
  

  

Boolean Algebra 

The Building Blocks of Digital Logic Design 

Section Overview 

Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan’s 

Theorem, Canonical and Standard Forms (SOP, POS), Gates as SSI Building Blocks 

(Buffer, NAND, NOR, XOR) 

Source: UCI Lecture Series on Computer Design — Gates as Building Blocks, Digital 

Design Sections 1-9 and 2-1 to 2-7, Digital Logic Design CECS 201 Lecture Notes by 

Professor Allison Section II — Boolean Algebra and Logic Gates, Digital Computer 

Fundamentals Chapter 4 — Boolean Algebra and Gate Networks, Principles of Digital 

Computer Design Chapter 5 — Switching Algebra and Logic Gates, Computer Hardware 

Theory Section 6.3  — Remarks about Boolean Algebra, An Introduction To 

Microcomputers pp. 2-7 to 2-10 —  Boolean Algebra and Computer Logic. 

Sessions: Four(4) 

Topics: 

1) Binary Operations and Their Representation 

2) Basic Laws and Theorems of Boolean Algebra 

3) Derivation of Boolean Expressions (Sum-of-products and Product-of-sums) 

4) Reducing Algebraic Expressions 

5) Converting an Algebraic Expression into Logic Gates 

6) From Logic Gates to SSI Circuits 

Binary Operations and Their Representation 

The Problem 

Modern digital computers are designed using techniques and symbology from a field of 

mathematics called modern algebra. Algebraists have studied for a period of over a 

hundred years mathematical systems called Boolean algebras. Nothing could be more 

simple and normal to human reasoning than the rules of a Boolean algebra, for these 
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originated in studies of how we reason, what lines of reasoning are valid, what constitutes 

proof, and other allied subjects. The name Boolean algebra honors a fascinating English 

mathematician, George Boole, who in 1854 published a classic book, "An Investigation of 

the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and 

Probabilities." Boole's stated intention was to perform a mathematical analysis of logic. The 

work of Boole is perhaps best introduced by the following quotation from the first chapter:  

The design of the following treatise is to investigate the fundamental laws of those operations of the 

mind by which reasoning is performed; to give expression to them in the symbolical language of a 

Calculus, and upon this foundation to establish the science of Logic and construct its method; to 

make that method itself the basis of a general method for the application of the mathematical 

doctrine of Probabilities; and, finally, to collect from the various elements of truth brought to view in 

the course of these inquiries some probable intimations concerning the nature and constitution of 

the human mind.  

Starting with his investigation of the laws of thought, Boole constructed a "logical algebra."  
 

Boolean algebra was first brought to bear on problems which had arisen in the design of 

relay switching circuits in 1938 by Claude E. Shannon, a research assistant in the 

department of electrical engineering at the Massachusetts Institute of Technology. A 

version of Shannon's thesis, written at MIT for the degree of Master of Science, was 

published under the title, "A Symbolic Analysis of Relay and Switching Circuits." This paper 

presented a method for representing any circuit consisting of combinations of switches 

and relays by a set of mathematical expressions, and a calculus was developed for 

manipulating these expressions. The calculus used was shown to be based on the rules of 

Boolean algebra. 

 

There are several advantages in having a mathematical technique for the description of 

the internal workings of a computer. For one thing, it is often far more convenient to 

calculate with expressions used to represent switching circuits than it is to use schematic 

or even logical diagrams. Just as an ordinary algebraic expression may be simplified by 

means of the basic theorems, the expression describing a given switching circuit network 

may also be reduced or simplified. This enables the logical designer to simplify the circuitry 

used, achieving economy of construction and reliability of operation. Boolean algebra also 

provides an economical and straightforward way of describing the circuitry used in 

computers. 
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Boolean Variables 

Boolean algebra allows the concise description and manipulation of binary variables; 

although it by no means restricted to base 2 systems. Variables in Boolean algebra have a 

unique characteristic; they may assume only one of two possible values. 

Value 

(Bit) 

Alternate Names 

0 F, False, No, OFF, LOW 

1 T, True, Yes, ON, HIGH 

 

Therefore if x  0 , then x  1 

and if x 1, then x  0 

Boolean Operations 

Boolean Algebra 

Boolean algebra operates with three functional operators — the building blocks of digital 

logic design — Complement, OR, and AND. These building blocks are comparable to 

taking the negative, adding, and multiplying in ordinary algebra. 

Operator 

Name 

Alternate Name Example Alternate 

Representations 

NOT complement 

 inversion 

x  x  

OR union 

logical addition 

x y  x y , x y , x Vy  

AND intersection 

logical multiplication 

xy  x y , x y , x y&   

 

Truth Table 

The possible input and output combinations can be arranged in tabular form, called a 

Truth Table. 

INPUT OUTPUT 

  NOT OR AND 

x  y  x  x y  xy  

0 0 1 0 0 

0 1  1 0 

1 0 0 1 0 

1 1  1 1 
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Gates 

The OR and AND Boolean operations are physically realized by two types of electronic 

circuits called OR gates and AND gates.  A third circuit called a Buffer, does nothing to the 

logic.  

 

AND Gate OR Gate Buffer 

   

NOT 

For any of the above functions, inversion — the Boolean NOT operation — of a input 

or output is denoted by a circle. Inversion is indicated in a Boolean expression by a line 

over a variable or expression. 

Inverter 

 

Timing Diagram 

The possible input and output combinations can also be presented as a timing diagram. A 

timing diagram is a picture that shows the input and output waveforms of a digital circuit. 

 

y  0 1 0 1  

      

x  0 0 1 1  

      

x  1 1 0 0  

      

x y  0 1 1 1  

      

xy  0 0 0 1  
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Basic Laws and Theorems of Boolean Algebra 

The last section presented Boolean variables and the three basic operations. Although 

simple in appearance, these rules may be used to construct a Boolean algebra, 

determining all the relationships which follow. The following list of useful relationships may 

be proved using the “proof by perfect induction.”  

Law  Dual (D)  

1 x x   Involution 

 OR Laws AND Laws  

2 0 x x  1 x x  Identity element under addition is 0 
and under multiplication it is 1 

3 1 1 x  0 0 x  Dominance 

4 x x x   x x x   Idempotent 
5 x x 1 x x  0 Complements not valid under 

normal algebra 
 Commutative   

6 x y y x    x y y x    Commutative law of addition and 
multiplication — order does not 
affect result. 

 Associative  can be derived from the above rules 

7 x y z x y z    ( ) ( )  x yz xy z( ) ( )  Associative law of addition and 
multiplication — any two may be 
summed or multiplied together 
followed by the third 

 Distributive   

8 x y z xy xz( )    x yz x y x z   ( )( ) product of a monomial (x) multiplied 
by a polynomial (y+z) is equal to the 
sum  of the products of the 
monomial multiplied by each term of 
the polynomial. The dual is not valid 
under normal algebra 

Theorem Simplification   

9 x xy x   x x y x( )   Absorption 

10 x xy x y    x x y xy( )   Degenerate-Reflect 

 De Morgan’s   

11 x y x y    x y x y     

 

Principle of Duality 

There exists a basic duality which underlies all Boolean algebra. The laws and theorems 

which have been presented can all be divided into pairs. In proving the laws and theorems,  

it is then necessary only to prove one theorem, and the “dual” of the theorem follows 

necessarily. To form the dual of an algebraic expression you simply need to: 

1) Interchange AND and OR operators 

2) Replace 1’s with 0’s and 0’s with 1’s 
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Proof by Perfect Induction 

The rules given may be used to simplify Boolean expressions, just as the rules of normal 

algebra may be used to simplify expressions. 

Proof of the Dual of the Distributive Law 

 ___________________________________________  

Notice that, among others, rule 8D, does not apply to “normal” algebra. The rule however 

can be obtained from the preceding rules as follows: 

x yz x y x z   ( )( ) 

Algebraic Proof A 

( )( ) ( ) ( )x y x z x x y y x z       8. Distributive Law by Extension  

 xx xy yx yz    8. Distributive Law 

 x xy yx yz    4D. Idempotent 

 x yx yz   9. Absorption 

 x yz  9. Absorption 

Algebraic Proof B 

x yz x yz     

 x y yz( )1   2. Identity under multiplication 

 x xy yz   8. Distributive Law  

 x z xy yz( )1    3. Dominance 

 xx xz xy yz    8. Distributive Law and 4D. Idempotent 

 x x z yx yz( )    8. Distributive Law and 6D. Commutative Law 

 x x z y x z( ) ( )    8. Distributive Law 

 ( ) ( )x z x x z y    6D. Commutative Law 

 ( )( )x z x y   8. Distributive Law (use substitution or by extension) 

 ( )( )x y x z   6D. Commutative Law 
 

Proof by Perfect Induction 

Since rule 8D does not apply to normal algebra, it is interesting to test the rule using the 

“proof by perfect induction.” It will therefore be necessary to construct truth tables for the 

right hand and left hand sides of the equation and compare the results. 

Step 1 

x y z yz xyz 

0 0 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 1 1 1 
1 0 0 0 1 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 
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Step 2 

x y z x  y x  z (x y)(x z) 

0 0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 1 0 0 
0 1 1 1 1 1 
1 0 0 1 1 1 
1 0 1 1 1 1 
1 1 0 1 1 1 
1 1 1 1 1 1 

 

Notice that the last columns of the two tables are identical. This proves (by means of the 

proof by perfect induction) that the expressions are equivalent 

Proof of Simplification Theorems 

 ___________________________________________  

x xy x   

Algebraic Proof 

x xy x xy   1  2. Identity under multiplication 

 x y( )1  8. Distributive Law 
 x  3. Dominance 

Proof by Perfect Induction 

x y xy xxy 

0 0 0 0 
0 1 0 0 
1 0 0 1 
1 1 1 1 

 
Notice that the first and last columns of the two tables are identical. This proves (by means 
of the proof by perfect induction) that the expressions are equivalent 

 ___________________________________________  

x x y x( )   

 

Algebraic Proof 

x x y xx xy( )    8. Distributive Law 

 x xy  4D. Idempotent  
 x  9. Absorption (see last proof) 

Proof by Perfect Induction 

x y xy x(xy) 

0 0 0 0 
0 1 1 0 
1 0 1 1 
1 1 1 1 
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Notice that the first and last columns of the two tables are identical. This proves (by means 
of the proof by perfect induction) that the expressions are equivalent 

 ___________________________________________  

x xy x y    

Algebraic Proof 

x xy x y x x   ( )( ) 8D. Distributive (use substitution) 

 x y  5. Complements 
 
Proof by Perfect Induction 

Step 1 

x y xy  x xy  

0 0 0 0 
0 1 1 1 
1 0 0 1 
1 1 0 1 

 

Step 2 

x y xy 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
Notice that the first and last columns of the two tables are identical. This proves (by means 
of the proof by perfect induction) that the expressions are equivalent 

 ___________________________________________  

x x y xy( )   

Algebraic Proof 

x x y xx xy( )    8. Distributive 

 0 xy  5D. Complements 

 xy  2. Identity under addition 

 
Proof by Perfect Induction 

Step 1 

x  y  ( )x y  x x y( )  

0 0 1 0 
0 1 1 0 
1 0 0 0 
1 1 1 1 

 

Step 2 
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x  y  xy  

0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
Notice that the last columns of the two tables are identical. This proves (by means of the 
proof by perfect induction) that the expressions are equivalent 
 
 

Although used here to prove theorems, the algebraic techniques demonstrated are most 

practically applied to the simplification of circuit designs, where proof by perfect induction 

provides little or no help. Use Homework to develop your skills 

De Morgan’s Theorems 

The complement of any Boolean expression, or part of any expression, may be found by 

means of De Morgan’s Theorem. Two steps are used to form a complement. 

1) OR symbols are replaced with AND symbols or AND symbols with OR symbols. 

2) Each of the variables (terms) in the expression is complemented 

Example 1 — Complement of a function 

f xy z   Find the complement (NOT) of  f 

f xy z   

f x y z ( )  

Example 2 — Simplify a function 

f a b c de  ( ) Simplify  

f a b c d e   ( )  First, demorganize de  

f a bcde   
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Derivation of Boolean Expressions 

When designing a logical circuit, the logic designer works from two sets of known values: 

1) the various states which the inputs (x, y) to the logical network can take, and 

2) the desired outputs (z) for each input condition. 

x   z 

y 
logical circuit 

  
    

 

These inputs and output conditions may be defined as a detailed set of requirements (Word 

Problem), Waveforms, or in tabular form as a Truth Table. 

The Boolean expression, and by extension the logic circuit, is derived from these sets of 

values. 

Sum-of-Products  

An important consideration in dealing with logic circuits and their algebraic counterparts is 

the form of the Boolean algebra expression and the resulting form of the logic circuit. 

Certain types of Boolean algebra expressions lead to logic circuits which are more 

desirable from an implementation viewpoint. We will look at two: Sum-of-products and 

Product-of-sums. We will consider the most popular form first. 

Inputs Output  

x y z Product 

Terms 

0 0 1 x y  

0 1 0 x y  

1 0 1 x y  

1 1 1 x y  

 

The last column is a list of “product terms” obtained from the values of the input variables. 

This column contains each of the input variables listed in each row of the table, with the 

letter representing the respective input complemented when the input value of this variable 

is 0, and not complemented when the input value is 1. The terms obtained in this manner 

are designated as product terms or min terms (mi). 
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To create a sum-of-products (SOP) expression, add the product terms where the output 

(z) equals 1. 

z x y x y x y       

The right hand side of this expression may be simplified as follows: 

z x y x y y   ( ) 8. Distributive Law 

z x y x    5. Complements 

z x y x    5. Complements 

z x y   6. Commutative, 10. Degenerate-Reflect 

Now that we have the simplest algebraic expression possible, how do we translate it into a 

logic circuit? To answer this question, you need to take every variable and consider it an 

input to a gate with every term implemented with a gate. For now, create the compliment 
of a variable with an inverter. Thus the expression z x y   is realized with a single 

inverter and an OR gate. 

 

Terminology 

Key words: product term, min term, sum-of-products, levels of logic, standard form, 

canonical form. 

Technically, a product term contains AND operators and a min term is a product term 
containing all the input variables. The sum-of-products expression z x y x   , contains 

one min term and one product term of one variable. A sum-of-product expression has only 

two-levels of logic (AND followed by OR) and is by definition in standard form. The 

expression z x y x y y   ( ) contains three-levels of logic and is therefore not a sum-

of-products. The sum-of-products expression z x y x y x y       contains three 

product terms, which are in turn also min terms. When a sum-of-product expression is 

expressed as a sum of min terms, it is said to be in canonical form.  

Steps to Solution: 

1) From the problem statement, a truth table is formed. The problem may be in the 

form of a  word problem, waveforms, or tables. In any event, the problem is 

synthesized into a set of input and corresponding output conditions in tabular form 

(a truth table).  

2) A column is added to the truth table and named product terms. For each row 

whose output is 1, a product term is formed from the input columns. 

3) A sum-of-products expression is built from these product terms. 

4) The algebraic expression is simplified. 

5) A logical circuit is designed. 
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In this example, you have three inputs (designated x, y, z) with two outputs f1 and f2. 

Steps 1 and 2 — Truth Table and Product Terms 

Inputs Outputs  

x y z f1 f2 Product 

Terms 

0 0 0 0 0  

0 0 1 0 1 x y z   

0 1 0 0 0  

0 1 1 0 0  

1 0 0 0 1 x y z   

1 0 1 0 1 x y z   

1 1 0 1 1 x y z   

1 1 1 0 1 x y z   

 

Step 3 — Sum-Of-Products 

f xyz1   

f x y z x y z x y z x y z x y z x y z2                    

Step 4 — Reduce Algebraic Expression 

No further simplification is possible with the first output. 

f x y z x y z x y z x y z x y z2                 

x y z xy z z xy z z     ( ) ( ) 8. Distributive 

x y z xy xy     1 1 5. Complements 

x y z xy xy     2D. Identity 

x y z x y y   ( )  8. Distributive 

x y z x   1 5. Complements 

x y z x    2D. Identity 

x x y z    6. Commutative 

x y z   10. Degenerate-Reflect 
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Check Your Answer 

Inputs Outputs 

x y z y z  x y z   

0 0 0 0 0 

0 0 1 1 1 

0 1 0 0 0 

0 1 1 0 0 

1 0 0 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 1 0 1 

Step 5 — Convert Algebra to Logic 

 

and 

 

Product-of-Sums 

In a fashion analogous to the sum-of-products construction of logic circuits (actually its 

dual), we can look at a Boolean expression, and its corresponding logic circuit, as the 

product (AND) of sums (OR).  

Inputs Output  

x y z Sum 

Terms 

0 0 1 x y  

0 1 0 x y  

1 0 1 x y  

1 1 1 x y  
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The last column is a list of “sum terms” obtained from the values of the input variables. 

This column contains each of the input variables listed in each row of the table, with the 

letter representing the respective input complemented when the input value of this variable 

is 1, and not complemented when the input value is 0. The terms obtained in this manner 

are designated as sum terms or Max terms (Mi). 

To create a product-of-sums (POS) expression, multiply (OR) the sum terms where the 

output (z) equals 0. 

z x y   

Notice that the Boolean expression, and corresponding logic circuit, derived by the 

product-of-sums method is the same as developed using the sum-of-products method 

after simplification. 

Terminology 

Key words: sum term, Max term, product-of-sums, levels of logic, standard form, canonical 

form. 

Technically, a sum term contains OR operators and a Max term is a sum term containing 

all the input variables. The product-of-sums expression z x y x  ( ) , contains one Max 

term and one sum term of one variable. A product-of-sums expression has only two-levels 

of logic (OR followed by AND) and is by definition in standard form. The expression 

z x y x y y   ( ) contains three-levels of logic and is therefore not a product-of-sums. 

The product-of-sums expression z x y x y x y   ( )( )( ) contains three sum terms, 

which are in turn also Max terms. When a product-of-sums expression is expressed as a 

sum of Max terms, it is said to be in canonical form.  

Some texts use the term “conventional” in place of “standard,” Pi in place of mi and Si in 

place of Mi. 

Steps to Solution: 

The “Steps to Solution” using the product-of-sums methodology is the dual of the sum-of-

products method.  

1) From the problem statement, a truth table is formed. The problem may be in the 

form of a  word problem, waveforms, or tables. In any event, the problem is 

synthesized into a set of input and corresponding output conditions in tabular form 

(a truth table).  

2) A column is added to the truth table and named sum terms. For each row whose 

output is 0, a sum term is formed from the input columns. 

3) A products-of-sums expression is built from these sum terms. 

4) The algebraic expression is simplified. 

5) A logical circuit is designed. 
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In this example, you have three inputs (designated x, y, z) with two outputs f1 and f2. 

Steps 1 and 2 — Truth Table and Product Terms 

Inputs Outputs  

x y z f1 f2 Sum 

Terms 

0 0 0 0 0 x y z   

0 0 1 0 1 x y z   

0 1 0 0 0 x y z   

0 1 1 0 0 x y z   

1 0 0 0 1 x y z   

1 0 1 0 1 x y z   

1 1 0 1 1  

1 1 1 0 1 x y z   

 

Step 3 — Product-Of-Sums 

f x y z x y z x y z x y z x y z x y z x y z1               ( )( )( )( )( )( )( ) 

f x y z x y z x y z2       ( )( )( ) 

A Few Observations 

Just as the first POS example lead directly to the simplest form of the Boolean equation, 

the SOP derived expression for f1  (see last Chapter) leads directly to the simplest form of 

the Boolean equation. The POS method, on the other hand, leads to an overly complex 

form. The lesson here is to take time before you rush into a solution and study the 

problem. Often simply inverting the outputs (0 to 1, 1 to 0) and then using De Morgan’s 

Theorem on the solution will lead to the quickest solution. Or as demonstrated here, 

maybe selecting the POS over the SOP method or visa-versa will provide the quickest and 

best solution . 

Also notice that the logic circuit for a sum-of-products expression in “standard” form (an 

expression with at least two product terms with at least two variables in each product term) 

go directly into an AND-to-OR gate circuit, while “standard” product-of-sums expressions 

go directly into OR-to-AND gate networks. 
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Step 4 — Reduce Algebraic Expression 

f x y z x y z x y z2       ( )( )( ) 

( ( )( ))( )x y z y z x y z      8D. Dual of Distributive Law 

x y z y z y z   ( )( )( )  8D. Dual of Distributive Law 

x y z y zz  ( )( )  8D. Dual of Distributive Law 

x y z y  ( )( )0  5D. Complements 

x y z y ( )  2. Identity 

x y y z ( )  6D. Commutative Law of Multiplication 

x yz  10D. Dual of Degenerate-Reflect 

Notice that the Boolean expression, and corresponding logic circuit, derived by the 

product-of-sums method is the same as developed using the sum-of-products method 

after simplification. 

From Logic Gates to SSI Circuits 

Small scale integration (SSI) can be defined as an integrated circuit (IC) with a complexity 

of 20 or less gates. Medium scale integration (MSI) has a complexity factor of 20 to 100 

gates. Above a complexity factor of 100 gates is the domain of Large scale integration 

(LSI). SSI, MSI, and LSI all use the three fundamental building blocks, no matter if the IC is 

implemented using RTL, DTL, TTL, ECL, NMOS, or CMOS technology. 

Gates Level of 

Integration 

1 to 19 SSI 

20 to 100 MSI 

100 plus LSI 

 

The most popular commercial SSI and MSI logic family is known as the seventy-four 

hundred (7400) series. It’s military counterpart is known as the fifty-four hundred series 

(5400). The 5400 series of parts have operating specifications for military applications, 

whereas the 7400 series have operating specifications suited for commercial applications. 

Thus, for example, a 5408 and 7408 (AND gate package) differ only in their operating 

spec's, not functionally. The part number of an IC which is a member of the seventy-four 

hundred series begins with 74 (what did you think) followed by one or more letters which 

denote the technology employed. Popular technologies include: 
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Logic 

Family 

Technology 7400 

Designator 

Comments 

TTL 
Transistor-transistor logic 

 

Schottky 

Low-power Schottky 

Advanced Low-Power Schottky 

Fast 

S 

LS 

ALS 

F 

High Speed 

CMOS      Complementary 

metal-oxide semiconductor 

High-speed CMOS 

High-speed CMOS with TTL 

compatibility 

HC 

HCT 

Low Power 

ECL  Emitter-coupled logic  Very High Speed 

MOS    Metal-oxide semiconductor  High Density 

 

The above table provides only a partial listing. The absence of a letter indicates standard 

TTL logic (can you say obsolete). In many cases the 74 is preceded by letters to indicate 

the manufacturer. For example SN denotes this as a seventy-four hundred series part 

made by Texas Instruments. The next series of numbers indicate the part type (AND, OR, 

etc.). Depending on the manufacturer additional letters may be appended to denote 

version (A or B), the package code (N = Plastic DIP), temperature range, and special 

processing (commercial grade device with burn-in). 

 Manufacturer Family Technolog

y 

Type Package and 

Temperature 

Part Number SN 74 LS 08 N 

 

Examples of Logic gates packaged into plastic 14 pin dual-inline packages (DIPs). See 

page 65 of the textbook for additional examples. 

7408 AND Gates 7406 Inverters 

  

 


