

Boolean Algebra

The Building Blocks of Digital Logic Design

Section Overview

Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan’s

Theorem, Canonical and Standard Forms (SOP, POS), Gates as SSI Building Blocks

(Buffer, NAND, NOR, XOR)

Source: UCI Lecture Series on Computer Design — Gates as Building Blocks, Digital

Design Sections 1-9 and 2-1 to 2-7, Digital Logic Design CECS 201 Lecture Notes by

Professor Allison Section II — Boolean Algebra and Logic Gates, Digital Computer

Fundamentals Chapter 4 — Boolean Algebra and Gate Networks, Principles of Digital

Computer Design Chapter 5 — Switching Algebra and Logic Gates, Computer Hardware

Theory Section 6.3 — Remarks about Boolean Algebra, An Introduction To

Microcomputers pp. 2-7 to 2-10 — Boolean Algebra and Computer Logic.

Sessions: Four(4)

Topics:

1) Binary Operations and Their Representation

2) Basic Laws and Theorems of Boolean Algebra

3) Derivation of Boolean Expressions (Sum-of-products and Product-of-sums)

4) Reducing Algebraic Expressions

5) Converting an Algebraic Expression into Logic Gates

6) From Logic Gates to SSI Circuits

Binary Operations and Their Representation

The Problem

Modern digital computers are designed using techniques and symbology from a field of

mathematics called modern algebra. Algebraists have studied for a period of over a

hundred years mathematical systems called Boolean algebras. Nothing could be more

simple and normal to human reasoning than the rules of a Boolean algebra, for these

Section

3

 2

originated in studies of how we reason, what lines of reasoning are valid, what constitutes

proof, and other allied subjects. The name Boolean algebra honors a fascinating English

mathematician, George Boole, who in 1854 published a classic book, "An Investigation of

the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and

Probabilities." Boole's stated intention was to perform a mathematical analysis of logic. The

work of Boole is perhaps best introduced by the following quotation from the first chapter:

The design of the following treatise is to investigate the fundamental laws of those operations of the

mind by which reasoning is performed; to give expression to them in the symbolical language of a

Calculus, and upon this foundation to establish the science of Logic and construct its method; to

make that method itself the basis of a general method for the application of the mathematical

doctrine of Probabilities; and, finally, to collect from the various elements of truth brought to view in

the course of these inquiries some probable intimations concerning the nature and constitution of

the human mind.

Starting with his investigation of the laws of thought, Boole constructed a "logical algebra."

Boolean algebra was first brought to bear on problems which had arisen in the design of

relay switching circuits in 1938 by Claude E. Shannon, a research assistant in the

department of electrical engineering at the Massachusetts Institute of Technology. A

version of Shannon's thesis, written at MIT for the degree of Master of Science, was

published under the title, "A Symbolic Analysis of Relay and Switching Circuits." This paper

presented a method for representing any circuit consisting of combinations of switches

and relays by a set of mathematical expressions, and a calculus was developed for

manipulating these expressions. The calculus used was shown to be based on the rules of

Boolean algebra.

There are several advantages in having a mathematical technique for the description of

the internal workings of a computer. For one thing, it is often far more convenient to

calculate with expressions used to represent switching circuits than it is to use schematic

or even logical diagrams. Just as an ordinary algebraic expression may be simplified by

means of the basic theorems, the expression describing a given switching circuit network

may also be reduced or simplified. This enables the logical designer to simplify the circuitry

used, achieving economy of construction and reliability of operation. Boolean algebra also

provides an economical and straightforward way of describing the circuitry used in

computers.

3

.

Boolean Variables

Boolean algebra allows the concise description and manipulation of binary variables;

although it by no means restricted to base 2 systems. Variables in Boolean algebra have a

unique characteristic; they may assume only one of two possible values.

Value

(Bit)

Alternate Names

0 F, False, No, OFF, LOW

1 T, True, Yes, ON, HIGH

Therefore if x  0 , then x  1

and if x 1, then x  0

Boolean Operations

Boolean Algebra

Boolean algebra operates with three functional operators — the building blocks of digital

logic design — Complement, OR, and AND. These building blocks are comparable to

taking the negative, adding, and multiplying in ordinary algebra.

Operator

Name

Alternate Name Example Alternate

Representations

NOT complement

 inversion

x x

OR union

logical addition

x y x y , x y , x Vy

AND intersection

logical multiplication

xy x y , x y , x y&

Truth Table

The possible input and output combinations can be arranged in tabular form, called a

Truth Table.

INPUT OUTPUT

 NOT OR AND

x y x x y xy

0 0 1 0 0

0 1 1 0

1 0 0 1 0

1 1 1 1

 4

Gates

The OR and AND Boolean operations are physically realized by two types of electronic

circuits called OR gates and AND gates. A third circuit called a Buffer, does nothing to the

logic.

AND Gate OR Gate Buffer

NOT

For any of the above functions, inversion — the Boolean NOT operation — of a input

or output is denoted by a circle. Inversion is indicated in a Boolean expression by a line

over a variable or expression.

Inverter

Timing Diagram

The possible input and output combinations can also be presented as a timing diagram. A

timing diagram is a picture that shows the input and output waveforms of a digital circuit.

y 0 1 0 1

x 0 0 1 1

x 1 1 0 0

x y 0 1 1 1

xy 0 0 0 1

5

.

Basic Laws and Theorems of Boolean Algebra

The last section presented Boolean variables and the three basic operations. Although

simple in appearance, these rules may be used to construct a Boolean algebra,

determining all the relationships which follow. The following list of useful relationships may

be proved using the “proof by perfect induction.”

Law Dual (D)

1 x x Involution

 OR Laws AND Laws

2 0 x x 1 x x Identity element under addition is 0
and under multiplication it is 1

3 1 1 x 0 0 x Dominance

4 x x x  x x x  Idempotent
5 x x 1 x x  0 Complements not valid under

normal algebra
 Commutative

6 x y y x   x y y x   Commutative law of addition and
multiplication — order does not
affect result.

 Associative can be derived from the above rules

7 x y z x y z    () () x yz xy z() () Associative law of addition and
multiplication — any two may be
summed or multiplied together
followed by the third

 Distributive

8 x y z xy xz()   x yz x y x z   ()() product of a monomial (x) multiplied
by a polynomial (y+z) is equal to the
sum of the products of the
monomial multiplied by each term of
the polynomial. The dual is not valid
under normal algebra

Theorem Simplification

9 x xy x  x x y x()  Absorption

10 x xy x y   x x y xy()  Degenerate-Reflect

 De Morgan’s

11 x y x y   x y x y  

Principle of Duality

There exists a basic duality which underlies all Boolean algebra. The laws and theorems

which have been presented can all be divided into pairs. In proving the laws and theorems,

it is then necessary only to prove one theorem, and the “dual” of the theorem follows

necessarily. To form the dual of an algebraic expression you simply need to:

1) Interchange AND and OR operators

2) Replace 1’s with 0’s and 0’s with 1’s

 6

Proof by Perfect Induction

The rules given may be used to simplify Boolean expressions, just as the rules of normal

algebra may be used to simplify expressions.

Proof of the Dual of the Distributive Law

Notice that, among others, rule 8D, does not apply to “normal” algebra. The rule however

can be obtained from the preceding rules as follows:

x yz x y x z   ()()

Algebraic Proof A

()() () ()x y x z x x y y x z      8. Distributive Law by Extension

 xx xy yx yz   8. Distributive Law

 x xy yx yz   4D. Idempotent

 x yx yz  9. Absorption

 x yz 9. Absorption

Algebraic Proof B

x yz x yz  

 x y yz()1  2. Identity under multiplication

 x xy yz  8. Distributive Law

 x z xy yz()1   3. Dominance

 xx xz xy yz   8. Distributive Law and 4D. Idempotent

 x x z yx yz()   8. Distributive Law and 6D. Commutative Law

 x x z y x z() ()   8. Distributive Law

 () ()x z x x z y   6D. Commutative Law

 ()()x z x y  8. Distributive Law (use substitution or by extension)

 ()()x y x z  6D. Commutative Law

Proof by Perfect Induction

Since rule 8D does not apply to normal algebra, it is interesting to test the rule using the

“proof by perfect induction.” It will therefore be necessary to construct truth tables for the

right hand and left hand sides of the equation and compare the results.

Step 1

x y z yz xyz

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

7

.

Step 2

x y z x  y x  z (x y)(x z)

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1

Notice that the last columns of the two tables are identical. This proves (by means of the

proof by perfect induction) that the expressions are equivalent

Proof of Simplification Theorems

x xy x 

Algebraic Proof

x xy x xy   1 2. Identity under multiplication

 x y()1 8. Distributive Law
 x 3. Dominance

Proof by Perfect Induction

x y xy xxy

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

Notice that the first and last columns of the two tables are identical. This proves (by means
of the proof by perfect induction) that the expressions are equivalent

x x y x() 

Algebraic Proof

x x y xx xy()   8. Distributive Law

 x xy 4D. Idempotent
 x 9. Absorption (see last proof)

Proof by Perfect Induction

x y xy x(xy)

0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

 8

Notice that the first and last columns of the two tables are identical. This proves (by means
of the proof by perfect induction) that the expressions are equivalent

x xy x y  

Algebraic Proof

x xy x y x x   ()() 8D. Distributive (use substitution)

 x y 5. Complements

Proof by Perfect Induction

Step 1

x y xy x xy

0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 1

Step 2

x y xy

0 0 0
0 1 1
1 0 1
1 1 1

Notice that the first and last columns of the two tables are identical. This proves (by means
of the proof by perfect induction) that the expressions are equivalent

x x y xy() 

Algebraic Proof

x x y xx xy()   8. Distributive

 0 xy 5D. Complements

 xy 2. Identity under addition

Proof by Perfect Induction

Step 1

x y ()x y x x y()

0 0 1 0
0 1 1 0
1 0 0 0
1 1 1 1

Step 2

9

.

x y xy

0 0 0
0 1 0
1 0 0
1 1 1

Notice that the last columns of the two tables are identical. This proves (by means of the
proof by perfect induction) that the expressions are equivalent

Although used here to prove theorems, the algebraic techniques demonstrated are most

practically applied to the simplification of circuit designs, where proof by perfect induction

provides little or no help. Use Homework to develop your skills

De Morgan’s Theorems

The complement of any Boolean expression, or part of any expression, may be found by

means of De Morgan’s Theorem. Two steps are used to form a complement.

1) OR symbols are replaced with AND symbols or AND symbols with OR symbols.

2) Each of the variables (terms) in the expression is complemented

Example 1 — Complement of a function

f xy z  Find the complement (NOT) of f

f xy z 

f x y z ()

Example 2 — Simplify a function

f a b c de  () Simplify

f a b c d e   () First, demorganize de

f a bcde 

 10

Derivation of Boolean Expressions

When designing a logical circuit, the logic designer works from two sets of known values:

1) the various states which the inputs (x, y) to the logical network can take, and

2) the desired outputs (z) for each input condition.

x z

y
logical circuit

These inputs and output conditions may be defined as a detailed set of requirements (Word

Problem), Waveforms, or in tabular form as a Truth Table.

The Boolean expression, and by extension the logic circuit, is derived from these sets of

values.

Sum-of-Products

An important consideration in dealing with logic circuits and their algebraic counterparts is

the form of the Boolean algebra expression and the resulting form of the logic circuit.

Certain types of Boolean algebra expressions lead to logic circuits which are more

desirable from an implementation viewpoint. We will look at two: Sum-of-products and

Product-of-sums. We will consider the most popular form first.

Inputs Output

x y z Product

Terms

0 0 1 x y

0 1 0 x y

1 0 1 x y

1 1 1 x y

The last column is a list of “product terms” obtained from the values of the input variables.

This column contains each of the input variables listed in each row of the table, with the

letter representing the respective input complemented when the input value of this variable

is 0, and not complemented when the input value is 1. The terms obtained in this manner

are designated as product terms or min terms (mi).

11

.

To create a sum-of-products (SOP) expression, add the product terms where the output

(z) equals 1.

z x y x y x y     

The right hand side of this expression may be simplified as follows:

z x y x y y   () 8. Distributive Law

z x y x   5. Complements

z x y x   5. Complements

z x y  6. Commutative, 10. Degenerate-Reflect

Now that we have the simplest algebraic expression possible, how do we translate it into a

logic circuit? To answer this question, you need to take every variable and consider it an

input to a gate with every term implemented with a gate. For now, create the compliment
of a variable with an inverter. Thus the expression z x y  is realized with a single

inverter and an OR gate.

Terminology

Key words: product term, min term, sum-of-products, levels of logic, standard form,

canonical form.

Technically, a product term contains AND operators and a min term is a product term
containing all the input variables. The sum-of-products expression z x y x   , contains

one min term and one product term of one variable. A sum-of-product expression has only

two-levels of logic (AND followed by OR) and is by definition in standard form. The

expression z x y x y y   () contains three-levels of logic and is therefore not a sum-

of-products. The sum-of-products expression z x y x y x y      contains three

product terms, which are in turn also min terms. When a sum-of-product expression is

expressed as a sum of min terms, it is said to be in canonical form.

Steps to Solution:

1) From the problem statement, a truth table is formed. The problem may be in the

form of a word problem, waveforms, or tables. In any event, the problem is

synthesized into a set of input and corresponding output conditions in tabular form

(a truth table).

2) A column is added to the truth table and named product terms. For each row

whose output is 1, a product term is formed from the input columns.

3) A sum-of-products expression is built from these product terms.

4) The algebraic expression is simplified.

5) A logical circuit is designed.

 12

In this example, you have three inputs (designated x, y, z) with two outputs f1 and f2.

Steps 1 and 2 — Truth Table and Product Terms

Inputs Outputs

x y z f1 f2 Product

Terms

0 0 0 0 0

0 0 1 0 1 x y z 

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1 x y z 

1 0 1 0 1 x y z 

1 1 0 1 1 x y z 

1 1 1 0 1 x y z 

Step 3 — Sum-Of-Products

f xyz1 

f x y z x y z x y z x y z x y z x y z2                  

Step 4 — Reduce Algebraic Expression

No further simplification is possible with the first output.

f x y z x y z x y z x y z x y z2               

x y z xy z z xy z z     () () 8. Distributive

x y z xy xy     1 1 5. Complements

x y z xy xy    2D. Identity

x y z x y y   () 8. Distributive

x y z x   1 5. Complements

x y z x   2D. Identity

x x y z   6. Commutative

x y z  10. Degenerate-Reflect

13

.

Check Your Answer

Inputs Outputs

x y z y z x y z 

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 1

1 1 1 0 1

Step 5 — Convert Algebra to Logic

and

Product-of-Sums

In a fashion analogous to the sum-of-products construction of logic circuits (actually its

dual), we can look at a Boolean expression, and its corresponding logic circuit, as the

product (AND) of sums (OR).

Inputs Output

x y z Sum

Terms

0 0 1 x y

0 1 0 x y

1 0 1 x y

1 1 1 x y

 14

The last column is a list of “sum terms” obtained from the values of the input variables.

This column contains each of the input variables listed in each row of the table, with the

letter representing the respective input complemented when the input value of this variable

is 1, and not complemented when the input value is 0. The terms obtained in this manner

are designated as sum terms or Max terms (Mi).

To create a product-of-sums (POS) expression, multiply (OR) the sum terms where the

output (z) equals 0.

z x y 

Notice that the Boolean expression, and corresponding logic circuit, derived by the

product-of-sums method is the same as developed using the sum-of-products method

after simplification.

Terminology

Key words: sum term, Max term, product-of-sums, levels of logic, standard form, canonical

form.

Technically, a sum term contains OR operators and a Max term is a sum term containing

all the input variables. The product-of-sums expression z x y x  () , contains one Max

term and one sum term of one variable. A product-of-sums expression has only two-levels

of logic (OR followed by AND) and is by definition in standard form. The expression

z x y x y y   () contains three-levels of logic and is therefore not a product-of-sums.

The product-of-sums expression z x y x y x y   ()()() contains three sum terms,

which are in turn also Max terms. When a product-of-sums expression is expressed as a

sum of Max terms, it is said to be in canonical form.

Some texts use the term “conventional” in place of “standard,” Pi in place of mi and Si in

place of Mi.

Steps to Solution:

The “Steps to Solution” using the product-of-sums methodology is the dual of the sum-of-

products method.

1) From the problem statement, a truth table is formed. The problem may be in the

form of a word problem, waveforms, or tables. In any event, the problem is

synthesized into a set of input and corresponding output conditions in tabular form

(a truth table).

2) A column is added to the truth table and named sum terms. For each row whose

output is 0, a sum term is formed from the input columns.

3) A products-of-sums expression is built from these sum terms.

4) The algebraic expression is simplified.

5) A logical circuit is designed.

15

.

In this example, you have three inputs (designated x, y, z) with two outputs f1 and f2.

Steps 1 and 2 — Truth Table and Product Terms

Inputs Outputs

x y z f1 f2 Sum

Terms

0 0 0 0 0 x y z 

0 0 1 0 1 x y z 

0 1 0 0 0 x y z 

0 1 1 0 0 x y z 

1 0 0 0 1 x y z 

1 0 1 0 1 x y z 

1 1 0 1 1

1 1 1 0 1 x y z 

Step 3 — Product-Of-Sums

f x y z x y z x y z x y z x y z x y z x y z1               ()()()()()()()

f x y z x y z x y z2       ()()()

A Few Observations

Just as the first POS example lead directly to the simplest form of the Boolean equation,

the SOP derived expression for f1 (see last Chapter) leads directly to the simplest form of

the Boolean equation. The POS method, on the other hand, leads to an overly complex

form. The lesson here is to take time before you rush into a solution and study the

problem. Often simply inverting the outputs (0 to 1, 1 to 0) and then using De Morgan’s

Theorem on the solution will lead to the quickest solution. Or as demonstrated here,

maybe selecting the POS over the SOP method or visa-versa will provide the quickest and

best solution .

Also notice that the logic circuit for a sum-of-products expression in “standard” form (an

expression with at least two product terms with at least two variables in each product term)

go directly into an AND-to-OR gate circuit, while “standard” product-of-sums expressions

go directly into OR-to-AND gate networks.

 16

Step 4 — Reduce Algebraic Expression

f x y z x y z x y z2       ()()()

(()())()x y z y z x y z     8D. Dual of Distributive Law

x y z y z y z   ()()() 8D. Dual of Distributive Law

x y z y zz  ()() 8D. Dual of Distributive Law

x y z y  ()()0 5D. Complements

x y z y () 2. Identity

x y y z () 6D. Commutative Law of Multiplication

x yz 10D. Dual of Degenerate-Reflect

Notice that the Boolean expression, and corresponding logic circuit, derived by the

product-of-sums method is the same as developed using the sum-of-products method

after simplification.

From Logic Gates to SSI Circuits

Small scale integration (SSI) can be defined as an integrated circuit (IC) with a complexity

of 20 or less gates. Medium scale integration (MSI) has a complexity factor of 20 to 100

gates. Above a complexity factor of 100 gates is the domain of Large scale integration

(LSI). SSI, MSI, and LSI all use the three fundamental building blocks, no matter if the IC is

implemented using RTL, DTL, TTL, ECL, NMOS, or CMOS technology.

Gates Level of

Integration

1 to 19 SSI

20 to 100 MSI

100 plus LSI

The most popular commercial SSI and MSI logic family is known as the seventy-four

hundred (7400) series. It’s military counterpart is known as the fifty-four hundred series

(5400). The 5400 series of parts have operating specifications for military applications,

whereas the 7400 series have operating specifications suited for commercial applications.

Thus, for example, a 5408 and 7408 (AND gate package) differ only in their operating

spec's, not functionally. The part number of an IC which is a member of the seventy-four

hundred series begins with 74 (what did you think) followed by one or more letters which

denote the technology employed. Popular technologies include:

17

.

Logic

Family

Technology 7400

Designator

Comments

TTL
Transistor-transistor logic

Schottky

Low-power Schottky

Advanced Low-Power Schottky

Fast

S

LS

ALS

F

High Speed

CMOS Complementary

metal-oxide semiconductor

High-speed CMOS

High-speed CMOS with TTL

compatibility

HC

HCT

Low Power

ECL Emitter-coupled logic Very High Speed

MOS Metal-oxide semiconductor High Density

The above table provides only a partial listing. The absence of a letter indicates standard

TTL logic (can you say obsolete). In many cases the 74 is preceded by letters to indicate

the manufacturer. For example SN denotes this as a seventy-four hundred series part

made by Texas Instruments. The next series of numbers indicate the part type (AND, OR,

etc.). Depending on the manufacturer additional letters may be appended to denote

version (A or B), the package code (N = Plastic DIP), temperature range, and special

processing (commercial grade device with burn-in).

 Manufacturer Family Technolog

y

Type Package and

Temperature

Part Number SN 74 LS 08 N

Examples of Logic gates packaged into plastic 14 pin dual-inline packages (DIPs). See

page 65 of the textbook for additional examples.

7408 AND Gates 7406 Inverters

