

Programming and Problem-solving in Algol 68

Macmillan Computer Science Series

Consulting Editor
Professor F.H. Sumner, University of Manchester

S. T. All worth, Introduction to Real-time Software Design

Ian 0. Angell, A Practical Introduction to Computer Graphics

G.M. Birtwistle, Discrete Event Modelling on Simula

T.B. Boffey, Graph Theory in Operations Research

Richard Bornat, Understanding and Writing Compilers

J .K. Buckle, The ICL 2900 Series

J .K. Buckle, Software Configuration Management

Derek Coleman, A Structured Programming Approach to Data*

Andrew J.T. Collin, Fundamentals of Computer Science

Andrew J.T. Colin, Programming and Problem-solving in Algol 68*

S.M. Deen, Fundamentals of Data Base Systems*

J .B. Gosling, Design of Arithmetic Units for Digital Computers

David Hopkin and Barbara Moss, Automata*

Roger Hutty, Fortran for Students

H. Kopetz, Software Reliability

A. Learner and A.J. Powell, An Introduction to Algol 68 through
Problems*

A.M. Lister, Fundamentals of Operating Systems, second edition*

G.P. McKeown and V.J. Rayward-Smith, Mathematics for Computing

Brian Meek, Fortran, PLII and the Algols

Derrick Morris and Roland N. Ibbett, The MU5 Computer System

John Race, Case Studies in Systems Analysis

B.S. Walker, Understanding Microprocessors

I.R. Wilson and A.M. Addyman, A Practical Introduction to Pascal

*The titles marked with an asterisk were prepared during the Consulting Editorship of
Professor J.S. Rohl, University of Western Australia.

Programming and
Problem-solving in Algol 68

Andrew J. T. Colin
Professor of Computer Science,

University of Strathclyde

M
Macmillan Education

© Andrew 1. T. Colin 1978

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First edition 1978
Reprinted 1981, 1984

Published by
THE MACMILLAN PRESS LTD
London and Basingstoke
Companies and representatives throughout the world

British Library Cataloguing in Publication Data

Colin, Andrew John Theodore
Programming and problem-solving in Algol 68.
-(Macmillan computer science series).
1. ALGOL (Computer program language)
I. Title II. Series
001.6'424 QA76.73.A24

ISBN 978-0-333-23115-9 ISBN 978-1-349-03561-8 (eBook)
DOI 10.1007/978-1-349-03561-8

Contents

Preface vii

Note on Exercises viii

1 Computers and Problem-solving 1

2 Information Storage and Processing 12

3 Introduction to Algol 68 22

4 Conditionals 42

5 Loops and Program Efficiency 55

6 Program Structure 70

7 Declarations and Reach 83

8 Simple Arrays and Methods of Search 97

9 Some Applications of Arrays 111

10 Hierarchy, Procedures and Parameters 129

11 Recursion 149

12 Real Numbers 164

13 Some Useful Constructions 184

14 Records and Files 199

15 Problem Definition and Program Documentation 213

Further Reading 227

Answers to Selected Examples 229

Index 249

Preface

The title of this book is carefully chosen-the main topic is the art of solving
problems by programming. The book is intended to appeal to those who
believe, like the author, that there is more to this subject than mere knowledge
of a programming language. Thus the 'Algol 68' of the title plays a vital but
secondary supporting function.

Although much of the book is necessarily about the mechanics of writing
programs, I have tried to convey some of the important ideas of programming
as a practical discipline- reliability, robustness, economy (considered in a
global sense) and structure, both in data and program.

Since the over-alllength of the book is limited, I have included only those
parts of Algol 68 that would normally be found in a first-year undergraduate
course. Omissions- which the reader will be able to fill from other books
devoted primarily to Algol 68- include computing with references, unions,
the definition of operators, formats, use of the backing store, and finally labels
and goto commands. This selection has the additional advantage that the
subset that remains is available, with minor variations of dialect, on all
existing versions of Algol 68.

Mental models are of great help in understanding complex phenomena. I
should perhaps make clear that the 'identifier table' described in chapter 7 is
such a model. The reader can safely take this account literally, and it will help
him to write correct efficient programs. Later, if he ever studies the design of
compilers, he may discover that the same effect can be reached in other more
complex ways.

My thanks are due to a great number of people: to two successive first-year
classes at Strathclyde University who used preliminary drafts of the book as
lecture notes; to Miss Agnes Wisley, who typed the manuscript; to Dr Charles
Lindsey, who as referee made many helpful suggestions and to my wife, who
drew sketches for the pictures, tracked down the quotations at the head of
each chapter, and gave me constant encouragement. The book itself is
dedicated to my mother, Mrs Vera Colin, without whom it would not have
been.

November, 1976 ANDREW COLIN

Note on Exercises

Each chapter in this book is followed by a set of exercises. The number in
brackets at the beginning of each exercise is an estimate of its difficulty. The
scale ranges from 0 (trivial) to 10 (hard).

The last exercise is usually marked P for practical. This indicates that an
actual computer solution is suggested.

A suitable rate for the exercises is about one set (including the practical) each
week.

The exercises marked* have worked solutions at the end of the book.

1 Computers and Program-solving

'We stand.at the brink of a new age, an age made possible by the revolution that is
embodied in the computer. Standing on the brink, we could totter either way- to
a golden age of liberty or a dark age of tyranny, either of which would surpass
anything the world has ever known.'

G. M. Weinberg, The Psychology of Computer Programming

Many people who have only a nodding acquaintance with computers regard
them as dangerous monsters. Far from being the benign servants that the
advertisements would have us believe, they seem more like hostile masters,
sending peremptory reminders for TV, car and dog licences. Computers helped
to put a man on the Moon but at the same time they can issue a bill for no
pounds and no pence and take someone to court for non-payment.

Figure 1.1 is a guide to the real state of affairs. The computer is a machine like
any other, and its monstrous appearance is only a mask. All machines have to
be driven or controlled, and the driver in this case is the programmer. His job is
to give the machine the instructions or rules that make it react to the public in
the way it does. You will see that the programmer's seat is not well placed, since
his view forward is obscured by the mask. Often he cannot actually see what his
rules make the computer do and what effect they have on tile people on the
other side of the mask.

Of course the programmer does not carry the ultimate responsibility for the
rules that he gives the computer. In practice he is told what sort of rules to use
by a systems analyst, whose task it is to use the machine to make things run as
smoothly and effectively as possible from the point of view of the organisation
that employs him. Both the analyst and the programmer are watched over by a
manager who makes quite sure that they do not forget their place and begin to
take the part of the outsider.

The monster's public face is frightening, but its secret behaviour can be even
worse. Although it does not yet happen much in practice, it is feasible for the
computer to use its knowledge about you in ways that you never intended or
even considered possible. For example, if you visit your doctor to discuss a
weight problem, and he happens to keep his notes in the memory bank of a
computer, you might start receiving glossy advertisements for expensive
slimming aids. Unknown to the doctor, some advertising agency might have
browsed through the information recorded in the computer and picked out
your name, and the names of others like you, for mailing shots as particularly

~

..... <;::,
~

~

.::; ~

·;;:
..... ~
.§ ..C

)

~ ~ §

-~ I l N

~

F
igure

1.1

Computers and Program-solving 3

easy 'sells'. As the law stands in the United Kingdom such behaviour would not
be illegal.

This is a very mild example, since an unwanted advertisement would not
cause you serious annoyance. It does not take much imagination, however, to
see the possibilities for blackmail, police harassment, and the theft of
commercial secrets, which are opened up as a result of private information
being stored in computers. It is true, of course, that much of this information
was stored in handwritten notes and ledgers before the computer was invented,
and that snoopers could always have searched them and discovered data that
they could profitably use. The difference is that, because the information is so
systematically arranged in the computer, it can be fully inspected by the
machine itself in a few seconds, and there is usually no trace that the search has
happened at all.

Most people agree that misuse of information in this way is wrong. The
computer itself is morally neutral. Although it makes this kind of abuse
feasible, the actual decision to use innocent information for illegitimate
purposes would be made by the systems analyst and his manager, and the
necessary program would be written by the programmer. The suggestion is not
that they are all wicked people; only that they think in terms of generalities like
'expansion of trade', and 'maintenance of law and order' and forget about the
individual human beings concerned.

There are a few computer systems where the mask is a kindly one. If such a
machine finds you in trouble or difficulty, it will help you as much as it can. If
your particular problem is too much for it to sort out on its own, it will never
try to stop you from reaching the people actually in control. If you wish to store
any confidential information, it gives you every opportunity to safeguard it by
using secret cyphers and other protective measures.

On the whole, people are more friendly on the telephone than when
answering letters. In the same way, most 'friendly' computer systems allow you
to 'talk' directly to the machine on a teletype or a visual display screen with a
keyboard. 'Hostile' systems tend to rely on such things as forms, which are
filled in and sent through the post, but some also permit a direct dialogue. Here
is an example of a possible 'conversation' between a traveller and two
computer systems, one friendly and one hostile. The traveller is trying to
reserve a ticket, and is about to state his destination. The conversations are
imagined as taking place on teletypes-electric typewriters controlled by the
computer and connected to it by telephone lines.

Friendly computer systems cost more than hostile ones because it takes
more trouble to set them up, but the difference is so slight that in time they may
become more common. Of course you must be especially wary of the computer
whose friendly mask enables it to extract information, which is then used
against your own interests!

4 Programming and Problem-solving in Algol 68

COMPUTER
MAN
COMPUTER
MAN
COMPUTER
MAN
COMPUTER

COMPUTER
MAN
COMPUTER
MAN

COMPUTER

WHERE DO YOU WANT TO GO TO?
EDNIBURGH
PARDON?
EDINBRGH
PERHAPS YOU MEAN EDINBURGH?
YES
THANKYOU. WHICI:I CLASS WOULD YOU

LIKE TO TRAVEL?

(a) Friendly computer

DEST?
EDNIBURGH
FAULT 73
(Does not know what to do, so he waits.
After 30 seconds)
TIMEOUT
(The teletype now goes dead, and the traveller does
not know whether his ticket has been booked, or how
to find out)

(b) Hostile computer

Fundamentally, when the mask has been stripped off, a computer is a
machine for solving problems. In most cases, the existence of a problem implies
that there is something to be done. One speaks, for example, of the problem of
clearing the slums, or a students' problem class, or a 'problem' child. In most
problems there are three distinct entities

the solver, who decides what is to be done
the client, who is supposed to benefit by the solution
the means, by which the solution is implemented.

The above examples all fit into this mould, as shown in table 1.1.
When he recognises a problem, the would-be solver must consider a number

of different factors.
Can the problem be solved, even in principle? Some problems are inherently

insoluble because of the laws of physics and mathematics. If modern physics is
correct, anyone attempting to make particles travel faster than the speed of
light would be wasting his time from the start. Similarly the mathematicians

Computers and Program-solving 5

who have tried since ancient times to square the circle or trisect an angle, using
only ruler and compasses, were bound to fail- these problems have been
proved insoluble.

Problem Solver- Client Means

Clearing the slums Architects and ur- The inhabitants of Bulldozers, buil-
ban planners, who the slums ders, etc.
decide to replace
tenements with
tower blocks

Problem class The student, who The same student, Pencil, paper, logs,
works through the who benefits by the etc.
problems he has experience
been set

Problem child Social worker or The child, or soci- Remand home,
psychologist ety, or both Borstal, etc.

Table 1.1

If there is nothing to prevent the problem being solved in principle, are there
enough resources for it to be solved in practice? For instance, I would very
much like to learn Chinese, and I believe that I could do so if I were to live in
China for a couple of years. Unfortunately I have neither the time nor the
money to make this possible, and so the problem of my learning Chinese in this
way must remain unsolved.

If the problem is soluble in a practical sense, what benefits will the solution
bring? Often they are clear and direct. There used to be a problem of endemic
cholera in the larger cities; when it was solved by cleaning up the water supply
the benefit was immediate and universal. In other cases the results are by no
means so clear-cut. If the client is a slum dweller or a problem child, he may not
agree that the solution you propose for his 'problem' will benefit him at all.
You should be very sure that you are right and he is wrong before you compel
him to accept your plan.

What does the solution cost? Every solution has a direct cost that can usually
be measured in money; this must be paid by the client, or those who want to
benefit him. Unfortunately most proposed ways of solving problems also have
indirect costs, which have to be carried by other people. For example, a new
machine tool can cause a large reduction in the costs of running a factory and
solve the owners' problem of bow to make a profit; but it can also put many
people out of work. A new road can ease congestion problems, but can also
cause a good deal of misery to those who live nearby and have their peace
disturbed.

6 Programming and Problem-solving in Algol 68

These indirect costs are usually ignored, mainly because there is no easy way
of taking them into account. Eventually legislation may force problem-solvers
to consider some of them, by making the client pay a very high price (for
example, a year in gaol) for adopting a solution that harms other people.

In general, every problem has many different solutions. Clearly any solution
that costs more than the benefits it is supposed to bring is simply not worth
consideration. From the solutions that remain, the problem-solver must find
that which gives the best balance between benefit and cost. If the benefits to be
obtained from two possible solutions are exactly the same, then the obvious
choice is the cheaper one. In practice this is hardly ever the case, and the solver
must use his judgement to decide which solution is the most suitable for the
circumstances. The following example shows the kind of thinking that is often
useful in selecting one solution out of several that have been suggested.

An engineering company has received an order for a passenger-lift
controller, and has decided to charge £1000. It has investigated the situation
and discovered a possible market for up to 100 lift controllers of similar design.

The company's design engineers have suggested two approaches to building
the controller. The first approach uses conventional relay technology. The
initial design work is relatively easy and will cost £5000; thereafter the cost of
labour and materials for each controller will be £800.

The second approach relies heavily on modern computer technology, and
uses microprocessors and other large-scale integrated circuits. The initial
design is expensive (£25 000) because a complex computer program is needed,
but once the design is complete the individual construction costs of each unit
are much less, only £400.

Total
cost

0

Conventional
technology

50

Figure 1.2

100

Number of units

Which is the best method to use? There is no clear-cut answer, since the total
cost depends on the number of controllers actually produced. The situation is

Computers and Program-solving 7

shown in figure 1.2, which shows how the total cost varies with the number
produced for each of the two methods. With these figures there is a cross-over
point between 52 and 53 units. For a small number the conventional relay
technology is the most economical, but for a greater number the computer
method wins because of the lower production costs.

If the total number of controllers actually needed were known in advance
this graph could be used to select the right method. However, it is more realistic
to suppose that the company is trying to sell as many units as possible, and
within the limits of 1 to 100 no one knows what the actual sales will be.

Figure 1.3a shows the expected profit (or loss) for various numbers of units
built with the conventional technology. There is a break-even point at 25; the
maximum loss incurred (if only 1 unit is sold) is £4800, but the greatest
possible profit, on sales of 100 controllers, is only £15 000.

Figure 1.3b shows a similar graph for the computerised version. The break­
even point is higher at 42, and the maximum loss is £24 400. On the other
hand, the maximum profit is a comfortable £35 000.

Sales income
(1000n)

profit

Number of units

(a)

100 0 100
Number of units

(b)

Figure 1.3 (a) Conventional technology; (b) computer technology

The best method for a given company depends on its financial situation. If it
has plenty of money, and it can afford to take a risk, then it should choose the
computerised solution, since possible profits are so high. On the other hand, a
company that is short of capital and hanging on by its teeth to stay in business
would be wise to select the conventional technology, even though its final
profit may well be less. Indeed this solution may even be forced upon it if its
bankers refuse to lend enough money to pay for the more expensive
development program needed by the computerised solution.

Suppose, that a general method for solving a problem has been decided. The
next stage in the process is for the solver to produce a set of instructions. These

8 Programming and Problem-solving in Algol68

instructions form the link or interface between the solver, who has decided on
what is to be done, and the implementor, who actually obeys the instructions
and produces the desired results.

The set of instructions can be expressed in various forms, all of them
common. Here are some examples.

'Place one pint of boiling water in a crock.
Add 1 teaspoon of Briars' Falsam.
(If you cannot smell the vapour, add more until you can.)
Lean over the crock and cover your head with a towel.
Inhale the vapour for 10-15 minutes.
Repeat every three hours until your chest is better.'

(From a bottle of Briars' Falsam)

'Shape toe as follows:
1st round -1st needle: K to last 3 sts., K2 tog., k1; 2nd needle: k1, s1, k1, psso, K to
last 3 sts., K2 tog., k1; 3rd needle: K1, s1, K1, psso, K to end.
2nd round-K.
Rep. these 2 rounds until 26 sts. remain.
K sts. from 1st needle on to end of 3rd needle.
Graft sts. or cast-off sts. from two needles tog.'

(From a knitting pattern)

45) Select the 4K7 resistor (yellow-purple-red)
Connect it between points J17 and K22

46) Select the 2 microfarad electrolytic capacitor, and identify the positive end
(marked with+ or red) Connect it between L33 (+) and M43 (-)

'
(From a do-it-yourself car-radio kit)

These examples cover a wide range of activities. They all assume certain basic
skills in the implementor, such as the ability to boil water or to cast on stitches
or to use a soldering iron. Some of them make use of a jargon that is related to
the area of the problem: K1, P1, 4K7, etc. It is acceptable to use these codes
instead of plain English because they are familiar to the people following the
instructions and they make the whole list shorter, easier to follow and cheaper
to print.

The sets of instructions have other common features as well.
In the first place it is assumed that the implementor will obey them

sequentially, that is, one at a time. The order he uses is that in which they are
written, except where any other order is explicitly stated (as in 'Repeat every
three hours until .. .'). In many sets of instructions the order is vitally
important; consider

RICE PUDDING (1)

Boil 1 pint milk
Add 2 ounces uncooked rice
Cook for two hours
Serve immediately with jam

RICE PUDDING (2)

Boil 1 pint milk
Cook for two hours
Add 2 ounces uncooked rice
Serve immediately with jam

Computers and Program-solving 9

Second, the instructions themselves are all relatively simple when compared
to the over-all problem to be solved. In the examples given it is easier to make
one stitch or solder one joint than to knit a jersey or build a complete radio.
Nevertheless this does not mean that the steps are simple in any absolute sense;
they might be very complex and require complete sets of instructions on their
own. For instance the radio construction leaflet might say

'To mount a component.
Select the component
Ensure that the leads are straight
Scrape the leads with a knife or emery paper until they are shiny all over
Bend the leads with pliers so as to fit the holes in the printed circuit
Insert the wires into the holes
Turn the PC board over and bend the wires down
Cut the leads off leaving 21 mm on the printed side
Solder the leads to the copper on the PC board, using resin-cored solder and an

electric iron not exceeding 25 watts in power.'

If this puts you off you might like to substitute exact instructions for making
one knitted stitch (purl) or boiling a pint of milk (remember to pour it out of the
bottle into a saucepan and to light the gas!).

The third point of resemblance is that the instructions are all in the
imperative mood ('Do something'). Some of the instructions may be con­
ditional ('If so and so is the case, then do something') but none of them is
indicative ('So and so is the case'). Such assertions are not necessary in a set of
instructions, and if they do occur then their only sensible purpose is to check
that the other instructions have been followed correctly. Consider the
statements

'The sleeve is now 28" long'
'The crust is crisp and slightly browned'

If, in the event, the sleeve is actually 48'' long or the crust is white and soggy,
you can deduce that you have used the wrong needles or oven temperature, and
(if you have the patience and resources) go back to the beginning and start over
again.

Sets of instructions of this type are known as programs. In many cases the
best that can be expected of a program is that it may produce the desired result.
The Briars' Falsam inhalation may cure the patient if he has a simple cough on
the chest, but if he has lung cancer it will do him no good, no matter how long
he uses it.

Among programs there is a special category such that, if they are followed
correctly, they will produce the required result after a finite number of steps.
Such programs are called algorithms, and are particularly important where
certainty and reliability are to be taken into account. The knitting pattern is an
algorithm, because if you follow it precisely you will inevitably finish up with
the required article. The radio instructions do not constitute an algorithm
because the components themselves may be faulty. It is all too common an

10 Programming and Problem-solving in Algol 68

experience to follow through the instructions exactly and end up with a set that
does not work. The makers of the kit usually convert their program to an
algorithm by adding a final instruction

'Test the set. If the performance is unsatisfactory return it to Messers Tomb and Son,
Mortuary Lane, Gravesend, Kent, who will repair or replace it free of charge.'

EXERCISES

l.l (1) What is a friendly computer? Describe some of its attributes.

1.2 (1) State clearly who (or what) are the problem, the solver, the client and
the means in each of the following situations, where there is something to be
done.

(a) You fall and break your leg.
(b) Your domestic heating bills are more than you can afford.
(c) The violent crime rate in your city is too high.
(d) The standard of your local football team needs improvement.

*1.3 (2) You are the landlord of a large student hostel.
You have two methods of buying electricity

(a) tariff 1 imposes a flat charge of 2p per unit
(b) tariff 2 imposes a standing charge of £100 per year+1p per unit

In the hostel there are 50 rooms. Each resident can use between 0 and 500 units
per year. You have two possible ways of charging for electricity

(a) you can impose a flat charge of £5 per year on each resident, or
(b) you can rent a meter for each room at a cost (to you) of £2 per year

and adjust it so that the resident pays 3p per unit.
Compare the different ways of dealing in electricity and determine which

method (i) can give you the greatest profit, and (ii) ensures the smallest loss (if
any). What method would you choose in practice?

1.4 (3) In a shed there is a large pile of bricks. In the yard outside there is a
heap of logs. At the door of the shed there lies a particularly malodorous and
vicious dog, and you do not want to pass the dog more often than you have to.

Assuming that you can only carry two logs or five bricks at a time, give an
algorithm, to be implemented by yourself, for getting the logs into the shed and
the bricks into the yard. Your algorithm should ensure that you do not pass the
dog more often than you have to. You are not permitted to unchain the dog
and take it away.

*1.5 (0) The rules for Snakes and Ladders say, 'To start, shake and throw the
dice until a 6 turns up'. Is this an algorithm for starting? Explain your answer.

*1.6 (3) Here is a program for finding the square root of a number n to about

Computers and Program-solving 11

two decimal places.
(a) Set a variable x to 1.
(b) So long as the value x2 differs from n by more than 0.01 repeat the

following step
(c) replace the value of x by !(x + n/x).
(d) Finally take x as the answer.

Here is an example. Take n = 5.
(a) Set x = 1.
(b) 12 (= 1) differs from 5 by more than 0.01, and so
(c) set x = !(1 +5/1) = 3.
(b) 32 (= 9) differs from 5 by more than 0.01, and so
(c) set x = !(3 + 5/3) = 2.333.
(b) (2.33W (= 5.444) differs from 5 by more than 0.01, and so
(c) set x = !(2.333 + 5/2.333) = 2.238.
(b) (2.238)2 (= 5.009) differs from 5 by less than 0.01, so
(d) take 2.24 as the square root of 5 to two decimal places.

Use this procedure to find the square roots of 7 and 9, working to three
decimal places.

*1.7 (3) Do you think the program given in exercise 1.6 is an algorithm? (Try
applying it to the number- 2.) If not, what changes would you make to ensure
that it is an algorithm?

1.8 (P) Get your course tutor or demonstrator to show you round your local
computer installation, to explain what the various parts of the computer
actually do and to demonstrate a teletype or visual display unit.

Did you find a programmer in the seat behind the machine? If not, why not?

2 Information Storage and Processing

'The Ministry of Truth-Minitrue, in Newspeak-was startlingly different from
any other object in sight'

George Orwell, Nineteen Eighty-Four

Every machine is designed to handle some particular 'working substance'.
Steam engines run on steam, sewing machines sew cloth and cheese graters
grate cheese. Some machines, including computers, use iriformation as their
working substance. In simple terms, information is anything that can be
written down. It turns out that, as a working substance, information is unique
and has some curious properties.

Most ordinary working substances are physical. They can be weighed by the
bushel and measured by the cubit (or pint or millilitre). They are susceptible to
being degraded through decay or contamination. Information, however, is
abstract. It weighs nothing, and can only be measured by introducing new
units. It can still be bought or sold, sometimes (as in time of war) at extremely
high prices. Information does not decay in any physical sense, but with the
passage of time it tends to become out of date and therefore less true than it
may have been to start with. This gradual corruption is more insidious than the
simple degradation of physical working substances because there are usually
no obvious signs that it has occurred.

One of the most important qualities of information is that, once it exists, it
can be copied or replicated at very little cost. For example, the effort needed to
write a book is prodigious but, once the text has been completed and the print
set up, additional copies can be run off very cheaply. This property also makes
information particularly liable to theft-all the intruder needs is a camera and,
since he need not actually take anything away when stealing information, the
theft is that much harder to detect.

A very large fraction of industrial and other endeavours centres on
information rather than physical substances. The Post Office, the radio and
television companies, the publishers of books and newspapers, and every place
of education all use information as their major or only working substance.

Information engineering, like all other sorts of engineering, relies on
measurement. There are several different ways of measuring information. A
practical unit for everyday situations is the character, which is derived from
the fact that all information can somehow be written down.

Information Storage and Processing 13

In any information-handling system, there is always available a fixed
'lexicon' of characters. The use of any character outside this set is not
permitted. For example, my typewriter has some 88 different signs including
the upper- and lower-case Roman alphabet, the 10 decimal digits and various
punctuation and mathematical symbols. In writing this book, I must keep
within this set; I cannot use Greek letters or integral signs since there is no way
to type them.

Other common character sets differ in size. For instance, the set used to send
telegrams or punch DYMO tapes only has some 40 different symbols, while the
set available to printers is much larger and includes italics, bold type, and
characters of various heights. The point remains that the number of different
characters in any set is finite-that is, there is a limited number of
distinguishable signs that can be used.

At first, this limitation may seem a drawback, but this is not so. A message or
text composed of characters cannot convey any meaning unless the sense of
each character is known both to the sender and to the receiver. If the number of
possible characters were unlimited, the sender would be able to make them up
as he pleased; but since the new characters would not be familiar to the receiver
the message as a whole would be nonsense. The character set must form a code
known to all who use it, and it must be finite to do so.

Quantities of information are measured in characters. (The artificial word
'byte' is sometimes used instead, and has the merit of being shorter.) For
instance, the Bible contains about five million characters, while a typical
medical record, pruned of all unnecessary data, might be found to comprise
some 8000 characters.

The properties of information machines are also expressed with this unit;
one speaks of a data link running at 10 characters a second, or a disc store of90
megabytes. The prefix 'mega' implies multiplication by 106 , so that such a disc
could store 18 books each the size of the Bible.

Computers are a kind of information machine. They are not the only
machines that exist for this purpose, but others like printing presses, sorters
and calculators are intended for one application only, whereas computers are
designed with great flexibility, so that they can rapidly be switched from one
type of job to another, including printing, sorting and calculating.

The various ways in which a computer can process information correspond
quite closely to the methods that a human might use. Some of them are given in
table 2.1.

As well as similarities, there are important differences between machines and
people. Three of them are speed, accuracy and cost.

The speed of a computer in doing simple operations is several million times
faster than that of a human. Machines can undertake work that would be
impossible or useless if done by people. A good example is found in
meteorology. A weather forecast is only useful if it is available before the
weather conditions actually arise. There are certain methods by which good
24-hour forecasts can be made from a knowledge of the current state of the

14 Programming and Problem-solving in Algol68

weather over a large area. These methods have been known for a long time, but
in the past they could not be applied because the calculations involved would
have taken a man at least three years. Instead, forecasters tended to use simple
rules of thumb, which did not always give correct results. Recently a computer
that can do the sum in three hours has been built, and the precision of 24-hour
forecasts has improved considerably as a result.

Human activity

Filing

Searching

Checking

Sorting

Calculating

Writing out
reports, etc.

Computer activity

Information
storage

Searching

Checking

Sorting

Calculating

Printing

Table 2.1

Comments

The amount of data stored by a
typical computer is quite
small-about the same as a
couple of shelves in a library

Searching through a batch of
data for a particular entry

Comparing two items of infor­
mation to see whether they are
exactly the same. Computers
are not nearly as good as people
in spotting whether two items
are roughly similar

Rearranging groups of items
into alphabetical or numerical
order. This is an important pre­
liminary to searching

Selecting certain items of infor­
mation as numbers and doing
sums with them

Producing the results of a given
piece of work

Accuracy is not an attribute common to many people. Humans are very
prone to errors, particularly when doing boring and repetitive jobs. On the
other hand, machines do not get tired and bored and, while they do
occasionally make errors, they do so far less often than people. This means that
machines can be used for problems that humans cannot undertake purely
because of the 'boredom' factor-such as solving 1000 simultaneous equations
in 1000 unknowns, or reading through an entire telephone directory to find all
the people who live in a certain street.

The cost of information processing by computer is already much less than
that of manual processing, and it is falling further every year. The bulk of
information handling is already done by computer. In principle this helps to
relieve a large part of the human race of the daily load of drudgery that was so

Information Storage and Processing 15

characteristic of earlier industrial times. In practice it may well give rise to the
greater evil of unemployment. This is part of the indirect cost of using
computers to solve information problems.

Central
computer

Figure 2.1

Figure 2.1 is a generalised picture of a simple computer system. The
computer in the centre is fed with the raw material or data for the problem. The
data are a stream of characters, which are entered through an input device that
converts them into the electrical signals needed by the computer. The input
unit can be a typewriter keyboard operated directly by a human, or it can be a
device to read information that has already been recorded on some mechanical
medium such as cards, paper tape or magnetic tape.

The results of the process also consist of a stream of characters, and they are
generally converted from their electrical form and printed by an output device.
This again can be a teletype (something like an automatic electric typewriter)
or a line printer, which prints a whole line at a time and is very much faster. The
results can also be displayed on a screen, or they can control a graph plotter
and make it draw a picture, or they can be recorded on a mechanical medium so
that they can serve as input to the machine on a later run.

The key to the process itself is the set of instructions or program, which
controls the transformation of the data into the results. The program, which
always consists of a sequence of relatively simple steps, is written in advance by
a human programmer and 'plugged in' to the computer whenever a problem of
that particular kind is to be solved. In terms of the ideas set out in chapter one,
the programmer is the implementor, or means, by which the solution is
actually obtained in any instance. The program may or may not be an
algorithm.

To illustrate these ideas, some examples of processes of this type are given in
table 2.2.

In all these examples, everything needed to solve the problem is to be found
either in the data or in the set of instructions. Unfortunately only a small
fraction of practical information problems fit this pattern precisely. Most of
them need access to some more or less permanent collection of facts or

16 Programming and Problem-solving in Algol 68

database to provide essential background information.

Program name Typical input Typical output Comments

'Decode' MTNOT lAAWR MAINATTACKON Program to
WMICS 'unscramble'

SOENK EERNA NWSECTORSEND a military
OCNET code.

TNTDG SXXXX TWO REGIMENTS

'Simultaneous 3X+2Y = 47 X= 4, Y = 17.5 Solves
equations' 5X+4Y = 90 simultaneous

equations

'Calendar' 1977, 1984 Calendar for 1977 Generates a
and 1984 calendar for

any specified
year

Table 2.2

Typical databases consist of such material as telephone directories, railway
timetables, diaries for executives in large businesses and other organisations,
and stock records. The services supported by these databases range from
straightforward enquiries ('Which train should I catch from Exeter to arrive at
Norwich by 5.00 p.m.?') to complex commands like, 'Find the first possible
opportunity to hold a two-hour meeting, starting at 10.00 a.m. or after, to be
attended by the chairman and any three or more of Messrs Able, Baker,
Charlie, Dog and Early'.

Figure 2.2

Information Storage and Processing 17

The over-all picture of a computing system with a database is shown in
figure 2.2. The connecting lines show that in most cases the information flows
from the database to the central computer itself. If any information flows the
other way at all, its quantity is relatively small.

In many simple instances, the database has the form of a file. A file is a
collection of records, each one containing information about some specific
entity. For example, a university might maintain a file of its graduates and
other ex-students. Each record would correspond to one ex-student, and
would contain his or her name, status (Mr, Miss, etc.), address, year of
graduation, profession, and subject taken at university. Figure 2.3 shows an
extract from the file, which in practice might hold some 100 000 entries at any
time.

SAMUEL WELLER, MR, 2 EXMOOR RD, LYNTON, 1970, SOLICITOR,
LAW

SARAH GAMP, MRS, 12 FINCHLEY RD, LONDON NW3, 1968,
CHEMIST, PHARMACY

REGINALD WILFER, MR, 1 BEDLAM AVE, BIRMINGHAM 7, 1920,
AUTHOR, PHYSICS

CHARITY PECKSNIFF, MISS, 123 BELSIZE RD, LONDON NW3, 1972,
TEACHER, MA THS

MARTIN CHUZZLEWIT, DR, SOAP CRESCENT, BATH, 1965,
DOCTOR, MEDICINE

Figure 2.3 The original database

Once such a file has been set up, the university can use it for a nu~ber of
different purposes. Some examples are as follows.

(a) The university might wish to substantiate a claim that it produces more
engineers (or doctors) than any other. The computer can help by running
through the file and counting the number of people in the various
professions.

(b) The university might wish to arrange a reunion of old students. To ensure
that the people invited have a good chance of knowing one another (and
also to restrict numbers to a practical level) it could be decided to limit the
issue of invitations to those who graduated at about the same time, say,
during three consecutive years. The computer would help by searching all
through the file, picking out the ones who were eligible, and printing their
names and addresses on labels, which would be stuck directly to
envelopes containing copies of a suitable circular letter.

18 Programming and Problem-solving in Algol 68

(c) The university might find itself in financial trouble. It would of course
appeal to its old students for help. The computer could pick out those
whose age and profession made them the most likely to respond and print
out personalised letters, duly signed with a facsimile of the Principal's
signature. In the following, the personalised sections are underlined; they
would be different for each recipient.

Dear Mr Weller,
Since you left Hardgate University in 1970 there have been many

changes, some not altogether desirable, to our financial status. We are
being increasingly squeezed between a falling income and rising mainten­
ance costs. In particular the law school where you spent so many happy
hours is gravely in need of redecoration and repair.

Samuel, we need your help in raising the money to keep the University
going. Although any amount is acceptable, we feel that you, as a solicitor
with several years of practice behind you, could hardly contribute less
than £ 100 to our funds.

Thanking you in advance,
Yours very sincerely,

Of course, a file of this kind would soon lose its usefulness unless the
information in it were kept up to date. The pretext of running a graduates'
magazine makes an excellent way of collecting news about changes in
professions, marriages and deaths. Once a year, all this information would be
collected and punched on cards, together with the names and other particulars
of new graduates. This data would be used to 'update' the ex-student file; the
new graduates would be represented by new records, reports of deaths would
cause some of the existing ones to be deleted, and other information would lead
to changes in records already on file.

As already mentioned, every job done on a computer is controlled by a
program. Every program is initially prepared by a programmer and consists of
a suitable sequence of simple steps or instructions. In the remainder of this
chapter, the basic nature of these instructions will be examined and some of the
elementary operations needed to implement the processing of information will
be discussed.

To begin with, it is not hard to see that the machine must be able to handle
characters. All data is made up of characters, and so these are, in a sense, the
basic units of information.

Secondly, the central processor must have a working store in which
information can be retained on a temporary basis. This feature-the need for

Information Storage and Processing 19

'scratch-pad' storage-seems to occur not only in computers but in almost
every information-handling situation. Thus a researcher working in a library
will keep a pile of paper slips on which to jot down his findings. Again many
desk calculators are proudly advertised as being built 'with memory', the
implication being that those without memory are very inferior (as in fact they
are).

In a computer, the memory serves to retain information over entire
sequences of commands. The memory consists of a set of locations, each
capable of storing one character. The actual storage is done electrically, but
there is no harm, if you like, in imagining the store as a long thin blackboard,
divided into squares. You must imagine that each square is permanently
labelled with its own number, and is big enough to contain exactly one chalked
symbol.

There is an important distinction between working storage on the one hand,
and the kind of memory needed to retain databases on the other. Working
storage is essentially volatile; this means that it can be used to hold information
during the running of a program but once a run has ended the working store of
the machine is wiped clean and handed over to the next job. By contrast the
backing store of a computer, which is used to hold files and other databases, is
intended to be safe from one run of a program to the next. In a well-built system
there is no risk of one job unintentionally wiping out a database created by
another.

This difference tends to be reflected in the physical properties of the two
types of memory. The working store of a computer is purely electronic (which
makes it very fast) but it is liable to lose the information it holds if the machine
is switched off for any reason, for example, by a power cut. It is also very
expensive and therefore relatively small- tens or hundreds of thousands of
characters.

The backing store has the opposite characteristics. Information is recorded
magnetically on the surface of a tape or disc, in a place determined by
mechanical motion. This makes it slow but cheap, and the information is quite
safe even if the machine breaks down. Most large machines have backing stores
of hundreds of millions of characters.

So far it has been established that the central processor must include a
working store, which can contain characters. Clearly nothing can actually
happen unless the characters can be moved or manipulated in some way. The
following are some of the basic character operations that the machine must be
able to do.

(a) Copy a character from one location to another, erasing any previous
contents of the destination cell. For example, if the instruction said 'copy
cell15 to cell16', and initially cell15 held an X and 16 a Y, then after the
operation both cells 15 and 16 would hold an X, and the Ywould have
been lost irretrievably.

(b) Read a character from the input stream and put it into a specified location,

20 Programming and Problem-solving in Algol 68

overwriting the previous contents. When this instruction is obeyed, the
computer sends a request to the input device to read one character (or a
row of holes in a card, or a key depression). When the character eventually
appears as an electrical signal it is duly recorded in the selected cell.

(c) Take the character currently in a selected location and print it. The
contents of the chosen cell in the workspace are sent to the output device
for printing or display.

(d) Print a specific character (that is, one known in advance).

(e) Compare the character in a given cell with a given character and
determine whether they are the same.

It is worth noting that these instructions refer sometimes to 'a given character'
and sometimes to 'the character in a given cell'. The difference is important. The
given character is always known in advance and is often called a constant, but
the character in a given cell is not always predictable and may change as the
program runs, and so it is called a variable.

These instructions are so simple that if computers were restricted to running
through any sequence just once they would be of little practical use. There
must be some way of ensuring that a group of instructions, which does a
particular job, can be repeated as many times as necessary.

A vital property of computers is their ability to count and to do arithmetic.
Unfortunately arithmetic with single characters is not a feasible proposition­
for example, there is no one character that can express the result of adding 5
and 7. To overcome this problem all computers are equipped to deal with
another type of object called an integer, which means a whole number.

Integers may reside in store locations just like characters. They can be read,
printed and compared in much the same way, but they can also be added,
subtracted, multiplied and divided in the ordinary arithmetical sense.

An integer inside a computer is invisible. If the program prints its value, the
value always appears as a sequence of characters like+ 3184. Inside the
computer, the value is not represented as a series of characters at all, but in
some other notation, which is more suited to arithmetic. The internal
representation is of little interest at this stage, except in so far as it imposes
limitations on the range of numbers that can be handled. This point will be
discussed later.

Characters and integers are just two of the types of object (or modes) that a
computer can handle. There are several other 'standard' modes, some of which
will be introduced in later chapters. Furthermore, in some systems it is possible
to make up special modes if for any practical purpose none of the standard ones
is entirely suitable.

All computers, without exception, are capable of handling characters and
integers, and of obeying a sequence of commands that specifies some program.
The notation or language used to represent this program forms the subject of
the next chapter.

Information Storage and Processing 21

EXERCISES

2.1 (0) Name the working substances of 10 machines familiar to you.

*2.2 (0) What is the 'character set' of an electronic desk calculator? (Consider
the display only.)

*2.3 (0) Magnetic tapes are available in standard lengths of200, 600, 1200 and
2400 feet. A certain type of tape deck can record 800 characters per inch of tape.
What size of tape would you buy to store the text of the Bible?

2.4 (1) Describe a system in which a computer uses and maintains a database.
Do not use the example given in the text!

2.5 (P) Find out as much as you can about your local computer, and make a
table that shows its maker, price, speed and other properties.

3 Introduction to Algol 68

'For then I will turn to the people a pure language'
Zephaniah 3: 9

When a computer program is written down it must follow some agreed set of
conventions if it is to make sense. Such a collection of conventions or rules is
called a programming language.

The history of computer science has seen the development of hundreds of
different languages. As the art of programming became better understood,
newer and more convenient languages gradually replaced the older ones. The
most important ones at present are

Fortran and Algol 60 for scientific work
Cobol for business applications
Basic for simple problems
PL/1 and Algol 68 for general-purpose use (scientific

and business)

A language always has two divisions- syntax and semantics. Syntax means
the same as grammar, and determines whether any purported 'sentence' is
grammatically correct or not. For example, an appeal to the syntax of English
would reveal that

'The moon is made of Camembert'

is a correct English sentence, whereas

'Mary eated her little lamb for lunch'

is not.
Similarly, reference to the syntax rules of ordinary algebra shows that

x+PY
is not a conventional algebraic expression.

The syntax of a language says nothing about the meaning, still less the truth,
of any sentence; it can only be used to check whether the sentence conforms to
the rules of grammar for that particular language.

Semantics, on the other hand, are concerned with meaning. The only
sentences to which semantics apply are those that are syntactically correct-

Introduction to Algol 68 23

the ones with grammatical errors are automatically meaningless. Traditionally
the semantics of a language are explained informally, with references to ideas
that the reader already knows and many examples.

In studying Algol 68 in this book, discussions of both the syntax and the
semantics of this language will frequently arise. As in the grammar of a natural
language, the syntax rules are always arbitrary. They represent a personal
choice by the language designers, and do not need to be justified on any other
grounds. For instance, the language prefers begin and end to start and stop, and
this point needs neither argument nor understanding, but only your accept­
ance. On the other hand the semantics- the meanings of statements in the
language- are intended to make very good sense indeed and, as you study this
aspect, you should make every effort to understand the purpose of this or that
construction.

Algol 68 is written with a specific character set that includes the following.

all lower-case letters
all underlined lower-case letters (in printed material such as this book they are

usually indicated by bold type instead)
the ten decimal digits and the decimal point
the arithmetic symbols + * / i
the relational symbols #- < >
the brackets () []
the separators , ; I
the colon : and the double quotes "and" . The quotes mean the same which
ever way they are printed.

An Algol-68 program is deemed to consist of one long string of symbols. They
can be arranged on lines in any arbitrary way, and spaces can be put in almost
anywhere without making any difference to the meaning of the program. This
freedom is useful in arranging or 'laying out' the program to make it readable
for other people. The rules of good layout will be considered in due course.

As in a natural language, the symbols of an Algol-68 program are grouped
into words. The number of words that are, so to speak, permanently in the
dictionary is really quite small but, as will become apparent, there is every
opportunity for the programmer to invent and define new words as required.

The words fall into four categories.

(1) Identifiers: Identifiers are used to distinguish objects of all kinds:
characters, integers, constants, variables, formulae and so on. An
identifier must start with a letter, and then continue with letters or digits
only. You can invent identifiers as you please, and most programmers use
names with some sort of mnemonic significance. Examples are count,
prime, factor, cell3, cost, zed37p4q.

(2) Literals: Most programs need to use numbers in various places. When
these numbers are known in advance they are written as literals. There are
two main ways of writing them

24 Programming and Problem-solving in Algol 68

(a) if a number is an integer (that is, a whole number) it is written as a
sequence of decimal digits: for example, 3 or 417009

(b) otherwise, it is written as a series of decimal digits giving the integral
part, then a decimal point, then another series of digits giving the
fractional part: for example, 3.5 or 0.18007 or 123.001.

There are other rules for writing numbers that are very small, or very
large, but these can be left for consideration elsewhere.

(3) Character literals: Again, most programs need to use characters and
strings of characters, if only for labelling the results. A character literal is
written as a symbol enclosed in double quotes-for example "A" or
":"-and a string literal comprises several symbols

"THIS IS A STRING"

It is important to note that inside a character or string literal a space is
significant, and stands for itself. This is the only exception to the general
rule that spaces are ignored.
There is some difficulty in putting the double quote symbol itself into a
character constant. Presented with, say

"HERE IS A DOUBLE QUOTE SYMBOL:" SEE?"

as an intended string constant the computer would naturally take the end
of it to be at the colon, and would regard SEE?" as an error. To allow a
double quote to be used inside a character or string literal the language
includes the rule that in such a literal a double quote may be represented
by two double quotes side by side. The correct form of the example is

"HERE IS A DOUBLE QUOTE SYMBOL:" "SEE?"

So as to make programs easier to read, it is conventional to write letters
inside character and string literals as capitals.

(4) Symbols of constant meaning: These are the symbols of which the meaning
is fixed by the rules of the language. They comprise three groups
(a) the single symbols + - *I i = # < > 0 [],;I: $
(b) certain compound symbols, made up of two or more single symbols:

< = > = . - +: = /: = . - *: = : =: I:
(c) system words, which consist of sequences of underlined letters. A full

list can be found elsewhere but some of the important ones are

int char real bool proc mode if then else elif fi case in
esac begin end for from to by do od while co comment
ref

Introduction to Algol 68 25

Certain of the system words play the part of brackets. The matching
pairs are

()
[]
begin end
if fi
case esac
do od

Brackets of various types may be nested inside each other, but every
opening bracket must be matched by a closing bracket ofthe correct
type. When a program is set out, its readability is improved if the
following rules about brackets are observed.
(i) If possible, a closing bracket (of whatever type) should be on the

same line as its corresponding opening bracket.
(ii) Otherwise, a closing bracket should be vertically below its

corresponding opening bracket, and the material in between
should be indented so that all of it falls to the right of the vertical
line joining the two brackets.
The brackets in an Algol-68 program play an extremely
important part in determining its meaning, and this arrange­
ment helps both the reader and the writer to match up opening
and closing pairs correctly.
The syntax of Algol 68 permits certain contractions. Thus the
pairs begin ... end, if . .. fi and case ... esac may all be
replaced by the round brackets (). The replacement must be
consistent: if cannot be matched with).

A 'skeleton' example of a properly indented program is

begin

do -- od;

begin) ----)

end

end

The symbol comment is used to set off commentary that is intended for the
human reader only. Comments consist of remarks that explain what the
program is doing, and they form a useful aid to you and anyone else reading the
program (including, of course, your course tutor). Commentary can be inserted

26 Programming and Problem-solving in Algol 68

between any two system words in a program. It must start with the symbol
comment and also end with this symbol (not tnemmoc), and it may include
anything except comment, for obvious reasons.

The symbol co can be used instead of comment, but only in a consistent way;
a section of commentary that starts with co is not terminated by comment, but
only by another co; and the converse is also true.

For certain practical reasons the Algol-68 systems available on various
computers all differ slightly from the language as defined in this chapter. For
example, many machines rely on punched cards for input, and the character set
that they offer includes one sort of capital letters only and does not permit
underlining. The designers of the individual systems have had to find a way
round this difficulty, and they have adopted different solutions.

In Algol 68R, the ICL 1900 system written by the R.R.E. at Malvern,
identifiers are written in capitals and system words are enclosed in primes,
thus: 'BEGIN', 'IF'. A further important difference of the dialect is that do is
written 'DO' (and od is written), while elif is written 'ELSF', co is written 'c'
and+ is written '/'.

The next step is to begin to discuss the design, structure and meaning of
programs in Algol68. The first few examples will seem trivially simple, but they
are worth careful study, since they illustrate certain principles that are
fundamental to all programming.

All programs are written so that they may eventually be submitted to a
computer for running. When this is done, the program and its data must be
punched up on cards or paper tape and enclosed in a job description, just as a
letter has to be written out and enclosed in an envelope, which is then
addressed and stamped. The job description is not part of the program, any
more than the envelope is part of the letter it contains; its only purpose is to
ensure that the program as a whole is correctly handled by the computer.

The correct form of a job description varies widely from one make of
computer to another, and even when using the same machine different
installations tend to maintain their own local conventions. In practice, your
course tutor will tell you how to write a job description for the particular
machine you are using, and you will probably be able to use the same job
description for all the programs you submit.

An example of a complete job is given on the next page. The program is in
the Algol-68R dialect, and the job description is suitable for an ICL 1900
machine running the OXCAF subsystem under GEORGE 3. The form of the
job description that you will have to use may be quite different.

You will see that job-description statements are needed

(a) at the head of the job
(b) at the end of the program
(c) at the beginning of the data
(d) at the end of the job.

Introduction to Algol 68 27

Since the job description is not part of the program, and is in any case not
written in Algol 68, there will be no further mention of it in this book. Any
reference that may be made to a 'complete program' will not include the job
description.

JOB CAFANDREW, :CAQP47
ALGOL68
*ALGOL68
EXAMPLE
'BEGIN' 'INT' A, B, C;

READ (A);
READ (B);
C: = A+B;
PRINT (C)

'END'

'FINISH'

*DATA
37 46

*END
ENDJOB

Program (in the Algol-68R dialect)

Job description (which terminates
program)
Job description (introduces data)
The actual data

} Job description (terminates whole
job)

Consider again the example given above. Rewritten in the standard Algol 68
notation, it is

1 begin int a, b, c;
2 read (a);
3 read (b);
4 c:=a+b;
5 print (c)
6 end
(data) 37 46

Note that the line numbers are not
part of the program but are included,
here and elsewhere in complete pro­
grams, for reference only.

According to the conventions ofthe language, spaces and ends of lines have no
significance. Remember also that begin and end are matching brackets; they
always enclose a number of items that are separated by semicolons, so that the
over-all structure of the program is

begin -----; -----; -----; -----; ----- end

The items between the brackets are phrases, or parts of the program. The
computer carries them out, one by one, in the order in which they are written.
Note that the semicolon is used only to separate one item from the next. It is

28 Programming and Problem-solving in Algol 68

wrong to put a semicolon before end, just as it would be unconventional, in
writing a pair of coordinates, to put (5, 3,) instead of (5, 3).

The individual items include a declaration (int a, b, c) and four units (read (a),
read (b), c: = a + b and print (c)).

It will be worthwhile to examine the effect of these items in detail.
The declaration makes the computer set up the working storage it needs for

the problem. The system word int, which comes first, specifies that the storage
required is for integers, not (for example) for characters. Next there follows a
list of variable identifiers separated by commas. In the present example a, band
c were chosen for the sake of brevity but longer names would have been quite
acceptable, since the programmer is free to choose whatever names he likes.
For each identifier in the list the computer sets aside a storage cell for an
integer, and notes the special connection between the identifier and the cell.

Strictly speaking the cells are selected from the working store in a way that is
of no concern to the programmer, since he cannot influence the choice or even
discover exactly what it is. In practice the system is likely to proceed in a simple
way, taking cell 1 for a, cell 2 for b, and so on.

Figure 3.1 shows the state of the working store when the machine has obeyed
the declaration.

a b c

Figure 3.1

Note that although the cells have been set aside and identified, they do not
yet actually contain anything- the technical expression is that their contents
are undefined.

The next item in the sequence is read (a). This is a command to make the
machine read a piece of data from the input stream and put its value into the
cell associated with variable a. Since a has been declared as an integer, the
machine scans the input stream, reading characters until it has got a complete
integer. It puts the value into cell a, not using the two characters 3 and 7, but
using instead the internal integer representation of 37. Diagrammatically, the
working store will now be as in figure 3.2.

~--3-~--~~--b--~----c----~------~~
Figure 3.2

The system has now read part of the data stream; the next character available
will be the space that follows the 37.

The next item is read (b). The machine obeys this command in much the
same way as the previous one, but only begins to scan the input stream at the

Introduction to Algol 68 29

point where the preceding read ended. The value 46 is read into the variable b,
and the working store is as in figure 3.3.

~---;7 __ ~~---:_6 __ ~-----c--~----~~
Figure 3.3

The next unit is c: = a+ b. This is recognisable as an assignation because it
consists of a variable identifier (c) and an expression (a+ b) separated by the
standard symbol : = (which is pronounced 'becomes').

To obey the unit, the computer works from right to left. First, it evaluates or
'works out' the expression. Since a and b currently hold the values 37 and 46,
the result must be 37 +46, or 83. Then it records this value in the cell of the
variable mentioned on the left, or c. This produces figure 3.4 .

.---~a--~.---~b~--~--~c--~------~~
37 46 83

~----~----~----~-----~

Figure 3.4

The last item is print (c). Up to now, all the commands have been happening
inside the computer itself and there is nothing to show externally. This
instruction makes the computer take the value of c, convert it to a sequence of
decimal digits, and send them to the line printer. Since c is an integer, the
printed result obtained is something like

+83

To summarise, here is what the computer has done

(a) It has reserved three cells from the working store to use as integers, and
has attached identifiers to them.

(b) It has read two numbers from the data, putting their values into two of the
cells.

(c) It has calculated the sum of these two numbers, and stored it in the third
cell.

(d) It has printed the value in the third cell.

In short, it has added two numbers.
In the example the two numbers taken were 37 and 46, but the summary

suggests that the program should work equally well on any two numbers. This
conjecture is easily verified by a few trials. The program turns out to have some
measure of generality, since it solves not just one problem (37 + 46 = ?) but a
whole class of problems of a similar kind. This generality is an important
feature of all useful programs.

The example illustrated four kinds of phrase-a declaration, a read

30 Programming and Problem-solving in Algol 68

command, an assignation and a print command. Since these phrases appear in
practically every Algol-68 program, they merit consideration in somewhat
greater detail.

In its general form, a declaration always starts with a system word giving the
mode of the variables to be declared. Two modes that have already appeared
are int and char. The mode is followed by a list of variable identifiers, separated
by commas if there are two or more. The identifiers can be chosen quite
arbitrarily provided that they do not clash with one another. Some further
examples of declarations are

int quick

char tiger, lion

It is usual, although not essential, to place declarations immediately after
begin. It is in order to write several declarations one after the other, including
two or more of the same mode. If you forget to declare a variable, you do not
need to alter an existing declaration but only to insert a new one. This is usually
much quicker.

Declarations are phrases and therefore separated from one another by
semicolons. A possible program structure might be

begin int camel; char mole; int rat, beaver; ----; --- end

The effect of the read command depends entirely on the mode of the variable
being read. If it is a char, then the machine simply takes the next character in the
input stream, whatever it may be. If the previous character was the last in a line
or card the computer moves automatically on to the next line.

If the variable is an int, the system reads the input stream, character by
character, looking for the beginning of a number and ignoring such things as
spaces and the ends of lines. A number can legitimately start with a+, a- or a
decimal digit. Of course it is possible for the machine to find some other
character, which may have been punched by mistake, or it may run off the end
of the input stream altogether. In either case, the machine reports a dynamic
fault, and stops the program from running any further. The whole question of
faults is discussed at the end of this chapter.

Once the beginning of a number has been found, the machine reads it and
converts it into its internal form, stopping when it comes to a character that
cannot be part of a number. Space and end-of-line are allowed in this position,
but any other character is interpreted as a mistake and produces a dynamic
fault. The simple rule in preparing integers as data for a program is

either put the integers one on a line or card
or put several on each line but separate them only with spaces.

The assignation is particularly interesting because it involves an expression. An
expression is an instruction to evaluate something. The rules for expressions in
Algol 68 are modelled as closely as possible on those used in ordinary algebra,
and any differences arise chiefly because of the limited character set available.

Introduction to Algol 68

An expression is built up from three types of symbol

operands, which specify the 'raw material' or starting values

operators, which indicate what is to be done with the starting values

brackets, which control the order in which the operators are used.

31

An operand may be either a literal or a variable. A literal stands for itself and

can be written as a decimal integer or a character in double quotes, for example,

308, 9, or "Z". A variable, on the other hand, is written as an identifier and

stands for the value stored in the corresponding cell at the time the expression

is evaluated. The identifier must of course have been included in a declaration

before being used in an expression.
Note that every operand has a certain mode. With variables this is the mode

of their declarations, and with literals the mode is int for an integer and char for

a character.
The simplest expressions contain one operand and nothing else, for example

3 or "Q" or quick

Other expressions include operators like+ and-. Operators are of two

types, dyadic and monadic. The difference is that a dyadic-operator takes two

quantities as its arguments or data, whereas a monadic-operator takes only

one.
Five dyadic-operators that use arguments of mode int are

+ (addition)
(subtraction)

* (multiplication; the symbol x is not used because it is so easily confused

with the letter x; Multiplication signs must be used wherever multipli­

cation is intended; do not write ab meaning a* b, because of the risk of

confusion with the single identifier ab)
(division)

i (raising to the power; xi y is used instead of xY because there is no way,

on a card punch, of writing superscripted text higher up than the

surrounding characters).

In general, these operators have their ordinary arithmetical meanings. The

division operator simply gives the integer quotient of the two numbers, and

discards the remainder. Division by zero is forbidden, and if attempted will

produce a dynamic fault.
To ensure that the result is an integer, the second operand of the i must be

zero or positive.
All the dyadic operators in Algol 68 are infix, that is, they are written

between the operands they use just as in conventional algebra. Some

expressions with one operator are

x+l p-q 37 * zj k+j

These examples assume that x, p, q, zj, k and j have all been mentioned in a

32 Programming and Problem-solving in Algol 68

declaration like

int x, p, q, zj, k, j

Monadic operators in Algol 68 are always prefix, that is, they come
immediately before the operands they are going to use. Some monadic
operators that use integers are

abs this gives the modulus of a number: abs 5 = 5 but abs (- 7) = 7
sign this gives+ 1, 0 or -1 depending on whether the operand is positive,

zero or negative
minus at the beginning of an expression (or just after an opening
bracket) is taken as monadic and simply negates its operand.

If an expression contains more than one operator the question arises as to
which one should be applied first. The result will often depend on the choice of
operators, as in the expression

(25 or 13?)

The conventional rule is that, if there are no brackets, multiplication and
division must be done before addition and subtraction. Algol 68 adopts this
rule and formalises it by the notion of priorities. Every operator in Algol 68 has
a certain fixed priority, which ranges from 1 to 9 for dyadics and is always 10 for
monadics. When expressions without brackets are evaluated the operators are
used in descending order of priority, starting with the monadic operator if any.
Since the multiplication sign rates 7 on the priority scale, but+ only rates 6, the
general rule ensures that multiplication does indeed take place before addition.
The complete list of priorities for the operators already mentioned is

abs, sign and- (if monadic)
i
*and-:-
+ and- (if dyadic)

10
8
7
6

Again conventional algebra decrees that any expression within brackets is
evaluated before anything outside. This rule is taken over without modifi­
cation by Algol 68. The brackets override the priority of the operators and
ensure that any expression enclosed by them is evaluated first. If several sets of
brackets are nested, evaluation proceeds from the inside outwards. Writing, for
example

abs ((x+ y) * (x- y))

will ensure that the+ and the- are used first, followed by the * and finally the
abs; as it happens, in the reverse of the defined order of priorities.

Introduction to Algol 68 33

Suppose that x = 5 and y = 7. Then the expression would be evaluated in
the following stages

abs ((5+7)•(5-7))
= abs (12•(-2))

= abs (-24)
= 24
Now consider the expression

abs x+y•x- y

which is identical to the first one except for the brackets. The evaluation would
proceed

abs 5+7•5-7
=5+7•5-7
=5+35-7
=33

A common cause of confusion is an expression that contains two or more
operators of equal priority. The general rule is that dyadic operators are used
from left to right, but monadic operators from right to left. Thus 36-;- 3 * 2 is
interpreted as (36-;- 3) * 2 and evaluates to 24 (not to 6). On the other hand
- abs 5 is taken to mean- (abs 5), not abs (-5).

Brackets are free. You can afford to ignore the complex rules for deciding the
order of evaluation if you use brackets wherever there is any possible doubt in
your mind.

So far, all the operators discussed have used integers as operands. There are
also some operators for characters, which will be described in the next chapter.

Just as each operand in an expression has a mode, so does the entire
expression itself. The mode of an expression is the same as the mode of its
result, which is usually (but not necessarily) the mode of the operands it uses.

In any assignation, the mode of the expression must be compatible with the
mode of the variable on the left of the : = sign, that is, the variable into which
the value is to be stored. It is wrong, for example, to try to assign a character
value to a variable of mode int. The computer will reject a program that tries to
do so.

In many assignations the variable on the left is also mentioned in the
expression on the right. The effect is to replace the previous value of the
variable by a new one. Some examples are

w: = w+l
t: = t * s

co add 1 to w co
co multiply t by s co

34 Programming and Problem-solving in Algol68

Algol 68 offers a compact way of writing statements of this type, using the
special operators in the list below.

Operator Alternative Form Pronunciation

+:= plusab 'plus and becomes'
-:= minusab 'minus and becomes'
.: = timesab 'times and becomes'
+:= overab 'divide and becomes'

If any of these are used, the variable being altered need only be mentioned once.
Thus

w:= w+l can be written w+: = 1

and

t: = t * s may be expressed t• : = s

Some of the advanced rules about these operators are rather complex. For
the present, use each special operator in a phrase by itself and avoid mixing
them with the ordinary operators such as+,-, or : =.

Finally, consider the print command. Its action depends on the mode of the
object that it is given to print. If this object is an integer variable or literal, then
the print statement will output a decimal number. If it is given a character
variable or a character literal, it will output just that character.

The system keeps track of the number of symbols already printed on the
current line. If there is not enough room for the next object, a new line is started
automatically.

When printing the results of a program, it is important to set them out neatly
and to label them so that their significance is clear. The print command offers
two useful facilities for doing this

print (newline)

print ("A STRING")

Thus

print ("HELLO")

is a quick way of saying

will start a new line, irrespective of whether the
previous line is full or not

will print out the given string literal, no matter
how long it may be (up to a full line).

print ("H"); print ("E"); print ("L"); print ("L"); print("O")

The following is an example of a program that incorporates some of these

Introduction to Algol 68 35

ideas; it is based on an old folk saying, that a man should marry a wife of half his
age, and seven

1 begin int mansage, girlsage;
2 read (mansage);
3 girlsage: = 7+mansage+2;
4 print ("A MAN OF"); print (mansage); print (newline);
5 print ("SHOULD LOOK FOR A WIFE OF"); print (girlsage)
6 end

Programming is always hard. While you are learning you will find that each
new example or problem will stretch your knowledge a little further by
involving some new ideas. Later, when you have mastered all the basic ideas,
you will look back and find these same examples easy; but by then you will be
tackling much bigger problems, which are hard by virtue of their size and
complexity. The task of writing a program and getting it to work correctly will
always remain difficult, laborious and extremely satisfying when successfully
completed.

To help you in this task there is a range of aids and techniques. Some of them
depend on using the computer, but others are purely pencil-and-paper
methods and can be done at your desk.

You will often be given a program and asked to find out precisely what it
does. Sometimes it will be a program written by someone else, but usually it
will be one of your own programs, which is supposed to do one thing but
actually, and unexpectedly, does something different. By finding out exactly
what it does do, you can generally pinpoint the phrase at which it goes wrong.

It is usually impossible to tell what a program does just by looking at it. You
must trace it, or go through it step by step, pretending that you are the
computer.

Start with a clear sheet of paper, a pencil and a ruler. Draw two boxes, one for
the input stream and one for the output stream. Write the characters of the
input stream, in order, into the appropriate box. Then work through the items
of the program, as follows.

The first section of any program usually consists of the declarations. Use
them to draw a picture of the working store, labelling each cell with its
identifier, and also with its mode if there is any risk of confusion. In general,
variables can take a whole series of different values during the running of a
program; when you record these values, do not erase the previous ones but
simply cross them out, so that at the end of the process you have a complete
trace of the values taken by each variable. In the picture of the working store it
is best to allow plenty of room for each variable (as in figure 3.5).

The rest ofthe program may contain read, print and assignation statements,
as well as other types, that have not yet been considered. In order to trace a read
statement, refer to the input stream box and strike off the characters one by one
until enough have been collected for the item that you require. (Naturally you
must use the characters in order, and you do not take those that have already

36 Programming and Problem-solving in Algol 68

been crossed off.) You then write the value of the item into the appropriate cell,
crossing out any previous value but leaving it legible!

A print statement is traced by taking the value of the variable (or the string
literal) and writing it into the output stream. Nothing else is changed.

An assignation statement is handled by working out the expression on the
right of the : = symbol, using the current values of the variables. When this
value has been obtained it is written into the cell identified on the left, crossing
out the previous value if any.

The following is a program to be traced

1 begin int n, w;
2 read (n);
3
4
5
6

w:=2•n;
w+: = 26;
w-;-: = 2;
w-: =n;

co Think of a number co
co Double it co
co Add 26 co
co Halve it co
co Take away the number

you first thought of co
7 print ('THE RESULT IS"); co Tell me the answer co
8 print (w)
9 end

The final version will be as shown in figure 3.5 below.

(Input stream)

(Output stream) THE RESULT IS +13

n w

37

Figure 3.5

Another powerful set of aids is provided by the computer's fault-detection
system. When a program is wrong, it is nearly always returned by the computer
with an error message. Unfortunately these messages are often expressed in a

Introduction to Algol 68 37

strange language, which looks like English but fails to convey much sense as to
what is actually wrong.

The cryptic quality of the error message is not altogether the fault of the
system designer. A computer is an exceedingly complex machine. The facilities
described in this book are only a small subset of the rules governing its use.
Nevertheless, when the computer finds an error, it assumes that the rule as a
whole has been broken and prints a message accordingly. It is rather as if you
were to commit some trivial and unconscious misdemeanour like forgetting to
renew your driving licence, and to find yourself charged with

'An offence under the Motor and Pedestrian Controlled Vehicles Act, 1974'

You might be forgiven for not immediately understanding what it was that you
had done wrong.

In actual fact the messages are quite easy to interpret if you know what to
look for.

When it is handling your job the computer can pass through three different
stages, each one producing its own characteristic error reports. First, the
machine analyses your job description. If it finds a mistake it abandons the job
immediately without even considering the program at all. If, in your results, the
program is not even printed out you can assume that your job description was
wrong. Check it (with someone else if you cannot find the mistake yourself) and
submit the corrected job again.

If it gets past the job description the computer will begin to analyse your
program, checking the syntax and translating it into its own internal language.
It will print out the program as it goes, attaching a number to each line and
reporting any faults as it finds them. The fault messages themselves are all
obscure and are best interpreted as 'I found something wrong round about
here'. There is no need to give examples because if you are following this course
seriously you are certain to have plenty of your own!

Fortunately most syntax errors stem from only a few basic causes, and if you
are familiar with them the pointers provided by the error messages will help
you find the mistakes quite quickly-sometimes in a few seconds. The most
common slips in programs are as follows.

(1) Leaving out semicolons. This is extremely common whenever the next
item happens to begin on a new line.

(2) Putting in extra semicolons. Semicolons may only be placed between
items: never before end or a closing bracket.

(3) Not matching brackets (of whatever type) correctly. This fault can be
avoided by careful layout, following the rules given in this chapter. It is
often detected much further on than it actually occurs. Consider the
assignations

a:= 4 •(a+b)•(a-b);f: = "T"

38 Programming and Problem-solving in Algol 68

and suppose that the first closing bracket is omitted, giving

a:= 4•(a+b•(a-b);f: = "T"

The machine cannot find anything wrong with this version until it meets
the semicolon, and so this is where it reports the fault. In this example the
gap between the error and the report is only a few characters but in
practice it is often dozens or even hundreds of lines.

(4) Misspelling variable identifiers. If an incorrect spelling occurs, say, in an
assignation, the system will take it as a new variable that has not been
declared. If the misspelling is in the declaration itself, the fault will not be
detected until the first correct spelling that occurs. The following example
illustrates the point.

begin int boys, gurls; Fault actually occurs here
-------,
-------;
read (boys);
read (girls);
--------,
print (boys);
print (girls);

end

Fault reported here

and here

(5) Not declaring identifiers. This error is easily found with the clue given by
the fault message.

(6) In a dialect where system words are enclosed in primes (like Algol68R) a
common mistake is to leave either or both of them off.

(7) Leaving out double quotes on character literals. If the opening double
quote is missing, the computer will probably take the literal itself as an
undeclared identifier. If the closing quote is missing the machine is liable
to take the whole of the rest of the program as a very long string literal,
and not to report any errors until the very end.

(8) There is a group of faults that arises from incorrect expressions. It is a
mistake, for example, to omit the multiplication sign, or to write two
dyadic operators side by side without an operand in between, or to omit
an expression altogether leaving the : = symbol hanging in the air.

(9) Finally a common source of errors lies in the use of variables of unsuitable
mode. It is wrong to try to multiply two characters or to assign a value of
mode int into a character variable.

Sometimes the errors in a program are so involved that the system is, as it
were, put off its stride; although it continues checking the program, it reports
lots of other errors where there is none. This is particularly common after
mistakes with matching brackets and the situation is easily recognised with
practice.

Introduction to Algol 68 39

If the computer finds any errors of syntax in a program it abandons the job
at the end of the translation-and-checking phase, before obeying any of the
instructions of the program itself. If there are no errors of syntax the system
goes on to the final stage in which it actually executes the program. This phase
can have one of three outcomes

(a) The machine is required to do something illegal (like dividing by zero) and
this creates a dynamic fault, stopping the run. On the whole the dynamic­
fault messages tend to be rather more helpful than the ones generated by
the syntax analysis. They may actually say

'Division by zero'

or

'Integer raised to a negative power'

or

'End of input stream reached'

or they may produce reference numbers, which can be looked up in a table
that is freely available and describes the faults in clear English. In many
systems the current values of the working variables are printed out as well.

(b) The machine prints a set of answers that are not the ones you expect.
(c) The computer actually produces the results you hoped for.

In case (c) the program may be correct, but you cannot assume so unless you
have tested it thoroughly in all the conditions in which it can be used. In the
other two cases you will have to find the mistakes. This is usually harder than
finding syntax errors. One method is to trace the program by hand, and some
other useful methods will be discussed later. The best method is not to let
dynamic faults or wrong answers happen in the first place! This can often be
achieved by careful programming planning.

These remarks show that a computer system is very rigid unforgiving and
even arrogant. It never excuses you for the smallest mistake, and it never tries
to make an 'intelligent guess' at what you actually meant, even though it may
have been quite obvious to a human reader.

Ideally programs should be correct when first submitted. In practice this
rarely happens. With practice, and care, people can usually design algorithms
correctly, but hardly anyone is capable of writing them out as programs
without making any mistakes at all. A good practical aim for simple programs
is to use just three computer runs: the first to find and correct all the errors of
syntax, the second to check the results and to make any minor adjustments to
the layout that may be needed, and the third as the final correct run. If you are
taking much more than three runs for a program you are not putting enough
care into finding and correcting errors. Do not fall into the common trap of
only looking for and correcting one error at a time, hoping that the rest will
somehow go away!

40 Programming and Problem-solving in Algol 68

EXERCISES

begin [I: 20] char word; int z; [1: 10000] char diet; int pd: = 1;
[1: 1250] struct (int back, for, count, pdict, size) tree;
[1: 80] char line; int lp: = 100, tp: = 1;
proc charfetch = char: begin char q; if lp > upb line then
clear line; read((newline, line[])); print((newline, line));
lp: = 1; "0" else q: = line[lp]; lp +: = 1; if q > "Z"or q < "A"
then "0" else q fi fi end;
proc nextword = bool: begin char j; while j: = charfetch; j = "0" do
skip od; word[1]: = j; z: = 1; while j: = chaifetch; j :F "0" do
z: = z+ 1; word[z]: = j od; word[1 :4] :F "ZZZZ" end;
proc nodeout = (int x): begin intj = pdict of tree[x], k =size
of tree [x]; print((newline, count of tree [x], space, diet [j: k + j- 1]))
end;
proc tree print = (int x): begin if back of tree [x] :F 0 then
treeprint(back of tree[x]) fi; nodeout(x); if for of tree[x] :F 0
then treeprint(for of tree[x]) fiend;
proc newnode =void: begin back of tree[tp]: = O;for of tree[tp]
: = 0; count of tree [tp]: = 1; pdict of tree [tp]: = pd; size of tree
[tp]: = z; dict[pd:pd+z-1]: =word [I :z]; pd +: = z; tp+: = 1 end;
proc make= void: begin intj, k, w; boolf: if not nextword then
print((newline, "NO TEXT'')) else newnode; while nextword do
j: 1; f: = true; while f do k: = pdict of tree [j]; w: = size of tree
[j]+k-1; ifword[1:z] = dict[k:w] thenf: =false; count of
tree[j] +: = 1 elif word [I: z] <diet [k: w] then if back of tree
[j] :F 0 then j: = back of tree else f: = false; back of tree [j]
: = tp; newnode fi elif for of tree[j] :F 0 then j: =for of tree[j]
else f: = false;for of tree[j]: = tp; newnode fi od od
treeprint(l) .fi end; make end

Figure 3.6

Figure 3.6 is a correct but poorly laid out Algol-68 program.
*3.1 (1) Make lists of all the 'words' used under the various headings.

*3.2 (2) Copy out the program omitting lines 2 to 19 inclusive, and indenting
the rest correctly.

3.3 (P) Get your course tutor to give you a complete Algol-68 program.
Punch it on cards or tape and run it through your computer.

3.4 (0) Rewrite the program on p. 27 using different (and longer) identifiers for
the variables.

Introduction to Algol 68 41

3.5 (1) Sketch the working store of a computer after it has obeyed the
declarations

int oliver, david, philip;
char twist, copperfield, pirrip;
int charles dickens;

*3.6(1) Find two mistakes in the following set of declarations:

int susan, pat, emily;
char fred, bill, pat, bob;
int ethel, susan

*3.7 (2) Assume that the variables j, k, t and m hold the values 4, 6, 7 and -1
respectively. Evaluate the following expressions

(1) j + 1 (2) j * k (3) t -':- j
(4) m i k (5) j * k + t (6) t + j * k
(7) - k (8) k -:- t * j (9) sign m

(10) abs(t-j) (11) (t-k)i(t+k) (12) (10-k)•(JO+k)
(13) abs(sign(k- j) +sign(k- t) + sign(k- m))

*3.8 (1) Find as many faults as you can in the following program.
1 begin chair x, y; int w, t, x;
2 read (w);
3 t: = abs (w+3t-47 -:-w;
4 y: = "Q"
5 y: = t
6 print ("THE ANSWER MAY BE);
7 print(t)
8 end

3.9 (1) Trace the program given on p. 35 to decide the correct age for your wife.
(If you are a girl rewrite the program so that it calculates the best age for your
husband, and then trace it to find out what that age should be.)

*3.10 · (1) Trace the following program, using the data stream MOOD and
state in general terms (but as briefly as possible) what it actually does.
1 begin char a, b, c, d;
2 read (a); read (b); read (c); read (d);
3 print (d); print (c}; print (b); print (a)
4 end

*3.11 (2) (P) Write and run a program that reads two integers a and b, and
prints out a+ b, a- b, a*b and at b all suitably labelled.

4 Conditionals

' ... Personally, I never feel that I understand a thing satisfactorily, however fully it
may be proved mathematically, unless I also have a clear mental picture of it.'

'Cathode Ray', Wireless World, February, 1937

For practical purposes a computer is an abstraction. True, there are certain
physical events- such as the flow of electric currents- that are the basis of its
function, but they are almost as remote from the actual steps of a program as
the switching operations of our individual brain cells are from our thoughts.
Philosophers are not generally neurologists, nor are computer programmers
required to be experts in electronics.

Most people find it hard to think in entirely abstract terms and prefer to use
some kind of picture or mental model of the system that they are considering.
To be useful, the model must fulfil two requirements. First, it must mirror some
important aspects of the system faithfully and closely; and where it does not,
the differences must be so obvious that there is no risk of anyone being misled.
Second, the model should be so familiar that it is possible to 'see' in the mind's
eye how it works, and what is likely to happen in any given situation. If these
two conditions are fulfilled, then the insights obtained by considering the
model can be transferred directly to the abstract system.

A useful model of a computer program is a railway. The track represents the
sequence of instructions, and the train running along the rails models the
operation of the computer as it obeys the instructions one after another.
Consider the following program (which was first used in chapter 3).

1
2
3

begin int a, b, c;
read (a);
read (b);

4 c: = a+b;
5 print (c)
6 end

The corresponding railway system is shown in figure 4.1 Note that the track
starts at a station called begin and runs to another station called end. There is
only one engine, so that there is no need for any signals. The track is divided
into a number of sections, one corresponding to each phrase in the program.
The engine always starts at begin and runs forward until it gets to end (in the
model it never runs backwards). As it passes the sections in sequence it 'obeys'

Conditionals 43

the phrases it finds there. Like the computer, it has no choice anywhere along
the line; it can only pass over existing sections of the railway, in exactly the
sequence in which they are put together.

~
r~~
II I

~
I

Figure 4.1

,
II

Most practical railway systems have branches and points, and the model is
no exception. There are two ways in which a train can approach a point, as
shown in figure 4.2.

X

y

Figure 4.2

When an engine approaches point A from the left there is no possibility of
choice; it must continue towards the right. When, on the other hand, it gets to B
a decision must be made as to whether to continue straight on towards x or to
turn out and go to y. This decision is always made on the basis of information
available when the train is in the section before B, and is implemented by
pulling the point lever attached to Bone way or the other. The person making
the decision could be either the engine driver (although he would have to stop
his train to switch the point) or a signalman who was specially in charge of the
junction. Fortunately the distinction is not relevant to the model. All that
matters is that a decision is made when the train is already on its journey, on
the basis of the most recent information that can be obtained. Since the railway
designer does not know in advance what the decision will be, he provides a set
of points to make the choice possible.

The ability to choose one of several possible courses of action is a vital
property of any computer system. It enables a machine to handle whole ranges
of problems in a flexible way and raises it from the status of a robot blindly
following a set of fixed instructions to a level such that it can be made to deal
'intelligently' with various unexpected happenings.

44 Programming and Problem-solving in Algol 68

In Algol 68 the choice of a particular path of action relies on the use of
boolean-expressions, which provide a way of allowing the computer to ask
questions with 'yes-or-no' answers about the current values of the variables in
its working store. In its simplest form a boolean-expression consists of two
quantities- usually a variable and a constant -linked by a relational symbol.
Consider a program that begins with the declarations

int z; char next;

Suppose that it also includes the boolean-expression

z > 5

(pronounced 'z greater than 5'). This expression would have the value 'yes' or
true ifthe current value of z was 6 or more. Otherwise (if z was 5 or less) its value
would be 'no' or false. Similarly, the program might include the boolean­
expression

next= "T"

which would only be true if the cell labelled next actually contained the
character" T".lf next contained any other character the value of the expression
would be false.

There are six relational symbols

(equals)
(not equal to)
> (greater than)
< (less than)
> = (greater than or equal to)
< = (less than or equal to)

It is worth remembering that an integer cannot be compared directly with a
character; it is illegal to try.

T~ fi

I
-

Figure 4.3

The actual selection of a course of action is made by the if construct. In

Conditionals 45

general terms, this can be written if boolean-expression then action 1 else
action 2 fi

Here if, then, else and fi are all system words, and if and fi are matched
brackets. The machine takes action 1 if the expression is true, or otherwise
action 2.

The railway equivalent ofthe if construction is shown in figure 4.3. Note that
the boolean-expression is attached to the section of track immediately before
the first point. It is always preceded by a warning if, which is a signal that a
decision must be made. If it has the value true when the train passes, the point is
set to let the train go straight on to the section marked T.lfthe expression has
the value false the train is turned out instead to the section marked F. At the
second point, marked fi, the two sections join to form one track again.

The following is a simple program that incorporates the if construction. It
might be used to prepare accounts by a company that made and sold teapots.
The price of the teapots is £3 each, or £2 if bought in quantities of 100 or more.
The program reads in the number of teapots in any one order and prints out
the total cost.

1 begin int qty, cost;
2 read (qty);
3 if qty < 100 then cost:= 3 * qty else cost:= 2 * qty fi;
4 print("YOU HAVE BOUGHT");
5 print (qty);
6 print ("TEAPOTS. YOU OWE US £");
7 print (cost)
8 end

The railway model for this program appears in figure 4.4. The if construction
has a number of useful variants. It would be tedious to explain each one in turn,
at great length, but the discussion can be given a much shorter and neater form
by defining the terms unit (which was used loosely in chapter 3) and serial­
clause. These are powerful generalisations, by means of which all the versions
of the if construction can be set out using only two definitions.

Figure 4.4

46 ·Programming and Problem-solving in Algol 68

In chapter 3 the term phrase was used to include both a declaration and a
unit, and the examples given there suggested that a unit could be a simple
command like read (a) or c: = a+ b. At this point it is worth introducing two
other types of unit.

(I) A boolean-expression (or for that matter any expression) is a unit.
(2) Any piece of program enclosed in brackets (round or if-fi or begin-end

or case--esac) is also a unit. Thus the entire if construction in the previous
program, starting with if and ending with fi, is just a unit. It follows the
rules in being separated from the neighbouring unit by semicolons.
Furthermore, the entire program (and indeed every program) is a unit!

On the railway system it is convenient to regard a unit as a section with one way
in and one way out. It may be just a simple piece of track with a command
attached to it, or it may include some points provided that all the branches join
up before the exit point is reached. It may even be an extremely complex
system; but, provided that it conforms to the rules and has one entrance and
one exit, it may still be regarded as a single section.

A serial-clause turns out to be a sequence of declarations and units separated
as necessary by semicolons. The declarations are optional but there must
always be at least one unit. An example of a serial-clause is

int a.b; a:= 1; b: = a+2; print (b)

One unit is sufficient in itself to constitute a serial-clause, so that another
example is

a+3

In the railway model a serial-clause is represented by a number of sections
connected end-to-end. The train can only pass them in the order that they are
built.

In some cases it is sensible to think of the value of a serial-clause. The value is
the same as that of the last (or only) unit in it, and if that clause is a boolean­
expression the value must be either true or false. Such a clause is called a serial­
boolean clause.

The proper definition of the if construction may now be given. It is written

if serial-boolean clause
then serial-clause 1
else serial-clause 2

fi

This definition has several useful implications. First note that each ofthe two
possible actions is a serial-clause. This means that whole sequences of units
may be introduced between then and else and between else and fi; in other
words, the actions can be as complicated as desired. For example, the program
to determine the best age for your prospective wife could be modified
somewhat as follows

Conditionals 47

1 begin int mansage, girlsage;
2 read(mansage);
3 if mansage < 16
4 then print("AT"); print(mansage);
5 print("YOU ARE TOO YOUNG TO MARRY")
6 else girlsage: = 7 + mansage-:- 2;
7 print("A MAN OF"); print(mansage);
8 print("SHOULD LOOK FOR A WIFE OF");
9 print(girlsage)

10 fi
11 end

Next, remember that an if- fi construct is itself a unit, and therefore a simple
type of serial-clause. If the decisions to be made are complex one condition can
be nested inside another. The following example is taken (very properly) from a
British Rail brochure in which various concessionary fares for the 'Intercity'
network are advertised. It appears that the discount on a return ticket depends
on the length of stay, as shown in Table 4.1. Furthermore, children aged 3 to 13
travel at half-fare, and children under 3 go free.

Length of stay (days) Discount on full return fare

2 or 3
4 to 17

18 or more

50 per cent
30 per cent
25 per cent
0 per cent

Table 4.1

Day return
Week-end return
17-day return
Period return

The program that follows could be used to work out the actual fare for any
Intercity return journey. So as to avoid dealing with decimals, a topic not yet
considered, all calculations will be in pence, which are alway~ whole numbers.
Fractions of pennies are simply ignored.

The program will read the following data

(a) the full return fare, in pence
(b) the length of stay, in days
(c) the age of the traveller, in years.

1 begin int frf, stay, age, af, fare;
2 comment frf is the full return fare;
3 af is the adult fare for the journey;
4 fare is the actual fare
5 comment
6 read(frf); read (stay); read (age);

48

7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

Programming and Problem-solving in Algol 68
comment First the adult fare is calculated according to

the length of stay
comment
if stay= 1

then af =frf•50..:,-IOO
else if stay<4 then af =frf• 70..:,-IOO

fi
fi;

else if stay< 18 then af = frf * 75 ..:,-100
else af =frf

fi

comment In the next stage, the passenger's age is taken into account, so
as to obtain the actual fare

comment
if age < 3 then fare: = 0

else if age < 13 then fare: = af..:,.. 2
else fare: = af

fi
25 fi;
26 comment the last step is to print the answer comment
27 print("YOUR FARE IS");
28 print (fare)
29 end

The railway model that corresponds to this program is shown in figure 4.5.
There is a shortened form of the if- fi construct, which omits the else and

the serial-clause that follows it, thus

if serial-boolean clause then serial-clause fi

The effect is that if the serial-boolean clause is false nothing is done. The
railway system still includes a turnout, but no actions are attached to it.

The fare-calculating program given above represents only one of many
possible arrangements. Another form, which makes use of the shortened form
of the if- fi construction, is as follows.

1 begin int stay, age,fare;
2 read(fare); read(stay); read(age);
3 if age < 3 then fare:= 0
4 else if age < I 3 then fare ..:,.. : = 2 fi
5
6
7
8
9

10
11

fi;
if stay < 4 then

if stay= 1 thenfare: =fare•50..:,-100
else fare: =fare* 70..:,.. 100

fi
else
if stay < 18 then fare: =fare* 75 ..:,-100 fi

~

pr
in

t
("

Y
O

U
R

 F
A

R
E

 I
S

")

~
 F

ig
ur

e
4.

5

.fi

~ ~ 5· ;:::

l:
l t:;
- ~

50

12
13
14
15 end

Programming and Problem-solving in Algol 68

fi;
print(" YOUR FARE IS");
print (fare)

Lastly, note that some units (like expressions) have values. It is not difficult to
write an if- fi construction (which is a unit) that can be used instead of a value
in an expression. All that is necessary is to ensure that both the actions are
present, and that both of them yield a value of a suitable mode. For example, it
is possible to replace

if qty < 100 then cost: = 3 * qty else cost: = 2 * qty fi

by the shorter but equivalent phrase

cost: = if qty < 100 then 3 else 2 fi * qty

but it is not acceptable to write

cost: = if qty < 100 then 3 fi * qty

This form is ambiguous; what would the computer use as a multiplier if the
condition qty < 100 were false?

One feature that distinguishes a professional's program from that of an
amateur is its robustness. This quality takes into account the evident fact that
the program is going to be used by a human, with all the failings that this
involves. For example, the programmer may specify that the data are to be in a
certain format, or that they must obey certain conditions, but the person
actually supplying the data may not follow the rules, perhaps because he
misunderstands them or simply through carelessness. A number of errors of
this kind are undetectable, because they could be valid data (for example,
giving a person's age as 21 instead of 12). However, a great many more
mistakes in the data can be trapped because they are logically wrong. A
program that is robust should incorporate enough tests to ensure that the data
represent a reasonable problem. If presented with invalid data, it should never
simply give a wrong answer, but always print out a message describing the
fault so that the user can repunch his data and try again.

A good example of lack of robustness is provided by the program on p. 48.
The length of stay is supposed to be an integer of 1 or more; but what happens if
the user actually supplies a zero? The fare will be calculated as 70 per cent of the
full return fare, an obvious error.

A good plan in building robust programs is to check input values as they are
read. If they should happen to be detectably wrong, then the program should
print a message, and if necessary substitute a 'reasonable' value so that the
program can carry on; this will allow further errors to be found.

With some degree of robustness engineered into it, the Intercity-fares
program might now begin as follows.

begin int stay, age, fare;
read(fare);

Conditionals 51

if fare > 10000 then print(" FARE 0 VER £100 IS UNLIKELY") fi;
read(stay);
if stay <1 then print("STAY TIME INCORRECT"); stay:= 1 fi;
read(age);
if age >120 then print("AGE UNLIKELY") fi;

With a large program, it often pays to arrange that a section does not accept
the result of an earlier section without first checking that it is correct or at least
plausible. Consider a program that incorporates a variable x. The first part of
the program is supposed to set x to one of the values 2, 7 or 33. The next part of
the program uses this value to choose one of three courses of action.

If the writer of the second part were perfectly sure that the first part was
correct and trustworthy, he could deduce that, whenever x did not hold 2 or 7,
it must hold 33. He would write

if x = 2 then (action for x = 2)

fi

else if x = 7 then (action for x = 7)
else (action for x = 33)

fi

If the first part of the program was nevertheless wrong, and put into x an
incorrect value like 29, the second part would do the action for x = 33, and the
error would remain undetected. A more robust piece of work would make the
second part of the program check the validity of the first, and print a warning
message if an unexpected value was found. It would run

if x = 2 then (action for x = 2)

fi

else if x = 7 then (action for x = 7)

fi

else if x = 33 then (action for x = 33)

fi

else print ("X = "); print (x);
print ('THIS IS IMPOSSIBLE");
print ('TELL A. J. T. COLIN")

In principle the section of code that prints the unexpected value of x could
never be entered. In practice such traps frequently call the programmer's
attention to unexpected mistakes and help to make programs more reliable.
They are strongly recommended in all cases, but particularly when sections of
the same program are being written by different people. Never trust any
program, not even your own!

At this stage a brief discussion of the costs of computing would be

52 Programming and Problem-solving in Algol 68

appropriate. In practice, a program has a life history roughly as follows.

(1) Someone (usually a systems analyst) detects the need for the program and
decides exactly what it is to do.

(2) A programmer actually writes the program and gets it working.
(3) The program is used, perhaps only once or perhaps thousands of times­

possibly every day for several years.

All these stages have certain costs associated with them. About
stage (1) little can be said at this point. The costs of stage (2) arise from two
sources: the programmer's salary and the expense of using the computer. It is
clear that, in general, the longer and more complex a program, the more it will
cost to develop. Also a program on which a great deal of thought and care is
lavished will usually cost more than one that is written with the minimum of
effort.

The costs of stage (3) are incurred every time the program is run. The more
instructions the computer has to do, the more the run will cost. If the program
is to run a large number of times then over its entire life the bulk of the cost will
lie here, but if it is used only a few times the cost of defining and writing it will
constitute the greater part of the total.

In practice it is always possible to reduce the cost of running a program by
taking careful thought and rewriting the program accordingly. Whether this is
worth doing depends on how often the program is to be used.

EXERCISES

4.1 (1) Let a, b and c be declared as follows

int b, c; char a

Write boolean-expressions to test the following conditions

(a) b greater than 5
(b) c not less than 17
(c) b smaller than c
(d) 33 not equal to b
(e) a equal to "7".

* 4.2 (1) Correct the mistakes in the following program
1 begin int x, y;
2 read (x)
3 if x < 100 then y = 4x else y: = JOx-73;
4 print (y)
5 end

Conditionals 53

4.3 (2) How many possible routes are there through the railway network
shown in figure 4.5? Tabulate them, showing the conditions that correspond
to each one.

4.4 (2) Calculate the length (in unitary clauses) of each of your routes in
exercise 4.3.

* 4.5 (3) Draw a railway diagram that corresponds to the second version of
the Intercity-fares program. Calculate the length of each possible path and
compare it with the corresponding length as calculated in exercise 4.4.

*4.6 (2) (P) Write a program that reads three numbers, interprets them as
the lengths of three straight lines, and decides whether they can be assembled
into a plane triangle. Your program should print the lengths and a clear
statement of the result.

4.7 (2) begin int a, b, c, p
char x, why, zed
read (a) read (b) c: = a+b
if c = 25 then a: = 10 b: = 15 fi
read (x) read (why) read (zed)
if x =1= zed

then print (b)
if x = why then read (zed) print (zed)

read (a)
fi
print (a)

fi
p: = a+b+c
print (p)

end

This program has all its semicolons missing.

(a) Draw rings round all declarations and units.
(b) Add semicolons as necessary

4.8 (5) The pension rules in a certain country state that a man receives 50
doubloons a week if he is over 65 and an extra 20 if he is over 70. A woman
receives 45 doubloons a week if she is over 60 with an extra 25 if she is over 65.

Write a program that reads in a person's sex and age, and prints out the
appropriate pension. The data are supposed to take the form of a character (M
or F) followed by an integer.

Your program should be robust, and it should be made as efficient as possible

54 Programming and Problem-solving in Algol 68

(that is, costing the least when all runs are taken together) by using the
following information.

Percentage of all pensioners

Male
65-70

10

Male Female
over 70 60-65

25 15

Female
over 65

50

5 Loops and Program Efficiency

'So
Round about
And round about
And round about and round about
And round about
And round about

I go.'
A. A. Milne, Now We Are Six

Every serious program must repeat some of its operations many times over.
For example, a program that handles a file of employees and produces a set of
payslips will apply the same set of rules to each employee record in turn.

The basic way of bringing repetition into an Algol-68 program is to enclose
the part to be repeated (which is, as you might expect, a serial-clause) in the
special brackets do--od. Consider, for example

1 begin
2 do print(newline); print("FOR THE SNARK WAS A BOOJUM, YOU

SEE")od
3 end

od do

print ("FOR THE SNARK WAS A BOOJUM, YOU SEE")

Figure 5.1

56 Programming and Problem-solving in Algol 68

The snag is that the serial-clause in the do-od brackets would be repeated not
once, nor twice, but indefinitely. It is like a railway with some missing track, as
in figure 5.1.

As you can see (by tracing if necessary) the program will print

FOR THE SNARK WAS A BOOJUM, YOU SEE
FOR THE SNARK WAS A BOOJUM, YOU SEE
FOR THE SNARK WAS A BOOJUM, YOU SEE

and so on, without ceasing. In practice, the program will eventually be stopped
by the operating system, which allows jobs just so many hundred lines of
output before it suspends them with a dynamic fault. Programs of this kind are
often called 'wallpaper' programs.

There are some applications in which an endless loop is actually needed.
Two examples are a control program for traffic lights, and a computer
operating system, which is intended to handle an endless stream of jobs. In
most cases, however, the loop must eventually terminate; there must be a way
for the train to arrive at end.

F
II

II

Q

Figure 5.2

B

(some job of work
p / (perhaps hauling
~coal from P to Q)

~
ti

"

A railway layout that makes this possible is given in figure 5.2. Any train that
starts from begin must eventually pass over the set of points B in a forward
direction. A decision on whether to stay in the loop or not can be made just
before the point is reached.

In Algol 68, a boolean-expression can be attached to this point by writing

while boolean-expression do serial-clause od

The serial-clause continues to be repeated so long as the boolean-expression
remains true. The construct corresponds to that shown in figure 5.3. The whole
structure has one entrance at x and one exit at y. It is therefore a unit, and
should be treated as such.

Loops and Program Efficiency 57

while
F

X y
T

do

Figure 5.3

Consider a practical example. The program that follows is supposed to print
the squares of the numbers 1 to 5; repetition is clearly involved.

2
3
4
5

begin int n, s; n: = 1;
print("NUMBER SQUARE");
while n < = 5 do print(newline); s: = n * n; print(n);

print(s); n +: = 1
od

6 end

In tracing the program, note that there are no read commands, and therefore
no data. The program contains all the information it needs within itself.

Since the expression n < = 5 is in a key position, it will be given a column in
the trace, even though there is no actual variable with this value. The trace has
the following form.

(Input stream)

(Output stream) NUMBER SQUARE

+1 +1

+2 +4

+3 +9

+4 +16

+5 +25

58 Programming and Problem-solving in Algol68

n

i

J
1
6

s

i
~
~
25

(n < = 5)

true
true
true
true
true
false

You are advised to work through this trace yourself, since the complete
picture cannot show the order in which the various tests and assignments take
place.

This program illustrates an important point: every serial-clause controlled
by the while-do-od construct must do something that will eventually switch
the boolean-expression from true to false, or the loop will never end. In the
example, the statement n +: = 1, repeated over and over, ensures that n will
eventually exceed 5 and make the program break out of the loop.

Loops that have to be repeated a fixed number of times are easy to program.
Use an integer variable and initialise it to a suitable starting value (usually 1).
Then, increment it by 1 in the body of the loop, and use the control expression
to test whether it is still within the required range.

Sometimes the repetitions depend on some relationship between variables,
and the number of circuits around the loop cannot be predicted in advance. A
good example is Euclid's algorithm, which finds the highest common factor of
two numbers. The algorithm specifies that given two numbers, the smaller be
subtracted from the larger, repeatedly, until the two are equal; this is then the
HCF.

The following is a program for finding the HCF of a pair of numbers, which
are supplied as data.

1 begin int a, b;
2 read(a); read(b);
3 print(" THE HCF OF"); print(a); print("AN D"); print(b); print(" IS");
4 whilea:Fbdo
5 ifa>bthena-:=belseb-:=afi
6 od;
7 print(a) comment it would be equally correct to write print(b) comment
8 end

Loops and Program Efficiency 59

The following is the trace of this program for the data values 6 and 15

(Input stream)

(Output stream)

a

y
3

THE HCF 0F+6 AND+15 IS+3

b

1
3

Note that the output states the problem as well as the answer. A program that
merely printed

+3

or even

HCF = +3

would be almost useless; the casual reader would ask, 'The HCF of what?', and
even the programmer himself could not be sure that his data had been punched
and read correctly.

The decision as to whether to stay in the loop is often determined by some
external condition. It is customary, for example, to arrange the data for a
problem as a series of items (numbers or characters) ended by a special marker
that is chosen so that it cannot possibly be an ordinary data item, and serves
only to terminate the sequence. Thus a series of numbers all known to be less
than 100 might use 999999 as a terminator, or a text consisting solely ofletters
and punctuation marks might be terminated by a slash(/).

Since the number of items is usually unknown to the programmer (and may
even vary from one run ofthe program to the next) a program that reads such a
sequence must be constantly on the look-out for the special terminator lest it
run off the end of the data stream.

Consider the problem of adding up a series of numbers. The program would
be expected to handle input data such as the following

1 3 7 12 15 21 999999

(the sum is 59) or

60 Programming and Problem-solving in Algol 68

1 999999

(the sum is zero).
The first step in discussing this problem is to describe the basic mechanism

for doing the job. This must then be elaborated to give a final version that uses
a proper layout for its results and has the necessary properties of robustness.

The appropriate railway for the problem is shown in figure 5.4. It is not
difficult to imagine the engine going round the loop, reading numbers and
adding them to the sums. Eventually it reads a 999999 and branches out to the
terminal sequence.

~
, ~while~~F

od T -do

Figure 5.4

There is one essential difference between this system and the other programs
that have been discussed in this chapter. Every time it goes round the loop the
train must do something-namely, read the next data item-before it can
decide whether to continue in the loop or not. In fact the read(n) part of the
loop is traversed one more time than the rest of it.

Here once again the generality of Algol 68 proves useful. The full definition
of the while-do-od facility says that while and do enclose a serial-boolean
clause. Now any serial clause at·all becomes a serial-boolean clause if it has a
boolean-expression as its last item, and so it is possible to write the following
version of the program

1 begin int s, n; s: = 0;
2 while read(n); n =1= 999999 do s +:=nod
3 print(s)
4 end

In practice, such programs are only useful if they deal with very many
numbers indeed; if you only want to have 100 numbers added up it is quicker to
borrow a pencil and do it yourself.

Loops and Program Efficiency 61

Large data streams are nearly always punched and checked by professional
data-preparation staff. It is not practical for the program to print out all the
numbers, since checking their accuracy by hand would be worse than adding
them up in the first place. In any case, an occasional small error makes very
little difference to the grand total, and in many cases such small inaccuracies do
not matter.

There are, however, some types of error in the data that could make the
results completely wrong. In spite of being checked, a card might be missing a

space between two adjacent numbers, so that what should be

45 34

is actually punched as 4534 and will be read as a single number. Clearly, a few
mistakes of this type could make a massive difference to the final total.

Another common blunder is to miss out part of the data altogether. If an

operator drops your cards, and in picking them up manages to shuffle the
999999 terminator card into the middle of the pack, the program will ignore
the second half of the data completely.

These considerations can suggest what safety features should be put into the

program. Two simple checks will be used.

(a) Each item of data will be checked as it is read. If it is outside the permitted
range ofO to 100, the computer will print a warning message and refrain
from adding it to the total.

(b) A tally will be kept of how many numbers are actually added into the
total. Since the user of the program usually knows-at least roughly­
how many numbers there should be, the tally will tell him if any of the data
have got lost in processing.

With these amendments, and with a full set of layout instructions, the
program is as follows.

I begin int n, s, t; s: = 0; t: = 0;
2 while read(n);
3 n "# 999999 do if n > 100 then print(" VALUE OUT OF RANGE");
4 print(n); print(newline)
5 else if n < 0 then
6 print ("VALUE OUT OF RANGE");
7 print(n); print(newline)
8 else
9 s + : = n; t +: = 1

10 fi
11 fi
12 od;
13 print(" TOTAL = "); print(s);
14 print("NUMBER OF NUMBERS USED IN FORMING TOTAL=");

print(t)
15 end

62 Programming and Problem-solving in Algol 68

In some loops, all the action has to be done before the test. Consider the
problem of reading and copying a short message (in characters). The
terminator, which is to be copied as well, is a slash. A suitable train system is
shown in Figure 5.5.

while~~~
F

T

do

Figure 5.5

In coding the example you will find that there is nothing to put between do
and od. Under these circumstances you can use the special system word skip,
which is a unit meaning 'do nothing'. The result is as follows.

1 begin char x;
2 while read(x); print(x); x ¥- "/" do skip od
3 end

Table 5.1 gives a summary of the three main variants of the while-do-od
construction.

A common feature of many programs is their use of nested loops. In many
jobs done by a computer, each passage through some major loop involves
going round a minor loop several times. For example, consider a program that
calculates the HCFs of each pair of numbers in a list. The input could be

3 17
27 18
26 12
31 29
39 13

783 7
0

(the zero can be used as a terminator since all genuine data values are supposed
to be positive) and the corresponding output would read

THE HCF OF +3 AND+ 17 IS + 1

THE HCF OF +27 AND+18 IS +9

THE HCF OF +26 AND+ 12 IS +2

Loops and Program Efficiency 63

1. Test before any action

boolean expression

F

T

do

while boolean-expression do action od

2. Some action before test, some after

od

while action before test; boolean-expression do action after test od

3. All action before test

F

od T

do

p
while action; boolean-expression do skip od

Table 5.1

64 Programming and Problem-solving in Algol 68

THE HCF OF +31 AND+29 IS +1

THE HCF OF +39 AND+13 IS +13

THE HCF OF+783 AND +7 IS +1

In Algol 68 the whole of a while- do- od construction is a unit, so that there
is no difficulty in putting one loop inside another. To see how this is done,
consider the first HCF program on p. 58, which handles only a single pair of
numbers. Its general shape is

begin int a, b;
read (a); read (b);

end

instructions for working out and
printing the HCF of a and b

What is required is to modify this program so that it loops round over and
over again, each time reading new values of a and band calculating their HCF.
The loop must stop when a=O. This can be done by using a while-do-od
construct, as follows

begin int a, b;
while read(a); a::!= 0 do read(b);

end

instructions for working out and printing the
HCF of a and b (exactly as in the box above)

od

Substituting the section of program in the box gives the complete program

1 begin int a, b;
2 while read(a); a ::1: 0 do read(b);

3
4
5
6
7
8
9

10

11
12 end

od

r------------------,
lprint("THE HCF OF"); print(a); print("AND")~
lprint(b); print("IS"); I
lwhile a ::1: b do I
I if a > b then a-:= b I
: else b-:= a I
I fi
I od; I
:print(a) I
- - --- ----- - - ------ _J

Loops and Program Efficiency

The corresponding train track is shown in figure 5.6

~
r while

if

F

F

T

8
do

T

F

do

fi

while

Figure 5.6

65

While on the subject of repetition, it is of interest to ask how many times
each phrase in a program will be repeated. Consider a very simple program:
one that just calculates and prints the multiplication tables up to 12 * 12.

1 = 1
1 = 1

13=13
12* 1 = 12
12 * 1 = 12
12• 1 = 12
12· 13 = 156
12* 12 = 144
12· 12 = 144
12 * 12 = 144
12 * 12 = 144

12 * 1 = 12

begin int x, y, z;
x:= 1;
while x < = 12 do

end

print (newline); print(x);
print(" T1 M ES TABLE");
y:= 1;
while y < = 12
do print(newline); print(y);

print("*"); print(x); print("=");
z: = x * y; print(z);
y+: = 1

od;
x+: = 1

od

66 Programming and Problem-solving in Algol 68

Since it is known how many times each loop is obeyed, it is possible to
calculate the number of times each phrase is actually carried out. The
declarations and the assignation x:= 1 are obeyed once. The while-do-od
construct that follows is obeyed 12 times, once for each of the twelve tables.
(This means that the expression x < = 12 is actually evaluated 13 times, 12
times to give the value true and once to give the value false). Next comes the
serial clause enclosed in do-od, which starts with print(newline) and ends with
x +: = 1. If the clause is considered on its own, these instructions are obeyed
just once; but since the whole clause is actually executed 12 times it is necessary
to multiply by 12 in order to calculate the over-all frequency of any phrase that
it contains.

The inner loop, which corresponds to each line in the set of tables, is obeyed
12 times for each repetition of the outer loop, or 144 times in all. The control
expression y < = 12 is actually executed 12 * 13 or 156 times.

The columns on the left of the program listing show the frequency of each
instruction, and the way that this frequency is calculated. The program itself is
arranged so that all the phrases on any line are obeyed the same number of
times.

An analysis of this program shows that

two phrases are obeyed once each
six phrases are obeyed 12 times each
one phrase is obeyed 13 times
eight phrases are obeyed 144 times each
one phrase is obeyed 156 times.

The total number of phrases obeyed is

2•1+6·12+1•13+8•144+1•156= 1395

Of these, 1308-about 94 per cent-are in the inner loop!
This analysis points to a fundamental truth about all serious programs­

the computer always spends the larger part of its time obeying the phrases in
the inner loop of the program it is executing. The corollary is very simple: if
your program takes enough computer time, and is to be run often enough, to
be worth speeding up at all, then your efforts should be directed at the inner
loop, since this is where nearly all the time goes. The outer sections can look
after themselves.

In the example, about a quarter of the phrases could be saved by simply
omitting the printing of the '*' and ' = ' in the inner loop, and arranging to
print a suitable heading instead. On the other hand, no amount of work on any
part of the program outside the inner loop could possibly save more than 6 per
cent of the phrases obeyed.

In many cases the number of repetitions of some part of a program depends
on the data, and cannot be predicted in advance. A clear example is given by the
second version of the HCF program on p. 64, where the frequency of the outer
loop depends on the number of data pairs supplied, and the number of times

Loops and Program Efficiency 67

around the inner loop depends on the values of the numbers in a rather
complex way. The fundamental point remains unchanged-even if it is not
known exactly how many times the inner loop is to be executed, it is certain
that the computer will spend much of its time here, and that the improvements
to the inner loop will do the most to increase the efficiency of the program as a
whole.

There is obviously not much to gain by shortening a section of program if it
is already short. The HCF example traced in full, where the two numbers were
15 and 6, took only three passes through the loop before the result appeared.
This hardly seems worth worrying about. Perhaps this example is deceptive;
what happens if the two numbers are very different? A few trials show that the
smaller is subtracted from the larger many times over. For instance, in finding
the HCF of 1001 and 2, the loop would be repeated 501 times. At the limit, if
you set one of the numbers to zero the computer will loop round indefinitely
doing nothing except using up your computing allowance. Eventually the
operating system will stop your job with a dynamic fault, and print a message
like "TIME ALLOWANCE EXCEEDED", but this will not happen until the
machine has done several million completely fruitless cycles. Of course the
numbers supplied are not supposed to be zero; the user is told that the program
only works correctly on positive numbers. This does not alter the fact that in
practice, perhaps through a punching error, a zero might still creep in.

The repeated subtraction of one number from another, until the residue is
smaller than the number being subtracted, is equivalent to finding the
remainder after division. Thus subtracting 2 from 1001 500 times leaves a
remainder of 1, and the same result can be obtained after only one operation by
specifying 'the remainder when 1001 is divided by 2'. In Algol 68 there is an
operator with exactly this function- mod, which is an infix operator with a
priority of7. Thus the value of 1001 mod 2 turns out to be 1. x mod 0 (where xis
any number) is undefined and produces a dynamic fault.

Substituting this operator into the above algorithm gives

while a# b do if a>b then a:= a mod b else b: = b mod a fi
od;

print (a)

This looks promising; but it is advisable, before submitting the new program to
the computer, to trace one or two simple cases, just as a check. The trace for the
pair of numbers 35 and 14 is as follows.

a b

7 0

68 Programming and Problem-solving in Algol 68

On the first time round, a> band so the machine would do a:= a mod b.
The new value in a is 7.

On the next time round, a< b, and the machine would do b: = b mod a.
This gives b and value of 0, because 7 divides 14 exactly.

On the third time round, b is now again less than a, and so the machine
would try to carry out a:= a mod b. As b is zero, this would give a dynamic
fault! Furthermore, a few more checks with different pairs of numbers shows
that this would happen every time.

Before giving up in despair and returning to the reliable but slow algorithm,
it is as well to investigate this failure a little more deeply. The value zero can
only arise if the larger number is an exact multiple of the smaller.

To prevent the dynamic fault, the loop can be rearranged so that it is never
executed with either of the two variables set to zero. The section of program
becomes

while a * b ¥- 0 do if a > b then a: = a mod b
else b:= b mod a

fi
od;

if a = 0 then print (b) else print (a) fi

Some tracing experiments show that this version is working correctly. It
seems to find the HCFs of most pairs of numbers (even those that are very
different) in just a few cycles.

EXERCISES

*5.1 (2) Trace the following program, with its data. Say what you think it
does, in general terms.

1 begin int x, y;
2 read (x); while read (y); y ¥- 9999 do
3 if y > x then x: = y fi
4 od;
5 print (x)
6 end

45 77 32 123 44 84 39 2 9999 (data)

*5.2 (2) Sketch the railway that corresponds to the program in exercise 5.1

5.3 (3) Take the HCF program on p. 58 and insert any changes you may think
are needed to make it more robust. (Hint: Both data numbers are supposed to
be positive.)

Loops and Program Efficiency

*5.4 (2) Trace the following program with its data.

1 begin int a, b, s, t;
2 read (t); a: = 1;
3 while a < = t do s: = 0; b: = 1;
4 while b < = a do s + : = b; b + : = 1 od;
5 print(a); print (s); print (newline);
6 a+:=1
7 od
8 end

5 (data)

69

* 5.5 (3) Using the program in exercise 5.4, show how the number of times the
instructions s+: = b is executed depends on the number read as the datum.
(Hint: Trace the program for data values of 1, 2, 3, 4, ... and hence derive a
general expression.) How many times is the instruction executed when the
datum is 100? How many instructions are executed in all when the datum is
100?

5.6 (3) Modify the program in exercise 5.4 so as to produce the same results
more quickly.

*5.7 (4) (P) If xis the highest common factor(HCF)oftwonumbersaand b,
their lowest common multiple (LCM) is ab/x.

(a) Using a section of code given on p. 68, write a program that reads
two numbers p and q and prints out their LCM.

(b) Adapt your program to calculate the LCMs of a given data number
q and all 10 numbers between 100 and 109. The results should be
printed in the following form.

LCM OF 75 AND
100 101 102 103 104 105 106 107 108 109
300 7575 2550 7725 7800 525 7950 8025 2700 8175

(c) Adapt your program again to make it tabulate the LCM ofp and q
for all combinations ofp from 1000 to 1099 and for q from 100 to
109 (1000 values in all).

6 Program Structure

'Beauty is truth, and truth, beauty'
John Keats, 'Ode on a Grecian Urn'

Algol 68 is designed on the principle of orthogonality. This implies that the
language is governed by a small number of general rules, which can be applied
uniformly, without exceptions and without interference with one another.

One of these general rules is that the value yielded by an expression of a
certain type can always be stored in a variable of the same type. Thus an
integer-expression can be assigned to an integer variable, and a character­
expression can be assigned to a character variable. In the topics discussed so
far, however, there is an obvious gap arising from boolean-expressions­
to what, if anything, can their values be assigned?

In order to store boolean-values, variables of a new mode are necessary.
Boolean-variables are declared in a similar way to int and char variables, but
using the system word bool to start the declaration. As you would expect, a
boolean-variable can have any identifer, provided that it does not clash with
that of another variable.

The value of any boolean-expression is always either true or false. It follows
that a boolean-variable is also limited to holding these two values. The
symbols true and false are actually Algol-68 system words that specify all (that
is, both) possible boolean literals.

Boolean-variables are often useful in remembering truth values that may be
needed some time after they are calculated. The program in the following
example is supposed to read a set of positive numbers terminated by 0, and
simply to state whether any of the numbers is greater than 50. A boolean­
variable called yes is used to remember the current situation as the program
runs. Initially yes is set to false; then any number greater than 50 sets it to true,
so that at the end of the data it only remains false if no such number was found.

1 begin int x; bool yes; yes: =false;
2 while read (x); x > 0 do if x > 50 then yes: = true fi od;
3 ifyesthenprint("AT LEAST ONE NUMBER GREATER THAN 50")
4 else print ("NO NUMBERS GREATER THAN 50")
5 fi
6 end

Program Structure 71

Note the use of a boolean-variable instead of an expression after if. This is
quite legitimate; the value in the variable is used to make the choice.

Algol 68 includes a set of special operators for handling boolean-values.
They are often called logical operators because they have been borrowed from
the study of symbolic logic. There are three of them

not is a monadic operator, with the usual priority of 10. It takes one
boolean-operand, and delivers a result according to the following simple
rule

not true = false
not false = true

and is a dyadic operator of priority 3. It takes two boolean-operands and
gives the value true only if both operands are true.

or is another dyadic operator, of priority 2. It also takes two boolean­
operands, but returns the value true if either or both of the operands are
true.

These rules are summarised in truth tables 6.1 and 6.2, where A and B stand
for boolean-values.

A not A

true false
false true

Table 6.1

A B A and B A orB

true true true true
true false false true
false true false true
false false false false

Table 6.2

When writing boolean-expressions, you should remember that and has a
higher priority than or, and not has the highest priority of all. If you want to
change this order, or if you are not sure of it, use brackets.

Suppose that the boolean-variables a, band c have the values true, true and
false, respectively, and consider the expression

72 Programming and Problem-solving in Algol 68

not (a or b and c) and (a and b or not c)

Substituting the values of the variables into this expression gives

not (true or true and false) and (true and true or not false)

It is possible to simplify the parts inside the brackets-first the nots

not (true or true and false) and (true and true or true)

then the ands

not (true or false) and (true or true)

and finally the ors. The brackets can now be removed because there are no
operators left inside them

not true and true

The removal of the brackets allows the expression as a whole to be
simplified. Applying the not: gives

false and true

while applying the and produces the result

false

This is the value of the expression.

Boolean-operators are often useful in sorting out complex categories.
Imagine a program that handles records of people, and produces statistics
about them. Each person is represented by the values in four variables, as
follows

age: the int variable age
sex: the char variable sex, which takes one of the values "M", "F"
marital status: the char variable ms, which takes one of the four values "S"

(single), "M" (married), "W' (widowed) and "D" (divorced)
education: the char variable education, which takes one of the three values

"U" (university degree or equivalent), "0'; (0 level) or "N" (no
qualification).

Initially, the particulars of each person could be punched on to a card as a
number and three characters. Part of the data would appear as

39MMU
34FMU
73FWU
13MSN
llFSN
9MSN
3FSN

Program Structure 73

The values for each person could be read in by a sequence of read instructions
like

read (age); read (sex); read (ms); read (education)

Suppose that it is required to know

(a) the total number of people in the set of records
(b) the total number of graduates under 25
(c) the total number of widowed or divorced women over 40.

It is possible to define boolean-variables that indicate whether a person is
under 25, or widowed, or has any other attributes that can be deduced from the
data. These can then be combined into expressions that describe the categories
of interest.

The following is the complete program. It is assumed that the data are
terminated by a dummy record with an 'age' of999, and that the accuracy of the
records has been checked by another program, commonly called a data­
validation run.

1 begin int age, total, yg, owd;
2 char sex, ms, education;
3 bool under25, male, graduate, over40, widowed, divorced;
4 total:= 0; yg: = 0; owd: = 0;
5 while read (age); age "I= 999 do read (sex); read (ms); read (education);
6 under 25: = age < 25; over 40: = age > 40;
7 male:= sex = "M";
8 graduate: = education = "U";
9 widowed:= ms = "W"; divorced:= ms = "D";

10 total+:= I;
11 if graduate and under25 then yg+: = I fi;
12 if not male and (widowed or divorced)
13 and over40 then owd + : = I
14 fi
15 od;
16 print (newline); print ("TOTAL NUMBER OF PEOPLE IS");

print (total);
17 print (newline);print("NU MBER OF GRADUATES UNDER 25IS");

print (yg);
18 print (newline);
19 print ("NUMBER OF DIVORCED OR WIDOWED WOMEN OVER

40 IS);
20 print (ow d)
21 end

The boolean-operators are also useful with relations. Once a relation like <
has been worked out it must be either true or false, and so it takes a boolean-

74 Programming and Problem-solving in Algol 68

value. For example, it is possible to write instructions such as the following

int x, y;

x < = 5 or y > 3 (true if either x < = 5 or y > 3)
x > = 10 and x < = 15 (true if x lies between 10 and 15)

Note that it is not possible to write something like 10 < = x < = 15 to
indicate a range of values of x, because the machine would have to evaluate the
first relation 10 < = x, and then it would be left with a boolean-value to
compare with a number, which is illegal.

To bring order into the whole matter of expressions, it only remains to point
out that the relations are actually dyadic operators; <, >, < = and > =
have priority 5, and = and # have priority 4. There is, however, one important
difference between these operators and the others so far encountered. The pure
arithmetical operators like+ and * each take integers as their operands and
yield an integer result. Likewise the boolean-operators not, and and or each
take boolean-operands and deliver a boolean result. The relations, on the other
hand, each take integer operands and yield a boolean result!

In order of priority, the relations come below the arithmetical operators but
above the boolean-operators. The higher the priority, the more strongly will an
operator 'bind' the items on either side. This means that the operands of the
relations need not be only variables or literals but can also be arithmetical
expressions of arbitrary complexity. In every case (except where brackets
intervene) they are evaluated before the relational operators are applied.

In Algol 68, there are various ways of transferring values from one mode to
another. Some of them are shown in figure 6.1

Figure 6.1

Program Structure 75

First, as already noted, integers and character expressions can be used to
derive boolean-values by means of the relational operators. This is shown on
figure 6.1 by the two lines marked 'relation'.

Second, the operator abs can be applied to objects of any of the three modes.
This operator always produces something of mode int, but it works in different
ways depending on the mode of the operand.

(1} If abs is applied to an integer, it simply produces the absolute value, or
modulus. There is no change of mode.

(2} If abs is applied to a boolean, it translates true into 1 and false into 0.

(3} If abs is applied to a character, it generates an integer according to an
internal code. This code will vary depending on the machine that is used,
but it will always have three basic properties
(a} there will be a unique numerical code for each member of the

character set (that is, different characters always give different codes}
(b) the letters "A" to "Z" give codes consisting of 26 different integers in

the correct alphabetical order. On certain machines (particularly the
ICL 1900} these integers will be consecutive but on others (such as
the IBM 370 range} they may not be.

(c) similarly, the digits "0" to "9" give 10 integers in the right order; they
will be consecutive on most implementations.

Finally the operator repr transforms an integer that is the internal code of some
character into that character; the effect of repr is exactly the opposite to that
obtained when abs is applied to a character. If the operand of repr is not a
legitimate character code (this is possible because the size of the character set is
far smaller than the number of different integers} a dynamic fault is produced.

The operator abs when applied to boolean-values is often useful in
conditional arithmetical expressions. Consider the case of a man's income-tax
allowance, which might be something like

10 000 doubloons basic
+ 8000 doubloons if he is married
+ 4000 doubloons for each child he supports.

Suppose that it is required to write a program to calculate the tax allowance,
and that a boolean-variable called married and an integer variable en that gives
the number of children have already been set up. There are various
possibilities, such as

taxallowance: = 10000;
if married then taxallowance +: = 8000 fi
if nc i= 0 then taxallowance +: = (nc * 4000) fi

but perhaps the neatest is

taxallowance: = 10000 + abs m~rried * 8000 + nc * 4000

76 Programming and Problem-solving in Algol 68

It is convenient to use abs as applied to characters and repr in various
alphabetical and lexical manipulations. For the most part the relational
operators can also be applied to modes other than integers. Thus = and "#
can be used with characters, with obvious meaning. They can also be used with
booleans: = gives true if the two operands are the same, and "# gives true if
they are different.

The operators <, >, < = and > = can also be used with characters. The
expression j < k (where j and k are character variables or literals) has the
meaning of abs j < abs k. In other words (because of the way abs is defined) the
two operands are tested for being in alphabetical or numerical order. For
example

"P" < "Q"

is true, but

"8" < "5"

is false.
The other relations work in a similar way. For example, a character x is

certainly a digit if the following expression is true

x > = "0" and x < = "9"

As a further illustration, consider the following program, which reads a
series of numbers ended by a I and converts it into code according to the simple
rule 0-+9, 1-+8, 2-+ 7, and so on up to 9-+0. Spaces and other non-digit
characters are left unchanged. The coded message ends with a I so that the same
program can later be used to translate it back again.

1
2
3
4
5
6
7
8

begin char next, code;
while read (next);

next "# "I" do if next > = "0" and next < = "9"

od;

then code:= repr (abs "9"+abs "0"-abs next);
print (code)
else print (next)

fi

9 print (" /")
10 end

There are some useful minor extensions of the constructions already
considered.

Testing for a number of possibilities, one after the other, often produces
several nested if statements. Consider the job of translating exam marks into
grades, according to the following table.

Program Structure 77

Mark More than 75 75--61 60--49 48-36 35 or less

Grade A B c D

A program for this could well include a section like

if exam > 75 then grade: = "A"
else if exam > 60 then grade:= "B"

else if exam > 48
then grade: = "C"
else if exam > 35

E

then grade:= "D"
else grade:= "E"

fi
fi

fi
fi

This cumbrous array can be shortened (a little) by using the new system
word elif. This replaces else if, but does not need a closing fi. Hence.

if exam > 75 then grade:= "A"

fi

elif exam > 60 then grade: = "B"
elif exam > 48 then grade:= "C"
elif exam > 35 then grade:= "D"

else grade:= "E"

This version of the construction is easier to lay out and there is less likelihood
that its if- fi brackets will be wrongly matched.

Another contraction is the rule by which the system words if, then, else, fi
and elif can be replaced by (, I , I ,) and I=· then and else use the same
symbol, but this never causes ambiguity. The shortened symbols can be
confusing, but they are useful in conditional expressions that are long and
uniform. For instance

y:= 59•if x <4 then x+2 else 2-x fi

may be replaced by

y:= 59•(x <41 x+212-x)

and 'factoring out' the assignation in the instruction that assigns the grade
leads to the form

grade:= (exam> 751 "A" I :exam> 60 I "B" I :exam> 481 "C" I :exam
> 351 "D" I "E")

So far, the read and print statements in this book have alw~s used one

78 Programming and Problem-solving in Algol 68

operand each. Both these instructions can accept lists of operands, provided
they are separated by commas and enclosed in an extra pair of brackets. Thus

read ((sex, ms, education))

is equivalent to

read (sex); read (ms); read (education)

and

print ((newline, "POSTAGE WILL BE', p, "PENCE"))

is a shorter form of

print (newline); print ("POSTAGE WILL BE"); print (p); print ("PENCE")

In either case the items on the list may be of different types.
Essentially, the print statement is concerned with handling values. It is not

therefore limited to handling variables and constants, but can deal with
anything that generates a value suitable for printing. Expressions of any
complexity may be used, including conditional expressions. For example, an
instruction such as print ((newline, "YOUR RESULT IS", (marks > = 501
"PASS"I "FAIL"))) would be perfectly acceptable.

The read statement, on the other hand, is concerned only with reading values
from the input medium and storing them in named variables. It does not make
sense to 'read' the value of an expression, and the only proper operands for the
read command are variables.

Programs are often compared to onions. On the outside, there is a shell.
Removing this shell reveals another shell inside, and so it continues to the heart
of the onion itself. Building a complex program is like designing onion shells.
Sometimes it is best to start from the inside and to work outwards but on
occasion it may be more convenient to go the other way.

A good example of the outward approach is the second version of the HCF
program in chapter 5, which was constructed by writing a 'kernel' that found
the HCF of just two numbers, and then adding an outer shell that allowed the
program to handle a whole stream of data pairs.

Consider now a different problem: writing a program to find a perfect
number. A perfect number is defined as one that is equal to the sum of its
factors; it is assumed that 1 is always a factor but that the number itself is not. It
turns out that, for example, 6 is perfect because the factors of 6 are 1, 2 and 3,
which add up to 6; but 18 is not because the factors of 18 are 1, 2, 3, 6 and 9,
which add up to 21.

Since it is already known that 6 is perfect, consider finding the next perfect
number after 6. This time, the procedure adopted is to work from the outside
inwards, and therefore the first step is to design the outermost shell of the
program. An obvious choice is

Program Structure

begin int n;

end

set n to the next
perfect number after 6

print (("THE NEXT PERFECT NUMBER IS", n))

79

This does not seem to have advanced matters very far: the next perfect
number has still to be found. However, the printing requirement has been
separated off, and in that sense the problem has been made a little easier -the
top skin of the onion has been removed. 'Fhe outermost shell is always very
thin!

The second step is to decide how to find the next perfect number. One way is
to generate all the numbers from 7 upwards and to test them, until one is found
to be perfect. This gives

begin int n;

n:= 7;
while n is not perfect don+:=Jod;

print (("THE NEXT PERFECT NUMBER IS", n));
end

Another layer removed! The inside still remaining is a serial-boolean clause
that gives the value true if n is not perfect.

It is now necessary to establish a rule for determining whether a given
number is perfect. In view of the definition of a perfect number, one method
would be to add up all the factors of the given number and to compare the sum
with the number itself. A new variable s is introduced for the sum

begin int n, s; .
n: = 7;

while II set s to the sum of the factors of n I ; s -:;: n don+:=Iod;

"

print (("THE NEXT PERFECT NUMBER IS", n))
end

80 Programming and Problem-solving in Algol 68

The onion is now visibly decreasing in size, and the problem it contains is not
so many steps away from solution.

The easiest way of finding which numbers divide a number n is to try all the
possible factors from 1 upwards. The largest factor cannot be greater than !n.
Another variable, say x, is needed to represent each trial factor

begin int n, s, x;

end

n: = 7;
while

s:= 0; x:= 1;
while x < = n -;- 2

do

if ~ x divides n exactly I
thens+:=x

fi;x+:=J
od;

s#:n

don+:= 1 od;
print (("THE NEXT PERFECT NUMBER IS", n))

The last shell is easy to expand. If x divides n exactly then the remainder after
division must be zero. The innermost shell may be replaced by the boolean­
expression n mod x = 0. The final version of the program will be

1
2
3
4
5
6

begin int n, s, z;
n:= 7;
whiles:= 0; x: = 1;
while x < = n-;-2

do if n mod x = 0 then s + : = x fi
x+:= 1

7 od;
8 s=f.n
9 do n + : = 1 od;

10 print (("THE NEXT PERFECT NUMBER IS", n))
11 end

Program Structure 81

This method of starting with the outside of the onion is sometimes called
stepwise refinement.

EXERCISES

*6.1 (1) What is wrong with the following version of the program on p. 70?

1 begin int x; boo) yes; yes: = false;
2 while read (x); x > 0 do yes:= x >50 od;
3 if yes then print ("AT LEAST ONE NUMBER GREATER

THAN 50")
4
5

else print ("NO NUMBERS GREATER THAN 50")
fi

6 end

*6.2 (0) Students often write something like

bool j;

if x = 17 then j: = true else j: = false fi

Suggest a shorter form.

* 6.3 (2) Fill in the last column of this truth table

a b c not (a or b and c) and (a and b or not c)

true true true
true true false false
true false true
true false false
false true true
false true false
false false true
false false false

*6.4 (3) Deduce a simpler boolean-expression with the same value as the one
in exercise 6.3.

6.5 (2) Write a version of the program on p. 73 that tells you
(a) the number of married people between 20 and 25
(b) the number of divorced men who do not have university degrees
(c) the number of people over 65 who have no educational

qualifications.

82 Programming and Problem-solving in Algol 68

6.6 (4) (P) In most implementations of Algol68, the internal representations
of the decimal digits are consecutive integers

etc.

abs "1" = abs "0" + 1
abs "2" = abs "1" + 1

Use this fact to write a program which reads a series of numbers in the octal
notation (scale of 8) and prints the corresponding decimal value of each
number. The octal value should be printed first, for reference, and the output
should be suitably headed.

You may assume that the octal numbers are separated by spaces, and that
the last one is zero.

A sample output might be

OCTAL

7
10

144
1812
1000

0

DECIMAL

+7
+8

+100
NOT OCTAL NUMBER

+512
+0

7 Declarations and Reach

'"The name of the song is called 'Haddocks' Eyes'."
"Oh, that's the name of the song, is it?'' Alice said, trying to feel interested.
"No, you don't understand," the Knight said, looking a little vexed. "That's what
the name is called. The name really is 'The Aged Aged Man'."
"Then I ought to have said 'That's what the song is called'?" Alice corrected herself.
"No, you oughtn't: that's quite another thing! The song is called 'Ways And
Means': but that's only what it's called, you know!"
"Well, what is the song, then?" said Alice, who was by this time completely
bewildered.
"I was coming to that," the Knight said. "The song really is 'A-sitting on a Gate':
and the tune's my own invention."'

Lewis Carroll, Alice through the Looking Glass

This chapter is about declarations. As you have already seen, declarations are
used in every Algol-68 program to set up space for working variables and to
attach names to the various storage cells that may be needed.

In most circumstances the designers of Algol 68 compel the programmer to
say exactly what he means. In the case of declarations, however, they seem to
make an exception. Most declarations can be written in two different ways: an
extended form, which actually means what it says; and a shortened form, which
is convenient for normal use but quite obscure if you want to discuss its precise
meaning.

All the declarations used so far have been in the shortened form. Since the
aim at this point is to explain what declarations really mean, it is best to set
aside the shortened form and to start afresh with the extended notation. When
the subject has been thoroughly discussed, the shortened form will be
reintroduced and used for the remainder of the book.

Fundamentally a declaration serves to link an arbitrary identifier with a
value of a certain mode. Once made, a declaration lasts for a finite time (for
instance, until the end of the program) and, throughout its life, the value linked
with the identifier remains unchanged.

The basic way of writing a declaration is

mode identifier = value

Here 'mode' is the mode of the identifier; the identifier itself is freely chosen,
and the 'value' must be compatible with the mode specified. The= sign is quite
different from the relational operator= . Here it does not test for equality; it
causes association.

84 Programming and Problem-solving in Algol 68

A simple example of a declaration (which is written, remember, in extended,
not shortened form) is

int dozen = 12

This declares the identifier dozen, and associates it with the mode int and the
constant value 12. The identifier accesses this value throughout its existence, so
that it is possible to write1 'dozen' wherever the integer 12 is meant. The word
dozen now stands for an integer of fixed value; it is an identified constant.

Identifiers of mode bool and char may be declared in a similar way. It is often
convenient to put

bool f = false; bool t = true

because the single letters/ and t may then be written instead of the full symbols
false and true.

Since identifiers of mode int, bool and char all stand for constants, it is not
sensible to try to assign any new values to them; it is as absurd to say, for
example

dozen:= 19

as it is to put 12: = 19.
By now, you may feel that all the supposedly solid ground you were standing

on is somehow dissolving beneath you. Remember that neither of the words
variable and store has yet been mentioned. Take courage and read on.

The conventional idea of a variable is that of a named cell in the workspace,
which can hold a value of a certain type. As the calculation proceeds this value
is used from time to time and may be changed by a read or an assignation.

The standard declaration of such a variable in Algol 68 would be written

ref mode identifier = loc mode

for instance

ref int kate = loc int

~
value

where the mode of the identifier kate is ref int and the value is loc int.
The rules demand that the value associated with the identifier must be a

constant: it may not change during the life of the declaration. This seems to
lead to a contradiction- kate is intended to be a variable! There is, however,
one thing about a variable that is invariant, and that is the position or address
of the corresponding cell in the store. No matter how often its contents are
changed, the place occupied by a cell in the working store always remains the
same. The value ascribed to the identifier in a declaration of this type does not

1 Note that it is not permissible to write 'dozendozen' to mean 'one thousand two
hundred and twelve' because dozen is an int, and not a sequence of two digits.

Declarations and Reach 85

represent the (changing) value of the variable in some cell; it represents the
(constant) position of that cell. This value has a new mode (refint) but, since it
has already been accepted that values can represent numbers, characters and
truth values, the idea of a value representing a position should not prove too
difficult to grasp.

As a rule, modes that start with the qualifier ref all represent positions. Thus
a ref int is the position of a cell that can hold an int value.

The action of the declaration can now be described precisely. When a
program starts, the computer has a supply of workspace divided into
numbered cells, much like the long thin blackboard described in chapter 4.
This workspace is usually called the stack.

As declarations are executed, the cells in the workspace are allocated to
variables, working from one end of the stack. (In the diagrams in this book,
cells will be allocated from left to right.) At any time, therefore, all the cells up to
a certain point will have been allocated, and those beyond that point will still
be free. A special secret memory cell, called the stack pointer, will remember
where the free cells start.

When the machine obeys a declaration like the one above the following
events happen.

(1) The machine makes a note ofthe identifier in a special table together with
the mode that precedes it; in the given example, kate would be associated
with ref int.

(2) The machine works out the expression Joe int. Joe is a special monadic­
operator that takes the name of a mode as its operand. It 'reserves' a
storage cell suitable for an object of that mode, and delivers the position of
the newly reserved cell. As a side effect of reserving the cell, it moves the
stack pointer up by the width of one cell so that the same cell cannot be
allocated to another variable as well. The value of the expression Joe intis
therefore the position of a new integer cell.

(3) The value so produced is ascribed to the identifier, which continues to
access the value for the whole of its existence.

Figure 7.1 shows the effect of a series of declarations. The positions of the
cells in the working store are deliberately indicated as x, x + 1, x + 2 and so on
to show that the programmer does not know, and does not need to know,
exactly where they are. It is sufficient for the computer to know and to record
the appropriate values in the table of identifiers. Thereafter the identifiers are
said to 'point to' the cells concerned.

Unfortunately this does not end the difficulties. The objects that you may
have thought of as variables of mode int turn out to be constants of mode ref
int. What effect does this have on expressions and assignations that involve
objects of this type?

86 Programming and Problem-solving in Algol 68

x+6

Mode Identifier Value

int sue 34

boo I truth true begin int sue = 34 ;

ref char qq X bool truth = true ;

ref int x+l ref char qq = lac char;

ref int k x+2
ref int j = lac int ;

char last "Z" ref int k= lac int;

char last = "Z";

(a)

Mode Identifier Value

int sue 34

boo I truth true begin int sue = 34 ;

ref char qq X bool truth = true ;

ref int x+l ref char qq = lac char;

ref int k x+2 ref int j = lac int ;

char last "Z" ref int k= lac int;

ref bool flag x+3
char last= "Z";

ref bool flag= lac bool

(b)

Figure 7.1(a) Table of names and their associated modes and values; (b) effect of
adding a new declaration

First consider an assignation

kate:= 0

Declarations and Reach 87

The value on the right is an integer literal, which can be stored in an integer cell,
while on the left there is an identifier of mode ref int, whose associated value is
the position of an integer cell. Clearly there is no real problem; the computer
can easily store the integer values in the integer cell to which the identifier
points.

Next, consider

kate: = 17 + kate

The+ operator needs two integers as its operands, but in this case one of them
is a ref int. It makes no sense to divide a number by a position and, even if it did,
this is not what the computer is being asked to do. When a situation of this kind
arises, the machine does not use the (constant) value of the identifier directly,
but looks up and uses the contents of the cell to which the value points. This
process is called dereferencing and is one example of coercion, or change in
mode directed by circumstances.

The law of orthogonality ensures that all the remarks made regarding the
declaration of integers apply equally to the declaration of characters, boo leans
and other modes still to be discussed.

In the declarations studied so far, an identifier can access the position of a
cell, but the contents of the cell itself are left undefined. To ensure that the cell
does have an initial value, the declaration can be extended by adding an
assignment operator and an expression of a suitable mode. Thus it is possible
to write

ref char x = Joe char: = "Q"

The machine will put the character value "Q" into the cell whose position is
ascribed to the identifier x, as if it had been presented with

ref char x: = Joe char; x: = "Q"

At this point the shortened form of the declaration can safely be re­
introduced. It turns out that

intj

is just a shorthand way of writing

ref int j = Joe int

so that in this case j is actually an identifier of mode ref int.
Identifiers declared in the shortened form can also be initialised. For

instance

int n: = 7

is equivalent to

int n; n: = 7

and therefore to

ref int n = Joe int; n: = 7

88 Programming and Problem-solving in Algol 68

It is important to distinguish three forms of declaration, which look similar
but are somewhat different

(a) int q
(a variable­
declaration)
(b) int r = 19
(an identity­
declaration)
(c) int s: = 19
(also a
variable­
declaration)

is short for ref int q = loc int and declares an identifier of
mode ref int, but does not initialise the corresponding cell in
the workspace.
declares an identifier of mode int(not refint) and ascribes to it
a constant integer value. This is not a contraction!

is short for ref int s = loc int: = 19. It declares an identifier of
mode ref int, and initialises the corresponding cell in the
workspace.

Contracted declarations, where several identifiers are declared in one group,
also have their full and shortened forms. For example

bool red, blue, green

is short for

ref bool red = loc bool, blue = loc bool, green = loc bool

So long as they have the same mode, the identifiers in a declaration of
variables need not all have initial values associated with them. Hence it is
possible to write sequences like

char high:= "W'', middle, low:= "H"

which defines three identifiers of mode ref char, and assigns initial values to two
of them. On the other hand it is not legal to mix different modes, even by
implication. A 'declaration' like

intj, k = 23

would be rejected because j is of mode ref int, but k is of mode int.
Remember that a serial-clause consists of a sequence of one or more items­

units and declarations, including at least one unit. The items may follow one
another in any order provided that every identifier is declared before it is used.

For technical reasons, some versions of Algol 68-in particular Algol
68R- impose an additional rule: if a serial-clause has any declarations at all, it
must begin with a declaration. Although the rule is not part of the proper
definition of Algol 68, it will be used in this book.

The practice followed so far in this book has been to put all declarations
immediately after the opening begin of the program, but this rule can be varied
as required. Declarations can use expressions as well as simple numbers or
truth values, provided that the computer can work them out when the
declarations are obeyed. For example, a program could start with

begin int x, y; read (x); read (y);
int size = (x + 1) * (y + 1)

Declarations and Reach 89

Throughout this program, size would stand for a constant integer with a value
determined by the first two data items supplied.

As already noted, any serial-clause enclosed in brackets becomes a unit and
can be embedded in another serial-clause. The same applies to serial-clauses
that are delimited by special pairs of system words like then-else or do-od.
Most of the programs in this book have used nesting of this type but so far
none of these inner clauses has had its own declarations.

Declarations are acceptable in inner clauses, and are often useful there.
There is an important practical difference between identifiers declared in
nested clauses and those declared at the outermost level. As mentioned earlier,
every declaration has a finite life. In fact, an identifier only continues to exist as
long as the serial-clause in which the declaration lies is actually being executed.
When that clause ends, the identifier is taken away from the table of identifiers
held in the machine, and the space occupied in the working store (if any) is
freed and made available to other declarations.

Consider an identifier declared in the outermost serial-clause (just after
begin). The end of this clause coincides with the end of the program so that the
name exists for the entire duration of the program, and can be referred to
anywhere. If, on the other hand, an identifier is declared in an inner serial­
clause it will be deleted before the end of the program is reached, and so there
will be parts of the program where the identifier is not available and where its
use would be an error.

As an illustration, consider the following short program with nested
declarations

reach of
a, b, sum,
ap

1
2
3

,.r:- i
ofbp 7

L~~
11

begin int a, b, sum: = 0, ap: = 1;
read (a); read (b);
while ap <=a do

int bp: = 1;
while bp <= b do

sum+:= (ap + bp)f 2;
bp+: = 1

od·
'

ap+: = 1
od·

' print ((newline, "A = ", a, "B = ", b, "F IS",
sum))

'--------12 end

The program reads in two numbers a and b, and works out the sum of the
squares of all combinations of numbers up to a+ b. For example, if a = 3 and b
= 4, the machine calculates

(1 + 1)2 +(1 +2)2 +(1 + 3)2 +(1 +4)2

+(2+ w +(2+2)2 +(2+3)2 +(2+4)2

+(3 + 1)2 +(3 +2)2 +(3 +3)2 +(3 +4)2

90 Programming and Problem-solving in Algol 68

or 266. (As far as I know, this particular function of two variables is not at all an
interesting one, and the only purpose of the program is to demonstrate the
ideas of nested declarations.)

In this program, the identifiers declared in the outermost serial-clause are a,
b, sum and ap. They exist for the entire program and can be referred to
anywhere.

One of the inner clauses of the program is delimited by the do in line 3 and
the odin line 10. The identifier bp, which is declared in this serial clause, is said
to be local to that clause. Its reach extends from line 4 to line 10 only; bp can be
used anywhere within this serial-clause but outside- either before line 4 or
after line 10-it does not exist and any reference to it would be illegal and
meaningless.

To discover what actually happens during the running of the program,
consider a series of'snapshots'. First of all, figure 7.2a shows the state of affairs
just after the declarations in line 1 have been obeyed. Four cells of the
workspace have been allocated, and two of them have been given initial values.
The contents of the cells that belong to a and b are as yet undefined.

When the values of a and b have been read, the program moves on to the
declaration in line 4. This results in figure 7.2b.

The identifier bp has now been entered into the identifier table and a cell
(x + 4) has been initialised and reserved.

Now the rest ofthe loop which runs from line 3 to line 10 is obeyed. As b = 4
the statements on lines 6 and 7 will be obeyed 4 times. On reaching the odin
line 10 bp, ab and sum will hold the values 5, 2 and 30 respectively, as you can
easily confirm by tracing.

The odin line 10 closes the serial-clause in which bp was declared. As the od
is passed, the program liquidates the identifier bp; it removes it from the table of
identifiers, and returns the cell associated with it to the set of free cells by
moving the stack pointer back by one position. The cell that once belonged to
bp can be used to satisfy the next declaration that needs a cell, no matter what
identifier or mode it may have. This gives figure 7.2c.

As the clause with the declaration is part of a loop it is very soon entered
again. Each time around, the declaration for bp is obeyed; an entry is made in
the identifier table and a new cell is allocated. In this example the cell will be the
same one (x + 4) every time but this is more by chance than design- the
system, when it wants more space, will always take the first free cell available.

Several times in this book it has been noted that identifiers can be chosen
freely 'so long as they do not clash with other identifiers'. This certainly means
that all the identifiers declared in any one serial clause must be distinct, but
identifiers declared in different serial-clauses may be the same and still retain
their separate identities. There are two cases to consider.

Declarations and Reach 91

X x+l x+2 x+3 x+4

Mode Identifier Value

ref int a, X

ref int b x+l

ref int sum x+2

ref int ap x+3

Mode Identifier Value

ref int a X

ref int b x+l

ref int sum x+2

ref int ap x+3

ref int bp x+4

Mode Identifier Value

ref int a X

ref int b x+l

ref int sum x+2

ref int ap x+3

(c)

Figure 7.2

92 Programming and Problem-solving in Algol 68

First, imagine two quite disjoint serial clauses as follows

17 if x < 3 then
.------18 int joe, charlie, pat

reach of joe
charlie, pat

25 else
reach o.-f-s-u-e,---26 int sue, jane, anne; bool pat =true

jane, anne, pat
33 fi

Both of these serial-clauses have declarations for the identifier pat. However, if
pat is mentioned in the first, it must access the ref int declared in line 18.
Similarly a pat in the second serial-clause means the bool declared in line 26.
Outside the two clauses the identifier does not exist at all, and so there is no
ambiguity about the use of the identifier anywhere.

The second situation arises when one clause is embedded in another and
both have declarations involving the same identifier, as follows

~-~====== 1 begin int red, green, purple: = 0;
reach of
green (outer)

2 read (red); green: = red- 2;
3 while pur pie < = green do

.L
r---- 4 char green;

reach of

reach of
green
(inner)

5 read (green);
6 print (green);
7 purple+:= 1

L--------8 od;
9 print ((green, "CHARACTERS JN ALL"))

L_--===========10 end

The rule here is that the inner declaration, where it exists, masks the outer
one. When green is mentioned in the inner clause between lines 4 and 6, it
accesses the ref char declared in line 4. In the outer clause, when the ref char no
longer exists, the identifier green now accesses the ref int declared in line 1.
Thus the first value for the print statement in line 9 is a number.

The diagram shows the reach for the outermost declaration of green. It has a
hole in it.

Although this variable is inaccessible while the inner clause is being obeyed,
it does not cease to exist. When the inner clause ends the masked variable
returns with the same value as it had when the inner clause started.

If you have read this far and followed all the argument, you have understood
one of the most difficult aspects of Algol 68. Discuss the reasoning behind the
rules with your tutor, and try to answer exercise 7.6.

One facility of major importance, which involves an automatic declaration, is
an extension of the while-do-od construct. Often the serial clause in the
do- od brackets has to be executed a fixed number of times, or once for each
value of a variable that is increased in equal steps. Up to now such loops have
always been coded as follows

Declarations and Reach 93

int j: =a;
while j < = c do serial-clause; j +: = b od

where a, band care the starting value, increment and final value of the variable
j. The actual number of times round the loop is 1 + (c-a)-;-b.

Algol 68 offers a convenient shorthand for this type of construct, as follows

for identifier
from integer-unit

by integer-unit
to integer-unit

while boolean-serial-clause
do serial-clause od

Here for, from, by and to are new system words, introduced for the first time.
The various parts of the construction are used as follows.

(a) do serial clause od: This clause is obeyed a number of times determined by
the preceding parts of the construction.

(b) for identifier: The identifier introduces a control counter that, as will be
seen, is increased in equal steps for each execution of the serial-clause. The
for constitutes a declaration, and the identifier of the control counter need
not be declared elsewhere. The reach of the control counter extends only
to the end of the controlled serial-clause. The identifier can be selected
quite arbitrarily; it will mask any other identifier of the same spelling and
therefore cannot clash. Although the control counter takes different
values, it is of mode int, so that no assignments can be made to it. It can
only have integer values.

(c) from integer unit: This part defines the starting value of the control
counter.

(d) by integer unit: This component yields the increment-the amount by
which the control counter is to be increased each time round the loop. If
the value here is negative, then the control counter is decreased.

(e) to integer unit: This part defines the final value of the control counter.
(f) while boolean-serial-clause: This part defines an additional stopping

condition. The clause is evaluated every time round the loop before the
main serial-clause is obeyed, and the loop ends if the boolean clause is
found to be false, even if the last value of the control counter has not been
reached.

The full form of this construction is unwieldy, and its considerable power is
hardly ever needed. It is therefore convenient that any part of it except do- od is
optional and can be omitted.

If any section is left out, a default option is assumed if necessary. The defaults
are as shown in table 7.1.

94 Programming and Problem-solving in Algol 68

Omitted part

from integer unit
by integer unit
to integer unit
while serial-boolean-clause

To give some examples

for q to 3 do print (q) od

is equivalent to

Table 7.1

Default

from 1
by 1
to "infinity"
while true

for q from 1 by 1 to 3 while true do print (q) od

and will print

+1 +2 +3

If the control counter is not needed in the serial-clause, the for and the
identifier can be left out. For example, the instruction

to 20 do print ("!") od

will give

!

This can replace the longer sequence

int n; n: = 1;
while n < =20 do print("!"); n: = n+ 1 od

Omitting for, from, by and to leaves the while-do-od form used in the first
part of this book. It is, as is now apparent, a special case of the more general
construction.

Omitting all of the optional parts gives

do serial-clause od

This implies idefinite repetition and is hardly ever useful.
When the increment (defined by by) is less than zero, the loop counts down to

the final value rather than up. For instance, the statement

for j from 10 by- 2 to 2 do print (j) od

would print

+10 +8 +6 +4 +2

It is a convenient and easy to nest loops one inside the other. The following is a

Declarations and Reach

condensed version of the program first given on p. 89

1 begin int a, b, sum: = 0;
2 read (a); read (b);
3 for ap to a do
4 for bp to b do
5 sum+:=(ap+bp)i2
6 od
7
8
9

od;
print ((newline, "A=", a, "B = ", b, "F IS", sum))

end

EXERCISES

95

*7.1 (l) State whether the following declarations are in shortened or
extended form. If they are in shortened form, expand them.

(a) int k (b) int bob = 87 (c) bool x: = true
(e) char x = "Q" (f) bool seven (d) char q: = "X"

*7.2 (2) Using line numbers, tabulate the modes and the reaches of all the
variables used in the following program.

1 begin
2 for n to 1000
3
4
5
6
7
8
9

10
11
12
13
14
15 end

do int p = n-;- 100;
int q = (n-100 * p)-;- 10;
int r = (n-100 •P- JO•q);
if pi 3 + q i 3 + r i 3 = n

fi
od

then print (newline);
to 20 do print ("!") od;
print ("ANOTHER MAGIC NUMBER IS");
print (repr (p +ails "0")); print (repr (q + abs "0"));
print (repr (r +ails "0")); print (" ");
to 20 do print ("!") od

7.3 (3) Take the perfect-number program on p. 80 and rewrite it so that the
reaches of the variables are as small as possible. Do you see an improvement in
the structure?

*7.4 (3) What do you think the program in exercise 7.2 does? Hint: the
character literals in lines 10 and 11 represent zeros(not 'oh's). Assume that the

96 Programming and Problem-solving in Algol 68

digits 0 to 9 have internal representations which are consecutive integers (see
exercise 6.6).

7.5 (3) Explain the difference between the following two forms, and discuss the
advantages of each.

(a) begin int x, y; read (x); read (y)
int size= (x+1)•(y+1)

(b) begin int x, y; read (x); read (y);
int size: = (x + 1) * (y + 1)

7.6 (7) Write five short notes to justify the following statement. 'The
complicated rules about declarations in Algol 68 are intended to solve five
different but related problems.

(1) they give complete freedom to choose meaningful identifiers
(2) they give good protection against spelling mistakes
(3) They allow storage space to be used efficiently
(4) they permit the system to check that the modes of objects agree with

the operations that are to be done with them
(5) they permit sections of programs to be written independently without

the risk of identifier clashes.'

*7.7 (2) What sequence is printed in each of the following cases?

(a) for j from 3 by 2 to 15 while j < 11 do print U) od
(b) to 4 do print (1) od
(c) for j while j < 8 do print (2 •j- 3) od
(d) for j by 7 while j < = 30 do print U) od
(e) for j to 3 do fork to 2 do print Ui2+ki 2)od od
(f) int j: = 45;

for j to 5 do print U) od; print U)

*7.8 (P) The hexadecimal notation for numbers uses the base 16. The 16 digits
are written 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (ten), B (eleven), C (twelve), D (thirteen), E
(fourteen) and F (fifteen). The hexadecimal number xyz (where x, y and z are
digits) is equal to x * 162 + y * 16 + z. For example, 1FF = 511 (decimal) and
064 = 100 (decimal).

Write a program to print a table of hexadecimal numbers from 1 to 1024,
placing 16 numbers on each line of output.

8 Simple Arrays and Methods of Search

'And the earth was without form, and void'
Genesis 1:2

In the beginning there was chaos; and God brought it into order. Since the
Creation orderliness has been accounted a major virtue, and no-one can do a
complex job, or fulfil responsibilities for other people, unless he practise it with
care and diligence.

Order has a great deal to do with classification. If you are an orderly person
you will keep your papers in separate files, one for each subject. All the items in
any one file are objects of the same category -letters from the tax inspector, or
the school reports of your children or entries in your catalogue of gramophone
records. Perhaps you even ensure that within each file the objects are sorted
into order- alphabetical or by date of arrival. All this takes trouble to set up
and maintain, but it gives two advantages that you would not have if you kept
all your papers together in an untidy heap. First, you can find any item you may
need almost instantly; and second, you can now handle groups of related items
as single entities- such as a tax file.

In programming there is a similar situation. Many problems involve groups
of similar items, which somehow have to be handled at the same time. If a
computer is used to keep records, the program will often have to search a
complete list of entries in order to discover whether a specific item is present.
Again, programs often use tables of various kinds. Each table consists of a
number of items, perhaps of different value but of the same generic type.

In Algol68, groups of items of the same type are called arrays. An array may
be pictured as a row of objects arranged in order. The entire group has a single
common identifier (a family name) and the individual objects themselves can
be selected by a numeric label or subscript. Consider a very simple cypher, in
which the code lies merely in transmitting the message backwards. If he were
limited to the features of Algol 68 already discussed, a programmer would be
unable to write a coding program unless he actually knew how many
characters the message contained. Even then the program would be painfully
long, and would look like a school punishment exercise, as there would be no
opportunity to use loops of any kind (see exercise 3.10).

With arrays, the problem is greatly simplified. The program given below will

98 Programming and Problem-solving in Algol 68

invert a message of up to 80 characters ended with a slash (80 was chosen
because this number will fit on to a single punched card).

1 begin int p: = 1; [1: 80] char buffer;
2 while read(buffer[p]); b~er[p] =J: "/" do p +: = 1 od;
3 while p-: = 1; p > 0 do print(buffer[p]) od
4 end

This program has several unfamiliar points. Consider first of all the
declaration

[1 : 80] char buffer

which is actually short for

ref[] char b~er = Joe [1 : 80] char

This declares an array variable of 80 characters, all with the collective identifier
buffer (which is an arbitrary choice). When the declaration is obeyed, a block of
80 consecutive cells in the working space is reserved. The entry in the identifier
table associates the identifier buffer with the mode ref [) char (pronounced
'reference to row of character') and with the position of the first of the 80 cells.

When the array has been declared, and provided it is still in reach, the
program can refer to any of the individual characters in it by using the common
array identifier followed by a subscript in square brackets. For instance
b~er[J] is the first character in the array, and buffer[80] is the last. The
subscript need not be a simple number: it may be any unit that delivers an int
value.

Next comes the first while of the program. At this stage, p holds the value of 1,
because it was so initialised. The command read (buffer[p]) is therefore
interpreted as read(buffer[J]), and the first character in the data is read and
stored in buffer [1].

The boolean-expression tests whether the character in buffer[I] is a slash. If
not, then pis increased by 1 (making it 2) and the cycle is repeated, with the next
character from the data going into buffer[2].

Eventually, a slash is encountered. By then, all the characters of the message
are stored, in their correct forward order, in the first few cells of the array. At
this stage pis equal to the total number of characters read, including the slash.
A trace as far as this point is shown in figure 8.1.

The second while prints out the characters in reverse order. The variable pis
used to 'point to' the next character to be printed, and is decreased by 1 every
time round the loop. The instructions are arranged so that the first character to
be printed is the one immediately before the slash and the last is taken from
buffer[1]. Figure 8.2 shows the complete trace of the whole program.

This simple example illustrates all of the really important properties of
arrays. A number of other features will be described in the next chapter, but it is
worth remembering that the following two aspects overshadow all others.

Simple Arrays and Methods of Search 99

(a) the possibility of declaring a row or ordered group of items all of the
same mode, and of giving them a common identifier

(b) the ability to refer to any item within a group by using a subscript with a
value that may vary as the program is executed.

(Input)

(Output)

p

1

:a 'l

$
~

f)
J g
g

l<l
VI

12

Figure 8.1

(Input) .fi0/.P40;r" /.SP.lf/

(Output) TIPS TON 00

~
p I buffer

f t :olol HoH I sl PII IT I 1 I II
3

~
1 2 3 4 5 6 7 8 9 10 111213 14

Jl s
1

JJ g
l()

l'1
~

l'1
l(l

9
$

1

6
s ,

3
'1

1
0

Figure 8.2

100 Programming and Problem-solving in Algol 68

The facilities for declaring arrays apply equally to arrays of integers, boo leans
and objects of any other mode.

The power and flexibility that arrays provide are best illustrated by a
number of examples. The first is a problem that could be of interest to the
owner of a Chinese restaurant. On the menu the items are usually listed by
name and number, as in figure 8.3, and most customers order by number,
saying, for example

'Three 34s, two 57s, a 49, a 67, and four 18s'

1
2
3
4
5
6
7

67
68

MENU

Egg Foo Yung
Beef Chow Mein
Beef Chop Suey
Pork Chow Mein
Pork Chop Suey
Sweet and Sour Pork
Rice (per portion)

Soy Sauce
Chow-chow

VAT=8%

Figure 8.3

75p
85p
80p
70p
67p
92p
20p

2p
20p

The program that follows is designed to help the restaurateur by working
out his customers' bills. The data for each run of the program will be in two
parts: first the actual price list and second a list of the quantities and menu
numbers of the items consumed. Each block of data is terminated with a 0,
which cannot occur naturally as a data item. A possible set of data is shown in
figure 8.4.

:~ . ..
8~ ... 8~ ... 7.0 ... ~7 ... ~~ .. ~O} (Price list)

2 20 0

3 34 } 2 57
I 49 (Details of actual dinner eaten)
I 67
4 18
0

Figure 8.4

Simple Arrays and Methods of Search 101

The program itself uses an integer array called pricelist. It is arranged that

the price of an item of a given number is stored in the cell with the

corresponding subscript, so that, for example, the cost of a portion of rice is to

be found in pricelist[7].It is assumed that there will be not more than 100 items
on the menu.

Other variables in the program are

nd
price

(the actual number of different menu items)
(the price of a single item)

qty
menunumber
sum

(the amount of any single item in the customer's dinner)
(the identity of an item)
(the total that has to be paid).

The program is as follows.

1 begin int nd: = 0, price; [I:100] int pricelist;
2 while read (price); price > 0 do nd +: = I; price list [nd]: = price od;
3 print ((newline, "CUSTOMER'S ACCOUNT", newline,
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

"DISH NUMBER UNIT PRICE TOTAL", newline
));

int qty, menunumber, sum:= 0;
while read (qty);

qty =1- 0 do read (menunumber);

od;

print ((newline, menunumber, qty));
if menunumber < = 0 or menunumber > nd

then print ("WRONG ITEM NUMBER")
else price: = price list [menunumber];

print ((price, qty *price));
sum+: = qty *price

fi

print (("TOTAL", sum, newline,

))

VAT AT 8 %", sum* 8 + 100, newline,
TOTAL TO PAY", sum*I08-7-100,

''P."

22 end

A typical set of results from this program is shown in figure 8.5.

This example shows how an index (in this case an item number) may be used

to select an entry from a table. Each entry is effectively identified by its position.

It is convenient that the items are numbered 1, 2, 3, upwards, since their prices

can then occupy adjacent cells in the array.

The selection of an item by means of an index (direct indexing) is fast and

efficient. Most other methods of table look-up rely on searching, which is

always very much slower and often means looking at every entry in a table.

102 Programming and Problem-solving in Algol 68

CUSTOMERS' ACCOUNT

DISH NUMBER UNIT PRICE TOTAL

34 3 73 219
57 2 49 98
49 1 115 115
67 1 2 2
18 4 32 128

TOTAL 562
VAT AT 8% 44

TOTAL TO PAY= 606P

Figure 8.5

Fortunately, direct indexing is rather more flexible than has so far been
apparent. The item numbers do not necessarily have to start at 1 and go up in
steps of 1: it is enough if they form an arithmetical progression because it is then
possible to use a linear transformation, a formula that converts the first item
number into 1, the second into 2, and so on.

To illustrate this idea, suppose that in a seed catalogue the various orchids
are listed as follows

Orchid Number Price

1700 84p
1715 39p
1730 47p
1745 9p
1760 81p

2435 4p

Here the orchid numbers form an arithmetic progression. This implies that
direct indexing can be used to look up the prices. A possible method would be
to set up an integer array called orchid price and to arrange for orchid price [1]
to hold 84, orchid price [2] to hold 39 and so on. Then if t were a variable giving
an orchid number, the price of that orchid could be written as

orchidprice [(t-1700) + 15 + 1]

where the expression (t -1700) + 15 + 1 is the appropriate linear transfor­
mation.

Sometimes the item numbers of entries in a table are not so conveniently
arranged in an arithmetic progression. If you were to go shopping for a
computer, you might find the following item numbers in the catalogue

Simple Arrays and Methods of Search 103

360, 370, 650, 704, 709, 803, 1401, 1493, 1410, 1440, 1620,
1800, 1900, 2100, 2903, 2980, 3000, 4004, 4020, 4030, 4040, 5500,
6600, 6700, 7040, 7044, 7090, 7600, 8008, 8080

(This is not supposed to be an exhaustive Jist of all the computers ever built. It is
just an example of what a second-hand computer broker might have in stock at
any given time.)

This list is sparse: many numbers are simply not represented. Those that are
present are scattered almost at random. One possible way of setting up a price
list would be to declare an array with 8080 elements, in which element [2980],
for instance, would be used to hold the price of a 2980, and element [2981]
would contain a code like (-1) to show that there was no computer in stock
with that item number. In all, only 30 out of 8080 cells would be occ;upied. The
efficiency of storage utilisation (30/8080 = 0.37 per cent) would be un­
acceptably low.

For the moment, it will be convenient to set aside the question of price and to
consider a simpler problem: given a list of computer numbers, is a particular
number (such as 1710) among them? In the following discussion the number
that is the object of the search is called the target and, if it is found, a hit is said
to have occurred.

As the list of items does not form an arithmetical progression, the only
approach is to set up a table of item numbers and to search it, comparing the
target with one entry after another, until either a hit occurs or it is certain that
the target is not in the table at all. The table now only needs to have as many
cells as there are different computer numbers. The following program reads a
list of 30 computer numbers that are currently in stock, and then reports
whether a given number is among them.

1 begin int q; [1: 30] int stocklist;
2 for j to 30 do read (stocklist[j]) od;
3 int target; read (target); q: = I;
4 while target¥- stocklist [q] and q < 30 do q +: = I od;
5 if target= stocklist [q] then print ((target, "IS IN STOCK"))
6 else print ((target, "ISN'T IN STOCK.

SORRY!"))
7 fi
8 end

360 370 650 704

709 803 1401 1403 } List or computer numbers (30 in

8080
all)

7090 7600 8008
1234 Number to be looked up

The heart of the search is in line 4. The boolean-expression gives the

104 Programming and Problem-solving in Algol 68

condition that the search should go on to the next entry in the table by
incrementing the pointer q. The test is twofold-firstly the current element
stocklist [q] must be different from the target (if it is not, there is no point in
searching any further), and secondly there must still be some entries left to
search. The search stops if either of these conditions is false.

When the program reaches line 5 after the search, there are two possibilities.
The search may have stopped either because there was a hit, or because the end
of the table was reached without a hit. The conditional statement in line 5 is
used to decide this question. If the item was found then target = stocklist [q]
must still be true but, if the search stopped because the table was exhausted, it
will be false.

Searching lists is a common and time-consuming activity on most com­
puters. In practice, tables are usually set up once and for all, and then searched
hundreds or thousands oftimes. Accordingly, if the above program is modified
so that it searches not for just one model number, but for many of them one
after the other, it will be much more realistic.

1 begin int q; [1: 30] int stocklist;
2 for j to 30 do read (stocklist[i]) od;
3 int target;
4 while read (target);
5 target =/: 0 do
6 q:= 1;
7 while target =/: stocklist [q] and q < 30 do q + : = 1 od;
8 if target = stocklist [q]
9 then print ((newline, target, "fS IN STOCK"))

10 else print ((newline, target, "iSN'T JN STOCK. SORRY!"))
11 fi
12 od;
13 end

360 370 650 704 } Data: list of computer numbers (30

7090 7600 8008 8080 in all)

1234 803 4040 1900 } List of possible numbers to be
1910 3219 2903 1620 looked up
0 Terminated by a zero.

How quickly does this program do its job? Assume that the program looks
up so many numbers that the time taken to set up the table in the first place is
negligible; the loop in line 2 may then be ignored.

The total time needed depends on the data. As an example, consider the
following 'reasonable' assumptions about the data

(1) that, in all, there are 600 items to be looked up

Simple Arrays and Methods of Search 105

(2) that, ofthe 600 items, half are eventually found to be in stock and the other
half are not

(3) that, for those items that are in stock, each item is equally likely.

Thus 300 items are not in stock and, of the remainder, about 10 will refer to
each computer model in the list. What are the consequences of these
assumptions?

As noted in chapter 5, most of the time in any program is spent in the inner
loop. In the above search program the inner loop is in line 7: it is

while target =1- stocklist [q] and q < 30 do q +: = 1 od;

On each circuit of the loop the machine calculates two relations and one
assignment

target =1- stocklist [q]
q<30
q+: = 1

say, three operations in all. It also does an and, but as this takes very little time
it can be ignored.

It is now possible to work out the total number of operations needed.
First, each data item causes the instructions in lines 4, 5, 6, 8 and (9 or 10) to

be executed once. This is five operations per item, 5 * 600 or 3000 in all.
Next consider those items that are not found in the list. The program must

go through the entire list of 30 items in order to be sure that a given item does
not appear, and so the loop in line 7 is executed 30 times for each such item.
This is 3 * 30 operations per item, or 3 * 30 * 300 = 27 000 in all.

Lastly, consider the items that score hits. Some will be near the beginning of
the table, so that the loop in line 7 is only obeyed a few times, while others will
be near the end. The average position, using the assumption of uniform
distribution, will be in the middle of the table, giving 15 times round the loop.
The total number of instructions here will be 3 * 15 * 300 = 13 500.

Adding up these three figures gives 3000 + 27 000 + 13 500 = 43 500 oper­
ations. This is an average of 72 operations per data item.

If the initial assumptions are changed and it is assumed that nearly every
data item is found on the list, the average falls to 55; if hardly any are found,
then it rises to 95. This is not an important difference: in both cases it is much
higher than the number of operations needed if direct indexing could have been
used.

The search time is long, and it is easy to see that, as the length of the list
grows, the search time goes up roughly in proportion. Such simple methods are
much too expensive to use if the table is longer than several hundred items, and
a great deal of effort has been expended in devising quicker ways of searching.

One very simple method of improving the search time is to observe which
entries are referred to the most often, and to rearrange the order of the table so
that they appear near the beginning. This will greatly reduce the average

106 Programming and Problem-solving in Algol68

number of times the inner loop is executed for items that are found, and if most
of the items are hits there will be a dramatic reduction in search time. If the
majority of the items are misses, the method makes very little difference.

An alternative method, which is particularly useful if there is a high
proportion of misses, relies on keeping the entries in increasing order of size.
When this is done the search can be stopped as soon as an entry in the table is
found to be greater than the target: all subsequent entries must be greater still
and the target number itself cannot be represented further down.

The modification to the program necessary to implement this method is
less than laborious

7 while target < stocklist [q] and q < 30 do q +: = 1 od;

It leads to a halving (roughly) of the time needed to be certain of a miss.
However, the method does nothing to speed up hits, and cannot be combined
with a method that puts common items first.

Inspection of the inner loop shows that it consists largely of tests. Each time
around, the computer has to evaluate two conditions. To reduce these to one, if
it were possible, would shorten the inner loop, and so save some time in the
right place.

Suppose that a table with one spare element at the end is used, and that
before beginning the search a copy of the target is inserted in this spare cell. The
search is bound to succeed, and there is no need to test whether the list is
exhausted. When the inner loop is finished, it remains to decide whether the hit
is genuine or simply corresponds to the dummy element at the end ofthe list. A
program with this modification would be

1 begin int q; [1 : 31] int stocklist;
2 for j to 30 do read(stocklist[i] od;
3 int target;
4 while read(target);
5 target "# 0 do
6 q: = 1; stocklist[31]: = target;
7 while target "# stocklist [q] do q + : = 1 od;
8 if q "' 31
9 then print((newline, target, "IS IN STOCK"))

10 else print((newline, target, "ISN'T IN STOCK.
SORRY!"))

11 fi
12 od
13 end

Here the inner loop has to be executed one extra time if the target is not on
the list, and there is an extra operation in line 6. On the other hand, the inner
loop now has only two operations. Using the same assumptions as before, the
total operation count is 6 * 600 + 2 * 31 * 300 + 2 * 15 * 300 = 31 200. This is an
average of only 52 operations per data item, an improvement over the first

Simple Arrays and Methods of Search 107

method of about 28 per cent. As the list size grows, and the inner-loop time
dominates the program more and more, the improvement will creep up to
about 33 per cent. Furthermore, the method can be used together with a list
that has the common items near the top, thereby giving a further worthwhile
improvement.

An interesting and effective way of searching a list, which can be much faster
than any of the methods so far described (except for direct indexing), is called
the logarithmic search, or sometimes the binary chop. It can be used with
advantage whenever the items in the list are not in arithmetical progression but
can nevertheless be placed in some well-defined order.

The logarithmic search is a formalisation of an everyday procedure. Imagine
that you wish to look up a word in a dictionary. To find the right page, you
would probably begin by opening the book in the middle, and the word that
you found there would tell you whether to go forward or backward. Next, you
would turn to the half-way point (as near as you could judge) ofthe part of the
book in which the wanted word must be- that is, you would open it either a
quarter or three-quarters ofthe way through. The word at the head ofthis page
would tell you which quarter of the dictionary to concentrate on. Each further
look would again halve the number of possible pages, and it would need only a
few applications of this rule to land you on the page you wanted.

In its computer version, the method depends on keeping two 'pointers' to
the list of items being searched. In the program given below they are called
high and low, and they indicate the limits within which the target must lie. For
example if high = 17 and low = 10 the target, if it is present in the list at all,
must lie somewhere between element 10 and element 17.

Initially high and low are set to the extreme limits of the list. This is
reasonable, since the target, if present, must be somewhere within the list; it
will certainly not be outside, any more than a word you were looking up in a
dictionary could ever be found outside the covers.

Each time round the cycle the list subscript that corresponds to the mid­
point of the current range of search is calculated, dropping the odd half if need
be. Since the mid-point does not change during any one execution of the cycle,
and need not be remembered between one execution and the next, its value is
ascribed to a constant, mid, of which the reach is restricted to the inner loop
(lines 7-13).

The target is compared with the item at the current mid-point. There are
three possible results.

(1) A direct hit occurs. If this happens the search can stop, and the fact can be
recorded by setting both high and low to the current value of mid.

(2) The target is less than the item at the current mid-point. This means that it
must be nearer the beginning of the list, and so the upper limit can be reset
to mid- 1. There is no new information about the lower limit, and so it is
left unchanged.

(3) The target is greater than the item at the mid-point. This implies that it

108 Programming and Problem-solving in Algol 68

must be nearer the end of the list, and the lower limit is reset to mid+ 1.
The upper limit is unaltered.

As you can see, the effect of each cycle is either to find the item or to narrow the
range of search by half. Eventually the limits will converge to the same value,
possibly (but not necessarily) because a direct hit was scored. The possible area
of search will then be one item, and a direct comparison will show whether the
target is represented or not.

If the computer-stock program is modified to use the logarithmic search, it
takes the following form.

1 begin [1:30] int stocklist;
2 for j to 30 do read(stocklist[i]) od;
3 int target;
4 while read(target); target # 0
5 do int low:= I, high:= 30;
6 while low < high
7 do int mid= (low+high)+2;
8 if target = stocklist [mid]
9 then low: = mid; high: = mid

10 elif target< stocklist [mid]
11 then high:= mid -I
12 else low: =mid+ I
13 fi
14
15
16
17
18
19
20 end

od

od;
if target = stock list [low J

then print ((newline, target, "IS IN STOCK"))
else print ((newline, target, "ISN'T IN STOCK. SORRY!"))

fi

In general, each stage in the process halves the area of uncertainty. Doubling
the initial size of the list will only increase the number of stages needed by 1 so
that, if n is the total size of the list, then the number of stages needed to search it
is roughly log n (to the base 2). This is why the method has its name.

An analysis of the binary-chop algorithm shows that the number of
operations per item is about 6 + 5log2(n), where n is the number of items in the
list. In the table on the next page, the performance of the binary chop is
compared with a simple search, in which the inner loop is deemed to use only
two instructions.

The discipline of computing abounds in horror stories. A frequent theme
concerns the unfortunate programmer who tests his program on a set of
sample data and finds it works perfectly; but as soon as he puts it into serious
use he discovers that it takes far more time than was expected. This can be very
serious-consider a so-called 'daily run' that takes 25 hours.

Simple Arrays and Methods of Search

Length of list

(n)
4
8

16
32

100
1000

32 000
1 000 000

Number of operations per item
simple search logarithmic search

(5 + 3n/2) (6 + 5log2 (n))
11 16
17 21
29 26
53 31

155 39
1505 56

48 005 81
1 500 005 126

109

The usual cause of this type of disaster is a failure to analyse the algorithm at
the heart of the program. When it happens, there are two frequent reactions.
Some programmers identify the inner loop of their program and proceed to
'polish' it in various ways, for example, by removing one of the tests as in the
simple search program above. This will nearly always give some improvement
in the program's performance: some people claim to be able to double the
speed of any program just by polishing the code, and they can usually prove
their boast if challenged.

Other programmers might start by considering the algorithm itself. If they
have enough experience, or if their reading is wide enough, they will know a few
dozen good algorithms for handling various situations, and they will soon see if
one of these can be adapted to solve the problem. A good programmer might
replace a simple search by a logarithmic search, and improve the speed of his
program by a factor of 50. This would reduce 25 hours to half an hour, so that
further polishing to save another 15 minutes would simply not be worthwhile.

It is possible to formulate a general rule: that the choice of algorithm is much
more important in determining the performance of a program than the
slickness of the actual coding. Look after the algorithms, and the code will look
after itself!

Now consider again the original problem of keeping a price list for items not
in arithmetic progression. This is easily done with two arrays of the same
size-one for the item numbers themselves and the other for their prices. It is
arranged that, if an item number occupies a given cell in the first array, its price
will be stored in the corresponding cell (the one with the same subscript) in the
second array. Looking up the price of any item reduces to

(a) finding the item itself in the first list (by any method) and noting its
subscript.

(b) fetching the price from the second array, by direct indexing using this
subscript.

110 Programming and Problem-solving in Algol 68

EXERCISES

*8.1 (1) Expand the declarations

[1:25] int quirk
[1:1000] bool able

*8.2 (2) Write a single boolean-expression that checks whether a purported
orchid number (seep. 102) is valid. (Hint: Does your expression give correct
results for, say, 1714?)

8.3 (2) Trace the logarithmic-search program on p. 108 for the data values
803, 76, 709, 10.

*8.4 (3) The second-hand-computer dealer observes that some machines are
much more in demand than others. Queries are distributed as follows

370
8080
1900

360
All others

40 per cent of all queries
30 per cent of all queries
20 per cent of all queries

8 per cent of all queries
2 per cent of all queries

Using these figures, state a good method of deciding whether a given
computer is in stock. Analyse it and calculate the average number of operations
needed to look up an item.

8.5 (3) Trace the following program for a data value of20. What do you think
it does?

begin int n; read (n); [1:1000] bool sieve;
for j to n do sieve (j]: = true od;
for j ton

do if sieve [j]

end

fi
od

then for k from j by j to n
do sieve [k]: = false od;
print ((newline, j))

*8.6 (4) (P) Write a program that reads a number of integers (not exceeding
I 00), sorts them into ascending order and prints them out. The data consist of
a stream of positive numbers terminated by 0 (which is not part of the set to be
sorted).

9 Some Applications of Arrays

'Gentlemen- I have discovered the Fifth Dimension'
Dialogue from more than one SF film

In this chapter a few more rules about arrays are introduced, and some
practical applications of these facilities are discussed.

The 'identifier table' used to illustrate various points in the chapter is a
convenient mental model, but the reader is again warned against taking it too
literally; in most practical cases the Algol68 system will do something which is
roughly equivalent, but more efficient, and usually more complicated.

The upper and lower limits of an array are called its bounds. The values in the
array declaration may be specified much more flexibly than has so far been
suggested. For instance, there is no need for the lower bound to be 1. Any other
value will serve, although in practice 1 or 0 will be used most of the time, since
there is rarely any reason to do otherwise.

In principle, the upper bound may have any value that is not less than the
lower bound. However, the number of elements in the array is (upper -lower
+ 1), and there is always a practical limit to the amount of working store
available.

In the declaration itself, the bounds need not be given as integers. Any unit
that yields an int value will be accepted, provided that the computer can
evaluate it at the time the declaration is obeyed, that the upper bound does not
turn out to be beneath the lower bound and that the total number of elements
is not too high. Arrays with bounds given as expressions are called dynamic
arrays. They are useful in cases where the programmer cannot predict in
advance the size of array that he needs. Consider, for example, a problem in
which a stock list to be searched is not of fixed length but varies from day to
day. The program that handles it must cope flexibly with the situation.

Basically, there are two ways of presenting the stock data to the computer.
One method, which is already familiar, relies on following the actual data items
with a distinguishable terminator. If the items are to be read into an array, the
main snag is that the program does not know how many items there are until
they have all been read in, and it is therefore impossible to declare an array of
exactly the right size. The programmer has to guess an upper limit to the likely
number of items and to use an array that, in his opinion, is big enough for any
conceivable set of data. If he is a good programmer he will insert a trap that
gives a warning message if his assumption is violated.

112 Programming and Problem-solving in Algol 68

1 begin int count:= 0, item; [1: 1000] int stock;
2 while read (item); item¥- 0
3 do count+:= 1;
4 if count > 1000
5 then print ((newline, "STOCK LIST TOO LONG. ITEM",
6 item, "DISCARDED"
7))
8 else stock [count]:= item
9 fi

10 od·
'

This simple method has the disadvantage that in most actual runs the
number of items will be far less than the programmer's upper limit, and space
will be wasted. This is sometimes a serious drawback.

The second method relies on counting the items beforehand and telling the
computer how many there are in advance. Thus the data items themselves are
often preceded by an integer that shows how many data items there will be. If
there are six items, for example, the data would be punched as

6 (item count)
49 128 19 77 14 813 (actual items)

Now exactly the right size of array can be declared

1 begin int count, item;
2 read (count);
3 [1: count] int stock;
4 for p to count do read (stock[p]) od;
5

This approach also has its drawbacks. It demands that the data items should
be counted in advance, and ifthis is done by hand there is a high probability of
error. A good programmer would use a 'belt-and-braces' philosophy: he would
insist that the data had a recognisable terminator as well as an initial count, and
his program would ensure that the two were in agreement and that the count
itself did not overload the capacity of the machine.

Consider next the declaration of arrays. The rules governing array
declarations are logical extensions of those discussed in chapter 7, and you will
see that every aspect of declaring an ordinary variable or literal has its
counterpart here.

The form

[a:b] int x

(where a and bare unitary clauses) is short for

ref [] int x =Joe [a:b] int

Here the left-hand side introduces an object called x, of mode ref [] int: this

Some Applications of Arrays 113

object may be called an array variable. The value of xis the position in the store
of a row of (b- a+ 1) integer cells taken from the stack when the array is
declared. You may suppose that the actual values of a and bat the time of the
declaration are stored in the identifier table as well, so that references to array
elements can be checked for accuracy of range and correctly handled. Consider
the following sequence of code

1 begin int s;
2 ref[]inta=loc[5:8]int;
3
4 print (a[s])

(Here the declaration of a is the full form of the contraction '[5:8] int a'.)
Figure 9.1a shows the situation near the beginning of the program when the

declaration int s has been obeyed.

Bounds Mode Identifier Value

ref int X

(a)

X X X x x+1 x+2 +3 +4 +5 A

Bounds Mode Identifier Value w I
- ref int s X •

t:A5J
a[6] a[7] a[B]

5:8 ref! lint a x+1 • a

(b)

Figure 9.1 (a) Situation after obeying int s; (b) situation after obeying
ref [] int a = loc [5:8] int

Figure 9.1 b shows what happens when the declaration of the variable array a

114 Programming and Problem-solving in Algol 68

is executed. The bounds in the expression Joe [5:8] int specify a row of four
integers, and so this space is taken from the stack and reserved. The value
delivered is the position of the first of these four cells. This value, together with
the identifier a, its mode and bounds, are placed in the identifier table.

Later, when element a [s J is used (as in line 4), the position of the
corresponding cell must be worked out by the following process.

1. The value of sis checked to see whether it lies within the bounds of a (5 to 8
in this case). If it does not, a dynamic fault occurs and the program stops.

2. If sis within bounds, the position of the actual cell is taken as (value of a)+
(value of s)-(lower bound). For example, the address of a [7] would be
(x + 1) + 7- 5=x+3. A glance at figure 9.1 b shows that this is correct.

When a program is being executed, it may wish to remind itself of the bounds
of one of its arrays. The operators upb and lwb, when applied to an array
identifier, generate its upper and lower bounds, respectively. For example

[23:99] boo) qqq; print ((upb qqq, lwb qqq))

would result in

+99 +23

Declarations also provide a way of setting up array constants-rows of
items that never change from the time they are created.

An array constant is declared by the identity-declaration

[J mode name = row-display

Here the brackets on the left are always empty. The mode is any mode (int,
bool, etc.) and the name is chosen freely. The row-display is a bracketed
sequence of units separated by commas, which give the values for the elements
of the array constant. The units must all yield values of the mode specified, but
they may (as usual) be units of arbitrary complexity.

When the array constant is declared, the lower bound is automatically taken
as 1, and the upper bound is always the same as the number of units in the row­
display, so that each unit can be used to determine the value of one element.
For example, the identity-declaration

[] int primes = (2, 3, 5, 7, 11, 13)

sets up a constant array of six elements, each of which is an int. The values of the
elements are

primes [I] = 2 primes [2] = 3 primes [3] = 5
primes [4] = 7 primes [5] = 11 primes [6] = 13

and the mode of the constant itself is [Jint.
An alternative way of declaring an array of mode []char is to use a string­

literal instead of a row-display. For example, consider

Some Applications of Arrays

[] char monarch = "ELIZABETH"

115

Here monarch will have nine elements: monarch [1] is "E", monarch [2] is
"L" and so on.

The declarations of array constants are not abbreviations or shortened

forms. When an array constant is declared, no space is reserved on the stack;

the values of the elements are recorded in the identifier table itself, where they

cannot be changed during the life of the identifier.
Following the general pattern of chapter 7, it is now possible to return

variable-array declarations and show how they can be initialised. This is simply

done by following the ordinary declaration (which may be in full or shortened

form) by the:= sign and a suitable row-display that gives the starting values of
the elements, for instance

[1:3] bool h:= (true, false, true)

which is short for
ref[] boo I h = loc [1 : 3] boo I: = (true, false, true)

Now the initial value of h [1] is true, but since his a variable array, this can be

changed by the program. The values of the elements of h reside in cells taken

from the stack.
When array variables are initialised, the number of items in the row-display

must agree with the number of elements as determined by the bounds of the

array.
A string-literal may also be used to initialise a variable of mode ref[]char,

but it is important to ensure (as always) that the number of characters in the
string matches up with the bounds given in the brackets. Thus

[1: 3] char feline:= "CAT'

is correct, but

[1:6] char author:= "APULEJUS"

is wrong.
The declaration of array constants and the initialisation of array variables

are again deceptively similar. The important differences are these.

(a) Array variables use space on the stack. Array constants do not.
(b) Array variables, if declared in the short form, must always include bounds

in the square brackets on the left. Array constants never do.

(c) Initialised array variables use: =. Array constants use =.

It is now time for another example. Computers are often used to print labels

for envelopes. Imagine a file of names and addresses, perhaps of people known

to be generous towards the cause. The information is punched on cards, one

card to each person. Each name-and-address takes five lines; but to save space

the lines are pushed together as closely as possible and separated only by+

signs. The file is terminated by a card with a slash in the first column.

116 Programming and Problem-solving in Algol 68

W.A.MOZART,+ 7 SERAGLIO RD.,+ WOKING,+SURREY,+ UK+
I.STRAVINSKY,+99 RAKE ST.,+WIGAN,+LANCS,+UK+
C.DEBUSSY,+ I CLARE CRES.,+BANGOR,+CO. DOWN,+NI+
E. ELGAR,+ 222 POMP AVE.,+ IRVINE,+ A YR, +SCOTLAND+

I

Although this format is compact, and there are obvious advantages in
having only one card for each name-and-address, it is not suitable for direct
printing as a postal label. Something like figure 9.2 would be preferable.

* *
--4-MR. GEORGE SNOGGS *
* *
-1-19 SUNDOWN CRESC,, *
* *
-11-BANBURY *
* *
*.-----14~oxoN *
* *
*-4-ENGLAND BA6 4BQ *
* *
********~*********************

Figure 9.2

The arrows show
the number of
spaces by which
the various lines
are indented from
the left-hand
border

A program that reads the file and generates a set of labels can be written
using two new facilities, which have not yet been described

(1) read (backspace) moves the input stream back by one character so that the
last character to have been read will be read again

(2) print (qqq), where qqq is an array variable or constant of which the
elements are chars will simply print out all the characters of the array one
after the other.

The program was designed in three stages, using the onion-skin approach.
At the outermost level the program reads a character from the beginning of a

card. If it is a slash, it stops; otherwise it goes on to print a label for the name­
and-address on that card and returns to read another card. Remember that, if
the first character was not a slash, it was part of the name and must not be lost.
The easiest way of keeping it is to push it back on to the input stream. This can
be done by read (backspace).

Some Applications of Arrays

At this stage, the program is

begin char x;
while read (x); x "# "/"

do read (backspace);

od
end

code to read a single card
and print out the address on
it in the right format

117

Next, consider the printing of the label itself. So that each label is separated
from the next by a few blank lines, the program will begin by calling for some
new lines. Then a line containing stars in positions 1 to 32 will be printed,
followed by a line with stars in positions 1 and 32 only, the rest being filled with
spaces.

The next step is to print the five lines of name-and-address given on the card.
Each line is indented by a different amount, and is followed by another line that
is blank except for the left- and right-hand margins.

Lastly, another full line of stars and a few more newlines will be printed.
The pattern that forms a line of stars is referred to in two places -at the top

and bottom of the frame. To avoid writing the pattern out twice, it can be made
into an array constant and referred to by its identifier. The same applies to the
line that is blank except for the stars marking the side of the frame. In the
program, these two patterns are called top and side.

The code to print a complete label now reads as follows.

char top = "********************************';
char side = "• *';
[] int margin= (5, 8, 12, 15, 5);

print ((newline, newline, newline, top, newline, side));
for count to 5

do

oct;

read and print one line of the name­
and-address, indenting it by (margin [count])
spaces from the left.

print ((newline, top, newline, newline))

118 Programming and Problem-solving in Algol 68

The right number of lines of address are obtained by using a counter called
count. Each line must be printed with its own indentation, but there is no
obvious connection between the line number and the amount it is to be
indented. To take care ofthe indentation, a constant array of integers that gives
the starting position of each of the five lines is declared. The array is called
margin.

Lastly, consider the inner section ofthe program, which reads and prints one
line of the name-and-address. The approach adopted in writing this section is
to construct the complete line as a character array before it is printed. The
section begins with a 'blank' called line that has stars at positions 1 and 32, and
spaces everywhere else, and employs a pointer called inset, which indicates
where the next character in the line is to be placed. The starting value of inset
corresponds to the indentation needed for this line.

The code of the loop is quite simple: it reads characters from the card and
plants them, one by one, into the array line. When it reaches the terminating+,
it prints out the whole line followed by another blank, as required by the
picture in figure 9.2. The code for the inner loop is

[1:32] int line:= "• •"
co ~---------------30 spaces----------------"» co

int inset:= margin [count];
char next;
while read (next); next ¥- "+"

do line [inset]: = next; inset+: = 1 od;
print ((newline, line, newline, side))

Putting all the sections together, and moving read (backspace) down so as to
conform with our convention that a declaration must come first, we obtain

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

begin char x;
while read (x); x ¥- "/"

do [] char top = "•••••• • • •••• ••••••••••••••• ••••• ";
[] char side= "• *';
[] int margin= (5, 8, 12, 15, 5);

read (backspace);
print ((newline, newline, newline, top, newline, side));
for count to 5

do
(1:32]char line:= "•(- 30 spaces-)•";
int inset:= margin [count];
char next;
while read (next); next¥-"+"

do line [inset]:= next; inset + : = 1 od;
print ((newline, line, newline, side))

od;
print ((newline, top, newline, newline))

od
19 end

Some Applications of Arrays 119

This program is still deficient in one respect: what happens if a data card has
more than, or fewer than, 5 '+'son it? The case is left, literally, as an exercise for
the reader.

.

... ..

.... . .
.

..... . ········

············ .

Figure 9.3

. ..

. . ..

. .. .

. .

Finally in this chapter, consider another example. Computers are often used

120 Programming and Problem-solving in Algol 68

to collect and edit various types of geographical survey, such as investigations
into the habitats of various plants and animals, or levels of pollution or the
distribution of political opinion. The best way of presenting the results ofthese
surveys is by maps with shaded regions. Good maps can be drawn directly by a
computer using a graph plotter, but this is slow and expensive. If some degree
of crudity can be accepted, serviceable maps can be made quickly and cheaply
on a line printer. Figure 9.3 is an example of such a map. Great Britain and
three of the remoter off-shore islands are shown, but the islands close to the
mainland such as Skye or the Isle of Wight have been omitted since the
resolution of the map (that is, the level of detail) is not fine enough to show
narrow sea channels clearly.

The program that produced this map had to begin by reading a description
of the coastlines of each of the four islands. The whole map itself is produced by
printing stars at selected points in a 90 x 100 grid (9000 possible positions in
all). One way of representing the necessary data would have been to define
some arbitrary order for the 9000 points (perhaps from left to right within each
row, and the rows one after the other starting at the top) and to state, for each
point, whether it is on a coastline or not. This would have needed a large
amount of data-9000 characters in all.

A somewhat better method would be to list the co-ordinates of each point on
the coast as so many units East, and so many North of the bottom left-hand
corner of the map. There are about 550 points and, since it would take four
digits to specify the position of each one, 2200 characters in all (not counting
spaces) would be required.

A further improvement can be obtained; as long as no sea crossings are
made, each point on a coast is adjacent to another one, in one of eight possible
directions. Once the co-ordinates of any one point on the coast of an island are
known, the positions of all the other points can be specified by giving a chain of
directions. Starting at the South-Western corner, the sequence

NE, N, N, N, NE, E, E, NE, E, E, NE, E, S, SW, SW, SW, S, SW, W, W,
SW,W,W

would produce an outline of the Isle of Lewis.
Using suitable (single-character) codes for the directions, this method could

reduce the bulk of the data to about 560 characters.
Still further compression is possible. Since the points defining the coastline

are often in straight lines, it may be useful to specify a code that represents a line
as a single 'group', whatever its length. To this end, the first requirement is
some means of indicating direction. It will be convenient to use a compass rose
labelled as shown on the next page.

Note that the direction marked 2 is not exactly North-East because the grid
of points that comes out of the line printer is not square: there are usually 10
points per inch horizontally, but only six vertically. Direction 2 is therefore
tan- 1(0.6), or approximately N 35°E. Similar comments apply to directions 4,
6 and 8.

Some Applications of Arrays 121

8 1 2

5

Next it is necessary to specify the rules for writing groups

(a) where the length of the group is only one unit, it is enough to give its
direction; thus '1' (by itself) means 'go one step North'

(b) when the length is more than a single unit, the number of steps is given
directly in front of the direction; '46' means 'go four steps South-West'.

Using this rule, the code for the shape of Lewis is the sequence

2 31 2 23 2 23 2 3 5 36 5 6 27 6 27

This more compact code brings the number of characters needed to
represent the map down to 418, which is 20 times less than in the first method
discussed. The reduction in the volume of data is important for two reasons:
first it is cheaper to punch and store, and second it is easier to specify and check.
For large problems-for example, where the detail of a map has to be fine
enough to make a good large-scale drawing on a graph plotter-this saving
can be extremely useful.

The compression only works because the map has certain regularities that a
completely random collection of points would not have. Thus most of the grid
points-about 94 per cent-are blank. The points on the coastlines form
continuous closed loops, and often fall into straight lines several units long. All
these features are used in the compression rules.

The data for the entire map are shown in figure 9.4.1t was obtained in four
steps.

(a) The outline was traced on to a sheet of 'layout planning paper'. This
consists of a large chart printed with a grid having exactly the same
spacing as the line printer, and is used for designing computer outputs.

(b) Using a ruler, the drawing was transferred to another sheet of squared
paper, using only straight lines that join the centres of squares and run in
one of the eight permitted directions. This was done so as to follow the
actual coastline as closely as possible.

122 Programming and Problem-solving in Algol 68

(c) A point on the coastline of one island was chosen at random, and its
coordinates (with respect to the corner of the picture) were written down.
Then, working continuously round the coast, each line was put down as a
coded group. When the circuit was complete, a zero was put in as a
terminator. The same process was repeated for the other islands. Finally
another zero was added to the end of the entire data set.

78 15
21 57 8 7 22 1 33 52 1 2 21 38 37 8 57 26 7 28
2 3 2 1 28 7 8 7 8 33 38 1 2 7 58 47 1 28 51
8 1 48 7 8 7 8 47 6 8 27 2 33 2 23 1 8
22 3 52 1 32 21 117 8 47 6 37 6 7 42 27 22 23
2 3 2 3 32 7 8 6 137 8 27 26 5 26 5 6 27
5 7 25 7 6 5 24 6 25 27 26 24 3 4 6 25
26 45 26 5 23 21 32 21 3 4 43 6 5 4 5 46 35 7 1 7
25 4 5 3 21 3 24 22 3 4 43 2 23 2 33 5 37 36
5 34 25 2 33 5 36 23 26 5 6 57 6 47 26 27 6 7 6 5
2 43 24 25 36 37 6 47 6 7 6 23 6 4 5 43 2 53 6 7
5 33 12 3 34 33 2 3 2 23 2 23 26 7 26 5
47 8 77 6 5 37 46 27 46 57 25 3 2 24 23 2 1
23 22 63 4 53 42 63 4 83 2 33 2 33 4 173 2 53
1 2 23 2 0
16 46 32 23 56 7 6 27 0
4 87 2 31 2 23 2 23 2 3 5 36 5 6 27 6 27 0
38 97 1 2 3 4 5 23 5 27 8 27 0
0

Figure 9.4

Coordinates of Dover

The coastline of
Great Britain

The Isle of Man
Lewis
Orkney

The interesting point about using the computer to translate this mass of figures
into a map is that the line printer can only move the paper in one direction­
upwards. This implies that the sections of coast cannot be printed as they are
read, but the whole map must somehow be built up inside the computer first.
When it is completed, it can then be printed from the top downwards.

Fortunately a feature of Algol 68 makes the internal storage of the map a
simple matter: it is possible to declare arrays not only of one dimension, but of
any number-two, three or more.

One-dimensional arrays have already been discussed. They can be regarded
as rows of elements of some mode like int or char. Each row has an upper and
lower bound, and any element can be selected from the row by giving a single
integer index.

A two-dimensional array is like a table: it has rows and columns, and to
choose any element both the row and the column numbers must be given.

Some Applications of Arrays

A typical declaration of a two-dimensional array might be

[1 : 3, 1 : 5 Jint qcum

(This is the shortened form of

ref[,]int qcum = loc[1 :3, 1 :5]int

and the mode of qcum in this case is ref[,]int.)

123

There are two sets of bounds- [1 : 3] and [1: 5]. Each set corresponds to
one of the two dimensions. It is usual to think of the first set as defining the
rows of the table, and the second set as specifying the columns. The array qcum

may be pictured as having three rows numbered 1 to 3 and five columns
numbered 1 to 5 as in table 9.1.

3 qcum[3, 1] qcum[3,2] qcum[3, 3] qcum[3,4] qcum[3, 5]
2 qcum[2, 1] qcum[2,2] qcum[2, 3] qcum[2,4] qcum[2,5]
1 qcum[1, 1] qcum[1,2] qcum[1,3] qcum[1,4] qcum[1, 5]

Row number 1 2 3 4 5
Column number

Table 9.1

The total number of elements is the product of the numbers of rows and
columns. In this case it is 15.

Once the array has been declared, any element can be selected by using two
subscripts. Table 9.1 makes this clear.

A three-dimensional array can be set up in the same way. It has three sets of
bounds, and could be drawn as a solid 'brick'.

The rules of Algol68 allow arrays with any number of sets of bounds, but in
practice it is very rare to use three dimensions or more; not many problems
seem to require it.

All of the facilities that apply to arrays of one dimension can also be used
with 'higher' arrays. Thus any of the bounds may be declared as an expression,
the elements may be of any one mode, and it is possible to declare higher array
constants as well as variables.

The operators upb and lwb can be used on arrays with several dimensions,
but it is necessary to specify clearly the bounds to which they refer.
Accordingly, they are written in a different form: thus

x upb y

(where x is an integer and y an array) will give the upper bound of the x-th
dimension of y. To give an example, following a declaration

[23:67, 99: 1234]int s

124 Programming and Problem-solving in Algol 68

the command

print ((llwb s, I upb s, 2 lwb s, 2 upb s))

will produce

+23 +67 +99 + 1234

The map printing program is as follows.

1 begin [I: 100, I: 90] char map;
2 int x, y, xstart, ystart;
3 []int xinc = (0, I, I, I, 0,-I,-I,-I);
4 []int yinc = (1, I, 0,-I,-I,-I, 0, I);
5 int group;
6 for j to 100 do fork to 90 do map[j,k]:= " "od od;
7 while read(xstart); xstart =F 0
8 do x: = xstart; read(ystart); y: = ystart;
9 while read(group); group =F 0

10 do int direction = group mod 10,
11 length = (group > 10 I group+ 10 II);
12 to length
13 do map[y, x]:= "•";
14 x+: = xinc[direction];
15 y + : = yinc [direction J
16 od
17 od;
18 if x =F xstart or y =F ystart
19 then print((newline, "COASTLINE NOT PROPERLY

20
21
22
23
24
25
26
27 end

fi
od;

CLOSED"))

for v from IOO by- I to I do
print(newline);
for w to 90 do print(map[v, w])

od;
print((newline,newline,newline))

od

In this program the image of the map is constructed in the two-dimensional
char array map. The variables x andy keep track of the current position; xstart
and ystart are used to remember where each coastline starts, so that if it does
not end in the same place an error message can be printed.

The variable group is used to read in the value of a group (like 1 or 46) as a
pseudodecimal number. The inner loop, which is executed for each group, runs
from line 12 to line 16. The direction is fixed throughout. Just before the loop is
entered, the value of group is split up into a direction and a length. The direction
and length are both declared as constants and given the correct values in line 11

Some Applications of Arrays 125

and 12. Note the use of the short forms of if-then-else-fl.
The change in x and yon each step in the inner loop depends on the direction

of the step. Using the compass rose, it would have been possible to write
a section of code such as

if direction = 1 then y +: = 1

fi

elif direction= 2 then x+: = 1; y+: = 1
elif direction = 3 then x + : = 1
elif direction= 4 then x+: = 1; y-: = 1
elif direction = 5 then y- : = 1
elif direction= 6 then x-: = 1; y-: = 1
elif direction = 7 then x- : = 1
else x - : = 1; y + : = 1

but it is simpler to declare two tables, xinc and yinc, which give the correct
increments for each of the possible directions. Thus, in lines 14 and 15, if
direction= 3, xis incremented by 1 andy is unchanged because xinc [3] = 1
and yinc[3] = 0.

Finally, in lines 22 to 26, the map is printed out with a double loop; w is used
to scan the rows and v to scan the columns. The array is printed from the top
downwards so as to get the map the right way up.

EXERCISES

9.1 (2) Consider the problem of reading in a stocklist that is preceded by an item
count and terminated by a zero. Write a robust version of the input section on
p. 112, which checks for as many errors as possible and prints warning
messages as necessary. Assume that your computer cannot hold an integer
array of more than 10000 elements.

9.2 (1) Give the modes and the number of elements in the arrays identified in
the following declarations. Also state the expanded forms of the declarations,
where applicable.

(1) [3 : 17] boo I j
(2) [] char greeting= "HELLO"
(3) [-4:0] int q:= (34, 97, 143, 77, 12)
(4) [1 : 1, 1 : 1] int z
(5) [] bool xx = (true, false, true, false)
(6) [3:5,-6: 12, 56:60] bool qq

*9.3 (2) A 'chessboard' is declared as an 8 x 8 array of boolean elements, thus:
r 1:8, 1: 8] bool chess. Write a sequence of statements that will set each
element true if it is a black square, and false if it is white; chess [1, 1] should be
black.

126 Programming and Problem-solving in Algol 68

9.4 (2) Copy out the program on p. 118, showing the reach of each identifier.
Make a list of the identifiers showing their modes.

9.5 (4) Consider the map-printing program on p. 124. Discuss how you would
alter the program and the rules for preparing the data so as to allow the
inclusion of political boundaries such as national or county borders.

9.6 (7) How would you adapt the map-printing program so as to distinguish
land from sea by shading all the land inside the coastline? ('Shading' may be
taken to mean printing a dot at every grid position.) If possible, the program
should use exactly the same data as at present.

9.7 (3) A defect of the program on p. 118 is that it does not deal gracefully
with the odd data cards that do not have the right'+ 'son them. Explain how
you would modify the data format and the program to overcome this
difficulty.

*9.8 (6) (P) The game of 'life' is the recent invention of a Cambridge
mathematician. It is supposed to simulate the life cycle of an idealised colony of
bacteria. Initially, each germ lives in a cell somewhere in a square grid of cells.
The adjacent cells may or may not be occupied, so that each cell has at most
eight neighbours (diagonal neighbours count). Periodically the colony goes
through a life cycle in which some new germs are born and others die. The rules
are as follows.

(1) If a germ in a given cell has one neighbour or none it dies of
loneliness.

(2) If a cell has four or more neighbours it dies of overcrowding.
(3) If an empty cell has exactly three adjoining cells that are occupied, a

new germ is born there.
(4) The cells at the edge of the grid always remain empty.
(5) All the changes happen at the same instant.

An example illustrates the game. The starting position is

+
+ + +

+ + + +
+ + +

+

Some Applications of Arrays 127

If the germs due to expire are ringed, and cells in which germs are to be born are
marked with a dot, the following picture is obtained

• + •
• (f) (f) (f) •
+ (f) (f) +
• (f) (f) (f) •

• + •

In the next generation this leads to

+ + +
+ +
+ +
+ +

+ + +

The generation after this one is

+
+ + +

+ + +
+ + +

+
+++

+ +
+++

+

and so the colony continues to evolve for a number of generations, each
producing a new pattern.

128 Programming and Problem-solving in Algol 68

Write a program to simulate and print out 25 generations of the life game.
Use 15 x 15 cells, and declare two arrays-one to store the current position,
and one to store the changes due to happen at the next generation.

First, run the program with the starting pattern

• • • • •
• • • • •
• • • • •

Next, conduct some experiments and find another pattern that produces
interesting results.

10 Hierarchy, Procedures and Parameters

'And you see that every time I made a further division, up came more boxes based
on these divisions until I had a huge pyramid of boxes. Finally you see that while I
was splitting the cycle into finer and finer pieces, I was also building a structure.'

Robert Pirsig, Zen and the Art of Motorcycle Maintenance

Programming is a practical activity, dealing with complex situations in the real
world. Programmers cannot sidestep this complexity; they must face it and
accept its existence, handling it as well as they can.

Psychologists have made experiments to see what happens when people are
confronted with problems of ever-increasing complexity. It appears that a
person can cope with problems up to a certain level, after which he is suddenly
overwhelmed and can make no further progress. The over-all difficulty of a
problem is connected with the number of distinct ideas or concepts that have to
be kept in mind at the same time. The simplicity or difficulty of each individual
concept makes very little difference to the over-all effect.

Various estimates have been made of the number of concepts that an
individual can retain at any one time. Although the number suggested varies
from six to about twenty, all the experimenters agree that it is limited, and that
if at any point, a problem involves more concepts than a person can handle,
then for him that problem is insoluble.

In a computer program, a good measure of the number of concepts that the
programmer must retain in his mind is given by the number of names in current
use at the same time. The logarithmic search given in chapter 8, for example,
involves the stocklist itself, the item being sought, the upper and lower limits of
search, and the current position being examined. This gives five concepts
immediately, and according to at least one estimate this is quite near the limit
of the programmer's understanding.

Fortunately this does not mean that nothing more complicated than a
logarithmic search can ever be programmed, because a variety of mental tools
is available for controlling and reducing complexity. The most important of
these is the idea of hierarchy.

A hierarchical structure may be thought of as a pyramid. The prime
example is an army. In this case, one of the objects in the pyramid is a regiment.
A general who is planning the strategy of a battle occupies a position at the top
of the pyramid, and from that vantage point he can see each regiment in his
command as a single unified entity. He can consider the relationships between

130 Programming and Problem-solving in Algol 68

the various regiments in the field, and he can issue orders that will be obeyed by
an entire regiment as a whole. For the general, the regiment is one unit, so that
planning a battle in which four regiments are engaged involves him with no
more than about four concepts.

To the people inside it, the regiment is a much more complicated object.
There are a number of different companies and various back-up services such
as transport, catering and field hospitals. The commander of the regiment must
understand the relationships between all these elements. He would describe
the regiment in terms of several concepts, which interact in a complex way.

This type of structure is repeated all the way down the chain of command.
An army is a far from simple object, but it can be controlled and used by one
man because its hierarchical structure ensures that no-one in command of any
part of it has to deal with more than a very few concepts. Hierarchy, then, is a
means of imposing structure on a complex situation and of packaging up
several distinct concepts into one 'higher' idea.

Figure 10.1

Hierarchy, Procedures and Parameters 131

The most popular representation of a hierarchy is a tree. 1 Figure 10.1 shows
the organisation tree of an army. In the military tree, the links downwards
represent the chain of command, and the same lines upwards show the flow of
responsibility.

The idea of hierarchy can be applied to the design of algorithms, and can be
used to impose structure on a complex set of instructions. As a thought
experiment, consider how the tree idea may be applied to an algorithm. The
structure that emerges will be rather as follows. /

At the top level, the entire algorithm consists of just a few self-contained
steps with a simple and clear relationship to one another. A common top-level
algorithm would be

collect data
deduce conclusions
write a report incorporating given conclusions.

Some of these steps might be very complex and so, in the next level down the
tree, each step is further elaborated and subdivided into its own constituent
steps. This structure is continued downwards until the really elementary parts
of the algorithm are reached.

This sounds plausible, but so far it is the result only of introspection. The
next step is to look at a practical case, and to find out how well it agrees with
prediction.

The contents page of a do-it-yourselfsurgery book on my shelf is shown on
the next page.

When the surgeon looks at the instructions for taking out the appendix, he
finds that they are surprisingly short. They read

(1) put patient to sleep (see pages 16-17)
(2) cut patient open at tummy (see page 18)
(3) find the appendix (see pages 19-30)
(4) remove it with your knife (see page 1)
(5) put a stitch in the place from which you removed the appendix (see page 5)
(6) sew patient up (see pages 31-33)
(7) attempt to wake patient (see page 34)
(8) if successful, present bill for £150 (see pages 6-12); otherwise, see pages

13-15

If he now turns to the standard procedures, he finds that some of them are
also short, because they refer to the 'basic elements' for the detailed
descriptions needed. For example, the instructions for cutting a patient open at
any given position read

(1) mark the line of the cut with a soft pencil
(2) hold the knife in your right hand (see page 1)
(3) cut firmly along your line

1 In computer science, trees usually grow downwards.

132 Programming and Problem-solving in Algol 68

(4) stop bleeding as necessary (see pages 2-3)
(5) repeat until you reach the inside of the patient.

The Compleat Chirurgeon

PART 1 The Elements of Surgery

How to hold a knife
How to prevent bleeding when you cut a patient
How to thread a needle
How to make a cross-stitch .. .
How to present an account .. .
How to fill in a Death Certificate

PART 2 Standard Procedures

How to put a patient to sleep
How to cut patient open at any stated place
How to find your way round inside ...
How to sew patient up ...
How to wake patient after the operation ...

PART 3 Complete Operations

To remove tonsils ...
To make a heart transplant ...
To remove appendix

1
2-3
4
5
6-12

... 13-15

... 16--17

... 18

. .. 19-30

. .. 31-33

. .. 34

. .. 35

. .. 36

... 36

Using these instructions, the tree of the appendix operation can be drawn.
The result is shown in figure 10.2.

By and large, this structure is as expected. One important difference is that
the structure is not really a tree at all, because several of the branches grow
together. Some of the elementary instructions like holding the knife or making
a stitch are used by more than one of the procedures above them in the
hierarchy. This is unexpected, but may turn out to be useful.

The organisation of any complex algorithm into a hierarchy gives certain
advantages, as the above example illustrates.

(1) A considerable compression in space is achieved. The complete set of
instructions for removing the appendix, which would have taken 34 pages
if written out in full, has been reduced to 9 lines. If the correctness of the

Hierarchy, Procedures and Parameters 133

various procedures is assumed, then the accuracy of the instructions can
be checked at a glance, and it is easier to ensure that the book as a whole is
correct.

(2) Given the set of standard techniques and procedures, it is much easier to
make up and describe new operations. A surgeon who is inventing a heart
transplant operation no longer has to worry about details like making
stitches: this is a standard technique, which he can assume and build on.

(3) As the procedures and techniques are isolated from one another, it is
possible to alter and improve one of them without changing anything else
in the book. Thus in the first edition of The Compleat Chirugeon, the
section on putting a patient to sleep recommended the use of brandy and
a large wooden mallet. By the time the next edition appeared, anaesthetics
had been discovered, and the authors had rewritten this section com­
pletely. As far as I can tell by a close inspection ofthe two editions, nothing
else was changed; most of the sets of instructions for complete operations
still began
(1) put patient to sleep (see pages 16-17)

Put patient
to sleep

Cut him open
at tummy

Hold knife

Remove
appendix

Figure 10.2

Make a
stitch

Send a
bill

Sew up
patient

In Algol 68 the idea of program hierarchy is formalised in the system of
procedures.

An Algol-68 procedure is a self-contained set of instructions, which the

134 Programming and Problem-solving in Algol 68

computer can be called upon to obey at any time. Like any other section of
program, a procedure must be present in the computer when it is used, and for
this reason it is convenient to regard it as an object sharing many of the
attributes of other objects present in the computer such as variables or arrays.
A procedure also has an identifier, a mode, a reach and a value. It is declared in
a procedure declaration, which in its own way is similar to the declarations of
other objects.

The simplest procedures of all are those designed to do a fixed job, which
never changes no matter what the circumstances. The following is the
declaration of such a procedure.

proc void doublearrow = void:
begin print((newline, newline,

))
end

*
*

* ", newline,
* ", newline,

"***", newline,
* * ", newline,
* * ", newline,

newline, newline

The procedure-declaration follows the normal pattern

mode identifier = value

This procedure is called doublearrow, and its mode is proc void.
The value ofthe procedure is written as the system word void, followed by a

colon and a bracketed serial-clause; void implies that the procedure does not
produce a result to hand back to the program that called it, even though it may
print something. The full significance of the word will become clear later. In
this case, the serial-clause does nothing except print a shape like this: c :lr •

This shape can be used to separate the different batches of output from some
program.

To illustrate the declaration, consider the following program.

1 begin int j: = 1;
2 proc void doublearrow = void:

i begi•::::::::::: }
end;

The serial clause of procedure
doublearrow, exactly as above

11
12
13

while j < 4 do print ((newline, j)); doublearrow; j +: = 1 od;
while j > 1 do print ((newline, j)); doublearrow; j- : = 1 od

14 end

It is instructive to trace the actions of the computer through this program. The
computer begins by obeying the declaration ofj, and setting up an entry in the

Hierarchy, Procedures and Parameters 135

identifier table. The identifier is j, the mode is ref int and the value is the
position of an integer cell in the store. The initial content of this cell is 1.

Next the computer comes to the declaration of doublearrow. As always, it
sets up an entry in the identifier table. The identifier is doublearrow, the mode is
proc void, and the value is the sequence

void:
begin print ((........... .

))

end

exactly as given in the program. The state of affairs is now as follows.

Mode Identifier

ref
int j

proc double
void arrow

X

void:
begin print((newline, newline,

•
•

Pointer to stack

• ", newline,
• ", newline,

"•••••••••••••••••••••••••••••••", newline,
• • ", newline,

• • ", newline,
newline, newline

))
end

Note that so far nothing has been printed. The body of the procedure has
been stored as a constant of mode proc void; it has not been executed.

Next, the machine comes to the first while-do-od loop. Initially,j = 1 and
so the condition is satisfied. The machine prints the value ofj on a new line, and
then comes to doublearrow, the identifier of the procedure. In this position the
identifier constitutes an instruction to obey the procedure, by executing the
code that constitutes its value. At this point, therefore, the computer carries out
(for the first time) the instructions that it finds stored in its identifier table, and
prints the doublearrow symbol.

After the procedure has been obeyed the program returns to the place
whence it was called. The value ofj is incremented by 1 and the loop is repeated.
It is executed three times in all, and so is the second loop, which starts on line
13. A sketch of the over-all result is as follows.

136 Programming and Problem-solving in Algol 68

+1
E !!J

+2
E ,.

+3
E !!J

+4
E ,.

+3
E ,.

+2
E ,.

This example shows that procedures can be declared once, but used in
several places. The reach rules for procedure identifiers are exactly the same as
for all other identifiers, and a procedure, once declared, can be called wherever
its identifier is in reach.

Procedures of mode proc void which always do exactly the same thing, are
rarely used. Normally, a procedure is required to do a job that is related to the
current circumstances.

A cookery book might provide the following set of instructions for making
jam.

Fruit Jam
(1) washfruit and discard any that is rotten
(2) add an equal weight of sugar
(3) boil hard until fruit is soft
(4) continue to boil gently until a jelly-like consistency sets in
(5) bottle and seal quickly
(6) attach label saying 'Fruit Jam'.

This recipe is intended to apply to all kinds of fruit. In reading it, the cook
would replace the word 'fruit', wherever it occurred, by 'plums', or 'guavas' or
the name of whatever particular fruit was at hand. The word 'fruit' does not
mean itself- you cannot buy a jar labelled 'fruit jam'- but stands for any
kind of fruit that the cook wants to use. In linguistic terms it is a kind of
pronoun; in computing, it is called a formal-parameter. It is understood that a
formal-parameter is never intended for use in its own right; it merely represents
something that is unknown at the time the instructions are written, but will be
determined when they are obeyed.

In Algol 68 a procedure can take one or more objects of any kind as formal­
parameters. In the program given below, the procedure (which is declared
between lines 2 and 9) takes an int as its parameter and decides whether its
value is prime. The formal identifier of the parameter is n. This is indicated by
the (int n) in line 2.

Hierarchy, Procedures and Parameters 137

1 begin
2 proc (int) void primetest = (int n) void:
3 begin int q: = I;
4 while q i 2 < = n and n mod q # 0 do q + : = I od;
5 ifnmodq#O
6 then print ((newline, n, "IS PRIME"))
7 else print ((newline, n, "IS NOT PRIME. A FACTOR IS", q))
8 fi
9

10
11
12
13

end;
int z: = 2;
primetest (527);
while z < = 10 do primetest (z); z +: = I od
end

In this program the declarations continue as far as line 10. At this point, the
identifier table contains two objects-a ref int called z and a procedure of
mode proc (int) void called primetest. No code has yet been executed.

The execution of the program starts in line 11, and the first statement to be
obeyed is

primetest (527)

This is taken as a call to the procedure. The actual-parameter, which replaces
the formal-parameter when the procedure is run, is given in the brackets that
follow the procedure identifier.

Obeying the call, the machine begins to execute the code that is the value of
the procedure. The first item is the parameter specification int n. The computer
obeys it as if it were a declaration of an int called n, with a value equal to the
value of the actual-parameter supplied. In this case the equivalent declara­
tion is

int n = 527

(Note that this is the declaration of an int, not a ref int.)
The next item in the code is the bracketed serial clause that forms the body of

the procedure. This is executed in the normal way, but in the reach of an int
called n, of value 527. Since 527 is 17 * 31, the procedure ends by printing

+527 IS NOT PRIME. A FACTOR IS+17

When the machine reaches the end of the serial-clause, it erases from the
identifier table not only the local variable q but the parameter n as well. Then it
returns to the next statement in the main sequence.

The next group of commands is the while-do-odin line 12. Initially z = 2
so the condition is true. The procedure is called with z as parameter. Now z is a
ref int, but the value needed for the formal parameter is an int. Fortunately, a
ref int can be coerced to an int by dereferencing (see chapter 7) and this is what

138 Programming and Problem-solving in Algol 68

is done. The procedure is effectively called with a parameter of 2. It prints

+2 IS PRIME

The loop is repeated until z = 10. The over-all output of the program is

+527 IS NOT PRIME. A FACTOR IS +17
+2 IS PRIME
+3 IS PRIME
+4 IS NOT PRIME. A FACTOR IS +2
+5 IS PRIME
+6 IS NOT ORIME. A FACTOR IS +2
+7 IS PRIME
+8 IS NOT PRIME. A FACTOR IS +2
+9 IS NOT PRIME. A FACTOR IS +3

+10 IS NOT PRIME. A FACTOR IS +2

The mechanism for supplying parameters to procedures, seen at work in
this example, is actually very powerful. The following is a summary of its main
features.

(1) The procedure declaration must give the exact mode of any parameter.
(2) When the procedure is obeyed, each parameter description is taken as the

declaration of a constant, with a value equal to the corresponding actual
parameter, after any necessary coercions to get the modes to match.

(3) When the code of the procedure ends, the parameter names and any
identifier declared locally in the procedure are deleted from the identifier
table.

These rules always apply, and they can be used to decide what happens in any
circumstance, no matter how complex.

Procedures often need more than one parameter. The various parameters
can be listed one after the other and separated by commas, but it is necessary to
remember that the mode of a procedure depends on its parameters. For
instance, a procedure that took four parameters of modes int, char, char and
bool might begin

proc (int, char, char, bool) void qbix = (int j, char x, chary, boola) void:

The mode of qbix is

proc (int, char, char, bool) void

because these are the parameters it takes.
The form given above is quite clumsy; in particular it is evident that all the

details of the mode of qbix could be deduced from the list of parameters in the
brackets to the right of the = sign. Algol 68 permits a shortened form

proc qbix = (int j, char x, char y, bool a) void:

Another possible contraction is that, where two or more of the parameters

Hierarchy, Procedures and Parameters 139

are of the same mode, the mode system word need only be written once. This
would give

proc qbix = (int j, char x, y, boola) void:

When a procedure takes more than one parameter, the actual parameters
that follow the procedure call must be given in the same order as the
corresponding list of formal parameters. For instance, a call of qbix would be
followed by brackets containing an int, two chars and a boo I (or units that could
be evaluated to these items) separated by commas, as follows

qbix(32, "A", "X", true)

(For an example of a procedure that takes these parameters, see exercise 10.4.)
When deciding what mode to give a parameter, it is usually quite clear

whether it should be an int, a bool or a char (for instance).lt can be less obvious
whether to include a ref as well.

Remember that an object of mode int, char or bool has a value that is fixed
throughout its existence. Now the lifetime of an actual parameter is exactly the
same as one execution of the procedure, and so an object that has one of these
modes can be used but not changed by the procedure (although on different
calls various different values can be supplied). On the other hand, an identifier
of mode ref int, although it also is fixed throughout its existence, represents the
position of a cell in the working store. Given the value of the identifier, the
procedure can alter the contents of the cell to which it points.

This leads to a simple rule. If a procedure is expected to alter the value of one
of its parameters, the mode of that parameter should include a ref so that the
procedure, when it is being obeyed, can have access to the position of the cell
being altered. If the value is not to be altered, the ref is unnecessary and can
result in a lot of redundant dereferencing.

In the following example the procedure is supposed to interchange the
values of two integer variables.

begin proc swap = (ref int a,b) void:
begin int q = a;

a:= b; b: = q
end;
intj: = 17, k: = 39;
print((newline, j, k)); swap(j, k); print((newline, j, k,))

end

If run, this program will print

+ 17 +39
+39 + 17

Next consider the matter of procedures that actually return values. So far, all
the procedures considered have done specific jobs, and most of them have used
values that were supplied as parameters. Often a procedure is required to hand

140 Programming and Problem-solving in Algol 68

back its result to the program that called it. One example is a procedure that
checks whether a given character is a decimal digit. Its parameter will be a char,
and its result will be a bool- true if the char is a digit and false otherwise.

To write such a procedure only two new rules are needed.

(1) The mode of the required result must be written just before the colon in
the procedure declaration, replacing the void, thus

proc digit = (char x) boo I:

(note that the mode of digit is proc(char)bool).

(2) The value yielded by the body of the procedure must be the required result
(and of course it must be of the right mode). Remember that the value of a
serial clause is the value of the last (or only) unit in it. In all probability,
therefore, the body of a procedure that is supposed to return a boolean
value will end with a boolean-expression, and one that is expected to
produce an int value will have an integer-expression as its last item.

Using these rules, the full declaration of the procedure digit might be

proc digit =(char x)bool: begin x > = "0" and x < = "9" end

In the second example, which will be given without comment, the procedure
takes a number n as its parameter and delivers the nearest integral power of 2
which is equal to or greater than n.

proc power of two = (int n) int:
begin int t: = 1;
while t < n do t •: = s od;
t

end

The next example uses the principle of procedures to obtain a hierarchical
structure. It is required to build a program that reads in Roman numbers and
prints out their arabic (decimal) equivalents, up to and including a terminator
of CMXCIX (999).

Roman numbers are built up of letters ('Roman digits') with the following
values

I v X L c D M

1 5 10 50 100 500 1000

Normally the letters that make up a number are simply added together; but
when (reading from left to right) a letter is followed by one oflarger value, the
smaller value is subtracted instead. Thus VII = 5 + 1 + 1 = 7, but XIX = 10
-1 + 10 = 19.

Hierarchy, Procedures and Parameters 141

It is assumed that the Roman numbers in the data are separated by any
characters whatsoever except Roman digits. This ensures that, apart from a
missing terminator, there can be no detectable errors; the program is to extract
Roman numbers from any arbitrary stream of characters. For example, given
the input stream

ELIZABETH, VICTORIA, GEORGE VI

the program would be expected to produce the numbers 51, 104, 1 and 6 before
running out of data.

The program will be designed from the top down, using the onion-skin
approach. The 'main' section, which is at the top of the hierarchy, has to read
Roman numbers and print them, stopping after 999. A simple while-do-od
loop will suffice.

while int q = romanread; print((newline, q)); q # 999 do skip od

All is familiar except romanread, which determines the value of q each time
round the loop. In fact, romanread is a procedure, which has now to be written.
It will take no parameters, but will deliver an int result- the value of the next
Roman number in the data.

This information about the procedure's identifier, parameters, result and
function is called the interface. The user of a procedure needs to know
everything about its interface but nothing about how it actually works-the
knowledge is not relevant at this point and might even prove a hindrance, by
bringing in unnecessary complexity.

At this point, the hierarchical form of the program begin~ to emerge.

while int q = romanread;
print((newline,q));

q # 999 do skip od \
,_________,

(ROMANREAD)

The next step is consciously to move one level down the hierarchy and to
begin to consider the details of the procedure romanread itself.

A good way to design an algorithm of any kind is first of all to do the job
yourself, keeping to any limitations that the computer might have, and

142 Programming and Problem-solving in Algol 68

watching what you do very carefully. Put another way, you act out what the
computer might do.

One of the chief limitations on a computer is that it can only read one
character at a time. A trained eye can tell the entire value of a Roman number at
a glance, but this is not how a computer does it. A more faithful imitation of a
computer consists of getting a friend to reveal the characters in the data one by
one. Here is an example, in which Bob is acting the computer, and Pam the
input device.

Bob So far, the value of my Roman number (which I shall call rn) is zero. Can
I have a character please, Pam.

Pam Space.
Bob That isn't part of a Roman number. Next please.
Pam Comma.
Bob That isn't part of a Roman number. Next please.
Pam C.
Bob That's a Roman digit worth 100.1t must be the first digit of the Roman

number; so I'll set rn to 100. Next character please.
Pam C.
Bob That's another Roman digit worth 100. It's not bigger than the previous

one, so I add it to rn, giving 200. Next character please.
Pam X.
Bob That's another Roman digit, worth 10. It's not bigger than the previous

one, so I add it to rn, giving 210. Next character please.
Pam L.
Bob That's another Roman digit, worth 50. It is bigger than the previous one,

so I add it to rn, and subtract the previous one from rn, twice. This
cancels out the previous addition, which was incorrect, and adds in
minus the previous digit. The new value of rn is 240. Next character
please.

Pam I.
Bob That's another Roman digit, worth 1. It's not bigger than the previous

one, and so I add it to rn, giving 241. Next character please.
Pam Point.
Bob That isn't a Roman digit. The number must have ended, and its value is

241.

The process can now be formalised into the following steps.

(1) Read characters and discard them until a Roman digit is encountered. Set
its value as the current Roman number rn.

(2) Remember the current digit as the 'previous digit', and get the value of
another character as the current digit. If it is not a Roman digit, then take
rn as the value of the Roman number and end the procedure. Otherwise
add the current digit to rn and, if the current digit is greater than the
previous digit, subtract the previous digit from rn, twice. Repeat step (2).

Hierarchy, Procedures and Parameters 143

The code for the procedure is a good deal shorter than the description. It
includes a comment that describes the interface, which is standard practice in
writing procedures. The procedure heading is the normal one for a procedure
that takes no parameters but delivers a result.

proc romanread = int:
comment This procedure reads the next Roman number from the data

and delivers its value as an int. It takes no parameters
comment
begin int rn: = 0, cd: = 0, pd;

while rn: = romandigit; rn < 0 do skip od;
while pd: = cd; cd: = romandigit; cd > 0

do rn+: = cd;

rn
end

if cd > pd then rn- : = (2 * pd) fi
od;

This is again quite simple except in one respect- once again a non-existent
procedure has been used. This procedure called romandigit, is supposed to read
the next character and decide whether it is a roman digit at all; if so, its value is
delivered as a positive integer. Otherwise, romandigit produces the special
marker value -1.

This additional procedure introduces another step in the hierarchy, which is
now as follows.

Main sequence of code

I

Procedure ROMANREAD

~ II/

ROMANDIGIT

144 Programming and Problem-solving in Algol 68

There are two links from romanread to romandigit because romandigit is called
twice, in different contexts.

The code for romandigit is

proc romandigit = int;
comment This procedure reads the next character from the data stream.

If it is a roman digit (I, V, X, L, C, D or M) the procedure
delivers the corresponding value. Otherwise it gives -1.

comment
begin char x; read (x);

if x = "I" then 1
elif x = "V" then 5
elif x = "X" then 10
elif x = "L" then 50
elif x = "C" then 100
elif x = "D" then 500
elif x = "M" then 1000
else-J

fi
end

The entire program (omitting comments) is given below, using all the
normal contractions including () for both if- fi and begin- end.

1 begin
2 proc romandigit = int:
3 (char x; read(x);
4 (x ="I" Ill: x = "V" I 5I: x ="X" 110 I: x = "L" I 50
5 I: X= "C" IJOO I: X= "D" 1500 I: X= "M" 11000 l-1
6)
7);
8 proc romanread = int:
9 (int rn: = 0, cd: = 0, pd;

10 while rn: = romandigit; rn < 0 do skip od;
11 while pd: = cd; cd: = romandigit; cd > 0
12 do rn+: = cd; (cd > pdl rn-: = (2• pd))od;
13 rn
14);
15 while int q = romanread; print ((newline, q)); q :F 999 do skip od
16 end

The procedures should be declared in the right order, for otherwise romandigit
would be used before it was declared. This would be unacceptable to some
implementations. Note that the declarations are separated by semicolons as
usual.

In any hierarchy, there are formalised channels of communication between
the various objects and also between some of the objects and the outside world.

Hierarchy, Procedures and Parameters 145

A procedure in a program has a maximum of six different kinds of channel, as
shown in the following diagram.

I
Actual

I'

(I) parameters Res ults

\

(4)

Input Procedure

(3) (6)

(5) (2)

Actual
Res

~
parameters ult

I
Three of the channels pass information inwards. They are

Output
)II;

(1) actual parameters coming from a procedure above this one in the
hierarchy

(2) results being returned by a procedure below this one
(3) new data being read from the input stream.

Three more of the channels pass information outwards. They are

(4) results returned to the calling procedure
(5) parameters to a procedure being called
(6) results being sent to the output stream.

It is very unusual for any procedure to use all six types of channel. Most
procedures are designed to do a job that is internal to the program. They get
their data as parameters and return their answers as values, and make no use at
all either of input or of output.

To say that a channel of communication is formalised means that decisions

146 Programming and Problem-solving in Algol 68

have been made in advance as to exactly what kinds of things will be said and
exactly how they will be said. The link between a pilot and the air-traffic control
is a formalised channel, because the language is always English (irrespective of
the nationality of the pilot or controller) and the only matters that may be
discussed are those relating to flying.

The communications channels between procedures are very much of this
type-the subject of discourse and the manner of expression must both be
fixed in advance and included as part of the specification of any new
procedures.

The rules about the reach of identifiers, which also apply to procedure
declarations, make it possible to declare a procedure inside any serial-clause.
For instance, it is possible to declare a procedure inside another procedure.
Just as with other types of object, this facility offers a useful degree of
protection whenever a procedure is designed to be called from only a limited
part of the entire program.

At this stage, another type of error must be added to the list given in chapter
3. In using procedures, it is common to make mistakes in the number or mode
of the parameters used. This can happen either in the declaration or in the call,
but if the declaration is wrong the error may not be detectable at that point;
instead a spurious 'error' will be reported at every correct call of the procedure.

EXERCISES

10.1 (1) Look at the address-printing program on p. 118. How many different
concepts are involved in the inner loop, and what are they?

10.2 (2) Take any organisation you know (except the army) and draw a tree
that shows the chains of command and responsibility.

10.3 (1) Describe the action of the following program (a sketch will do).

1 begin
2 proc square = void:
3 begin
4 to 18 do print((newline,
5 "1111111111111111111111111111111111,
6))
7 od;
8 print((newline,newline))
9 end;

I 0 proc triangle = void:
11 begin
12 for j to 18 do print(newline);
13 for k to j do print(" • ") od
14 od;

Hierarchy, Procedures and Parameters 147

15 print((newline,newline))
16 end;
17 square;triangle;square
18 end

10.4 (3) Describe (with a diagram) the action of the following program.
1 begin
2 proc shape = (int j, char x, char y, bool a) void:
3 begin [1 :j] char top, middle;
4 for p to j do top[p]: = x; middle [p]: = y od;
5 middle [1] : = x; middle [j] : = x;
6 [1:120-j]charmarg;forpto120-jdomarg[p]:=" "od;
7 print((newline, newline,
8 (a I marg I" "), top));
9 for q to j do print((newline, (a I marg I" "),

10 middle))
11 od;
12 print((newline, newline, (a I marg I" "), top))
13 end;
14 shape (10, "+ ", " ", false);
15 shape (20, "* ", ". ", true);
16 shape (30, " ", "- ", false)
17 end

10.5 (3) Trace the following program, decide what the procedure does and
write down a description of the interface.

1 begin proc ps = (int x,y) int:
2 begin int s: = 0;
3 for t to x do s + : = t i y od;
4
5
6
7
8
9

s
end;
int a,b;
while read(a); read(b); a # 0 or b # 0

do print((newline, a, b, "PS = ", ps(a, b))) od
end

* 10.6 (3) The program below is supposed to read in two numbers and print
their highest common factor. What is wrong with it? Give a corrected version.

148 Programming and Problem-solving in Algol 68

1 begin proc hcf = (int a,b) int:
2 begin while a =I= b do (a> bla-: =bib-:= a) od;
3
4
5
6
7

a
end;
read(a); read(b);
print(("HCF = ", hcf(a, b)))

end

* 10.7 (3) A student was asked to write a procedure which took a single
character as its parameter, and determined whether it was a letter. The result
was to be of mode bool. The student was given the procedure heading, and
wrote

proc letter= (char x)bool:
begin read(x); char r: = "F";

if x <="A" and x > = "Z" then r: = "T' fi
r

end
What are the mistakes? Why do you think the student made them? Give a
correct version of the procedure.

*10.8 (5) (P) Write a procedure calledfineprint, which takes the following
three parameters

(1) (int) the value of a number to be printed
(2) (int) the total number of spaces to be used across the page
(3) (bool) true if a plus sign is required for positive numbers, and

false if a space is to be used instead.

Your procedure should also

(a) always precede negative numbers with a minus sign
(b) insert extra spaces in front of a number, if they are necessary

to make up the total required
(c) replace the number with a row of stars if it is too big to fit into

the space available
(d) print 0 correctly.

Include the procedure in a program that calls it enough times, and with enough
variety of parameters, to verify that it works under all conditions. (Hint: Start
by writing a simple procedure that prints a positive number without any
layout. Then embed the procedure in another that carries out all the necessary
tests and outputs the preceding spaces, if necessary.)

11 Recursion

'This is the cock that crowed in the morn
That woke the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.'

Nursery Rhyme

The last chapter gave all the rules that govern the use of procedures. The rules
are simple, but their consequences are far-reaching, particularly since the
principle of orthogonality ensures that they can be applied in combination
with the other rules of Algol 68 and without mutual interference. This chapter
will explore some of the more interesting and useful consequences of the basic
rules.

One rule states that a parameter to a procedure can be specified as an object
of any mode whatever. This immediately opens the possibility of two new types
of parameters-arrays and procedures.

Procedures with array parameters are extremely common. They are used
whenever a program needs to carry out a self-contained operation on an array.
The following procedure picks out and returns the largest item in a one­
dimensional array of integers.

proc max = (ref [] int q) int:
begin int largest: = q [lwb q];

for p: = lwb q+l to upb q
do if q [p] > largest then largest: = q [p] fi
od;

largest
end

Once this procedure has been declared, it can be called in some sequence
such as the following.

150 Programming and Problem-solving in Algol68

[1: 50] int pricelist;
for a to 50 do read(pricelist[a]);
print((newline, "THE MOST EXPENSIVE ITEM COSTS",

max(pricelist), "PENCE"
))

The procedure max raises several interesting points. First, q is the formal
parameter that stands for the array identifier. The mode of q is correctly stated
as ref [] int. This tells the procedure that q represents a reference to a one­
dimensional row of ints, but it does not indicate what the bounds of the row
are. This is just as well, because the procedure is required to work on an array
of any bounds. In any case, a form like ref [1 : 50] int is not a legitimate mode
for a formal-parameter.

When the procedure is actually used, it must of course take account of the
bounds of the array that it is supposed to be searching. Since they are unknown
when the procedure is being written, the operators lwb and upb are used to
indicate them. Thus lwb q is always the lower bound (whatever it may be on
various occasions) and q[lwb q] is always the 'first' element. Similarly, upb q is
the upper bound.

You may have noticed that the mode of the parameter .was given as ref[] int
rather than [] int, even though the procedure makes no attempt to change any
element in the array. The form [] int would also have worked correctly, but it
would have been less efficient and would have taken more computer time. The
reason lies in the amount of work necessary to set up the identifier table. Ifan
array constant is used, the value of every element must be entered in the
identifier table, and this means that each element must be copied in from
elsewhere every time that the procedure is obeyed. If the parameter is given as
an array variable, then only a position (which is a single quantity) is copied. The
general rule, therefore, is to use the ref form unless the actual parameter is
always going to be a row-display or a string-literal.

The next example is the binary-search program of chapter 8 rewritten with
the actual search cast as a self-contained procedure. The advantages are clear.

(1) The 'main program' is simpler.
(2) The binary-search procedure can easily be extracted and used with other

programs.
(3) If a better method than the binary search is developed, the search

procedure can be replaced without altering anything else.

Compare the version below with that given on p. 108.

1 begin proc search = (int t, ref[Jint w) bool:
2 comment This procedure searches for an occurrence of t in
3 the row of ints w. It assumes that the entries
4
5

in the row are in increasing order of size. If
successful, the procedure returns true

Recursion

6 comment
7 begin int low:= lwb w, high:= upb w;
8 while high > low
9 do int mid = (low+ high) -':- 2;

10 if t = w[mid] then low: = mid; high: = mid
11 elif t < w [mid] then high: = mid -1
12 else low: =mid+ 1
13 fi
14 od;
15 t = w[low]
16
17
18
19
20
21
22
23

end;
comment Here begins the main program comment
[1: 30] int stocklist;
for q to 30 do read(stocklist[q] od;
int target;
while read(target); target i= 0

do if search (target, stocklist)
then print((newline, target, "IS IN STOCK"))

151

24
25

else print((newline, target, "ISN'T IN STOCK. SORRY!")
fi

26 od
27 end

Procedures can also be used as parameters to other procedures. A procedure
amounts to a rule for doing something, and situations often arise where the
precise rule to be followed depends on circumstances that cannot be known
when the procedure is written. To give an example, suppose that you are
writing a general-purpose tabulation procedure, which can be used to make
tables of any function of an int variable over any range. The parameters of such
a procedure will normally include

(a) a title for the tabulation
(b) a range for the variable (given as lower and upper bounds)
(c) a procedure that defines the rules by which the function is worked out;

since this procedure will take an integer parameter and deliver an integer
result, its mode is proc(int)int.

The following is a complete program that incorporates such a general­
purpose tabulation procedure. It also includes two procedures-square and
factorial-that are handed over as parameters. Study it carefully, particularly
the way the parameters are specified and used.

1 begin
2 proc tabulate= ([]char title, int start, stop, proc(int)int rule):
3 comment A general tabulation procedure. It prints the given
4 title, and prints the values of rule (x) for all
5 values of x between start and stop

152

6
7
8
9

10
11

Programming and Problem-solving in Algol 68

comment
begin

print((newline, newline, title, newline,
"X RULE(X)", newline

)); for x from start to stop
do print((newline, x, rule(x))) od

12 end;
13 proc square = (int j) int: begin j * j end;
14 proc factorial= (int j) int:
15 begin int s: = 1;
16 for t to j do H : = t od;
17 s
18 end;
19 tabulate ("LIST OF SQUARES", 10, 15, square);
20 tabulate(" TABLE OF FACTORiALS", 0, 8,/actorial)
21 end

The output from this program would read

LIST OF SQUARES

X RULE(X)

+10 +100
+ 11 + 121
+12 +144
+ 13 + 169
+14 + 196
+ 15 +225

TABLE OF FACTORIALS

X RULE(X)

+0 +1
+1 +1
+2 +2
+3 +6
+4 +24

5 +120
+6 +720
+7 +5040
+8 +40320

As shown in chapter 10, programs can be built up like trees, with the various
procedures using those below them in the structure. Can a procedure call itself?
There are two questions to consider- is it possible, and is it sensible?

The rule of reaches says that an identifier exists from the point of its

Recursion 153

declaration up to the end of the relevant serial-clause. In the case of a
procedure, the point of declaration is taken to be the place where the procedure
identifier is first mentioned, so that the body of the procedure is within the
reach of its own identifier. A procedure can call itself without violating the
reach rules.

In order to examine the execution of a procedure that calls itself, it will be
helpful to introduce the concept of activation.

When a procedure has been declared but not called, it is said to be dormant.
There are no entries on the identifier table for any of its parameters or local
names.

Suppose that the procedure is called. The parameters and local identifiers
are declared, and the statements begin to be obeyed. The procedure is
activated. Eventually it is completed; the parameters and local identifiers are
wiped off the identifier table, and the computer returns to the point from which
the procedure was called. The procedure returns to the dormant state.

The activation itself is an abstract notion, but the tangible evidence of
activation is the presence, on the identifier table, of the parameters and
identifier declared locally within the procedure.

What happens if a procedure calls another procedure? The second
procedure is activated, but the first one does not return to the dormant state
because its parameters and local identifier are still on the identifier table. The
first procedure is merely suspended and, when the second procedure ends, the
first one can continue with its original activation. In the case of a chain of
procedures A, B, C and D that call each other, whenever D is activated, A, B
and C must all be active but suspended. Hence it is evident that at one and the
same instant, there may be several activations in progress, all but one of which
are suspended.

It is now possible to examine the execution of a procedure that calls itself.
Take as an example

proc sum= (int x) int:
begin if x = 1 then 1 else sum(x -1) + x fi end;

and suppose that initially the procedure is called with a parameter of 3

sum(3)

When it is entered for the first time, the procedure declares its parameter,
and sets up an entry in the identifier table-the mode is int, the identifier is x
and the value 3.

Mode Identifier Value

int X 3 (Activation of sum(3))

154 Programming and Problem-solving· in Algol 68

As the procedure runs, it soon finds that x #- 1, so it attempts to evaluate
sum(3 -1) + 3. This involves sum(2); so the machine follows the code exactly
and calls the procedure sum. The first activation is suspended, and a second
activation begins.

Mode

int
int

Identifier

X

X

Value

3
2

(Activation of sum(3) (suspended))
(Activation of sum(2))

There are now two simultaneous activations of the same procedure.
Although the identifier table has two xs, there is no risk of confusion because
the table is always scanned from the bottom upwards, and the more recent x
hides the other.

The second activation again finds that x -:f- I, and so it tries to evaluate
.sum(2 -1) + 2. This involves sum(I); so the machine calls procedure sum a third
time. The identifier table is now in the following state.

Mode

int
int
int

Identifier

X

X

X

Value Value

3 (Activation of sum(3) (suspended))
2 (Activation of sum(2) (suspended))
1 (Activation of sum (I))

The third activation finds that xis 1, and so it can produce the answer -1. It
hands this value back to the second activation, and removes itself from the
name table.

The second activation, which was suspended in trying to evaluate sum (I)+ 2,
is now told that sum(l) is 1, and so it can continue. It reactivates itself, and
completes the evaluation- 3. It then hands this number back to the first
activation and removes its own entry from the name table, leaving only the
original activiation. Finally, the first activation evaluates 3 + 3 or 6, and passes
this result back to the place from which it was called.

This explanation seems complicated, because the human mind is not well
constructed to think recursively. Did you remember that the subject of the
quotation at the head of this chapter was the cock that crowed in the morn?
Nevertheless, it disposes of the first question- is it possible for a procedure to
call itself and still to emerge with an answer? Apparently it is.

The second question asked whether it was sensible for a procedure to call

Recursion 155

itself. In some cases it is clearly absurd; if the square of a number were to be
defined by

proc sq (int n) int:
begin sq(n -1) + 2 * n -1 end

the procedure would keep on calling itself indefinitely without ever producing
an answer. It is necessary to ensure that the procedure can only call itself a .finite
number of times, after which it must begin to unwind.

There is a wide variety of problems that can be solved by some variant of the
following rule.

(a) If the problem is some particularly simple case, here is the explicit
solution.

(b) Otherwise, here is how to work out a solution in terms of a different, but
similar problem that is one step nearer to the simple case.

The following is an example.
To get to the bottom book out of a vertical pile of books

(a) if there is only one book in the pile, take it; it is the one you want
(b) otherwise, take off the top book and set it aside; then get the bottom book

out of the vertical pile of books that remain.

Algorithms of this type are called recursive.
It has been proved that every iterative algorithm (that is, one that could

be written with a while-do-od loop) has a corresponding algorithm that
achieves exactly the same effect by recursion. Often the two algorithms are
quite similar, but cases arise where one method is very much better than the
other.

The following is a recursive version of the procedure factorial that was
included in the general tabulation program

proc factorial = (int n) int:
begin if n = 0 then 1 else factorial (n -1) * n fi end;

The number of operations needed to calculate, say, factorial (6) is roughly the
same in either version. In practice, however, the iterative version would win by
a factor of two or thereabouts because of the operations on the identifier table
implied by the extra procedure calls.

A set of numbers that often arises in various contexts (including some as
unlikely as botany, breeding rabbits, picture framing, sorting and the analysis
of algorithms) is this Fibonacci series. The first two terms ofthe series are both
1, and each subsequent term is the sum of the previous two. The series begins

1 1 2 3 5 8 13 21 34 55 89

In Algol 68, the recursive definition of the n-th Fibonacci number is
superficially attractive

156 Programming and Problem-solving in Algol 68

proc fibonacci = (int n)int:
begin if n = 1 or n = 2 then 1 else fibonacci(n -1) + fibonacci(n- 2)fi

end

Running a few trials of this procedure shows that it seems to work correctly
when n is small, but that it begins to take an immense amount of computer time
when n grows larger. On reflection, the reason is clear-for each activation
when n > 2, there are two further activations, and so the amount of work grows
extremely rapidly with each increment of n. The 'activation trees' for a few small
values of n are as follows.

f(3)

/" f(2) f(1)

f(4)

/" f(3) f(2)

/"

f(5)

/"" f(4) f(3)

/" /""-.
f(2) f(1) f(3) f(2) f(2) f(1)

/"'-.
f(2) f(1)

~f(6)------
f(5) f(4)

/"-. /""
f(4) f(3) f(3) f(2)

/"'- /'\.. /"
f(3) f(2) f(2) f(1) f(2) f(1)

/'\..
f(2) f(1)

It is quite easy to show that, if a call of fibonacci with a parameter of 1 or 2 is
described as an elementary activation (because in these two cases no further
calls occur), it requires fibonacci(n) elementary activations to calculate
fibonacci(n)! There is clearly massive duplication of work (for instance, in
working outfibonacci(6),fibonacci(3) is worked out 3 times).
In this case an iterative solution is very much better

proc fibonacci = (int n) int:
begin int a:= 1, b: = 1;
for c from 2 ton do int dump= a+b; a:= b; b: =dump od;
b
end

If, say, the first 20 Fibonacci numbers are needed often, an even faster

Recursion 157

method would be to work them out once and for all, and to put them in a table,
thus

int [1: 20] fib;
fib [1]: = 1 ; fib [2]: = 1 ;
for c from 3 to 20 do fib [c]: =fib [c -1] +fib [c- 2] od;

Subsequently, by writing, say,fib [6] instead of fibonacci (6), the required value
could be in a single operation.

In other problems the balance lies the other way. The recursive solution is
simple and straightforward, whereas the corresponding iterative solution is
clumsy and hard to define.

In Hanoi (although some say it is in Benares), there is a temple where three
diamond rods pointing to the sky are set in a sacred triangle in the ground.
When the world was created, 64 pierced golden discs of graded sizes were
placed on one of the rods, the largest next to the ground and the smallest at the
top. The monks of the temple labour ceaselessly to transfer the discs to another
of the three rods since, when all the discs have been moved, the world will end
and the blessed state of nothingness will be attained. The immutable laws of the
transfer say that only one disc shall be moved at a time, and that no disc shall
ever cover another smaller than itself. For this reason the Creator in His
wisdom provided three rods. With only two the task would have been
impossible.

Figure 11.1

The sequence of moves needed is quite complex, and the minimum depends
on the number of discs- with n discs the transfer cannot be completed in less
than 2n- 1 moves. At this point, I would like you to try the problem for
yourself. Please place four different coins in decreasing order of size (say lOp,
2p, lp and !P) on the circle marked 1 in figure 11.1. Now transfer them to circle
3, following the sacred rules. Do not read on until you have tried!

158 Programming and Problem-solving in Algol 68

If you succeeded in doing the task in the minimum number of moves, you
would have done the following

tP from 1 to 3; lp from 1 to 2; tP from 3 to 2; 2p from 1 to 3;
tP from 2 to 1; lp from 2 to 3; tP from 1 to 3;
lOp from 1 to 2;
tP from 3 to 2; lp from 3 to 1; tP from 2 to 1; 2p from 3 to 2;
tP from 1 to 3; lp from 1 to 2; tP from 3 to 2

The algorithm for doing the transfer has a neat recursive form:

To transfer n discs from pin x to pin y

(1) if n > 1 then transfer (n -1) discs from pin x to the third pin (not x or y)
(2) move 1 disc from pin x to pin y
(3) if n > 1, transfer (n- 1) discs from the third pin to pin y.

The algorithm is so simple that its correctness can be shown by an inductive
argument.

(1) Assume that the algorithm is correct for some number of discs n- 1. In
that case, it is also correct for n, because
(a) during the whole qfthe transfer of(n -1) discs from pin x to the third

pin, the disc that remains on pin x is the bottom one, and therefore
larger than any that are moved; its presence will not lead to any
violation of the basic rules, and the transfer of the (n- 1) discs can go
ahead as if the n-th disc were not there

(b) at the end of the first stage, x will contain 1 disc, which is the largest
one, y will be empty and the other n- 1 discs will be on the other pin;
nothing prevents the transfer of the large disc from x to y

(c) by a similar argument to (a) above, the (n -1) discs on the other pin
can now be moved to y. The result is n discs in the right order.

This proves that if the method is correct for any number of discs n- 1, then it
is also correct for n.

(2) The algorithm clearly works for 1 disc, since the first and third moves are
now unnecessary.

(3) For n = 2 the conclusion of(1)above is as follows: 'If the method is correct
for 1 disc, then it is also correct for 2.' But it is known to be correct for 1;
therefore it must be correct for 2. Similar arguments show that it must be
correct for n = 3, 4, 5 or any other number of discs.

Recursion 159

Using this algorithm, a robot could be programmed to move the discs by itself,
but it is easier to write a program that prints out the necessary detailed
instructions.

The algorithm will be embodied in a recursive procedure. Since, in its
various activations, the procedure is called on to move discs between any two
of the three pins, it will be convenient to take the source and target pin numbers
as formal parameters, as well as the actual number of discs to be moved. If the
pins are numb"ered I, 2, 3 and x andy are any two of them, an expression for 'the
other pin' is (6-x-y).

1 begin
2 proc move = (int n, x, y):
3 comment This procedure generates instructions to move n
4 golden discs in the tower of Hanoi from pin x to pin y
5
6
7
8
9

10
11
12
13

comment
begin if n =1- 1 then move (n-1, x, (6-x-y)) fi;

print((newline, "MOVE A DISC FROM PIN",
x, "TO PIN", y

));
if n =1- 1 then move (n-I, (6-x-y), y) fi

end;
move (3, 2, 3)

end;

The particular call asks for instructions to transfer 3 discs from pin 2 to pin 3.
The procedure will print

MOVE A DISC FROM PIN +2 TO PIN +3
MOVE A DISC FROM PIN + 2 TO PIN + 1
MOVE A DISC FROM PIN + 3 TO PIN + 1
MOVE A DISC FROM PIN +2 TO PIN +3
MOVE A DISC FROM PIN + 1 TO PIN +2
MOVE A DISC FROM PIN + 1 TO PIN + 3
MOVE A DISC FROM PIN +2 TO PIN +3

So far, all communication between procedures has been by parameter and
result. This is a safe method, because each procedure has access only to the
information necessary to do its own particular job. These limited and
formalised communication channels act like bulkheads in a ship, and ensure
that any damage caused by an error in one procedure can be quickly found and
repaired, without the need to search the whole program. If a procedure is to be
put in a library so that it can be used by any program, then the
parameter-result method of communication is the only one possible.

In procedures that are designed for particular programs, on the other hand,
there is the possibility of using a different communications system. Look at the
following skeleton program

160 Programming and Problem-solving in Algol 68

begin int a, x; [1: 100, 1: 100] bool q;
proc first = .. .

proc second =

end
Here the reach of the identifiers a, x and q spans the whole of the program,
including the bodies of the procedures first and second (always provided that
they do not use a, x and q as local identifiers). a, x and q are called 'global
variables and together they constitute a global area. It would be possible to
design procedures such that the ordinary communications mechanism was
bypassed entirely-the procedures would collect their data from specified
places in the global area, and signify their results by writing them back into
selected global variables. For instance, one possible form of the factorial
procedure would be

proc horrible= void:
comment This procedure calculates the factorial of the value in global

variable x and puts its result in global variable y
comment
begin int s: = 1;

end

for t to x do s * : = t od;
y: = s

In use this procedure would be much more clumsy than one with the
conventional communications mechanism. It would be necessary to declare x
and y as global variables, and to write sequences like

x: = 6; horrible; print(y)

instead of

print(factoria/(6))

It is true that successful programs can be written with this type of
communication mechanism (indeed, it is all that a language like Basic provides)
but a major drawback is that errors can be very hard to find. Consider a
procedure A that calls another procedure B. In the conventional system, B has
no access to the parameters of A and cannot possibly alter them (unless they are
also deliberately handed on as parameters to B). In the global-variable method,
B might well mistakenly alter the value of a global variable that was used as a
'pseudoparameter' to A so that, when control is returned to A, its environment
has unexpectedly and subtly changed. It is as if communication by addressed
notes in sealed envelopes were to be replaced by a huge blackboard on which
everyone was free to write and to rub out as they pleased. It could work, but
one incompetent would quickly drop the whole system into chaos. In general,
the system of using global variables to communicate between procedures is not
recommended.

Recursion 161

EXERCISES

* 11.1 (1) A recursive method for printing out a positive binary number b (as
a sequence of Os and 1s) is as follows

(1) if the number is 0, do nothing
(2) otherwise, if the number is 1, print a "1"
(3) Otherwise, print out the binary number (b + 2), followed by a "1" if

b mod 2 = 1, or a "0" if b mod 2 = 0.

Write a recursive procedure called binout, which is callled with an int
parameter that it prints out in binary.

* 11.2 (4) By tracing or otherwise, discover the result of the following
program, and write a suitable specification for the procedure in it.

1 begin
2 proc bubble= (ref[]int x) void:
3 begin bool swap: = true;
4 while swap do
5 swap: = false;
6 for p from lwb x to upb x-1 do
7 if x[p+1] <x[p] then int d = x[p]; x[p]: = x[p+1];
8 x[p + 1]: = d: swap: =true
9 fi

10 od
11 od
12 end;
13 [1:6] int z: = (3, 7, 12, 2, 1, 4);
14 bubble(z);
15 for s to 6 do print(z[s]) od
16 end

* 11.3 (2) Consider the program

(proc ssq = (int q) int:
((q = 1l1lqi2+ssq(q-1)));

print(ssq(l)); print(ssq(2)); print(ssq(5))

What is printed?

11.4 (3) Consider the procedure

proc multiply = (int f, g) int:
(iff= 1 then g elif f = 0 then 0 else g +multiply(/ -1, g) fi);

162 Programming and Problem-solving in Algol 68

Is this ever a valid procedure for multiplying two numbers? If so, under what
conditions? If valid, do you consider it efficient?

11.5 (2) Give the non-recursive equivalent of the procedure in exercise 11.4.

* 11.6 (5) Give a non-recursive equivalent of the procedure asked for in
exercise 11.3.

* 11.7 (4) What do you expect the following program to print?

1 (proc search= (ref[]int a, x, proc(int, int)bool test) bool:
2 (int j: = lwb a;
3 whilej< = upb a and not test (aU], x) doj+: = 1 od;
4 j < = upb a
5);
6 proc same= (int p, q) bool:(p = q);
7 proc less = (int p, q) bool: (q < p);
8 proc about= (int p, q) bool:(q > p-5 and q <p+5);
9 proc divides = (int p, q) bool: (p mod q = 0);

10 [1: 10] intj: = (22, 14, 173,46,307, 192, 72, 19, 88, 407);
11 print(search(j, 46, same)); print(search(j, 87, same));
12 print(search(j, 288, less)); print(search(j, 304, about));
13 print(search(j, 301, about)); print(search(j, 96, divides))
14

*11.8 (4) (P) Some programs are difficult to analyse, and the programmer
must resort to measurement to see how many times some statement or
procedure is actually called. A method of counting the number of times a
program passes a given point is to declare an int variable globally (so that it is
accessible to all parts of the program) and to increment it at suitable places.
For example, the procedure fibonacci discussed on p. 155 could have been
monitored by writing

1 begin int count;
2 procfibonacci = (int n) int:
3 begin count+:= 1;
4 if n = 1 or n = 2 then 1 else fibonacci (n - 1) +fibonacci (n - 2) fi
5 end;
6 print(("J FJB(J) CALLS OF FIB NEEDED", newline));
7 for j to 10 do count:= 0;
8 print((newline, j, fibonacci(j), count))
9 od

10 end

In this program line 3 adds I to the count each time fibonacci is called. The
results will be

Recursion

J FIB(J) CALLS OF FIB NEEDED

+1 +1 +1
+2 +1 +1
+3 +2 +2
+4 +3 +3
+5 +5 +5
+6 +8 +8
+7 +13 +13
+8 +21 +21
-9 +34 +34

+10 +55 +55

Ackerman's function takes two variables m and n, and uses the rule

A(m,n) =
ifm=Othenn+1
elif n = 0 then A(m-1, n)
else A(m-1, A(M, n-1))
fi

163

Use the method described to tabulate the number of calls needed to evaluate
A(l,1) to A(3,3) (nine values in all).

12 Real Numbers

'Mr. Salter's side of the conversation was limited to expressions of assent. When
Lord Copper was right he said, "Definitely, Lord Copper"; when he was wrong,
"Up to a point".
"Let me see, what's the name of the place I mean? Capital of Japan? Yokohama,
isn't it?''
"Up to a point, Lord Copper."
"And Hong Kong belongs to us, doesn't it?"
"Definitely, Lord Copper."'

Evelyn Waugh, Scoop

In the public eye computers are seen as the epitome of soulless accuracy- they
cannot make any mistake, no matter how trivial or natural it may be.

On the other hand, manufacturers sometimes describe their computers as
'accurate to 10 decimal places' and, as has already been noted in this book, the
over-all size of number that a computer can hold is limited, and a calculation
that violates these limits will go catastrophically wrong. In other words, errors,
small or large, are a distinct possibility.

Both views are substantially correct. To understand this apparent con­
tradiction, it is necessary to consider the exact way in which information is
represented inside a computer.

The elementary particle of information inside a computer is the binary digit,
or 'bit'. Each bit has only two possible values which are often called '1' and '0'.
The bits are gathered together in groups of about six to represent characters,
and about 24-depending on the model of computer- to form integers in the
binary scale. Since the number of different ways in which n binary digits can be
arranged is 2n, there are clearly certain limits on the information that can be
stored. Six hi~ allows not more than 64 different characters, and integers are
restricted to 10 million or so.

In many non-mathematical applications of computers, such as commerce,
information retrieval or printing, these limits carry no disadvantages at all.
The data types fit the problems exactly.

In scientific and engineering calculations, however, the requirements are
somewhat different. In the first place, the numbers used vary from very large to
very small-astronomers use light-years (9 457 280 000 000 000 metres) and
computer engineers talk in terms of nanoseconds (0.000000001 seconds),
picofarads (0.000000000001 farads) and terabits (1 000000000000 bits).

Real Numbers 165

Secondly, the precision of the numbers varies but is not often particularly
high. It is often said that a certain quantity is known to within x per cent. This
means that, if y is an estimate of the number, the tru~.. value lies somewhere
between y(l +0.01x) and y(l-0.01x).

For example, the age of the earth is sometimes given as 4500 million years,
plus or minus 5 per cent. This implies that the earth's true age is somewhere
between 4275 and 4725 million years.

The precision of a quantity affects the number of decimal digits necessary to
express its value. It would be wasteful and wrong to suggest that the age of the
earth was 4 503 257 176 years because, if all these figures were really known, the
precision of the estimate would not be 5 per cent but 0.000000001 per cent.

In practice, it is found that about nine or 10 decimal digits provide enough
precision for almost every technical purpose.

In ordinary written calculations, it is usual to avoid numerous zeros and to
keep the numbers easy to handle by using appropriate units -light years,
nanoseconds or megabytes. These are constant multiples (or submultiples) of
metres, seconds or bytes, which are the basic units. The name of the unit implies
a scale factor, and it is also possible to handle such quantities by using the
numerical scale factors explicitly. If the scale factor is a positive or negative
power of ten, it may be convenient to use the 'scientific notation', as follows

50 picofarad = 50* 10- 12 Farad

or

128 megabytes= 128 * 106 bytes

In this form, the sequence'* 10' is always present and carries no information.
It is possible to drop it and to represent any number simply as a pair of integers

50,-12 or 128, 6

These two components are called the mantissa and the exponent, and the value
of the number as a whole is taken as mantissa* toexponent.

Algol 68 offers a facility for handling these 'scientific' numbers. It is brought
into use by the system word real This is the name of a basic mode, similar to
bool or char or int. Objects may be declared with arbitrary identifiers and
modes real or ref real or [] real or ref [] real, etc., and then used as parameters
or results of procedures. Do not be misled by the word real It was chosen for
historical reasons, and the objects declared to be of this mode are no more and
no less real than objects of any other mode.

When a real variable is declared it also has a group of bits allocated to it; but
they are divided, unequally, into two portions

real number

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx
"----v-J

mantissa exponent

166 Programming and Problem-solving in Algol 68

The mantissa is represented as an integer in the 2s-complement notation but
it generally has 30--40 bits, enough to represent decimal numbers of nine or 10
digits. The exponent is also a 2s-complement integer, but it is much shorter; it is
usually limited to a range like-512 to+511.

Since both of the numbers involved are in binary notation, it is much easier
for the system to use a scale factor that is binary rather than decimal. The value
of the whole number is then taken as

mantissa* 2exponent

For technical reasons, some machines use a fixed scale factor Cas well, so that
the value of every number is C *mantissa* 2exponent. This can be disregarded at
present.

Algol 68 allows all the normal operations of arithmetic to be performed on
real numbers. The necessary mechanism is complex, but in most large
computers it is provided as a physical attachment called a floating-point
arithmetic unit. This unit is dedicated to calculating with real numbers, and it
can generally do so nearly as fast as the rest of the machine can handle ints,
bools and chars.

Smaller machines are not often fitted with floating-point units, and here real
arithmetic has to be specially coded in terms of integers and booleans. The
necessary program is built into the system in advance, so that it is just as easy
for the Algol-68 programmer to use real quantities on a small computer as on a
large one. The operations themselves are slower by a factor of 10 to 100. The
decision as to whether to buy a floating-point unit for any machine is basically
economic, and depends on the kind of use for which the machine is intended.

Real numbers can be written as literals in programs or supplied as data to be
input by the read command. In each case they are normally written with
decimal digits and the decimal point, but the decimal point may be omitted if it
is not required. The- sign may also be used where appropriate.

Real numbers are output by the print statement. They usually appear in
scientific notation. For example, 128.37 would be printed as

1.2837.102

(meaning 1.2837 * 102) Note that the mantissa and exponent of the printed
number are not the same as the mantissa and exponent of the representation
inside the machine. The latter is binary, uses a whole number as the mantissa
and has a scale factor that is a power of 2.

The version of division most commonly used with real numbers is written I
(as opposed to...;-). The result is in general fractional, and is calculated as
accurately as possible. No remainder is thrown away.

The special operators+ : =,- : = and *: = can also be used to alter the
values of real variables. The special division operator is /: =, or divab,
pronounced 'divide and becomes'. If x and y are real variables

xj: = y is equivalent to x: = xjy

Real Numbers 167

As an example, the following program calculates square roots by an iterative
method; the program reads data items, and calculates and prints their square
roots until it comes to an item that is zero or less.

1 begin real x:
2 while read (x); x > 0
3 do real y: = 1;
4 while if x > yi2 then x-yi 2 else yi 2-x fi > 0.01
5 do y: = 0.5 •(y+x/y) od;
6 print ((newline, "THE SQUARE ROOT OF", x, "IS", y))
7 od
8 end

5.0 9.0 7.5 0 (Data)

The condition for repeating the inner loop is that the difference between the
radicand (the number whose square root is to be found) and the square of the
current estimate should not exceed 0.01. As the difference may be of either sign,
the complex expression in line 4 must be used to ensure that the test works
correctly.

All of the modes so far encountered represent objects that are different in
kind from one another. Thus it makes no sense to assign a char value to an int,
or to attempt to evaluate an expression like (45 +true). However, real
quantities form an exception to this rule, because from a logical point of view
they include all the integers. Although the internal representation of integers
and real quantities is entirely different, it makes good sense mathematically to
add or multiply an int and a real, and so the machine arranges for conversion
wherever necessary. This happens in two important situations.

(a) When an int value is assigned to a real variable, the intis converted to the
representation of the real number with the same value. This coercion is
called widening, and is the second so far encountered; the first was
dereferencing, described in chapter 7.

(b) When an arithmetic operator like + or - has one real and one int
operand, the int is converted into the corresponding real value. For
technical reasons this is not called widening, but the effect is identical.

The effect of these two rules is to allow a mixture ofint and real quantities to
be used in the same expression. For example, the following is a procedure that
calculates and sums the first eight terms of the series

x-x3 /3!+x5 /5!-x7 j7!+x9 /9! ...

For better efficiency the routine uses the fact that each term is linked to the
previous term by a simple formula. If the first term is T 1 , the nth term is given
by the formula

Tn = -T(n-1)U2 /{(2n-1)•(2n-2)}

168 Programming and Problem-solving in Algol 68

The procedure takes a real parameter x and delivers a real result.

proc series= (real x) real:
begin real t: = x, s: = x;

for n from 2 to 8 do

end

do t: = -t•xi2/((2•n-1)•(2•n-2));
s+: = t

od;
s

In order to make fully effective use of real numbers it is necessary to know a
few details about the way in which arithmetical operations work.

A fundamental aspect of real arithmetic is that numbers can have several
different representations, all of which are correct. For instance, the number 19
can be recorded as (19, 0), or as (38,-1), or as (76,-2) or perhaps as (19456,
- 10). Since the exponent stands for a power of 2, it is possible to double the
mantissa and take 1 from the exponent as often as required without changing
the value of the number represented. In mathematical terms

n * 2x = 2n * 2<x -1)

for all values of n and x. The only limit to this process is set by the number of
binary digits in the mantissa; the value of the mantissa cannot exceed the
largest number that these bits can hold.

The opposite process is also possible. Given a number with a large mantissa,
it is possible to halve the mantissa repeatedly and to add 1 to the exponent in
compensation. No error is introduced so long as the mantissa remains even
(that is, divisible by 2). If the mantissa is odd, then the process will cause an
error, but its relative size will depend on the size of the mantissa that remains.
Consider the number 2 000 002, which pn be represented as (2 000 002, 0).
Since it is even, the process can be applied once without error; the result is
(1 000 001, 1). Applying the process a second time gives (500000, 2), an error of
0.0002 per cent. Ifthe same process is applied to a small number, say 3, an error
of 50 per cent is obtained immediately.

Since the mantissa is a binary number, the process of multiplication by two
consists of shifting each digit up to the left by one place and writing a zero at the
right. It is analogous to multiplying a decimal number by 10. Conversely,
dividing by two is simply a matter of shifting the entire mantissa to the right,
and throwing away any digits that fall off the right-hand side.

As will shortly become evident, the processes of real arithmetic sometimes
require the mantissas of numbers to be shifted, usually to the right. Whenever it
has a choice in the representation of numbers, the machine will select that with
the largest possible mantissa (and therefore the smallest exponent). This
ensures the smallest relative error ifthat mantissa is subsequently shifted to the
right.

When integers are used in a program, it is known that all the arithmetical

Real Numbers 169

operations will be exact if the upper and lower bounds are not exceeded. This is
not the case with real numbers, since the method of representation inevitably
leads to certain errors.

There are two basic causes of inaccuracy. Firstly, many numbers cannot be
represented exactly as floating-point quantities. These numbers fall into two
groups-very large numbers and certain fractions. First consider large
numbers. Assume (for the sake of argument) that the mantissa of your machine
can hold integers up to 1 000 000. If a number exceeds this value, then it is
scaled down by shifting it to the right (this amounts to a division by a power of
two) and incrementing the exponent accordingly. Thus the number 8 000 000
would appear as (1 000 000, 3) or 1 000 000 * 23 •

The shift towards the right would in general lead to the loss of some of the
least significant digits; for instance 8 000 003 would also appear as (1 000 000,
3). As far as this machine is concerned, the two numbers are indistinguishable.

It is worth noting that this type of error is quite different from that found in
the case of integers. In one case the errors are catastrophic; in the other, they are
guaranteed not to exceed some small fraction of the number represented. In the
example given, the error is at most one part in a million.

Now consider fractions. The machine cannot be expected to store the values
of irrational numbers like e and n exactly, because this cannot be done with a
finite number of digits in any system of numeration. It may be a surprise to
learn, however, that it is also impossible to represent accurately most 'ordinary'
fractions, such as 1/3.

The reason lies in the use of two as a scale factor. Given any fraction to
represent, the machine will try to convert it to an exact integer by doubling it
and adjusting the exponent at each step. For instance, the number 17/64 would
be doubled six times to give the representation (17, - 6), which is correct.
Unfortunately the process only works when the denominator of the fraction is
an exact power of two. In all other cases, the number can be doubled
indefinitely, and the fraction will never disappear. When the number has
reached the largest value that the mantissa can hold, it still has a fractional part,
which must be discarded if less than 1/2 or rounded up to 1 if greater than 1/2.
Consider the case of the number 1/3. After being doubled 21 times, it becomes
699 050 2/3. The best representation possible is (699 051,- 21). The error is
only 1/3 part of one in a million, but the representation is not exact. If the
machine takes its value of 1/3 and adds it to zero three times, the result is not 1,
although it is very close.

Ordinary decimals like 0.123 are a shorthand way of writing fractions whose
denominators are powers of 10----0.123 means 123/1000. Unhappily, powers of
10 are not powers of two, and this implies that most decimal fractions cannot
be represented exactly by binary floating-point numbers. The exceptions are
those decimal fractions that are negative powers of two, such as 0.5, 0.25, 0.125,
0.0625, and their multiples.

Although exact representation is impossible, the relative inaccuracy is
always small. In the above example, it would never exceed one part in a million,

170 Programming and Problem-solving in Algol 68

and in systems with mantissas capable of holding 12-digit decimal numbers,
the error would be less than one part in an (English) billion. For most practical
purposes this is quite negligible, but it means that great care is necessary when
real variables are used to control loops. Consider the following programs, all of
which are supposed to print out x2 for all values ofx between 0.1 and 1, going
up in steps of 0.1.

(a) begin real x: = 0.1;
while x < = 1 do print ((newline, x, xi 2)); x + : = 0.1 od

end

This version, which looks so straightforward, may well go round the loop one
time fewer than is intended. If the internal representation of the number 0.1 is
very slightly larger than its true value (as would happen if the remaining
fractional part were rounded up when the number was converted), then the
result of adding 0.1 to the original value of x nine times would not be exactly 1,
but some number that is a little larger (like 1.000000000003). This is enough to
make the condition x < = 1 fail. In this example, where the program prints a
line each time around the loop, the error would be noticed and corrected, but a
similar calculation that was purely internal could lead to incorrect results.

(b) begin real x: = 0.1;
while x < 1.05 do print ((newline, x, xi 2)); x +: = 0.1 od

end

The second version will work correctly, but it has been necessary to take the
trouble of using a value that is safely between two possible increments, so that
the calculation can go ahead when xis about 1.0, but will stop when xis about
1.1.

(c) begin
for j to 10

end

do real x = 0.1 •j;
print ((newline, x, xi 2));

od

Here the integer j is used to control the loop, and to generate a new value of x
each time around. The accumulation of errors is avoided and the loop is
guaranteed to work correctly. This is the recommended method; loops that are
to be repeated a fixed number of times should always be controlled by integers.

The second source of error in real arithmetic lies in the arithmetic processes
themselves. All of the four basic operations are subject to error, even if their
operands are initially correct.

First consider division. If one number is divided by another, then in most
cases the result will be neither an integer nor a submultiple of a power of two,
and will not be susceptible to exact representation. The machine will have to
use rounding to get the closest value it can.

Real Numbers 171

The situation with multiplication is similar. If two numbers each with n-digit
mantissas are multiplied, the product will have 2n digits, of which only the
most significant n can be used in the result. The least significant half of the
product must be thrown away.

Although division and multiplication usually give inexact answers, the error
introduced is always relatively small- it is comparable to the error in
representing a single quantity.

With addition and subtraction the position is even more treacherous. The
two processes can be considered together, since subtraction may be regarded
as negative addition.

Before the mantissas of two numbers can be added, it is necessary to arrange
that they have the same exponent. (This is equivalent to 'lining up the decimal
point'.) The machine takes the number with the smaller exponent, and shifts its
mantissa to the right, incrementing its exponent by 1 at each step, until the
exponent of the larger number is reached. As the mantissa moves down, its
least significant digits are thrown away, introducing an error. In the limit, when
the difference in the exponents is greater than the number of bits in the
mantissa, the whole of the smaller number is thrown away and the 'addition'
makes no difference to the larger number.

Under certain conditions this effect can make a substantial difference to the
results of a calculation. Consider the situation in which many very small
numbers x[l], x[2], ... , x[n] are to be added to some large number y.
Whereas adding each of the small numbers individually to y will leave y
unchanged, adding all the small numbers together may produce a sum large
enough to alter the value of y. In other words, the difference between

(x[l] +x[2] +x[3] +x[4] + ... +x[n])+y

and

(... (y+x[l])+x[2])+x[3])+x[4])+ ... +x[n])

is significant.
The general principle that emerges is that, where many numbers are to be

added up, it is more accurate to start with the smaller ones.
Another danger with real addition and subtraction is the sudden increase in

relative error that can take place if two numbers of almost the same size are
subtracted from one another. This is not a result of the way numbers are
represented, but is an inherent mathematical phenomenon. The effect occurs
because the result is much smaller than either ofthe two numbers, whereas the
absolute error that each one contributes remains the same. To give an
illustration, consider a situation involving two numbers a and b. It is known
that a= lOO±t and b = 90±t. The relative error in a is about 0.5 per cent,
while that in b is about 0.55 per cent.

Consider evaluating the expression (a- b)/(a i 2- b i 2). If, in working out
each part, limits are set on its possible values, it will be possible to keep track of
the relative precision as the calculation proceeds. For example, the smallest

172 Programming and Problem-solving in Algol 68

possible value of(a-b) is (99!-90!-) or 9, and the largest possible value is
(1 oot- 89!) or 11. This means that (a - b) = 10 ± 1, which implies a precision
of 10 per cent.

The various stages of the calculation are set out in table 12.1. It appears that,
when the final value is reached, the relative error has increased by about 40
times.

If, however, the initial expression is rewritten as 1/(a +b), and evaluated in
this form, a result of 0.005263 is obtained with a relative error of 0.5 per cent.

Quantity Nominal Lower Upper Precision,
value limit limit per cent

a 100 99t loot 0.5
b 90 89t 9ot 0.55
(a-b) 10 9(99t-9ot) 11 (loot- 89t) 10
al2 10000 990Q!(99P) 10 lOQ!(lQ012) 1
bl2 8 100 8010.\-(89P) 8191}.\- (9012) 1.1
al2-bl2 1900 1710(9900- 8190) 2090(10 100- 8010) 10

a-b 10/1900 9/2090 11/1710
(a l2- b l2) = 0.005263 = 0.004306 = 0.6433 20

Table 12.1

It is often possible to rearrange calculations so as to avoid taking the
difference of two close numbers. If this cannot be done, it suggests that the
problem that forms the subject of the calculation is incapable of accurate
solution.

There follows a review of the arithmetic operators that can be used on real
numbers.

The operators+,-, *• /, <, >, < = and > = all accept real and integer
operands in any combination. The first operand of i may be real or int, but the
second one must be int-it is not permitted to raise numbers to real (possibly
fractional) powers.

The results of+,- and * are real if either of their operands is real.
'/'always produces an int result. Thus a'/'b gives the number of times b goes

into a, ignoring fractions.
/ always generates a real result that is as exact as it can be.
Since the operations on real numbers do not generally give exact results, it is

unsafe to expect two quantities that are mathematically equivalent (such as 1
and 3/3) to have identical representations. The operators = and #- are
therefore dangerous if used with real numbers, and in some implementations
they are only defined for integer operands.

The rules are summarised in table 12.2.

Real Numbers

Operator Result produced with operands of given modes
int, int int, real real, int real, real

+ int real real real
int real real real

* int real real real
I real real real real
l int not defined real not defined
< boo I boo I boo I boo I
> boo I boo I boo I boo I
<= boo I boo I boo I boo I
>= boo I boo I boo I boo I

boo I unsafe unsafe unsafe
boo I unsafe unsafe unsafe

Table 12.2

Monadic operators that can be used on real quantities include

abs x
sign x
entier x
round x

(modulus of x)
(gives an int-+1 if x > 0, 0 if x = 0,-1 if x <0)
(gives an int-the whole number part of x)
(gives an int-the whole number nearest to x)

173

In many mathematical calculations there is a need for various algebraic
functions like logs, square roots or sines and cosines. Algol68 provides a set of
these as standard procedures. Each one has an identifier (like sqrt or sin) and
can be used exactly as if it had been declared as a procedure of mode
proc(real) real.

The list of standard procedures includes

sqrt (x)
exp (x)
In (x)
sin (x)
cos (x)
tan (x)
arcsin (x)
arccos (x)
arctan (x)

the (positive) square root of x (a dynamic fault occurs if x < 0)
the exponential function ex
log x (to the base e) (a dynamic fault occurs if x < = 0)

sine (x) }
cosine (x) (x is in radians, not degrees)
tangent (x)
sin - 1 (x)
cos - 1 (x)
tan - 1 (x).

In the inverse trigonometrical procedures, the result is delivered in radians.
With arcsin and arctan, the result is always in the range -n/2 to+ n/2, and with
arccos it is in the range 0 ton. A dynamic error is signalled if the parameter of
arcsin or arccos is outside the limit- 1 to+ 1.

The distinction between monadic operators and standard procedures is
somewhat blurred. The difference is that operators like abs can apply to more
than one type of operand, and their meaning depends on the type of operand

174 Programming and Problem-solving in Algol 68

used, whereas standard procedures always expect a real parameter and deliver
a real result. Of course, it is possible to write, say, sqrt (5), but here the 5 would
be widened to a real quantity before the procedure was executed.

It is worth remembering that, in writing programs, procedure identifiers are
never underlined (or enclosed in primes), and they always require brackets
round their parameters; operators written with letters are always underlined
and do not need brackets to enclose their operands, although it is never wrong
to use them if you wish.

The ideas discussed in this chapter can be illustrated using a practical
problem taken from surveying. Land agents often need maps of flat but
irregular areas like fields, and one quick method of making such a map is called
a subtense traverse.

The process begins by partitioning the border of the area into a number of
straight-line sections, making each section small enough to ensure that
together they form a sufficiently accurate representation of the actual
boundary. This is illustrated in figure 12.1, where the boundary is divided into
six sections (shown as dotted lines). On the ground the ends of the sections are
marked with pegs.

N

t
/

/
/

/
/.

/

~//

/
/

/

/
/

/

Figure 12.1

The survey goes clockwise, starting from a point at the end of one of the
sections. Before it starts, the bearing of the section just preceding the starting

Real Numbers 175

point is measured with a magnetic compass or, if the orientation of the area
with regard to North is not important, this bearing is simply guessed. Bearings
are always expressed in terms of degrees East of North, so that the measured
bearing in figure 12.1 is about 331°,

Next, each of the sections is surveyed in order. The measurements are made
with a theodolite and a subtense bar.

A theodolite is essentially a telescope fitted with cross-hairs and mounted on
a horizontal protractor. It is used to measure angles. In figure 12.2, the
theodolite is supposed to be set up at A. First it is pointed at C, and the reading
of the protractor is taken. Then it is swung to B (without moving the
protractor) and another reading taken. The difference in readings is a measure
of the angle CAB.

Modern theodolites read in degrees and decimals of a degree, and the best
ones are accurate to 1/1000 of a degree or better. The theodolite used in the
present example is assumed to be a cheap instrument that is only calibrated in
fifths of a degree. If it is read to the nearest division, the error in any reading can
be up to 0.1 °.

B

Figure 12.2 A theodolite

A subtense bar is simply a horizontal beam of wood with circular targets
mounted at its ends (see figure 12.3). The centres of the targets are exactly two
metres apart. The beam is fixed to a tripod and is pivoted about a vertical axis.
At the centre ofthe beam, and at right angles to it, there is a sight like that on a
gun.

176 Programming and Problem-solving in Algol 68

Figure 12.3 A subtense bar

The measurement of a section is shown in figure 12.4. The theodolite is set up
at point A at one end of the section, and the subtense bar is placed at the other.
The surveyor's assistant swings the bar until he can see the theodolite in the
sight, and then clamps it; this ensures that the bar itself is perpendicular to the
line of sight between A and B. The surveyor measures two angles, both
involving the end of the 'previous' section X. They are recorded in a notebook
as the 'inside' and 'outside' angles, respectively. Figure 12.5 shows the relevant
page from the notebook when the circuit of the area is complete.

When the measurements are finished, they are taken back to the office where
the surveyor (or more likely, his assistant) has the job of 'computing' them so
that the map can be drawn.

Inside
angle (XAK)

A

Outside
angle (XAJ)

Figure 12.4 Measuring a section

K

Sub tense
bar

Real Numbers 177

SUBTENSE TRAVERSE

Number of sections: b
Starting bearing: 3.31

Section number Inside angle Outside angle , 115·1::> 113·/f
:z. 67·0 7:2.·4
3 :lb~·B ;l7~·0

4 '+5·0 lt-CJ·O
5 103·b 10b·'l>
~ 103·8 111· &

Figure 12.5 Specimen notebook page

The calculations are done on a 'work-sheet', as shown in figure 12.6. They
involve several stages.

(1) The observed figures are copied in from the field notebook.
(2) The bearing, or direction with respect to North, of each section is

determined. Referring back to figure 12.4, the angle XAB is one of the
interior angles of the polygon that describes the area. Its value is the mean
of the inside and outside angles at A.

If the bearing of XA is known, then the bearing of AB can be found
using simple geometry. It turns out to be the bearing of XA, plus 180°,
minus the interior angle. If the result is greater than 360, it is reduced by
360.

To give an example, the interior angle at A is !(115.6 + 118.4) or 117.0°.
The bearing of the 'previous' section was measured by compass and is
331°, so that the bearing of the first section is 331 + 180-117 (- 360) or
34°. Using this figure, the bearing ofthe next section can be found, and so
on. The bearing ofthe last section, assumed as 331 at the beginning of the
calculation, turns out to be 330.9, but this discrepancy is too small to
worry about at the moment.

(3) The length of each section is calculated. Again referring to figure 12.4, the
length BJ is always 1 metre, and the angle BAJ is !(XAJ- XAK), or half
the difference between the inside and outside angles at A. Again using
simple trigonometry, the distance AB is cot (BAJ) or cot {!(outside
-inside)}. Thus the length of the first section is cot {t(118.4 -115.6)}
=cot (1.4°).

F
ir

st
 b

ea
ri

ng
:

33
1

N
um

be
r

o
f s

ec
tio

ns
:

6

Se
c

i
e

In
t

b
!s

u
b

di

st

si
n(

b)

co
s(

b)

E
as

t

1
11

5.
6

11
8.

4
11

7.
0

34

1.
4

40
.9

2
0.

55
92

0.

82
90

22

.8
8

2
67

.0

72
.4

69

.7

14
4.

3
2.

7
21

.2
0

0.
58

35

-0
.8

1
2

1

12
.3

7
3

26
8.

8
27

8.
0

27
3.

4
50

.9

4.
6

12
.4

3
0.

77
60

0.

63
07

9.

65

4
45

.0

49
.0

47

.0

18
3.

9
2.

0
28

.6
4

-0
.0

6
8

0

-0
.9

9
7

7

-1
.9

5

5
10

3.
6

10
6.

8
10

5.
2

25
8.

7
1.

6
35

.8
0

-0
.9

8
0

6

-0
.1

9
5

9

-3
5

.1
1

6

10
3.

8
11

1.
8

10
7.

8
33

0.
9

4.
0

14
.3

0
-0

.4
8

6
3

0.

87
38

-6

.9
5

N
ot

es
:

e
is

 t
he

 'o
ut

si
de

' a
ng

le
,

an
d

i
is

th
e

'in
si

de
' a

ng
le

.
ln

t
is

 t
he

 i
nt

er
io

r
an

gl
e

of
 th

e
po

ly
go

n:
 !

(i
 +

e)
.

b
is

 t
he

 b
ea

ri
ng

 o
f

th
e

se
ct

io
n,

 e
xp

re
ss

ed
 a

s
de

gr
ee

s
E

as
t

of
 N

or
th

.
!s

u
b

 is
 h

al
f

th
e

an
gl

e
su

bt
en

de
d

by
 t

he
 s

ub
 te

ns
e

ba
r:

!(
e
- i

).
di

st
 i

s
th

e
le

ng
th

 o
f

th
e

se
ct

io
n:

 c
ot

(!
su

b)
.

E
as

t
is

th
e

'E
as

ti
ng

' o
f

th
e

se
ct

io
n

in
 m

et
re

s,
 a

nd
 N

or
th

 is
 i

ts
 '

N
or

th
in

g'
.

X
 a

nd
Y

 a
re

 th
e

co
m

pu
te

d
co

or
di

na
te

s,
 a

nd
 X

c
an

dY
 ca

re
 th

e
co

or
di

na
te

s
af

te
r c

or
re

ct
io

n.

F
ig

ur
e

12
.6

 S
pe

ci
m

en
 w

or
k-

sh
ee

t

N
o

rt
h

X

y

33
.9

2
22

.8
8

33
.9

2
-1

7
.2

2

35
.2

5
16

.7
0

7.
84

44

.9
0

24
.5

4
-2

8
.5

7

42
.9

5
-4

.0
3

-7

.0
1

7.

85

-1
1

.0
4

12

.5
0

0.
89

1.

45

XC

22
.7

3
34

.9
6

44
.4

5
42

.3
6

7.
10

0.

00

Y
c

33
.6

8
16

.2
2

23
.8

1
-5

.0
0

-1

2
.2

5

0.
00

--...! 0
0

 f ~ ~·
 [~ ~ ~ ~ ~

~·
 s· ~

~

~
 - ~

Real Numbers 179

(4) The position of the end of each segment relative to its own start is
calculated, expressed as so many metres of'Easting' and so many metres of
'Northing'. If b is the bearing of a section, and dist its length, then the
Easting is given by the expression dist.sin (b) and the Northing by
dist.cos (b). The formulas work for all values of b. In certain quadrants
either or both of the Easting and Northing will be negative.

(5) Assuming that the starting co-ordinates are (0, 0), the co-ordinates of the
end-points of each of the sections are calculated as the cumulative totals of
the Northings and Eastings in working round the area. The results are
given in the columns marked X and Y.

(6) At this point, for the first time, some kind of check can be made for
accuracy. In theory the end-point of the last section should coincide with
the assumed starting coordinates (0, 0). In practice, of course, it will never
do so because of the inevitable errors in the observations. Two types of
error can be distinguished. One type is imposed by the limitations of the
instruments used. For example, the theodolite cannot be read with a
precision of more than 1/10 of a degree, and over a section of 40 metres an
error of 0.1 o in the apparent angle of the subtense bar would lead to an
error of about 1 t metres in the length of the section. Discrepancies of this
order are therefore to be expected.

The other type of error is .called a blunder, and consists of a gross
misreading of the theodolite, or a mistake in writing or copying figures or
a mistake in calculation. Some blunders will affect the result so slightly as
to be indistinguishable from observational errors, but most will produce
large and obvious discrepancies.

In the present example, the actual discrepancy in the final position is
0.89 metres of Easting and 1.45 metres of Northing. This represents a
positional error of .J (0.892 + 1.452), or 1.702 metres. This seems to be in
line with the expected error, and so it can be accepted as having been
caused purely by the imperfections of the instruments.

If the error had been much larger (say, 8 to 10 metres), it would have
been necessary to assume the existence of a blunder. In that case, the
appropriate procedure is to repeat all the calculations and, if the error
refuses to go away, to return to the area and perform the whole survey
again.

(7) Even when the final error is deemed acceptable, the calculated coor­
dinates in columns X and Y cannot be used, for a map drawn with them
would not close, but would have a small gap requiring the insertion of a
purely imaginary extra section. Furthermore, on the assumption that the
errors accumulate in working round the area, the coordinates of the first
few sections will be relatively accurate, but matters will then become
steadily worse, and the last section will be the least accurately placed of all.

These difficulties can be avoided by a process called 'distributing the
errors'. It is assumed that each section introduces an equal amount of the
final error; hence in this example, each section introduces 0.89/6 too many

180 Programming and Problem-solving in Algol 68

units of Easting and 1.45/6 too many units of Northing. The appropriate
amount is then subtracted from each section and the coordinates are
recalculated: the result is shown in columns Xc and Yc. The outline now
closes accurately and there is no bias against the later sections of the
survey.

As you can imagine, the process of computation is slow, tedious and prone to
error. If you have many subtense traverses to compute, you might wish for a
friendly computer to read the data as recorded on the field notebook and print
out the corrected coordinates of all the points directly. An Algol-68 program
for this task is as follows.

1 begin int n; read (n); real b; read (b);
2 print ((newline, newline, "SUBTENSE TRAVERSE

CALCULATION",
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

newline, "NUMBER OF SECTIONS=", n, newline,
"FIRST BEARING=", b));

[I: n]real x, y;
real xhere: = 0, yhere: = 0;
real qq =pi/ I80;
print ((newline,
for j ton

"INNER ANG. OUTER ANG.", newline));

do real p, q; read (p); read (q);
print ((newline, p, q));
real dist = I /tan (0.5 * (p -q) * qq);
real intang = 0.5 * (p + q);
b: = b+I80-intang; (b > 3601 b-: = 360);
xhere +: = dist *sin (b * qq);
yhere +: = dist Hos (b * qq);
x [i]: = xhere; y [i]: = yhere

od;
print ((newline, "TOTAL ERROR IN BASTING=", xhere,

newline, "TOTAL ERROR IN NORTHING=", yhere,
newline, "0 VERALL ERROR = ", sqrt (xhere i 2 + yhere i 2)
));
print ((newline, "CORRECTED COORDINATES ARE"));

for j ton
do print ((newline, x[j]- xhere * j/n, y[j]- yhere *j/n))
od

27 end.

The output of this program is designed to detect as many errors as possible.
The raw data are printed out so that they can be checked against the entries in
the field notebook, and the final discrepancy is also presented. It is up to the
user to decide whether to accept the results or to look for blunders in the
original observations-the calculations themselves can be taken as reliable.

Real Numbers 181

Inside the program, the constant qq is used to convert angles from degrees to
radians wherever necessary. It is set up using the predefined identifier pi, which
has mode real and the value 3.14159265359 ... The variables p and q represent
the internal and external angles for each observation, and xhere and yhere keep
track of the current (uncorrected) co-ordinates as the calculation moves round
the surveyed area. As each new set of co-ordinates is reached, it is recorded in
the appropriate elements of the real arrays x and y.

The output of the prqgram for the given example is shown in figure 12.7.

SUB TENSE TRAVERSE CALCULATION
NUMBER OF SECTIONS = + 6
FIRST BEARING= +3.3100000000&+2
INNER ANG. OUTER ANG.

1.1560000000& + 2
6. 7000000000& + 1
2.6880000000& + 2
4.5000000000& + 1
1.0360000000& + 2
1.0380000000& + 2

1.1840000000& + 2
7.2400000000& + 1
2. 7800000000& + 2
4.9000000000& + 1
1.0680000000& + 2
1.1180000000& + 2

TOTAL ERROR IN EASTING = -8.9086696605&-1
TOTAL ERROR IN NORTHING= -1.4510498919&+0
OVER-ALL ERROR= + 1.7027007194& +0
CORRECTED COORDINATES ARE
- 2.2732248370& + 1 - 3.3680229943& + 1
- 3.4957732045& + 1 -1.6218198695& + 1
-4.4454603875& + 1 -2.3814920087& + 1
-4.2358422958& + 1 +4.9968612674& +0
-7.1033977931& +0 + 1.2253683297& + 1
+ 0.0000000000& + 0 + 0.0000000000& + 0

Figure 12.7 Computer printout for sub tense traverse calculation

This example illustrates a number of points. In the first place, the precision of
the machine is much higher than the accuracy of the observations, so that no
noticeable new error is introduced from this source. Second, the program
includes the subtraction of two nearly equal numbers. Since the measured
angles can lie anywhere in the range 0 to 360°, and have a maximum error of
0.1 °, their relative accuracy might be taken to be 0.1/360, or about 0.03 per
cent. Nevertheless, the error expected in the length of a section is 1.5 metres, or
about 4 per cent of its total length. The reason is clear-the angle subtended
by the bar is the difference between the inner and outer angles, which are bound
to be close. The larger the section being measured, the closer they will be, and
the greater the relative error in their difference.

182 Programming and Problem-solving in Algol 68

The calculation cannot be blamed for this inaccuracy. To obtain a more
precise map, it will be necessary to buy a better theodolite, or to get a larger
subtense bar, or to use shorter sections and more of them-a new computer
will not help.

The final part ofthis chapter reviews the whole question of real numbers and
their precision.

In real numbers, the machine provides a basic mode that can handle a wide
range of numbers with a fixed relative precision of about 10 to 12 decimal
digits. In most practical calculations the limits on accuracy are set by the
observed data, and in almost every case the inherent precision of the data is less
than the accuracy provided by the real-number mechanism on the computer.
Provided that operations on real numbers are never expected to be exact, they
can be used for nearly every scientific and engineering calculation.

The conclusion is that the computer, like Lord Copper, is indeed accurate up
to a point.

EXERCISES

U.l (4) A computer uses real numbers arranged as follows

xxxxxxxxxx
"---y-----J

mantissa
(10 bits)

XX XX XX
'---v---J

exponent
(6 bits)

The value of any real number is taken as

mantissa* 2exponent

Show the best representation for the following numbers

77 10 1 0.25 1000 1001 -128 0.1

(Hint: Remember that both the mantissa and the exponent are signed binary
numbers (2s-complement notation) and that in every case the mantissa should
be as large as possible.)

12.2 (2) Using a calculator or slide rule, trace the square-root program on p.
167 for all the data given.

* 12.3 (2) The hyperbolic functions are defined as follows

sinh(x) =!(ex-e-x); cosh(x) =!(ex+ e-x); tanh(x) = sinh(x)jcosh(x)

Write a program that tabulates these functions for values ofx between 0 and 10,
going up in steps of 0.1.

12.4 (5) Write a program that reads in three coefficients a, band c, and solves

Real Numbers 183

the quadratic equation ax2 + bx + c = Oo (Strong hint: Remember all the special
cases!)

*12.5 (5) (P) (a) Write a procedure with the following heading

proc squarewa ve = (real x, int n) real;
comment This procedure calculates and sums n terms of the series

sin(x)+sin(3x)/3+sin(5x)/5+ 0 o o
comment

(b) Study the following program, which prints out graphs of
sin (x) and cos (x)

1 ([0: 100] char line;
2 for j from 0 by 10 to 720
3 do real x =j•pi/180;
4 int s = entier (50•(sin (x)+ 1)),
5 c = entier (50•(cos(x)+l));
6 fork from 0 to 100 do line [k]: =" "od;
7 line [s]: = "S"; line [c]: = "C";
8 print ((newline, j, line))
9 od

10

(c) Using the general method of this program, together with the
procedure you wrote for (a), construct a program to print out graphs of the
family of functions

y = I sin[(2n+l)x]
n = o (2n + 1)

for q = 0(1)50 Vary x between 0 and 720° in steps of 10oo

13 Some Useful Constructions

'A wandering minstrel I, a thing of shreds and patches.'
W. S. Gilbert, 'The Mikado'

Most languages offer several ways of saying anything that you may want to
express. Algol 68 is no exception: it has a number of constructions that,
although not essential to programming, enrich the language and can be used to
make programs more elegant and compact.

The 'extra' features are not connected to one another in any structured way;
they are more of a heap than an ordered collection. The order of presentation
here has no significance.

First, consider the values of statements. You are already familiar with the
idea that some units yield values when they are executed. Good examples are
the boolean-expression in a while-do-od construction or the integer­
expression that delivers the result in a procedure of mode proc int or
proc(...)int. It turns out that all units generate values. In most cases, there is
an obvious value to be produced; in an assignment statement, for example, the
value is the same as the object that was assigned. Thus the value of p: = 17 is 17.
In a few instances, such as the read or print commands, calls to procedures of
mode proc void or skip, no actual value is yielded. These unitary clauses are
said to yield the special value void, which means 'nothing'.

Usually it is only the last value of a serial-clause that is of interest. The value
of every other unit is thrown away as soon as the program passes a semicolon.
Consider the following phrases:

int x, y, z; x: = 2; y: = x+7; z: = y-;-x

Declarations do not yield values. The first unit clause to be evaluated is
x: = 2. It sets the variable x to 2, and also yields the value 2, but this value is
discarded as the machine passes the semicolon.

The next unit is y: = x + 7, which sets y to 9 and yields the value 9, only to be
thrown away again as the computer passes the following semicolon. The final
value, which is not discarded, is 9 -;- 2 or 4.

The general rule is that the value produced by a unit is always thrown away if
the unit is followed by a semicolon.

If an assignation is enclosed in brackets, it can be included in an expression
like any other operand. For instance

Some Useful Constructions 185

read(a[p +: = J])

is equivalent to

p+: =I; read(a[p])

while

x: = (y: = 17)+3

is equivalent to

y: = 17; x: = y+3

and

a:= (b: = (c: = 0))

has the same effect as

c: = 0; b: = c; a: = b

In the last case, the brackets can be removed without ambiguity, giving forms
like a: =b: = c: =0.

If the variables on the left of such a group of assignations are of different
modes (say, ref int and ref real), then a coercion will take place between the
various assignations, and care must be taken to write the variables in the right
order. An int value can be widened to real, but the result cannot be 'narrowed'
back to int. Study the following examples, remembering the order of
assignation

int x, y; real q;
q: = x: = y: = 99

(legal)

int x, y; real q;
x: = q: = y: = 99

(illegal)

The combined operators+ : = , - : = , * : = , + : = and I: = also yield
values that can be used in expressions. However you must remember that the
priority of all the combined operators is 1 (not 6 or 7), and if they are used as
parts of expressions brackets will often be needed. Compare

y:=x+:=3+2

(which is similar to x: = x+3+2; y: = x) and

y: = (x+: = 3)+2

(which is equivalent to x: = x + 3; y: = x + 2).

The combined operators are fussy about the modes of their operands. The
left-hand operand must always be a ref int or a ref real, otherwise the
assignation could not take place. It must be a refreal if the right-hand operand
is of mode real or refreal, and the left-hand operand of j: =must be of mode
ref real in all cases. These rules are of course similar to those that apply to the
left-hand sides of assignations

186 Programming and Problem-solving in Algol 68

The main advantage of a combined operator is that it prevents the address of
a variable from being calculated twice. This is really only significant if the
variable in question is an array element with a complicated suffix expression.
Suppose that two procedures row and col, both of mode proc(int, int)int, have
been defined. It would then be good sense to replace

a[row(p,q), col(p,q)]: = a[row(p,q), col(p,q)] + 1

by

a[row(p, q), col(p, q)] +: = 1

since-whatever the procedures may do-each is called once only, instead
of being called twice with identical parameters.

A feature of Algol 68 that is useful in the area of decision-making is the case
construction. This is written as follows

case integer-serial-clause
in unit (1), unit (2), unit (3)

unit (4), ...
. . . , unit (n -1), unit (n)

out serial-clause (d)
esac

where case, in, out and esac are system words.
In obeying this construction the computer first works out the integer-unit

between case and in, and gets an integer value. It then uses this value to select
one of the units that follow: the first for 1, the second for 2 and so on up to the
nth for n (where n is the number of units between in and out). If the value of the
integer-unit is outwith the bounds 1 to n, the computer chooses the default
serial-clause between out and esac.

The construction is equivalent to a long chain of if commands, but
considerably more compact and efficient. Thus

case x in
(print("PASS"); a: = 5), x + : = 1, (print(" FAlL"); a: = 0)
out print ("X NOT 1 2 OR 3")

esac

(where the brackets ensure that their contents are taken as units) could also be
set out as

if x = 1 then print(" PASS"); a: = 5
elifx=2thenx+:=1

fi

elif x = 3 then print("F AlL"); a: = 0
else print("X NOT 1 2 OR 3")

In terms of the railway notation introduced in chapter 4, the construction
appears as in figure 13 .1.

Some Useful Constructions 187

4~

serial-clause (d)

Figure 13.1

Permitted alternatives for the symbols case, in, out and esac are
(, I, I and). Although these signs are never ambiguous in a correct
program, the use of the contracted forms is a matter of personal taste-you
may find them unreadable.

Sometimes you can be sure that your integer-unit will never be outside the
expected bounds, and you can then omit out and the default option. If­
contrary to expectation- the value of the integer unit is out of range none of
the units is obeyed and the program passes on to the statement after the
closing esac.

In the following simple example, the program reads a decimal number
supposedly in the range 1 to 99 and prints its name in English.

1 begin int n; read (n);
2 ifn<20
3
4
5
6

7

8
9

10
11
12

then print(case n
in "ONE", "TWO", "THREE", "FOUR", "FIVE",

"SIX", "SEVEN", "EIGHT", "NINE", "TEN",
"ELEVEN", "TWELVE", "THIRTEEN",

"FOURTEEN", "FIFTEEN",
"SIXTEEN", "SEVENTEEN", "EIGHTEEN",

"NINETEEN"
out "NUMBER LESS THAN 1"

esac

else print(case n + 10-1
in "TWENTY", "THIRTY", "FORTY", "FIFTY",

"SIXTY",

188

13
14
15
16
17
18
19
20

21
22
23
24 end

fi

Programming and Problem-solving in Algol 68

"SEVENTY", "EIGHTY", "NINETY"
out "NUMBER GREATER THAN 99"

esac
);

if n > 99 then n: = 0 fi; co look after improper value of nco
print(case n mod 10 +I

in" ","ONE", "TWO", "THREE", "FOUR",
"FIVE", "SIX", "SEVEN", "EIGHT',

"NINE"
esac

The case construction is useful whenever the possibilities to be considered can
be mapped on to (or transformed to) the numbers 1 2 3 ... This can usually be
done, even when the decisions to be taken seem arbitrary and complicated.

The last two topics in this chapter are slicing and trimming. These two
operations can be used on arrays with elements of any mode, to select subsets
of them in various ways.

Slicing applies to arrays oftwo or more dimensions. It can be made to choose
any group of elements that have one (or more) of their index values in common.
Thus a slice of a two-dimensional array can either be a row where all the
elements have the same .first index, or a column in which all the elements have
their second index in common.

A slice of an array is written down in exactly the same way as a single
element, except that the index that varies along the slice is left out. Consider
the array declared by

[1 : 3, 1 : 4] int ax

which is assumed to have the value

3 7
18 2
21 13

4 12
13 4
7 10

One possible slice from this array is the third column

4
13
7

The index that varies along this slice is the row index (since each element
comes from a different row) and the slice is therefore written as

ax[, 3]

Some Useful Constructions 189

(Note the gap before the comma; it is not essential, but helps to make the text
more readable.)

Similarly, the row

3 7 4 12

would be selected as ax[1,].

The slice of an array is a full array in its own right. It can be given as a
parameter to a procedure or assigned to another array variable of appropriate
mode and bounds. It will always have one or more dimensions fewer than the
array from which it was sliced, but in those dimensions that remain the bounds
of the indices will be the same as in the parent array. For example, any
row chosen from ax will always have four elements, and any column of
ax will always have three.

Although the above example used only a two-dimensional array, the
extension of the rules to arrays of three or more dimensions is quite
straightforward. Thus there are six possible slices in which an element of a
three-dimensional array could be incorporated. Three of them are mutually
perpendicular planes of elements, and the other three are mutually per­
pendicular lines.

One trivial but useful application of slicing is in printing the rows of a two­
dimensional character array. In chapter 9, for example, the map of Great
Britain was printed by the somewhat cumbersome sequence

for v from 100 by-1 to 1 do
print(newline);
for w to 90 do print(map[v, w]) od

od;

Since the print command can handle a one-dimensional array of characters
correctly, the use of slicing allows a more compact form to be written, as
follows

from j to 100 do print((newline, map[101- j,])) od

To trim an array is to cut off one or both of its ends (in any dimension, if there
is more than one). Consider the character array declared by

[I: 12] char x: ="CANTANKEROUS"

Some trimmed versions of this array are"CAN", "ANT", "TANK", "US". The
subset actually required is indicated by giving the subscripts of the first and last
elements involved. Thus,

x[1:3J ="CAN"
x[2:4] ="ANT"
x[4:7] ="TANK"
x[ll: 12] ="US"

190 Programming and Problem-solving in Algol 68

Again, each subset of the original array is an array in its own right. The
elementsarenumberedfrom 1 upwards;forinstance,x[2:4] [1] ="A". This
is important when a trimmed array is assigned to an array variable, because the
subset and the array variable must agree in mode and number of dimensions,
and must also have identical bounds. Consider the following assignations in
the context of the character array x defined above.

(1)

[1:4]char q;
q: = x[4: 7]

(2)

[1: 2] char r;
r:=x[4:7]

(3)

[O:J]char s;
s:=x[4:7]

Assignation (1) is legal, since x [4: 7] has four elements numbered 1 to 4, and so
has q. Assignation (2) is illegal, since it attempts to assign an array with four
elements to a variable with 12 elements. Assignation (3) is also illegal. Although
s has four elements, they are numbered 0 to 3, and so there is still a mismatch
between the bounds of the two arrays. However, in this case the bounds could
be matched by using the special operator @ (sometimes written at), which
shifts the bounds of any array bodily, by specifying a new lower bound. For
instance, x [5: 10] has six elements, and the suffix of the first is 1, whereas
x [5: 10]@ 3 also has six elements but the suffix ofthe first is now 3 (and that of
the last is 8). Hence, the assignation [0:3] chars; s: = x[4: 7]@0 would be
legal.

The lower bound specified by@ can, as usual, be a unit of any complexity.
Trimmed arrays can be used on the left-hand sides of assignations. In this

context remember that, in arrays specified by row-displays or string literals, the
first subscript is always 1. This feature ties in well with the rule that the first
element in a trimmed array also has the subscript 1. For instance, it would be
legal to write

x[5:10]: = "ERBURY"; print(x[1:10])

The result would be CANTERBURY.
Trimming is useful in a number of ways. As a simple example, consider a

character array n that contains a person's name and address. The arrangement
is such that the country of residence is always in positions 60 to 72. If it is
required to print the actual country (and nothing else), this can be achieved by
writing

print(n[60: 72])

The following discussion gives a much more complex illustration.
One of the most important jobs in computing consists of sorting items­

numbers or character arrays-into order. Sorting is a key part of the process
of using and maintaining sets of information such as stock records, bank
statements or names and addresses. Sorting is so universally needed, and so
time consuming, that many computers devote the major part oftheir time to it.
The use of efficient sorting methods is therefore of great economic importance.

Some Useful Constructions 191

Many different methods of sorting have been invented. Knuth (1973)
describes and analyses 59 of them, but in the present chapter only two will be
discussed.

Consider an array of numbers in completely random order. Perhaps some
numbers occur more than once

37
19
8

22
19
46
4

12
41

A very simple method of sorting consists of the following steps.

To sort an array with n elements
(1) find the largest element in the array, and interchange it with the element at

the bottom of the array; the largest element must now be in its correct
position, and can be excluded from further consideration

(2) repeat this process for the first n- 1 elements of the array, omitting any
reference to the last element (which is already in the correct place); this will
place the second largest value in the second last position, so that it too can
now be left alone

(3) -(n- I) repeat the process for subarrays of n- 2, n- 3, ... , 2 elements; at
this point the array will be correctly ordered.

The sample array contains 9 elements, and so (9 -1) or 8 ofthese steps will be
necessary to sort it.

37 37 ~37 4 4 4 4 4 4
~

19 19 19 19 19

[': [1~ C:8 8
1---

8 8 8 8 8 12 12
I---

22 22 22 [22 12 12 19 19 19
1---

19 19 19 19 1!19 19 19 19 19
I---

r r~
12 12 22 22 22 22 22

....;....._

~4 37 37 37 37 37 37 r--
12 12 41 41 41 41 41 41 41

....;._

41 46 46 46 46 46 46 46 46 -

(0) (1) (2) (3) (4) (5) (6) (7) (8) (number of steps)

192 Programming and Problem-solving in Algol 68

The diagram shows the successive stages of the process. Initially, the largest
element of all is 46, and it is interchanged with the 41 at the bottom of the array.
Next the 41, which is the largest remaining element in the unsorted part of the
array, is interchanged with the 12, which is the element at the bottom of this
part. At the third stage, the 37 is swapped with the 4, and so on. The diagram
shows how the sorted array is built up from the largest element upwards and
how the size of the unsorted array is decreased by one at every stage. In two
cases the largest element happens by chance to be in the correct position, and
so it is simply swapped with itself.

To program the method, consider first the inner loop, which corresponds to
one step of the sort process. The loop consists of two portions

(1) find the location of the largest element in the part of the array that has not
yet been sorted

(2) interchange it with the last element of the unsorted array.

The search is performed by scanning the array, element by element. The
variables maxval and pos will be used to keep track of the value and position of
the largest element found so far. Initially, maxval is set to the first element of the
array; this is better than setting it to 0 because the algorithm will still work even
if all the elements to be sorted are negative.

Assume that the array to be sorted is called a; that its lower bound is 1; and
that variable j (declared globally) gives the number of elements in the unsorted
section. Then the inner loop is

int maxval: = a[1], pos: = 1;
for k from 2 to j

do if a[k] > maxval then maxval: = a[k]; pos: = k fi od;
a[pos]: = a[i]; a[i]: = maxval

The entire sort algorithm simply consists ofthis inner loop, together with a
control sequence that executes it for every value of j from the full size of the
array down to 2. It can be set down as a procedure, taking a parameter of mode
ref[]int

proc sort= (ref[Jint a) void:
co This procedure sorts the elements of a into ascending order.

The lower bound of a should be 1
co
(if lwb a:;{: 1

then print((newline, "LOWER BOUND INCORRECT"))
else for j from upb a by -J to 2

do int maxval: = a[J], pos: = 1;

oct

for k from 2 to j
do if a[k] > maxval then maxval: = a[k]; pos: = k fi od;

a[pos]: = a[j]; a[j]: = maxval

Some Useful Constructions 193

This sorting method is one of the simplest in existence, but it is not widely used
by professional programmers; it turns out to be far too slow.

To analyse the method, look first at the inner part of the algorithm. Finding
the largest of a set of j elements requires j - 1 comparisons; (a [k] > maxval).
The code that initialises the variables maxval and pos is only executed once, and
the same is true of the instruction at the end of the inner part, which makes the
interchange. As for the group of instructions obeyed after a successful
comparison(maxval: = a[k],pos: = k),itisimpossibletosayhowmanytimes
they are executed since this depends on the data. However, unless by some
fluke the data are already in order, the number of times is usually much less
than the number of comparisons. In the given example, the numbers of
comparisons and of successful comparisons at each stage are as shown in table
13.1.

Stage number Total comparisons

1 8
2 7
3 6
4 5
5 4
6 3
7 2
8 1

Table 13.1

Successful comparisons

1
1
0
2
1
1
1
1

The total number of operations in the inner part will be at leastj + 3, but is
unlikely to be very much more. When j is large, a rough but useful
approximation is to take the total number of operations simply as j.

Now consider the whole algorithm. If the array to be sorted has n elements,
the inner part will be executed for all values of j between n and 2. The total
number of operations for the complete sort will be roughly

n+(n-1)+(n-2)+ ... +2

This is an arithmetic progression, and its sum is tn2 + tn- 1. When n is
large, the tn2 term outweighs the others, and the number of operations needed
to sort an array of n elements by this method will be not less than tn2 . This
number increases rapidly with n, as shown in table 13.2.

To give a practical illustration of this effect, suppose that you had tested and
timed the procedure on an array of 100 elements, and found that it took a
second to sort them. You might be dismayed to discover that to sort 10000
items (by no means a large number in many applications) required almost
three hours of computer time.

Most practical sorting methods are much more efficient, but they pay for it

194 Programming and Problem-solving in Algol 68

by their complexity. One algorithm that combines relative simplicity with
good efficiency is based on the idea of merging.

n

10
100

1000
10000

Table 13.2

50
5000

500000
50000000

Consider two arrays, not necessarily of the same size, each containing a
sorted set of elements. The operation of merging consists of combining all the
elements present into one large sorted array. For example, the result of
merging

(5 17 36 107)

and

(7 12 35 36 72)

is

(5 7 12 17 35 36 36 72 107)

The process can be expressed in Algol 68 by defining a procedure called
merge. The procedure takes two parameters, each of which is an array of
integers, and produces another integer array that is the result of merging the
first two. It assumes that the lower bounds of the arrays are 1, and that the
elements in both the operand arrays are already sorted. The size of the resulting
array must clearly be the sum of the sizes of the operand arrays.

proc merge= (ref[Jint a, b) [] int:
(int 1a = upb a, 1b = upb b;
int pa: = 1, pb: = 1; [1:1a+1b] int c;
for pc to 1 a + 1 b

do(pa> 1alc[pc]: = b[pb]; pb+: = 1
I :pb > 1b lc[pc]: = a[pa]; pa+: = 1
I: a[pa] > b[pb] I c[pc]: = b[pb];pb +: = 1
) lc[pc]: = a[pa];pa+: = 1

od;
c

If you have any difficulty in understanding this merging algorithm, get two
unequal packs of playing cards (say, of 7 and 10 cards, respectively), and sort

Some Useful Constructions 195

each pack into order. Merge the two packs by taking one card at a time off the
appropriate pack until both are exhausted. Then read on.

In the above procedure c is a local array used to assemble the merged
elements. It is declared to be of the correct size, and indexed by pc, which moves
up the array by one element at a time. At the end of the algorithm the value of c
is taken as the result of the procedure.

The pointer pa indicates the next element to be used from array a, and pb the
next from b. Each time an element is taken from one of these arrays, the
appropriate pointer is advanced by 1.

The rules for selecting the next element to be entered into care as follows. If
array a is exhausted, take the next element from b; otherwise, if array b is
exhausted, take the next element from a; otherwise, compare the next element
from a and b. If the element from b is smaller, take it; otherwise, take the next
element from a.

Once the merging procedure has been established, the sort algorithm has a
neat recursive form.

To sort an array of n items
(I) if n = I, do nothing
(2) otherwise, divide the array into two halves that are as equal as possible;

sort each one independently and merge the results.

In Algol 68 this becomes

proc rmsort =(ref[]int a) void:
(if lwb a =F 1

then print((newline, "ERROR IN LOWER BOUND"))
else int n = upb a;

fi

if n =F 1
then rmsort (a[1: n + 2]);

rmsort (a[n+2+1:n]);
a: =merge (a[1: n + 2], a[n + 2 +I: n])

fi

n 5n[1og2 n] tn2
10 200 50

100 3 500 5000
1000 50000 500000

10000 700000 50000000

Table 13.3

The analysis of this algorithm is not diilicult, and shows that the number of
steps needed to sort n items is about 5n [Iog2 n], where [log2 n J is the smallest

196 Programming and Problem-solving in Algol 68

integer equal to or greater than log2 n. It is now possible to calculate figures
that compare directly with the simple sort on p. 192, as shown in table 13.3.

To return to the practical example discussed earlier, the programmer who
used a merge sort would have found that his test problem with 100 items ran in
0.7 seconds (instead of 1), while his production run with 10000 items was
finished in about 3 minutes instead of 2i hours .

EXERCISES

* 13.1 (1) Given the following declarations

int a: = 4, b: = 7; real x: = 3.5

what would be printed in each of the following cases?
(a) a+: = 4; print(a)
(b) b *: = a+ 3; print(b)
(c) x: =a:= b: = 7; print((x, a, b))
(d) print(((a:= 3) > 61" YES" I "NO"))

13.2 (4) Write a procedure called minor with parameters ([,]real a, int x, y)
and result [,]real, where a is always a square array with the lower bounds of
both dimensions set to one. The procedure builds a new array one place
smaller in each dimension, by removing row x and column y from the original.
(Hint: Use trimming. No for statements are necessary.)

* 13.3 (3) Write a procedure called censor, with parameter ref [] char and
result void. The procedure is to scan the array of characters and replace

CONSERVATIVE

LABOUR

LIBERAL

NATIONALIST

by

by

by

by

(Hint: Think about your end conditions.)

***********·

*13.4 (6) (P) Write a program that reads a set of (British) car numbers
supplied as a data stream and sorts them into their years of manufacture. Each
car number is up to seven characters long, and the rules for ordering are as
follows

first, numbers that start with a letter and end with a digit
then, numbers that start with a digit
then, numbers that start with a letter and end with A
then, numbers that start with a letter and end with B

and so on. The final order of numbers within any year is not significant.

Some Useful Constructions 197

In the data, the car numbers are supplied in groups of 10 to each line. Each
number is separated from the next by one or more spaces. The last number is
followed by the dummy ZZZ999Z. There are fewer than 3000 numbers. Your
answers should appear in the same general format. (Hint: There are enough
numbers in the data to make the use of an efficient sorting method essential.
Structure your program as follows

(1) a procedure that reads the data in to a suitable array
(2) a procedure that compares any two car numbers and

determines their correct order
(3) a procedure to sort the list of numbers
(4) a procedure to print the results.

For (1) and (2) study and use the procedures given below.

proc alpha= (char a) bool:
co Determines whether a is a letter co
(a> ="A" and a<= "Z");

proc digit = (char d) bool:
co Determines whether d is a decimal digit co
(d > = "0" and d < = "9");

proc numin = []char;
co Reads the next car number in the data and delivers it as a seven­

character array. The characters are left-justified and padded out with
spaces

co
begin [1: 7] char x; int p: = 1; char z;

for j to 7 do x UJ : = " " od;
while read(z); not (alpha(zf or digit(z))do skip od;
x[1]: = z;
while read(z); alpha(z) or digit(z) do x[p+: = 1}-= z od;
X

end;

proc cardate = ([]char d) int:
co Entered with a car number in d, this procedure calculates a 'date' as

follows

co

for car numbers that end with a digit, 0
for car numbers that start with a digit, 1
otherwise, 2 for numbers ending with A, 3 for those ending with B,
and so on

begin int pd: = 1;
while pd # 7 and d[pd] #""do pd +: = 1 od;
if d[pd] =""then pd-: = 1 fi;
if digit(d[pd]) then 0

198 Programming and Problem-solving in Algol 68

elif digit (d[l]) then 1
else abs d[pd] -abs "A"+ 2

fi
end;

proc compare = ([] char a, b) bool:
co Compares the dates of two car numbers a and b. Gives true if a was

registered in an earlier year than b; otherwise, false
co
(cardate(a) < cardate(b));

Your tutor will ensure that these procedures are available in machine-readable
form.)

14 Records and Files

'The single letter surname 0, of which 13 examples appear in the telephone
directory in Brussels, besides being the commonest single letter name is the one
obviously causing most distress to those concerned with the prevention of cruelty
to computers. There exists among the 42,500,000 names on the Ministry of Social
Security index four examples of a one-lettered surname. Their identity has not been
disclosed, but they are "E", "J", "M", and "X". Two-letter British surnames include
By and On.'

The Guinness Book of Records

From the beginning, mathematical and scientific programmers have tended to
organise their data into arrays -lists, tables and matrices. On the other hand
programmers concerned with data processing have normally used an organi­
sation that depends on records and files.

These two styles of organisation are essentially different, and they comple­
ment each other. Both are necessary if a wide range of problems is to be
covered.

A record is a group of values that, when taken together, form the description
of an entity such as an object or person. A library catalogue, for example, would
have one record for each book. The record might contain the title, the author's
name, the publisher's name, the book's classification, its date of purchase, its
cost and a marker to say whether it could be borrowed by children under 18.
Each of these quantities is called afield within the record. The complete set of
records (in this case, the catalogue) is known as afile.

Algol 68 provides a record facility. A record may include any number of
fields, and each field may be of any mode, including arrays. Records are
declared by using the system word struct. The following record declaration
might occur in a program designed to follow the progress of your local football
team

struct ([1: 12] char opponents, int for, against, boo) home) game

This declares a variable called game, which is used to store the particulars of
any one match. Like an array, it is a compound object consisting of several
components; but the components are not all of the same mode, and they are
identified by tags instead of subscripts.

The fields of the variable game are as follows

(a) a 12-character array to store the name of the opposing team
(b) an integer to show the number of goals scored by your team

200 Programming and Problem-solving in Algol 68

(c) another integer to show the number of goals scored by the other side
(d) a boolean that is true if the game was played at home, and false if it was

played away.

The tags opponents, for, against and home are called field-selectors. They are
chosen arbitrarily in the same way as other identifiers (there is no clash between
for and for).

Once a record has been declared, it can be used in various ways.

(1) Its value can be set up with a structure-display that contains the values of
the fields in the right order

game: = ("RAMSGATE F. C", 10, 3, false)

The declaration and initialisation can be combined

struct ([1: 12] char opponents, int for, against, bool home) game
: = ("Tl NT AGEL VTD", 0, 0, true)

Note that the field that specifies the opponents is exactly 12 characters
long in both cases. The field in the record has been declared to be of this
length, and in practice most opposing team names would have to be
abbreviated or padded out with spaces so as to conform.

(2) The value of a record can be read from a data card

read (game)

The machine expects data that will match the pattern ofthe record exactly.
Thus the first 12 characters (whatever they are) will be taken as the
opponents' name. The machine will then look for two integers separated
by a space to supply the number of goals for and against, and finally for a
truth value (T or F) to give a value for the field home.

(3) It is possible to output the value of the record by using the print
command. The value of each field will appear in its normal fashion. For
example

print(game)

might give

ALL ENGLAND +0 +23 T

as the output

(4) If two record variables have precisely the same declaration (same fields,
same field selectors), then the value of one record can be assigned to the
other. This is illustrated in the program to find the best game considered
below.

(5) Any individual field can be extracted from the record variable by using a
field-selector and the qualifier of. Thus

Records and Files

for of game

refers to the score made by our side, and

opponents of game

is the name of the other team.

201

These fields can be used in exactly the same way as variables. They can
enter into expressions

bool win; win:= for of game> against of game

or values can be assigned to individual fields

opponents of game:= "LUSS ROVERS

When a field is an array, its elements may be selected by using ordinary
subscript brackets. However, brackets (of any sort) have a higher priority than
of and so, to preserve correct grammar, round brackets must be placed around
the group formed by the selector name, of and the record name. Thus

(opponents of game) [2]

is legal (the second character of the opponents' name), but

opponents of game [2]

is illegal, since game is not an array.

The program that follows is designed to read the descriptions of a number of
games and to pick out and print the 'best' one. This is defined as the game with
the largest (favourable) difference between the scores of the two sides. In the
case of a tie between two or more games, those played away are given
preference, as are those played later in the season. The data are presented as an
integer n followed by n game records, which are assumed to be in chronological
order.

1 begin
2 struct([1 : 12] char opponents int for, against, bool home)game,

bestgame;
3 int n, gs, bs;
4 read(n);
5 read((newline, bestgame));
6 bs: =for of best game - against of best game;
7 for j from 2 to n
8 do read((newline, game));
9 gs: =for of game- against of game;

10 if gs > bs or (gs = bs and not home of game)
11 then best game: = game; bs: = gs
12 fi
13
14
15

od;
print((newline, "THE BEST GAME OF THE SEASON WAS",bestgame))
end.

202 Programming and Problem-solving in Algol 68

6
BALLOCH F.C. 0 5 T
BALMAHA UTD 3 3 F
ROWARDENNAN 4 3 F (Data)

LUSS ROVERS 7 6 T
INCHAILLOCH 10 5 T
ROSS PRIORY 4 0 F

In this program the variable game is used to record the current game, and gs
stores its winning margin. Similarly, bestgame remembers the best game so far,
and bs is used for the best winning margin to date.

In lines 5 and 8, the read command is in the form

read ((newline, bestgame))

This form is necessary whenever a character array starts on a new card, unless it
is the first card in the data. When reading numbers, truth values or even single
characters, the system will automatically take a new card if one is needed but
for character arrays it must be told to do so in specific terms. The first field in
the record definition is, of course, a character array.

Before moving on, it is appropriate to mention a few formal properties of
records.

The mode of a record variable includes the tags of the field-selectors. Thus
the full mode of game is

(ref struct([] char opponents, int for, int against, bool home)

and the extended form of the declaration (which is so clumsy that it would
never be used in practice) is

ref struct([] char opponents, int for, int against, bool home)game
= Joe struct([1: 12] char opponents, int for, int against, booJ home)

(It is interesting to compare this with the full form of an array declaration- for
example, ref[,] int q =Joe[2:5, 1: 7] int. Remember that, when modes refer
to arrays, they never include the actual bounds!)

The selected field of a record variable is called a secondary, and its mode
(before coercions such as dereferencing) always starts with ref. Table 14.1 gives
the modes of the fields in game.

Field

opponents of game
for of game
against of game
home of game

Mode

ref[]char
ref int
ref int
ref bool

Table 14.1

Records and Files 203

It is also possible to declare a record constant, such as

struct (int q, []char ps) wp = (6, "PLAIN")

In this case, q of wp would have mode int and ps of wp would have mode
[] char. In practice, record constants are not used as much as record variables.

In many problems the data are much better represented by records of a
suitable shape and size than simply by unstructured collections of ints, reals,
bools, and chars. For example, a program that was concerned with making
technical drawings would find it convenient to regard a point (specified by its x
and y coordinates) as a basic data item.

Algol 68 allows the programmer to declare new modes, and so to create new
types of data item. A mode-declaration (which is subject to the normal rules of
reach) is written

mode modename = new mode

for example

mode point = struct (real x, y)

Here mode is a system word. The new mode name can be any underlined
word (or word in bold type) that is not already in use. The new mode itself is
usually (but not necessarily) a record definition starting with struct.

Once a mode has been declared, and provided it is within reach, it can be
used to declare new variables and for all other purposes, just as if it were a basic
mode like int or real. For example, the word point now stands for struct (real x,
y), and it is possible to write

point origin = (0, 0)
point marker: = (5.7, 812)

Another useful aspect of this facility is that new modes may be used to specify
the parameters, operands and results of procedures. Thus it would be possible
to declare a procedure like

proc midpoint = (point j, k) point:
comment Finds the midpoint on the line joiningj and j and k comment
((0.5•(xofj+xofk),0.5•(yofj+yofk)));

Here the procedure takes two points as parameters, and produces the point that
represents the position half-way in between. For example, the instructions

point q: = (5, 7), s: = (8, 3);
print (midpoint (q, s))

will produce something like

6.5 4

The body of the procedure is supposed to produce an object of mode point.
It does so by a structure display, which specifies each of the necessary com-

204 Programming and Problem-solving in Algol 68

ponents. The first is 0.5 * (x ofj + x of k) and the second is 0.5 * (y ofj + y of k).
There is, of course, no need for the result of a procedure (or of an operator for

that matter) to have the same mode as any of its operands. For example, it
would be possible to define a procedure less to use two points, producing a
boolean

proc less =(point a, b) bool:
comment Compares two points. The relation is satisfied if the first point

is nearer the origin than the second
comment

(x of a i 2 + y of a i 2 < x of b i 2 + y of b i 2)

In discussing new mode declarations it was implied that the object on the
right of the = sign is the description of a mode in the full sense ofthe term. This
is largely true, but there is one important difference-any square brackets in
the new mode definition must be supplied with actual bounds unless the square
brackets are immediately preceded by ref (a situation that you will not yet have
encountered). For example, in declaring a mode match suitable for the
variables game and bestgame used earlier the correct form would be

mode match = struct ([1: 12] char opponents, int for, againstbool home)

The form

mode match = struct ([J char opponents, int for, against, bool home)

is wrong, even though it represents a formal mode more precisely than the first
versiOn.

In most practical applications, collections of records of the same 'shape' are
organised into files. Files can be represented in many ways- they can, for
instance, be punched on cards, or printed on line-printer paper, one record to a
line. They can also be recorded in the backing store of a computer and read
back as if they were punched on cards. In the working store of a computer,
however, a file is best represented as a one-dimensional array of records.

An array of records (which is, of course, distinct from an array within (a
record) is declared in exactly the same way as an array of elements of any other
mode. Some examples are

[1: 20] struct (int q , r; real zz) ab

or

[1:3, 1:6]point plan

The first declaration sets up an array of 20 records. Each record has three
fields-q, rand zz. The real field of the last record in the array would be
referred to as zz of ab [20]. No brackets are necessary.

The second declaration assumes that mode point has already been declared.
Here, plan is an array with 18 elements.

Records and Files 205

Files are usually ordered with respect to the contents of one of the fields in
the records. A file that was a list of employees in a factory would probably be
arranged in increasing order of'works number' (a unique number given to each
employee when he joins the company) or possibly in alphabetical order of
names. An ordered file makes it much easier to locate particular entries, for a
logarithmic search can be used.

The field used to order a file is called a key field, and any particular value of
this field is a key.

The processes of searching and sorting involve comparisons of keys, in order
to decide whether one is equal to or 'less than' another. If the keys are integers
(like works numbers) there is no difficulty but, if the keys are alphabetical,
considerable care is needed. It is essential to start with proper definitions of
'equals' and 'less than'.

Equality is the simpler of the two. Two character strings are deemed to be
equal only if

(a) they have the same length, and
(b) every character in one is identical to the corresponding character in the

other.

The operation 'less than,' when applied to pairs of character arrays, could
have several possible interpretations. The most natural is the operation that
tests for alphabetical order, so that "ss" < "tt" implies that "ss" would be found
nearer the first page of the dictionary than "tt". The normal conventions about
alphabetical ordering imply that "s" < "ss".

Comparisons between strings are not trivial. Nevertheless, Algol68 includes
built-in definitions that allow the operators =, "I=, <, >, < = and > = to be
used on character strings without formality.

Sometimes the rules for ordering are even more complex. An obvious
example is a field that contains a person's first and second names. Ordering is
usually done on the second name, the first name being used only as tie-breaker
if the second names of two people are the same. The following procedure
determines whether two fields of this type-a and b-are in alphabetical
order. It is assumed that in each case the first name starts at the element with
subscript 1, and that the second name is separated from the first by a single
space. The procedure works by locating the position of the space in each string
and comparing slices of the fields in the appropriate order.

proc compare = ([] char a, b) boo I:
(int sa, sb;

);

for j while a [j] =P " " do sa: = j + 2 od;
for j while b [j] =" " do sb: = j + 2 od;
if a [sa : upb a] =P b [sb : upb b]

fi

then a [sa: upb a] < b [sb: upb b]
else a [1 : sa- 2] < b [1 : sb- 2]

206 Programming and Problem-solving in Algol 68

In practice, the process of comparing people's names is complicated even
further because some use only their initials, some give their middle names, and
some the initials of their middle names. This is the kind of difficulty that many
commercial programmers spend time solving!

If the records in a file are not in order, they must be sorted. Merge sorting
(described in chapter 13) is an excellent method but has the drawback that it
requires a considerable amount of extra space. If you look at the definition of
the procedure merge on p. 194, you will see that, whenever it merges two
sequences of length m and n, it creates (albeit temporarily) an array of m + n
elements. This implies that, in order to sort 1000 elements, at some stage 2000
storage locations will be required. If each element is a large object (like a
record) this may well overtax the capacity of the machine and the program will
break down.

A good solution to this problem lies in sorting not the records themselves
but much smaller tokens. Each token is an integer that represents the position
of a record in the main array. Initially the tokens are set up in their own array,
in the same order as the records that they represent- that is, 1, 2, 3, ... Such
an array might be as follows. 1

Main array

Key field

BURL NOGGLE
NEWT LOKEN
WALTER SCHUYLER
PAUL NIGGLI
MILDRED STRUNK
UNITY STACK
MUSTAPHA MBOOB
ADRIAN STRUNK

Other fields
(not shown)

Token array
Initial order Final order

1 2
2 7
3 4
4 1
5 3
6 6
7 8
8 5

When the tokens are sorted, they are ordered not by their own (integer)
values but by the key fields of the records they stand for. Thus (for example)
element 7 should come before element 5, because MBOOB comes before
STRUNK in dictionary order. The order of the tokens after sorting is shown in
the last column of the table.

From the sorted tokens it is now possible to find the key order of the records
in the main array. For example, the first in dictionary order turns out to be
record number 2. To print out the whole file would require a loop such as

for j to upb mar do print ((newline, mar [xx [j] J)) od

where mar is the identifier of the main record array and [1: upb mar] int xx is
the array of tokens.

The mental equipment provided in this chapter is adequate for the solution
of a simple but realistic problem in data handling.
1The names in this chapter are taken from The Guardian, 1 February 1975.

Records and Files 207

A university maintains a card file giving details of all the students currently
attending. The file is kept in the order of the students' official numbers, which
are assigned to them when they first register. Each record in the field has the
structure

struct (int number, [1: 24] char name, [1: 4] char style, [1: 12] char
department);

(In practice a student file would have many more fields, but the abbreviated
record will serve for our illustration.)

A section of the file might be

721053 CLOPPER ALMON MR PHYSICS
721062 MONETEE REDSLOB MR COMPUTING
721345 ADELHEID POPP MRS ENGLISH
721350 DESIREE TUITS MISS MATHS
721477 JOHN SWEENEY MR COMPUTING
721580 MERLE FAINSODD MS COMPUTING
721600 RANDY HADDOCK MR CHEMISTRY
731003 FRED PLOG MR MATHS
731094 XENOBIA FATT MRS COMPUTING
731184 ELGIN GROSECLOSE SIR COMPUTING
731294 FRIEDRICH NAUSEA MR PHYSICS
731455 JUSTUS JEEP MR COMPUTING
731712 ANTHEA GROSECLOSE LADY COMPUTING
731904 MOHAMMED MCDOOM MR ENGLISH
741094 TIZIANA SOZZI MS ITALIAN
741127 FLORENCE MOOG MISS COMPUTING
741277 ISRAEL SMUT MR CHEMISTRY
741394 HARDY WORM MR MATHS
741644 IRVING FATT MR COMPUTING
999999 DUMMY

The exact number of records in the file is not known precisely, since it
changes daily; but the file is terminated with a dummy record with 'student
official number' set to 999999.

At various times, professors are sent lists of all the students registered in their
departments. These lists generally appear in alphabetical order of the students'
names, and not according to their numbers as in the main file. The problem to
be considered is that of using the main student file to produce an ordered list
for the department of computing.

The initial approach will be from the top downwards. At the highest level,
the algorithm needed is a simple one.

(1) Read the entire student file, and pick out all the records that refer to
students in the computing department, setting them aside in an internal
file or array.

208 Programming and Problem-solving in Algol 68

(2) Sort the internal file, using the name field as a key.
(3) Output the sorted records with suitable labelling.

It is assumed that there are not more than 500 students in the computing
department. (This assumption allows arrays of fixed size to be set up.) A
skeleton program is now written, as follows.

begin
mode student = struct(int number, [1 : 24]char name, [1 : 4]char

style,[1: 12Jchar department);
[1: 500]student list; int n: = 0; student next;
while read(next); number of next =F 999999

do if department of next= "COMPUTING "then
list [n + : = 1] : = next;

if n > = 500 then print((newline, "TOO MANY
COMPUTJNG STUDENTS"))

fi
od;

sort (list [1 : n]) ;

print((newline,"ALPH ABETJSED LIST OF COMPUTER SC 1 ENC E
STUDENTS",
newline, "NUMBER NAME STYLE (DEPT)"

));

for j ton do print the jth record in list od

end

The areas still to be filled in are concerned with sorting and printing; they are
circled in the skeleton program.

The records will be sorted using some of the methods already discussed­
by setting up a file of integer tokens and using the merge-sort method. Of
course it will be necessary to redefine the procedure merge so as to order
elements according to the key fields of the records to which they point.

The entire program is as follows.
1 begin
2 mode student = struct(int number, [1: 24]char name,
3 [1: 4Jchar style, [1: 12Jchar department);
4 [1: 500] student list;
5 proc comp = ([]char p, q)bool:
6 comment Compares two names p and q, and produces true if
7 p is alphabetically less than q
8 comment
9 (int sa, sb; for j while a[j] =F" "do sa: = j + 2 od;

10 for j while b[j] =1-" "do sb: = j +2 od;

);

Records and Files

if a [sa: upb a] =f. b [sb : upb b]
then a [sa : upb a] < b [sb : upb b]
else a[1:sa-2] <b[1:sb-2]

fi

proc merge = (ref[] int a, b) [] int:

209

comment Merges two ordered arrays of tokens, a and b comment
(int pa: = 1, pb: = 1; [1: upb a'+ upb b] int c;
for pc to upb a+upb b

);

do if pb>upb b then c[pc]: = a[pa]; pa +: = 1
elif pa>upb a then c[pc]: = b[pb]; pb +: = 1

fi
od

elif comp(name of list [a[pa]],name of list[b[pb]])
then c[pc]: = a[pa];pa +: = 1
else c[pc]: = b[pb]; pb +: = 1

proc tokensort = (ref[]int x)void:
(if upb x > 1

fi
);

then tokensort(x[1: upb x -;. 2]);
tokensort(x[upb x + 2 + 1: upb x]);

x: = merge(x[l:upb x+-2], x[upb x+2:upb x]

proc sort= (ref[] student w) [] int:
comment Sorts an array of student records by their names and

produces a sorted list of tokens. w is unchanged
comment
([1 : upb w] int t;

for j to upb w do t[i]: = j od;
tokensort(t); t

);
comment Now the main program can start comment
int n: = 0; student next;
while read (next); number of next =f. 999999

do if department of next= "COMPUTING " then
list [n + : = 1]: = next;

od;

if n > = 500 then print ((newline, "TOO MANY COMPUTING
STUDENTS"))

fi
fi

[1 : n] int xx: = sort (list [1 : n]):
print ((newline, "ALPHABETISED LIST OF COMPUTER

SCIENCE STUDENTS",

210 Programming and Problem-solving in Algol 68

54 newline, "NUMBER NAME STYLE (DEPT)"
55));
56 for j to n do print ((newline, list [xx [j]])) od
57 end

In this program the read command is read (next), not read ((newline, next))
because each record starts with an integer rather than a character array.

The results expected from this program are as follows.

ALPHABETISED LIST OF COMPUTER-SCIENCE STUDENTS

NUMBER NAME STYLE (DEPT)

721580 MERLE F AINSODD MS COMPUTING
741644 IRVING FATT MR COMPUTING
731712 ANTHEA GROSECLOSE LADY COMPUTING
731184 ELGIN GROSECLOSE SIR COMPUTING
731455 JUSTUS JEEP MR COMPUTING
741127 FLORENCE MOOG MISS COMPUTING
721062 MONETEE REDSLOB MR COMPUTING
721477 JOHN SWEENEY MR COMPUTING

In most data-processing installations, procedures for sorting and comparing
names would be included in a standard library. Many computers are equipped
with special-purpose data-retrieval languages, which allow a list of this kind to
be generated by a few simple commands

select on (department= "COMPUTING"); sort on name; print

These languages save time on specialised applications, but do not offer the
power of a more generalised system like Algol 68.

EXERCISES

* 14.1 (2) A file of exam results contains the following items of information
for each student

name (maximum of 24 characters)
department (maximum of 12 characters)
marks (out of 100) for four different papers in English, Mathematics,

Computer Science and Philosophy.
(a) Define a suitable structure for a record in this file, and declare an

array of 100 such records.
(b) Assuming that 100 such records have actually been read in and set up

in your array, write a sequence of code that finds and prints out the
name of the student with the highest aggregate score.

Records and Files 211

* 14.2 (5) In two-dimensional coordinate geometry, a point is characterised
by two real numbers-its x and y coordinates. Likewise a line is also
characterised by two real numbers-m and c in the line equation y = mx +c.

(a) Declare modes point and line for variables that represent points and
lines, respectively.

(b) Consider the following diagram. The positions of points Pl P2, Ql
Q2 and R 1 R2 are given as data. The segment of program below the
diagram calculates the area of triangle XYZ by the formula

A = j { s(s - a) (s - b) (s - c)}

where s is the semiperimeter and a, b and c are the lengths of the
three sides.

r2

q1
X

q2

point pi, p2, ql, q2, rl, r2, x, y, z; line p, q, r;
read ((pi, p2, ql, q2, rl, r2));
p: = join(pl, p2);
q: =join (ql, q2);
r: =join (rl, r2);
x: =crosses (p, q);
y: = crosses (p, r);
z: = crosses (q, r);
real a= distance (z, y), b =distance (z, x), c =distance (y, x);
real s = 0.5•(a+b+c);
real area= sqrt (s.(s-a)•(s-b)•(s-c));
print (("AREA IS", area))
Write suitable definitions for the procedures distance, join and crosses.

212 Programming and Problem-solving in Algol68

* 14.3 (5) (P) It is proposed to set up a navigational surveillance system over
a roughly square area of the Atlantic Ocean, 1000 x 1000 km in size. The
system uses a file in which each record represents a ship. The following
information is stored

name (20 characters)
position at midnight (in 1 km coordinates)
course at midnight (in degrees East of North)
speed at midnight (in kmjhour).

The file is updated every midnight.
Write a 'rescue' program. The data are the position and time of an event

(such as a ship-wreck or ditched aircraft). The program is to scan all the
shipping records, choose the ship able to be on the scene in the shortest
possible time and print out

(a) its name
(b) its new course
(c) its expected arrival time at the scene.

The data for the shipping file will be provided on cards. The name of each ship
will be 20 characters long, and will be followed by four numbers giving the
position, course and speed at midnight. The file ends with a dummy record, in
the form of the ship's name ZZZZZZZZZZZZZZZZZZZZ. The time of the
event will be supplied in hours after midnight.

You may assume
(a) that the earth is flat
(b) that a ship can (and will) alter course instantaneously
(c) that all ships in the area are represented in the file
(d) that no ships have changed course since midnight.

15 Problem Definition and Program
Documentation

"That's very nice, but it's not what I wanted'

Most of this book has been devoted to the art of programming. The subject has
been treated very much in isolation- the problems to be programmed just
appeared, as it were by magic, at the ends of the chapters. It has been implied
that, once a program has worked correctly, that is an end to the matter as far as
the programer is concerned.

This last chapter is an attempt to put the whole subject of programming into
its correct context. As noted at the beginning of the book, computers are
machines for solving problems, and programming is only one of the steps
needed to advance from the first recognition of a problem to its eventual
solution.

It is usual to regard the entire sequence of steps as having three major phases

(a) systems analysis-defining the problem and deciding how to solve it
(b) programming the proposed solution
(c) operations-running the program on a regular basis.

In many cases each of the three phases is done by a different person. In most
computing organisations, 'systems analyst' and 'programmer' are two distinct
job titles, and the 'operations manager' who runs the computer is again a
separate appointment.

In the systems-analysis phase, the client and the solver (using the names
introduced in chapter 1) get together to decide exactly what is to be done, and
to work out a way of doing it. At first the client's description of what he needs
will be vague, and the solver must be able to ask the right questions and sift the
replies, until a clear requirement emerges. Eventually the client and solver will
produce an agreed problem definition. The following are some of the items that
it should contain.

(1) A clear statement, in plain language or mathematical terms, of the
purpose of the system. There must be an unambiguous statement that
describes the intended input, and shows how the results are to be derived
from the data.

(2) A brief description of the general hardware configuration to be used (type

214 Programming and Problem-solving in Algol 68

of central processor and peripherals). If the program is meant to be
portable (that is, capable of being run on computers of different types) the
problem definition should say so. Ideally, the programming language
should be chosen freely by the solver and need not enter into the problem
definition; but in practice many clients will require the use of a particular
language, so as to conform to a commercial policy.

(3) The general format of any files to be kept in the backing store.

(4) A detailed description of the input format for the data, with examples.

(5) A description of the proposed output format, if possible illustrated with a
mock-up drawn on squared paper.

(6) The actions to be taken for illegal input.

(7) An agreed statement about the importance of the data being correct. This
may vary from one problem to another, and between different parts of the
same problem.

(8) Some indication of the following points.
(a) When is the system to be ready for use?
(b) What is its expected life, and how often is it to be used?
(c) What is the expected volume of data?
(d) What is the expected performance of the system (in terms of cost per

run)?
(e) What arrangements are to be made to maintain the system after it is

put in to use? (Maintenance includes the correction of residual errors
and the making of alterations to handle unforeseen new require­
ments.)

The problem-definition document should eventually be signed by both client
and solver, so that it can be used as the basis of an agreement. There is plenty of
experience to suggest that, if this is not done, the client and the solver may
eventually disagree on whether the problem has been solved correctly.

The drafting of the problem definition is certainly the most difficult task in
the whole process of problem solving. It calls for experience, tact, modesty and
in many cases a good technical knowledge of specialised areas such as medicine
or production engineering. There are three cardinal rules.

First, question everything the client tells you, and believe nothing until you
have checked it for yourself. The client must be able to satisfy you on such
matters as why he wants the system, whether he can pay for it, whether he and
his staff have the experience to use it, and whether the various decision rules are
really as clear-cut as he may claim. If the client is not himself a person with
computer experience, he will probably have a simplified idea of the way his
organisation actually runs, and he may be passing this inadequate information
on to you in good faith.

Second, consider the impact ofthe system on the whole organisation. Will it

Problem Definition and Program Documentation 215

make more work for some of the members? Will it endanger the security of
confidential information? Will it generate unemployment? Both you and the
client should be aware of these difficulties since they may well influence the
over-all design of the system.

Third, be totally cynical of your own ability as a system designer, and of the
speed and accuracy of the person who is to do the actual programming,
whether you or someone else. Make a careful, honest and reasoned estimate of
the time you need to design and build the system- and then quadruple it to
get a realistic figure that can be incorporated in the agreed problem
specification. Work completed ahead of its schedule is always admired, but
work that is late often causes great expense and bitterness. It is always best to
be pessimistic about your own abilities.

Similar considerations should apply when you predict the performance of
your system. Your best private estimate should be downgraded by a large
factor before it goes into the problem definition.

The whole question of input format is one where you must take account of
many practical factors. If the client has an operations manager, it is best to
consult him- he may well give valuable advice about card layouts and the
volume of dat,a that his department can be expected to prepare each week.

A key decision to be made is the standard of accuracy needed in the data. An
easy answer is: 'It must all be exact'. In practice, errors often occur in card
punching and data transmission, and their elimination can be very expensive.
By considering different kinds of problem, it is possible to define a whole
spectrum of different needs.

At one end, there are interactive systems where errors are immediately
obvious and simple to correct. Consider an airline booking system. If a travel
agent mistakenly types a date as '3/55/76' the system will immediately respond
with "IMPOSSIBLE DATE" and nothing will have been lost except a few
seconds of the agent's time.

At the other extreme, data errors can have irreversible and often tragic
consequences. Consider a town where there is a computerised medical-data
bank. Every inhabitant wears a metal 'dog tag' that gives his medical
registration number. When the victim of an accident is brought in to a hospital,
his medical record can be retrieved in seconds so that he can be given, say, a
blood transfusion without delay. If a mistake is made in keying the number
into the computer terminal, the machine will display the record for a different
person, who may have an incompatible blood group. Such an error would
eventually be discovered, but too late for the unfortunate patient, who might
already be dead.

Most applications fall between these two extremes. In deciding on an
appropriate degree of accuracy, two factors must be taken into account.

(a) What are the consequences of an error? Being left off a mailing list for
advertisements is not as drastic as having your salary calculated on the
wrong basis.

216 Programming and Problem-solving in Algol 68

(b) If the errors affect an individual person, does he have the opportunity to
check the matter for himself? For instance, all bank customers eventually
receive printed statements from the computer that they can verify for
themselves; but on the other hand, examination results and medical
records are generally kept secret.

Data preparation is, as has been noted, a chancy matter. Fortunately, there
are several techniques that reduce the rate of undetected errors.

Most errors arise in the manual transcription of data from written sheets to
punched cards or other keyboard devices. The best way of avoiding keying
mistakes is to eliminate the keying process altogether. This can be done in
many circumstances. Thus all automatic measuring and recording devices,
such as might be part of an automatic weather station, can be made to produce
records on paper or magnetic tape, which can be read directly by a computer
without human intervention. Again, documents can often be printed with
magnetic characters or specially shaped numerals that can be read directly by
robot scanners and fed to a computer without manual keypunching. Library
books and personal library cards can be fitted with magnetic strips. When you
take a book out of the library, your card is presented to a scanner together with
the book you are borrowing. The scanner is connected to a computer that can
keep library records without the need for every title and every borrower's name
to be typed by hand.

If the key punching is unavoidable, there are still several ways of reducing the
error rate.

The simplest fundamental precaution is to make sure that all the data being
keyed is legible to the keyboard operator. You should arrange for the use of
carefully designed forms, and insist that the data be written in a clear hand with
stylised characters that emphasise the differences between letters 0, I, Z and S
on one hand and the digits 0, 1, 2, and 5 on the other.

Above all, find out and follow your local rules for telling letter 'oh' from digit
'zero'. There are two conventions, each believed, by those who practise them, to
be 'universally accepted': one group maintain that ~ means 'oh', while the
other, with equal fervour, will say that it means 'zero'. The local operations
manager will be able to help you in this basic but vital area.

Another widely used method of improving accuracy is called verification. It
consists of having every item of data typed twice, by different people. The two
streams of data are compared automatically and any difference is brought to
the attention of the operator, who can make the appropriate correction.

In systems that involve databases, the keys of the individual records may be
used repeatedly. In a banking system, for example, the key would be an account
number and it would be punched every time that the corresponding account
was used.

If straightforward consecutive integers are used as account numbers, there is
every chance that a simple slip-such as putting '37748' instead of'37448'­
will lead to an entry being made in the wrong account. A bank that did this
often would soon lose all its customers.

Problem Definition and Program Documentation 217

To help with this problem, it is customary, when first assigning a new
account number, to add a check digit. This is an extra digit whose only purpose
is to detect keying errors. The check digit is worked out from the other digits in
the number by a fixed rule, such as
'Take the first digit, add twice the second, three times the third, and so on.
Discard the tens digit of the answer'.
For instance, if the basic number were 37448, the calculation would be

1 * 3 + 2. 7 + 3 * 4 + 4 * 4 + s. 8 = 85

and so the check digit is 5 (carding the 8) and the augmented account number is
'374485'.

Later, whenever any account number is keyed, the check digit is recalculated
and compared with the one supplied. Any discrepancy must be due to an error.
Thus ifthe number keyed is 377485, the check digit based on the first five digits
turns out to be 4, and so there is clearly an error.

This simple system will detect most but not all errors. The level of security
can be increased indefinitely by adding more check digits worked out by
different rules.

The method of sum checks cannot be applied if the data consist of
completely arbitrary numbers, like sums of money. An alternative system is
batch totalling. Here the data are split up into 'batches' of 100-200 numbers
each and, before being keyed, the numbers in each batch are added up on a
desk calculator. The total is entered into the computer separately. Eventually,
the computer can check that the total of the numbers in each batch does
indeed agree with the preliminary tally, and can reject any batch that shows a
discrepancy. Again, the system is not totally error-proof, since mutually
cancelling errors can still occur, but it offers a worthwhile degree of protection.

To summarise, there is, unfortunately, no method of data preparation that
offers absolute certainty of accuracy. Where correctness is of vital importance,
you would do well to ensure that the ultimate responsibility for the data lies
not with you but with the primary source from which the data first came. To
illustrate this point, consider a university where exam results are processed by
computer. Errors in the marks cannot be questioned by the students concerned
and could lead to serious injustices. A suitable processing system begins in the
usual way, with the marks being collected from the various departments, keyed
and verified. At this stage, before any permanent decision about any student is
made, the marks are printed out, department by department, with the
inscription

I CERTIFY THESE MARKS AS CORRECT

The lists are sent for scrutiny, possible correction and signature, to the heads
of the various departments concerned. The decision program is not run until
all the sheets are signed and returned.

This arrangement has two advantages. It protects you from blame if any
mistakes should subsequently be discovered, and it forces one last check to be

218 Programming and Problem-solving in Algol 68

carried out just before the marks are used.
Another important aspect of problem definition is the design of the output

format. Here you can be guided by the client's needs and a few simple rules.

(a) Every item to be printed must be labelled; numbers by themselves are
meaningless.

(b) Avoid huge tables of numbers; graphs or charts, no matter how crudely
printed, are always easier to assimilate.

(c) Make full use of preprinted stationery if appropriate. This again is an area
where the operations manager can help you.

(d) Prepare a sketch of your proposed output on squared paper, so that you
can see how the various items fit. Discuss the layout with the client.

(e) Save paper; do not produce large amounts of output unless you are sure
that someone is going to read it. A busy manager or professor may well
find time to look at a two-page summary, but he is most unlikely to read a
detailed 100-page report-he will simply throw it away.

Part of the problem definition should deal with the handling of errors in the
data. Whilst some mistakes in the data are logically undetectable, you should
ensure that all the errors that can be found are found. The system must deal
gracefully with errors; it should print out a warning message and if possible
continue processing the data. In some circumstances, such as specifying a
wrong file name, it may be necessary for the program to close down; but it
should never simply collapse, even with the most unlikely errors in the data.

These ideas are illustrated by the following problem definition, for a very
simple system derived from the label-printing program discussed in chapter 10.

LABEL PRODUCTION. PROBLEM DEFINITION

General purpose of system

This system is used to produce address labels from files of names and addresses
originally punched on cards and permanently recorded in a backing store. The
labels can be stuck to envelopes and used to circulate information to students,
customers, club members, etc.

To use the system, the client will supply a list of names and addresses in the
format given below. They will be punched and verified, and a compact listing
will be returned to him for checking. After any necessary corrections have been
made and checked, the data will be recorded in the backing store for future use.

At any time, the client may request a production run. Each address in the file
will then be printed on special stationery that consists of blank sticky labels
stuck to a waxy backing sheet.

The system comprises two separate programs-one that reads names and
addresses from cards and lists them on ordinary stationery for checking, and
one that reads data from the file store and prints the sticky labels.

Problem Definition and Program Documentation 219

Configuration

The program runs on an ICL-1900 computer with card reader, a line printer
and a backing store.

Input format

The data are presented as a series of cards, or card images from the backing
store. Each address is punched on one card, and consists of up to five lines. The
lines will be of arbitrary length subject to the following limits

line 5: 25 characters
line 2: 21 characters
line 3: 1 7 characters
line 4: 13 characters
line 5: 25 characters

Each line is terminated by a+ sign, which is not part of the address. Empty
lines must still be indicated by+ signs.

The last address is followed by a card which has a '/' in its first column.
For obvious reasons, the symbol + may not occur anywhere in the address,

and/ may not occur as the first character of the first line.
A sample set of data is

O.KLEMPERER+ 12 VINE ST.+LONDON EC1 ++ENGLAND+
C.M.GIULINI+7 OLD KENT RD.+MAIFSTONE+KENT+ENGLAND+
B.WALTER+ 17 BOND ST.+EDINBURGH+ +SCOTLAND+
M.SARGENT +PARK LANE+ NEATH+CARDIGAN-SHIRE+ WALES+

Output formats

The monitor program, which lists names and addresses for checking purposes,
uses the following format for each address

first, a blank line
next, a copy of the data card, exactly as punched
next, another blank line
next, the name and the address correctly laid out. The lines will be

indented as follows

line 1 : 0 spaces
line 2 : 4 spaces
line 3 : 8 spaces
line 4: 12 spaces
line 5 : 0 spaces

Where the data card contains a detectable error, the laid-out address will be
replaced by a suitable warning message. An example of output is

220 Programming and Problem-solving in Algol 68

O.KLEMPERER + 12 VINE ST.+ LONDON EC1 + +ENGLAND+

O.KLEMPERER
12 VINE ST.

LONDON EC1

ENGLAND

C.M.GIULINI + 7 OLD KENT RD.+ MAIFSTONE +KENT+ ENGLAND+

C.M.GIULINI
7 OLD KENT ROAD

MAIFSTONE
KENT

ENGLAND

B.WALTER+17 BOND ST.+EDINBURGH+SCOTLAND+ +

B. WALTER
17 BOND ST.

EDINBURGH
SCOTLAND

M.SARGENT +PARK LANE+ NEATH+ CARDIGAN-SHIRE+ WALES+

* * * * * LINE 4 OF ADDRESS TOO LONG (MAX= 13 CHARACTERS)

G.MAHLER+ ...

The main program, which generates the adhesive labels from data that have
already been checked, uses stationery of the standard size shown opposite.
(This is available from Z. Bloggs and Sons Ltd (computer stationers) as
catalogue item number StL747.)

The layout of each label is identical to that described for the monitor
program. The original data are not listed at all. The data should contain no
errors but, if they do, the corresponding label will be printed with the words
'ERROR IN ADDRESS'.

Error detection

The system can detect the following faults in the data.

(a) Wrong number of lines in the address. (There should be five, including
empty ones.)

(b) Too many characters in any one line. (The address should conform to the
rules given under the section on input format.)

Problem Definition and Program Documentation 221

0

I

0

0 0

·I
--- -i 0 0

3'h" 1"

0 0 J
0 }· I

0

0 0

0

I

0

0 0

0

I

0

0 0

4 9/J 6

Other mistakes (such as mis-spellings or duplication of the same name and
address) will not be found automatically.

Accuracy

The system ensures that the labels printed will be identical to the addresses
listed by the monitor program. The responsibility for checking and correcting
these addresses will lie with the client.

Other considerations

The system described in this definition will be ready 4 months1 after the
definition has been agreed. Its expected life is at least 5 years. The estimated
load is as follows.

The file store will eventually hold about 100 different address files with a
mean of 3000 names in each. On average, each list will be printed four times a
year. The system will therefore be used to generate some 1 200 000 labels a year.

1 Private estimate: 1 month.

222 Programming and Problem-solving in Algol 68

The over-all production cost of each label will not exceed 2!p 1 (at 1976
prices).

Any errors discovered in the system up to one year after it is delivered will be
corrected as quickly as possible. Changes to the definition of the system, and
the correction of errors that come to light after the first year of use, will be the
subjects of separate, new agreements.

Signed (Client)

(Solver)

April 24th, 1976

When the specification has been agreed, the necessary program can be
written. Enough has been said about this topic in the earlier chapters, and so it
is possible to pass directly to the final stage of problem-solving.

The last stage in getting the actual solution to any problem is operational­
running the system on a regular basis.

Programmers usually have little personal contact with the computer
operators, data-preparation staff, and ·Other people who actually use their
programs. The key to smooth and successful operation is good documen­
tation.

The documentation of a system is the collection of papers that describes its
purpose, design, construction, use and maintenance. Many programmers
think of documentation as an extra job to be tackled when the development of
a new system is complete. They are anxious to get started on the next project,

1 Private estimate: 1.1 p, calculated as follows
Estimated CPU time for 3000 labels: 20 seconds, cost (at £12.00 per

minute) £4.00
Number of lines of output (including blank lines) needed per label = 6
Output cost (at 0.05p per line)
Cost of stationery (at 0.5p per label)
Cost of mounting special stationery
Total production cost for 3000 labels

£33/3000 = 1.1 pence

£9.00
£15.00
£5.00

£33.00

Note that these private estimates do not form part of the program specification.

Problem Definition and Program Documentation 223

so that writing up the previous one is seen as a time-wasting chore. This view is
gravely mistaken; no matter how brilliant a system may be, it is entirely
valueless unless there are good instructions on how to use it. As will quickly
become apparent, a well-planned project generates its own documentation, so
that all that is necessary when the system itself is complete is a careful editing
job.

It is worth remembering that few people will ever study your programs in
detail, but many will read your documentation. In the long run it is by
documentation- in the form of user guides, reports or scientific papers- that
your competence as a professional computer programmer will be judged.

A system should be documented at three levels

(a) manager level
(b) user level
(c) maintenance level.

Each level serves a different purpose and is aimed at a different readership, so
that its style should be chosen accordingly.

The manager-level documentation should state briefly what the system does.
The description should consist of no more than a title and a short paragraph,
and be suitable for inclusion in a program catalogue. The aim is to attract the
attention of someone who might eventually use the program- no more.

Examples of manager-level documentation are

LABELS
This program prints adhesive address labels from a list of names and

addresses originally punched on cards and held in a file

and

COIN ANALYSIS
This program reads in a set of records that give the net pay of a number

of employees, and determines how many notes and coins of each
denomination are needed to make up the wage packets

The user-level documentation amounts to a 'user's guide'. It should tell the
client (or his employees) exactly how to use the system-nothing less and
nothing more. In particular, it must not include any descriptions of how the
system actually works, since this would serve no purpose and might actually
confuse the users.

224 Programming and Problem-solving in Algol 68

When you write user documentation, you assume that the reader is familiar
with general computer procedures like punching cards and submitting jobs to
the local system, but that he knows nothing about your particular system.
Everything must be explained in detail, with examples. (Many people do not
even bother to read the text, but just copy the examples you give, so the
presence of good, representative examples is vital.)

The essential elements of good user documentation are descriptions of

(a) the general purpose of the program
(b) data preparation and formats
(c) output formats
(d) job submission.

A good basis for each of these areas can be borrowed from the original
system specification. Thus the sections on the general purpose of the system
and the output formats can be copied over as they stand. The section on data
can begin with the part of the specification deeling with the input format, but
should also include material that shows in detail how to set up a typical data
card from hand-written or typed records.

The section on job submission should discuss the way in which the program
and data are to be presented to the computer. It must consider the necessary
job description and give rules to relate the resource requests (for CPU time,
store and output volume) to the characteristics of the actual batch of data being
used. The section must incorporate the listing of a complete sample job,
including its job description.

Every new programmer believes that he can write complex programs
correctly at the first try; but he discovers, painfully and tediously, that he is
prone to make mistakes and ~hat, until these mistakes have been eliminated,
the program is of no practical use whatever. Exactly the same applies to user
documentation; the first draft will contain mistakes and the system as a whole
will be entirely useless. Intellectually, the mistakes will usually be trivial (like
specifying the order oftwo cards incorrectly) but like 'silly' program errors they
will effectively prevent the system from working. User documentation must
therefore be debugged, very much like a program.

An important difference is that the instructions in the user documentation
are addressed to a person instead of a computer, and you must therefore find a
human guinea-pig on whom to try them out. The person chosen should
preferably have a 'devil's-advocate' mentality, and deliberately misinterpret
and misunderstand anything that is ambiguous or doubtful.

Once you have written the first draft of your user documentation and found
a willing subject, the correct procedure is to set him a problem designed to
exercise as much of your system as possible, to give him the instructions and
then to watch in silence. If you see your subject in doubt, or doing the wrong
thing, resist the temptation to correct him or to explain what the instructions
actually 'mean'. What you are seeing is a 'bug' in your own documentation.

After the trial run, correct your documentation as necessary and repeat the

Problem Definition and Program Documentation 225

entire procedure, preferably with another subject who is entirely new to the
system and has not been 'corrupted' by contact with an incorrect description.
Continue this process until the user documentation is really unambiguous and
correct- until it 'works' for all the sample users you can find.

The maintenance-level documentation is a complete technical description of
your program. The reader will be a qualified programmer who has the job of
correcting errors in your system or changing it to meet new specifications.

If your system development has gone smoothly, most of the maintenance
documentation should already exist when the system is complete. The
documents should include

(a) a complete listing of all the programs, with sample data and outputs
(b) a description of the purposes of all the variables used in the program
(c) a description of each procedure used in the program
(d) any charts, decision tables or flow diagrams that you may have used in

writing the program
(e) a description of the over-all program structure, showing how the various

procedures use one another
(f) an account of any mathematics that you may have incorporated in the

program.

This information can either be incorporated as comments in the program
listing itself, or given in a separate 'program description'. A common method is
to include minimal descriptions of variables and procedures in the program
itself, and to write up the other items separately.

The end of the book is approaching. It only remains to give a few final
comments on the techniques of solving real problems in information handling
and processing.

If you are to solve a problem, you need to understand it and to know why it
has arisen. Whenever you are about to start writing a program or designing a
system you should ask yourself, why, ultimately, am I doing this? Will it solve
the problem, or will it make it worse? Is the problem worth solving? Is the cost
acceptable?

Solving problems requires skill in the use of tools. Some of the tools
available in the Algol-68 system, such as expressions, procedures and arrays
have been discussed in this book, but there are a number of other facilities that
have not even been mentioned, simply because they are of most use in solving
advanced problems that arise in specialised areas.

In solving problems you must be aware of what others have done. Very few
problems are really new; nearly always someone has been here before.

By reading books and technical journals you may often find a method, a
procedure or a complete program that can be incorporated in your system.

In certain areas such as sorting or numerical analysis (a branch of
mathematics) all known methods have been carefully documented and
analysed, and are available as procedures in program libraries. Writing new
programs to solve problems in these areas is always a waste of time.

226 Programming and Problem-solving in Algol68

Above all, to solve problems, you need a quality called gumption. The recipe
for gumption reads like that of a magic potion, and some of the ingredients may
not be available. The main constituents are the following.
(1) care (check everything you do)
(2) creative cynicism (never believe anything that has not been proved)
(3) calm (work in a quiet place, and shut out distractions)
(4) leisure (do not hurry but take your time-correctness is better than

speed)
(5) sobriety (if you have had anything to drink, do not even try to work, but

sleep it off instead; a procedure that I once wrote after drinking half a
bottle of burgundy at lunch had so many mistakes that they were still
coming to light more than a year afterwards).

(6) peace of mind (be happy; if you are worried or distracted about anything,
go away and wait until you feel better about it).

Farewell, reader, and plenty of gumption!

EXERCISES

15.1 (9) Write a critical review of this book.

Further Reading

FURTHER STUDY OF ALGOL 68

F. G. Pagan, A Practical Guide to Algol68 (Wiley, London, 1976).
A. Learner and A. J. Powell, An Introduction to Algol 68 through Problems
(Macmillan, London and Basingstoke, 1974).
These are both introductory books, covering somewhat different areas of Algol
68 than the present volume.
A. S. Tanenbaum, 'A Tutorial on ALGOL 68',ACM comput, Surv., 8 (1976)
p. 155. An excellent article giving an overview of the entire language.
A. D. McGettrick, ALGOL 68-A First and Second Course Cambridge
University Press, 1977.
C. H. Lindsey and S. G. VanDerMeulen, 'Iriformal introduction to ALGOL 68,
revised edition (North Holland, Amsterdam, 1977).
These are texts for more advanced study of Algol 68.
P. M. Woodward and S. G. Bond, ALGOL 68-R Users' Guide (H.M.S.O.,
1974). A full introduction to the 68-R dialect of Algol 68.
A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoft',
C. H. Lindsey, L. G. L. T. Meertens and R. G. Fisker, 'Revised Report on the
Algorithmic Language ALGOL 68' Acta lnf, 5 (1975). This is a formal
definition of Algol 68, expressed in metamathematical terms. It is recom­
mended only to advanced readers with a special interest in Algol 68.

PROGRAMMING IN GENERAL

D. Knuth, The Art of Computer Programming, vols 1 and 3 (Addison Wesley,
New York, 1973).
E. S. Page and L. B. Wilson, Information Representation and Manipulation in a
Computer (Cambridge University Press, 1973).
0. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured Programming
(Academic Press, New York, 1972).
Articles by P. J. Denning, P. J. Brown, J. M. Yoke, N. Wirth, D. E. Knuth, B. W.
Kernighan and P. J. Plaugher, 'Special Issue: Programming', ACM comput.
Surv., 6 (1974).
M. Jackson, Principles of Program Design (Academic Press, New York, 1975).

228 Programming and Problem-solving in Algol 68

BACKGROUND READING

G. M. Weinberg, The Psychology of Computer Programming (Van Nostrand
Reinhold, New York, 1971).
Robert Pirsig, Zen and the Art of Motorcycle Maintenance (Bodley Head,
London, 1974)

Answers to Selected Examples

CHAPTER 1 (p. 10)

1.3 The four ways of dealing are summarised in the following table.

Method of If minimum amount used If maximum amount used
Tariff Charging cost receipts prof./loss cost receipts prof.jloss

flat rate 0 250 +250 500 250 -250
(£5 p.a.)

Metered rate 100 0 -100 600 750 +150
(3p a unit)

2 Flat rate 100 250 +150 350 250 -100
(£5 p.a.)

Metered rate 200 0 -200 450 750 +300
(3p a unit)

Tariff 1 (metered) or Tariff 2 (flat rate) offer the least risk for the landlord.

1.5 No. You might shake for ever without throwing a 6.

1.6a X

1 1
4 16
2.875 8.266
2.655 7.049
2.646 7.001

so J 7 to 2 places is 2.65.

1.6b X

1
5 25
3.4 11.56
3.023 9.139
3.000 9.0

so J 9 to 2 places is 3.00.

7/x
7
1.75
2.435
2.636
2.646

9/x
9
1.8
2.647
2.977
3.000

230 Programming and Problem-solving in Algol 68

1.7 What happens is
x x2

1 1
-0.5 0.25
+ 1.75 3.063
+ 0.304 0.092
-3.1375

-2/x
-2
+4
-1.142
-6.579

and so on. The process does not converge, because there is no number which,
when squared, gives- 2. To convert the procedure to an algorithm, we should
add an instruction at the beginning, saying: "if n is negative it has no square
root; do not attempt to find it; otherwise:".

CHAPTER l (p. 21)

2.10123456789.-

5000
2.3 800 x 12 = 521 ft. A 600-ft tape would suffice.

Answers to Selected Examples 231

CHAPTER 3 (p. 40)

3.1

System words
Symbols of constant

Identifiers Literals
meaning

begin [word 1
char z 20
int] diet 10000
struct pd 1250
proc .- back 80
if for "0"
upb count "Z"
then pdict "A"
clear > size 4
else +·-.- tree "ZZZZ"
or < line "NO TEXT"
fi = lp
end =F tp
boo I + q
while read
do newline
skip print
od nextword
of charfetch
void node out
not X

true tree print
false newnode
elif make

j
k
w
f

1

232 Programming and Problem-solving in Algol 68

3.2

begin [1: 20] char word; int z; [1: 10000] char diet; int pd: = 1;

proc make = void:
begin int j, k, w; bool f;

if not nextword

fi
end;
make

end

then print((newline, "NO TEXT'))
else newnode;
while nextword do j: = 1; f: = true;

treeprint(J)

while/do k: = pdict of tree[i];

od·
'

w: =size of tree[j] + k- 1;
if word [1 : z] = diet [k : w]

thenf: =false;

fi
od

count of tree[j] +: = 1
elif word [I: z] <diet[k: w]
then if back of tree[j] =F 0

then j: = back of tree
else f: = false;

fi

back of
tree[j]: = tp;

new node

eliffor of tree[j] =F 0
thenj: =for of tree[j]

else f: = false;
for of tree[j]: = tp
new node

Lines to show alignment only.

3.6 pat is declared twice, in different modes. susan is declared twice in the
same mode.

3.7 (1) 5
(6) 31

(11) 1

(2) 24
(7) -6

(12) 64

(3) 1
(8) 0

(13) 1

(4) 1
(9) -1

(5) 31
(10) 3

Answers to Selected Examples

3.8 (a) chair is misspelled
(b) xis declared twice
(c) A bracket is missing in the expression abs(w + 3t- 47 + w
(d) 3t is not allowed; 3 * t
(e) No semicolon between y: = "Q" and y: = t

(f) You can't assign an int to a char
(g) t is undefined
(h) The string constant has no closing quotation mark
(i) print must not be in bold type.

233

3.10 This program reads 4 characters and prints them out backwards. In this
case it gives DOOM.

3.11

begin int a, b, c;
read (a); read(b);
print(("A" = ", a, "B = ", b)); c: =a·+ b;
print((newline, "A+ B = ", c)); c: = a - b;
print((newline, "A- B = ", c)); c: = a* b;
print((newline, "A*B =",c)); c: =alb;
print((newline, "Ai B =",c))

end

This program is followed by the two data numbers a and b.
Note: A solution not using a third variable c, but having statements like

print ((newline, "A+B = ", a+b))

is also acceptable.

CHAPTER 4 (p. 52)

4.2

Begin int x,y;

read (xJQ

if X< 100 then y§4 ®x else y:=fO®x-73@;

print (y)

end

234

4.5

Programming and Problem-solving in Algol 68

T~

fare:=fare*5o+100

T

print
("YOUR FARE IS")

Route Number Age Stay Length

1 <3 1 11
2 <3 2-3 11
3 <3 4-16 12
4 <3 > = 17 11
5 3-13 1 12
6 3-13 2-3 12
7 3-13 4-16 13
8 3-13 > = 17 12
9 >13 1 11

10 >13 2-3 11
11 >13 4-16 12
12 > 13 >= 17 11

fi

4.6

Answers to Selected Examples

begin int a, b, c;
read((a, b, c));

print(("THE THREE NUMBERS ARE", a, b, c, newline));
ifa >=b+corb >=a+corc >=a+b

fi
end

then print(("THEY DO NOT FORM A TRIANGLE"))
else print(("THEY FORM A TRIANGLE"))

CHAPI'ER 5 (p. 68)

5.1

(input)

123 (output)

X y

45 ,
1'1 ~

123 113
44
s4
~
t

9999

235

This program reads a stream of numbers terminated by 9999 and prints the
largest one (not including the terminal 9999).

236 Programming and Problem-solving in Algol 68

5.2

od

5.4

5

1 1 output
2 3 a
3 6
4 10
5 15 J

1
~
~

s
6

input

b

y
z
J
~
~
1
1
1
I
1
J
1
~

$
1
J
1
~
$
6

s

g
1
g
1
1
g
1
~
R
g
1
1
R
~
g
J
1
p

t6
15

if

do~

~

t

5

Answers to Selected Examples

5.5 Frequencies derived from traces with different values oft.

begin int a, b, s, t;
read(t);
a:= 1;
whilea<=t

end

do s: = 0;
b: = 1;

od

while b <=a
dos+:=b

b+: = 1
od;

print(a);
print(s);
print(newline);
a+:= 1

1 2

1 1
1 1
1 1
2 3
1 2
1 2
2 5
1 3
1 3

1 2
1 2
1 2
1 2

t

3 4

1 1
1 1
1 1
4 5
3 4
3 4
9 14
6 10
6 10

3 4
3 4
3 4
3 4

5

1
1
1
6
5
5

20
15
15

5
5
5
5

237

IX

IX

IX

p
y
y
(J

6

6

y
y
y
y

In general, "s +: = b" is executed !t(t + 1) times, so that when t = 100, the
number of executions is 5050.

In general,
instructions in group IX are executed 1 times
instructions in group p are executed (t + 1) times
instructions in group y are executed t times
instructions in group b are executed !(t + 1)(t + 2) -1 times
instructions in group 6 are executed !t(t+ 1) times

Total fort= 100 = 3+(t+ 1) +6t+!(t+ 1)(t+2)-1 +2 x !(t(t+ 1))
= 3 + 101 +600+5150+ 10100

5.7c

= 15954 instructions

begin int p, q, a, b;
print((" ")); q: = 100;
while q < 110 do print (q); q + : = 1 od;
p: = 1000;
while p < 1100

do print ((newline, p)); q: = 100;
while q < 110

238 Programming and Problem-solving in Algol 68

od
end

doa:=p;b:=q;

od;

while a • b ::1: 0
do if a> b then a:= a mod b

else b: = b mod a
fi

od;
if a = 0 then print(b) else print(a) fi;
q+: = 1

p+: = 1

CHAPTER 6 (p. 81)

6.1 This program only reports whether the last data number is greater than
SO. This can be determined by tracing.

6.1 j:=x=J7

6.3

a b c not(a or b and c) and (a and b or not c)
t t t f
t t f f
t f t f
t f f f
f t t f
f t f t
f f t f
f f f t

6.4
not(a or c)

(or) not a and not c

CHAPTER 7 (p. 95)

7.1 a, c, d and f are in short form. Expanded, they become

ref int k = Joe int
ref booJ x = Joe booJ: = true
ref char q =Joe char:= "X"
ref bool seven = Joe booJ

Answers to Selected Examples 239

7.2

identifier mode reach (lines)

n int 2-15
p int 3-14
q int 4-14
r int 5-14

7.4 The program prints any number below 1000 whose value is equal to the
sum of the cubes of its digits.

7.7
(a) +3 +5 +7 +9
(b) +1 +1 +1 +1
(c) -1 +1 +3 +5 +7 +9 +11
(d) +1 +8 +15 +22 +29
(e) +2 +5 +5 +8 +10 +13
(f) +1 +2 +3 +4 +5 +45

7.8 1024 = 16 x 64, so this program will be organised as two nested loops.
The inner one will run from 1 to 16, and the outer one from 0 to 1008 in steps of
16.

begin int c, x;
for a from 0 by 16 to 1008
do print(newline);

od
end

forb to 16
doc:=a+b;

ford to 3
do x: = c+256; c: = 16•(c mod 256);

if x < = 9 then print(repr(abs "0" + x))

fi
od;

print (" ")
od

else print(repr(abs "A"+ x -10))

CHAPTER 8 (p. 11 0)

8.1 ref [] int quirk = loc [1: 25] int
ref [] bool able = loc [1 : 1000] bool

240 Programming and Problem-solving in Algol 68

8.2 t > = 1700 and t < = 2435 and (t -1700) mod 15 = 0

8.4 Since the large majority of requests are for the same small set of items, it

would pay to keep them in decreasing order of query frequency, and to search

from the top of the list downwards.

8.6 begin [1: 100] int x; int n: = 1;

end

while read(x[n]); x[n] =I= 0 don+:= 1 od;

bool b: = true;
while b

do b: =false;
for p to n-2

od·
'

do if x[p + 1] < x[p]

fi
od

then int d= x[p]; x[p]: = x[p+1]; x[p+1]; = d;
b: =true

for p to n - 1 do print((newline, x [p])) od

CHAPTER 9 (p. 126)

9.3
[1:8, 1:8] bool chess;

for j to 8 do fork to 8 do chess U, k]: = (j+k)mod 2 = 0 od od

9.8 begin co we use two arrays, one for the current state, and one for the next
generation

co
[1: 15, 1: 15] char now; next;

co the following sets up the initial picture co

for j to 15 do fork to 15 do nowU, k]: =" "od od;

for j .from 6 to 10 do for k from 7 to 9 do

nowU, k]: = "• "od od;
for c to 25 co set up 25 cyles co

do print((newline, newline));
for j to 15 co print current state co

do print (newline);
fork to 15 do print(nowU, k])od

od;
for j from 2 to 14 co now work out next generation co

od

Answers to Selected Examples 241

do fork from 2 to 14

od
od;

do int n: = - abs(nowU, k] = "* ");
for x from j- 1 to j + 1

do for y from k -1 to k + 1
do n + : = abs(now [x, y] = " * ")
od

od;
nextU, k]: =" ";
if(n = 2 and nowU, k] ="*")or n = 3

then next U, k] : = " *"
fi

for j from 2 to 14
co move next generation to current state co
do for k from 2 to 14 do nowU, k]: = nextU, k] od
od

end

CHAPTER 10 (p. 146)

10.6 The procedure tries to change the values of two constants a and b. A
better version of the procedure is

10.7

10.8

proc hcf = (int a, b) int:
begin int p: =a, q: = b;

while p # q do (p > q I p : = p- q I q: = q- b) od;
p

end

proc letter= (char x) bool:
(x < = "Z" and x >="A")

proc fine print = (int n, s; boo I sign) void:
begin int x: = abs n, ac: = 1; bool plus= n > 0;

co x starts with absolute value of number to be printed

co

ac will hold the true number of digits required (max. 7)
plus is the sign of the number to be printed

[J int power = (10, 100, 1000, 10000, 100000, 1000000);

242 Programming and Problem-solving in Algol 68

co 0 is a special case co
ifn = 0

then to s -1 do print(" ") od; print("O")
else

fi
end

while x > powers[ac] do ac +: = 1 od;
ifac+1>s

fi

then to s do print("*") od
else to s- (ac + 1) do print(" ") od;

if sign then print((plus I"+" I"-"))
else print ((pi us I " " I " - "))

fi;
while ac > 1

do print(repr(abs "0" +x + powers[ac]));
x: = x mod powers [ac]

od;
print (repr (abs "0" + x))

CHAPTER 11 (p. 161)

11.1

proc binout = (int b) void:
((b > 0 I binout (b + 2); print(repr(abs "0" + b mod 2))))

11.2

-1 +2 +3 +4 +7 +12

procedure bubble is given a reference to an array of integers as its parameter.lt
sorts the array into ascending order.

11.3 +I +5 +55

11.6

proc ssq = (int q) int:
begin int s: = 0;

for t to q do s +: = t i 2 od;
s

end

11.7 T F T T F T

11.8

Answers to Selected Examples

begin int c;

end

proc a = (int m, n) int:
begin

c + : = 1; co counts entries co
ifm = 0 then n+l
elif n = 0 then a(m-1, 1)
else a(m-1, a(m, n-1))
fi

end;
print((" M N A(M,N) NO OF CALLS"));
for j to 3

doforkto3

od

doc:= 0;
print((newline, j, k, aU, k), c))

od

CHAPTER 12 (p. 182)

12.3 Either of the following is acceptable

(a) begin real e, s, c, t;
print((newline, "X SINH(X) COSH(X) TANH(X)"));
for j from 0 to 100

end

(b) begin

doe:= exp (0.1 •j);
s: = 0.5 * (e-1.0/e);
c: = 0.5 •(e+1.0je);
t: = sjc;
print((newline, 0.1 •j, s, c, t))

od

proc sinh =(real x) reai:(0.5 * (exp(x)- exp(- x)));
proc cosh =(real x) real: (0.5 * (exp(x) + exp(- x)));
proc tanh= (real x) real:(sinh(x)/cosh(x));
for j from 0 to 100

do real x = 0.1 •j;

end

print((newline, x, sinh(x), cosh(x), tanh(x)))
od

243

244 Programming and Problem-solving in Algol 68

12.5c

begin

end

proc squarewave =(real x, int n) real:
begin real s: = 0.0;

for j by 2 to 2 * n - 1

s
end;

do s+: = sinU•x)jj od;

[0: 100] char line;
for q from 0 to 5

do print((newline, "GRAPH FOR Q = ", q));
for j from 0 by 10 to 720

od

do real x = j *pi/ 180;
int s = entier (30 * squarewave(x, q + 1));
fork from 0 to 100 do line[k]: =" "od;
line[s]: = "*"
print((newline, j, line))

od

CHAPTER 13 (p. 196)

13.1

13.3

(a) +8; (b) +49
(c) + 7.0000000100 + 7
(d) NO

+7

proc censor= (ref[]chars) void:
begin proc scan =(ref[] char t) void:

begin co this 'internal' procedure searches the array s for an
occurrence of the sequence t. If found, it replaces the
occurrence by stars.

co
int ss = lwb s, sf= upb s, ts = lwb t, tf = upb t;
for j from ss to sf- (tf- ts)

do if s[j] = t[ts]
then int k: = ts + 1;
while s[i+k-ts] = t[k] and k < = tf

do k+: = 1 od;
if k > tf

then for k from ts to tf do s [i + k- ts]: =" *" od
fi

13.4

od
end;

Answers to Selected Examples

fi

scan ("CONSERVATIVE");
scan ("LABOUR");
scan ("LIBERAL");
scan ("NATIONALIST')

end

begin

245

co here follows the texts of procedures alpha, digit, numin, car date and
compare as given on pp. 197 and 198.

co
proc carmerge = (ref[,] char a, b) [,] char:

co merges two arrays containing car numbers co
(int Ia = 1 upb a, lb: = 1 upb b;
int pa:= 1, pb:= 1, [J:la+lb, 1:7] char c;
for pc to la+lb

do (pa > Ia I c[pc,]: = b[pb,]; pb +: = 1

od;

I :pb > lb I c[pc,]: = a[pa,]; pa+: = 1
I: compare (b[pb,], a[pa,] I c[pc,]: = b[pb,]; pb +: = 1

I c[pc,]: = a[pa,]; pa +: = 1

c
);

proc carsort =(ref[,] char a) void:
co sort the list of cars a. Assumes that lwb a = 1 co
(int q = 1 upb a; int k = q+2;
if q > 1

fi
);

then carsort (a[J:k,]); carsort(a[k+1:q,]);
a: = carmerge(a[1: k,], a[k + 1: q,])

[1:3000, 1: 7]char cars; int n: = 0; [1: 7]char next;
while next:= numin; next# "ZZZ999Z don+:= 1; cars[n,]: =next

od;
carsort(cars [1: n,]);
print((newline, "SORTED CAR REGISTRATIONS ARE",

newline, newline));
int /c: = 0;
for j ton

do print((cars[i,]," ")); lc+: = 1;

246 Programming and Problem-solving in Algol 68

(lc = 10) I print(newline); lc: = 0)
od

end

CHAPI'ER 14 (p. 210)

14.1a

mode student= struct([1: 24]ehar name, [1: 12]cbar dept,
iDt eng, maths, cs, phil);
[1: 100] student file;

(b) proc aggregate =(student x) int:

14.2

co calculates the aggregate marks of a student eo
(eng of x+maths of x+cs of x+phil of x);

int max:= aggregate(file[JH where:= 1;
for j from 2 to 100

do int score= aggregate(fileU]);
if score > max then max: = score; where: = j fi

od;
print((newline, "STUDENT WITH HIGHEST AGGREGATE IS",

name of file [where]
))

mode point= struet(real ax, ay);

mode line = struct (real m, c);

proc distance = (point p, q)real:
eo uses Pythagoras' theorem to find distance between two points eo
(sqrt((ax of p-ax ofq)i 2+(ay of p-ay of q)i 2));

proc join = (point p, q)llne:
eo fits a line to the two points p and q according to the formula

y-Yt Y2- Yt --= .:....::.........:....=..

co
(real slope= (ay of q-ay of p)/(ax of q-ax of p);
real intercept = ay of p- slope • ax of p;
(slope, intercept)

);

proc crosses= (line p, q) point:

Answers to Selected Examples 247

co calculates the point where lines p and q cross co
(real x = (c of q-c of p)/(m of p-m of q);
real y = x * m of p + c of p
(x,y)

)
begin

mode ship = struct([1 :20] char name, real xpos, ypos, course, speed);
proc jleetin = (ref[]ship .fleet)int:

co this procedure reads in details of the fleet at midnight and stores
them in the formal parameter fleet. It yields the number of ships
present

co
begin ship next; int n: = 0;

while read(next); name of next ::1=

"ZZZZZZZZZZZZZZZZZZZZ"
do.fleet[n+: = 1]: =next; read(newline) od;

n
end;

proc when= (ships, real t, posx, posy) real:
co the time now is t. An accident has just happened at (posx, posy).

The procedure works out how soon ship s can be on the scene,
assuming it goes there directly from its present position

co
begin co first we work out present position co

real ppx = xpos of s+speed of s .sin(course of s. pi/ 180),
ppy = ypos of s+speed of s.cos(course of s.pi/180);

co next we calculate the distance to be covered to the disaster
co
real dist = sqrt((ppy-posy) i 2 + (ppx-posx) i 2)
co finally the time in hours co
distjspeed of s

end;
co here begins main program co
[1: 100]ship.fleet; int n = .fleetin;
real swx, swy, swt; co details of disaster co
read((swx, swy, swt));
real bt: = when(.fleet[l], swt, swx, swy); int which: = 1;
for j from 2 to n co now choose best ship co

do real tt = when(.fleet[j], swt, swx, swy);
if tt < bt then bt: = tt; which: = j fi

od;
co now extract details of best ship co
print((newline, "THE SHIPWRECK HAPPENED AT",

swt, "HOURS", newline,
"ITS COORDINATES WERE", swx, swy));

248 Programming and Problem-solving in Algol 68

print((newline, "THE BEST SHIP TO GO TO THE
RESCUE IS",

((name of fleet [which], newline,
"WHICH IS PRESENTLY AT',

xpos of fleet [which], ypos of fleet [which]));
real course:= 180 •arctan((swx -xpos of fleet[which]/

swy < ypos of fleet [which]));
co correct in case this points directly away! co
(swy < y pos of fleet [which] I course+ : = 180);
(course < 0 I course+ : = 360);
print((newline, "THE CORRECT COURSE IS", course,

"DEGREES E OF N"));
print((, newline, "ESTIMATED ARRIVAL TIME IS",

swt+sqrt((swx-xpos offleet[which]) t 2
+(swy-ypos offleet[which]) t 2)

/speed offleet[which], "HOURS AFTER MIDNIGHT'
))

end

Index

Page numbers in italic are pointers to extensive discussions of the items
involved. Certain key concepts, such as ints chars expressions and
procedures are used so frequently that to give a reference to every
occurrence would not be practicable.

@(at) 190
abs 32, 75, 173
accuracy 14, 61, see also

inaccuracy
activation 153
actual-parameter 13 7
algebraic functions 17 3
Algol68 character set 23
Algol 68R 26, 88
algorithm 9, 15, 129
analysis of algorithms 65, 104,

109, 191
argument see mantissa
arithmetical operators 31, 172
array 97,122, 189
array constant 114
assignation 29, 30, 85, 190

backing store 19
backspace 116
batch totalling 217
binary chop 107, 150, 205
bit (binary digit) 164
bool 70
boolean-expression 44, 46, 56
boolean-variable 70
bounds of arrays Ill, 189, 202
brackets 25, 37
byte 13

cards 15, 61, 115,218
case 186
central processor 19
char 30

character 12, 19
character-literal 24, 38, 115, 190
check digit 217
client 4, 213
coercion 87, 167, 185
combined operators(+:=,-:=,

*:=,+:=,/:=) 33,185
comment or co 25
computer operators 222
concepts 129
conditionals 41
constant 20
control counter 93
costs of computing 51, 222
cypher 97

data 15
database 16, 19
debugging 224, see also faults
decimal digits 165
declaration 28, 30, 46, 83, 98,

112, 134, 165, 199
default options 93
dereferencing 87, 137
direct indexing of arrays 1 OJ
do 55
documentation 222
dynamic arrays 111
dynamic faults 39, 56, 67

elif 77
errors in data 215
exponent 165
expressions 30, 38, 85

250 Index

fatal errors 21 S
faults 30, 36, 146
Fibonacci series 155
field 199
file 17, 19, 97, 199,214
floating-point unit 166
for 93
formal-parameter 136

gumption 226

HCF 58,78
hierarchy 12 9

identifier 23, 38, 83
identity-declaration 88, 114
if 45,46
inaccuracy of calculation 16 9
indentation 25, 226
information 12
initialisation of variables 87, 11 S
input format 215
int 28,30
integer 20
interface of a procedure 141

job description 26, 37, 224

key field 205

labels, printing of 115, 218
line printer 1 S, 120
linear transformation 102
literal 23, 166
loc 84

paper tape 1 S
parameter 136, 149, 150
perfect numbers 78
phrase 27
precision 165
print command 29, 34, 77, 166,

200
priority 32, 67, 71, 74, 185
privacy 2
problem definitiOn 213
procedures 129,149
program 9, 1 S
program library 159, 225
pr9gramming, art of 25, 213
programming aids 3 S
programming language 20, 22,

214

reach 89, 134
read command

200
real 165

28, 30, 77, 166,

real numbers 164
records 199
recursion 152, 159
ref 84, 139, 150
relational symbols (=, -=/=, <, >, <=,

>=) 44,73,172,205
relations see relational symbols
repr 75
results of procedures 140
robustness SO, 60, 111, 214
rounding errors 170
row-display 114, 190

logarithmic search see binary chop safety features 61, see also
logical operators 71 robustness
lwb 114, 123, 150 searching 103

mantissa 165
maps 120, 174
megabyte see byte
memory see store
merge-sort 194, 206
mod 67
mode 20, 38, 74, 83, 114, 134,

139, 150, 165, 185, 202
mode 204

of 200
operating system 26, 56, 67
orthogonality 70
output format 218

semantics 22
semicolon 27, 37, 46, 184
serial-boolean clause 46, 60
serial-clause 45, SS, 56, 88, 134
sign 32
skip 62
slicing 189
sorting 97, 190,206
stack 85, 90, 113
standard of accuracy in data 21 S
stepwise refinement 78, 116, 131,

141, 207
store 19, 84
string-literal see character-literal
struct 199

Index

undefmed 28
unit 28,45

subscript 97, 189, 190
subtense traverse 174
symbols of constant meaning
syntax 22, 38

23 upb 114, 123, 150

systems analysis 1, 213

table 97, 101, 103, 125
teletype 4, 15
time scales for building systems

215
tower of Hanoi 15 7
tracing 35, 51, 98, 135
trimming 189

values 50, 83, 134, 184
variable 20, 84
variable-declaration 88
verification 216
void 134

while 56,92
widening 16 7
working store 18, 90

251

