating machine, 16

LEO. See Lyons Electronic Office

(LEO)

Lex, 148

Libraries, 122–123

Limbo, 111

Linkage to physical phenomena, 5

Linkers, 122–123

Linux operating system, 101, 166, 250

LISP. See LISt Processing (LISP)

LISt Processing (LISP), 1, 45, 117, 119,

131

Common, 131

Dialects, 131–134

Racket, 131

Scheme, 131

Loaders, 122–123

Local-area networks (LANs), 197

Logarithms, 14

Logic programming languages,

134–136

Logical data independence, 223

Long-Distance (Toll) Office, Chicago,

18

Long Term Evolution (LTE), 193

LowerCASE, 163

LTE. See Long Term Evolution (LTE)

Lycos, 216

314 Index

Lyons Electronic Office (LEO), 36

Mach operating system, 110

Machine code knowledge, 118

Machine language, 118–120

Machine learning, 66, 260

MAD. See Michigan Algorithm

Decoder (MAD)
Magnetic-core (ferrite) memory and

transistors, 36

Mahoney, Michael, 8–9

Manchester, University of, 97

Manchester Baby. See Small-Scale

Experimental Machine

(SSEM)

Manchester Mark 1, 32

Manchester Small-Scale Experimental

Machine. See Small-Scale

Experimental Machine

(SSEM)
MANs. See Metropolitan-area

networks (MANs)

Marvin, H. L., 21

Material requirements planning

(MRP), 262

MATLAB, 256

Mauchly, John, 23

McCarthy, John, 70, 93, 259

McIlroy, Doug, 104

statement on pipes, 105

Memory (M), 30

ferrite core, 36

management, 91

paging, 92

virtual, 92

Memory Test Computer (MTC), 36

Mercury space program, 22

Meta Language (ML), 131

Metcalfe, Robert, 203, 213

Metcalfe’s Law, 213

Methodology

Extreme, 162

programming, 160

Scrum, 162

waterfall, 161

Metropolitan-area networks (MANs),

197

Michigan Algorithm Decoder (MAD),
142

Michigan Terminal System (MTS), 142

Micro Instrumentation and Telemetry

Systems (MITS), 37

Altair, 37

Microkernels, 110

Microprocessor without Interlocked

Pipeline Stages (MIPS), 119

Microprocessors, 37

Microsoft, 37, 71

Access database, 239

PC-DOS, 38

Visual Studio, 163

Windows, 40, 104

Windows CE for Automotive, 114

Migration of operating system

features, 96–97

Minecraft game, 62

Minicomputers, 37

MiniTel, 209

Minix operating system, 101

Minnesota, University of, 207

MIPS instruction types

Immediate instructions (I-type

instructions), 119

Jump instructions (J-type

instructions), 119

Register instructions (R-type

instructions), 119

MIPS. See Microprocessor without
Interlocked Pipeline Stages
(MIPS)

MIT, 63, 168, 227

Lincoln Laboratory, 168

Project MAC, 98

MITS. See Micro Instrumentation and

Telemetry Systems (MITS)
ML. See Meta Language (ML)
MMDS. See Multichannel Multipoint

Distribution Service (MMDS)

Mobile apps, 253

Model “K”, 17

Model–view–controller (MVC), 252

Modems, 195

Modula programming language, 128

Monitors, 84

Moore, Charles, 151

Moore, Gordon, 39

Moore’s Law, 39, 41

Morris Internet Worm, 74–75

Morse, P. M., 93

Morse, Samuel, 188

MOS Technology 6502, 37

MRP. See Material requirements

planning (MRP)

MTC. See Memory Test Computer
(MTC)

MTS. See Michigan Terminal System

(MTS)

Multi-programming, 91

Multichannel Multipoint Distribution

Service (MMDS), 193

MULTICS. See Multiplexed

Information and Computing

Service (MULTICS)
Multiplexed Information and

Computing Service

Index 315

(MULTICS), 39, 83, 85, 87, 92,

98

MVC. See Model–view–controller
(MVC)

Nanobiotechnology, 62

Napier, John, 14

Napier’s Bones, 14

National Bureau of Standards (NBS),

248

National Cash Register (NCR), 34, 71

National Machine Accountants

Association (NMAA), 69

National Physical Laboratory (NPL),

17

NATO, 78, 147, 164

Natural query language, 234

Naughton, Patrick, 139

NBS. See National Bureau of

Standards (NBS)

NCR. See National Cash Register
(NCR)

NCSA

httpd, 209–213
NetNews, 206–207

Network

databases, 224

effect, 213

sensory, 37

Network operating systems, 90,

208–209

Networking hardware, 194–195

Networking protocols, 201–202, 252

Networking software

and applications, 204–205

electronic bulletin board

systems, 205

Email, 205

316 Index

evolution of data networking,
187–201

FTP archives, 207

Gopher, Archie, and Veronica, 207

lessons learned from, 214–215

Minitel system, 209

NCSA httpd and Apache Web

Server, 209–213
network operating systems,

208–209

networking influences, 213–214

networking protocols, 201–202

online resources, 219

TCP/IP, 202–204

Usenet and NetNews, 206–207

WELL, 206

WWW, 208

Newell, Alan, 131, 266

Newell, Allen, 269

NeXTSTEP operating system, 101

NIH. See US National Institutes of

Health (NIH)

Nilsson, Nils, 202

NMAA. See National Machine

Accountants Association

(NMAA)

Non-standard engineering, 9, 61

NORAD. See North American

Aerospace Defense

Command (NORAD)

Normal technology, 8

North American Aerospace Defense

Command (NORAD), 9, 167

“NoSQL” databases, 226

Novell Netware, 71, 90, 208, 216

NPL. See National Physical Laboratory

(NPL)

Numbering systems, 14

Nygaard, Kristen, 137

Oak programming language, 139

Object bases, 225, 241

Object code, 122–123

Object databases, 225

Object Linking and Embedding

(OLE), 255

Object-oriented design, 10

Object-oriented programming

languages, 71, 136, 225

Java, 139

object-oriented extensions,

136–137

Simula, 137–138

Smalltalk, 138

Objective C, 136

OLAP. See OnLine Analytical

Processing (OLAP)

OLE. See Object Linking and

Embedding (OLE)

OLTP. See OnLine Transaction

Processing (OLTP)

OnLine Analytical Processing (OLAP),

237

OnLine Transaction Processing

(OLTP), 237

Open Systems Interconnection (OSI),

198

Open-source communities, 70

Operating systems, 83, 166, 252

buffering and caching, 4

case study, 104–107

and evolution, 83–88

features, 91–94

general operating system

technologies, 94–97

generations, 86

high-level evolution of operating

systems, 86

influential operating systems,

97–104

lessons learned from operating

system software, 107–108

memory management, 91–92

online resources, 114–115

process management, 93

scope, 88

types, 88–91

Optical computation, 63

Oracle, 71

VirtualBox, 91

OS/2 operating system, 111

OSI. See Open Systems

Interconnection (OSI)

OSI 7-Layer Reference Model, 201–202

Ossanna, Joe F., 98

Our Version of International Algebraic

Language (OVIAL), 228

Overlays, 73

OVIAL. See Our Version of

International Algebraic

Language (OVIAL)

p-System, 103

PaaS. See Platform as a service (PaaS)

Packet networking, 200–201

Packet switching, 201

Paging, 92

Palo Alto Research Center (PARC), 71

PANs. See Personal-area networks

(PANs)

PARC. See Palo Alto Research Center

(PARC)

Parser, 148

Pascal, Blaise, 16

Pascal’s calculating machine, 16

Payroll systems, 60

PC. See Personal computer (PC)

Index 317

PC-DOS, 38

PDAs. See Personal digital assistants
(PDAs)

PDP-7 assembler, 3

Peer-to-peer architecture, 187

PenPoint operating system, 112

Persistence, 4

Personal computer (PC), 35, 103, 225,

253

Personal computing, 71

Personal digital assistants (PDAs), 37,

225

Personal-area networks (PANs), 197

PHIGS. See Programmers’
Hierarchical Interactive

Graphics System (PHIGS)
Phillips, A. W. H., 80

Photonic computation, 63

Physical address space, 92

Physical data independence, 223

Pipes in UNIX system, 104–107

PL/I, 117, 245. See Programming

Language One (PL/I)

Plan 9 operating system, 113

Plankalkül, 45

Platform as a service (PaaS), 187

PLATO system, 205

PLIOPT file, 276

Plug diagram for Harvard Mark I, 50

Portability, 108

Portability of code, 39

Portable Operating System Interface

standard (POSIX), 72

POSIX. See Portable Operating System

Interface standard (POSIX)
Pre–von Neumann, 62

Prioritization, 95

Problem-oriented notation, 119

Procedural languages, 124

318 Index

Process management, 93
Process synchronization, 87

ProDOS, 103
Programmer, productivity, 162

Programmer’s Workbench (PWB), 163
Programmers’ Hierarchical

Interactive Graphics System

(PHIGS), 265

Programming environments and

tools, 153
AUTOFLOW, 174–176

BINAC code card, 154

early programming

environments and tools, 153
evolution of programmer tools

over time, 158–163
Florence Anderson setup form

for IBM 701, 157

flowchart from Eckert–Mauchly
Corp for Matrix Inversion

Program, 156

GNU Emacs, 169–174

large projects and software crisis,
163–165

lessons learned from

programming tools and

environments, 176–178

matrix multiplication program,
158

online resources, 186

reflections on programming

tools and environments,
165–167

SAGE, 167–169

UNIVAC quick reference card, 155

Programming Language One (PL/I),
128–129

Programming languages, 117, 118–119,
162–163

APL, 143–144

assembly language, 120–121
automatic coding and

programming, 140–142

compilers and automatic coding

and programming, 121–122

functional programming

languages, 131–134

imperative and procedural
languages, 124–131

influences on programming

language change, 142–143
lessons learned from, 144–146

logic programming languages,
134–136

logo of HOPL I Conference, 118

machine language, 118–120

object-oriented programming

languages, 136–139

online resources, 152

prehistory of programming

languages and compilers,
140

programming paradigms,
123–124

source code, object code, linkers,
loaders, libraries, and

executables, 122–123
types, 123

Programming paradigm, 123
Programs, 2, 122

Project Whirlwind’s core memory, 34

Prolog programming language, 207

Proprietary networks, 198

front-end processors, 200

IBM’s SNA, 198

problem of bridging or
connecting disparate

networks, 198–200

Punch card mechanism, 46

Punched card, 178–179

Purdue University, 148

PWB. See Programmer’s Workbench

(PWB)

QBE. See Query-by-Example (QBE)
QDOS. See Quick and Dirty Operating

System (QDOS)

Quantum computation, 63

Quantum Turing machine, 63

Qubits, 63

QUEL, 238

Query optimization, 239

Query-by-Example (QBE), 239

Quick and Dirty Operating System

(QDOS), 103

Quicksort, 150

R programming languages, 256

R-type instructions. See MIPS

instruction types

Radio, 190

Radio Corporation of America (RCA),

34

Radio frequency identification

(RFID), 37

RAMAC. See Random Access Method

of Accounting and Control
(RAMAC)

RAND, 227

Rand, Remington, 27

Random Access Method of

Accounting and Control

(RAMAC), 221

disk storage unit, 37

RC 4000 Monitor operating system,

103, 112

RCA. See Radio Corporation of

America (RCA)

Index 319

Re-use of resource, 95

Real-time operating systems, 89

Reduced instruction set computers

(RISC), 119

Relational database model, 68

Relational databases, 225

Relational DBMSs, 234

commercial server/mainframe

RDBMS, 236

SQL standardization, 237–239

Relay, 17

computers, 22, 53–54

Reliability of software, 254

Relocatable code, 91, 123

Remote Job Entry (RJE), 199

Report Program Generator (RPG)

programming language, 229

Request for Comment (RFC), 217

Resident monitors, 88

RFC. See Request for Comment (RFC)

RFID. See Radio frequency

identification (RFID)
RISC. See Reduced instruction set

computers (RISC)

Ritchie, Dennis, 102, 106

RJE. See Remote Job Entry (RJE)

Robinson machines, 52

RPG. See Report Program Generator

(RPG) programming

language

Rumbaugh, James, 180

SABRE. See Semi-Automated Business
Research Environment
(SABRE)

SAFEGUARD Program, 161

SAFEGUARD System data processing

components, 185

320 Index

SAGE. See Semi-Automatic Ground

Environment (SAGE)

Samuel, Arthur, 261

SAP, 147, 234

ABAP, 147

sargable (Search ARGument ABLE),

277

Satellite, 190–191

SCCS. See Source Code Control

System (SCCS)

Scheduling, 95

Schickard, William, 16

Schickard’s calculator, 16

Scientific Data Systems (SDS). See

Berkeley Timesharing

System

SCORE. See Signal Communications
for Orbiting Relay
Equipment (SCORE)

SDC. See Systems Development
Corporation (SDC)

SDE. See Software development
environments (SDE)

SDH. See Synchronous Digital
Hierarchy (SDH)

SEAC. See Standards Eastern

Automatic Computer (SEAC)

Search ARGument ABLE. See sargable
(Search ARGument ABLE)

Second generation languages, 120

Second-generation cellular networks,

192

Secure operating systems, 90

Security, software, 258

Security-Enhanced Linux (SELinux),

90

sed (stream editor), 106

Selective Sequence Electronic

Calculator (SSEC). See

Harvard Mark I

Selinger, Pat (Griffiths), 239

SELinux. See Security-Enhanced

Linux (SELinux)

Semaphores, 94

Semi-Automated Business Research

Environment (SABRE), 164

Semi-Automatic Ground Environment

(SAGE), 9, 109, 167–169

air defense system, 93

AN/FSQ-7 programs, 168

Program, 160

Sensory networks, 37

Shakey the Robot, 202

Shannon, Claude, 17

Shannon Limit, 208

SHARE Operating System (SOS), 45,

70, 84

Shaw, J. C., 131

Shell

Bourne, sh, 148

csh, 148

Korn, ksh, 148

Sheridan, Mike, 139

SIAM. See Society for Industrial and

Applied Mathematics (SIAM)

Signal Communications for Orbiting

Relay Equipment (SCORE),

190

SIM. See Society for Information

Management (SIM)

Simon, Herb, 269

Simula, 137–138

67, 136–137

I, 136–137

Small-Scale Experimental Machine

(SSEM), 32, 81

Smalltalk, 138, 225

71 program, 138

Pharo, 138

Squeak, 138

Smartphone operating systems, 89

Smartphones, 37

SMIS. See Society for the

Management of Information

Systems (SMIS)

Smithsonian Institution, 56

SNA. See System Network Architecture

(SNA)

SNOBOL, 117

Social Security Act, 22

Society for Industrial and Applied

Mathematics (SIAM), 56, 69

Society for Information Management

(SIM), 69

Society for the Management of

Information Systems (SMIS),

69

Soft real-time operating systems, 89

Software, 1–3, 72, 249

8K BASIC compiler paper tape for
Heathkit H11 Computer, 58

architectures, 187

built from other components, 6–7

challenges of software history,

3–5

change due to functional failure,
77

change due to invention, 76–77

companies, 71

components, 7

computer hardware, 14–38

computer hardware trends and

laws, 38–40

crisis, 75, 163–165

cultures and communities of, 67

Index 321

domains, 7

emerging software trends,

256–257

engineering, 75

environment, 72–73

event, 74–75

factory, 265

history, 57–61, 249–251

history’s relevance, 263–265

influences on software history, 73

lessons learned from hardware

evolution affecting software,
41

linking software to physical

phenomena, 6

modeling software technology

evolution, 5

online resources, 55–56, 81, 270

other areas of software, 257–263

other influential groups, 70–72

other terms and techniques, 7

perpetual challenges of software

development, 254

Professional societies, 67–70

quality and reliability, 254

re-usability, 255–256

scalability, 255

security, 1

software-wide domains, 66–67

systems, 57–58

as technology, 5

technology evolve, 11–14

technology taxonomy, 66

trends, 251–254

types, 61–67

Software development environments

(SDE), 10

Software Engineering Body of

Knowledge (SWEBOK), 180

322 Index

SONET. See Synchronous Optical
Networking (SONET)

SOS. See SHARE Operating System

(SOS)
Source code, 122–123

System R, 276–278

UNIX Pipe.c, 271–276

Source Code Control System (SCCS),
180

Spatial databases, 226

Speedcoding System, 141

Sperry-UNIVAC, 71

SQL. See Structured Query Language

(SQL)
SQL standardization, 237–239

SQLite, 225

SRI. See Stanford Research

International (SRI)
SSEM. See Small-Scale Experimental

Machine (SSEM)

Stallman, Richard, 70

Standard engineering, 8–9, 60

Standard error (STDERR), 106

Standard input (STDIN), 106

Standard output (STDOUT), 106

Standards, 76

Standards Eastern Automatic

Computer (SEAC), 29, 258

Standards Western Automatic

Computer (SWAC), 29, 258

Stanford Research International

(SRI), 261

Stanford University, 131

STDERR. See Standard error

(STDERR)
STDIN. See Standard input (STDIN)
STDOUT. See Standard output

(STDOUT)
Stibitz, George, 16–17

Stored program concept, 35

Structural deepening, 13, 61

Structure of technology, 5

Structured programming, 161

Structured Query Language (SQL),

122, 222

Structured systems analysis for DVD

rental system, 182

Sun Microsystems, 71

SunOS, 110

Superposition of states, 63

SWAC. See Standards Western

Automatic Computer (SWAC)
SWEBOK. See Software Engineering

Body of Knowledge

(SWEBOK)
Sybase, 71

Synchronization, 94

Synchronous Data Link Control

Protocol, 198

Synchronous Digital Hierarchy (SDH),

198

Synchronous Optical Networking

(SONET), 198

sys/pipe.c, 271

System, 2

System Network Architecture (SNA),

191, 201

System R, 225, 239–241

Systems analysis, structured, 161

Systems Development Corporation

(SDC), 168

Tandem, 71

TCP/IP, 202–204, 250

TCSEC. See Trusted Computer System

Evaluation Criteria (TCSEC)

Technical environment, 11

Technische Hogeschool Eindhoven

multi-programming system

(THE multi-programming

system), 97

Technology, software as, 5–7

Technology domains, 8

TECO. See Text Editor & Corrector
(TECO)

Telecommunications, 190, 192

Teletypes, 190

Teletypewriter torn tape

messaging system, 195

relay center, 196

Television, 190

TEN-EXtended (TENEX), 103

TENEX. See TEN-EXtended (TENEX)
Text Editor & Corrector (TECO), 170

THE multi-programming system. See
Technische Hogeschool
Eindhoven

multi-programming system

(THE multi-programming

system)
Thompson, Ken, 102

Thrashing, 110

Time sharing System, 113

Time Sharing System for the IBM

System 360 (TSS/360), 99

TinyOS, 110

Token Ring, 197

Torn-tape systems, 194

Transactions, 223

Transistor, 36

TRANSPAC network, 209

Trends, 37

Trusted Computer System Evaluation

Criteria (TCSEC), 90

Trusted operating systems, 90

Index 323

TSS/360. See Time Sharing System for

the IBM System 360

(TSS/360)

Turing, Alan, 16

Tuple relational calculus, 238

Turing machine, Universal, 16, 62

Turing-complete languages, 123

UK National Archive for History of

Computing, 56

UML. See Unified Modeling Language

(UML)
UMTS. See Universal Mobile

Telecommunications System

(UMTS)
Unified Modeling Language (UML),

180

UNIVAC, 36. See UNIVersal Automatic
Computer (UNIVAC)

UNIVersal Automatic Computer

(UNIVAC), 36

Short Code, 119

UNIVAC I, 29

Universal Mobile

Telecommunications System

(UMTS), 193

University of Pennsylvania Moore

School, 23

UNIX Pipe.c, 271–276

UNIX-to-UNIX Copy (UUCP), 203, 264

UNIX® operating system, 3, 39, 83, 101,

166, 250

Unstructured DBs/NoSQL, 226

UpperCASE, 163

US Advanced Research Project Agency

(ARPA), 11

US Army Ballistic Research

Laboratory (BRL), 33

324 Index

US Defense Advanced Research

Projects Agency (DARPA), 11,

267

US General Services Administration

(GSA), 205

US National Institutes of Health

(NIH), 227

Usenet, 206–207

User groups, 70

UUCP. See UNIX-to-UNIX Copy

(UUCP)

UUCPNET, 203

Vale, Theodore, 17

VDL. See Vienna Definition Language

(VDL)

Veronica, 207

Very large-scale integrated (VLSI), 37

Viehe, Frederick, 36

Vienna Definition Language (VDL),

128

VINES. See Virtual Integrated

Network Service (VINES)
VINES Internetwork Protocol (VIP),

208

VIP. See VINES Internetwork Protocol
(VIP)

Virtual address space, 92

Virtual Integrated Network Service

(VINES), 208–209

Virtual Machine Control Program

(VM-CP), 180

Virtual machines (VM), 83, 90, 94, 250

Virtual memory, 92

Virtual Sequential Access Method

(VSAM), 232, 264

VirtualBox, 91

Virtualization, 95, 108

Virtualized operating systems, 85

VisiCalc, 38

VLSI. See Very large-scale integrated

(VLSI)
VM. See Virtual machines (VM)
VM-CP. See Virtual Machine Control

Program (VM-CP)
VMware, 90

ESXi, 91

Fusion, 91

von Neumann, John, 9

von Neumann Architecture, 29–32,

61–62

ENIAC programming before von

Neuman architecture, 62

von Neumann’s Flow Diagrams, 141

VSAM. See Virtual Sequential Access

Method (VSAM)

VxWorks, 89

Vyssotsky, Victor, 98

WAIS. See Wide Area Information

Server (WAIS)

Wang, An, 36

WANs. See Wide-area networks

(WANs)

Washington University in St. Louis,
207

WatchOS, 111

Waterfall-type methodology, 161

Watson, Thomas J., 20

WaveLan, 194

WebCrawler, 216

WELL, The, 206

Western Joint Computer Conference

(WJCC), 69

What You See Is What You Get

(WYSIWYG), 170

Whirlwind computer, 36

Whole Earth Catalog, 206

Wi-Fi label, 194

Wide Area Information Server (WAIS),

207

Wide-area networks (WANs), 196

Wilkes, Maurice, 70

Windowing systems, 71

Windows, 166

Windows Server, 90

Wireless data, 37

Wireless networks, 191–194

WJCC. See Western Joint Computer
Conference (WJCC)

Wollongong University, 107

Woo, Way-Dong, 36

Working Set Model, 95

Index 325

World Wide Web (WWW), 196

WWW. See World Wide Web (WWW)

Xen hypervisor, 94

Xen, 90

Xerox Palo Alto Research Center

(PARC), 138

XML. See eXtensible Markup

Language (XML)

XWHERE.PLIOPT, 276

yacc (Yet Another Compiler

Compiler), 272

Zilog Z80, 37

Zuse, Konrad, 16

	Software
	Contents
	List of Figures
	List of Tables
	Preface
	Use of the Book
	Acknowledgments

	1 Introduction to Software History
	1.1 What is “Software”?
	1.2 Challenges of Software History
	1.3 Modeling Software Technology Evolution
	1.3.1 Software As a Technology
	1.3.1.1 Linking Software to Physical Phenomena
	1.3.1.2 Software Is Built from Other Components
	1.3.1.3 Software Components Are Technologies

	1.3.2 Software Domains
	1.3.3 Other Terms and Techniques
	1.3.4 How Software Technology Evolves

	1.4 Computer Hardware History
	1.4.1 Hardware Before the von Neumann Architecture
	1.4.2 The von Neumann Architecture
	1.4.3 Computers After the von Neumann Architecture

	1.5 Computer Hardware Trends and “Laws”
	1.6 Lessons Learned from Hardware Evolution Affecting Software
	1.7 Summary
	1.8 Exercises and Projects
	1.8.1 Exercises
	1.8.2 Projects

	1.9 Further Readings and Online Resources

	2 Software History Fundamentals
	2.1 Overview of Software History
	2.2 Types of Software
	2.3 Cultures and Communities of Software
	2.3.1 Professional Societies
	2.3.2 Other Influential Groups

	2.4 Environment
	2.5 Influences on Software History
	2.5.1 Software Change Due to Invention
	2.5.2 Software Change Due to Functional Failure

	2.6 Summary
	2.7 Exercises and Projects
	2.7.1 Exercises
	2.7.2 Projects

	2.8 Further Readings and Online Resources

	3 Operating Systems
	3.1 Operating Systems and Their Evolution
	3.2 Operating Systems Scope
	3.2.1 Operating System Types
	3.2.2 Operating System Features
	3.2.2.1 Memory Management
	3.2.2.2 Process Management
	3.2.2.3 Virtual Machines

	3.2.3 General Operating System Technologies
	3.2.3.1 Migration of Operating System Features

	3.2.4 Influential Operating Systems

	3.3 Operating Systems Case Study: Pipes in the UNIX System
	3.4 Lessons Learned from Operating System Software
	3.5 Summary
	3.6 Exercises and Projects
	3.6.1 Exercises
	3.6.2 Projects

	3.7 Further Readings and Online Resources

	4 Programming Languages
	4.1 Definitions
	4.1.1 Machine Language
	4.1.2 Assembly Language
	4.1.3 Compilers and Automatic Coding and Programming
	4.1.4 Source Code, Object Code, Linkers, Loaders, Libraries, and Executables

	4.2 Types of Programming Languages
	4.2.1 Imperative and Procedural Languages
	4.2.1.1 FORTRAN
	4.2.1.2 COBOL
	4.2.1.3 ALGOL
	4.2.1.4 PL/I
	4.2.1.5 C

	4.2.2 Functional Programming Languages
	4.2.2.1 LISP Dialects

	4.2.3 Logic Programming Languages
	4.2.4 Object-Oriented Programming Languages
	4.2.4.1 Simula
	4.2.4.2 Smalltalk
	4.2.4.3 Java

	4.3 Prehistory of Programming Languages and Compilers
	4.3.1 Automatic Coding and Programming

	4.4 Influences on Programming Language Change
	4.5 Case Study: APL
	4.6 Lessons Learned from Programming Languages
	4.7 Exercises and Projects
	4.7.1 Exercises
	4.7.2 Projects

	4.8 Further Readings and Online Resources

	5 Programming Environments, Tools, and Methodologies
	5.1 Early Programming Environments and Tools
	5.2 Evolution of Programmer Tools Over Time
	5.3 Large Projects and the Software “Crisis”
	5.4 Reflections on Programming Tools and Environments
	5.5 Case Study: SAGE
	5.6 Case Study: GNU Emacs
	5.7 Case Study: AUTOFLOW
	5.8 Lessons Learned from Programming Tools and Environments
	5.9 Exercises and Projects
	5.9.1 Exercises
	5.9.2 Projects

	5.10 Further Readings and Online Resources

	6 Networking Software
	6.1 Overview of the Evolution of Data Networking
	6.1.1 Information Networking Before Computers
	6.1.2 Communications Networks Contributing to Computer Networking
	6.1.3 Wireless Networks
	6.1.4 Some Networking Hardware
	6.1.5 Overview of Data Network History
	6.1.6 Proprietary Networks
	6.1.6.1 One Example: IBM's SNA
	6.1.6.2 The Problem of Bridging or Connecting Disparate Networks
	6.1.6.3 Front-end Processors

	6.1.7 Packet Networking and Internetworking

	6.2 Networking Protocols
	6.2.1 OSI 7-Layer Reference Model

	6.3 Getting to TCP/IP
	6.3.1 UUCPNET
	6.3.2 ARPANET

	6.4 Network Software and Applications
	6.4.1 Electronic Bulletin Board Systems
	6.4.2 Email
	6.4.3 The WELL
	6.4.4 Usenet and NetNews
	6.4.5 FTP Archives
	6.4.6 Gopher, Archie, and Veronica
	6.4.7 World Wide Web
	6.4.8 Network Operating Systems

	6.5 Case Study: Minitel
	6.6 NCSA httpd and Apache Web Server
	6.7 Networking Influences
	6.8 Lessons Learned from Networking Software
	6.9 Exercises and Projects
	6.9.1 Exercises
	6.9.2 Projects

	6.10 Further Readings and Online Resources

	7 Database Management Systems
	7.1 Overview of Database Systems and Their Evolution
	7.2 Early Database History
	7.2.1 Data Definition Languages
	7.2.2 Report Generator Systems

	7.3 Types and Evolution of Database Systems
	7.3.1 I-D-S: The First DBMS?
	7.3.2 IBM's IMS and Hierarchical Databases
	7.3.3 Inverted File Systems

	7.4 Relational DBMSs
	7.4.1 SQL Standardization

	7.5 System R: Sample Code
	7.6 Factors Affecting Change of Database Software
	7.7 Lessons Learned from Database Software
	7.8 Exercises and Projects
	7.8.1 Exercises
	7.8.2 Projects

	7.9 Further Readings and Online Resources

	8 Software Futures and Overall Trends
	8.1 Overview of Software History
	8.2 Trends
	8.3 Perpetual Challenges of Software Development
	8.3.1 Software Quality and Reliability
	8.3.2 Software System Scalability
	8.3.3 Software Re-usability

	8.4 Emerging Software Trends
	8.5 Other Areas of Software
	8.6 Software History's Relevance
	8.7 Exercises and Projects
	8.7.1 Exercises
	8.7.2 Projects

	8.8 Further Readings and Online Resources

	A Appendix—Source Code
	A.1 UNIX Pipe.c
	A.2 System R Where Clause Code

	Bibliography
	Author's Biography
	Index

	tip:
	0:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:
	43:
	44:
	45:
	46:
	47:
	48:
	49:
	50:
	51:
	52:
	53:
	54:
	55:
	56:
	57:
	58:
	59:
	60:
	61:
	62:
	63:
	64:
	65:
	66:
	67:
	68:
	69:
	70:
	71:
	72:
	73:
	74:
	75:
	76:
	77:
	78:
	79:
	80:
	81:
	82:
	83:
	84:
	85:
	86:
	87:
	88:
	89:
	90:
	91:
	92:
	93:
	94:
	95:
	96:
	97:
	98:
	99:
	100:
	101:
	102:
	103:
	104:

