
Number Systems

Numbers and Their Computer Representation

Positional Notation

Decimal, Binary, Octal, and Hexadecimal, Nomenclature, Converting Between Number

Systems, Binary Arithmetic (Subtraction with Comlements), Binary Codes (BCD, Error-

Detection, Gray, and ASCII)

Introduction

Base 10 result of ten fingers

Arabic symbols 0-9, India created Zero and Positional Notation

Other Systems: Roman Numerals: essentially additive, Importance of Roman Numeral lies

in whether a symbol precedes or follows another symbol. Ex. IV = 4 versus VI = 6. This

was a very clumsy system for arithmetic operations.

Positional Notation (Positive Real Integers)

Fractional numbers will not be considered but it should be noted that the addition of said would

be a simple and logical addition to the theory presented.

The value of each digit is determined by its position. Note pronunciation of 256 “Two

Hundred and Fifty Six?

Ex. 256 = 2*10
2
 + 5*10

1
+ 6*10

0

Generalization to any base or radix

Base or Radix = Number of different digit which can occur in each position in the number

system.

N = Anr
n
 + An-1r

n-1
 + … + A1r

1
 + A0r

0
 (or simple A1r + A0)

Introduction to Binary System

The operation of most digital devices is binary by nature, either they are on or off.

Examples: Switch, Relay, Tube, Transistor, and TTL IC

Section

1

Thus it is only logical for a digital computer to in base 2.

Note: Future devices may not have this characteristic, and this is one of the reasons the

basics and theory are important. For they add flexibility to the system.

In the Binary system there are only 2 states allowed; 0 and 1 (FALSE or TRUE, OFF or

ON)

Example: Most Significant Bit

 High Order Bit

 1010 = 1*2
3
 + 0*2

2
+ 1*2

1
+ 0*2

0
 = 1010

 Least Significant Bit Denotes Base 10

 Low Order Bit Usually implied by context

Bit = One Binary Digit (0 or 1)

This positional related equation also gives us a tool for converting from a given radix to

base 10 - in this example Binary to Decimal.

Base Eight and Base Sixteen

Early in the development of the digital computer Von Neuman realized the usefulness of

operating in intermediate base systems such as base 8 (or Octal)

By grouping 3 binary digits or bits one octal digit is formed. Note that 2
3
 = 8

Binary to Octal Conversion Table

2
2
2

1
2

0

0 0 0 = 0

0 0 1 = 1

0 1 0 = 2

0 1 1 = 3

1 0 0 = 4

1 0 1 = 5

1 1 0 = 6

1 1 1 = 7 Symbols (not numbers) 8 and 9 are not used in octal.

Example: 100 001 010 110

 4 1 2 6 8 = 4*8
3
 + 1*8

2
 + 2*8

1
 + 6*8

0
 = 2134

This is another effective way of going from base 2 to base 10

Summary: Base 8 allows you to work in the language of the computer without dealing with

large numbers of ones and zeros. This is made possible through the simplicity of

conversion from base 8 to base 2 and back again.

In microcomputers groupings of 4 bits (as opposed to 3 bits) or base 16 (2
4
) is used.

Originally pronounced Sexadecimal, base 16 was quickly renamed Hexadecimal (this

really should be base 6).

Binary to Hex Conversion Table

2
3
2

2
2

1
2

0

0 0 0 0 = 0

0 0 0 1 = 1

0 0 1 0 = 2

0 0 1 1 = 3

0 1 0 0 = 4

0 1 0 1 = 5

0 1 1 0 = 6

0 1 1 1 = 7

1 0 0 0 = 8

1 0 0 1 = 9

1 0 1 0 = A

1 0 1 1 = B

1 1 0 0 = C

1 1 0 1 = D

1 1 1 0 = E

1 1 1 1 = F

In Hex Symbols for 10 to 15 are borrowed from the alphabet. This shows how relative

numbers really are or in other words, they truly are just symbols.

Example: 1000 0101 0110

 8 5 6 16 = 8*16
2
 + 5*16

1
 + 6*16

0
 = 2134

It is not as hard to work in base 16 as you might think, although it does take a little practice.

Conversion From Base 10 to a Given Radix (or Base)

Successive Division is best demonstrated by an example

2 43 \

2 21 \ 1 Least Significant Bit

2 10 \ 1

2 5 \ 0

2 2 \ 1

2 1 \ 0

 0 1 Most Significant Bit

To get the digits in the right order let them fall to the right.

For this example: 4310 = 1010112 Quick Check (Octal) 101 011 = 5*8 + 3 = 4310

Another example: Convert 4310 from decimal to Octal

8 43 \

8 5 \ 3

 0 5 Most Significant Bit

For this example: 4310 = 538 Quick Check (Octal) 5*8 + 3 = 4310

Generalization of the procedure OR Why It Works

r N \

r N1 \ A0 Least Significant Bit

r N2 \ A1

r N3 \ A2

 A3

r Nn-1 \

r Nn \ An-1

 0 An Most Significant Bit

Where r = radix, N = number, A = remainder, and n = the number of digits in radix r for

number N. Division is normally done in base 10.

Another way of expressing the above table is:

N = r*N1 + A0

N1 = r*N2 + A1

N2 = r*N3 + A2

Nn-1 = r*Nn + An-1

Nn = r*0 + An

or (now for the slight of hand)

N = r*(r*N2 + A1)+ A0 substitute N1

N = r
2
N2 + rA1+ A0 multiply r through equation

N = r
2
(r*N3 + A2) + rA1+ A0 substitute N2

N = Anr
n
 + An-1r

n-1
 + … + A1r

1
 + A0r

0

Nomenclature

Bit = 1 binary digit

Byte = 8 bits

Nibble = one half byte = 4 bits

Word = Computer Dependent

Binary Arithmetic

Binary Addition

Binary addition is performed similar to decimal addition using the following binary addition

rules:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10 (0 with a carry of 1)

Examples:

Problem 2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010

 101012

+ 010102

 111112

 1011012

+ 1101102

11000112

 0112

+ 1112

10102

Check 1*2
3
 + 0*2

2
 + 1*2

1
 + 0*2

0

1*8 + 0*4 + 1*2 + 0*1 = 1010

Octal Addition

Octal addition is also performed similar to decimal addition except that each digit has a

range of 0 to 7 instead of 0 to 9.

Problem 2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010

 258

+ 128

 378

 558

+ 668

 1438

 38

+ 78

 128

Check 3*8
1
 + 7*8

0

3*8 + 7*1 = 3110

1*8
2
 + 4*8

1
 + 3*8

0

64 + 32 + 3 = 9910

1*8
1
 + 2*8

0

8 + 2 = 1010

Hexadecimal Addition

Hex addition is also performed similar to decimal addition except that each digit has a

range of 0 to 15 instead of 0 to 9.

Problem 2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010

 1516

+ 0A16

 1F16

 2D16

+ 3616

 6316

 316

+ 716

 A16 (not 10)

Check 1*16
1
 + 15*16

0

16 + 15 = 3110

6*16
1
 + 3*16

0

96 + 3 = 9910

10*16
0

1010

Binary Multiplication

Decimal Binary

 1110

x 1310

 3310

 1110

 14310

 10112

x 11012

 10112

 00002

 10112

 10112

100011112

Check 8*16
1
 + 15*16

0

128 + 15 = 14310

Binary Division

 Decimal Binary

 2110 101012

510 10510 1012 11010012

 10 101

 05

 05

 110

 101

 00 101

 101

 000

 Check 1*16
1
 + 5*16

0

16 + 5 = 2110

Practice arithmetic operations by making problems up and then checking your answers by

converting them back to base 10 via different bases (i.e., 2, 8, and 16).

How a computer performs arithmetic operations is a much more involved subject and has

not been dealt with in this section.

Complements and Negative Numbers OR Adding a Sign Bit

Addition, Multiplication, and Division is nice but what about subtraction and negative

numbers? From grade school you have learned that subtraction is simply the addition of a

negative number. Mathematicians along with engineers have exploited this principle along

with modulo arithmetic — a natural outgrowth of adders of finite width — to allow

computers to operate on negative numbers without adding any new hardware elements to

the arithmetic logic unit (ALU).

Sign Magnitude

Here is a simple solution, just add a sign bit. To implement this solution in hardware you

will need to create a subtractor; which means more money.

sign magnitude

Example: - 2 = 1 00102

Ones Complement

Here is a solution that is a little more complex. Add the sign bit and invert each bit making

up the magnitude — simply change the 1‟s to 0‟s and the 0‟s to 1‟s.

sign magnitude

Example: - 2 = 1 11012

To subtract in 1‟s complement you simply add the sign and magnitude bits letting the last

carry bit (from the sign) fall into the bit bucket, and then add 1 to the answer. Once again

let the last carry bit fall into the bit bucket. The bit bucket is possible due to the physical

size of the adder.

0 10102 10

+ 1 11012 +(-2)

_________________ __________

 0 10002 8

+ 12 Adjustment

 0 10012

Although you can now use your hardware adder to subtract numbers, you now need to

add 1 to the answer. This again means adding hardware. Compounding this problem,

ones complement allows two numbers to equal 0 (schizophrenic zero).

Twos Complement

Here is a solution that is a little more complex to set up, but needs no adjustments at the

end of the addition. There are two ways to take the twos complement of a number.

Method 1 = Take the 1‟s complement and add 1

0 00102 2 start

_________________ __________

+ 1 11012 1‟s complement (i.e. invert)

+ 12 add 1

 1 11102

Method 2 = Move from right to left until a 1 is encountered then invert.

0 00102 start 210

 02 no change

 102 no change but one is encountered

 1102 invert change 0 to 1

 11102 invert change 0 to 1

1 11102 invert change 0 to 1

Subtraction in twos complement is the same as addition. No adjustment is needed, and

twos complement has no schizophrenic zero although it does have an additional

negative number (see How It Works).

0 10102 10

+ 1 11102 +(-2)

_________________ __________

 0 10012 8

Examples:

Problem 3310 - 1910 = 1410 6910 - 8410 = -1510

 0 1000012

+ 1 1011012

 0 0011102

 0 10001012

+ 1 01011002

 1 11100012

Check convert to

intermediate base

E16 = 1410

convert back to sign magnitude

- 00011112

convert to intermediate base (16)

- F16 = - 1510

Why It Works

Real adders have a finite number of bits, which leads naturally to modulo arithmetic — the

bit bucket.

Overflow

With arithmetic now reduced to going around in circles, positive numbers can add up to

negative and vice-versa. Two tests provide a quick check on whether or not an “Overflow”

condition exists.

Test 1 = If the two numbers are negative and the answer is positive, an overflow has

occurred.

Test 2 = If the two number are positive and the answer is negative, an overflow has

occurred.

If computers were calculators and the world was a perfect place, we would be done. But they are

not and so we continue by looking at a few real world problems and their solutions.

Character Codes OR Non-Numeric Information

Decimal Number Problem

Represent a Decimal Numbers in a Binary Computer. A binary representation of a decimal

number, a few years ago, might have been “hard wired” into the arithmetic logic unit (ALU)

of the computer. Today it, more likely than not, is simply representing some information

that is naturally represented in base 10, for example your student ID.

Solution

In this problem, ten different digits need to be represented. Using 4 bits 2
4
 or 16

combinations can be created. Using 3 bits 2
3
 or 8 combinations can be created. Thus 4

bits will be required to represent one Decimal Digit. It should here be pointed out how 16

combinations can be created from 4 bits (0000 - 1111) while the largest numeric value that

can be represented is 15. The reason that the highest numeric value and the number of

combinations are different, is due to zero (0) being one of the combinations. This

difference points up the need to always keep track of wetter or not you are working zero or

one relative and what exactly you are after — a binary number or combinations.

The most common way of representing a decimal number is named Binary Coded

Decimal (BCD). Here each binary number corresponds to its decimal equivalent, with

numbers larger than 9 simply not allowed. BCD is also known as an 8-4-2-1 code since

each number represents the respective weights of the binary digits. In contrast the Excess-

3 code is an unweighted code used in earlier computers. Its code assignment comes from

the corresponding BCD code plus 3. The Excess-3 code had the advantage that by

complementing each digit of the binary code representation of a decimal digit (1‟s

complement), the 9‟s complement of that digit would be formed. The following table lists

each decimal digit and its BCD and Excess-3 code equivalent representation. I have also

included the negative equivalent of each decimal digit encoded using the Excess-3 code.

For instance, the complement of 0100 (1 decimal) is 1011, which is 8 decimal. You can

find more decimal codes on page 18 of “Digital Design” by M. Morris Mano (course text).

Binary Coded

Decimal (BCD)

Excess-3

Decimal

Digit

Binary

Code

8-4-2-1

Decimal

Digit

Binary

Code

9‟s

Compliment

0

1

2

3

4

5

6

7

8

9

N/A

N/A

N/A

N/A

N/A

N/A

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

N/A

N/A

N/A

0

1

2

3

4

5

6

7

8

9

N/A

N/A

N/A

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Alphanumeric Character Problem

Represent Alphanumeric data (lower and upper case letters of the alphabet (a-z, A-Z),

digital numbers (0-9), and special symbols (carriage return, line feed, period, etc.).

Solution

To represent the upper and lower case letters of the alphabet, plus ten numbers, you need

at least 62 (2x26+10) unique combinations. Although a code using only six binary digits

providing 2
6
 or 64 unique combinations would work, only 2 combinations would be left for

special symbols. On the other hand a code using 7 bits provides 2
7
 or 128 combinations,

which provides more than enough room for the alphabet, numbers, and special symbols.

So who decides which binary combinations correspond to what character. Here there is no

“best way.” About thirty years ago IBM came out with a new series of computers which

used 8 bits to store one character (2
8
 = 256 combinations), and devised the Extended

Binary-Coded Decimal Interchange Code (EBCDIC pronounced ep-su-dec) for this

purpose. Since IBM had a near monopoly on the computer field, at that time, the other

computer makers refused to adopt EBCDIC, and that is how the 7bit American Standard

Code for Information Interchange (ASCII) came into existence. ASCII has now been

adopted by virtually all micro-computer and mini-computer manufacturers. The table below

shows a partial list of the ASCII code. Page 23 of the text lists all 128 codes with

explanations of the control characters.

DEC HEX CHAR DEC HEX CHAR

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

!

“

$

%

&

„

(

)

*

+

,

-

*

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

The word “string” is commonly used to describe a sequence of characters stored via their

numeric codes — like ASCII).

Although ASCII requires only 7 bits, the standard in computers is to use 8 bits, where the

leftmost bit is set to 0. This allows you to code another 128 characters (including such

things as Greek letters), giving you an extended character set, simply by letting the

leftmost bit be a 1. This can also lead to a computer version of the tower of Babel.

Alternatively, the leftmost bit can be used for detecting errors when transmitting characters

over a telephone line. Which brings us to our next problem.

Synthesis

Although ASCII solves the communication problem between English speaking computers,

what about Japanese, Chinese, or Russian computers which have different, and in all

these examples, larger alphabets?

Communication Problem

Binary information may be transmitted serially (one bit at a time) through some form of

communication medium such as a telephone line or a radio wave. Any external noise

introduced into the medium can change bit values from 1 to 0 or visa versa.

Solution

The simplest and most common solution to the communication problem involves adding a

parity bit to the information being sent. The function of the parity bit is to make the total

number of 1‟s being sent either odd (odd parity) or even (even parity). Thus, if any odd

number of 1‟s were sent but an even number of 1‟s received, you know an error has

occurred. The table below illustrates the appropriate parity bit (odd and even) that would be

appended to a 4-bit chunk of data.

Synthesis

What happens if two binary digits change bit values? Can a system be devised to not only

detect errors but to identify and correct the bit(s) that have changed? One of the most

common error-correcting codes was developed by R.W. Hamming. His solution, known as

a Hamming code, can be found in a very diverse set of places from a Random Access

Memory (RAM) circuit to a Spacecraft telecommunications link. For more of error

correcting codes read pages 299 to 302 of the text.

Although detecting errors is nice, preventing them from occurring is even better. Which of

course brings us to our next problem.

Shaft Encoder Problem

As a shaft turns, you need to convert its radial position into a binary coded digital number.

Solution

The type of coder which will be briefly described below converts a shaft position to a

binary-coded digital number. A number of different types of devices will perform this

conversion; the type described is representative of the devices now in use, and it should

be realized that more complicated coders may yield additional accuracy. Also, it is

generally possible to convert a physical position into an electric analog-type signal and then

convert this signal to a digital system. In general, though, more direct and accurate coders

can be constructed by eliminating the intermediate step of converting a physical position to

an analog electric signal. The Figure below illustrates a coded-segment disk which is

coupled to the shaft.

The shaft encoder can be physically realized using electro-mechanical (brush) or electro-

optical technology. Assuming an electro-optical solution, the coder disk is constructed with

bands divided into transparent segments (the shaded areas) and opaque segments (the

unshaded areas). A light source is put on one side of the disk, and a set of four

photoelectric cells on the other side, arranged so that one cell is behind each band of the

coder disk. If a transparent segment is between the light source and a light-sensitive cell, a

1 output will result; and if an opaque area is in front of the photoelectric cell, there will be a

O output.

There is one basic difficulty with the coder illustrated: if the disk is in a position where the

output number is changing from 011 to 100, or in any position where several bits are

changing value, the output signal may become ambiguous. As with any physically realized

device, no matter how carefully it is made, the coder will have erroneous outputs in several

positions. If this occurs when 011 is changing to 100, several errors are possible; the value

may be read as 111 or 000, either of which is a value with considerable errors. To

circumvent this difficulty, engineers use a "Gray," or "unit distance," code to form the coder

disk (see previous Figure). In this code, 2 bits never change value in successive coded

binary numbers. Using a Gray coded disk, a 6 may be read as 7, or a 4 as 5, but larger

errors will not be made. The Table below shows a listing of a 4-bit Gray code.

Decimal Gray Code

0

1

2

3

4

5

6

7

8

9

10

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

11

12

13

14

15

1110

1010

1011

1001

1000

Synthesis

Gray code is used in a multitude of application other than shaft encoders. For example,

CMOS circuits draw the most current when they are switching. If a large number of circuits

switch at the same time unwelcome phenomena such as “Ground Bounce” and “EMI

Noise” can result. If the transistors are switching due to some sequential phenomena (like

counting), then these unwelcome visitors can be minimized by replacing a weighted binary

code by a Gray code.

If the inputs to a binary machine are from an encoder using a Gray code, each word must

be converted to conventional binary or binary-coded decimal bit equivalent. How can this

be done? Before you can answer this question, you will need to learn about Boolean

Algebra — what a coincidence, that‟s the topic of the next Section.

