
Number Systems 

Numbers and Their Computer Representation 

Positional Notation 

Decimal, Binary, Octal, and Hexadecimal, Nomenclature, Converting Between Number 

Systems, Binary Arithmetic (Subtraction with Comlements), Binary Codes (BCD, Error-

Detection, Gray, and ASCII) 

Introduction 

Base 10 result of ten fingers 

Arabic symbols 0-9, India created Zero and Positional Notation 

Other Systems: Roman Numerals: essentially additive, Importance of Roman Numeral lies 

in whether a symbol precedes or follows another symbol. Ex. IV = 4 versus VI = 6. This 

was a very clumsy system for arithmetic operations. 

Positional Notation (Positive Real Integers) 

Fractional numbers will not be considered but it should be noted that the addition of said would 

be a simple and logical addition to the theory presented. 

The value of each digit is determined by its position. Note pronunciation of 256 “Two 

Hundred and Fifty Six? 

Ex. 256 = 2*10
2
 + 5*10

1 
+ 6*10

0
  

Generalization to any base or radix 

Base or Radix = Number of different digit which can occur in each position in the number 

system. 

N = Anr
n
 + An-1r

n-1
 + … + A1r

1
 + A0r

0 
  (or simple A1r + A0) 

Introduction to Binary System 

The operation of most digital devices is binary by nature, either they are on or off. 

Examples: Switch, Relay, Tube, Transistor, and TTL IC 

Section 

1 



Thus it is only logical for a digital computer to in base 2. 

Note: Future devices may not have this characteristic, and this is one of the reasons the 

basics and theory are important. For they add flexibility to the system. 

In the Binary system there are only 2 states allowed; 0 and 1 (FALSE or TRUE, OFF or 

ON) 

Example:  Most Significant Bit 

  High Order Bit 

 1010 = 1*2
3
 + 0*2

2 
+ 1*2

1 
+ 0*2

0
 = 1010 

 Least Significant Bit  Denotes Base 10 

  Low Order Bit Usually implied by context 

Bit = One Binary Digit (0 or 1) 

This positional related equation also gives us a tool for converting from a given radix to 

base 10 - in this example Binary to Decimal. 

Base Eight and Base Sixteen 

Early in the development of the digital computer Von Neuman realized the usefulness of 

operating in intermediate base systems such as base 8 (or Octal) 

By grouping 3 binary digits or bits one octal digit is formed. Note that 2
3
 = 8 

Binary to Octal Conversion Table 

2
2
2

1
2

0 

0 0 0   =  0 

0 0 1   =  1 

0 1 0   =  2 

0 1 1   =  3 

1 0 0   =  4 

1 0 1   =  5 

1 1 0   =  6 

1 1 1   =  7                 Symbols (not numbers) 8 and 9 are not used in octal. 

 

Example:  100 001 010 110 

     4     1      2     6 8  = 4*8
3
 + 1*8

2
 + 2*8

1
 + 6*8

0
 = 2134 

This is another effective way of going from base 2 to base 10 

Summary: Base 8 allows you to work in the language of the computer without dealing with 

large numbers of ones and zeros. This is made possible through the simplicity of 

conversion from base 8 to base 2 and back again. 

In microcomputers groupings of 4 bits (as opposed to 3 bits) or base 16 (2
4
) is used. 

Originally pronounced Sexadecimal, base 16 was quickly renamed Hexadecimal (this 

really should be base 6). 

 

 

 



Binary to Hex Conversion Table 

2
3
2

2
2

1
2

0 

0 0 0 0   =  0 

0 0 0 1   =  1 

0 0 1 0   =  2 

0 0 1 1   =  3 

0 1 0 0   =  4 

0 1 0 1   =  5 

0 1 1 0   =  6 

0 1 1 1   =  7 

1 0 0 0   =  8 

1 0 0 1   =  9 

1 0 1 0   =  A 

1 0 1 1   =  B 

1 1 0 0   =  C 

1 1 0 1   =  D 

1 1 1 0   =  E 

1 1 1 1   =  F 

In Hex Symbols for 10 to 15 are borrowed from the alphabet. This shows how relative 

numbers really are or in other words, they truly are just symbols. 

Example:  1000 0101 0110 

      8        5       6 16  = 8*16
2
 + 5*16

1
 + 6*16

0
 = 2134 

It is not as hard to work in base 16 as you might think, although it does take a little practice. 

Conversion From Base 10 to a Given Radix (or Base) 

Successive Division is best demonstrated by an example 

2 43 \   

2 21 \ 1 Least Significant Bit 

2 10 \ 1  

2 5 \ 0  

2 2 \ 1  

2 1 \ 0  

 0  1 Most Significant Bit 

To get the digits in the right order let them fall to the right. 

For this example:  4310 = 1010112  Quick Check (Octal)  101  011 = 5*8 + 3 = 4310 

Another example: Convert 4310 from decimal to Octal 

8 43 \   

8 5 \ 3  

 0  5 Most Significant Bit 

For this example: 4310 = 538  Quick Check (Octal) 5*8 + 3 = 4310 

 



Generalization of the procedure OR Why It Works 

r N \   

r N1 \ A0 Least Significant Bit 

r N2 \ A1  

r N3 \ A2  

   A3  

r Nn-1 \   

r Nn \ An-1  

 0  An Most Significant Bit 

 

Where r = radix, N = number, A = remainder, and n = the number of digits in radix r for 

number N. Division is normally done in base 10. 

Another way of expressing the above table is: 

N   = r*N1 + A0 

N1 = r*N2 + A1 

N2 = r*N3 + A2 

  

Nn-1 = r*Nn + An-1 

Nn   =  r*0   + An 

or (now for the slight of hand) 

N   = r*( r*N2 + A1)+ A0     substitute N1 

N  = r
2
N2 + rA1+ A0     multiply r through equation 

N  = r
2
(r*N3 + A2) + rA1+ A0   substitute N2 

  

N = Anr
n
 + An-1r

n-1
 + … + A1r

1
 + A0r

0 
  

Nomenclature 

Bit   =  1 binary digit 

Byte  =  8 bits 

Nibble  =  one half byte = 4 bits 

Word  =  Computer Dependent 



Binary Arithmetic  

Binary Addition 

Binary addition is performed similar to decimal addition using the following binary addition 

rules: 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 10 (0 with a carry of 1) 

Examples: 

Problem  2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010 

  101012 

+ 010102 

 ______________  

 111112 

 1011012 

+ 1101102 

_______________  

11000112 

 0112 

+ 1112 

 _______________  

10102 

Check    1*2
3
 + 0*2

2
 + 1*2

1
 + 0*2

0
 

1*8 + 0*4 + 1*2 + 0*1 = 1010 

Octal Addition  

Octal addition is also performed similar to decimal addition except that each digit has a 

range of 0 to 7 instead of 0 to 9. 

Problem  2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010 

  258 

+ 128 

 ______________  

 378 

 558 

+ 668 

_______________  

 1438 

 38 

+ 78 

 _______________  

 128  

Check  3*8
1
 + 7*8

0 

3*8  + 7*1  = 3110 

1*8
2
 + 4*8

1
 + 3*8

0 

64 + 32 + 3  = 9910 

1*8
1
 + 2*8

0 

8 + 2 = 1010 

Hexadecimal Addition  

Hex addition is also performed similar to decimal addition except that each digit has a 

range of 0 to 15 instead of 0 to 9. 



Problem  2110 + 1010 = 3110 4510 + 5410 = 9910 310 + 710 = 1010 

  1516 

+ 0A16 

 ______________  

 1F16 

 2D16 

+ 3616 

_______________  

 6316 

 316 

+ 716 

 _______________  

 A16    (not 10) 

Check  1*16
1
 + 15*16

0 

16 + 15 = 3110 

6*16
1
 + 3*16

0 

96 + 3 = 9910 

10*16
0 

1010 

 

Binary Multiplication 

Decimal  Binary 

   1110 

x 1310 

 _______________  

 3310 

  1110 

 _______________  

  14310 

     10112 

x   11012 

 _______________  

     10112 

    00002 

  10112 

 10112 

 _______________  

100011112 

Check  8*16
1
 + 15*16

0 

128 + 15 = 14310 

 

Binary Division 

 Decimal   Binary 

   2110      101012 

510 10510 1012 11010012 

 10  101 

   05 

  05 

     110 

    101 

   00        101 

      101 

         000 

  Check  1*16
1
 +  5*16

0 

16 + 5 = 2110 

 

Practice arithmetic operations by making problems up and then checking your answers by 

converting them back to base 10 via different bases (i.e., 2, 8, and 16). 



How a computer performs arithmetic operations is a much more involved subject and has 

not been dealt with in this section. 

Complements and Negative Numbers OR Adding a Sign Bit  

Addition, Multiplication, and Division is nice but what about subtraction and negative 

numbers? From grade school you have learned that subtraction is simply the addition of a 

negative number. Mathematicians along with engineers have exploited this principle along 

with modulo arithmetic — a natural outgrowth of adders of finite width — to allow 

computers to operate on negative numbers without adding any new hardware elements to 

the arithmetic logic unit (ALU).  

Sign Magnitude 

Here is a simple solution, just add a sign bit. To implement this solution in hardware you 

will need to create a subtractor; which means more money. 

sign  magnitude 

Example: - 2 =  1  00102 

Ones Complement 

Here is a solution that is a little more complex. Add the sign bit and invert each bit making 

up the magnitude — simply change the 1‟s to 0‟s and the 0‟s to 1‟s. 

sign  magnitude 

Example: - 2 =  1  11012 

To subtract in 1‟s complement you simply add the sign and magnitude bits letting the last 

carry bit (from the sign) fall into the bit bucket, and then add 1 to the answer. Once again 

let the last carry bit fall into the bit bucket. The bit bucket is possible due to the physical 

size of the adder. 

0 10102    10 

+ 1 11012  +(-2) 

_________________  __________  

 0 10002      8 

+              12  Adjustment 

_________________  

 0 10012  

Although you can now use your hardware adder to subtract numbers, you now need to 

add 1 to the answer. This again means adding hardware. Compounding this problem, 

ones complement allows two numbers to equal 0 (schizophrenic zero). 



Twos Complement  

Here is a solution that is a little more complex to set up, but needs no adjustments at the 

end of the addition. There are two ways to take the twos complement of a number. 

Method 1 = Take the 1‟s complement and add 1 

0 00102  2  start 

_________________  __________  

+ 1 11012  1‟s complement (i.e. invert) 

+              12  add 1 

_________________  

 1 11102    

Method 2 = Move from right to left until a 1 is encountered then invert. 

0 00102  start   210 

         02  no change 

       102  no change but one is encountered 

     1102  invert  change 0 to 1 

   11102  invert  change 0 to 1 

1 11102  invert  change 0 to 1 

Subtraction in twos complement is the same as addition. No adjustment is needed, and 

twos complement has no schizophrenic zero although it does have an additional 

negative number (see How It Works). 

0 10102    10 

+ 1 11102  +(-2) 

_________________  __________  

 0 10012      8 

Examples: 

Problem  3310 - 1910 = 1410 6910 - 8410 = -1510 

  0 1000012 

+ 1 1011012 

 _______________  

 0 0011102 

 0 10001012 

+ 1 01011002 

_______________  

  1 11100012 

Check  convert to 

intermediate base 

E16 = 1410 

convert back to sign magnitude 

- 00011112 

convert to intermediate base (16) 

- F16 = - 1510 



 

Why It Works 

Real adders have a finite number of bits, which leads naturally to modulo arithmetic — the 

bit bucket. 

 

Overflow 

With arithmetic now reduced to going around in circles, positive numbers can add up to 

negative and vice-versa. Two tests provide a quick check on whether or not an “Overflow” 

condition exists.  

Test 1 = If the two numbers are negative and the answer is positive, an overflow has 

occurred. 

Test 2 = If the two number are positive and the answer is negative, an overflow has 

occurred. 

If computers were calculators and the world was a perfect place, we would be done. But they are 

not and so we continue by looking at a few real world problems and their solutions. 

Character Codes OR Non-Numeric Information 

Decimal Number Problem 

Represent a Decimal Numbers in a Binary Computer. A binary representation of a decimal 

number, a few years ago, might have been “hard wired” into the arithmetic logic unit (ALU) 

of the computer. Today it, more likely than not, is simply representing some information 

that is naturally represented in base 10, for example your student ID. 

Solution 

In this problem, ten different digits need to be represented. Using 4 bits 2
4
 or 16 

combinations can be created. Using 3 bits 2
3
 or 8 combinations can be created. Thus 4 

bits will be required to represent one Decimal Digit. It should here be pointed out how 16 

combinations can be created from 4 bits (0000 - 1111) while the largest numeric value that 

can be represented is 15. The reason that the highest numeric value and the number of 



combinations are different, is due to zero (0) being one of the combinations. This 

difference points up the need to always keep track of wetter or not you are working zero or 

one relative and what exactly you are after — a binary number or combinations. 

The most common way of representing a decimal number is named Binary Coded 

Decimal (BCD). Here each binary number corresponds to its decimal equivalent, with 

numbers larger than 9 simply not allowed. BCD is also known as an 8-4-2-1 code since 

each number represents the respective weights of the binary digits. In contrast the Excess-

3 code is an unweighted code used in earlier computers. Its code assignment comes from 

the corresponding BCD code plus 3. The Excess-3 code had the advantage that by 

complementing each digit of the binary code representation of a decimal digit (1‟s 

complement), the 9‟s complement of that digit would be formed. The following table lists 

each decimal digit and its BCD and Excess-3 code equivalent representation. I have also 

included the negative equivalent of each decimal digit encoded using the Excess-3 code. 

For instance, the complement of 0100 (1 decimal) is 1011, which is 8 decimal. You can 

find more decimal codes on page 18 of “Digital Design” by M. Morris Mano (course text). 

Binary Coded 

Decimal (BCD) 

Excess-3 

Decimal 

Digit 

Binary 

Code 

8-4-2-1 

Decimal 

Digit 

Binary 

Code 

9‟s 

Compliment 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

N/A 

N/A 

N/A 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

N/A 

N/A 

N/A 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

 

1111 

1110 

1101 

1100 

1011 

1010 

1001 

1000 

0111 

0110 

0101 

0100 

0011 

0010 

0001 

0000 

 

Alphanumeric Character Problem 

Represent Alphanumeric data (lower and upper case letters of the alphabet (a-z, A-Z), 

digital numbers (0-9), and special symbols (carriage return, line feed, period, etc.). 

Solution 

To represent the upper and lower case letters of the alphabet, plus ten numbers, you need 

at least 62 (2x26+10) unique combinations. Although a code using only six binary digits 



providing 2
6
 or 64 unique combinations would work, only 2 combinations would be left for 

special symbols. On the other hand a code using 7 bits provides 2
7
 or 128 combinations, 

which provides more than enough room for the alphabet, numbers, and special symbols. 

So who decides which binary combinations correspond to what character. Here there is no 

“best way.” About thirty years ago IBM came out with a new series of computers which 

used 8 bits to store one character (2
8
 = 256 combinations), and devised the Extended 

Binary-Coded Decimal Interchange Code (EBCDIC pronounced ep-su-dec) for this 

purpose. Since IBM had a near monopoly on the computer field, at that time, the other 

computer makers refused to adopt EBCDIC, and that is how the 7bit American Standard 

Code for Information Interchange (ASCII) came into existence. ASCII has now been 

adopted by virtually all micro-computer and mini-computer manufacturers. The table below 

shows a partial list of the ASCII code. Page 23 of the text lists all 128 codes with 

explanations of the control characters. 

DEC HEX CHAR DEC HEX CHAR 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

3A 

3B 

3C 

3D 

3E 

3F 

 

! 

“ 

# 

$ 

% 

& 

„ 

( 

) 

* 

+ 

, 

- 

* 

/ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

: 

; 

< 

= 

> 

? 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4B 

4C 

4D 

4E 

4F 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

5A 

5B 

5C 

5D 

5E 

5F 

@ 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

Q 

R 

S 

T 

U 

V 

W 

X 

Y 

Z 

[ 

\ 

] 

^ 

_ 

 

The word “string” is commonly used to describe a sequence of characters stored via their 

numeric codes — like ASCII). 



Although ASCII requires only 7 bits, the standard in computers is to use 8 bits, where the 

leftmost bit is set to 0. This allows you to code another 128 characters (including such 

things as Greek letters), giving you an extended character set, simply by letting the 

leftmost bit be a 1. This can also lead to a computer version of the tower of Babel. 

Alternatively, the leftmost bit can be used for detecting errors when transmitting characters 

over a telephone line. Which brings us to our next problem. 

Synthesis 

Although ASCII solves the communication problem between English speaking computers, 

what about Japanese, Chinese, or Russian computers which have different, and in all 

these examples, larger alphabets? 

Communication Problem 

Binary information may be transmitted serially (one bit at a time) through some form of 

communication medium such as a telephone line or a radio wave. Any external noise 

introduced into the medium can change bit values from 1 to 0 or visa versa. 

Solution 

The simplest and most common solution to the communication problem involves adding a 

parity bit to the information being sent. The function of the parity bit is to make the total 

number of 1‟s being sent either odd (odd parity) or even (even parity). Thus, if any odd 

number of 1‟s were sent but an even number of 1‟s received, you know an error has 

occurred. The table below illustrates the appropriate parity bit (odd and even) that would be 

appended to a 4-bit chunk of data. 

Synthesis 

What happens if two binary digits change bit values? Can a system be devised to not only 

detect errors but to identify and correct the bit(s) that have changed? One of the most 

common error-correcting codes was developed by R.W. Hamming. His solution, known as 

a Hamming code, can be found in a very diverse set of places from a Random Access 

Memory (RAM) circuit to a Spacecraft telecommunications link. For more of error 

correcting codes read pages 299 to 302 of the text. 

Although detecting errors is nice, preventing them from occurring is even better. Which of 

course brings us to our next problem. 

Shaft Encoder Problem 

As a shaft turns, you need to convert its radial position into a binary coded digital number. 

Solution 

The type of coder which will be briefly described below converts a shaft position to a 

binary-coded digital number. A number of different types of devices will perform this 

conversion; the type described is representative of the devices now in use, and it should 

be realized that more complicated coders may yield additional accuracy. Also, it is 

generally possible to convert a physical position into an electric analog-type signal and then 

convert this signal to a digital system. In general, though, more direct and accurate coders 

can be constructed by eliminating the intermediate step of converting a physical position to 



an analog electric signal. The Figure below illustrates a coded-segment disk which is 

coupled to the shaft. 

 

The shaft encoder can be physically realized using electro-mechanical (brush) or electro-

optical technology. Assuming an electro-optical solution, the coder disk is constructed with 

bands divided into transparent segments (the shaded areas) and opaque segments (the 

unshaded areas). A light source is put on one side of the disk, and a set of four 

photoelectric cells on the other side, arranged so that one cell is behind each band of the 

coder disk. If a transparent segment is between the light source and a light-sensitive cell, a 

1 output will result; and if an opaque area is in front of the photoelectric cell, there will be a 

O output. 

There is one basic difficulty with the coder illustrated: if the disk is in a position where the 

output number is changing from 011 to 100, or in any position where several bits are 

changing value, the output signal may become ambiguous. As with any physically realized 

device, no matter how carefully it is made, the coder will have erroneous outputs in several 

positions. If this occurs when 011 is changing to 100, several errors are possible; the value 

may be read as 111 or 000, either of which is a value with considerable errors. To 

circumvent this difficulty, engineers use a "Gray," or "unit distance," code to form the coder 

disk (see previous Figure). In this code, 2 bits never change value in successive coded 

binary numbers. Using a Gray coded disk, a 6 may be read as 7, or a 4 as 5, but larger 

errors will not be made. The Table below shows a listing of a 4-bit Gray code.  

Decimal Gray Code 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0000 

0001 

0011 

0010 

0110 

0111 

0101 

0100 

1100 

1101 

1111 



11 

12 

13 

14 

15 

1110 

1010 

1011 

1001 

1000 

 

 

Synthesis 

Gray code is used in a multitude of application other than shaft encoders. For example, 

CMOS circuits draw the most current when they are switching. If a large number of circuits 

switch at the same time unwelcome phenomena such as “Ground Bounce” and “EMI 

Noise” can result. If the transistors are switching due to some sequential phenomena (like 

counting), then these unwelcome visitors can be minimized by replacing a weighted binary 

code by a Gray code. 

If the inputs to a binary machine are from an encoder using a Gray code, each word must 

be converted to conventional binary or binary-coded decimal bit equivalent. How can this 

be done? Before you can answer this question, you will need to learn about Boolean 

Algebra — what a coincidence, that‟s the topic of the  next Section. 


